]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/inode.c
Btrfs: Lower contention on the csum mutex
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48
49 struct btrfs_iget_args {
50 u64 ino;
51 struct btrfs_root *root;
52 };
53
54 static struct inode_operations btrfs_dir_inode_operations;
55 static struct inode_operations btrfs_symlink_inode_operations;
56 static struct inode_operations btrfs_dir_ro_inode_operations;
57 static struct inode_operations btrfs_special_inode_operations;
58 static struct inode_operations btrfs_file_inode_operations;
59 static struct address_space_operations btrfs_aops;
60 static struct address_space_operations btrfs_symlink_aops;
61 static struct file_operations btrfs_dir_file_operations;
62 static struct extent_io_ops btrfs_extent_io_ops;
63
64 static struct kmem_cache *btrfs_inode_cachep;
65 struct kmem_cache *btrfs_trans_handle_cachep;
66 struct kmem_cache *btrfs_transaction_cachep;
67 struct kmem_cache *btrfs_bit_radix_cachep;
68 struct kmem_cache *btrfs_path_cachep;
69
70 #define S_SHIFT 12
71 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
72 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
73 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
74 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
75 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
76 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
77 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
78 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
79 };
80
81 static void btrfs_truncate(struct inode *inode);
82
83 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
84 int for_del)
85 {
86 u64 total;
87 u64 used;
88 u64 thresh;
89 unsigned long flags;
90 int ret = 0;
91
92 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
93 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
94 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
95 if (for_del)
96 thresh = total * 90;
97 else
98 thresh = total * 85;
99
100 do_div(thresh, 100);
101
102 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
103 ret = -ENOSPC;
104 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
105 return ret;
106 }
107
108 static int cow_file_range(struct inode *inode, u64 start, u64 end)
109 {
110 struct btrfs_root *root = BTRFS_I(inode)->root;
111 struct btrfs_trans_handle *trans;
112 u64 alloc_hint = 0;
113 u64 num_bytes;
114 u64 cur_alloc_size;
115 u64 blocksize = root->sectorsize;
116 u64 orig_num_bytes;
117 struct btrfs_key ins;
118 struct extent_map *em;
119 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
120 int ret = 0;
121
122 trans = btrfs_join_transaction(root, 1);
123 BUG_ON(!trans);
124 btrfs_set_trans_block_group(trans, inode);
125
126 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
127 num_bytes = max(blocksize, num_bytes);
128 orig_num_bytes = num_bytes;
129
130 if (alloc_hint == EXTENT_MAP_INLINE)
131 goto out;
132
133 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
134 mutex_lock(&BTRFS_I(inode)->extent_mutex);
135 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
136 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
137
138 while(num_bytes > 0) {
139 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
140 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
141 root->sectorsize, 0, 0,
142 (u64)-1, &ins, 1);
143 if (ret) {
144 WARN_ON(1);
145 goto out;
146 }
147 em = alloc_extent_map(GFP_NOFS);
148 em->start = start;
149 em->len = ins.offset;
150 em->block_start = ins.objectid;
151 em->bdev = root->fs_info->fs_devices->latest_bdev;
152 mutex_lock(&BTRFS_I(inode)->extent_mutex);
153 set_bit(EXTENT_FLAG_PINNED, &em->flags);
154 while(1) {
155 spin_lock(&em_tree->lock);
156 ret = add_extent_mapping(em_tree, em);
157 spin_unlock(&em_tree->lock);
158 if (ret != -EEXIST) {
159 free_extent_map(em);
160 break;
161 }
162 btrfs_drop_extent_cache(inode, start,
163 start + ins.offset - 1);
164 }
165 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
166
167 cur_alloc_size = ins.offset;
168 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
169 ins.offset, 0);
170 BUG_ON(ret);
171 if (num_bytes < cur_alloc_size) {
172 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
173 cur_alloc_size);
174 break;
175 }
176 num_bytes -= cur_alloc_size;
177 alloc_hint = ins.objectid + ins.offset;
