]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/inode.c
Btrfs: refactor error handling to drop inode in btrfs_create()
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57
58 struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61 };
62
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72
73 static struct kmem_cache *btrfs_inode_cachep;
74 static struct kmem_cache *btrfs_delalloc_work_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_transaction_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79
80 #define S_SHIFT 12
81 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89 };
90
91 static int btrfs_setsize(struct inode *inode, loff_t newsize);
92 static int btrfs_truncate(struct inode *inode);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
94 static noinline int cow_file_range(struct inode *inode,
95 struct page *locked_page,
96 u64 start, u64 end, int *page_started,
97 unsigned long *nr_written, int unlock);
98
99 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
100 struct inode *inode, struct inode *dir,
101 const struct qstr *qstr)
102 {
103 int err;
104
105 err = btrfs_init_acl(trans, inode, dir);
106 if (!err)
107 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
108 return err;
109 }
110
111 /*
112 * this does all the hard work for inserting an inline extent into
113 * the btree. The caller should have done a btrfs_drop_extents so that
114 * no overlapping inline items exist in the btree
115 */
116 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
117 struct btrfs_root *root, struct inode *inode,
118 u64 start, size_t size, size_t compressed_size,
119 int compress_type,
120 struct page **compressed_pages)
121 {
122 struct btrfs_key key;
123 struct btrfs_path *path;
124 struct extent_buffer *leaf;
125 struct page *page = NULL;
126 char *kaddr;
127 unsigned long ptr;
128 struct btrfs_file_extent_item *ei;
129 int err = 0;
130 int ret;
131 size_t cur_size = size;
132 size_t datasize;
133 unsigned long offset;
134
135 if (compressed_size && compressed_pages)
136 cur_size = compressed_size;
137
138 path = btrfs_alloc_path();
139 if (!path)
140 return -ENOMEM;
141
142 path->leave_spinning = 1;
143
144 key.objectid = btrfs_ino(inode);
145 key.offset = start;
146 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
147 datasize = btrfs_file_extent_calc_inline_size(cur_size);
148
149 inode_add_bytes(inode, size);
150 ret = btrfs_insert_empty_item(trans, root, path, &key,
151 datasize);
152 if (ret) {
153 err = ret;
154 goto fail;
155 }
156 leaf = path->nodes[0];
157 ei = btrfs_item_ptr(leaf, path->slots[0],
158 struct btrfs_file_extent_item);
159 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
160 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
161 btrfs_set_file_extent_encryption(leaf, ei, 0);
162 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
163 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
164 ptr = btrfs_file_extent_inline_start(ei);
165
166 if (compress_type != BTRFS_COMPRESS_NONE) {
167 struct page *cpage;
168 int i = 0;
169 while (compressed_size > 0) {
170 cpage = compressed_pages[i];
171 cur_size = min_t(unsigned long, compressed_size,
172 PAGE_CACHE_SIZE);
173
174 kaddr = kmap_atomic(cpage);
175 write_extent_buffer(leaf, kaddr, ptr, cur_size);
176 kunmap_atomic(kaddr);
177
178 i++;
179 ptr += cur_size;
180 compressed_size -= cur_size;
181 }
182 btrfs_set_file_extent_compression(leaf, ei,
183 compress_type);
184 } else {
185 page = find_get_page(inode->i_mapping,
186 start >> PAGE_CACHE_SHIFT);
187 btrfs_set_file_extent_compression(leaf, ei, 0);
188 kaddr = kmap_atomic(page);
189 offset = start & (PAGE_CACHE_SIZE - 1);
190 write_extent_buffer(leaf, kaddr + offset, ptr, size);
191 kunmap_atomic(kaddr);
192 page_cache_release(page);
193 }
194 btrfs_mark_buffer_dirty(leaf);
195 btrfs_free_path(path);
196
197 /*
198 * we're an inline extent, so nobody can
199 * extend the file past i_size without locking
200 * a page we already have locked.
201 *
202 * We must do any isize and inode updates
203 * before we unlock the pages. Otherwise we
204 * could end up racing with unlink.
205 */
206 BTRFS_I(inode)->disk_i_size = inode->i_size;
207 ret = btrfs_update_inode(trans, root, inode);
208
209 return ret;
210 fail:
211 btrfs_free_path(path);
212 return err;
213 }
214
215
216 /*
217 * conditionally insert an inline extent into the file. This
218 * does the checks required to make sure the data is small enough
219 * to fit as an inline extent.
220 */
221 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
222 struct btrfs_root *root,
223 struct inode *inode, u64 start, u64 end,
224 size_t compressed_size, int compress_type,
225 struct page **compressed_pages)
226 {
227 u64 isize = i_size_read(inode);
228 u64 actual_end = min(end + 1, isize);
229 u64 inline_len = actual_end - start;
230 u64 aligned_end = (end + root->sectorsize - 1) &
231 ~((u64)root->sectorsize - 1);
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
239 actual_end >= PAGE_CACHE_SIZE ||
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
248 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
249 if (ret)
250 return ret;
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compress_type, compressed_pages);
257 if (ret && ret != -ENOSPC) {
258 btrfs_abort_transaction(trans, root, ret);
259 return ret;
260 } else if (ret == -ENOSPC) {
261 return 1;
262 }
263
264 btrfs_delalloc_release_metadata(inode, end + 1 - start);
265 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
266 return 0;
267 }
268
269 struct async_extent {
270 u64 start;
271 u64 ram_size;
272 u64 compressed_size;
273 struct page **pages;
274 unsigned long nr_pages;
275 int compress_type;
276 struct list_head list;
277 };
278
279 struct async_cow {
280 struct inode *inode;
281 struct btrfs_root *root;
282 struct page *locked_page;
283 u64 start;
284 u64 end;
285 struct list_head extents;
286 struct btrfs_work work;
287 };
288
289 static noinline int add_async_extent(struct async_cow *cow,
290 u64 start, u64 ram_size,
291 u64 compressed_size,
292 struct page **pages,
293 unsigned long nr_pages,
294 int compress_type)
295 {
296 struct async_extent *async_extent;
297
298 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
299 BUG_ON(!async_extent); /* -ENOMEM */
300 async_extent->start = start;
301 async_extent->ram_size = ram_size;
302 async_extent->compressed_size = compressed_size;
303 async_extent->pages = pages;
304 async_extent->nr_pages = nr_pages;
305 async_extent->compress_type = compress_type;
306 list_add_tail(&async_extent->list, &cow->extents);
307 return 0;
308 }
309
310 /*
311 * we create compressed extents in two phases. The first
312 * phase compresses a range of pages that have already been
313 * locked (both pages and state bits are locked).
314 *
315 * This is done inside an ordered work queue, and the compression
316 * is spread across many cpus. The actual IO submission is step
317 * two, and the ordered work queue takes care of making sure that
318 * happens in the same order things were put onto the queue by
319 * writepages and friends.
320 *
321 * If this code finds it can't get good compression, it puts an
322 * entry onto the work queue to write the uncompressed bytes. This
323 * makes sure that both compressed inodes and uncompressed inodes
324 * are written in the same order that the flusher thread sent them
325 * down.
326 */
327 static noinline int compress_file_range(struct inode *inode,
328 struct page *locked_page,
329 u64 start, u64 end,
330 struct async_cow *async_cow,
331 int *num_added)
332 {
333 struct btrfs_root *root = BTRFS_I(inode)->root;
334 struct btrfs_trans_handle *trans;
335 u64 num_bytes;
336 u64 blocksize = root->sectorsize;
337 u64 actual_end;
338 u64 isize = i_size_read(inode);
339 int ret = 0;
340 struct page **pages = NULL;
341 unsigned long nr_pages;
342 unsigned long nr_pages_ret = 0;
343 unsigned long total_compressed = 0;
344 unsigned long total_in = 0;
345 unsigned long max_compressed = 128 * 1024;
346 unsigned long max_uncompressed = 128 * 1024;
347 int i;
348 int will_compress;
349 int compress_type = root->fs_info->compress_type;
350
351 /* if this is a small write inside eof, kick off a defrag */
352 if ((end - start + 1) < 16 * 1024 &&
353 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
354 btrfs_add_inode_defrag(NULL, inode);
355
356 actual_end = min_t(u64, isize, end + 1);
357 again:
358 will_compress = 0;
359 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
360 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
361
362 /*
363 * we don't want to send crud past the end of i_size through
364 * compression, that's just a waste of CPU time. So, if the
365 * end of the file is before the start of our current
366 * requested range of bytes, we bail out to the uncompressed
367 * cleanup code that can deal with all of this.
368 *
369 * It isn't really the fastest way to fix things, but this is a
370 * very uncommon corner.
371 */
372 if (actual_end <= start)
373 goto cleanup_and_bail_uncompressed;
374
375 total_compressed = actual_end - start;
376
377 /* we want to make sure that amount of ram required to uncompress
378 * an extent is reasonable, so we limit the total size in ram
379 * of a compressed extent to 128k. This is a crucial number
380 * because it also controls how easily we can spread reads across
381 * cpus for decompression.
382 *
383 * We also want to make sure the amount of IO required to do
384 * a random read is reasonably small, so we limit the size of
385 * a compressed extent to 128k.
386 */
387 total_compressed = min(total_compressed, max_uncompressed);
388 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
389 num_bytes = max(blocksize, num_bytes);
390 total_in = 0;
391 ret = 0;
392
393 /*
394 * we do compression for mount -o compress and when the
395 * inode has not been flagged as nocompress. This flag can
396 * change at any time if we discover bad compression ratios.
397 */
398 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
399 (btrfs_test_opt(root, COMPRESS) ||
400 (BTRFS_I(inode)->force_compress) ||
401 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
402 WARN_ON(pages);
403 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
404 if (!pages) {
405 /* just bail out to the uncompressed code */
406 goto cont;
407 }
408
409 if (BTRFS_I(inode)->force_compress)
410 compress_type = BTRFS_I(inode)->force_compress;
411
412 ret = btrfs_compress_pages(compress_type,
413 inode->i_mapping, start,
414 total_compressed, pages,
415 nr_pages, &nr_pages_ret,
416 &total_in,
417 &total_compressed,
418 max_compressed);
419
420 if (!ret) {
421 unsigned long offset = total_compressed &
422 (PAGE_CACHE_SIZE - 1);
423 struct page *page = pages[nr_pages_ret - 1];
424 char *kaddr;
425
426 /* zero the tail end of the last page, we might be
427 * sending it down to disk
428 */
429 if (offset) {
430 kaddr = kmap_atomic(page);
431 memset(kaddr + offset, 0,
432 PAGE_CACHE_SIZE - offset);
433 kunmap_atomic(kaddr);
434 }
435 will_compress = 1;
436 }
437 }
438 cont:
439 if (start == 0) {
440 trans = btrfs_join_transaction(root);
441 if (IS_ERR(trans)) {
442 ret = PTR_ERR(trans);
443 trans = NULL;
444 goto cleanup_and_out;
445 }
446 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
447
448 /* lets try to make an inline extent */
449 if (ret || total_in < (actual_end - start)) {
450 /* we didn't compress the entire range, try
451 * to make an uncompressed inline extent.
452 */
453 ret = cow_file_range_inline(trans, root, inode,
454 start, end, 0, 0, NULL);
455 } else {
456 /* try making a compressed inline extent */
457 ret = cow_file_range_inline(trans, root, inode,
458 start, end,
459 total_compressed,
460 compress_type, pages);
461 }
462 if (ret <= 0) {
463 /*
464 * inline extent creation worked or returned error,
465 * we don't need to create any more async work items.
466 * Unlock and free up our temp pages.
467 */
468 extent_clear_unlock_delalloc(inode,
469 &BTRFS_I(inode)->io_tree,
470 start, end, NULL,
471 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
472 EXTENT_CLEAR_DELALLOC |
473 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
474
475 btrfs_end_transaction(trans, root);
476 goto free_pages_out;
477 }
478 btrfs_end_transaction(trans, root);
479 }
480
481 if (will_compress) {
482 /*
483 * we aren't doing an inline extent round the compressed size
484 * up to a block size boundary so the allocator does sane
485 * things
486 */
487 total_compressed = (total_compressed + blocksize - 1) &
488 ~(blocksize - 1);
489
490 /*
491 * one last check to make sure the compression is really a
492 * win, compare the page count read with the blocks on disk
493 */
494 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
495 ~(PAGE_CACHE_SIZE - 1);
496 if (total_compressed >= total_in) {
497 will_compress = 0;
498 } else {
499 num_bytes = total_in;
500 }
501 }
502 if (!will_compress && pages) {
503 /*
504 * the compression code ran but failed to make things smaller,
505 * free any pages it allocated and our page pointer array
506 */
507 for (i = 0; i < nr_pages_ret; i++) {
508 WARN_ON(pages[i]->mapping);
509 page_cache_release(pages[i]);
510 }
511 kfree(pages);
512 pages = NULL;
513 total_compressed = 0;
514 nr_pages_ret = 0;
515
516 /* flag the file so we don't compress in the future */
517 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
518 !(BTRFS_I(inode)->force_compress)) {
519 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
520 }
521 }
522 if (will_compress) {
523 *num_added += 1;
524
525 /* the async work queues will take care of doing actual
526 * allocation on disk for these compressed pages,
527 * and will submit them to the elevator.
528 */
529 add_async_extent(async_cow, start, num_bytes,
530 total_compressed, pages, nr_pages_ret,
531 compress_type);
532
533 if (start + num_bytes < end) {
534 start += num_bytes;
535 pages = NULL;
536 cond_resched();
537 goto again;
538 }
539 } else {
540 cleanup_and_bail_uncompressed:
541 /*
542 * No compression, but we still need to write the pages in
543 * the file we've been given so far. redirty the locked
544 * page if it corresponds to our extent and set things up
545 * for the async work queue to run cow_file_range to do
546 * the normal delalloc dance
547 */
548 if (page_offset(locked_page) >= start &&
549 page_offset(locked_page) <= end) {
550 __set_page_dirty_nobuffers(locked_page);
551 /* unlocked later on in the async handlers */
552 }
553 add_async_extent(async_cow, start, end - start + 1,
554 0, NULL, 0, BTRFS_COMPRESS_NONE);
555 *num_added += 1;
556 }
557
558 out:
559 return ret;
560
561 free_pages_out:
562 for (i = 0; i < nr_pages_ret; i++) {
563 WARN_ON(pages[i]->mapping);
564 page_cache_release(pages[i]);
565 }
566 kfree(pages);
567
568 goto out;
569
570 cleanup_and_out:
571 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
572 start, end, NULL,
573 EXTENT_CLEAR_UNLOCK_PAGE |
574 EXTENT_CLEAR_DIRTY |
575 EXTENT_CLEAR_DELALLOC |
576 EXTENT_SET_WRITEBACK |
577 EXTENT_END_WRITEBACK);
578 if (!trans || IS_ERR(trans))
579 btrfs_error(root->fs_info, ret, "Failed to join transaction");
580 else
581 btrfs_abort_transaction(trans, root, ret);
582 goto free_pages_out;
583 }
584
585 /*
586 * phase two of compressed writeback. This is the ordered portion
587 * of the code, which only gets called in the order the work was
588 * queued. We walk all the async extents created by compress_file_range
589 * and send them down to the disk.
590 */
591 static noinline int submit_compressed_extents(struct inode *inode,
592 struct async_cow *async_cow)
593 {
594 struct async_extent *async_extent;
595 u64 alloc_hint = 0;
596 struct btrfs_trans_handle *trans;
597 struct btrfs_key ins;
598 struct extent_map *em;
599 struct btrfs_root *root = BTRFS_I(inode)->root;
600 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
601 struct extent_io_tree *io_tree;
602 int ret = 0;
603
604 if (list_empty(&async_cow->extents))
605 return 0;
606
607
608 while (!list_empty(&async_cow->extents)) {
609 async_extent = list_entry(async_cow->extents.next,
610 struct async_extent, list);
611 list_del(&async_extent->list);
612
613 io_tree = &BTRFS_I(inode)->io_tree;
614
615 retry:
616 /* did the compression code fall back to uncompressed IO? */
617 if (!async_extent->pages) {
618 int page_started = 0;
619 unsigned long nr_written = 0;
620
621 lock_extent(io_tree, async_extent->start,
622 async_extent->start +
623 async_extent->ram_size - 1);
624
625 /* allocate blocks */
626 ret = cow_file_range(inode, async_cow->locked_page,
627 async_extent->start,
628 async_extent->start +
629 async_extent->ram_size - 1,
630 &page_started, &nr_written, 0);
631
632 /* JDM XXX */
633
634 /*
635 * if page_started, cow_file_range inserted an
636 * inline extent and took care of all the unlocking
637 * and IO for us. Otherwise, we need to submit
638 * all those pages down to the drive.
639 */
640 if (!page_started && !ret)
641 extent_write_locked_range(io_tree,
642 inode, async_extent->start,
643 async_extent->start +
644 async_extent->ram_size - 1,
645 btrfs_get_extent,
646 WB_SYNC_ALL);
647 kfree(async_extent);
648 cond_resched();
649 continue;
650 }
651
652 lock_extent(io_tree, async_extent->start,
653 async_extent->start + async_extent->ram_size - 1);
654
655 trans = btrfs_join_transaction(root);
656 if (IS_ERR(trans)) {
657 ret = PTR_ERR(trans);
658 } else {
659 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
660 ret = btrfs_reserve_extent(trans, root,
661 async_extent->compressed_size,
662 async_extent->compressed_size,
663 0, alloc_hint, &ins, 1);
664 if (ret && ret != -ENOSPC)
665 btrfs_abort_transaction(trans, root, ret);
666 btrfs_end_transaction(trans, root);
667 }
668
669 if (ret) {
670 int i;
671 for (i = 0; i < async_extent->nr_pages; i++) {
672 WARN_ON(async_extent->pages[i]->mapping);
673 page_cache_release(async_extent->pages[i]);
674 }
675 kfree(async_extent->pages);
676 async_extent->nr_pages = 0;
677 async_extent->pages = NULL;
678 unlock_extent(io_tree, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1);
681 if (ret == -ENOSPC)
682 goto retry;
683 goto out_free; /* JDM: Requeue? */
684 }
685
686 /*
687 * here we're doing allocation and writeback of the
688 * compressed pages
689 */
690 btrfs_drop_extent_cache(inode, async_extent->start,
691 async_extent->start +
692 async_extent->ram_size - 1, 0);
693
694 em = alloc_extent_map();
695 BUG_ON(!em); /* -ENOMEM */
696 em->start = async_extent->start;
697 em->len = async_extent->ram_size;
698 em->orig_start = em->start;
699
700 em->block_start = ins.objectid;
701 em->block_len = ins.offset;
702 em->bdev = root->fs_info->fs_devices->latest_bdev;
703 em->compress_type = async_extent->compress_type;
704 set_bit(EXTENT_FLAG_PINNED, &em->flags);
705 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
706
707 while (1) {
708 write_lock(&em_tree->lock);
709 ret = add_extent_mapping(em_tree, em);
710 write_unlock(&em_tree->lock);
711 if (ret != -EEXIST) {
712 free_extent_map(em);
713 break;
714 }
715 btrfs_drop_extent_cache(inode, async_extent->start,
716 async_extent->start +
717 async_extent->ram_size - 1, 0);
718 }
719
720 ret = btrfs_add_ordered_extent_compress(inode,
721 async_extent->start,
722 ins.objectid,
723 async_extent->ram_size,
724 ins.offset,
725 BTRFS_ORDERED_COMPRESSED,
726 async_extent->compress_type);
727 BUG_ON(ret); /* -ENOMEM */
728
729 /*
730 * clear dirty, set writeback and unlock the pages.
731 */
732 extent_clear_unlock_delalloc(inode,
733 &BTRFS_I(inode)->io_tree,
734 async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1,
737 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
738 EXTENT_CLEAR_UNLOCK |
739 EXTENT_CLEAR_DELALLOC |
740 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
741
742 ret = btrfs_submit_compressed_write(inode,
743 async_extent->start,
744 async_extent->ram_size,
745 ins.objectid,
746 ins.offset, async_extent->pages,
747 async_extent->nr_pages);
748
749 BUG_ON(ret); /* -ENOMEM */
750 alloc_hint = ins.objectid + ins.offset;
751 kfree(async_extent);
752 cond_resched();
753 }
754 ret = 0;
755 out:
756 return ret;
757 out_free:
758 kfree(async_extent);
759 goto out;
760 }
761
762 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
763 u64 num_bytes)
764 {
765 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
766 struct extent_map *em;
767 u64 alloc_hint = 0;
768
769 read_lock(&em_tree->lock);
770 em = search_extent_mapping(em_tree, start, num_bytes);
771 if (em) {
772 /*
773 * if block start isn't an actual block number then find the
774 * first block in this inode and use that as a hint. If that
775 * block is also bogus then just don't worry about it.
776 */
777 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
778 free_extent_map(em);
779 em = search_extent_mapping(em_tree, 0, 0);
780 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
781 alloc_hint = em->block_start;
782 if (em)
783 free_extent_map(em);
784 } else {
785 alloc_hint = em->block_start;
786 free_extent_map(em);
787 }
788 }
789 read_unlock(&em_tree->lock);
790
791 return alloc_hint;
792 }
793
794 /*
795 * when extent_io.c finds a delayed allocation range in the file,
796 * the call backs end up in this code. The basic idea is to
797 * allocate extents on disk for the range, and create ordered data structs
798 * in ram to track those extents.
799 *
800 * locked_page is the page that writepage had locked already. We use
801 * it to make sure we don't do extra locks or unlocks.
802 *
803 * *page_started is set to one if we unlock locked_page and do everything
804 * required to start IO on it. It may be clean and already done with
805 * IO when we return.
806 */
807 static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
808 struct inode *inode,
809 struct btrfs_root *root,
810 struct page *locked_page,
811 u64 start, u64 end, int *page_started,
812 unsigned long *nr_written,
813 int unlock)
814 {
815 u64 alloc_hint = 0;
816 u64 num_bytes;
817 unsigned long ram_size;
818 u64 disk_num_bytes;
819 u64 cur_alloc_size;
820 u64 blocksize = root->sectorsize;
821 struct btrfs_key ins;
822 struct extent_map *em;
823 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
824 int ret = 0;
825
826 BUG_ON(btrfs_is_free_space_inode(inode));
827
828 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
829 num_bytes = max(blocksize, num_bytes);
830 disk_num_bytes = num_bytes;
831
832 /* if this is a small write inside eof, kick off defrag */
833 if (num_bytes < 64 * 1024 &&
834 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
835 btrfs_add_inode_defrag(trans, inode);
836
837 if (start == 0) {
838 /* lets try to make an inline extent */
839 ret = cow_file_range_inline(trans, root, inode,
840 start, end, 0, 0, NULL);
841 if (ret == 0) {
842 extent_clear_unlock_delalloc(inode,
843 &BTRFS_I(inode)->io_tree,
844 start, end, NULL,
845 EXTENT_CLEAR_UNLOCK_PAGE |
846 EXTENT_CLEAR_UNLOCK |
847 EXTENT_CLEAR_DELALLOC |
848 EXTENT_CLEAR_DIRTY |
849 EXTENT_SET_WRITEBACK |
850 EXTENT_END_WRITEBACK);
851
852 *nr_written = *nr_written +
853 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
854 *page_started = 1;
855 goto out;
856 } else if (ret < 0) {
857 btrfs_abort_transaction(trans, root, ret);
858 goto out_unlock;
859 }
860 }
861
862 BUG_ON(disk_num_bytes >
863 btrfs_super_total_bytes(root->fs_info->super_copy));
864
865 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
866 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
867
868 while (disk_num_bytes > 0) {
869 unsigned long op;
870
871 cur_alloc_size = disk_num_bytes;
872 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
873 root->sectorsize, 0, alloc_hint,
874 &ins, 1);
875 if (ret < 0) {
876 btrfs_abort_transaction(trans, root, ret);
877 goto out_unlock;
878 }
879
880 em = alloc_extent_map();
881 BUG_ON(!em); /* -ENOMEM */
882 em->start = start;
883 em->orig_start = em->start;
884 ram_size = ins.offset;
885 em->len = ins.offset;
886
887 em->block_start = ins.objectid;
888 em->block_len = ins.offset;
889 em->bdev = root->fs_info->fs_devices->latest_bdev;
890 set_bit(EXTENT_FLAG_PINNED, &em->flags);
891
892 while (1) {
893 write_lock(&em_tree->lock);
894 ret = add_extent_mapping(em_tree, em);
895 write_unlock(&em_tree->lock);
896 if (ret != -EEXIST) {
897 free_extent_map(em);
898 break;
899 }
900 btrfs_drop_extent_cache(inode, start,
901 start + ram_size - 1, 0);
902 }
903
904 cur_alloc_size = ins.offset;
905 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
906 ram_size, cur_alloc_size, 0);
907 BUG_ON(ret); /* -ENOMEM */
908
909 if (root->root_key.objectid ==
910 BTRFS_DATA_RELOC_TREE_OBJECTID) {
911 ret = btrfs_reloc_clone_csums(inode, start,
912 cur_alloc_size);
913 if (ret) {
914 btrfs_abort_transaction(trans, root, ret);
915 goto out_unlock;
916 }
917 }
918
919 if (disk_num_bytes < cur_alloc_size)
920 break;
921
922 /* we're not doing compressed IO, don't unlock the first
923 * page (which the caller expects to stay locked), don't
924 * clear any dirty bits and don't set any writeback bits
925 *
926 * Do set the Private2 bit so we know this page was properly
927 * setup for writepage
928 */
929 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
930 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
931 EXTENT_SET_PRIVATE2;
932
933 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
934 start, start + ram_size - 1,
935 locked_page, op);
936 disk_num_bytes -= cur_alloc_size;
937 num_bytes -= cur_alloc_size;
938 alloc_hint = ins.objectid + ins.offset;
939 start += cur_alloc_size;
940 }
941 out:
942 return ret;
943
944 out_unlock:
945 extent_clear_unlock_delalloc(inode,
946 &BTRFS_I(inode)->io_tree,
947 start, end, locked_page,
948 EXTENT_CLEAR_UNLOCK_PAGE |
949 EXTENT_CLEAR_UNLOCK |
950 EXTENT_CLEAR_DELALLOC |
951 EXTENT_CLEAR_DIRTY |
952 EXTENT_SET_WRITEBACK |
953 EXTENT_END_WRITEBACK);
954
955 goto out;
956 }
957
958 static noinline int cow_file_range(struct inode *inode,
959 struct page *locked_page,
960 u64 start, u64 end, int *page_started,
961 unsigned long *nr_written,
962 int unlock)
963 {
964 struct btrfs_trans_handle *trans;
965 struct btrfs_root *root = BTRFS_I(inode)->root;
966 int ret;
967
968 trans = btrfs_join_transaction(root);
969 if (IS_ERR(trans)) {
970 extent_clear_unlock_delalloc(inode,
971 &BTRFS_I(inode)->io_tree,
972 start, end, locked_page,
973 EXTENT_CLEAR_UNLOCK_PAGE |
974 EXTENT_CLEAR_UNLOCK |
975 EXTENT_CLEAR_DELALLOC |
976 EXTENT_CLEAR_DIRTY |
977 EXTENT_SET_WRITEBACK |
978 EXTENT_END_WRITEBACK);
979 return PTR_ERR(trans);
980 }
981 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
982
983 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
984 page_started, nr_written, unlock);
985
986 btrfs_end_transaction(trans, root);
987
988 return ret;
989 }
990
991 /*
992 * work queue call back to started compression on a file and pages
993 */
994 static noinline void async_cow_start(struct btrfs_work *work)
995 {
996 struct async_cow *async_cow;
997 int num_added = 0;
998 async_cow = container_of(work, struct async_cow, work);
999
1000 compress_file_range(async_cow->inode, async_cow->locked_page,
1001 async_cow->start, async_cow->end, async_cow,
1002 &num_added);
1003 if (num_added == 0) {
1004 btrfs_add_delayed_iput(async_cow->inode);
1005 async_cow->inode = NULL;
1006 }
1007 }
1008
1009 /*
1010 * work queue call back to submit previously compressed pages
1011 */
1012 static noinline void async_cow_submit(struct btrfs_work *work)
1013 {
1014 struct async_cow *async_cow;
1015 struct btrfs_root *root;
1016 unsigned long nr_pages;
1017
1018 async_cow = container_of(work, struct async_cow, work);
1019
1020 root = async_cow->root;
1021 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1022 PAGE_CACHE_SHIFT;
1023
1024 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1025 5 * 1024 * 1024 &&
1026 waitqueue_active(&root->fs_info->async_submit_wait))
1027 wake_up(&root->fs_info->async_submit_wait);
1028
1029 if (async_cow->inode)
1030 submit_compressed_extents(async_cow->inode, async_cow);
1031 }
1032
1033 static noinline void async_cow_free(struct btrfs_work *work)
1034 {
1035 struct async_cow *async_cow;
1036 async_cow = container_of(work, struct async_cow, work);
1037 if (async_cow->inode)
1038 btrfs_add_delayed_iput(async_cow->inode);
1039 kfree(async_cow);
1040 }
1041
1042 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1043 u64 start, u64 end, int *page_started,
1044 unsigned long *nr_written)
1045 {
1046 struct async_cow *async_cow;
1047 struct btrfs_root *root = BTRFS_I(inode)->root;
1048 unsigned long nr_pages;
1049 u64 cur_end;
1050 int limit = 10 * 1024 * 1024;
1051
1052 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1053 1, 0, NULL, GFP_NOFS);
1054 while (start < end) {
1055 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1056 BUG_ON(!async_cow); /* -ENOMEM */
1057 async_cow->inode = igrab(inode);
1058 async_cow->root = root;
1059 async_cow->locked_page = locked_page;
1060 async_cow->start = start;
1061
1062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1063 cur_end = end;
1064 else
1065 cur_end = min(end, start + 512 * 1024 - 1);
1066
1067 async_cow->end = cur_end;
1068 INIT_LIST_HEAD(&async_cow->extents);
1069
1070 async_cow->work.func = async_cow_start;
1071 async_cow->work.ordered_func = async_cow_submit;
1072 async_cow->work.ordered_free = async_cow_free;
1073 async_cow->work.flags = 0;
1074
1075 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1076 PAGE_CACHE_SHIFT;
1077 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1078
1079 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1080 &async_cow->work);
1081
1082 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1083 wait_event(root->fs_info->async_submit_wait,
1084 (atomic_read(&root->fs_info->async_delalloc_pages) <
1085 limit));
1086 }
1087
1088 while (atomic_read(&root->fs_info->async_submit_draining) &&
1089 atomic_read(&root->fs_info->async_delalloc_pages)) {
1090 wait_event(root->fs_info->async_submit_wait,
1091 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1092 0));
1093 }
1094
1095 *nr_written += nr_pages;
1096 start = cur_end + 1;
1097 }
1098 *page_started = 1;
1099 return 0;
1100 }
1101
1102 static noinline int csum_exist_in_range(struct btrfs_root *root,
1103 u64 bytenr, u64 num_bytes)
1104 {
1105 int ret;
1106 struct btrfs_ordered_sum *sums;
1107 LIST_HEAD(list);
1108
1109 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1110 bytenr + num_bytes - 1, &list, 0);
1111 if (ret == 0 && list_empty(&list))
1112 return 0;
1113
1114 while (!list_empty(&list)) {
1115 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1116 list_del(&sums->list);
1117 kfree(sums);
1118 }
1119 return 1;
1120 }
1121
1122 /*
1123 * when nowcow writeback call back. This checks for snapshots or COW copies
1124 * of the extents that exist in the file, and COWs the file as required.