178 start += cur_alloc_size;
179 }
180 out:
181 btrfs_end_transaction(trans, root);
182 return ret;
183 }
184
185 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
186 {
187 u64 extent_start;
188 u64 extent_end;
189 u64 bytenr;
190 u64 loops = 0;
191 u64 total_fs_bytes;
192 struct btrfs_root *root = BTRFS_I(inode)->root;
193 struct btrfs_block_group_cache *block_group;
194 struct btrfs_trans_handle *trans;
195 struct extent_buffer *leaf;
196 int found_type;
197 struct btrfs_path *path;
198 struct btrfs_file_extent_item *item;
199 int ret;
200 int err = 0;
201 struct btrfs_key found_key;
202
203 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
204 path = btrfs_alloc_path();
205 BUG_ON(!path);
206 trans = btrfs_join_transaction(root, 1);
207 BUG_ON(!trans);
208 again:
209 ret = btrfs_lookup_file_extent(NULL, root, path,
210 inode->i_ino, start, 0);
211 if (ret < 0) {
212 err = ret;
213 goto out;
214 }
215
216 if (ret != 0) {
217 if (path->slots[0] == 0)
218 goto not_found;
219 path->slots[0]--;
220 }
221
222 leaf = path->nodes[0];
223 item = btrfs_item_ptr(leaf, path->slots[0],
224 struct btrfs_file_extent_item);
225
226 /* are we inside the extent that was found? */
227 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
228 found_type = btrfs_key_type(&found_key);
229 if (found_key.objectid != inode->i_ino ||
230 found_type != BTRFS_EXTENT_DATA_KEY)
231 goto not_found;
232
233 found_type = btrfs_file_extent_type(leaf, item);
234 extent_start = found_key.offset;
235 if (found_type == BTRFS_FILE_EXTENT_REG) {
236 u64 extent_num_bytes;
237
238 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
239 extent_end = extent_start + extent_num_bytes;
240 err = 0;
241
242 if (loops && start != extent_start)
243 goto not_found;
244
245 if (start < extent_start || start >= extent_end)
246 goto not_found;
247
248 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
249 if (bytenr == 0)
250 goto not_found;
251
252 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
253 goto not_found;
254 /*
255 * we may be called by the resizer, make sure we're inside
256 * the limits of the FS
257 */
258 block_group = btrfs_lookup_block_group(root->fs_info,
259 bytenr);
260 if (!block_group || block_group->ro)
261 goto not_found;
262
263 bytenr += btrfs_file_extent_offset(leaf, item);
264 extent_num_bytes = min(end + 1, extent_end) - start;
265 ret = btrfs_add_ordered_extent(inode, start, bytenr,
266 extent_num_bytes, 1);
267 if (ret) {
268 err = ret;
269 goto out;
270 }
271
272 btrfs_release_path(root, path);
273 start = extent_end;
274 if (start <= end) {
275 loops++;
276 goto again;
277 }
278 } else {
279 not_found:
280 btrfs_end_transaction(trans, root);
281 btrfs_free_path(path);
282 return cow_file_range(inode, start, end);
283 }
284 out:
285 WARN_ON(err);
286 btrfs_end_transaction(trans, root);
287 btrfs_free_path(path);
288 return err;
289 }
290
291 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
292 {
293 struct btrfs_root *root = BTRFS_I(inode)->root;
294 int ret;
295
296 if (btrfs_test_opt(root, NODATACOW) ||
297 btrfs_test_flag(inode, NODATACOW))
298 ret = run_delalloc_nocow(inode, start, end);
299 else
300 ret = cow_file_range(inode, start, end);
301
302 return ret;
303 }
304
305 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
306 unsigned long old, unsigned long bits)
307 {
308 unsigned long flags;
309 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
310 struct btrfs_root *root = BTRFS_I(inode)->root;
311 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
312 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
313 root->fs_info->delalloc_bytes += end - start + 1;
314 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
315 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
316 &root->fs_info->delalloc_inodes);
317 }
318 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
319 }
320 return 0;
321 }
322
323 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
324 unsigned long old, unsigned long bits)
325 {
326 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
327 struct btrfs_root *root = BTRFS_I(inode)->root;
328 unsigned long flags;
329
330 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
331 if (end - start + 1 > root->fs_info->delalloc_bytes) {
332 printk("warning: delalloc account %Lu %Lu\n",
333 end - start + 1, root->fs_info->delalloc_bytes);
334 root->fs_info->delalloc_bytes = 0;
335 BTRFS_I(inode)->delalloc_bytes = 0;
336 } else {
337 root->fs_info->delalloc_bytes -= end - start + 1;
338 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
339 }
340 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
341 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
342 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
343 }
344 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
345 }
346 return 0;
347 }
348
349 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
350 size_t size, struct bio *bio)
351 {
352 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
353 struct btrfs_mapping_tree *map_tree;
354 u64 logical = bio->bi_sector << 9;
355 u64 length = 0;
356 u64 map_length;
357 int ret;
358
359 length = bio->bi_size;
360 map_tree = &root->fs_info->mapping_tree;
361 map_length = length;
362 ret = btrfs_map_block(map_tree, READ, logical,
363 &map_length, NULL, 0);
364
365 if (map_length < length + size) {
366 return 1;
367 }
368 return 0;
369 }
370
371 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
372 int mirror_num)
373 {
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375 int ret = 0;
376
377 ret = btrfs_csum_one_bio(root, inode, bio);
378 BUG_ON(ret);
379
380 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
381 }
382
383 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
384 int mirror_num)
385 {
386 struct btrfs_root *root = BTRFS_I(inode)->root;
387 int ret = 0;
388
389 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
390 BUG_ON(ret);
391
392 if (!(rw & (1 << BIO_RW))) {
393 goto mapit;
394 }
395
396 if (btrfs_test_opt(root, NODATASUM) ||
397 btrfs_test_flag(inode, NODATASUM)) {
398 goto mapit;
399 }
400
401 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
402 inode, rw, bio, mirror_num,
403 __btrfs_submit_bio_hook);
404 mapit:
405 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
406 }
407
408 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
409 struct inode *inode, u64 file_offset,
410 struct list_head *list)
411 {
412 struct list_head *cur;
413 struct btrfs_ordered_sum *sum;
414
415 btrfs_set_trans_block_group(trans, inode);
416 list_for_each(cur, list) {
417 sum = list_entry(cur, struct btrfs_ordered_sum, list);
418 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
419 inode, sum);
420 }
421 return 0;
422 }
423
424 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
425 {
426 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
427 GFP_NOFS);
428 }
429
430 struct btrfs_writepage_fixup {
431 struct page *page;
432 struct btrfs_work work;
433 };
434
435 /* see btrfs_writepage_start_hook for details on why this is required */
436 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
437 {
438 struct btrfs_writepage_fixup *fixup;
439 struct btrfs_ordered_extent *ordered;
440 struct page *page;
441 struct inode *inode;
442 u64 page_start;
443 u64 page_end;
444
445 fixup = container_of(work, struct btrfs_writepage_fixup, work);
446 page = fixup->page;
447 again:
448 lock_page(page);
449 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
450 ClearPageChecked(page);
451 goto out_page;
452 }
453
454 inode = page->mapping->host;
455 page_start = page_offset(page);
456 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
457
458 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
459
460 /* already ordered? We're done */
461 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
462 EXTENT_ORDERED, 0)) {
463 goto out;
464 }
465
466 ordered = btrfs_lookup_ordered_extent(inode, page_start);
467 if (ordered) {
468 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
469 page_end, GFP_NOFS);
470 unlock_page(page);
471 btrfs_start_ordered_extent(inode, ordered, 1);
472 goto again;
473 }
474
475 btrfs_set_extent_delalloc(inode, page_start, page_end);
476 ClearPageChecked(page);
477 out:
478 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
479 out_page:
480 unlock_page(page);
481 page_cache_release(page);
482 }
483
484 /*
485 * There are a few paths in the higher layers of the kernel that directly
486 * set the page dirty bit without asking the filesystem if it is a
487 * good idea. This causes problems because we want to make sure COW
488 * properly happens and the data=ordered rules are followed.