1125 *
1126 * If no cow copies or snapshots exist, we write directly to the existing
1127 * blocks on disk
1128 */
1129 static noinline int run_delalloc_nocow(struct inode *inode,
1130 struct page *locked_page,
1131 u64 start, u64 end, int *page_started, int force,
1132 unsigned long *nr_written)
1133 {
1134 struct btrfs_root *root = BTRFS_I(inode)->root;
1135 struct btrfs_trans_handle *trans;
1136 struct extent_buffer *leaf;
1137 struct btrfs_path *path;
1138 struct btrfs_file_extent_item *fi;
1139 struct btrfs_key found_key;
1140 u64 cow_start;
1141 u64 cur_offset;
1142 u64 extent_end;
1143 u64 extent_offset;
1144 u64 disk_bytenr;
1145 u64 num_bytes;
1146 int extent_type;
1147 int ret, err;
1148 int type;
1149 int nocow;
1150 int check_prev = 1;
1151 bool nolock;
1152 u64 ino = btrfs_ino(inode);
1153
1154 path = btrfs_alloc_path();
1155 if (!path) {
1156 extent_clear_unlock_delalloc(inode,
1157 &BTRFS_I(inode)->io_tree,
1158 start, end, locked_page,
1159 EXTENT_CLEAR_UNLOCK_PAGE |
1160 EXTENT_CLEAR_UNLOCK |
1161 EXTENT_CLEAR_DELALLOC |
1162 EXTENT_CLEAR_DIRTY |
1163 EXTENT_SET_WRITEBACK |
1164 EXTENT_END_WRITEBACK);
1165 return -ENOMEM;
1166 }
1167
1168 nolock = btrfs_is_free_space_inode(inode);
1169
1170 if (nolock)
1171 trans = btrfs_join_transaction_nolock(root);
1172 else
1173 trans = btrfs_join_transaction(root);
1174
1175 if (IS_ERR(trans)) {
1176 extent_clear_unlock_delalloc(inode,
1177 &BTRFS_I(inode)->io_tree,
1178 start, end, locked_page,
1179 EXTENT_CLEAR_UNLOCK_PAGE |
1180 EXTENT_CLEAR_UNLOCK |
1181 EXTENT_CLEAR_DELALLOC |
1182 EXTENT_CLEAR_DIRTY |
1183 EXTENT_SET_WRITEBACK |
1184 EXTENT_END_WRITEBACK);
1185 btrfs_free_path(path);
1186 return PTR_ERR(trans);
1187 }
1188
1189 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1190
1191 cow_start = (u64)-1;
1192 cur_offset = start;
1193 while (1) {
1194 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1195 cur_offset, 0);
1196 if (ret < 0) {
1197 btrfs_abort_transaction(trans, root, ret);
1198 goto error;
1199 }
1200 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1201 leaf = path->nodes[0];
1202 btrfs_item_key_to_cpu(leaf, &found_key,
1203 path->slots[0] - 1);
1204 if (found_key.objectid == ino &&
1205 found_key.type == BTRFS_EXTENT_DATA_KEY)
1206 path->slots[0]--;
1207 }
1208 check_prev = 0;
1209 next_slot:
1210 leaf = path->nodes[0];
1211 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1212 ret = btrfs_next_leaf(root, path);
1213 if (ret < 0) {
1214 btrfs_abort_transaction(trans, root, ret);
1215 goto error;
1216 }
1217 if (ret > 0)
1218 break;
1219 leaf = path->nodes[0];
1220 }
1221
1222 nocow = 0;
1223 disk_bytenr = 0;
1224 num_bytes = 0;
1225 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1226
1227 if (found_key.objectid > ino ||
1228 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1229 found_key.offset > end)
1230 break;
1231
1232 if (found_key.offset > cur_offset) {
1233 extent_end = found_key.offset;
1234 extent_type = 0;
1235 goto out_check;
1236 }
1237
1238 fi = btrfs_item_ptr(leaf, path->slots[0],
1239 struct btrfs_file_extent_item);
1240 extent_type = btrfs_file_extent_type(leaf, fi);
1241
1242 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1243 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1244 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1245 extent_offset = btrfs_file_extent_offset(leaf, fi);
1246 extent_end = found_key.offset +
1247 btrfs_file_extent_num_bytes(leaf, fi);
1248 if (extent_end <= start) {
1249 path->slots[0]++;
1250 goto next_slot;
1251 }
1252 if (disk_bytenr == 0)
1253 goto out_check;
1254 if (btrfs_file_extent_compression(leaf, fi) ||
1255 btrfs_file_extent_encryption(leaf, fi) ||
1256 btrfs_file_extent_other_encoding(leaf, fi))
1257 goto out_check;
1258 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1259 goto out_check;
1260 if (btrfs_extent_readonly(root, disk_bytenr))
1261 goto out_check;
1262 if (btrfs_cross_ref_exist(trans, root, ino,
1263 found_key.offset -
1264 extent_offset, disk_bytenr))
1265 goto out_check;
1266 disk_bytenr += extent_offset;
1267 disk_bytenr += cur_offset - found_key.offset;
1268 num_bytes = min(end + 1, extent_end) - cur_offset;
1269 /*
1270 * force cow if csum exists in the range.
1271 * this ensure that csum for a given extent are
1272 * either valid or do not exist.
1273 */
1274 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1275 goto out_check;
1276 nocow = 1;
1277 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1278 extent_end = found_key.offset +
1279 btrfs_file_extent_inline_len(leaf, fi);
1280 extent_end = ALIGN(extent_end, root->sectorsize);
1281 } else {
1282 BUG_ON(1);
1283 }
1284 out_check:
1285 if (extent_end <= start) {
1286 path->slots[0]++;
1287 goto next_slot;
1288 }
1289 if (!nocow) {
1290 if (cow_start == (u64)-1)
1291 cow_start = cur_offset;
1292 cur_offset = extent_end;
1293 if (cur_offset > end)
1294 break;
1295 path->slots[0]++;
1296 goto next_slot;
1297 }
1298
1299 btrfs_release_path(path);
1300 if (cow_start != (u64)-1) {
1301 ret = __cow_file_range(trans, inode, root, locked_page,
1302 cow_start, found_key.offset - 1,
1303 page_started, nr_written, 1);
1304 if (ret) {
1305 btrfs_abort_transaction(trans, root, ret);
1306 goto error;
1307 }
1308 cow_start = (u64)-1;
1309 }
1310
1311 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1312 struct extent_map *em;
1313 struct extent_map_tree *em_tree;
1314 em_tree = &BTRFS_I(inode)->extent_tree;
1315 em = alloc_extent_map();
1316 BUG_ON(!em); /* -ENOMEM */
1317 em->start = cur_offset;
1318 em->orig_start = em->start;
1319 em->len = num_bytes;
1320 em->block_len = num_bytes;
1321 em->block_start = disk_bytenr;
1322 em->bdev = root->fs_info->fs_devices->latest_bdev;
1323 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1324 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1325 while (1) {
1326 write_lock(&em_tree->lock);
1327 ret = add_extent_mapping(em_tree, em);
1328 write_unlock(&em_tree->lock);
1329 if (ret != -EEXIST) {
1330 free_extent_map(em);
1331 break;
1332 }
1333 btrfs_drop_extent_cache(inode, em->start,
1334 em->start + em->len - 1, 0);
1335 }
1336 type = BTRFS_ORDERED_PREALLOC;
1337 } else {
1338 type = BTRFS_ORDERED_NOCOW;
1339 }
1340
1341 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1342 num_bytes, num_bytes, type);
1343 BUG_ON(ret); /* -ENOMEM */
1344
1345 if (root->root_key.objectid ==
1346 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1347 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1348 num_bytes);
1349 if (ret) {
1350 btrfs_abort_transaction(trans, root, ret);
1351 goto error;
1352 }
1353 }
1354
1355 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1356 cur_offset, cur_offset + num_bytes - 1,
1357 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1358 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1359 EXTENT_SET_PRIVATE2);
1360 cur_offset = extent_end;
1361 if (cur_offset > end)
1362 break;
1363 }
1364 btrfs_release_path(path);
1365
1366 if (cur_offset <= end && cow_start == (u64)-1) {
1367 cow_start = cur_offset;
1368 cur_offset = end;
1369 }
1370
1371 if (cow_start != (u64)-1) {
1372 ret = __cow_file_range(trans, inode, root, locked_page,
1373 cow_start, end,
1374 page_started, nr_written, 1);
1375 if (ret) {
1376 btrfs_abort_transaction(trans, root, ret);
1377 goto error;
1378 }
1379 }
1380
1381 error:
1382 err = btrfs_end_transaction(trans, root);
1383 if (!ret)
1384 ret = err;
1385
1386 if (ret && cur_offset < end)
1387 extent_clear_unlock_delalloc(inode,
1388 &BTRFS_I(inode)->io_tree,
1389 cur_offset, end, locked_page,
1390 EXTENT_CLEAR_UNLOCK_PAGE |
1391 EXTENT_CLEAR_UNLOCK |
1392 EXTENT_CLEAR_DELALLOC |
1393 EXTENT_CLEAR_DIRTY |
1394 EXTENT_SET_WRITEBACK |
1395 EXTENT_END_WRITEBACK);
1396
1397 btrfs_free_path(path);
1398 return ret;
1399 }
1400
1401 /*
1402 * extent_io.c call back to do delayed allocation processing
1403 */
1404 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1405 u64 start, u64 end, int *page_started,
1406 unsigned long *nr_written)
1407 {
1408 int ret;
1409 struct btrfs_root *root = BTRFS_I(inode)->root;
1410
1411 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1412 ret = run_delalloc_nocow(inode, locked_page, start, end,
1413 page_started, 1, nr_written);
1414 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1415 ret = run_delalloc_nocow(inode, locked_page, start, end,
1416 page_started, 0, nr_written);
1417 } else if (!btrfs_test_opt(root, COMPRESS) &&
1418 !(BTRFS_I(inode)->force_compress) &&
1419 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1420 ret = cow_file_range(inode, locked_page, start, end,
1421 page_started, nr_written, 1);
1422 } else {
1423 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1424 &BTRFS_I(inode)->runtime_flags);
1425 ret = cow_file_range_async(inode, locked_page, start, end,
1426 page_started, nr_written);
1427 }
1428 return ret;
1429 }
1430
1431 static void btrfs_split_extent_hook(struct inode *inode,
1432 struct extent_state *orig, u64 split)
1433 {
1434 /* not delalloc, ignore it */
1435 if (!(orig->state & EXTENT_DELALLOC))
1436 return;
1437
1438 spin_lock(&BTRFS_I(inode)->lock);
1439 BTRFS_I(inode)->outstanding_extents++;
1440 spin_unlock(&BTRFS_I(inode)->lock);
1441 }
1442
1443 /*
1444 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1445 * extents so we can keep track of new extents that are just merged onto old
1446 * extents, such as when we are doing sequential writes, so we can properly
1447 * account for the metadata space we'll need.
1448 */
1449 static void btrfs_merge_extent_hook(struct inode *inode,
1450 struct extent_state *new,
1451 struct extent_state *other)
1452 {
1453 /* not delalloc, ignore it */
1454 if (!(other->state & EXTENT_DELALLOC))
1455 return;
1456
1457 spin_lock(&BTRFS_I(inode)->lock);
1458 BTRFS_I(inode)->outstanding_extents--;
1459 spin_unlock(&BTRFS_I(inode)->lock);
1460 }
1461
1462 /*
1463 * extent_io.c set_bit_hook, used to track delayed allocation
1464 * bytes in this file, and to maintain the list of inodes that
1465 * have pending delalloc work to be done.
1466 */
1467 static void btrfs_set_bit_hook(struct inode *inode,
1468 struct extent_state *state, int *bits)
1469 {
1470
1471 /*
1472 * set_bit and clear bit hooks normally require _irqsave/restore
1473 * but in this case, we are only testing for the DELALLOC
1474 * bit, which is only set or cleared with irqs on
1475 */
1476 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1477 struct btrfs_root *root = BTRFS_I(inode)->root;
1478 u64 len = state->end + 1 - state->start;
1479 bool do_list = !btrfs_is_free_space_inode(inode);
1480
1481 if (*bits & EXTENT_FIRST_DELALLOC) {
1482 *bits &= ~EXTENT_FIRST_DELALLOC;
1483 } else {
1484 spin_lock(&BTRFS_I(inode)->lock);
1485 BTRFS_I(inode)->outstanding_extents++;
1486 spin_unlock(&BTRFS_I(inode)->lock);
1487 }
1488
1489 spin_lock(&root->fs_info->delalloc_lock);
1490 BTRFS_I(inode)->delalloc_bytes += len;
1491 root->fs_info->delalloc_bytes += len;
1492 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1493 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1494 &root->fs_info->delalloc_inodes);
1495 }
1496 spin_unlock(&root->fs_info->delalloc_lock);
1497 }
1498 }
1499
1500 /*
1501 * extent_io.c clear_bit_hook, see set_bit_hook for why
1502 */
1503 static void btrfs_clear_bit_hook(struct inode *inode,
1504 struct extent_state *state, int *bits)
1505 {
1506 /*
1507 * set_bit and clear bit hooks normally require _irqsave/restore
1508 * but in this case, we are only testing for the DELALLOC
1509 * bit, which is only set or cleared with irqs on
1510 */
1511 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1512 struct btrfs_root *root = BTRFS_I(inode)->root;
1513 u64 len = state->end + 1 - state->start;
1514 bool do_list = !btrfs_is_free_space_inode(inode);
1515
1516 if (*bits & EXTENT_FIRST_DELALLOC) {
1517 *bits &= ~EXTENT_FIRST_DELALLOC;
1518 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1519 spin_lock(&BTRFS_I(inode)->lock);
1520 BTRFS_I(inode)->outstanding_extents--;
1521 spin_unlock(&BTRFS_I(inode)->lock);
1522 }
1523
1524 if (*bits & EXTENT_DO_ACCOUNTING)
1525 btrfs_delalloc_release_metadata(inode, len);
1526
1527 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1528 && do_list)
1529 btrfs_free_reserved_data_space(inode, len);
1530
1531 spin_lock(&root->fs_info->delalloc_lock);
1532 root->fs_info->delalloc_bytes -= len;
1533 BTRFS_I(inode)->delalloc_bytes -= len;
1534
1535 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1536 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1537 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1538 }
1539 spin_unlock(&root->fs_info->delalloc_lock);
1540 }
1541 }
1542
1543 /*
1544 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1545 * we don't create bios that span stripes or chunks
1546 */
1547 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1548 size_t size, struct bio *bio,
1549 unsigned long bio_flags)
1550 {
1551 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1552 u64 logical = (u64)bio->bi_sector << 9;
1553 u64 length = 0;
1554 u64 map_length;
1555 int ret;
1556
1557 if (bio_flags & EXTENT_BIO_COMPRESSED)
1558 return 0;
1559
1560 length = bio->bi_size;
1561 map_length = length;
1562 ret = btrfs_map_block(root->fs_info, READ, logical,
1563 &map_length, NULL, 0);
1564 /* Will always return 0 with map_multi == NULL */
1565 BUG_ON(ret < 0);
1566 if (map_length < length + size)
1567 return 1;
1568 return 0;
1569 }
1570
1571 /*
1572 * in order to insert checksums into the metadata in large chunks,
1573 * we wait until bio submission time. All the pages in the bio are
1574 * checksummed and sums are attached onto the ordered extent record.
1575 *
1576 * At IO completion time the cums attached on the ordered extent record
1577 * are inserted into the btree
1578 */
1579 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1580 struct bio *bio, int mirror_num,
1581 unsigned long bio_flags,
1582 u64 bio_offset)
1583 {
1584 struct btrfs_root *root = BTRFS_I(inode)->root;
1585 int ret = 0;
1586
1587 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1588 BUG_ON(ret); /* -ENOMEM */
1589 return 0;
1590 }
1591
1592 /*
1593 * in order to insert checksums into the metadata in large chunks,
1594 * we wait until bio submission time. All the pages in the bio are
1595 * checksummed and sums are attached onto the ordered extent record.
1596 *
1597 * At IO completion time the cums attached on the ordered extent record
1598 * are inserted into the btree
1599 */
1600 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1601 int mirror_num, unsigned long bio_flags,
1602 u64 bio_offset)
1603 {
1604 struct btrfs_root *root = BTRFS_I(inode)->root;
1605 int ret;
1606
1607 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1608 if (ret)
1609 bio_endio(bio, ret);
1610 return ret;
1611 }
1612
1613 /*
1614 * extent_io.c submission hook. This does the right thing for csum calculation
1615 * on write, or reading the csums from the tree before a read
1616 */
1617 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1618 int mirror_num, unsigned long bio_flags,
1619 u64 bio_offset)
1620 {
1621 struct btrfs_root *root = BTRFS_I(inode)->root;
1622 int ret = 0;
1623 int skip_sum;
1624 int metadata = 0;
1625
1626 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1627
1628 if (btrfs_is_free_space_inode(inode))
1629 metadata = 2;
1630
1631 if (!(rw & REQ_WRITE)) {
1632 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1633 if (ret)
1634 goto out;
1635
1636 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1637 ret = btrfs_submit_compressed_read(inode, bio,
1638 mirror_num,
1639 bio_flags);
1640 goto out;
1641 } else if (!skip_sum) {
1642 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1643 if (ret)
1644 goto out;
1645 }
1646 goto mapit;
1647 } else if (!skip_sum) {
1648 /* csum items have already been cloned */
1649 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1650 goto mapit;
1651 /* we're doing a write, do the async checksumming */
1652 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1653 inode, rw, bio, mirror_num,
1654 bio_flags, bio_offset,
1655 __btrfs_submit_bio_start,
1656 __btrfs_submit_bio_done);
1657 goto out;
1658 }
1659
1660 mapit:
1661 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1662
1663 out:
1664 if (ret < 0)
1665 bio_endio(bio, ret);
1666 return ret;
1667 }
1668
1669 /*
1670 * given a list of ordered sums record them in the inode. This happens
1671 * at IO completion time based on sums calculated at bio submission time.
1672 */
1673 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1674 struct inode *inode, u64 file_offset,
1675 struct list_head *list)
1676 {
1677 struct btrfs_ordered_sum *sum;
1678
1679 list_for_each_entry(sum, list, list) {
1680 btrfs_csum_file_blocks(trans,
1681 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1682 }
1683 return 0;
1684 }
1685
1686 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1687 struct extent_state **cached_state)
1688 {
1689 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1690 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1691 cached_state, GFP_NOFS);
1692 }
1693
1694 /* see btrfs_writepage_start_hook for details on why this is required */
1695 struct btrfs_writepage_fixup {
1696 struct page *page;
1697 struct btrfs_work work;
1698 };
1699
1700 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1701 {
1702 struct btrfs_writepage_fixup *fixup;
1703 struct btrfs_ordered_extent *ordered;
1704 struct extent_state *cached_state = NULL;
1705 struct page *page;
1706 struct inode *inode;
1707 u64 page_start;
1708 u64 page_end;
1709 int ret;
1710
1711 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1712 page = fixup->page;
1713 again:
1714 lock_page(page);
1715 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1716 ClearPageChecked(page);
1717 goto out_page;
1718 }
1719
1720 inode = page->mapping->host;
1721 page_start = page_offset(page);
1722 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1723
1724 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1725 &cached_state);
1726
1727 /* already ordered? We're done */
1728 if (PagePrivate2(page))
1729 goto out;
1730
1731 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1732 if (ordered) {
1733 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1734 page_end, &cached_state, GFP_NOFS);
1735 unlock_page(page);
1736 btrfs_start_ordered_extent(inode, ordered, 1);
1737 btrfs_put_ordered_extent(ordered);
1738 goto again;
1739 }
1740
1741 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1742 if (ret) {
1743 mapping_set_error(page->mapping, ret);
1744 end_extent_writepage(page, ret, page_start, page_end);
1745 ClearPageChecked(page);
1746 goto out;
1747 }
1748
1749 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1750 ClearPageChecked(page);
1751 set_page_dirty(page);
1752 out:
1753 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1754 &cached_state, GFP_NOFS);
1755 out_page:
1756 unlock_page(page);
1757 page_cache_release(page);
1758 kfree(fixup);
1759 }
1760
1761 /*
1762 * There are a few paths in the higher layers of the kernel that directly
1763 * set the page dirty bit without asking the filesystem if it is a
1764 * good idea. This causes problems because we want to make sure COW
1765 * properly happens and the data=ordered rules are followed.
1766 *
1767 * In our case any range that doesn't have the ORDERED bit set
1768 * hasn't been properly setup for IO. We kick off an async process
1769 * to fix it up. The async helper will wait for ordered extents, set
1770 * the delalloc bit and make it safe to write the page.
1771 */
1772 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1773 {
1774 struct inode *inode = page->mapping->host;
1775 struct btrfs_writepage_fixup *fixup;
1776 struct btrfs_root *root = BTRFS_I(inode)->root;
1777
1778 /* this page is properly in the ordered list */
1779 if (TestClearPagePrivate2(page))
1780 return 0;
1781
1782 if (PageChecked(page))
1783 return -EAGAIN;
1784
1785 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1786 if (!fixup)
1787 return -EAGAIN;
1788
1789 SetPageChecked(page);
1790 page_cache_get(page);
1791 fixup->work.func = btrfs_writepage_fixup_worker;
1792 fixup->page = page;
1793 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1794 return -EBUSY;
1795 }
1796
1797 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1798 struct inode *inode, u64 file_pos,
1799 u64 disk_bytenr, u64 disk_num_bytes,
1800 u64 num_bytes, u64 ram_bytes,
1801 u8 compression, u8 encryption,
1802 u16 other_encoding, int extent_type)
1803 {
1804 struct btrfs_root *root = BTRFS_I(inode)->root;
1805 struct btrfs_file_extent_item *fi;
1806 struct btrfs_path *path;
1807 struct extent_buffer *leaf;
1808 struct btrfs_key ins;
1809 int ret;
1810
1811 path = btrfs_alloc_path();
1812 if (!path)
1813 return -ENOMEM;
1814
1815 path->leave_spinning = 1;
1816
1817 /*
1818 * we may be replacing one extent in the tree with another.
1819 * The new extent is pinned in the extent map, and we don't want
1820 * to drop it from the cache until it is completely in the btree.
1821 *
1822 * So, tell btrfs_drop_extents to leave this extent in the cache.
1823 * the caller is expected to unpin it and allow it to be merged
1824 * with the others.
1825 */
1826 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1827 file_pos + num_bytes, 0);
1828 if (ret)
1829 goto out;
1830
1831 ins.objectid = btrfs_ino(inode);
1832 ins.offset = file_pos;
1833 ins.type = BTRFS_EXTENT_DATA_KEY;
1834 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1835 if (ret)
1836 goto out;
1837 leaf = path->nodes[0];
1838 fi = btrfs_item_ptr(leaf, path->slots[0],
1839 struct btrfs_file_extent_item);
1840 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1841 btrfs_set_file_extent_type(leaf, fi, extent_type);
1842 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1843 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1844 btrfs_set_file_extent_offset(leaf, fi, 0);
1845 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1846 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1847 btrfs_set_file_extent_compression(leaf, fi, compression);
1848 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1849 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1850
1851 btrfs_mark_buffer_dirty(leaf);
1852 btrfs_release_path(path);
1853
1854 inode_add_bytes(inode, num_bytes);
1855
1856 ins.objectid = disk_bytenr;
1857 ins.offset = disk_num_bytes;
1858 ins.type = BTRFS_EXTENT_ITEM_KEY;
1859 ret = btrfs_alloc_reserved_file_extent(trans, root,
1860 root->root_key.objectid,
1861 btrfs_ino(inode), file_pos, &ins);
1862 out:
1863 btrfs_free_path(path);
1864
1865 return ret;
1866 }
1867
1868 /*
1869 * helper function for btrfs_finish_ordered_io, this
1870 * just reads in some of the csum leaves to prime them into ram
1871 * before we start the transaction. It limits the amount of btree
1872 * reads required while inside the transaction.
1873 */
1874 /* as ordered data IO finishes, this gets called so we can finish
1875 * an ordered extent if the range of bytes in the file it covers are
1876 * fully written.
1877 */
1878 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
1879 {
1880 struct inode *inode = ordered_extent->inode;
1881 struct btrfs_root *root = BTRFS_I(inode)->root;
1882 struct btrfs_trans_handle *trans = NULL;
1883 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1884 struct extent_state *cached_state = NULL;
1885 int compress_type = 0;
1886 int ret;
1887 bool nolock;
1888
1889 nolock = btrfs_is_free_space_inode(inode);
1890
1891 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1892 ret = -EIO;
1893 goto out;
1894 }
1895
1896 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1897 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1898 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1899 if (!ret) {
1900 if (nolock)
1901 trans = btrfs_join_transaction_nolock(root);
1902 else
1903 trans = btrfs_join_transaction(root);
1904 if (IS_ERR(trans)) {
1905 ret = PTR_ERR(trans);
1906 trans = NULL;
1907 goto out;
1908 }
1909 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1910 ret = btrfs_update_inode_fallback(trans, root, inode);
1911 if (ret) /* -ENOMEM or corruption */
1912 btrfs_abort_transaction(trans, root, ret);
1913 }
1914 goto out;
1915 }
1916
1917 lock_extent_bits(io_tree, ordered_extent->file_offset,
1918 ordered_extent->file_offset + ordered_extent->len - 1,
1919 0, &cached_state);
1920
1921 if (nolock)
1922 trans = btrfs_join_transaction_nolock(root);
1923 else
1924 trans = btrfs_join_transaction(root);
1925 if (IS_ERR(trans)) {
1926 ret = PTR_ERR(trans);
1927 trans = NULL;
1928 goto out_unlock;
1929 }
1930 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1931
1932 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1933 compress_type = ordered_extent->compress_type;
1934 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1935 BUG_ON(compress_type);
1936 ret = btrfs_mark_extent_written(trans, inode,
1937 ordered_extent->file_offset,
1938 ordered_extent->file_offset +
1939 ordered_extent->len);
1940 } else {
1941 BUG_ON(root == root->fs_info->tree_root);
1942 ret = insert_reserved_file_extent(trans, inode,
1943 ordered_extent->file_offset,
1944 ordered_extent->start,
1945 ordered_extent->disk_len,
1946 ordered_extent->len,
1947 ordered_extent->len,
1948 compress_type, 0, 0,
1949 BTRFS_FILE_EXTENT_REG);
1950 }
1951 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1952 ordered_extent->file_offset, ordered_extent->len,
1953 trans->transid);
1954 if (ret < 0) {
1955 btrfs_abort_transaction(trans, root, ret);
1956 goto out_unlock;
1957 }
1958
1959 add_pending_csums(trans, inode, ordered_extent->file_offset,
1960 &ordered_extent->list);
1961
1962 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1963 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1964 ret = btrfs_update_inode_fallback(trans, root, inode);
1965 if (ret) { /* -ENOMEM or corruption */
1966 btrfs_abort_transaction(trans, root, ret);
1967 goto out_unlock;
1968 }
1969 } else {
1970 btrfs_set_inode_last_trans(trans, inode);
1971 }
1972 ret = 0;
1973 out_unlock:
1974 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1975 ordered_extent->file_offset +
1976 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1977 out:
1978 if (root != root->fs_info->tree_root)
1979 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1980 if (trans)
1981 btrfs_end_transaction(trans, root);
1982
1983 if (ret)
1984 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1985 ordered_extent->file_offset +
1986 ordered_extent->len - 1, NULL, GFP_NOFS);
1987
1988 /*
1989 * This needs to be done to make sure anybody waiting knows we are done
1990 * updating everything for this ordered extent.
1991 */
1992 btrfs_remove_ordered_extent(inode, ordered_extent);
1993
1994 /* once for us */
1995 btrfs_put_ordered_extent(ordered_extent);
1996 /* once for the tree */
1997 btrfs_put_ordered_extent(ordered_extent);
1998
1999 return ret;
2000 }
2001
2002 static void finish_ordered_fn(struct btrfs_work *work)
2003 {
2004 struct btrfs_ordered_extent *ordered_extent;
2005 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2006 btrfs_finish_ordered_io(ordered_extent);
2007 }
2008
2009 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2010 struct extent_state *state, int uptodate)
2011 {
2012 struct inode *inode = page->mapping->host;
2013 struct btrfs_root *root = BTRFS_I(inode)->root;
2014 struct btrfs_ordered_extent *ordered_extent = NULL;
2015 struct btrfs_workers *workers;
2016
2017 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2018
2019 ClearPagePrivate2(page);
2020 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2021 end - start + 1, uptodate))
2022 return 0;
2023
2024 ordered_extent->work.func = finish_ordered_fn;
2025 ordered_extent->work.flags = 0;
2026
2027 if (btrfs_is_free_space_inode(inode))
2028 workers = &root->fs_info->endio_freespace_worker;
2029 else
2030 workers = &root->fs_info->endio_write_workers;
2031 btrfs_queue_worker(workers, &ordered_extent->work);
2032
2033 return 0;
2034 }
2035
2036 /*
2037 * when reads are done, we need to check csums to verify the data is correct
2038 * if there's a match, we allow the bio to finish. If not, the code in
2039 * extent_io.c will try to find good copies for us.
2040 */
2041 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2042 struct extent_state *state, int mirror)
2043 {
2044 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
2045 struct inode *inode = page->mapping->host;
2046 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2047 char *kaddr;
2048 u64 private = ~(u32)0;
2049 int ret;
2050 struct btrfs_root *root = BTRFS_I(inode)->root;
2051 u32 csum = ~(u32)0;
2052
2053 if (PageChecked(page)) {
2054 ClearPageChecked(page);
2055 goto good;
2056 }
2057
2058 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2059 goto good;
2060
2061 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2062 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2063 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2064 GFP_NOFS);
2065 return 0;
2066 }
2067
2068 if (state && state->start == start) {
2069 private = state->private;
2070 ret = 0;
2071 } else {
2072 ret = get_state_private(io_tree, start, &private);
2073 }
2074 kaddr = kmap_atomic(page);
2075 if (ret)
2076 goto zeroit;
2077
2078 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2079 btrfs_csum_final(csum, (char *)&csum);
2080 if (csum != private)
2081 goto zeroit;
2082
2083 kunmap_atomic(kaddr);
2084 good:
2085 return 0;
2086
2087 zeroit:
2088 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2089 "private %llu\n",
2090 (unsigned long long)btrfs_ino(page->mapping->host),
2091 (unsigned long long)start, csum,
2092 (unsigned long long)private);
2093 memset(kaddr + offset, 1, end - start + 1);
2094 flush_dcache_page(page);
2095 kunmap_atomic(kaddr);
2096 if (private == 0)
2097 return 0;
2098 return -EIO;
2099 }
2100
2101 struct delayed_iput {
2102 struct list_head list;
2103 struct inode *inode;
2104 };
2105
2106 /* JDM: If this is fs-wide, why can't we add a pointer to
2107 * btrfs_inode instead and avoid the allocation? */
2108 void btrfs_add_delayed_iput(struct inode *inode)
2109 {
2110 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2111 struct delayed_iput *delayed;
2112
2113 if (atomic_add_unless(&inode->i_count, -1, 1))
2114 return;
2115
2116 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2117 delayed->inode = inode;
2118
2119 spin_lock(&fs_info->delayed_iput_lock);
2120 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2121 spin_unlock(&fs_info->delayed_iput_lock);
2122 }
2123
2124 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2125 {
2126 LIST_HEAD(list);
2127 struct btrfs_fs_info *fs_info = root->fs_info;
2128 struct delayed_iput *delayed;
2129 int empty;
2130
2131 spin_lock(&fs_info->delayed_iput_lock);
2132 empty = list_empty(&fs_info->delayed_iputs);
2133 spin_unlock(&fs_info->delayed_iput_lock);
2134 if (empty)
2135 return;
2136
2137 spin_lock(&fs_info->delayed_iput_lock);
2138 list_splice_init(&fs_info->delayed_iputs, &list);
2139 spin_unlock(&fs_info->delayed_iput_lock);
2140
2141 while (!list_empty(&list)) {
2142 delayed = list_entry(list.next, struct delayed_iput, list);
2143 list_del(&delayed->list);
2144 iput(delayed->inode);
2145 kfree(delayed);
2146 }
2147 }
2148
2149 enum btrfs_orphan_cleanup_state {
2150 ORPHAN_CLEANUP_STARTED = 1,
2151 ORPHAN_CLEANUP_DONE = 2,
2152 };
2153
2154 /*
2155 * This is called in transaction commit time. If there are no orphan
2156 * files in the subvolume, it removes orphan item and frees block_rsv
2157 * structure.
2158 */
2159 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2160 struct btrfs_root *root)
2161 {
2162 struct btrfs_block_rsv *block_rsv;
2163 int ret;
2164
2165 if (atomic_read(&root->orphan_inodes) ||
2166 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2167 return;
2168
2169 spin_lock(&root->orphan_lock);
2170 if (atomic_read(&root->orphan_inodes)) {
2171 spin_unlock(&root->orphan_lock);
2172 return;
2173 }
2174
2175 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2176 spin_unlock(&root->orphan_lock);
2177 return;
2178 }
2179
2180 block_rsv = root->orphan_block_rsv;
2181 root->orphan_block_rsv = NULL;
2182 spin_unlock(&root->orphan_lock);
2183
2184 if (root->orphan_item_inserted &&
2185 btrfs_root_refs(&root->root_item) > 0) {
2186 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2187 root->root_key.objectid);
2188 BUG_ON(ret);
2189 root->orphan_item_inserted = 0;
2190 }
2191
2192 if (block_rsv) {
2193 WARN_ON(block_rsv->size > 0);
2194 btrfs_free_block_rsv(root, block_rsv);
2195 }
2196 }
2197
2198 /*
2199 * This creates an orphan entry for the given inode in case something goes
2200 * wrong in the middle of an unlink/truncate.
2201 *
2202 * NOTE: caller of this function should reserve 5 units of metadata for
2203 * this function.
2204 */
2205 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2206 {
2207 struct btrfs_root *root = BTRFS_I(inode)->root;
2208 struct btrfs_block_rsv *block_rsv = NULL;
2209 int reserve = 0;
2210 int insert = 0;
2211 int ret;
2212
2213 if (!root->orphan_block_rsv) {
2214 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2215 if (!block_rsv)
2216 return -ENOMEM;
2217 }
2218
2219 spin_lock(&root->orphan_lock);
2220 if (!root->orphan_block_rsv) {
2221 root->orphan_block_rsv = block_rsv;
2222 } else if (block_rsv) {
2223 btrfs_free_block_rsv(root, block_rsv);
2224 block_rsv = NULL;
2225 }
2226
2227 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2228 &BTRFS_I(inode)->runtime_flags)) {
2229 #if 0
2230 /*
2231 * For proper ENOSPC handling, we should do orphan
2232 * cleanup when mounting. But this introduces backward
2233 * compatibility issue.
2234 */
2235 if (!xchg(&root->orphan_item_inserted, 1))
2236 insert = 2;
2237 else
2238 insert = 1;
2239 #endif
2240 insert = 1;
2241 atomic_inc(&root->orphan_inodes);
2242 }
2243
2244 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2245 &BTRFS_I(inode)->runtime_flags))
2246 reserve = 1;
2247 spin_unlock(&root->orphan_lock);
2248
2249 /* grab metadata reservation from transaction handle */
2250 if (reserve) {
2251 ret = btrfs_orphan_reserve_metadata(trans, inode);
2252 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2253 }
2254
2255 /* insert an orphan item to track this unlinked/truncated file */
2256 if (insert >= 1) {
2257 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2258 if (ret && ret != -EEXIST) {
2259 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2260 &BTRFS_I(inode)->runtime_flags);
2261 btrfs_abort_transaction(trans, root, ret);
2262 return ret;
2263 }
2264 ret = 0;
2265 }
2266
2267 /* insert an orphan item to track subvolume contains orphan files */
2268 if (insert >= 2) {
2269 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2270 root->root_key.objectid);
2271 if (ret && ret != -EEXIST) {
2272 btrfs_abort_transaction(trans, root, ret);
2273 return ret;
2274 }
2275 }
2276 return 0;
2277 }
2278
2279 /*
2280 * We have done the truncate/delete so we can go ahead and remove the orphan
2281 * item for this particular inode.
2282 */
2283 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2284 {
2285 struct btrfs_root *root = BTRFS_I(inode)->root;
2286 int delete_item = 0;
2287 int release_rsv = 0;
2288 int ret = 0;
2289
2290 spin_lock(&root->orphan_lock);
2291 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2292 &BTRFS_I(inode)->runtime_flags))
2293 delete_item = 1;
2294
2295 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2296 &BTRFS_I(inode)->runtime_flags))
2297 release_rsv = 1;
2298 spin_unlock(&root->orphan_lock);
2299
2300 if (trans && delete_item) {
2301 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2302 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2303 }
2304
2305 if (release_rsv) {
2306 btrfs_orphan_release_metadata(inode);
2307 atomic_dec(&root->orphan_inodes);
2308 }
2309
2310 return 0;
2311 }
2312
2313 /*
2314 * this cleans up any orphans that may be left on the list from the last use
2315 * of this root.
2316 */
2317 int btrfs_orphan_cleanup(struct btrfs_root *root)
2318 {
2319 struct btrfs_path *path;
2320 struct extent_buffer *leaf;
2321 struct btrfs_key key, found_key;
2322 struct btrfs_trans_handle *trans;
2323 struct inode *inode;
2324 u64 last_objectid = 0;
2325 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2326
2327 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2328 return 0;
2329
2330 path = btrfs_alloc_path();
2331 if (!path) {
2332 ret = -ENOMEM;
2333 goto out;
2334 }
2335 path->reada = -1;
2336
2337 key.objectid = BTRFS_ORPHAN_OBJECTID;
2338 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2339 key.offset = (u64)-1;
2340
2341 while (1) {
2342 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2343 if (ret < 0)
2344 goto out;
2345
2346 /*
2347 * if ret == 0 means we found what we were searching for, which
2348 * is weird, but possible, so only screw with path if we didn't
2349 * find the key and see if we have stuff that matches
2350 */
2351 if (ret > 0) {
2352 ret = 0;
2353 if (path->slots[0] == 0)
2354 break;
2355 path->slots[0]--;
2356 }
2357
2358 /* pull out the item */
2359 leaf = path->nodes[0];
2360 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2361
2362 /* make sure the item matches what we want */
2363 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2364 break;
2365 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2366 break;
2367
2368 /* release the path since we're done with it */
2369 btrfs_release_path(path);
2370
2371 /*
2372 * this is where we are basically btrfs_lookup, without the
2373 * crossing root thing. we store the inode number in the
2374 * offset of the orphan item.
2375 */
2376
2377 if (found_key.offset == last_objectid) {
2378 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2379 "stopping orphan cleanup\n");
2380 ret = -EINVAL;
2381 goto out;
2382 }
2383
2384 last_objectid = found_key.offset;
2385
2386 found_key.objectid = found_key.offset;
2387 found_key.type = BTRFS_INODE_ITEM_KEY;
2388 found_key.offset = 0;
2389 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2390 ret = PTR_RET(inode);
2391 if (ret && ret != -ESTALE)
2392 goto out;
2393
2394 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2395 struct btrfs_root *dead_root;
2396 struct btrfs_fs_info *fs_info = root->fs_info;
2397 int is_dead_root = 0;
2398
2399 /*
2400 * this is an orphan in the tree root. Currently these
2401 * could come from 2 sources:
2402 * a) a snapshot deletion in progress
2403 * b) a free space cache inode
2404 * We need to distinguish those two, as the snapshot
2405 * orphan must not get deleted.
2406 * find_dead_roots already ran before us, so if this
2407 * is a snapshot deletion, we should find the root
2408 * in the dead_roots list
2409 */
2410 spin_lock(&fs_info->trans_lock);
2411 list_for_each_entry(dead_root, &fs_info->dead_roots,
2412 root_list) {
2413 if (dead_root->root_key.objectid ==
2414 found_key.objectid) {
2415 is_dead_root = 1;
2416 break;
2417 }
2418 }
2419 spin_unlock(&fs_info->trans_lock);
2420 if (is_dead_root) {
2421 /* prevent this orphan from being found again */
2422 key.offset = found_key.objectid - 1;
2423 continue;
2424 }
2425 }
2426 /*
2427 * Inode is already gone but the orphan item is still there,
2428 * kill the orphan item.
2429 */
2430 if (ret == -ESTALE) {
2431 trans = btrfs_start_transaction(root, 1);
2432 if (IS_ERR(trans)) {
2433 ret = PTR_ERR(trans);
2434 goto out;
2435 }
2436 printk(KERN_ERR "auto deleting %Lu\n",
2437 found_key.objectid);
2438 ret = btrfs_del_orphan_item(trans, root,
2439 found_key.objectid);
2440 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2441 btrfs_end_transaction(trans, root);
2442 continue;
2443 }
2444
2445 /*
2446 * add this inode to the orphan list so btrfs_orphan_del does
2447 * the proper thing when we hit it
2448 */
2449 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2450 &BTRFS_I(inode)->runtime_flags);
2451
2452 /* if we have links, this was a truncate, lets do that */
2453 if (inode->i_nlink) {
2454 if (!S_ISREG(inode->i_mode)) {
2455 WARN_ON(1);
2456 iput(inode);
2457 continue;
2458 }
2459 nr_truncate++;
2460 ret = btrfs_truncate(inode);
2461 } else {
2462 nr_unlink++;
2463 }
2464
2465 /* this will do delete_inode and everything for us */
2466 iput(inode);
2467 if (ret)
2468 goto out;
2469 }
2470 /* release the path since we're done with it */
2471 btrfs_release_path(path);
2472
2473 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2474
2475 if (root->orphan_block_rsv)
2476 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2477 (u64)-1);
2478
2479 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2480 trans = btrfs_join_transaction(root);
2481 if (!IS_ERR(trans))
2482 btrfs_end_transaction(trans, root);
2483 }
2484
2485 if (nr_unlink)
2486 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2487 if (nr_truncate)
2488 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2489
2490 out:
2491 if (ret)
2492 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2493 btrfs_free_path(path);
2494 return ret;
2495 }
2496
2497 /*
2498 * very simple check to peek ahead in the leaf looking for xattrs. If we
2499 * don't find any xattrs, we know there can't be any acls.
2500 *
2501 * slot is the slot the inode is in, objectid is the objectid of the inode
2502 */
2503 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2504 int slot, u64 objectid)
2505 {
2506 u32 nritems = btrfs_header_nritems(leaf);
2507 struct btrfs_key found_key;
2508 int scanned = 0;
2509
2510 slot++;
2511 while (slot < nritems) {
2512 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2513
2514 /* we found a different objectid, there must not be acls */
2515 if (found_key.objectid != objectid)
2516 return 0;
2517
2518 /* we found an xattr, assume we've got an acl */
2519 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2520 return 1;
2521
2522 /*
2523 * we found a key greater than an xattr key, there can't
2524 * be any acls later on
2525 */
2526 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2527 return 0;
2528
2529 slot++;
2530 scanned++;
2531
2532 /*
2533 * it goes inode, inode backrefs, xattrs, extents,
2534 * so if there are a ton of hard links to an inode there can
2535 * be a lot of backrefs. Don't waste time searching too hard,
2536 * this is just an optimization
2537 */
2538 if (scanned >= 8)
2539 break;
2540 }
2541 /* we hit the end of the leaf before we found an xattr or
2542 * something larger than an xattr. We have to assume the inode
2543 * has acls
2544 */
2545 return 1;
2546 }
2547
2548 /*
2549 * read an inode from the btree into the in-memory inode
2550 */
2551 static void btrfs_read_locked_inode(struct inode *inode)
2552 {
2553 struct btrfs_path *path;
2554 struct extent_buffer *leaf;
2555 struct btrfs_inode_item *inode_item;
2556 struct btrfs_timespec *tspec;
2557 struct btrfs_root *root = BTRFS_I(inode)->root;
2558 struct btrfs_key location;
2559 int maybe_acls;
2560 u32 rdev;
2561 int ret;
2562 bool filled = false;
2563
2564 ret = btrfs_fill_inode(inode, &rdev);
2565 if (!ret)
2566 filled = true;
2567
2568 path = btrfs_alloc_path();
2569 if (!path)
2570 goto make_bad;
2571
2572 path->leave_spinning = 1;
2573 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2574
2575 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2576 if (ret)
2577 goto make_bad;
2578
2579 leaf = path->nodes[0];
2580
2581 if (filled)
2582 goto cache_acl;
2583
2584 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2585 struct btrfs_inode_item);
2586 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2587 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2588 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2589 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
2590 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2591
2592 tspec = btrfs_inode_atime(inode_item);
2593 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2594 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2595
2596 tspec = btrfs_inode_mtime(inode_item);
2597 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2598 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2599
2600 tspec = btrfs_inode_ctime(inode_item);
2601 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2602 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2603
2604 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2605 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2606 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2607
2608 /*
2609 * If we were modified in the current generation and evicted from memory
2610 * and then re-read we need to do a full sync since we don't have any
2611 * idea about which extents were modified before we were evicted from
2612 * cache.
2613 */
2614 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2615 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2616 &BTRFS_I(inode)->runtime_flags);
2617
2618 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
2619 inode->i_generation = BTRFS_I(inode)->generation;
2620 inode->i_rdev = 0;
2621 rdev = btrfs_inode_rdev(leaf, inode_item);
2622
2623 BTRFS_I(inode)->index_cnt = (u64)-1;
2624 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2625 cache_acl:
2626 /*
2627 * try to precache a NULL acl entry for files that don't have
2628 * any xattrs or acls
2629 */
2630 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2631 btrfs_ino(inode));
2632 if (!maybe_acls)
2633 cache_no_acl(inode);
2634
2635 btrfs_free_path(path);
2636
2637 switch (inode->i_mode & S_IFMT) {
2638 case S_IFREG:
2639 inode->i_mapping->a_ops = &btrfs_aops;
2640 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2641 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2642 inode->i_fop = &btrfs_file_operations;
2643 inode->i_op = &btrfs_file_inode_operations;
2644 break;
2645 case S_IFDIR:
2646 inode->i_fop = &btrfs_dir_file_operations;
2647 if (root == root->fs_info->tree_root)
2648 inode->i_op = &btrfs_dir_ro_inode_operations;
2649 else
2650 inode->i_op = &btrfs_dir_inode_operations;
2651 break;
2652 case S_IFLNK:
2653 inode->i_op = &btrfs_symlink_inode_operations;
2654 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2655 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2656 break;
2657 default:
2658 inode->i_op = &btrfs_special_inode_operations;
2659 init_special_inode(inode, inode->i_mode, rdev);
2660 break;
2661 }
2662
2663 btrfs_update_iflags(inode);
2664 return;
2665
2666 make_bad:
2667 btrfs_free_path(path);
2668 make_bad_inode(inode);
2669 }
2670
2671 /*
2672 * given a leaf and an inode, copy the inode fields into the leaf
2673 */
2674 static void fill_inode_item(struct btrfs_trans_handle *trans,
2675 struct extent_buffer *leaf,
2676 struct btrfs_inode_item *item,
2677 struct inode *inode)
2678 {
2679 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
2680 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
2681 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2682 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2683 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2684
2685 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2686 inode->i_atime.tv_sec);
2687 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2688 inode->i_atime.tv_nsec);
2689
2690 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2691 inode->i_mtime.tv_sec);
2692 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2693 inode->i_mtime.tv_nsec);
2694
2695 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2696 inode->i_ctime.tv_sec);
2697 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2698 inode->i_ctime.tv_nsec);
2699
2700 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2701 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2702 btrfs_set_inode_sequence(leaf, item, inode->i_version);
2703 btrfs_set_inode_transid(leaf, item, trans->transid);
2704 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2705 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2706 btrfs_set_inode_block_group(leaf, item, 0);
2707 }
2708
2709 /*
2710 * copy everything in the in-memory inode into the btree.
2711 */
2712 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2713 struct btrfs_root *root, struct inode *inode)
2714 {
2715 struct btrfs_inode_item *inode_item;
2716 struct btrfs_path *path;
2717 struct extent_buffer *leaf;
2718 int ret;
2719
2720 path = btrfs_alloc_path();
2721 if (!path)
2722 return -ENOMEM;
2723
2724 path->leave_spinning = 1;
2725 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2726 1);
2727 if (ret) {
2728 if (ret > 0)
2729 ret = -ENOENT;
2730 goto failed;
2731 }
2732
2733 btrfs_unlock_up_safe(path, 1);
2734 leaf = path->nodes[0];
2735 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2736 struct btrfs_inode_item);
2737
2738 fill_inode_item(trans, leaf, inode_item, inode);
2739 btrfs_mark_buffer_dirty(leaf);
2740 btrfs_set_inode_last_trans(trans, inode);
2741 ret = 0;
2742 failed:
2743 btrfs_free_path(path);
2744 return ret;
2745 }
2746
2747 /*
2748 * copy everything in the in-memory inode into the btree.
2749 */
2750 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2751 struct btrfs_root *root, struct inode *inode)
2752 {
2753 int ret;
2754
2755 /*
2756 * If the inode is a free space inode, we can deadlock during commit
2757 * if we put it into the delayed code.
2758 *
2759 * The data relocation inode should also be directly updated
2760 * without delay
2761 */
2762 if (!btrfs_is_free_space_inode(inode)
2763 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2764 btrfs_update_root_times(trans, root);
2765
2766 ret = btrfs_delayed_update_inode(trans, root, inode);
2767 if (!ret)
2768 btrfs_set_inode_last_trans(trans, inode);
2769 return ret;
2770 }
2771
2772 return btrfs_update_inode_item(trans, root, inode);
2773 }
2774
2775 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2776 struct btrfs_root *root,
2777 struct inode *inode)
2778 {
2779 int ret;
2780
2781 ret = btrfs_update_inode(trans, root, inode);
2782 if (ret == -ENOSPC)
2783 return btrfs_update_inode_item(trans, root, inode);
2784 return ret;
2785 }
2786
2787 /*
2788 * unlink helper that gets used here in inode.c and in the tree logging
2789 * recovery code. It remove a link in a directory with a given name, and
2790 * also drops the back refs in the inode to the directory
2791 */
2792 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2793 struct btrfs_root *root,
2794 struct inode *dir, struct inode *inode,
2795 const char *name, int name_len)
2796 {
2797 struct btrfs_path *path;
2798 int ret = 0;
2799 struct extent_buffer *leaf;
2800 struct btrfs_dir_item *di;
2801 struct btrfs_key key;
2802 u64 index;
2803 u64 ino = btrfs_ino(inode);
2804 u64 dir_ino = btrfs_ino(dir);
2805
2806 path = btrfs_alloc_path();
2807 if (!path) {
2808 ret = -ENOMEM;
2809 goto out;
2810 }
2811
2812 path->leave_spinning = 1;
2813 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2814 name, name_len, -1);
2815 if (IS_ERR(di)) {
2816 ret = PTR_ERR(di);
2817 goto err;
2818 }
2819 if (!di) {
2820 ret = -ENOENT;
2821 goto err;
2822 }
2823 leaf = path->nodes[0];
2824 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2825 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2826 if (ret)
2827 goto err;
2828 btrfs_release_path(path);
2829
2830 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2831 dir_ino, &index);
2832 if (ret) {
2833 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2834 "inode %llu parent %llu\n", name_len, name,
2835 (unsigned long long)ino, (unsigned long long)dir_ino);
2836 btrfs_abort_transaction(trans, root, ret);
2837 goto err;
2838 }
2839
2840 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2841 if (ret) {
2842 btrfs_abort_transaction(trans, root, ret);
2843 goto err;
2844 }
2845
2846 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2847 inode, dir_ino);
2848 if (ret != 0 && ret != -ENOENT) {
2849 btrfs_abort_transaction(trans, root, ret);
2850 goto err;
2851 }
2852
2853 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2854 dir, index);
2855 if (ret == -ENOENT)
2856 ret = 0;
2857 err:
2858 btrfs_free_path(path);
2859 if (ret)
2860 goto out;
2861
2862 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2863 inode_inc_iversion(inode);
2864 inode_inc_iversion(dir);
2865 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2866 ret = btrfs_update_inode(trans, root, dir);
2867 out:
2868 return ret;
2869 }
2870
2871 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2872 struct btrfs_root *root,
2873 struct inode *dir, struct inode *inode,
2874 const char *name, int name_len)
2875 {
2876 int ret;
2877 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2878 if (!ret) {
2879 btrfs_drop_nlink(inode);
2880 ret = btrfs_update_inode(trans, root, inode);
2881 }
2882 return ret;
2883 }
2884
2885
2886 /* helper to check if there is any shared block in the path */
2887 static int check_path_shared(struct btrfs_root *root,
2888 struct btrfs_path *path)
2889 {
2890 struct extent_buffer *eb;
2891 int level;
2892 u64 refs = 1;
2893
2894 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2895 int ret;
2896
2897 if (!path->nodes[level])
2898 break;
2899 eb = path->nodes[level];
2900 if (!btrfs_block_can_be_shared(root, eb))
2901 continue;
2902 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2903 &refs, NULL);
2904 if (refs > 1)
2905 return 1;
2906 }
2907 return 0;
2908 }
2909
2910 /*
2911 * helper to start transaction for unlink and rmdir.
2912 *
2913 * unlink and rmdir are special in btrfs, they do not always free space.
2914 * so in enospc case, we should make sure they will free space before
2915 * allowing them to use the global metadata reservation.
2916 */
2917 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2918 struct dentry *dentry)
2919 {
2920 struct btrfs_trans_handle *trans;
2921 struct btrfs_root *root = BTRFS_I(dir)->root;
2922 struct btrfs_path *path;
2923 struct btrfs_dir_item *di;
2924 struct inode *inode = dentry->d_inode;
2925 u64 index;
2926 int check_link = 1;
2927 int err = -ENOSPC;
2928 int ret;
2929 u64 ino = btrfs_ino(inode);
2930 u64 dir_ino = btrfs_ino(dir);
2931
2932 /*
2933 * 1 for the possible orphan item
2934 * 1 for the dir item
2935 * 1 for the dir index
2936 * 1 for the inode ref
2937 * 1 for the inode ref in the tree log
2938 * 2 for the dir entries in the log
2939 * 1 for the inode
2940 */
2941 trans = btrfs_start_transaction(root, 8);
2942 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2943 return trans;
2944
2945 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2946 return ERR_PTR(-ENOSPC);
2947
2948 /* check if there is someone else holds reference */
2949 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2950 return ERR_PTR(-ENOSPC);
2951
2952 if (atomic_read(&inode->i_count) > 2)
2953 return ERR_PTR(-ENOSPC);
2954
2955 if (xchg(&root->fs_info->enospc_unlink, 1))
2956 return ERR_PTR(-ENOSPC);
2957
2958 path = btrfs_alloc_path();
2959 if (!path) {
2960 root->fs_info->enospc_unlink = 0;
2961 return ERR_PTR(-ENOMEM);
2962 }
2963
2964 /* 1 for the orphan item */
2965 trans = btrfs_start_transaction(root, 1);
2966 if (IS_ERR(trans)) {
2967 btrfs_free_path(path);
2968 root->fs_info->enospc_unlink = 0;
2969 return trans;
2970 }
2971
2972 path->skip_locking = 1;
2973 path->search_commit_root = 1;
2974
2975 ret = btrfs_lookup_inode(trans, root, path,
2976 &BTRFS_I(dir)->location, 0);
2977 if (ret < 0) {
2978 err = ret;
2979 goto out;
2980 }
2981 if (ret == 0) {
2982 if (check_path_shared(root, path))
2983 goto out;
2984 } else {
2985 check_link = 0;
2986 }
2987 btrfs_release_path(path);
2988
2989 ret = btrfs_lookup_inode(trans, root, path,
2990 &BTRFS_I(inode)->location, 0);
2991 if (ret < 0) {
2992 err = ret;
2993 goto out;
2994 }
2995 if (ret == 0) {
2996 if (check_path_shared(root, path))
2997 goto out;
2998 } else {
2999 check_link = 0;
3000 }
3001 btrfs_release_path(path);
3002
3003 if (ret == 0 && S_ISREG(inode->i_mode)) {
3004 ret = btrfs_lookup_file_extent(trans, root, path,
3005 ino, (u64)-1, 0);
3006 if (ret < 0) {
3007 err = ret;
3008 goto out;
3009 }
3010 BUG_ON(ret == 0); /* Corruption */
3011 if (check_path_shared(root, path))
3012 goto out;
3013 btrfs_release_path(path);
3014 }
3015
3016 if (!check_link) {
3017 err = 0;
3018 goto out;
3019 }
3020
3021 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3022 dentry->d_name.name, dentry->d_name.len, 0);
3023 if (IS_ERR(di)) {
3024 err = PTR_ERR(di);
3025 goto out;
3026 }
3027 if (di) {
3028 if (check_path_shared(root, path))
3029 goto out;
3030 } else {
3031 err = 0;
3032 goto out;
3033 }
3034 btrfs_release_path(path);
3035
3036 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3037 dentry->d_name.len, ino, dir_ino, 0,
3038 &index);
3039 if (ret) {
3040 err = ret;
3041 goto out;
3042 }
3043
3044 if (check_path_shared(root, path))
3045 goto out;
3046
3047 btrfs_release_path(path);
3048
3049 /*
3050 * This is a commit root search, if we can lookup inode item and other
3051 * relative items in the commit root, it means the transaction of
3052 * dir/file creation has been committed, and the dir index item that we
3053 * delay to insert has also been inserted into the commit root. So
3054 * we needn't worry about the delayed insertion of the dir index item
3055 * here.