489 *
490 * In our case any range that doesn't have the EXTENT_ORDERED bit set
491 * hasn't been properly setup for IO. We kick off an async process
492 * to fix it up. The async helper will wait for ordered extents, set
493 * the delalloc bit and make it safe to write the page.
494 */
495 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
496 {
497 struct inode *inode = page->mapping->host;
498 struct btrfs_writepage_fixup *fixup;
499 struct btrfs_root *root = BTRFS_I(inode)->root;
500 int ret;
501
502 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
503 EXTENT_ORDERED, 0);
504 if (ret)
505 return 0;
506
507 if (PageChecked(page))
508 return -EAGAIN;
509
510 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
511 if (!fixup)
512 return -EAGAIN;
513
514 SetPageChecked(page);
515 page_cache_get(page);
516 fixup->work.func = btrfs_writepage_fixup_worker;
517 fixup->page = page;
518 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
519 return -EAGAIN;
520 }
521
522 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
523 {
524 struct btrfs_root *root = BTRFS_I(inode)->root;
525 struct btrfs_trans_handle *trans;
526 struct btrfs_ordered_extent *ordered_extent;
527 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
528 u64 alloc_hint = 0;
529 struct list_head list;
530 struct btrfs_key ins;
531 int ret;
532
533 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
534 if (!ret)
535 return 0;
536
537 trans = btrfs_join_transaction(root, 1);
538
539 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
540 BUG_ON(!ordered_extent);
541 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
542 goto nocow;
543
544 lock_extent(io_tree, ordered_extent->file_offset,
545 ordered_extent->file_offset + ordered_extent->len - 1,
546 GFP_NOFS);
547
548 INIT_LIST_HEAD(&list);
549
550 ins.objectid = ordered_extent->start;
551 ins.offset = ordered_extent->len;
552 ins.type = BTRFS_EXTENT_ITEM_KEY;
553
554 ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid,
555 trans->transid, inode->i_ino,
556 ordered_extent->file_offset, &ins);
557 BUG_ON(ret);
558
559 mutex_lock(&BTRFS_I(inode)->extent_mutex);
560
561 ret = btrfs_drop_extents(trans, root, inode,
562 ordered_extent->file_offset,
563 ordered_extent->file_offset +
564 ordered_extent->len,
565 ordered_extent->file_offset, &alloc_hint);
566 BUG_ON(ret);
567 ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
568 ordered_extent->file_offset,
569 ordered_extent->start,
570 ordered_extent->len,
571 ordered_extent->len, 0);
572 BUG_ON(ret);
573
574 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
575 ordered_extent->file_offset +
576 ordered_extent->len - 1);
577 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
578
579 inode->i_blocks += ordered_extent->len >> 9;
580 unlock_extent(io_tree, ordered_extent->file_offset,
581 ordered_extent->file_offset + ordered_extent->len - 1,
582 GFP_NOFS);
583 nocow:
584 add_pending_csums(trans, inode, ordered_extent->file_offset,
585 &ordered_extent->list);
586
587 btrfs_ordered_update_i_size(inode, ordered_extent);
588 btrfs_remove_ordered_extent(inode, ordered_extent);
589
590 /* once for us */
591 btrfs_put_ordered_extent(ordered_extent);
592 /* once for the tree */
593 btrfs_put_ordered_extent(ordered_extent);
594
595 btrfs_update_inode(trans, root, inode);
596 btrfs_end_transaction(trans, root);
597 return 0;
598 }
599
600 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
601 struct extent_state *state, int uptodate)
602 {
603 return btrfs_finish_ordered_io(page->mapping->host, start, end);
604 }
605
606 int btrfs_readpage_io_hook(struct page *page, u64 start, u64 end)
607 {
608 int ret = 0;
609 struct inode *inode = page->mapping->host;
610 struct btrfs_root *root = BTRFS_I(inode)->root;
611 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
612 struct btrfs_csum_item *item;
613 struct btrfs_path *path = NULL;
614 u32 csum;
615
616 if (btrfs_test_opt(root, NODATASUM) ||
617 btrfs_test_flag(inode, NODATASUM))
618 return 0;
619
620 /*
621 * It is possible there is an ordered extent that has
622 * not yet finished for this range in the file. If so,
623 * that extent will have a csum cached, and it will insert
624 * the sum after all the blocks in the extent are fully
625 * on disk. So, look for an ordered extent and use the
626 * sum if found. We have to do this before looking in the
627 * btree because csum items are pre-inserted based on
628 * the file size. btrfs_lookup_csum might find an item
629 * that still hasn't been fully filled.