3056 */
3057 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3058 dentry->d_name.name, dentry->d_name.len, 0);
3059 if (IS_ERR(di)) {
3060 err = PTR_ERR(di);
3061 goto out;
3062 }
3063 BUG_ON(ret == -ENOENT);
3064 if (check_path_shared(root, path))
3065 goto out;
3066
3067 err = 0;
3068 out:
3069 btrfs_free_path(path);
3070 /* Migrate the orphan reservation over */
3071 if (!err)
3072 err = btrfs_block_rsv_migrate(trans->block_rsv,
3073 &root->fs_info->global_block_rsv,
3074 trans->bytes_reserved);
3075
3076 if (err) {
3077 btrfs_end_transaction(trans, root);
3078 root->fs_info->enospc_unlink = 0;
3079 return ERR_PTR(err);
3080 }
3081
3082 trans->block_rsv = &root->fs_info->global_block_rsv;
3083 return trans;
3084 }
3085
3086 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3087 struct btrfs_root *root)
3088 {
3089 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
3090 btrfs_block_rsv_release(root, trans->block_rsv,
3091 trans->bytes_reserved);
3092 trans->block_rsv = &root->fs_info->trans_block_rsv;
3093 BUG_ON(!root->fs_info->enospc_unlink);
3094 root->fs_info->enospc_unlink = 0;
3095 }
3096 btrfs_end_transaction(trans, root);
3097 }
3098
3099 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3100 {
3101 struct btrfs_root *root = BTRFS_I(dir)->root;
3102 struct btrfs_trans_handle *trans;
3103 struct inode *inode = dentry->d_inode;
3104 int ret;
3105
3106 trans = __unlink_start_trans(dir, dentry);
3107 if (IS_ERR(trans))
3108 return PTR_ERR(trans);
3109
3110 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3111
3112 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3113 dentry->d_name.name, dentry->d_name.len);
3114 if (ret)
3115 goto out;
3116
3117 if (inode->i_nlink == 0) {
3118 ret = btrfs_orphan_add(trans, inode);
3119 if (ret)
3120 goto out;
3121 }
3122
3123 out:
3124 __unlink_end_trans(trans, root);
3125 btrfs_btree_balance_dirty(root);
3126 return ret;
3127 }
3128
3129 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3130 struct btrfs_root *root,
3131 struct inode *dir, u64 objectid,
3132 const char *name, int name_len)
3133 {
3134 struct btrfs_path *path;
3135 struct extent_buffer *leaf;
3136 struct btrfs_dir_item *di;
3137 struct btrfs_key key;
3138 u64 index;
3139 int ret;
3140 u64 dir_ino = btrfs_ino(dir);
3141
3142 path = btrfs_alloc_path();
3143 if (!path)
3144 return -ENOMEM;
3145
3146 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3147 name, name_len, -1);
3148 if (IS_ERR_OR_NULL(di)) {
3149 if (!di)
3150 ret = -ENOENT;
3151 else
3152 ret = PTR_ERR(di);
3153 goto out;
3154 }
3155
3156 leaf = path->nodes[0];
3157 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3158 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3159 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3160 if (ret) {
3161 btrfs_abort_transaction(trans, root, ret);
3162 goto out;
3163 }
3164 btrfs_release_path(path);
3165
3166 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3167 objectid, root->root_key.objectid,
3168 dir_ino, &index, name, name_len);
3169 if (ret < 0) {
3170 if (ret != -ENOENT) {
3171 btrfs_abort_transaction(trans, root, ret);
3172 goto out;
3173 }
3174 di = btrfs_search_dir_index_item(root, path, dir_ino,
3175 name, name_len);
3176 if (IS_ERR_OR_NULL(di)) {
3177 if (!di)
3178 ret = -ENOENT;
3179 else
3180 ret = PTR_ERR(di);
3181 btrfs_abort_transaction(trans, root, ret);
3182 goto out;
3183 }
3184
3185 leaf = path->nodes[0];
3186 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3187 btrfs_release_path(path);
3188 index = key.offset;
3189 }
3190 btrfs_release_path(path);
3191
3192 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3193 if (ret) {
3194 btrfs_abort_transaction(trans, root, ret);
3195 goto out;
3196 }
3197
3198 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3199 inode_inc_iversion(dir);
3200 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3201 ret = btrfs_update_inode_fallback(trans, root, dir);
3202 if (ret)
3203 btrfs_abort_transaction(trans, root, ret);
3204 out:
3205 btrfs_free_path(path);
3206 return ret;
3207 }
3208
3209 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3210 {
3211 struct inode *inode = dentry->d_inode;
3212 int err = 0;
3213 struct btrfs_root *root = BTRFS_I(dir)->root;
3214 struct btrfs_trans_handle *trans;
3215
3216 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3217 return -ENOTEMPTY;
3218 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3219 return -EPERM;
3220
3221 trans = __unlink_start_trans(dir, dentry);
3222 if (IS_ERR(trans))
3223 return PTR_ERR(trans);
3224
3225 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3226 err = btrfs_unlink_subvol(trans, root, dir,
3227 BTRFS_I(inode)->location.objectid,
3228 dentry->d_name.name,
3229 dentry->d_name.len);
3230 goto out;
3231 }
3232
3233 err = btrfs_orphan_add(trans, inode);
3234 if (err)
3235 goto out;
3236
3237 /* now the directory is empty */
3238 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3239 dentry->d_name.name, dentry->d_name.len);
3240 if (!err)
3241 btrfs_i_size_write(inode, 0);
3242 out:
3243 __unlink_end_trans(trans, root);
3244 btrfs_btree_balance_dirty(root);
3245
3246 return err;
3247 }
3248
3249 /*
3250 * this can truncate away extent items, csum items and directory items.
3251 * It starts at a high offset and removes keys until it can't find
3252 * any higher than new_size
3253 *
3254 * csum items that cross the new i_size are truncated to the new size
3255 * as well.
3256 *
3257 * min_type is the minimum key type to truncate down to. If set to 0, this
3258 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3259 */
3260 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3261 struct btrfs_root *root,
3262 struct inode *inode,
3263 u64 new_size, u32 min_type)
3264 {
3265 struct btrfs_path *path;
3266 struct extent_buffer *leaf;
3267 struct btrfs_file_extent_item *fi;
3268 struct btrfs_key key;
3269 struct btrfs_key found_key;
3270 u64 extent_start = 0;
3271 u64 extent_num_bytes = 0;
3272 u64 extent_offset = 0;
3273 u64 item_end = 0;
3274 u64 mask = root->sectorsize - 1;
3275 u32 found_type = (u8)-1;
3276 int found_extent;
3277 int del_item;
3278 int pending_del_nr = 0;
3279 int pending_del_slot = 0;
3280 int extent_type = -1;
3281 int ret;
3282 int err = 0;
3283 u64 ino = btrfs_ino(inode);
3284
3285 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3286
3287 path = btrfs_alloc_path();
3288 if (!path)
3289 return -ENOMEM;
3290 path->reada = -1;
3291
3292 /*
3293 * We want to drop from the next block forward in case this new size is
3294 * not block aligned since we will be keeping the last block of the
3295 * extent just the way it is.
3296 */
3297 if (root->ref_cows || root == root->fs_info->tree_root)
3298 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
3299
3300 /*
3301 * This function is also used to drop the items in the log tree before
3302 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3303 * it is used to drop the loged items. So we shouldn't kill the delayed
3304 * items.
3305 */
3306 if (min_type == 0 && root == BTRFS_I(inode)->root)
3307 btrfs_kill_delayed_inode_items(inode);
3308
3309 key.objectid = ino;
3310 key.offset = (u64)-1;
3311 key.type = (u8)-1;
3312
3313 search_again:
3314 path->leave_spinning = 1;
3315 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3316 if (ret < 0) {
3317 err = ret;
3318 goto out;
3319 }
3320
3321 if (ret > 0) {
3322 /* there are no items in the tree for us to truncate, we're
3323 * done
3324 */
3325 if (path->slots[0] == 0)
3326 goto out;
3327 path->slots[0]--;
3328 }
3329
3330 while (1) {
3331 fi = NULL;
3332 leaf = path->nodes[0];
3333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3334 found_type = btrfs_key_type(&found_key);
3335
3336 if (found_key.objectid != ino)
3337 break;
3338
3339 if (found_type < min_type)
3340 break;
3341
3342 item_end = found_key.offset;
3343 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3344 fi = btrfs_item_ptr(leaf, path->slots[0],
3345 struct btrfs_file_extent_item);
3346 extent_type = btrfs_file_extent_type(leaf, fi);
3347 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3348 item_end +=
3349 btrfs_file_extent_num_bytes(leaf, fi);
3350 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3351 item_end += btrfs_file_extent_inline_len(leaf,
3352 fi);
3353 }
3354 item_end--;
3355 }
3356 if (found_type > min_type) {
3357 del_item = 1;
3358 } else {
3359 if (item_end < new_size)
3360 break;
3361 if (found_key.offset >= new_size)
3362 del_item = 1;
3363 else
3364 del_item = 0;
3365 }
3366 found_extent = 0;
3367 /* FIXME, shrink the extent if the ref count is only 1 */
3368 if (found_type != BTRFS_EXTENT_DATA_KEY)
3369 goto delete;
3370
3371 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3372 u64 num_dec;
3373 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3374 if (!del_item) {
3375 u64 orig_num_bytes =
3376 btrfs_file_extent_num_bytes(leaf, fi);
3377 extent_num_bytes = new_size -
3378 found_key.offset + root->sectorsize - 1;
3379 extent_num_bytes = extent_num_bytes &
3380 ~((u64)root->sectorsize - 1);
3381 btrfs_set_file_extent_num_bytes(leaf, fi,
3382 extent_num_bytes);
3383 num_dec = (orig_num_bytes -
3384 extent_num_bytes);
3385 if (root->ref_cows && extent_start != 0)
3386 inode_sub_bytes(inode, num_dec);
3387 btrfs_mark_buffer_dirty(leaf);
3388 } else {
3389 extent_num_bytes =
3390 btrfs_file_extent_disk_num_bytes(leaf,
3391 fi);
3392 extent_offset = found_key.offset -
3393 btrfs_file_extent_offset(leaf, fi);
3394
3395 /* FIXME blocksize != 4096 */
3396 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3397 if (extent_start != 0) {
3398 found_extent = 1;
3399 if (root->ref_cows)
3400 inode_sub_bytes(inode, num_dec);
3401 }
3402 }
3403 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3404 /*
3405 * we can't truncate inline items that have had
3406 * special encodings
3407 */
3408 if (!del_item &&
3409 btrfs_file_extent_compression(leaf, fi) == 0 &&
3410 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3411 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3412 u32 size = new_size - found_key.offset;
3413
3414 if (root->ref_cows) {
3415 inode_sub_bytes(inode, item_end + 1 -
3416 new_size);
3417 }
3418 size =
3419 btrfs_file_extent_calc_inline_size(size);
3420 btrfs_truncate_item(trans, root, path,
3421 size, 1);
3422 } else if (root->ref_cows) {
3423 inode_sub_bytes(inode, item_end + 1 -
3424 found_key.offset);
3425 }
3426 }
3427 delete:
3428 if (del_item) {
3429 if (!pending_del_nr) {
3430 /* no pending yet, add ourselves */
3431 pending_del_slot = path->slots[0];
3432 pending_del_nr = 1;
3433 } else if (pending_del_nr &&
3434 path->slots[0] + 1 == pending_del_slot) {
3435 /* hop on the pending chunk */
3436 pending_del_nr++;
3437 pending_del_slot = path->slots[0];
3438 } else {
3439 BUG();
3440 }
3441 } else {
3442 break;
3443 }
3444 if (found_extent && (root->ref_cows ||
3445 root == root->fs_info->tree_root)) {
3446 btrfs_set_path_blocking(path);
3447 ret = btrfs_free_extent(trans, root, extent_start,
3448 extent_num_bytes, 0,
3449 btrfs_header_owner(leaf),
3450 ino, extent_offset, 0);
3451 BUG_ON(ret);
3452 }
3453
3454 if (found_type == BTRFS_INODE_ITEM_KEY)
3455 break;
3456
3457 if (path->slots[0] == 0 ||
3458 path->slots[0] != pending_del_slot) {
3459 if (pending_del_nr) {
3460 ret = btrfs_del_items(trans, root, path,
3461 pending_del_slot,
3462 pending_del_nr);
3463 if (ret) {
3464 btrfs_abort_transaction(trans,
3465 root, ret);
3466 goto error;
3467 }
3468 pending_del_nr = 0;
3469 }
3470 btrfs_release_path(path);
3471 goto search_again;
3472 } else {
3473 path->slots[0]--;
3474 }
3475 }
3476 out:
3477 if (pending_del_nr) {
3478 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3479 pending_del_nr);
3480 if (ret)
3481 btrfs_abort_transaction(trans, root, ret);
3482 }
3483 error:
3484 btrfs_free_path(path);
3485 return err;
3486 }
3487
3488 /*
3489 * btrfs_truncate_page - read, zero a chunk and write a page
3490 * @inode - inode that we're zeroing
3491 * @from - the offset to start zeroing
3492 * @len - the length to zero, 0 to zero the entire range respective to the
3493 * offset
3494 * @front - zero up to the offset instead of from the offset on
3495 *
3496 * This will find the page for the "from" offset and cow the page and zero the
3497 * part we want to zero. This is used with truncate and hole punching.
3498 */
3499 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3500 int front)
3501 {
3502 struct address_space *mapping = inode->i_mapping;
3503 struct btrfs_root *root = BTRFS_I(inode)->root;
3504 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3505 struct btrfs_ordered_extent *ordered;
3506 struct extent_state *cached_state = NULL;
3507 char *kaddr;
3508 u32 blocksize = root->sectorsize;
3509 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3510 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3511 struct page *page;
3512 gfp_t mask = btrfs_alloc_write_mask(mapping);
3513 int ret = 0;
3514 u64 page_start;
3515 u64 page_end;
3516
3517 if ((offset & (blocksize - 1)) == 0 &&
3518 (!len || ((len & (blocksize - 1)) == 0)))
3519 goto out;
3520 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3521 if (ret)
3522 goto out;
3523
3524 ret = -ENOMEM;
3525 again:
3526 page = find_or_create_page(mapping, index, mask);
3527 if (!page) {
3528 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3529 goto out;
3530 }
3531
3532 page_start = page_offset(page);
3533 page_end = page_start + PAGE_CACHE_SIZE - 1;
3534
3535 if (!PageUptodate(page)) {
3536 ret = btrfs_readpage(NULL, page);
3537 lock_page(page);
3538 if (page->mapping != mapping) {
3539 unlock_page(page);
3540 page_cache_release(page);
3541 goto again;
3542 }
3543 if (!PageUptodate(page)) {
3544 ret = -EIO;
3545 goto out_unlock;
3546 }
3547 }
3548 wait_on_page_writeback(page);
3549
3550 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3551 set_page_extent_mapped(page);
3552
3553 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3554 if (ordered) {
3555 unlock_extent_cached(io_tree, page_start, page_end,
3556 &cached_state, GFP_NOFS);
3557 unlock_page(page);
3558 page_cache_release(page);
3559 btrfs_start_ordered_extent(inode, ordered, 1);
3560 btrfs_put_ordered_extent(ordered);
3561 goto again;
3562 }
3563
3564 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3565 EXTENT_DIRTY | EXTENT_DELALLOC |
3566 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
3567 0, 0, &cached_state, GFP_NOFS);
3568
3569 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3570 &cached_state);
3571 if (ret) {
3572 unlock_extent_cached(io_tree, page_start, page_end,
3573 &cached_state, GFP_NOFS);
3574 goto out_unlock;
3575 }
3576
3577 ret = 0;
3578 if (offset != PAGE_CACHE_SIZE) {
3579 if (!len)
3580 len = PAGE_CACHE_SIZE - offset;
3581 kaddr = kmap(page);
3582 if (front)
3583 memset(kaddr, 0, offset);
3584 else
3585 memset(kaddr + offset, 0, len);
3586 flush_dcache_page(page);
3587 kunmap(page);
3588 }
3589 ClearPageChecked(page);
3590 set_page_dirty(page);
3591 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3592 GFP_NOFS);
3593
3594 out_unlock:
3595 if (ret)
3596 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3597 unlock_page(page);
3598 page_cache_release(page);
3599 out:
3600 return ret;
3601 }
3602
3603 /*
3604 * This function puts in dummy file extents for the area we're creating a hole
3605 * for. So if we are truncating this file to a larger size we need to insert
3606 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3607 * the range between oldsize and size
3608 */
3609 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3610 {
3611 struct btrfs_trans_handle *trans;
3612 struct btrfs_root *root = BTRFS_I(inode)->root;
3613 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3614 struct extent_map *em = NULL;
3615 struct extent_state *cached_state = NULL;
3616 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3617 u64 mask = root->sectorsize - 1;
3618 u64 hole_start = (oldsize + mask) & ~mask;
3619 u64 block_end = (size + mask) & ~mask;
3620 u64 last_byte;
3621 u64 cur_offset;
3622 u64 hole_size;
3623 int err = 0;
3624
3625 if (size <= hole_start)
3626 return 0;
3627
3628 while (1) {
3629 struct btrfs_ordered_extent *ordered;
3630 btrfs_wait_ordered_range(inode, hole_start,
3631 block_end - hole_start);
3632 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3633 &cached_state);
3634 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3635 if (!ordered)
3636 break;
3637 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3638 &cached_state, GFP_NOFS);
3639 btrfs_put_ordered_extent(ordered);
3640 }
3641
3642 cur_offset = hole_start;
3643 while (1) {
3644 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3645 block_end - cur_offset, 0);
3646 if (IS_ERR(em)) {
3647 err = PTR_ERR(em);
3648 break;
3649 }
3650 last_byte = min(extent_map_end(em), block_end);
3651 last_byte = (last_byte + mask) & ~mask;
3652 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3653 struct extent_map *hole_em;
3654 hole_size = last_byte - cur_offset;
3655
3656 trans = btrfs_start_transaction(root, 3);
3657 if (IS_ERR(trans)) {
3658 err = PTR_ERR(trans);
3659 break;
3660 }
3661
3662 err = btrfs_drop_extents(trans, root, inode,
3663 cur_offset,
3664 cur_offset + hole_size, 1);
3665 if (err) {
3666 btrfs_abort_transaction(trans, root, err);
3667 btrfs_end_transaction(trans, root);
3668 break;
3669 }
3670
3671 err = btrfs_insert_file_extent(trans, root,
3672 btrfs_ino(inode), cur_offset, 0,
3673 0, hole_size, 0, hole_size,
3674 0, 0, 0);
3675 if (err) {
3676 btrfs_abort_transaction(trans, root, err);
3677 btrfs_end_transaction(trans, root);
3678 break;
3679 }
3680
3681 btrfs_drop_extent_cache(inode, cur_offset,
3682 cur_offset + hole_size - 1, 0);
3683 hole_em = alloc_extent_map();
3684 if (!hole_em) {
3685 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3686 &BTRFS_I(inode)->runtime_flags);
3687 goto next;
3688 }
3689 hole_em->start = cur_offset;
3690 hole_em->len = hole_size;
3691 hole_em->orig_start = cur_offset;
3692
3693 hole_em->block_start = EXTENT_MAP_HOLE;
3694 hole_em->block_len = 0;
3695 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3696 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3697 hole_em->generation = trans->transid;
3698
3699 while (1) {
3700 write_lock(&em_tree->lock);
3701 err = add_extent_mapping(em_tree, hole_em);
3702 if (!err)
3703 list_move(&hole_em->list,
3704 &em_tree->modified_extents);
3705 write_unlock(&em_tree->lock);
3706 if (err != -EEXIST)
3707 break;
3708 btrfs_drop_extent_cache(inode, cur_offset,
3709 cur_offset +
3710 hole_size - 1, 0);
3711 }
3712 free_extent_map(hole_em);
3713 next:
3714 btrfs_update_inode(trans, root, inode);
3715 btrfs_end_transaction(trans, root);
3716 }
3717 free_extent_map(em);
3718 em = NULL;
3719 cur_offset = last_byte;
3720 if (cur_offset >= block_end)
3721 break;
3722 }
3723
3724 free_extent_map(em);
3725 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3726 GFP_NOFS);
3727 return err;
3728 }
3729
3730 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3731 {
3732 struct btrfs_root *root = BTRFS_I(inode)->root;
3733 struct btrfs_trans_handle *trans;
3734 loff_t oldsize = i_size_read(inode);
3735 int ret;
3736
3737 if (newsize == oldsize)
3738 return 0;
3739
3740 if (newsize > oldsize) {
3741 truncate_pagecache(inode, oldsize, newsize);
3742 ret = btrfs_cont_expand(inode, oldsize, newsize);
3743 if (ret)
3744 return ret;
3745
3746 trans = btrfs_start_transaction(root, 1);
3747 if (IS_ERR(trans))
3748 return PTR_ERR(trans);
3749
3750 i_size_write(inode, newsize);
3751 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3752 ret = btrfs_update_inode(trans, root, inode);
3753 btrfs_end_transaction(trans, root);
3754 } else {
3755
3756 /*
3757 * We're truncating a file that used to have good data down to
3758 * zero. Make sure it gets into the ordered flush list so that
3759 * any new writes get down to disk quickly.
3760 */
3761 if (newsize == 0)
3762 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3763 &BTRFS_I(inode)->runtime_flags);
3764
3765 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3766 truncate_setsize(inode, newsize);
3767 ret = btrfs_truncate(inode);
3768 }
3769
3770 return ret;
3771 }
3772
3773 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3774 {
3775 struct inode *inode = dentry->d_inode;
3776 struct btrfs_root *root = BTRFS_I(inode)->root;
3777 int err;
3778
3779 if (btrfs_root_readonly(root))
3780 return -EROFS;
3781
3782 err = inode_change_ok(inode, attr);
3783 if (err)
3784 return err;
3785
3786 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3787 err = btrfs_setsize(inode, attr->ia_size);
3788 if (err)
3789 return err;
3790 }
3791
3792 if (attr->ia_valid) {
3793 setattr_copy(inode, attr);
3794 inode_inc_iversion(inode);
3795 err = btrfs_dirty_inode(inode);
3796
3797 if (!err && attr->ia_valid & ATTR_MODE)
3798 err = btrfs_acl_chmod(inode);
3799 }
3800
3801 return err;
3802 }
3803
3804 void btrfs_evict_inode(struct inode *inode)
3805 {
3806 struct btrfs_trans_handle *trans;
3807 struct btrfs_root *root = BTRFS_I(inode)->root;
3808 struct btrfs_block_rsv *rsv, *global_rsv;
3809 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3810 int ret;
3811
3812 trace_btrfs_inode_evict(inode);
3813
3814 truncate_inode_pages(&inode->i_data, 0);
3815 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3816 btrfs_is_free_space_inode(inode)))
3817 goto no_delete;
3818
3819 if (is_bad_inode(inode)) {
3820 btrfs_orphan_del(NULL, inode);
3821 goto no_delete;
3822 }
3823 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3824 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3825
3826 if (root->fs_info->log_root_recovering) {
3827 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3828 &BTRFS_I(inode)->runtime_flags));
3829 goto no_delete;
3830 }
3831
3832 if (inode->i_nlink > 0) {
3833 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3834 goto no_delete;
3835 }
3836
3837 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3838 if (!rsv) {
3839 btrfs_orphan_del(NULL, inode);
3840 goto no_delete;
3841 }
3842 rsv->size = min_size;
3843 rsv->failfast = 1;
3844 global_rsv = &root->fs_info->global_block_rsv;
3845
3846 btrfs_i_size_write(inode, 0);
3847
3848 /*
3849 * This is a bit simpler than btrfs_truncate since we've already
3850 * reserved our space for our orphan item in the unlink, so we just
3851 * need to reserve some slack space in case we add bytes and update
3852 * inode item when doing the truncate.
3853 */
3854 while (1) {
3855 ret = btrfs_block_rsv_refill(root, rsv, min_size,
3856 BTRFS_RESERVE_FLUSH_LIMIT);
3857
3858 /*
3859 * Try and steal from the global reserve since we will
3860 * likely not use this space anyway, we want to try as
3861 * hard as possible to get this to work.
3862 */
3863 if (ret)
3864 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3865
3866 if (ret) {
3867 printk(KERN_WARNING "Could not get space for a "
3868 "delete, will truncate on mount %d\n", ret);
3869 btrfs_orphan_del(NULL, inode);
3870 btrfs_free_block_rsv(root, rsv);
3871 goto no_delete;
3872 }
3873
3874 trans = btrfs_start_transaction_lflush(root, 1);
3875 if (IS_ERR(trans)) {
3876 btrfs_orphan_del(NULL, inode);
3877 btrfs_free_block_rsv(root, rsv);
3878 goto no_delete;
3879 }
3880
3881 trans->block_rsv = rsv;
3882
3883 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3884 if (ret != -ENOSPC)
3885 break;
3886
3887 trans->block_rsv = &root->fs_info->trans_block_rsv;
3888 ret = btrfs_update_inode(trans, root, inode);
3889 BUG_ON(ret);
3890
3891 btrfs_end_transaction(trans, root);
3892 trans = NULL;
3893 btrfs_btree_balance_dirty(root);
3894 }
3895
3896 btrfs_free_block_rsv(root, rsv);
3897
3898 if (ret == 0) {
3899 trans->block_rsv = root->orphan_block_rsv;
3900 ret = btrfs_orphan_del(trans, inode);
3901 BUG_ON(ret);
3902 }
3903
3904 trans->block_rsv = &root->fs_info->trans_block_rsv;
3905 if (!(root == root->fs_info->tree_root ||
3906 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3907 btrfs_return_ino(root, btrfs_ino(inode));
3908
3909 btrfs_end_transaction(trans, root);
3910 btrfs_btree_balance_dirty(root);
3911 no_delete:
3912 clear_inode(inode);
3913 return;
3914 }
3915
3916 /*
3917 * this returns the key found in the dir entry in the location pointer.
3918 * If no dir entries were found, location->objectid is 0.
3919 */
3920 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3921 struct btrfs_key *location)
3922 {
3923 const char *name = dentry->d_name.name;
3924 int namelen = dentry->d_name.len;
3925 struct btrfs_dir_item *di;
3926 struct btrfs_path *path;
3927 struct btrfs_root *root = BTRFS_I(dir)->root;
3928 int ret = 0;
3929
3930 path = btrfs_alloc_path();
3931 if (!path)
3932 return -ENOMEM;
3933
3934 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3935 namelen, 0);
3936 if (IS_ERR(di))
3937 ret = PTR_ERR(di);
3938
3939 if (IS_ERR_OR_NULL(di))
3940 goto out_err;
3941
3942 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3943 out:
3944 btrfs_free_path(path);
3945 return ret;
3946 out_err:
3947 location->objectid = 0;
3948 goto out;
3949 }
3950
3951 /*
3952 * when we hit a tree root in a directory, the btrfs part of the inode
3953 * needs to be changed to reflect the root directory of the tree root. This
3954 * is kind of like crossing a mount point.
3955 */
3956 static int fixup_tree_root_location(struct btrfs_root *root,
3957 struct inode *dir,
3958 struct dentry *dentry,
3959 struct btrfs_key *location,
3960 struct btrfs_root **sub_root)
3961 {
3962 struct btrfs_path *path;
3963 struct btrfs_root *new_root;
3964 struct btrfs_root_ref *ref;
3965 struct extent_buffer *leaf;
3966 int ret;
3967 int err = 0;
3968
3969 path = btrfs_alloc_path();
3970 if (!path) {
3971 err = -ENOMEM;
3972 goto out;
3973 }
3974
3975 err = -ENOENT;
3976 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3977 BTRFS_I(dir)->root->root_key.objectid,
3978 location->objectid);
3979 if (ret) {
3980 if (ret < 0)
3981 err = ret;
3982 goto out;
3983 }
3984
3985 leaf = path->nodes[0];
3986 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3987 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3988 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3989 goto out;
3990
3991 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3992 (unsigned long)(ref + 1),
3993 dentry->d_name.len);
3994 if (ret)
3995 goto out;
3996
3997 btrfs_release_path(path);
3998
3999 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4000 if (IS_ERR(new_root)) {
4001 err = PTR_ERR(new_root);
4002 goto out;
4003 }
4004
4005 if (btrfs_root_refs(&new_root->root_item) == 0) {
4006 err = -ENOENT;
4007 goto out;
4008 }
4009
4010 *sub_root = new_root;
4011 location->objectid = btrfs_root_dirid(&new_root->root_item);
4012 location->type = BTRFS_INODE_ITEM_KEY;
4013 location->offset = 0;
4014 err = 0;
4015 out:
4016 btrfs_free_path(path);
4017 return err;
4018 }
4019
4020 static void inode_tree_add(struct inode *inode)
4021 {
4022 struct btrfs_root *root = BTRFS_I(inode)->root;
4023 struct btrfs_inode *entry;
4024 struct rb_node **p;
4025 struct rb_node *parent;
4026 u64 ino = btrfs_ino(inode);
4027 again:
4028 p = &root->inode_tree.rb_node;
4029 parent = NULL;
4030
4031 if (inode_unhashed(inode))
4032 return;
4033
4034 spin_lock(&root->inode_lock);
4035 while (*p) {
4036 parent = *p;
4037 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4038
4039 if (ino < btrfs_ino(&entry->vfs_inode))
4040 p = &parent->rb_left;
4041 else if (ino > btrfs_ino(&entry->vfs_inode))
4042 p = &parent->rb_right;
4043 else {
4044 WARN_ON(!(entry->vfs_inode.i_state &
4045 (I_WILL_FREE | I_FREEING)));
4046 rb_erase(parent, &root->inode_tree);
4047 RB_CLEAR_NODE(parent);
4048 spin_unlock(&root->inode_lock);
4049 goto again;
4050 }
4051 }
4052 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4053 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4054 spin_unlock(&root->inode_lock);
4055 }
4056
4057 static void inode_tree_del(struct inode *inode)
4058 {
4059 struct btrfs_root *root = BTRFS_I(inode)->root;
4060 int empty = 0;
4061
4062 spin_lock(&root->inode_lock);
4063 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4064 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4065 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4066 empty = RB_EMPTY_ROOT(&root->inode_tree);
4067 }
4068 spin_unlock(&root->inode_lock);
4069
4070 /*
4071 * Free space cache has inodes in the tree root, but the tree root has a
4072 * root_refs of 0, so this could end up dropping the tree root as a
4073 * snapshot, so we need the extra !root->fs_info->tree_root check to
4074 * make sure we don't drop it.
4075 */
4076 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4077 root != root->fs_info->tree_root) {
4078 synchronize_srcu(&root->fs_info->subvol_srcu);
4079 spin_lock(&root->inode_lock);
4080 empty = RB_EMPTY_ROOT(&root->inode_tree);
4081 spin_unlock(&root->inode_lock);
4082 if (empty)
4083 btrfs_add_dead_root(root);
4084 }
4085 }
4086
4087 void btrfs_invalidate_inodes(struct btrfs_root *root)
4088 {
4089 struct rb_node *node;
4090 struct rb_node *prev;
4091 struct btrfs_inode *entry;
4092 struct inode *inode;
4093 u64 objectid = 0;
4094
4095 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4096
4097 spin_lock(&root->inode_lock);
4098 again:
4099 node = root->inode_tree.rb_node;
4100 prev = NULL;
4101 while (node) {
4102 prev = node;
4103 entry = rb_entry(node, struct btrfs_inode, rb_node);
4104
4105 if (objectid < btrfs_ino(&entry->vfs_inode))
4106 node = node->rb_left;
4107 else if (objectid > btrfs_ino(&entry->vfs_inode))
4108 node = node->rb_right;
4109 else
4110 break;
4111 }
4112 if (!node) {
4113 while (prev) {
4114 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4115 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4116 node = prev;
4117 break;
4118 }
4119 prev = rb_next(prev);
4120 }
4121 }
4122 while (node) {
4123 entry = rb_entry(node, struct btrfs_inode, rb_node);
4124 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4125 inode = igrab(&entry->vfs_inode);
4126 if (inode) {
4127 spin_unlock(&root->inode_lock);
4128 if (atomic_read(&inode->i_count) > 1)
4129 d_prune_aliases(inode);
4130 /*
4131 * btrfs_drop_inode will have it removed from
4132 * the inode cache when its usage count
4133 * hits zero.
4134 */
4135 iput(inode);
4136 cond_resched();
4137 spin_lock(&root->inode_lock);
4138 goto again;
4139 }
4140
4141 if (cond_resched_lock(&root->inode_lock))
4142 goto again;
4143
4144 node = rb_next(node);
4145 }
4146 spin_unlock(&root->inode_lock);
4147 }
4148
4149 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4150 {
4151 struct btrfs_iget_args *args = p;
4152 inode->i_ino = args->ino;
4153 BTRFS_I(inode)->root = args->root;
4154 return 0;
4155 }
4156
4157 static int btrfs_find_actor(struct inode *inode, void *opaque)
4158 {
4159 struct btrfs_iget_args *args = opaque;
4160 return args->ino == btrfs_ino(inode) &&
4161 args->root == BTRFS_I(inode)->root;
4162 }
4163
4164 static struct inode *btrfs_iget_locked(struct super_block *s,
4165 u64 objectid,
4166 struct btrfs_root *root)
4167 {
4168 struct inode *inode;
4169 struct btrfs_iget_args args;
4170 args.ino = objectid;
4171 args.root = root;
4172
4173 inode = iget5_locked(s, objectid, btrfs_find_actor,
4174 btrfs_init_locked_inode,
4175 (void *)&args);
4176 return inode;
4177 }
4178
4179 /* Get an inode object given its location and corresponding root.
4180 * Returns in *is_new if the inode was read from disk
4181 */
4182 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4183 struct btrfs_root *root, int *new)
4184 {
4185 struct inode *inode;
4186
4187 inode = btrfs_iget_locked(s, location->objectid, root);
4188 if (!inode)
4189 return ERR_PTR(-ENOMEM);
4190
4191 if (inode->i_state & I_NEW) {
4192 BTRFS_I(inode)->root = root;
4193 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4194 btrfs_read_locked_inode(inode);
4195 if (!is_bad_inode(inode)) {
4196 inode_tree_add(inode);
4197 unlock_new_inode(inode);
4198 if (new)
4199 *new = 1;
4200 } else {
4201 unlock_new_inode(inode);
4202 iput(inode);
4203 inode = ERR_PTR(-ESTALE);
4204 }
4205 }
4206
4207 return inode;
4208 }
4209
4210 static struct inode *new_simple_dir(struct super_block *s,
4211 struct btrfs_key *key,
4212 struct btrfs_root *root)
4213 {
4214 struct inode *inode = new_inode(s);
4215
4216 if (!inode)
4217 return ERR_PTR(-ENOMEM);
4218
4219 BTRFS_I(inode)->root = root;
4220 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4221 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4222
4223 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4224 inode->i_op = &btrfs_dir_ro_inode_operations;
4225 inode->i_fop = &simple_dir_operations;
4226 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4227 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4228
4229 return inode;
4230 }
4231
4232 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4233 {
4234 struct inode *inode;
4235 struct btrfs_root *root = BTRFS_I(dir)->root;
4236 struct btrfs_root *sub_root = root;
4237 struct btrfs_key location;
4238 int index;
4239 int ret = 0;
4240
4241 if (dentry->d_name.len > BTRFS_NAME_LEN)
4242 return ERR_PTR(-ENAMETOOLONG);
4243
4244 if (unlikely(d_need_lookup(dentry))) {
4245 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4246 kfree(dentry->d_fsdata);
4247 dentry->d_fsdata = NULL;
4248 /* This thing is hashed, drop it for now */
4249 d_drop(dentry);
4250 } else {
4251 ret = btrfs_inode_by_name(dir, dentry, &location);
4252 }
4253
4254 if (ret < 0)
4255 return ERR_PTR(ret);
4256
4257 if (location.objectid == 0)
4258 return NULL;
4259
4260 if (location.type == BTRFS_INODE_ITEM_KEY) {
4261 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4262 return inode;
4263 }
4264
4265 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4266
4267 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4268 ret = fixup_tree_root_location(root, dir, dentry,
4269 &location, &sub_root);
4270 if (ret < 0) {
4271 if (ret != -ENOENT)
4272 inode = ERR_PTR(ret);
4273 else
4274 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4275 } else {
4276 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4277 }
4278 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4279
4280 if (!IS_ERR(inode) && root != sub_root) {
4281 down_read(&root->fs_info->cleanup_work_sem);
4282 if (!(inode->i_sb->s_flags & MS_RDONLY))
4283 ret = btrfs_orphan_cleanup(sub_root);
4284 up_read(&root->fs_info->cleanup_work_sem);
4285 if (ret)
4286 inode = ERR_PTR(ret);
4287 }
4288
4289 return inode;
4290 }
4291
4292 static int btrfs_dentry_delete(const struct dentry *dentry)
4293 {
4294 struct btrfs_root *root;
4295 struct inode *inode = dentry->d_inode;
4296
4297 if (!inode && !IS_ROOT(dentry))
4298 inode = dentry->d_parent->d_inode;
4299
4300 if (inode) {
4301 root = BTRFS_I(inode)->root;
4302 if (btrfs_root_refs(&root->root_item) == 0)
4303 return 1;
4304
4305 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4306 return 1;
4307 }
4308 return 0;
4309 }
4310
4311 static void btrfs_dentry_release(struct dentry *dentry)
4312 {
4313 if (dentry->d_fsdata)
4314 kfree(dentry->d_fsdata);
4315 }
4316
4317 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4318 unsigned int flags)
4319 {
4320 struct dentry *ret;
4321
4322 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4323 if (unlikely(d_need_lookup(dentry))) {
4324 spin_lock(&dentry->d_lock);
4325 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4326 spin_unlock(&dentry->d_lock);
4327 }
4328 return ret;
4329 }
4330
4331 unsigned char btrfs_filetype_table[] = {
4332 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4333 };
4334
4335 static int btrfs_real_readdir(struct file *filp, void *dirent,
4336 filldir_t filldir)
4337 {
4338 struct inode *inode = filp->f_dentry->d_inode;
4339 struct btrfs_root *root = BTRFS_I(inode)->root;
4340 struct btrfs_item *item;
4341 struct btrfs_dir_item *di;
4342 struct btrfs_key key;
4343 struct btrfs_key found_key;
4344 struct btrfs_path *path;
4345 struct list_head ins_list;
4346 struct list_head del_list;
4347 int ret;
4348 struct extent_buffer *leaf;
4349 int slot;
4350 unsigned char d_type;
4351 int over = 0;
4352 u32 di_cur;
4353 u32 di_total;
4354 u32 di_len;
4355 int key_type = BTRFS_DIR_INDEX_KEY;
4356 char tmp_name[32];
4357 char *name_ptr;
4358 int name_len;
4359 int is_curr = 0; /* filp->f_pos points to the current index? */
4360
4361 /* FIXME, use a real flag for deciding about the key type */
4362 if (root->fs_info->tree_root == root)
4363 key_type = BTRFS_DIR_ITEM_KEY;
4364
4365 /* special case for "." */
4366 if (filp->f_pos == 0) {
4367 over = filldir(dirent, ".", 1,
4368 filp->f_pos, btrfs_ino(inode), DT_DIR);
4369 if (over)
4370 return 0;
4371 filp->f_pos = 1;
4372 }
4373 /* special case for .., just use the back ref */
4374 if (filp->f_pos == 1) {
4375 u64 pino = parent_ino(filp->f_path.dentry);
4376 over = filldir(dirent, "..", 2,
4377 filp->f_pos, pino, DT_DIR);
4378 if (over)
4379 return 0;
4380 filp->f_pos = 2;
4381 }
4382 path = btrfs_alloc_path();
4383 if (!path)
4384 return -ENOMEM;
4385
4386 path->reada = 1;
4387
4388 if (key_type == BTRFS_DIR_INDEX_KEY) {
4389 INIT_LIST_HEAD(&ins_list);
4390 INIT_LIST_HEAD(&del_list);
4391 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4392 }
4393
4394 btrfs_set_key_type(&key, key_type);
4395 key.offset = filp->f_pos;
4396 key.objectid = btrfs_ino(inode);
4397
4398 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4399 if (ret < 0)
4400 goto err;
4401
4402 while (1) {
4403 leaf = path->nodes[0];
4404 slot = path->slots[0];
4405 if (slot >= btrfs_header_nritems(leaf)) {
4406 ret = btrfs_next_leaf(root, path);
4407 if (ret < 0)
4408 goto err;
4409 else if (ret > 0)
4410 break;
4411 continue;
4412 }
4413
4414 item = btrfs_item_nr(leaf, slot);
4415 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4416
4417 if (found_key.objectid != key.objectid)
4418 break;
4419 if (btrfs_key_type(&found_key) != key_type)
4420 break;
4421 if (found_key.offset < filp->f_pos)
4422 goto next;
4423 if (key_type == BTRFS_DIR_INDEX_KEY &&
4424 btrfs_should_delete_dir_index(&del_list,
4425 found_key.offset))
4426 goto next;
4427
4428 filp->f_pos = found_key.offset;
4429 is_curr = 1;
4430
4431 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4432 di_cur = 0;
4433 di_total = btrfs_item_size(leaf, item);
4434
4435 while (di_cur < di_total) {
4436 struct btrfs_key location;
4437
4438 if (verify_dir_item(root, leaf, di))
4439 break;
4440
4441 name_len = btrfs_dir_name_len(leaf, di);
4442 if (name_len <= sizeof(tmp_name)) {
4443 name_ptr = tmp_name;
4444 } else {
4445 name_ptr = kmalloc(name_len, GFP_NOFS);
4446 if (!name_ptr) {
4447 ret = -ENOMEM;
4448 goto err;
4449 }
4450 }
4451 read_extent_buffer(leaf, name_ptr,
4452 (unsigned long)(di + 1), name_len);
4453
4454 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4455 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4456
4457
4458 /* is this a reference to our own snapshot? If so
4459 * skip it.
4460 *
4461 * In contrast to old kernels, we insert the snapshot's
4462 * dir item and dir index after it has been created, so
4463 * we won't find a reference to our own snapshot. We
4464 * still keep the following code for backward
4465 * compatibility.
4466 */
4467 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4468 location.objectid == root->root_key.objectid) {
4469 over = 0;
4470 goto skip;
4471 }
4472 over = filldir(dirent, name_ptr, name_len,
4473 found_key.offset, location.objectid,
4474 d_type);
4475
4476 skip:
4477 if (name_ptr != tmp_name)
4478 kfree(name_ptr);
4479
4480 if (over)
4481 goto nopos;
4482 di_len = btrfs_dir_name_len(leaf, di) +
4483 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4484 di_cur += di_len;
4485 di = (struct btrfs_dir_item *)((char *)di + di_len);
4486 }
4487 next:
4488 path->slots[0]++;
4489 }
4490
4491 if (key_type == BTRFS_DIR_INDEX_KEY) {
4492 if (is_curr)
4493 filp->f_pos++;
4494 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4495 &ins_list);
4496 if (ret)
4497 goto nopos;
4498 }
4499
4500 /* Reached end of directory/root. Bump pos past the last item. */
4501 if (key_type == BTRFS_DIR_INDEX_KEY)
4502 /*
4503 * 32-bit glibc will use getdents64, but then strtol -
4504 * so the last number we can serve is this.
4505 */
4506 filp->f_pos = 0x7fffffff;
4507 else
4508 filp->f_pos++;
4509 nopos:
4510 ret = 0;
4511 err:
4512 if (key_type == BTRFS_DIR_INDEX_KEY)
4513 btrfs_put_delayed_items(&ins_list, &del_list);
4514 btrfs_free_path(path);
4515 return ret;
4516 }
4517
4518 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4519 {
4520 struct btrfs_root *root = BTRFS_I(inode)->root;
4521 struct btrfs_trans_handle *trans;
4522 int ret = 0;
4523 bool nolock = false;
4524
4525 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4526 return 0;
4527
4528 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
4529 nolock = true;
4530
4531 if (wbc->sync_mode == WB_SYNC_ALL) {
4532 if (nolock)
4533 trans = btrfs_join_transaction_nolock(root);
4534 else
4535 trans = btrfs_join_transaction(root);
4536 if (IS_ERR(trans))
4537 return PTR_ERR(trans);
4538 ret = btrfs_commit_transaction(trans, root);
4539 }
4540 return ret;
4541 }
4542
4543 /*
4544 * This is somewhat expensive, updating the tree every time the
4545 * inode changes. But, it is most likely to find the inode in cache.
4546 * FIXME, needs more benchmarking...there are no reasons other than performance
4547 * to keep or drop this code.
4548 */
4549 int btrfs_dirty_inode(struct inode *inode)
4550 {
4551 struct btrfs_root *root = BTRFS_I(inode)->root;
4552 struct btrfs_trans_handle *trans;
4553 int ret;
4554
4555 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4556 return 0;
4557
4558 trans = btrfs_join_transaction(root);
4559 if (IS_ERR(trans))
4560 return PTR_ERR(trans);
4561
4562 ret = btrfs_update_inode(trans, root, inode);
4563 if (ret && ret == -ENOSPC) {
4564 /* whoops, lets try again with the full transaction */
4565 btrfs_end_transaction(trans, root);
4566 trans = btrfs_start_transaction(root, 1);
4567 if (IS_ERR(trans))
4568 return PTR_ERR(trans);
4569
4570 ret = btrfs_update_inode(trans, root, inode);
4571 }
4572 btrfs_end_transaction(trans, root);
4573 if (BTRFS_I(inode)->delayed_node)
4574 btrfs_balance_delayed_items(root);
4575
4576 return ret;
4577 }
4578
4579 /*
4580 * This is a copy of file_update_time. We need this so we can return error on
4581 * ENOSPC for updating the inode in the case of file write and mmap writes.
4582 */
4583 static int btrfs_update_time(struct inode *inode, struct timespec *now,
4584 int flags)
4585 {
4586 struct btrfs_root *root = BTRFS_I(inode)->root;
4587
4588 if (btrfs_root_readonly(root))
4589 return -EROFS;
4590
4591 if (flags & S_VERSION)
4592 inode_inc_iversion(inode);
4593 if (flags & S_CTIME)
4594 inode->i_ctime = *now;
4595 if (flags & S_MTIME)
4596 inode->i_mtime = *now;
4597 if (flags & S_ATIME)
4598 inode->i_atime = *now;
4599 return btrfs_dirty_inode(inode);
4600 }
4601
4602 /*
4603 * find the highest existing sequence number in a directory
4604 * and then set the in-memory index_cnt variable to reflect
4605 * free sequence numbers
4606 */
4607 static int btrfs_set_inode_index_count(struct inode *inode)
4608 {
4609 struct btrfs_root *root = BTRFS_I(inode)->root;
4610 struct btrfs_key key, found_key;
4611 struct btrfs_path *path;
4612 struct extent_buffer *leaf;
4613 int ret;
4614
4615 key.objectid = btrfs_ino(inode);
4616 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4617 key.offset = (u64)-1;
4618
4619 path = btrfs_alloc_path();
4620 if (!path)
4621 return -ENOMEM;
4622
4623 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4624 if (ret < 0)
4625 goto out;
4626 /* FIXME: we should be able to handle this */
4627 if (ret == 0)
4628 goto out;
4629 ret = 0;
4630
4631 /*
4632 * MAGIC NUMBER EXPLANATION:
4633 * since we search a directory based on f_pos we have to start at 2
4634 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4635 * else has to start at 2
4636 */
4637 if (path->slots[0] == 0) {
4638 BTRFS_I(inode)->index_cnt = 2;
4639 goto out;
4640 }
4641
4642 path->slots[0]--;
4643
4644 leaf = path->nodes[0];
4645 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4646
4647 if (found_key.objectid != btrfs_ino(inode) ||
4648 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4649 BTRFS_I(inode)->index_cnt = 2;
4650 goto out;
4651 }
4652
4653 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4654 out:
4655 btrfs_free_path(path);
4656 return ret;
4657 }
4658
4659 /*
4660 * helper to find a free sequence number in a given directory. This current
4661 * code is very simple, later versions will do smarter things in the btree
4662 */
4663 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4664 {
4665 int ret = 0;
4666
4667 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4668 ret = btrfs_inode_delayed_dir_index_count(dir);
4669 if (ret) {
4670 ret = btrfs_set_inode_index_count(dir);
4671 if (ret)
4672 return ret;
4673 }
4674 }
4675
4676 *index = BTRFS_I(dir)->index_cnt;
4677 BTRFS_I(dir)->index_cnt++;
4678
4679 return ret;
4680 }
4681
4682 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4683 struct btrfs_root *root,
4684 struct inode *dir,
4685 const char *name, int name_len,
4686 u64 ref_objectid, u64 objectid,
4687 umode_t mode, u64 *index)
4688 {
4689 struct inode *inode;
4690 struct btrfs_inode_item *inode_item;
4691 struct btrfs_key *location;
4692 struct btrfs_path *path;
4693 struct btrfs_inode_ref *ref;
4694 struct btrfs_key key[2];
4695 u32 sizes[2];
4696 unsigned long ptr;
4697 int ret;
4698 int owner;
4699
4700 path = btrfs_alloc_path();
4701 if (!path)
4702 return ERR_PTR(-ENOMEM);
4703
4704 inode = new_inode(root->fs_info->sb);
4705 if (!inode) {
4706 btrfs_free_path(path);
4707 return ERR_PTR(-ENOMEM);
4708 }
4709
4710 /*
4711 * we have to initialize this early, so we can reclaim the inode
4712 * number if we fail afterwards in this function.
4713 */
4714 inode->i_ino = objectid;
4715
4716 if (dir) {
4717 trace_btrfs_inode_request(dir);
4718
4719 ret = btrfs_set_inode_index(dir, index);
4720 if (ret) {
4721 btrfs_free_path(path);
4722 iput(inode);
4723 return ERR_PTR(ret);
4724 }
4725 }
4726 /*
4727 * index_cnt is ignored for everything but a dir,
4728 * btrfs_get_inode_index_count has an explanation for the magic
4729 * number
4730 */
4731 BTRFS_I(inode)->index_cnt = 2;
4732 BTRFS_I(inode)->root = root;
4733 BTRFS_I(inode)->generation = trans->transid;
4734 inode->i_generation = BTRFS_I(inode)->generation;
4735
4736 /*
4737 * We could have gotten an inode number from somebody who was fsynced
4738 * and then removed in this same transaction, so let's just set full
4739 * sync since it will be a full sync anyway and this will blow away the
4740 * old info in the log.
4741 */
4742 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4743
4744 if (S_ISDIR(mode))
4745 owner = 0;
4746 else
4747 owner = 1;
4748
4749 key[0].objectid = objectid;
4750 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4751 key[0].offset = 0;
4752
4753 /*
4754 * Start new inodes with an inode_ref. This is slightly more
4755 * efficient for small numbers of hard links since they will
4756 * be packed into one item. Extended refs will kick in if we
4757 * add more hard links than can fit in the ref item.
4758 */
4759 key[1].objectid = objectid;
4760 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4761 key[1].offset = ref_objectid;
4762
4763 sizes[0] = sizeof(struct btrfs_inode_item);
4764 sizes[1] = name_len + sizeof(*ref);
4765
4766 path->leave_spinning = 1;
4767 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4768 if (ret != 0)
4769 goto fail;
4770
4771 inode_init_owner(inode, dir, mode);
4772 inode_set_bytes(inode, 0);
4773 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4774 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4775 struct btrfs_inode_item);
4776 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4777 sizeof(*inode_item));
4778 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4779
4780 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4781 struct btrfs_inode_ref);
4782 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4783 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4784 ptr = (unsigned long)(ref + 1);
4785 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4786
4787 btrfs_mark_buffer_dirty(path->nodes[0]);
4788 btrfs_free_path(path);
4789
4790 location = &BTRFS_I(inode)->location;
4791 location->objectid = objectid;
4792 location->offset = 0;
4793 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4794
4795 btrfs_inherit_iflags(inode, dir);
4796
4797 if (S_ISREG(mode)) {
4798 if (btrfs_test_opt(root, NODATASUM))
4799 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4800 if (btrfs_test_opt(root, NODATACOW) ||
4801 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4802 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4803 }
4804
4805 insert_inode_hash(inode);
4806 inode_tree_add(inode);
4807
4808 trace_btrfs_inode_new(inode);
4809 btrfs_set_inode_last_trans(trans, inode);
4810
4811 btrfs_update_root_times(trans, root);
4812
4813 return inode;
4814 fail:
4815 if (dir)
4816 BTRFS_I(dir)->index_cnt--;
4817 btrfs_free_path(path);
4818 iput(inode);
4819 return ERR_PTR(ret);
4820 }
4821
4822 static inline u8 btrfs_inode_type(struct inode *inode)
4823 {
4824 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4825 }
4826
4827 /*
4828 * utility function to add 'inode' into 'parent_inode' with
4829 * a give name and a given sequence number.
4830 * if 'add_backref' is true, also insert a backref from the
4831 * inode to the parent directory.
4832 */
4833 int btrfs_add_link(struct btrfs_trans_handle *trans,
4834 struct inode *parent_inode, struct inode *inode,
4835 const char *name, int name_len, int add_backref, u64 index)
4836 {
4837 int ret = 0;
4838 struct btrfs_key key;
4839 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4840 u64 ino = btrfs_ino(inode);
4841 u64 parent_ino = btrfs_ino(parent_inode);
4842
4843 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4844 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4845 } else {
4846 key.objectid = ino;
4847 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4848 key.offset = 0;
4849 }
4850
4851 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4852 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4853 key.objectid, root->root_key.objectid,
4854 parent_ino, index, name, name_len);
4855 } else if (add_backref) {
4856 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4857 parent_ino, index);
4858 }
4859
4860 /* Nothing to clean up yet */
4861 if (ret)
4862 return ret;
4863
4864 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4865 parent_inode, &key,
4866 btrfs_inode_type(inode), index);
4867 if (ret == -EEXIST)
4868 goto fail_dir_item;
4869 else if (ret) {
4870 btrfs_abort_transaction(trans, root, ret);
4871 return ret;
4872 }
4873
4874 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4875 name_len * 2);
4876 inode_inc_iversion(parent_inode);
4877 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4878 ret = btrfs_update_inode(trans, root, parent_inode);
4879 if (ret)
4880 btrfs_abort_transaction(trans, root, ret);
4881 return ret;
4882
4883 fail_dir_item:
4884 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4885 u64 local_index;
4886 int err;
4887 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4888 key.objectid, root->root_key.objectid,
4889 parent_ino, &local_index, name, name_len);
4890
4891 } else if (add_backref) {
4892 u64 local_index;
4893 int err;
4894
4895 err = btrfs_del_inode_ref(trans, root, name, name_len,
4896 ino, parent_ino, &local_index);
4897 }
4898 return ret;
4899 }
4900
4901 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4902 struct inode *dir, struct dentry *dentry,
4903 struct inode *inode, int backref, u64 index)
4904 {
4905 int err = btrfs_add_link(trans, dir, inode,
4906 dentry->d_name.name, dentry->d_name.len,
4907 backref, index);
4908 if (err > 0)
4909 err = -EEXIST;
4910 return err;
4911 }
4912
4913 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4914 umode_t mode, dev_t rdev)
4915 {
4916 struct btrfs_trans_handle *trans;
4917 struct btrfs_root *root = BTRFS_I(dir)->root;
4918 struct inode *inode = NULL;
4919 int err;
4920 int drop_inode = 0;
4921 u64 objectid;
4922 u64 index = 0;
4923
4924 if (!new_valid_dev(rdev))
4925 return -EINVAL;
4926
4927 /*
4928 * 2 for inode item and ref
4929 * 2 for dir items
4930 * 1 for xattr if selinux is on
4931 */
4932 trans = btrfs_start_transaction(root, 5);
4933 if (IS_ERR(trans))
4934 return PTR_ERR(trans);
4935
4936 err = btrfs_find_free_ino(root, &objectid);
4937 if (err)
4938 goto out_unlock;
4939
4940 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4941 dentry->d_name.len, btrfs_ino(dir), objectid,
4942 mode, &index);
4943 if (IS_ERR(inode)) {
4944 err = PTR_ERR(inode);
4945 goto out_unlock;
4946 }
4947
4948 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4949 if (err) {
4950 drop_inode = 1;
4951 goto out_unlock;
4952 }
4953
4954 err = btrfs_update_inode(trans, root, inode);
4955 if (err) {
4956 drop_inode = 1;
4957 goto out_unlock;
4958 }
4959
4960 /*
4961 * If the active LSM wants to access the inode during
4962 * d_instantiate it needs these. Smack checks to see
4963 * if the filesystem supports xattrs by looking at the
4964 * ops vector.
4965 */
4966
4967 inode->i_op = &btrfs_special_inode_operations;
4968 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4969 if (err)
4970 drop_inode = 1;
4971 else {
4972 init_special_inode(inode, inode->i_mode, rdev);
4973 btrfs_update_inode(trans, root, inode);
4974 d_instantiate(dentry, inode);
4975 }
4976 out_unlock:
4977 btrfs_end_transaction(trans, root);
4978 btrfs_btree_balance_dirty(root);
4979 if (drop_inode) {
4980 inode_dec_link_count(inode);
4981 iput(inode);
4982 }
4983 return err;
4984 }
4985
4986 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4987 umode_t mode, bool excl)
4988 {
4989 struct btrfs_trans_handle *trans;
4990 struct btrfs_root *root = BTRFS_I(dir)->root;
4991 struct inode *inode = NULL;
4992 int drop_inode_on_err = 0;
4993 int err;
4994 u64 objectid;
4995 u64 index = 0;
4996
4997 /*
4998 * 2 for inode item and ref
4999 * 2 for dir items
5000 * 1 for xattr if selinux is on
5001 */
5002 trans = btrfs_start_transaction(root, 5);
5003 if (IS_ERR(trans))
5004 return PTR_ERR(trans);
5005
5006 err = btrfs_find_free_ino(root, &objectid);
5007 if (err)
5008 goto out_unlock;
5009
5010 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5011 dentry->d_name.len, btrfs_ino(dir), objectid,
5012 mode, &index);
5013 if (IS_ERR(inode)) {
5014 err = PTR_ERR(inode);
5015 goto out_unlock;
5016 }
5017 drop_inode_on_err = 1;
5018
5019 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5020 if (err)
5021 goto out_unlock;
5022
5023 /*
5024 * If the active LSM wants to access the inode during
5025 * d_instantiate it needs these. Smack checks to see
5026 * if the filesystem supports xattrs by looking at the
5027 * ops vector.