630 */
631 ret = btrfs_find_ordered_sum(inode, start, &csum);
632 if (ret == 0)
633 goto found;
634
635 ret = 0;
636 path = btrfs_alloc_path();
637 item = btrfs_lookup_csum(NULL, root, path, inode->i_ino, start, 0);
638 if (IS_ERR(item)) {
639 ret = PTR_ERR(item);
640 /* a csum that isn't present is a preallocated region. */
641 if (ret == -ENOENT || ret == -EFBIG)
642 ret = 0;
643 csum = 0;
644 printk("no csum found for inode %lu start %Lu\n", inode->i_ino,
645 start);
646 goto out;
647 }
648 read_extent_buffer(path->nodes[0], &csum, (unsigned long)item,
649 BTRFS_CRC32_SIZE);
650 found:
651 set_state_private(io_tree, start, csum);
652 out:
653 if (path)
654 btrfs_free_path(path);
655 return ret;
656 }
657
658 struct io_failure_record {
659 struct page *page;
660 u64 start;
661 u64 len;
662 u64 logical;
663 int last_mirror;
664 };
665
666 int btrfs_io_failed_hook(struct bio *failed_bio,
667 struct page *page, u64 start, u64 end,
668 struct extent_state *state)
669 {
670 struct io_failure_record *failrec = NULL;
671 u64 private;
672 struct extent_map *em;
673 struct inode *inode = page->mapping->host;
674 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
675 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
676 struct bio *bio;
677 int num_copies;
678 int ret;
679 int rw;
680 u64 logical;
681
682 ret = get_state_private(failure_tree, start, &private);
683 if (ret) {
684 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
685 if (!failrec)
686 return -ENOMEM;
687 failrec->start = start;
688 failrec->len = end - start + 1;
689 failrec->last_mirror = 0;
690
691 spin_lock(&em_tree->lock);
692 em = lookup_extent_mapping(em_tree, start, failrec->len);
693 if (em->start > start || em->start + em->len < start) {
694 free_extent_map(em);
695 em = NULL;
696 }
697 spin_unlock(&em_tree->lock);
698
699 if (!em || IS_ERR(em)) {
700 kfree(failrec);
701 return -EIO;
702 }
703 logical = start - em->start;
704 logical = em->block_start + logical;
705 failrec->logical = logical;
706 free_extent_map(em);
707 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
708 EXTENT_DIRTY, GFP_NOFS);
709 set_state_private(failure_tree, start,
710 (u64)(unsigned long)failrec);
711 } else {
712 failrec = (struct io_failure_record *)(unsigned long)private;
713 }
714 num_copies = btrfs_num_copies(
715 &BTRFS_I(inode)->root->fs_info->mapping_tree,
716 failrec->logical, failrec->len);
717 failrec->last_mirror++;
718 if (!state) {
719 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
720 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
721 failrec->start,
722 EXTENT_LOCKED);
723 if (state && state->start != failrec->start)
724 state = NULL;
725 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
726 }
727 if (!state || failrec->last_mirror > num_copies) {
728 set_state_private(failure_tree, failrec->start, 0);
729 clear_extent_bits(failure_tree, failrec->start,
730 failrec->start + failrec->len - 1,
731 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