5028 */
5029 inode->i_fop = &btrfs_file_operations;
5030 inode->i_op = &btrfs_file_inode_operations;
5031
5032 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5033 if (err)
5034 goto out_unlock;
5035
5036 inode->i_mapping->a_ops = &btrfs_aops;
5037 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5038 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5039 d_instantiate(dentry, inode);
5040
5041 out_unlock:
5042 btrfs_end_transaction(trans, root);
5043 if (err && drop_inode_on_err) {
5044 inode_dec_link_count(inode);
5045 iput(inode);
5046 }
5047 btrfs_btree_balance_dirty(root);
5048 return err;
5049 }
5050
5051 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5052 struct dentry *dentry)
5053 {
5054 struct btrfs_trans_handle *trans;
5055 struct btrfs_root *root = BTRFS_I(dir)->root;
5056 struct inode *inode = old_dentry->d_inode;
5057 u64 index;
5058 int err;
5059 int drop_inode = 0;
5060
5061 /* do not allow sys_link's with other subvols of the same device */
5062 if (root->objectid != BTRFS_I(inode)->root->objectid)
5063 return -EXDEV;
5064
5065 if (inode->i_nlink >= BTRFS_LINK_MAX)
5066 return -EMLINK;
5067
5068 err = btrfs_set_inode_index(dir, &index);
5069 if (err)
5070 goto fail;
5071
5072 /*
5073 * 2 items for inode and inode ref
5074 * 2 items for dir items
5075 * 1 item for parent inode
5076 */
5077 trans = btrfs_start_transaction(root, 5);
5078 if (IS_ERR(trans)) {
5079 err = PTR_ERR(trans);
5080 goto fail;
5081 }
5082
5083 btrfs_inc_nlink(inode);
5084 inode_inc_iversion(inode);
5085 inode->i_ctime = CURRENT_TIME;
5086 ihold(inode);
5087
5088 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5089
5090 if (err) {
5091 drop_inode = 1;
5092 } else {
5093 struct dentry *parent = dentry->d_parent;
5094 err = btrfs_update_inode(trans, root, inode);
5095 if (err)
5096 goto fail;
5097 d_instantiate(dentry, inode);
5098 btrfs_log_new_name(trans, inode, NULL, parent);
5099 }
5100
5101 btrfs_end_transaction(trans, root);
5102 fail:
5103 if (drop_inode) {
5104 inode_dec_link_count(inode);
5105 iput(inode);
5106 }
5107 btrfs_btree_balance_dirty(root);
5108 return err;
5109 }
5110
5111 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5112 {
5113 struct inode *inode = NULL;
5114 struct btrfs_trans_handle *trans;
5115 struct btrfs_root *root = BTRFS_I(dir)->root;
5116 int err = 0;
5117 int drop_on_err = 0;
5118 u64 objectid = 0;
5119 u64 index = 0;
5120
5121 /*
5122 * 2 items for inode and ref
5123 * 2 items for dir items
5124 * 1 for xattr if selinux is on
5125 */
5126 trans = btrfs_start_transaction(root, 5);
5127 if (IS_ERR(trans))
5128 return PTR_ERR(trans);
5129
5130 err = btrfs_find_free_ino(root, &objectid);
5131 if (err)
5132 goto out_fail;
5133
5134 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5135 dentry->d_name.len, btrfs_ino(dir), objectid,
5136 S_IFDIR | mode, &index);
5137 if (IS_ERR(inode)) {
5138 err = PTR_ERR(inode);
5139 goto out_fail;
5140 }
5141
5142 drop_on_err = 1;
5143
5144 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5145 if (err)
5146 goto out_fail;
5147
5148 inode->i_op = &btrfs_dir_inode_operations;
5149 inode->i_fop = &btrfs_dir_file_operations;
5150
5151 btrfs_i_size_write(inode, 0);
5152 err = btrfs_update_inode(trans, root, inode);
5153 if (err)
5154 goto out_fail;
5155
5156 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5157 dentry->d_name.len, 0, index);
5158 if (err)
5159 goto out_fail;
5160
5161 d_instantiate(dentry, inode);
5162 drop_on_err = 0;
5163
5164 out_fail:
5165 btrfs_end_transaction(trans, root);
5166 if (drop_on_err)
5167 iput(inode);
5168 btrfs_btree_balance_dirty(root);
5169 return err;
5170 }
5171
5172 /* helper for btfs_get_extent. Given an existing extent in the tree,
5173 * and an extent that you want to insert, deal with overlap and insert
5174 * the new extent into the tree.
5175 */
5176 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5177 struct extent_map *existing,
5178 struct extent_map *em,
5179 u64 map_start, u64 map_len)
5180 {
5181 u64 start_diff;
5182
5183 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5184 start_diff = map_start - em->start;
5185 em->start = map_start;
5186 em->len = map_len;
5187 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5188 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5189 em->block_start += start_diff;
5190 em->block_len -= start_diff;
5191 }
5192 return add_extent_mapping(em_tree, em);
5193 }
5194
5195 static noinline int uncompress_inline(struct btrfs_path *path,
5196 struct inode *inode, struct page *page,
5197 size_t pg_offset, u64 extent_offset,
5198 struct btrfs_file_extent_item *item)
5199 {
5200 int ret;
5201 struct extent_buffer *leaf = path->nodes[0];
5202 char *tmp;
5203 size_t max_size;
5204 unsigned long inline_size;
5205 unsigned long ptr;
5206 int compress_type;
5207
5208 WARN_ON(pg_offset != 0);
5209 compress_type = btrfs_file_extent_compression(leaf, item);
5210 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5211 inline_size = btrfs_file_extent_inline_item_len(leaf,
5212 btrfs_item_nr(leaf, path->slots[0]));
5213 tmp = kmalloc(inline_size, GFP_NOFS);
5214 if (!tmp)
5215 return -ENOMEM;
5216 ptr = btrfs_file_extent_inline_start(item);
5217
5218 read_extent_buffer(leaf, tmp, ptr, inline_size);
5219
5220 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5221 ret = btrfs_decompress(compress_type, tmp, page,
5222 extent_offset, inline_size, max_size);
5223 if (ret) {
5224 char *kaddr = kmap_atomic(page);
5225 unsigned long copy_size = min_t(u64,
5226 PAGE_CACHE_SIZE - pg_offset,
5227 max_size - extent_offset);
5228 memset(kaddr + pg_offset, 0, copy_size);
5229 kunmap_atomic(kaddr);
5230 }
5231 kfree(tmp);
5232 return 0;
5233 }
5234
5235 /*
5236 * a bit scary, this does extent mapping from logical file offset to the disk.
5237 * the ugly parts come from merging extents from the disk with the in-ram
5238 * representation. This gets more complex because of the data=ordered code,
5239 * where the in-ram extents might be locked pending data=ordered completion.
5240 *
5241 * This also copies inline extents directly into the page.
5242 */
5243
5244 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5245 size_t pg_offset, u64 start, u64 len,
5246 int create)
5247 {
5248 int ret;
5249 int err = 0;
5250 u64 bytenr;
5251 u64 extent_start = 0;
5252 u64 extent_end = 0;
5253 u64 objectid = btrfs_ino(inode);
5254 u32 found_type;
5255 struct btrfs_path *path = NULL;
5256 struct btrfs_root *root = BTRFS_I(inode)->root;
5257 struct btrfs_file_extent_item *item;
5258 struct extent_buffer *leaf;
5259 struct btrfs_key found_key;
5260 struct extent_map *em = NULL;
5261 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5262 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5263 struct btrfs_trans_handle *trans = NULL;
5264 int compress_type;
5265
5266 again:
5267 read_lock(&em_tree->lock);
5268 em = lookup_extent_mapping(em_tree, start, len);
5269 if (em)
5270 em->bdev = root->fs_info->fs_devices->latest_bdev;
5271 read_unlock(&em_tree->lock);
5272
5273 if (em) {
5274 if (em->start > start || em->start + em->len <= start)
5275 free_extent_map(em);
5276 else if (em->block_start == EXTENT_MAP_INLINE && page)
5277 free_extent_map(em);
5278 else
5279 goto out;
5280 }
5281 em = alloc_extent_map();
5282 if (!em) {
5283 err = -ENOMEM;
5284 goto out;
5285 }
5286 em->bdev = root->fs_info->fs_devices->latest_bdev;
5287 em->start = EXTENT_MAP_HOLE;
5288 em->orig_start = EXTENT_MAP_HOLE;
5289 em->len = (u64)-1;
5290 em->block_len = (u64)-1;
5291
5292 if (!path) {
5293 path = btrfs_alloc_path();
5294 if (!path) {
5295 err = -ENOMEM;
5296 goto out;
5297 }
5298 /*
5299 * Chances are we'll be called again, so go ahead and do
5300 * readahead
5301 */
5302 path->reada = 1;
5303 }
5304
5305 ret = btrfs_lookup_file_extent(trans, root, path,
5306 objectid, start, trans != NULL);
5307 if (ret < 0) {
5308 err = ret;
5309 goto out;
5310 }
5311
5312 if (ret != 0) {
5313 if (path->slots[0] == 0)
5314 goto not_found;
5315 path->slots[0]--;
5316 }
5317
5318 leaf = path->nodes[0];
5319 item = btrfs_item_ptr(leaf, path->slots[0],
5320 struct btrfs_file_extent_item);
5321 /* are we inside the extent that was found? */
5322 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5323 found_type = btrfs_key_type(&found_key);
5324 if (found_key.objectid != objectid ||
5325 found_type != BTRFS_EXTENT_DATA_KEY) {
5326 goto not_found;
5327 }
5328
5329 found_type = btrfs_file_extent_type(leaf, item);
5330 extent_start = found_key.offset;
5331 compress_type = btrfs_file_extent_compression(leaf, item);
5332 if (found_type == BTRFS_FILE_EXTENT_REG ||
5333 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5334 extent_end = extent_start +
5335 btrfs_file_extent_num_bytes(leaf, item);
5336 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5337 size_t size;
5338 size = btrfs_file_extent_inline_len(leaf, item);
5339 extent_end = (extent_start + size + root->sectorsize - 1) &
5340 ~((u64)root->sectorsize - 1);
5341 }
5342
5343 if (start >= extent_end) {
5344 path->slots[0]++;
5345 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5346 ret = btrfs_next_leaf(root, path);
5347 if (ret < 0) {
5348 err = ret;
5349 goto out;
5350 }
5351 if (ret > 0)
5352 goto not_found;
5353 leaf = path->nodes[0];
5354 }
5355 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5356 if (found_key.objectid != objectid ||
5357 found_key.type != BTRFS_EXTENT_DATA_KEY)
5358 goto not_found;
5359 if (start + len <= found_key.offset)
5360 goto not_found;
5361 em->start = start;
5362 em->len = found_key.offset - start;
5363 goto not_found_em;
5364 }
5365
5366 if (found_type == BTRFS_FILE_EXTENT_REG ||
5367 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5368 em->start = extent_start;
5369 em->len = extent_end - extent_start;
5370 em->orig_start = extent_start -
5371 btrfs_file_extent_offset(leaf, item);
5372 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5373 if (bytenr == 0) {
5374 em->block_start = EXTENT_MAP_HOLE;
5375 goto insert;
5376 }
5377 if (compress_type != BTRFS_COMPRESS_NONE) {
5378 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5379 em->compress_type = compress_type;
5380 em->block_start = bytenr;
5381 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5382 item);
5383 } else {
5384 bytenr += btrfs_file_extent_offset(leaf, item);
5385 em->block_start = bytenr;
5386 em->block_len = em->len;
5387 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5388 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5389 }
5390 goto insert;
5391 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5392 unsigned long ptr;
5393 char *map;
5394 size_t size;
5395 size_t extent_offset;
5396 size_t copy_size;
5397
5398 em->block_start = EXTENT_MAP_INLINE;
5399 if (!page || create) {
5400 em->start = extent_start;
5401 em->len = extent_end - extent_start;
5402 goto out;
5403 }
5404
5405 size = btrfs_file_extent_inline_len(leaf, item);
5406 extent_offset = page_offset(page) + pg_offset - extent_start;
5407 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5408 size - extent_offset);
5409 em->start = extent_start + extent_offset;
5410 em->len = (copy_size + root->sectorsize - 1) &
5411 ~((u64)root->sectorsize - 1);
5412 em->orig_start = EXTENT_MAP_INLINE;
5413 if (compress_type) {
5414 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5415 em->compress_type = compress_type;
5416 }
5417 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5418 if (create == 0 && !PageUptodate(page)) {
5419 if (btrfs_file_extent_compression(leaf, item) !=
5420 BTRFS_COMPRESS_NONE) {
5421 ret = uncompress_inline(path, inode, page,
5422 pg_offset,
5423 extent_offset, item);
5424 BUG_ON(ret); /* -ENOMEM */
5425 } else {
5426 map = kmap(page);
5427 read_extent_buffer(leaf, map + pg_offset, ptr,
5428 copy_size);
5429 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5430 memset(map + pg_offset + copy_size, 0,
5431 PAGE_CACHE_SIZE - pg_offset -
5432 copy_size);
5433 }
5434 kunmap(page);
5435 }
5436 flush_dcache_page(page);
5437 } else if (create && PageUptodate(page)) {
5438 BUG();
5439 if (!trans) {
5440 kunmap(page);
5441 free_extent_map(em);
5442 em = NULL;
5443
5444 btrfs_release_path(path);
5445 trans = btrfs_join_transaction(root);
5446
5447 if (IS_ERR(trans))
5448 return ERR_CAST(trans);
5449 goto again;
5450 }
5451 map = kmap(page);
5452 write_extent_buffer(leaf, map + pg_offset, ptr,
5453 copy_size);
5454 kunmap(page);
5455 btrfs_mark_buffer_dirty(leaf);
5456 }
5457 set_extent_uptodate(io_tree, em->start,
5458 extent_map_end(em) - 1, NULL, GFP_NOFS);
5459 goto insert;
5460 } else {
5461 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
5462 }
5463 not_found:
5464 em->start = start;
5465 em->len = len;
5466 not_found_em:
5467 em->block_start = EXTENT_MAP_HOLE;
5468 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5469 insert:
5470 btrfs_release_path(path);
5471 if (em->start > start || extent_map_end(em) <= start) {
5472 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5473 "[%llu %llu]\n", (unsigned long long)em->start,
5474 (unsigned long long)em->len,
5475 (unsigned long long)start,
5476 (unsigned long long)len);
5477 err = -EIO;
5478 goto out;
5479 }
5480
5481 err = 0;
5482 write_lock(&em_tree->lock);
5483 ret = add_extent_mapping(em_tree, em);
5484 /* it is possible that someone inserted the extent into the tree
5485 * while we had the lock dropped. It is also possible that
5486 * an overlapping map exists in the tree
5487 */
5488 if (ret == -EEXIST) {
5489 struct extent_map *existing;
5490
5491 ret = 0;
5492
5493 existing = lookup_extent_mapping(em_tree, start, len);
5494 if (existing && (existing->start > start ||
5495 existing->start + existing->len <= start)) {
5496 free_extent_map(existing);
5497 existing = NULL;
5498 }
5499 if (!existing) {
5500 existing = lookup_extent_mapping(em_tree, em->start,
5501 em->len);
5502 if (existing) {
5503 err = merge_extent_mapping(em_tree, existing,
5504 em, start,
5505 root->sectorsize);
5506 free_extent_map(existing);
5507 if (err) {
5508 free_extent_map(em);
5509 em = NULL;
5510 }
5511 } else {
5512 err = -EIO;
5513 free_extent_map(em);
5514 em = NULL;
5515 }
5516 } else {
5517 free_extent_map(em);
5518 em = existing;
5519 err = 0;
5520 }
5521 }
5522 write_unlock(&em_tree->lock);
5523 out:
5524
5525 if (em)
5526 trace_btrfs_get_extent(root, em);
5527
5528 if (path)
5529 btrfs_free_path(path);
5530 if (trans) {
5531 ret = btrfs_end_transaction(trans, root);
5532 if (!err)
5533 err = ret;
5534 }
5535 if (err) {
5536 free_extent_map(em);
5537 return ERR_PTR(err);
5538 }
5539 BUG_ON(!em); /* Error is always set */
5540 return em;
5541 }
5542
5543 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5544 size_t pg_offset, u64 start, u64 len,
5545 int create)
5546 {
5547 struct extent_map *em;
5548 struct extent_map *hole_em = NULL;
5549 u64 range_start = start;
5550 u64 end;
5551 u64 found;
5552 u64 found_end;
5553 int err = 0;
5554
5555 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5556 if (IS_ERR(em))
5557 return em;
5558 if (em) {
5559 /*
5560 * if our em maps to a hole, there might
5561 * actually be delalloc bytes behind it
5562 */
5563 if (em->block_start != EXTENT_MAP_HOLE)
5564 return em;
5565 else
5566 hole_em = em;
5567 }
5568
5569 /* check to see if we've wrapped (len == -1 or similar) */
5570 end = start + len;
5571 if (end < start)
5572 end = (u64)-1;
5573 else
5574 end -= 1;
5575
5576 em = NULL;
5577
5578 /* ok, we didn't find anything, lets look for delalloc */
5579 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5580 end, len, EXTENT_DELALLOC, 1);
5581 found_end = range_start + found;
5582 if (found_end < range_start)
5583 found_end = (u64)-1;
5584
5585 /*
5586 * we didn't find anything useful, return
5587 * the original results from get_extent()
5588 */
5589 if (range_start > end || found_end <= start) {
5590 em = hole_em;
5591 hole_em = NULL;
5592 goto out;
5593 }
5594
5595 /* adjust the range_start to make sure it doesn't
5596 * go backwards from the start they passed in
5597 */
5598 range_start = max(start,range_start);
5599 found = found_end - range_start;
5600
5601 if (found > 0) {
5602 u64 hole_start = start;
5603 u64 hole_len = len;
5604
5605 em = alloc_extent_map();
5606 if (!em) {
5607 err = -ENOMEM;
5608 goto out;
5609 }
5610 /*
5611 * when btrfs_get_extent can't find anything it
5612 * returns one huge hole
5613 *
5614 * make sure what it found really fits our range, and
5615 * adjust to make sure it is based on the start from
5616 * the caller
5617 */
5618 if (hole_em) {
5619 u64 calc_end = extent_map_end(hole_em);
5620
5621 if (calc_end <= start || (hole_em->start > end)) {
5622 free_extent_map(hole_em);
5623 hole_em = NULL;
5624 } else {
5625 hole_start = max(hole_em->start, start);
5626 hole_len = calc_end - hole_start;
5627 }
5628 }
5629 em->bdev = NULL;
5630 if (hole_em && range_start > hole_start) {
5631 /* our hole starts before our delalloc, so we
5632 * have to return just the parts of the hole
5633 * that go until the delalloc starts
5634 */
5635 em->len = min(hole_len,
5636 range_start - hole_start);
5637 em->start = hole_start;
5638 em->orig_start = hole_start;
5639 /*
5640 * don't adjust block start at all,
5641 * it is fixed at EXTENT_MAP_HOLE
5642 */
5643 em->block_start = hole_em->block_start;
5644 em->block_len = hole_len;
5645 } else {
5646 em->start = range_start;
5647 em->len = found;
5648 em->orig_start = range_start;
5649 em->block_start = EXTENT_MAP_DELALLOC;
5650 em->block_len = found;
5651 }
5652 } else if (hole_em) {
5653 return hole_em;
5654 }
5655 out:
5656
5657 free_extent_map(hole_em);
5658 if (err) {
5659 free_extent_map(em);
5660 return ERR_PTR(err);
5661 }
5662 return em;
5663 }
5664
5665 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5666 struct extent_map *em,
5667 u64 start, u64 len)
5668 {
5669 struct btrfs_root *root = BTRFS_I(inode)->root;
5670 struct btrfs_trans_handle *trans;
5671 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5672 struct btrfs_key ins;
5673 u64 alloc_hint;
5674 int ret;
5675 bool insert = false;
5676
5677 /*
5678 * Ok if the extent map we looked up is a hole and is for the exact
5679 * range we want, there is no reason to allocate a new one, however if
5680 * it is not right then we need to free this one and drop the cache for
5681 * our range.
5682 */
5683 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5684 em->len != len) {
5685 free_extent_map(em);
5686 em = NULL;
5687 insert = true;
5688 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5689 }
5690
5691 trans = btrfs_join_transaction(root);
5692 if (IS_ERR(trans))
5693 return ERR_CAST(trans);
5694
5695 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5696 btrfs_add_inode_defrag(trans, inode);
5697
5698 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5699
5700 alloc_hint = get_extent_allocation_hint(inode, start, len);
5701 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5702 alloc_hint, &ins, 1);
5703 if (ret) {
5704 em = ERR_PTR(ret);
5705 goto out;
5706 }
5707
5708 if (!em) {
5709 em = alloc_extent_map();
5710 if (!em) {
5711 em = ERR_PTR(-ENOMEM);
5712 goto out;
5713 }
5714 }
5715
5716 em->start = start;
5717 em->orig_start = em->start;
5718 em->len = ins.offset;
5719
5720 em->block_start = ins.objectid;
5721 em->block_len = ins.offset;
5722 em->bdev = root->fs_info->fs_devices->latest_bdev;
5723
5724 /*
5725 * We need to do this because if we're using the original em we searched
5726 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5727 */
5728 em->flags = 0;
5729 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5730
5731 while (insert) {
5732 write_lock(&em_tree->lock);
5733 ret = add_extent_mapping(em_tree, em);
5734 write_unlock(&em_tree->lock);
5735 if (ret != -EEXIST)
5736 break;
5737 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5738 }
5739
5740 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5741 ins.offset, ins.offset, 0);
5742 if (ret) {
5743 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5744 em = ERR_PTR(ret);
5745 }
5746 out:
5747 btrfs_end_transaction(trans, root);
5748 return em;
5749 }
5750
5751 /*
5752 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5753 * block must be cow'd
5754 */
5755 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5756 struct inode *inode, u64 offset, u64 len)
5757 {
5758 struct btrfs_path *path;
5759 int ret;
5760 struct extent_buffer *leaf;
5761 struct btrfs_root *root = BTRFS_I(inode)->root;
5762 struct btrfs_file_extent_item *fi;
5763 struct btrfs_key key;
5764 u64 disk_bytenr;
5765 u64 backref_offset;
5766 u64 extent_end;
5767 u64 num_bytes;
5768 int slot;
5769 int found_type;
5770
5771 path = btrfs_alloc_path();
5772 if (!path)
5773 return -ENOMEM;
5774
5775 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5776 offset, 0);
5777 if (ret < 0)
5778 goto out;
5779
5780 slot = path->slots[0];
5781 if (ret == 1) {
5782 if (slot == 0) {
5783 /* can't find the item, must cow */
5784 ret = 0;
5785 goto out;
5786 }
5787 slot--;
5788 }
5789 ret = 0;
5790 leaf = path->nodes[0];
5791 btrfs_item_key_to_cpu(leaf, &key, slot);
5792 if (key.objectid != btrfs_ino(inode) ||
5793 key.type != BTRFS_EXTENT_DATA_KEY) {
5794 /* not our file or wrong item type, must cow */
5795 goto out;
5796 }
5797
5798 if (key.offset > offset) {
5799 /* Wrong offset, must cow */
5800 goto out;
5801 }
5802
5803 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5804 found_type = btrfs_file_extent_type(leaf, fi);
5805 if (found_type != BTRFS_FILE_EXTENT_REG &&
5806 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5807 /* not a regular extent, must cow */
5808 goto out;
5809 }
5810 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5811 backref_offset = btrfs_file_extent_offset(leaf, fi);
5812
5813 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5814 if (extent_end < offset + len) {
5815 /* extent doesn't include our full range, must cow */
5816 goto out;
5817 }
5818
5819 if (btrfs_extent_readonly(root, disk_bytenr))
5820 goto out;
5821
5822 /*
5823 * look for other files referencing this extent, if we
5824 * find any we must cow
5825 */
5826 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5827 key.offset - backref_offset, disk_bytenr))
5828 goto out;
5829
5830 /*
5831 * adjust disk_bytenr and num_bytes to cover just the bytes
5832 * in this extent we are about to write. If there
5833 * are any csums in that range we have to cow in order
5834 * to keep the csums correct
5835 */
5836 disk_bytenr += backref_offset;
5837 disk_bytenr += offset - key.offset;
5838 num_bytes = min(offset + len, extent_end) - offset;
5839 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5840 goto out;
5841 /*
5842 * all of the above have passed, it is safe to overwrite this extent
5843 * without cow
5844 */
5845 ret = 1;
5846 out:
5847 btrfs_free_path(path);
5848 return ret;
5849 }
5850
5851 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5852 struct extent_state **cached_state, int writing)
5853 {
5854 struct btrfs_ordered_extent *ordered;
5855 int ret = 0;
5856
5857 while (1) {
5858 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5859 0, cached_state);
5860 /*
5861 * We're concerned with the entire range that we're going to be
5862 * doing DIO to, so we need to make sure theres no ordered
5863 * extents in this range.
5864 */
5865 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5866 lockend - lockstart + 1);
5867
5868 /*
5869 * We need to make sure there are no buffered pages in this
5870 * range either, we could have raced between the invalidate in
5871 * generic_file_direct_write and locking the extent. The
5872 * invalidate needs to happen so that reads after a write do not
5873 * get stale data.
5874 */
5875 if (!ordered && (!writing ||
5876 !test_range_bit(&BTRFS_I(inode)->io_tree,
5877 lockstart, lockend, EXTENT_UPTODATE, 0,
5878 *cached_state)))
5879 break;
5880
5881 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5882 cached_state, GFP_NOFS);
5883
5884 if (ordered) {
5885 btrfs_start_ordered_extent(inode, ordered, 1);
5886 btrfs_put_ordered_extent(ordered);
5887 } else {
5888 /* Screw you mmap */
5889 ret = filemap_write_and_wait_range(inode->i_mapping,
5890 lockstart,
5891 lockend);
5892 if (ret)
5893 break;
5894
5895 /*
5896 * If we found a page that couldn't be invalidated just
5897 * fall back to buffered.
5898 */
5899 ret = invalidate_inode_pages2_range(inode->i_mapping,
5900 lockstart >> PAGE_CACHE_SHIFT,
5901 lockend >> PAGE_CACHE_SHIFT);
5902 if (ret)
5903 break;
5904 }
5905
5906 cond_resched();
5907 }
5908
5909 return ret;
5910 }
5911
5912 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5913 u64 len, u64 orig_start,
5914 u64 block_start, u64 block_len,
5915 int type)
5916 {
5917 struct extent_map_tree *em_tree;
5918 struct extent_map *em;
5919 struct btrfs_root *root = BTRFS_I(inode)->root;
5920 int ret;
5921
5922 em_tree = &BTRFS_I(inode)->extent_tree;
5923 em = alloc_extent_map();
5924 if (!em)
5925 return ERR_PTR(-ENOMEM);
5926
5927 em->start = start;
5928 em->orig_start = orig_start;
5929 em->len = len;
5930 em->block_len = block_len;
5931 em->block_start = block_start;
5932 em->bdev = root->fs_info->fs_devices->latest_bdev;
5933 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5934 if (type == BTRFS_ORDERED_PREALLOC)
5935 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5936
5937 do {
5938 btrfs_drop_extent_cache(inode, em->start,
5939 em->start + em->len - 1, 0);
5940 write_lock(&em_tree->lock);
5941 ret = add_extent_mapping(em_tree, em);
5942 write_unlock(&em_tree->lock);
5943 } while (ret == -EEXIST);
5944
5945 if (ret) {
5946 free_extent_map(em);
5947 return ERR_PTR(ret);
5948 }
5949
5950 return em;
5951 }
5952
5953
5954 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5955 struct buffer_head *bh_result, int create)
5956 {
5957 struct extent_map *em;
5958 struct btrfs_root *root = BTRFS_I(inode)->root;
5959 struct extent_state *cached_state = NULL;
5960 u64 start = iblock << inode->i_blkbits;
5961 u64 lockstart, lockend;
5962 u64 len = bh_result->b_size;
5963 struct btrfs_trans_handle *trans;
5964 int unlock_bits = EXTENT_LOCKED;
5965 int ret;
5966
5967 if (create) {
5968 ret = btrfs_delalloc_reserve_space(inode, len);
5969 if (ret)
5970 return ret;
5971 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
5972 } else {
5973 len = min_t(u64, len, root->sectorsize);
5974 }
5975
5976 lockstart = start;
5977 lockend = start + len - 1;
5978
5979 /*
5980 * If this errors out it's because we couldn't invalidate pagecache for
5981 * this range and we need to fallback to buffered.
5982 */
5983 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5984 return -ENOTBLK;
5985
5986 if (create) {
5987 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5988 lockend, EXTENT_DELALLOC, NULL,
5989 &cached_state, GFP_NOFS);
5990 if (ret)
5991 goto unlock_err;
5992 }
5993
5994 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5995 if (IS_ERR(em)) {
5996 ret = PTR_ERR(em);
5997 goto unlock_err;
5998 }
5999
6000 /*
6001 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6002 * io. INLINE is special, and we could probably kludge it in here, but
6003 * it's still buffered so for safety lets just fall back to the generic
6004 * buffered path.
6005 *
6006 * For COMPRESSED we _have_ to read the entire extent in so we can
6007 * decompress it, so there will be buffering required no matter what we
6008 * do, so go ahead and fallback to buffered.
6009 *
6010 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6011 * to buffered IO. Don't blame me, this is the price we pay for using
6012 * the generic code.
6013 */
6014 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6015 em->block_start == EXTENT_MAP_INLINE) {
6016 free_extent_map(em);
6017 ret = -ENOTBLK;
6018 goto unlock_err;
6019 }
6020
6021 /* Just a good old fashioned hole, return */
6022 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6023 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6024 free_extent_map(em);
6025 ret = 0;
6026 goto unlock_err;
6027 }
6028
6029 /*
6030 * We don't allocate a new extent in the following cases
6031 *
6032 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6033 * existing extent.
6034 * 2) The extent is marked as PREALLOC. We're good to go here and can
6035 * just use the extent.
6036 *
6037 */
6038 if (!create) {
6039 len = min(len, em->len - (start - em->start));
6040 lockstart = start + len;
6041 goto unlock;
6042 }
6043
6044 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6045 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6046 em->block_start != EXTENT_MAP_HOLE)) {
6047 int type;
6048 int ret;
6049 u64 block_start;
6050
6051 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6052 type = BTRFS_ORDERED_PREALLOC;
6053 else
6054 type = BTRFS_ORDERED_NOCOW;
6055 len = min(len, em->len - (start - em->start));
6056 block_start = em->block_start + (start - em->start);
6057
6058 /*
6059 * we're not going to log anything, but we do need
6060 * to make sure the current transaction stays open
6061 * while we look for nocow cross refs
6062 */
6063 trans = btrfs_join_transaction(root);
6064 if (IS_ERR(trans))
6065 goto must_cow;
6066
6067 if (can_nocow_odirect(trans, inode, start, len) == 1) {
6068 u64 orig_start = em->start;
6069
6070 if (type == BTRFS_ORDERED_PREALLOC) {
6071 free_extent_map(em);
6072 em = create_pinned_em(inode, start, len,
6073 orig_start,
6074 block_start, len, type);
6075 if (IS_ERR(em)) {
6076 btrfs_end_transaction(trans, root);
6077 goto unlock_err;
6078 }
6079 }
6080
6081 ret = btrfs_add_ordered_extent_dio(inode, start,
6082 block_start, len, len, type);
6083 btrfs_end_transaction(trans, root);
6084 if (ret) {
6085 free_extent_map(em);
6086 goto unlock_err;
6087 }
6088 goto unlock;
6089 }
6090 btrfs_end_transaction(trans, root);
6091 }
6092 must_cow:
6093 /*
6094 * this will cow the extent, reset the len in case we changed
6095 * it above
6096 */
6097 len = bh_result->b_size;
6098 em = btrfs_new_extent_direct(inode, em, start, len);
6099 if (IS_ERR(em)) {
6100 ret = PTR_ERR(em);
6101 goto unlock_err;
6102 }
6103 len = min(len, em->len - (start - em->start));
6104 unlock:
6105 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6106 inode->i_blkbits;
6107 bh_result->b_size = len;
6108 bh_result->b_bdev = em->bdev;
6109 set_buffer_mapped(bh_result);
6110 if (create) {
6111 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6112 set_buffer_new(bh_result);
6113
6114 /*
6115 * Need to update the i_size under the extent lock so buffered
6116 * readers will get the updated i_size when we unlock.