732 kfree(failrec);
733 return -EIO;
734 }
735 bio = bio_alloc(GFP_NOFS, 1);
736 bio->bi_private = state;
737 bio->bi_end_io = failed_bio->bi_end_io;
738 bio->bi_sector = failrec->logical >> 9;
739 bio->bi_bdev = failed_bio->bi_bdev;
740 bio->bi_size = 0;
741 bio_add_page(bio, page, failrec->len, start - page_offset(page));
742 if (failed_bio->bi_rw & (1 << BIO_RW))
743 rw = WRITE;
744 else
745 rw = READ;
746
747 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
748 failrec->last_mirror);
749 return 0;
750 }
751
752 int btrfs_clean_io_failures(struct inode *inode, u64 start)
753 {
754 u64 private;
755 u64 private_failure;
756 struct io_failure_record *failure;
757 int ret;
758
759 private = 0;
760 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
761 (u64)-1, 1, EXTENT_DIRTY)) {
762 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
763 start, &private_failure);
764 if (ret == 0) {
765 failure = (struct io_failure_record *)(unsigned long)
766 private_failure;
767 set_state_private(&BTRFS_I(inode)->io_failure_tree,
768 failure->start, 0);
769 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
770 failure->start,
771 failure->start + failure->len - 1,
772 EXTENT_DIRTY | EXTENT_LOCKED,
773 GFP_NOFS);
774 kfree(failure);
775 }
776 }
777 return 0;
778 }
779
780 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
781 struct extent_state *state)
782 {
783 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
784 struct inode *inode = page->mapping->host;
785 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
786 char *kaddr;
787 u64 private = ~(u32)0;
788 int ret;
789 struct btrfs_root *root = BTRFS_I(inode)->root;
790 u32 csum = ~(u32)0;
791 unsigned long flags;
792
793 if (btrfs_test_opt(root, NODATASUM) ||
794 btrfs_test_flag(inode, NODATASUM))
795 return 0;
796 if (state && state->start == start) {
797 private = state->private;
798 ret = 0;
799 } else {
800 ret = get_state_private(io_tree, start, &private);
801 }
802 local_irq_save(flags);
803 kaddr = kmap_atomic(page, KM_IRQ0);
804 if (ret) {
805 goto zeroit;
806 }
807 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
808 btrfs_csum_final(csum, (char *)&csum);
809 if (csum != private) {
810 goto zeroit;
811 }
812 kunmap_atomic(kaddr, KM_IRQ0);
813 local_irq_restore(flags);
814
815 /* if the io failure tree for this inode is non-empty,
816 * check to see if we've recovered from a failed IO
817 */
818 btrfs_clean_io_failures(inode, start);
819 return 0;
820
821 zeroit:
822 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
823 page->mapping->host->i_ino, (unsigned long long)start, csum,
824 private);
825 memset(kaddr + offset, 1, end - start + 1);
826 flush_dcache_page(page);
827 kunmap_atomic(kaddr, KM_IRQ0);
828 local_irq_restore(flags);
829 if (private == 0)
830 return 0;
831 return -EIO;
832 }
833
834 /*
835 * This creates an orphan entry for the given inode in case something goes
836 * wrong in the middle of an unlink/truncate.