6117 */
6118 if (start + len > i_size_read(inode))
6119 i_size_write(inode, start + len);
6120 }
6121
6122 /*
6123 * In the case of write we need to clear and unlock the entire range,
6124 * in the case of read we need to unlock only the end area that we
6125 * aren't using if there is any left over space.
6126 */
6127 if (lockstart < lockend) {
6128 if (create && len < lockend - lockstart) {
6129 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6130 lockstart + len - 1,
6131 unlock_bits | EXTENT_DEFRAG, 1, 0,
6132 &cached_state, GFP_NOFS);
6133 /*
6134 * Beside unlock, we also need to cleanup reserved space
6135 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6136 */
6137 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6138 lockstart + len, lockend,
6139 unlock_bits | EXTENT_DO_ACCOUNTING |
6140 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
6141 } else {
6142 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6143 lockend, unlock_bits, 1, 0,
6144 &cached_state, GFP_NOFS);
6145 }
6146 } else {
6147 free_extent_state(cached_state);
6148 }
6149
6150 free_extent_map(em);
6151
6152 return 0;
6153
6154 unlock_err:
6155 if (create)
6156 unlock_bits |= EXTENT_DO_ACCOUNTING;
6157
6158 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6159 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6160 return ret;
6161 }
6162
6163 struct btrfs_dio_private {
6164 struct inode *inode;
6165 u64 logical_offset;
6166 u64 disk_bytenr;
6167 u64 bytes;
6168 void *private;
6169
6170 /* number of bios pending for this dio */
6171 atomic_t pending_bios;
6172
6173 /* IO errors */
6174 int errors;
6175
6176 struct bio *orig_bio;
6177 };
6178
6179 static void btrfs_endio_direct_read(struct bio *bio, int err)
6180 {
6181 struct btrfs_dio_private *dip = bio->bi_private;
6182 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6183 struct bio_vec *bvec = bio->bi_io_vec;
6184 struct inode *inode = dip->inode;
6185 struct btrfs_root *root = BTRFS_I(inode)->root;
6186 u64 start;
6187
6188 start = dip->logical_offset;
6189 do {
6190 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6191 struct page *page = bvec->bv_page;
6192 char *kaddr;
6193 u32 csum = ~(u32)0;
6194 u64 private = ~(u32)0;
6195 unsigned long flags;
6196
6197 if (get_state_private(&BTRFS_I(inode)->io_tree,
6198 start, &private))
6199 goto failed;
6200 local_irq_save(flags);
6201 kaddr = kmap_atomic(page);
6202 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6203 csum, bvec->bv_len);
6204 btrfs_csum_final(csum, (char *)&csum);
6205 kunmap_atomic(kaddr);
6206 local_irq_restore(flags);
6207
6208 flush_dcache_page(bvec->bv_page);
6209 if (csum != private) {
6210 failed:
6211 printk(KERN_ERR "btrfs csum failed ino %llu off"
6212 " %llu csum %u private %u\n",
6213 (unsigned long long)btrfs_ino(inode),
6214 (unsigned long long)start,
6215 csum, (unsigned)private);
6216 err = -EIO;
6217 }
6218 }
6219
6220 start += bvec->bv_len;
6221 bvec++;
6222 } while (bvec <= bvec_end);
6223
6224 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6225 dip->logical_offset + dip->bytes - 1);
6226 bio->bi_private = dip->private;
6227
6228 kfree(dip);
6229
6230 /* If we had a csum failure make sure to clear the uptodate flag */
6231 if (err)
6232 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6233 dio_end_io(bio, err);
6234 }
6235
6236 static void btrfs_endio_direct_write(struct bio *bio, int err)
6237 {
6238 struct btrfs_dio_private *dip = bio->bi_private;
6239 struct inode *inode = dip->inode;
6240 struct btrfs_root *root = BTRFS_I(inode)->root;
6241 struct btrfs_ordered_extent *ordered = NULL;
6242 u64 ordered_offset = dip->logical_offset;
6243 u64 ordered_bytes = dip->bytes;
6244 int ret;
6245
6246 if (err)
6247 goto out_done;
6248 again:
6249 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6250 &ordered_offset,
6251 ordered_bytes, !err);
6252 if (!ret)
6253 goto out_test;
6254
6255 ordered->work.func = finish_ordered_fn;
6256 ordered->work.flags = 0;
6257 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6258 &ordered->work);
6259 out_test:
6260 /*
6261 * our bio might span multiple ordered extents. If we haven't
6262 * completed the accounting for the whole dio, go back and try again
6263 */
6264 if (ordered_offset < dip->logical_offset + dip->bytes) {
6265 ordered_bytes = dip->logical_offset + dip->bytes -
6266 ordered_offset;
6267 ordered = NULL;
6268 goto again;
6269 }
6270 out_done:
6271 bio->bi_private = dip->private;
6272
6273 kfree(dip);
6274
6275 /* If we had an error make sure to clear the uptodate flag */
6276 if (err)
6277 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6278 dio_end_io(bio, err);
6279 }
6280
6281 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6282 struct bio *bio, int mirror_num,
6283 unsigned long bio_flags, u64 offset)
6284 {
6285 int ret;
6286 struct btrfs_root *root = BTRFS_I(inode)->root;
6287 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6288 BUG_ON(ret); /* -ENOMEM */
6289 return 0;
6290 }
6291
6292 static void btrfs_end_dio_bio(struct bio *bio, int err)
6293 {
6294 struct btrfs_dio_private *dip = bio->bi_private;
6295
6296 if (err) {
6297 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6298 "sector %#Lx len %u err no %d\n",
6299 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6300 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6301 dip->errors = 1;
6302
6303 /*
6304 * before atomic variable goto zero, we must make sure
6305 * dip->errors is perceived to be set.
6306 */
6307 smp_mb__before_atomic_dec();
6308 }
6309
6310 /* if there are more bios still pending for this dio, just exit */
6311 if (!atomic_dec_and_test(&dip->pending_bios))
6312 goto out;
6313
6314 if (dip->errors)
6315 bio_io_error(dip->orig_bio);
6316 else {
6317 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6318 bio_endio(dip->orig_bio, 0);
6319 }
6320 out:
6321 bio_put(bio);
6322 }
6323
6324 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6325 u64 first_sector, gfp_t gfp_flags)
6326 {
6327 int nr_vecs = bio_get_nr_vecs(bdev);
6328 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6329 }
6330
6331 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6332 int rw, u64 file_offset, int skip_sum,
6333 int async_submit)
6334 {
6335 int write = rw & REQ_WRITE;
6336 struct btrfs_root *root = BTRFS_I(inode)->root;
6337 int ret;
6338
6339 bio_get(bio);
6340
6341 if (!write) {
6342 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6343 if (ret)
6344 goto err;
6345 }
6346
6347 if (skip_sum)
6348 goto map;
6349
6350 if (write && async_submit) {
6351 ret = btrfs_wq_submit_bio(root->fs_info,
6352 inode, rw, bio, 0, 0,
6353 file_offset,
6354 __btrfs_submit_bio_start_direct_io,
6355 __btrfs_submit_bio_done);
6356 goto err;
6357 } else if (write) {
6358 /*
6359 * If we aren't doing async submit, calculate the csum of the
6360 * bio now.
6361 */
6362 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6363 if (ret)
6364 goto err;
6365 } else if (!skip_sum) {
6366 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
6367 if (ret)
6368 goto err;
6369 }
6370
6371 map:
6372 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6373 err:
6374 bio_put(bio);
6375 return ret;
6376 }
6377
6378 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6379 int skip_sum)
6380 {
6381 struct inode *inode = dip->inode;
6382 struct btrfs_root *root = BTRFS_I(inode)->root;
6383 struct bio *bio;
6384 struct bio *orig_bio = dip->orig_bio;
6385 struct bio_vec *bvec = orig_bio->bi_io_vec;
6386 u64 start_sector = orig_bio->bi_sector;
6387 u64 file_offset = dip->logical_offset;
6388 u64 submit_len = 0;
6389 u64 map_length;
6390 int nr_pages = 0;
6391 int ret = 0;
6392 int async_submit = 0;
6393
6394 map_length = orig_bio->bi_size;
6395 ret = btrfs_map_block(root->fs_info, READ, start_sector << 9,
6396 &map_length, NULL, 0);
6397 if (ret) {
6398 bio_put(orig_bio);
6399 return -EIO;
6400 }
6401
6402 if (map_length >= orig_bio->bi_size) {
6403 bio = orig_bio;
6404 goto submit;
6405 }
6406
6407 async_submit = 1;
6408 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6409 if (!bio)
6410 return -ENOMEM;
6411 bio->bi_private = dip;
6412 bio->bi_end_io = btrfs_end_dio_bio;
6413 atomic_inc(&dip->pending_bios);
6414
6415 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6416 if (unlikely(map_length < submit_len + bvec->bv_len ||
6417 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6418 bvec->bv_offset) < bvec->bv_len)) {
6419 /*
6420 * inc the count before we submit the bio so
6421 * we know the end IO handler won't happen before
6422 * we inc the count. Otherwise, the dip might get freed
6423 * before we're done setting it up
6424 */
6425 atomic_inc(&dip->pending_bios);
6426 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6427 file_offset, skip_sum,
6428 async_submit);
6429 if (ret) {
6430 bio_put(bio);
6431 atomic_dec(&dip->pending_bios);
6432 goto out_err;
6433 }
6434
6435 start_sector += submit_len >> 9;
6436 file_offset += submit_len;
6437
6438 submit_len = 0;
6439 nr_pages = 0;
6440
6441 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6442 start_sector, GFP_NOFS);
6443 if (!bio)
6444 goto out_err;
6445 bio->bi_private = dip;
6446 bio->bi_end_io = btrfs_end_dio_bio;
6447
6448 map_length = orig_bio->bi_size;
6449 ret = btrfs_map_block(root->fs_info, READ,
6450 start_sector << 9,
6451 &map_length, NULL, 0);
6452 if (ret) {
6453 bio_put(bio);
6454 goto out_err;
6455 }
6456 } else {
6457 submit_len += bvec->bv_len;
6458 nr_pages ++;
6459 bvec++;
6460 }
6461 }
6462
6463 submit:
6464 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6465 async_submit);
6466 if (!ret)
6467 return 0;
6468
6469 bio_put(bio);
6470 out_err:
6471 dip->errors = 1;
6472 /*
6473 * before atomic variable goto zero, we must
6474 * make sure dip->errors is perceived to be set.
6475 */
6476 smp_mb__before_atomic_dec();
6477 if (atomic_dec_and_test(&dip->pending_bios))
6478 bio_io_error(dip->orig_bio);
6479
6480 /* bio_end_io() will handle error, so we needn't return it */
6481 return 0;
6482 }
6483
6484 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6485 loff_t file_offset)
6486 {
6487 struct btrfs_root *root = BTRFS_I(inode)->root;
6488 struct btrfs_dio_private *dip;
6489 struct bio_vec *bvec = bio->bi_io_vec;
6490 int skip_sum;
6491 int write = rw & REQ_WRITE;
6492 int ret = 0;
6493
6494 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6495
6496 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6497 if (!dip) {
6498 ret = -ENOMEM;
6499 goto free_ordered;
6500 }
6501
6502 dip->private = bio->bi_private;
6503 dip->inode = inode;
6504 dip->logical_offset = file_offset;
6505
6506 dip->bytes = 0;
6507 do {
6508 dip->bytes += bvec->bv_len;
6509 bvec++;
6510 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6511
6512 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6513 bio->bi_private = dip;
6514 dip->errors = 0;
6515 dip->orig_bio = bio;
6516 atomic_set(&dip->pending_bios, 0);
6517
6518 if (write)
6519 bio->bi_end_io = btrfs_endio_direct_write;
6520 else
6521 bio->bi_end_io = btrfs_endio_direct_read;
6522
6523 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6524 if (!ret)
6525 return;
6526 free_ordered:
6527 /*
6528 * If this is a write, we need to clean up the reserved space and kill
6529 * the ordered extent.
6530 */
6531 if (write) {
6532 struct btrfs_ordered_extent *ordered;
6533 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6534 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6535 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6536 btrfs_free_reserved_extent(root, ordered->start,
6537 ordered->disk_len);
6538 btrfs_put_ordered_extent(ordered);
6539 btrfs_put_ordered_extent(ordered);
6540 }
6541 bio_endio(bio, ret);
6542 }
6543
6544 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6545 const struct iovec *iov, loff_t offset,
6546 unsigned long nr_segs)
6547 {
6548 int seg;
6549 int i;
6550 size_t size;
6551 unsigned long addr;
6552 unsigned blocksize_mask = root->sectorsize - 1;
6553 ssize_t retval = -EINVAL;
6554 loff_t end = offset;
6555
6556 if (offset & blocksize_mask)
6557 goto out;
6558
6559 /* Check the memory alignment. Blocks cannot straddle pages */
6560 for (seg = 0; seg < nr_segs; seg++) {
6561 addr = (unsigned long)iov[seg].iov_base;
6562 size = iov[seg].iov_len;
6563 end += size;
6564 if ((addr & blocksize_mask) || (size & blocksize_mask))
6565 goto out;
6566
6567 /* If this is a write we don't need to check anymore */
6568 if (rw & WRITE)
6569 continue;
6570
6571 /*
6572 * Check to make sure we don't have duplicate iov_base's in this
6573 * iovec, if so return EINVAL, otherwise we'll get csum errors
6574 * when reading back.
6575 */
6576 for (i = seg + 1; i < nr_segs; i++) {
6577 if (iov[seg].iov_base == iov[i].iov_base)
6578 goto out;
6579 }
6580 }
6581 retval = 0;
6582 out:
6583 return retval;
6584 }
6585
6586 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6587 const struct iovec *iov, loff_t offset,
6588 unsigned long nr_segs)
6589 {
6590 struct file *file = iocb->ki_filp;
6591 struct inode *inode = file->f_mapping->host;
6592
6593 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6594 offset, nr_segs))
6595 return 0;
6596
6597 return __blockdev_direct_IO(rw, iocb, inode,
6598 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6599 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6600 btrfs_submit_direct, 0);
6601 }
6602
6603 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
6604
6605 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6606 __u64 start, __u64 len)
6607 {
6608 int ret;
6609
6610 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
6611 if (ret)
6612 return ret;
6613
6614 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6615 }
6616
6617 int btrfs_readpage(struct file *file, struct page *page)
6618 {
6619 struct extent_io_tree *tree;
6620 tree = &BTRFS_I(page->mapping->host)->io_tree;
6621 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6622 }
6623
6624 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6625 {
6626 struct extent_io_tree *tree;
6627
6628
6629 if (current->flags & PF_MEMALLOC) {
6630 redirty_page_for_writepage(wbc, page);
6631 unlock_page(page);
6632 return 0;
6633 }
6634 tree = &BTRFS_I(page->mapping->host)->io_tree;
6635 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6636 }
6637
6638 int btrfs_writepages(struct address_space *mapping,
6639 struct writeback_control *wbc)
6640 {
6641 struct extent_io_tree *tree;
6642
6643 tree = &BTRFS_I(mapping->host)->io_tree;
6644 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6645 }
6646
6647 static int
6648 btrfs_readpages(struct file *file, struct address_space *mapping,
6649 struct list_head *pages, unsigned nr_pages)
6650 {
6651 struct extent_io_tree *tree;
6652 tree = &BTRFS_I(mapping->host)->io_tree;
6653 return extent_readpages(tree, mapping, pages, nr_pages,
6654 btrfs_get_extent);
6655 }
6656 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6657 {
6658 struct extent_io_tree *tree;
6659 struct extent_map_tree *map;
6660 int ret;
6661
6662 tree = &BTRFS_I(page->mapping->host)->io_tree;
6663 map = &BTRFS_I(page->mapping->host)->extent_tree;
6664 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6665 if (ret == 1) {
6666 ClearPagePrivate(page);
6667 set_page_private(page, 0);
6668 page_cache_release(page);
6669 }
6670 return ret;
6671 }
6672
6673 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6674 {
6675 if (PageWriteback(page) || PageDirty(page))
6676 return 0;
6677 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6678 }
6679
6680 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6681 {
6682 struct inode *inode = page->mapping->host;
6683 struct extent_io_tree *tree;
6684 struct btrfs_ordered_extent *ordered;
6685 struct extent_state *cached_state = NULL;
6686 u64 page_start = page_offset(page);
6687 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6688
6689 /*
6690 * we have the page locked, so new writeback can't start,
6691 * and the dirty bit won't be cleared while we are here.
6692 *
6693 * Wait for IO on this page so that we can safely clear
6694 * the PagePrivate2 bit and do ordered accounting
6695 */
6696 wait_on_page_writeback(page);
6697
6698 tree = &BTRFS_I(inode)->io_tree;
6699 if (offset) {
6700 btrfs_releasepage(page, GFP_NOFS);
6701 return;
6702 }
6703 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6704 ordered = btrfs_lookup_ordered_extent(inode,
6705 page_offset(page));
6706 if (ordered) {
6707 /*
6708 * IO on this page will never be started, so we need
6709 * to account for any ordered extents now
6710 */
6711 clear_extent_bit(tree, page_start, page_end,
6712 EXTENT_DIRTY | EXTENT_DELALLOC |
6713 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6714 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
6715 /*
6716 * whoever cleared the private bit is responsible
6717 * for the finish_ordered_io
6718 */
6719 if (TestClearPagePrivate2(page) &&
6720 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6721 PAGE_CACHE_SIZE, 1)) {
6722 btrfs_finish_ordered_io(ordered);
6723 }
6724 btrfs_put_ordered_extent(ordered);
6725 cached_state = NULL;
6726 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6727 }
6728 clear_extent_bit(tree, page_start, page_end,
6729 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6730 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6731 &cached_state, GFP_NOFS);
6732 __btrfs_releasepage(page, GFP_NOFS);
6733
6734 ClearPageChecked(page);
6735 if (PagePrivate(page)) {
6736 ClearPagePrivate(page);
6737 set_page_private(page, 0);
6738 page_cache_release(page);
6739 }
6740 }
6741
6742 /*
6743 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6744 * called from a page fault handler when a page is first dirtied. Hence we must
6745 * be careful to check for EOF conditions here. We set the page up correctly
6746 * for a written page which means we get ENOSPC checking when writing into
6747 * holes and correct delalloc and unwritten extent mapping on filesystems that
6748 * support these features.
6749 *
6750 * We are not allowed to take the i_mutex here so we have to play games to
6751 * protect against truncate races as the page could now be beyond EOF. Because
6752 * vmtruncate() writes the inode size before removing pages, once we have the
6753 * page lock we can determine safely if the page is beyond EOF. If it is not
6754 * beyond EOF, then the page is guaranteed safe against truncation until we
6755 * unlock the page.
6756 */
6757 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6758 {
6759 struct page *page = vmf->page;
6760 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6761 struct btrfs_root *root = BTRFS_I(inode)->root;
6762 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6763 struct btrfs_ordered_extent *ordered;
6764 struct extent_state *cached_state = NULL;
6765 char *kaddr;
6766 unsigned long zero_start;
6767 loff_t size;
6768 int ret;
6769 int reserved = 0;
6770 u64 page_start;
6771 u64 page_end;
6772
6773 sb_start_pagefault(inode->i_sb);
6774 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6775 if (!ret) {
6776 ret = file_update_time(vma->vm_file);
6777 reserved = 1;
6778 }
6779 if (ret) {
6780 if (ret == -ENOMEM)
6781 ret = VM_FAULT_OOM;
6782 else /* -ENOSPC, -EIO, etc */
6783 ret = VM_FAULT_SIGBUS;
6784 if (reserved)
6785 goto out;
6786 goto out_noreserve;
6787 }
6788
6789 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6790 again:
6791 lock_page(page);
6792 size = i_size_read(inode);
6793 page_start = page_offset(page);
6794 page_end = page_start + PAGE_CACHE_SIZE - 1;
6795
6796 if ((page->mapping != inode->i_mapping) ||
6797 (page_start >= size)) {
6798 /* page got truncated out from underneath us */
6799 goto out_unlock;
6800 }
6801 wait_on_page_writeback(page);
6802
6803 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6804 set_page_extent_mapped(page);
6805
6806 /*
6807 * we can't set the delalloc bits if there are pending ordered
6808 * extents. Drop our locks and wait for them to finish
6809 */
6810 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6811 if (ordered) {
6812 unlock_extent_cached(io_tree, page_start, page_end,
6813 &cached_state, GFP_NOFS);
6814 unlock_page(page);
6815 btrfs_start_ordered_extent(inode, ordered, 1);
6816 btrfs_put_ordered_extent(ordered);
6817 goto again;
6818 }
6819
6820 /*
6821 * XXX - page_mkwrite gets called every time the page is dirtied, even
6822 * if it was already dirty, so for space accounting reasons we need to
6823 * clear any delalloc bits for the range we are fixing to save. There
6824 * is probably a better way to do this, but for now keep consistent with
6825 * prepare_pages in the normal write path.
6826 */
6827 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6828 EXTENT_DIRTY | EXTENT_DELALLOC |
6829 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
6830 0, 0, &cached_state, GFP_NOFS);
6831
6832 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6833 &cached_state);
6834 if (ret) {
6835 unlock_extent_cached(io_tree, page_start, page_end,
6836 &cached_state, GFP_NOFS);
6837 ret = VM_FAULT_SIGBUS;
6838 goto out_unlock;
6839 }
6840 ret = 0;
6841
6842 /* page is wholly or partially inside EOF */
6843 if (page_start + PAGE_CACHE_SIZE > size)
6844 zero_start = size & ~PAGE_CACHE_MASK;
6845 else
6846 zero_start = PAGE_CACHE_SIZE;
6847
6848 if (zero_start != PAGE_CACHE_SIZE) {
6849 kaddr = kmap(page);
6850 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6851 flush_dcache_page(page);
6852 kunmap(page);
6853 }
6854 ClearPageChecked(page);
6855 set_page_dirty(page);
6856 SetPageUptodate(page);
6857
6858 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6859 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6860 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
6861
6862 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6863
6864 out_unlock:
6865 if (!ret) {
6866 sb_end_pagefault(inode->i_sb);
6867 return VM_FAULT_LOCKED;
6868 }
6869 unlock_page(page);
6870 out:
6871 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6872 out_noreserve:
6873 sb_end_pagefault(inode->i_sb);
6874 return ret;
6875 }
6876
6877 static int btrfs_truncate(struct inode *inode)
6878 {
6879 struct btrfs_root *root = BTRFS_I(inode)->root;
6880 struct btrfs_block_rsv *rsv;
6881 int ret;
6882 int err = 0;
6883 struct btrfs_trans_handle *trans;
6884 u64 mask = root->sectorsize - 1;
6885 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6886
6887 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
6888 if (ret)
6889 return ret;
6890
6891 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6892 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6893
6894 /*
6895 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6896 * 3 things going on here
6897 *
6898 * 1) We need to reserve space for our orphan item and the space to
6899 * delete our orphan item. Lord knows we don't want to have a dangling
6900 * orphan item because we didn't reserve space to remove it.
6901 *
6902 * 2) We need to reserve space to update our inode.
6903 *
6904 * 3) We need to have something to cache all the space that is going to
6905 * be free'd up by the truncate operation, but also have some slack
6906 * space reserved in case it uses space during the truncate (thank you
6907 * very much snapshotting).
6908 *
6909 * And we need these to all be seperate. The fact is we can use alot of
6910 * space doing the truncate, and we have no earthly idea how much space
6911 * we will use, so we need the truncate reservation to be seperate so it
6912 * doesn't end up using space reserved for updating the inode or
6913 * removing the orphan item. We also need to be able to stop the
6914 * transaction and start a new one, which means we need to be able to
6915 * update the inode several times, and we have no idea of knowing how
6916 * many times that will be, so we can't just reserve 1 item for the
6917 * entirety of the opration, so that has to be done seperately as well.
6918 * Then there is the orphan item, which does indeed need to be held on
6919 * to for the whole operation, and we need nobody to touch this reserved
6920 * space except the orphan code.
6921 *
6922 * So that leaves us with
6923 *
6924 * 1) root->orphan_block_rsv - for the orphan deletion.
6925 * 2) rsv - for the truncate reservation, which we will steal from the
6926 * transaction reservation.
6927 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6928 * updating the inode.
6929 */
6930 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
6931 if (!rsv)
6932 return -ENOMEM;
6933 rsv->size = min_size;
6934 rsv->failfast = 1;
6935
6936 /*
6937 * 1 for the truncate slack space
6938 * 1 for the orphan item we're going to add
6939 * 1 for the orphan item deletion
6940 * 1 for updating the inode.
6941 */
6942 trans = btrfs_start_transaction(root, 4);
6943 if (IS_ERR(trans)) {
6944 err = PTR_ERR(trans);
6945 goto out;
6946 }
6947
6948 /* Migrate the slack space for the truncate to our reserve */
6949 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6950 min_size);
6951 BUG_ON(ret);
6952
6953 ret = btrfs_orphan_add(trans, inode);
6954 if (ret) {
6955 btrfs_end_transaction(trans, root);
6956 goto out;
6957 }
6958
6959 /*
6960 * setattr is responsible for setting the ordered_data_close flag,
6961 * but that is only tested during the last file release. That
6962 * could happen well after the next commit, leaving a great big
6963 * window where new writes may get lost if someone chooses to write
6964 * to this file after truncating to zero
6965 *
6966 * The inode doesn't have any dirty data here, and so if we commit
6967 * this is a noop. If someone immediately starts writing to the inode
6968 * it is very likely we'll catch some of their writes in this
6969 * transaction, and the commit will find this file on the ordered
6970 * data list with good things to send down.
6971 *
6972 * This is a best effort solution, there is still a window where
6973 * using truncate to replace the contents of the file will
6974 * end up with a zero length file after a crash.
6975 */
6976 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6977 &BTRFS_I(inode)->runtime_flags))
6978 btrfs_add_ordered_operation(trans, root, inode);
6979
6980 /*
6981 * So if we truncate and then write and fsync we normally would just
6982 * write the extents that changed, which is a problem if we need to
6983 * first truncate that entire inode. So set this flag so we write out
6984 * all of the extents in the inode to the sync log so we're completely
6985 * safe.
6986 */
6987 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6988 trans->block_rsv = rsv;
6989
6990 while (1) {
6991 ret = btrfs_truncate_inode_items(trans, root, inode,
6992 inode->i_size,
6993 BTRFS_EXTENT_DATA_KEY);
6994 if (ret != -ENOSPC) {
6995 err = ret;
6996 break;
6997 }
6998
6999 trans->block_rsv = &root->fs_info->trans_block_rsv;
7000 ret = btrfs_update_inode(trans, root, inode);
7001 if (ret) {
7002 err = ret;
7003 break;
7004 }
7005
7006 btrfs_end_transaction(trans, root);
7007 btrfs_btree_balance_dirty(root);
7008
7009 trans = btrfs_start_transaction(root, 2);
7010 if (IS_ERR(trans)) {
7011 ret = err = PTR_ERR(trans);
7012 trans = NULL;
7013 break;
7014 }
7015
7016 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7017 rsv, min_size);
7018 BUG_ON(ret); /* shouldn't happen */
7019 trans->block_rsv = rsv;
7020 }
7021
7022 if (ret == 0 && inode->i_nlink > 0) {
7023 trans->block_rsv = root->orphan_block_rsv;
7024 ret = btrfs_orphan_del(trans, inode);
7025 if (ret)
7026 err = ret;
7027 } else if (ret && inode->i_nlink > 0) {
7028 /*
7029 * Failed to do the truncate, remove us from the in memory
7030 * orphan list.
7031 */
7032 ret = btrfs_orphan_del(NULL, inode);
7033 }
7034
7035 if (trans) {
7036 trans->block_rsv = &root->fs_info->trans_block_rsv;
7037 ret = btrfs_update_inode(trans, root, inode);
7038 if (ret && !err)
7039 err = ret;
7040
7041 ret = btrfs_end_transaction(trans, root);
7042 btrfs_btree_balance_dirty(root);
7043 }
7044
7045 out:
7046 btrfs_free_block_rsv(root, rsv);
7047
7048 if (ret && !err)
7049 err = ret;
7050
7051 return err;
7052 }
7053
7054 /*
7055 * create a new subvolume directory/inode (helper for the ioctl).
7056 */
7057 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7058 struct btrfs_root *new_root, u64 new_dirid)
7059 {
7060 struct inode *inode;
7061 int err;
7062 u64 index = 0;
7063
7064 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7065 new_dirid, new_dirid,
7066 S_IFDIR | (~current_umask() & S_IRWXUGO),
7067 &index);
7068 if (IS_ERR(inode))
7069 return PTR_ERR(inode);
7070 inode->i_op = &btrfs_dir_inode_operations;
7071 inode->i_fop = &btrfs_dir_file_operations;
7072
7073 set_nlink(inode, 1);
7074 btrfs_i_size_write(inode, 0);
7075
7076 err = btrfs_update_inode(trans, new_root, inode);
7077
7078 iput(inode);
7079 return err;
7080 }
7081
7082 struct inode *btrfs_alloc_inode(struct super_block *sb)
7083 {
7084 struct btrfs_inode *ei;
7085 struct inode *inode;
7086
7087 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7088 if (!ei)
7089 return NULL;
7090
7091 ei->root = NULL;
7092 ei->generation = 0;
7093 ei->last_trans = 0;
7094 ei->last_sub_trans = 0;
7095 ei->logged_trans = 0;
7096 ei->delalloc_bytes = 0;
7097 ei->disk_i_size = 0;
7098 ei->flags = 0;
7099 ei->csum_bytes = 0;
7100 ei->index_cnt = (u64)-1;
7101 ei->last_unlink_trans = 0;
7102 ei->last_log_commit = 0;
7103
7104 spin_lock_init(&ei->lock);
7105 ei->outstanding_extents = 0;
7106 ei->reserved_extents = 0;
7107
7108 ei->runtime_flags = 0;
7109 ei->force_compress = BTRFS_COMPRESS_NONE;
7110
7111 ei->delayed_node = NULL;
7112
7113 inode = &ei->vfs_inode;
7114 extent_map_tree_init(&ei->extent_tree);
7115 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7116 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7117 ei->io_tree.track_uptodate = 1;
7118 ei->io_failure_tree.track_uptodate = 1;
7119 mutex_init(&ei->log_mutex);
7120 mutex_init(&ei->delalloc_mutex);
7121 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7122 INIT_LIST_HEAD(&ei->delalloc_inodes);
7123 INIT_LIST_HEAD(&ei->ordered_operations);
7124 RB_CLEAR_NODE(&ei->rb_node);
7125
7126 return inode;
7127 }
7128
7129 static void btrfs_i_callback(struct rcu_head *head)
7130 {
7131 struct inode *inode = container_of(head, struct inode, i_rcu);
7132 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7133 }
7134
7135 void btrfs_destroy_inode(struct inode *inode)
7136 {
7137 struct btrfs_ordered_extent *ordered;
7138 struct btrfs_root *root = BTRFS_I(inode)->root;
7139
7140 WARN_ON(!hlist_empty(&inode->i_dentry));
7141 WARN_ON(inode->i_data.nrpages);
7142 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7143 WARN_ON(BTRFS_I(inode)->reserved_extents);
7144 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7145 WARN_ON(BTRFS_I(inode)->csum_bytes);
7146
7147 /*
7148 * This can happen where we create an inode, but somebody else also
7149 * created the same inode and we need to destroy the one we already
7150 * created.
7151 */
7152 if (!root)
7153 goto free;
7154
7155 /*
7156 * Make sure we're properly removed from the ordered operation
7157 * lists.
7158 */
7159 smp_mb();
7160 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7161 spin_lock(&root->fs_info->ordered_extent_lock);
7162 list_del_init(&BTRFS_I(inode)->ordered_operations);
7163 spin_unlock(&root->fs_info->ordered_extent_lock);
7164 }
7165
7166 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7167 &BTRFS_I(inode)->runtime_flags)) {
7168 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7169 (unsigned long long)btrfs_ino(inode));
7170 atomic_dec(&root->orphan_inodes);
7171 }
7172
7173 while (1) {
7174 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7175 if (!ordered)
7176 break;
7177 else {
7178 printk(KERN_ERR "btrfs found ordered "
7179 "extent %llu %llu on inode cleanup\n",
7180 (unsigned long long)ordered->file_offset,
7181 (unsigned long long)ordered->len);
7182 btrfs_remove_ordered_extent(inode, ordered);
7183 btrfs_put_ordered_extent(ordered);
7184 btrfs_put_ordered_extent(ordered);
7185 }
7186 }
7187 inode_tree_del(inode);
7188 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7189 free:
7190 btrfs_remove_delayed_node(inode);
7191 call_rcu(&inode->i_rcu, btrfs_i_callback);
7192 }
7193
7194 int btrfs_drop_inode(struct inode *inode)
7195 {
7196 struct btrfs_root *root = BTRFS_I(inode)->root;
7197
7198 if (btrfs_root_refs(&root->root_item) == 0 &&
7199 !btrfs_is_free_space_inode(inode))
7200 return 1;
7201 else
7202 return generic_drop_inode(inode);
7203 }
7204
7205 static void init_once(void *foo)
7206 {
7207 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7208
7209 inode_init_once(&ei->vfs_inode);
7210 }
7211
7212 void btrfs_destroy_cachep(void)
7213 {
7214 /*
7215 * Make sure all delayed rcu free inodes are flushed before we
7216 * destroy cache.
7217 */
7218 rcu_barrier();
7219 if (btrfs_inode_cachep)
7220 kmem_cache_destroy(btrfs_inode_cachep);
7221 if (btrfs_trans_handle_cachep)
7222 kmem_cache_destroy(btrfs_trans_handle_cachep);
7223 if (btrfs_transaction_cachep)
7224 kmem_cache_destroy(btrfs_transaction_cachep);
7225 if (btrfs_path_cachep)
7226 kmem_cache_destroy(btrfs_path_cachep);
7227 if (btrfs_free_space_cachep)
7228 kmem_cache_destroy(btrfs_free_space_cachep);
7229 if (btrfs_delalloc_work_cachep)
7230 kmem_cache_destroy(btrfs_delalloc_work_cachep);
7231 }
7232
7233 int btrfs_init_cachep(void)
7234 {
7235 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7236 sizeof(struct btrfs_inode), 0,
7237 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7238 if (!btrfs_inode_cachep)
7239 goto fail;
7240
7241 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7242 sizeof(struct btrfs_trans_handle), 0,
7243 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7244 if (!btrfs_trans_handle_cachep)
7245 goto fail;
7246
7247 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7248 sizeof(struct btrfs_transaction), 0,
7249 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7250 if (!btrfs_transaction_cachep)
7251 goto fail;
7252
7253 btrfs_path_cachep = kmem_cache_create("btrfs_path",
7254 sizeof(struct btrfs_path), 0,
7255 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7256 if (!btrfs_path_cachep)
7257 goto fail;
7258
7259 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7260 sizeof(struct btrfs_free_space), 0,
7261 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7262 if (!btrfs_free_space_cachep)
7263 goto fail;
7264
7265 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7266 sizeof(struct btrfs_delalloc_work), 0,
7267 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7268 NULL);
7269 if (!btrfs_delalloc_work_cachep)
7270 goto fail;
7271
7272 return 0;
7273 fail:
7274 btrfs_destroy_cachep();
7275 return -ENOMEM;
7276 }
7277
7278 static int btrfs_getattr(struct vfsmount *mnt,
7279 struct dentry *dentry, struct kstat *stat)
7280 {
7281 struct inode *inode = dentry->d_inode;
7282 u32 blocksize = inode->i_sb->s_blocksize;
7283
7284 generic_fillattr(inode, stat);
7285 stat->dev = BTRFS_I(inode)->root->anon_dev;
7286 stat->blksize = PAGE_CACHE_SIZE;
7287 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7288 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7289 return 0;
7290 }
7291
7292 /*
7293 * If a file is moved, it will inherit the cow and compression flags of the new
7294 * directory.
7295 */
7296 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7297 {
7298 struct btrfs_inode *b_dir = BTRFS_I(dir);
7299 struct btrfs_inode *b_inode = BTRFS_I(inode);
7300
7301 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7302 b_inode->flags |= BTRFS_INODE_NODATACOW;
7303 else
7304 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7305
7306 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
7307 b_inode->flags |= BTRFS_INODE_COMPRESS;
7308 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7309 } else {
7310 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7311 BTRFS_INODE_NOCOMPRESS);
7312 }
7313 }
7314
7315 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7316 struct inode *new_dir, struct dentry *new_dentry)
7317 {
7318 struct btrfs_trans_handle *trans;
7319 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7320 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7321 struct inode *new_inode = new_dentry->d_inode;
7322 struct inode *old_inode = old_dentry->d_inode;
7323 struct timespec ctime = CURRENT_TIME;
7324 u64 index = 0;
7325 u64 root_objectid;
7326 int ret;
7327 u64 old_ino = btrfs_ino(old_inode);
7328
7329 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7330 return -EPERM;
7331
7332 /* we only allow rename subvolume link between subvolumes */
7333 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7334 return -EXDEV;
7335
7336 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7337 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7338 return -ENOTEMPTY;
7339
7340 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7341 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7342 return -ENOTEMPTY;
7343 /*
7344 * we're using rename to replace one file with another.
7345 * and the replacement file is large. Start IO on it now so
7346 * we don't add too much work to the end of the transaction
7347 */
7348 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7349 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7350 filemap_flush(old_inode->i_mapping);
7351
7352 /* close the racy window with snapshot create/destroy ioctl */
7353 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7354 down_read(&root->fs_info->subvol_sem);
7355 /*
7356 * We want to reserve the absolute worst case amount of items. So if
7357 * both inodes are subvols and we need to unlink them then that would
7358 * require 4 item modifications, but if they are both normal inodes it
7359 * would require 5 item modifications, so we'll assume their normal
7360 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7361 * should cover the worst case number of items we'll modify.
7362 */
7363 trans = btrfs_start_transaction(root, 20);
7364 if (IS_ERR(trans)) {
7365 ret = PTR_ERR(trans);
7366 goto out_notrans;
7367 }
7368
7369 if (dest != root)
7370 btrfs_record_root_in_trans(trans, dest);
7371
7372 ret = btrfs_set_inode_index(new_dir, &index);
7373 if (ret)
7374 goto out_fail;
7375
7376 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7377 /* force full log commit if subvolume involved. */
7378 root->fs_info->last_trans_log_full_commit = trans->transid;
7379 } else {
7380 ret = btrfs_insert_inode_ref(trans, dest,
7381 new_dentry->d_name.name,
7382 new_dentry->d_name.len,
7383 old_ino,
7384 btrfs_ino(new_dir), index);
7385 if (ret)
7386 goto out_fail;
7387 /*
7388 * this is an ugly little race, but the rename is required
7389 * to make sure that if we crash, the inode is either at the
7390 * old name or the new one. pinning the log transaction lets
7391 * us make sure we don't allow a log commit to come in after
7392 * we unlink the name but before we add the new name back in.
7393 */
7394 btrfs_pin_log_trans(root);
7395 }
7396 /*
7397 * make sure the inode gets flushed if it is replacing
7398 * something.
7399 */
7400 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7401 btrfs_add_ordered_operation(trans, root, old_inode);
7402
7403 inode_inc_iversion(old_dir);
7404 inode_inc_iversion(new_dir);
7405 inode_inc_iversion(old_inode);
7406 old_dir->i_ctime = old_dir->i_mtime = ctime;
7407 new_dir->i_ctime = new_dir->i_mtime = ctime;
7408 old_inode->i_ctime = ctime;
7409
7410 if (old_dentry->d_parent != new_dentry->d_parent)
7411 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7412
7413 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7414 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7415 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7416 old_dentry->d_name.name,
7417 old_dentry->d_name.len);
7418 } else {
7419 ret = __btrfs_unlink_inode(trans, root, old_dir,
7420 old_dentry->d_inode,
7421 old_dentry->d_name.name,
7422 old_dentry->d_name.len);
7423 if (!ret)
7424 ret = btrfs_update_inode(trans, root, old_inode);
7425 }
7426 if (ret) {
7427 btrfs_abort_transaction(trans, root, ret);
7428 goto out_fail;
7429 }
7430
7431 if (new_inode) {
7432 inode_inc_iversion(new_inode);
7433 new_inode->i_ctime = CURRENT_TIME;
7434 if (unlikely(btrfs_ino(new_inode) ==
7435 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7436 root_objectid = BTRFS_I(new_inode)->location.objectid;
7437 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7438 root_objectid,
7439 new_dentry->d_name.name,
7440 new_dentry->d_name.len);
7441 BUG_ON(new_inode->i_nlink == 0);
7442 } else {
7443 ret = btrfs_unlink_inode(trans, dest, new_dir,
7444 new_dentry->d_inode,
7445 new_dentry->d_name.name,
7446 new_dentry->d_name.len);
7447 }
7448 if (!ret && new_inode->i_nlink == 0) {
7449 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7450 BUG_ON(ret);
7451 }
7452 if (ret) {
7453 btrfs_abort_transaction(trans, root, ret);
7454 goto out_fail;
7455 }
7456 }
7457
7458 fixup_inode_flags(new_dir, old_inode);
7459
7460 ret = btrfs_add_link(trans, new_dir, old_inode,
7461 new_dentry->d_name.name,
7462 new_dentry->d_name.len, 0, index);
7463 if (ret) {
7464 btrfs_abort_transaction(trans, root, ret);
7465 goto out_fail;
7466 }
7467
7468 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7469 struct dentry *parent = new_dentry->d_parent;
7470 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7471 btrfs_end_log_trans(root);
7472 }
7473 out_fail:
7474 btrfs_end_transaction(trans, root);
7475 out_notrans:
7476 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7477 up_read(&root->fs_info->subvol_sem);
7478
7479 return ret;
7480 }
7481
7482 static void btrfs_run_delalloc_work(struct btrfs_work *work)
7483 {
7484 struct btrfs_delalloc_work *delalloc_work;
7485
7486 delalloc_work = container_of(work, struct btrfs_delalloc_work,
7487 work);
7488 if (delalloc_work->wait)
7489 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
7490 else
7491 filemap_flush(delalloc_work->inode->i_mapping);
7492
7493 if (delalloc_work->delay_iput)
7494 btrfs_add_delayed_iput(delalloc_work->inode);
7495 else
7496 iput(delalloc_work->inode);
7497 complete(&delalloc_work->completion);
7498 }
7499
7500 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
7501 int wait, int delay_iput)
7502 {
7503 struct btrfs_delalloc_work *work;
7504
7505 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
7506 if (!work)
7507 return NULL;
7508
7509 init_completion(&work->completion);
7510 INIT_LIST_HEAD(&work->list);
7511 work->inode = inode;
7512 work->wait = wait;
7513 work->delay_iput = delay_iput;
7514 work->work.func = btrfs_run_delalloc_work;
7515
7516 return work;
7517 }
7518
7519 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
7520 {
7521 wait_for_completion(&work->completion);
7522 kmem_cache_free(btrfs_delalloc_work_cachep, work);
7523 }
7524
7525 /*
7526 * some fairly slow code that needs optimization. This walks the list
7527 * of all the inodes with pending delalloc and forces them to disk.
7528 */
7529 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7530 {
7531 struct list_head *head = &root->fs_info->delalloc_inodes;
7532 struct btrfs_inode *binode;
7533 struct inode *inode;
7534 struct btrfs_delalloc_work *work, *next;
7535 struct list_head works;
7536 int ret = 0;
7537
7538 if (root->fs_info->sb->s_flags & MS_RDONLY)
7539 return -EROFS;
7540
7541 INIT_LIST_HEAD(&works);
7542
7543 spin_lock(&root->fs_info->delalloc_lock);
7544 while (!list_empty(head)) {
7545 binode = list_entry(head->next, struct btrfs_inode,
7546 delalloc_inodes);
7547 inode = igrab(&binode->vfs_inode);
7548 if (!inode)
7549 list_del_init(&binode->delalloc_inodes);
7550 spin_unlock(&root->fs_info->delalloc_lock);
7551 if (inode) {
7552 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
7553 if (!work) {
7554 ret = -ENOMEM;
7555 goto out;
7556 }
7557 list_add_tail(&work->list, &works);
7558 btrfs_queue_worker(&root->fs_info->flush_workers,
7559 &work->work);
7560 }
7561 cond_resched();
7562 spin_lock(&root->fs_info->delalloc_lock);
7563 }
7564 spin_unlock(&root->fs_info->delalloc_lock);
7565
7566 /* the filemap_flush will queue IO into the worker threads, but
7567 * we have to make sure the IO is actually started and that
7568 * ordered extents get created before we return
7569 */
7570 atomic_inc(&root->fs_info->async_submit_draining);
7571 while (atomic_read(&root->fs_info->nr_async_submits) ||
7572 atomic_read(&root->fs_info->async_delalloc_pages)) {
7573 wait_event(root->fs_info->async_submit_wait,
7574 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7575 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7576 }
7577 atomic_dec(&root->fs_info->async_submit_draining);
7578 out:
7579 list_for_each_entry_safe(work, next, &works, list) {
7580 list_del_init(&work->list);
7581 btrfs_wait_and_free_delalloc_work(work);
7582 }
7583 return ret;
7584 }
7585
7586 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7587 const char *symname)
7588 {
7589 struct btrfs_trans_handle *trans;
7590 struct btrfs_root *root = BTRFS_I(dir)->root;
7591 struct btrfs_path *path;
7592 struct btrfs_key key;
7593 struct inode *inode = NULL;
7594 int err;
7595 int drop_inode = 0;
7596 u64 objectid;
7597 u64 index = 0 ;
7598 int name_len;
7599 int datasize;
7600 unsigned long ptr;
7601 struct btrfs_file_extent_item *ei;
7602 struct extent_buffer *leaf;
7603
7604 name_len = strlen(symname) + 1;
7605 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7606 return -ENAMETOOLONG;
7607
7608 /*
7609 * 2 items for inode item and ref
7610 * 2 items for dir items
7611 * 1 item for xattr if selinux is on
7612 */
7613 trans = btrfs_start_transaction(root, 5);
7614 if (IS_ERR(trans))
7615 return PTR_ERR(trans);
7616
7617 err = btrfs_find_free_ino(root, &objectid);
7618 if (err)
7619 goto out_unlock;
7620
7621 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7622 dentry->d_name.len, btrfs_ino(dir), objectid,
7623 S_IFLNK|S_IRWXUGO, &index);
7624 if (IS_ERR(inode)) {
7625 err = PTR_ERR(inode);
7626 goto out_unlock;
7627 }
7628
7629 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7630 if (err) {
7631 drop_inode = 1;
7632 goto out_unlock;
7633 }
7634
7635 /*
7636 * If the active LSM wants to access the inode during
7637 * d_instantiate it needs these. Smack checks to see
7638 * if the filesystem supports xattrs by looking at the
7639 * ops vector.
7640 */
7641 inode->i_fop = &btrfs_file_operations;
7642 inode->i_op = &btrfs_file_inode_operations;
7643
7644 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7645 if (err)
7646 drop_inode = 1;
7647 else {
7648 inode->i_mapping->a_ops = &btrfs_aops;
7649 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7650 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7651 }
7652 if (drop_inode)
7653 goto out_unlock;
7654
7655 path = btrfs_alloc_path();
7656 if (!path) {
7657 err = -ENOMEM;
7658 drop_inode = 1;
7659 goto out_unlock;
7660 }
7661 key.objectid = btrfs_ino(inode);
7662 key.offset = 0;
7663 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7664 datasize = btrfs_file_extent_calc_inline_size(name_len);
7665 err = btrfs_insert_empty_item(trans, root, path, &key,
7666 datasize);
7667 if (err) {
7668 drop_inode = 1;
7669 btrfs_free_path(path);
7670 goto out_unlock;
7671 }
7672 leaf = path->nodes[0];
7673 ei = btrfs_item_ptr(leaf, path->slots[0],
7674 struct btrfs_file_extent_item);
7675 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7676 btrfs_set_file_extent_type(leaf, ei,
7677 BTRFS_FILE_EXTENT_INLINE);
7678 btrfs_set_file_extent_encryption(leaf, ei, 0);
7679 btrfs_set_file_extent_compression(leaf, ei, 0);
7680 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7681 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7682
7683 ptr = btrfs_file_extent_inline_start(ei);
7684 write_extent_buffer(leaf, symname, ptr, name_len);
7685 btrfs_mark_buffer_dirty(leaf);
7686 btrfs_free_path(path);
7687
7688 inode->i_op = &btrfs_symlink_inode_operations;
7689 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7690 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7691 inode_set_bytes(inode, name_len);
7692 btrfs_i_size_write(inode, name_len - 1);
7693 err = btrfs_update_inode(trans, root, inode);
7694 if (err)
7695 drop_inode = 1;
7696
7697 out_unlock:
7698 if (!err)
7699 d_instantiate(dentry, inode);
7700 btrfs_end_transaction(trans, root);
7701 if (drop_inode) {
7702 inode_dec_link_count(inode);
7703 iput(inode);
7704 }
7705 btrfs_btree_balance_dirty(root);
7706 return err;
7707 }
7708
7709 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7710 u64 start, u64 num_bytes, u64 min_size,
7711 loff_t actual_len, u64 *alloc_hint,
7712 struct btrfs_trans_handle *trans)
7713 {
7714 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7715 struct extent_map *em;
7716 struct btrfs_root *root = BTRFS_I(inode)->root;
7717 struct btrfs_key ins;
7718 u64 cur_offset = start;
7719 u64 i_size;
7720 int ret = 0;
7721 bool own_trans = true;
7722
7723 if (trans)
7724 own_trans = false;
7725 while (num_bytes > 0) {
7726 if (own_trans) {
7727 trans = btrfs_start_transaction(root, 3);
7728 if (IS_ERR(trans)) {
7729 ret = PTR_ERR(trans);
7730 break;
7731 }
7732 }
7733
7734 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7735 0, *alloc_hint, &ins, 1);
7736 if (ret) {
7737 if (own_trans)
7738 btrfs_end_transaction(trans, root);
7739 break;
7740 }
7741
7742 ret = insert_reserved_file_extent(trans, inode,
7743 cur_offset, ins.objectid,
7744 ins.offset, ins.offset,
7745 ins.offset, 0, 0, 0,
7746 BTRFS_FILE_EXTENT_PREALLOC);
7747 if (ret) {
7748 btrfs_abort_transaction(trans, root, ret);
7749 if (own_trans)
7750 btrfs_end_transaction(trans, root);
7751 break;
7752 }
7753 btrfs_drop_extent_cache(inode, cur_offset,
7754 cur_offset + ins.offset -1, 0);
7755
7756 em = alloc_extent_map();
7757 if (!em) {
7758 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7759 &BTRFS_I(inode)->runtime_flags);
7760 goto next;
7761 }
7762
7763 em->start = cur_offset;
7764 em->orig_start = cur_offset;
7765 em->len = ins.offset;
7766 em->block_start = ins.objectid;
7767 em->block_len = ins.offset;
7768 em->bdev = root->fs_info->fs_devices->latest_bdev;
7769 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7770 em->generation = trans->transid;
7771
7772 while (1) {
7773 write_lock(&em_tree->lock);
7774 ret = add_extent_mapping(em_tree, em);
7775 if (!ret)
7776 list_move(&em->list,
7777 &em_tree->modified_extents);
7778 write_unlock(&em_tree->lock);
7779 if (ret != -EEXIST)
7780 break;
7781 btrfs_drop_extent_cache(inode, cur_offset,
7782 cur_offset + ins.offset - 1,
7783 0);
7784 }
7785 free_extent_map(em);
7786 next:
7787 num_bytes -= ins.offset;
7788 cur_offset += ins.offset;
7789 *alloc_hint = ins.objectid + ins.offset;
7790
7791 inode_inc_iversion(inode);
7792 inode->i_ctime = CURRENT_TIME;
7793 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7794 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7795 (actual_len > inode->i_size) &&
7796 (cur_offset > inode->i_size)) {
7797 if (cur_offset > actual_len)
7798 i_size = actual_len;
7799 else
7800 i_size = cur_offset;
7801 i_size_write(inode, i_size);
7802 btrfs_ordered_update_i_size(inode, i_size, NULL);
7803 }
7804
7805 ret = btrfs_update_inode(trans, root, inode);
7806
7807 if (ret) {
7808 btrfs_abort_transaction(trans, root, ret);
7809 if (own_trans)
7810 btrfs_end_transaction(trans, root);
7811 break;
7812 }
7813
7814 if (own_trans)
7815 btrfs_end_transaction(trans, root);
7816 }
7817 return ret;
7818 }
7819
7820 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7821 u64 start, u64 num_bytes, u64 min_size,
7822 loff_t actual_len, u64 *alloc_hint)
7823 {
7824 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7825 min_size, actual_len, alloc_hint,
7826 NULL);
7827 }
7828
7829 int btrfs_prealloc_file_range_trans(struct inode *inode,
7830 struct btrfs_trans_handle *trans, int mode,
7831 u64 start, u64 num_bytes, u64 min_size,
7832 loff_t actual_len, u64 *alloc_hint)
7833 {
7834 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7835 min_size, actual_len, alloc_hint, trans);
7836 }
7837
7838 static int btrfs_set_page_dirty(struct page *page)
7839 {
7840 return __set_page_dirty_nobuffers(page);
7841 }
7842
7843 static int btrfs_permission(struct inode *inode, int mask)
7844 {
7845 struct btrfs_root *root = BTRFS_I(inode)->root;
7846 umode_t mode = inode->i_mode;
7847
7848 if (mask & MAY_WRITE &&
7849 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7850 if (btrfs_root_readonly(root))
7851 return -EROFS;
7852 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7853 return -EACCES;
7854 }
7855 return generic_permission(inode, mask);
7856 }
7857
7858 static const struct inode_operations btrfs_dir_inode_operations = {
7859 .getattr = btrfs_getattr,
7860 .lookup = btrfs_lookup,
7861 .create = btrfs_create,
7862 .unlink = btrfs_unlink,
7863 .link = btrfs_link,
7864 .mkdir = btrfs_mkdir,
7865 .rmdir = btrfs_rmdir,
7866 .rename = btrfs_rename,
7867 .symlink = btrfs_symlink,
7868 .setattr = btrfs_setattr,
7869 .mknod = btrfs_mknod,
7870 .setxattr = btrfs_setxattr,
7871 .getxattr = btrfs_getxattr,
7872 .listxattr = btrfs_listxattr,
7873 .removexattr = btrfs_removexattr,
7874 .permission = btrfs_permission,
7875 .get_acl = btrfs_get_acl,
7876 };
7877 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7878 .lookup = btrfs_lookup,
7879 .permission = btrfs_permission,
7880 .get_acl = btrfs_get_acl,
7881 };
7882
7883 static const struct file_operations btrfs_dir_file_operations = {
7884 .llseek = generic_file_llseek,
7885 .read = generic_read_dir,
7886 .readdir = btrfs_real_readdir,
7887 .unlocked_ioctl = btrfs_ioctl,
7888 #ifdef CONFIG_COMPAT
7889 .compat_ioctl = btrfs_ioctl,
7890 #endif
7891 .release = btrfs_release_file,
7892 .fsync = btrfs_sync_file,
7893 };
7894
7895 static struct extent_io_ops btrfs_extent_io_ops = {
7896 .fill_delalloc = run_delalloc_range,
7897 .submit_bio_hook = btrfs_submit_bio_hook,
7898 .merge_bio_hook = btrfs_merge_bio_hook,
7899 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7900 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7901 .writepage_start_hook = btrfs_writepage_start_hook,
7902 .set_bit_hook = btrfs_set_bit_hook,
7903 .clear_bit_hook = btrfs_clear_bit_hook,
7904 .merge_extent_hook = btrfs_merge_extent_hook,
7905 .split_extent_hook = btrfs_split_extent_hook,
7906 };
7907
7908 /*
7909 * btrfs doesn't support the bmap operation because swapfiles
7910 * use bmap to make a mapping of extents in the file. They assume
7911 * these extents won't change over the life of the file and they
7912 * use the bmap result to do IO directly to the drive.
7913 *
7914 * the btrfs bmap call would return logical addresses that aren't
7915 * suitable for IO and they also will change frequently as COW
7916 * operations happen. So, swapfile + btrfs == corruption.
7917 *
7918 * For now we're avoiding this by dropping bmap.
7919 */
7920 static const struct address_space_operations btrfs_aops = {
7921 .readpage = btrfs_readpage,
7922 .writepage = btrfs_writepage,
7923 .writepages = btrfs_writepages,
7924 .readpages = btrfs_readpages,
7925 .direct_IO = btrfs_direct_IO,
7926 .invalidatepage = btrfs_invalidatepage,
7927 .releasepage = btrfs_releasepage,
7928 .set_page_dirty = btrfs_set_page_dirty,
7929 .error_remove_page = generic_error_remove_page,
7930 };
7931
7932 static const struct address_space_operations btrfs_symlink_aops = {
7933 .readpage = btrfs_readpage,
7934 .writepage = btrfs_writepage,
7935 .invalidatepage = btrfs_invalidatepage,
7936 .releasepage = btrfs_releasepage,
7937 };
7938
7939 static const struct inode_operations btrfs_file_inode_operations = {
7940 .getattr = btrfs_getattr,
7941 .setattr = btrfs_setattr,
7942 .setxattr = btrfs_setxattr,
7943 .getxattr = btrfs_getxattr,
7944 .listxattr = btrfs_listxattr,
7945 .removexattr = btrfs_removexattr,
7946 .permission = btrfs_permission,
7947 .fiemap = btrfs_fiemap,
7948 .get_acl = btrfs_get_acl,
7949 .update_time = btrfs_update_time,
7950 };
7951 static const struct inode_operations btrfs_special_inode_operations = {
7952 .getattr = btrfs_getattr,
7953 .setattr = btrfs_setattr,
7954 .permission = btrfs_permission,
7955 .setxattr = btrfs_setxattr,
7956 .getxattr = btrfs_getxattr,
7957 .listxattr = btrfs_listxattr,
7958 .removexattr = btrfs_removexattr,
7959 .get_acl = btrfs_get_acl,
7960 .update_time = btrfs_update_time,
7961 };
7962 static const struct inode_operations btrfs_symlink_inode_operations = {
7963 .readlink = generic_readlink,
7964 .follow_link = page_follow_link_light,
7965 .put_link = page_put_link,
7966 .getattr = btrfs_getattr,
7967 .setattr = btrfs_setattr,
7968 .permission = btrfs_permission,
7969 .setxattr = btrfs_setxattr,
7970 .getxattr = btrfs_getxattr,
7971 .listxattr = btrfs_listxattr,
7972 .removexattr = btrfs_removexattr,
7973 .get_acl = btrfs_get_acl,
7974 .update_time = btrfs_update_time,
7975 };
7976
7977 const struct dentry_operations btrfs_dentry_operations = {
7978 .d_delete = btrfs_dentry_delete,
7979 .d_release = btrfs_dentry_release,
7980 };