837 */
838 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
839 {
840 struct btrfs_root *root = BTRFS_I(inode)->root;
841 int ret = 0;
842
843 spin_lock(&root->list_lock);
844
845 /* already on the orphan list, we're good */
846 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
847 spin_unlock(&root->list_lock);
848 return 0;
849 }
850
851 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
852
853 spin_unlock(&root->list_lock);
854
855 /*
856 * insert an orphan item to track this unlinked/truncated file
857 */
858 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
859
860 return ret;
861 }
862
863 /*
864 * We have done the truncate/delete so we can go ahead and remove the orphan
865 * item for this particular inode.
866 */
867 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
868 {
869 struct btrfs_root *root = BTRFS_I(inode)->root;
870 int ret = 0;
871
872 spin_lock(&root->list_lock);
873
874 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
875 spin_unlock(&root->list_lock);
876 return 0;
877 }
878
879 list_del_init(&BTRFS_I(inode)->i_orphan);
880 if (!trans) {
881 spin_unlock(&root->list_lock);
882 return 0;
883 }
884
885 spin_unlock(&root->list_lock);
886
887 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
888
889 return ret;
890 }
891
892 /*
893 * this cleans up any orphans that may be left on the list from the last use
894 * of this root.
895 */
896 void btrfs_orphan_cleanup(struct btrfs_root *root)
897 {
898 struct btrfs_path *path;
899 struct extent_buffer *leaf;
900 struct btrfs_item *item;
901 struct btrfs_key key, found_key;
902 struct btrfs_trans_handle *trans;
903 struct inode *inode;
904 int ret = 0, nr_unlink = 0, nr_truncate = 0;
905
906 /* don't do orphan cleanup if the fs is readonly. */
907 if (root->inode->i_sb->s_flags & MS_RDONLY)
908 return;
909
910 path = btrfs_alloc_path();
911 if (!path)
912 return;
913 path->reada = -1;
914
915 key.objectid = BTRFS_ORPHAN_OBJECTID;
916 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
917 key.offset = (u64)-1;
918
919 trans = btrfs_start_transaction(root, 1);
920 btrfs_set_trans_block_group(trans, root->inode);
921
922 while (1) {
923 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
924 if (ret < 0) {
925 printk(KERN_ERR "Error searching slot for orphan: %d"
926 "\n", ret);
927 break;
928 }
929
930 /*
931 * if ret == 0 means we found what we were searching for, which
932 * is weird, but possible, so only screw with path if we didnt
933 * find the key and see if we have stuff that matches
934 */
935 if (ret > 0) {
936 if (path->slots[0] == 0)
937 break;
938 path->slots[0]--;
939 }
940
941 /* pull out the item */
942 leaf = path->nodes[0];
943 item = btrfs_item_nr(leaf, path->slots[0]);
944 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
945
946 /* make sure the item matches what we want */
947 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
948 break;
949 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
950 break;
951
952 /* release the path since we're done with it */
953 btrfs_release_path(root, path);
954
955 /*
956 * this is where we are basically btrfs_lookup, without the
957 * crossing root thing. we store the inode number in the
958 * offset of the orphan item.
959 */
960 inode = btrfs_iget_locked(root->inode->i_sb,
961 found_key.offset, root);
962 if (!inode)
963 break;
964
965 if (inode->i_state & I_NEW) {
966 BTRFS_I(inode)->root = root;
967
968 /* have to set the location manually */
969 BTRFS_I(inode)->location.objectid = inode->i_ino;
970 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
971 BTRFS_I(inode)->location.offset = 0;
972
973 btrfs_read_locked_inode(inode);
974 unlock_new_inode(inode);
975 }
976
977 /*
978 * add this inode to the orphan list so btrfs_orphan_del does
979 * the proper thing when we hit it
980 */
981 spin_lock(&root->list_lock);
982 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
983 spin_unlock(&root->list_lock);
984
985 /*
986 * if this is a bad inode, means we actually succeeded in
987 * removing the inode, but not the orphan record, which means
988 * we need to manually delete the orphan since iput will just
989 * do a destroy_inode
990 */
991 if (is_bad_inode(inode)) {
992 btrfs_orphan_del(trans, inode);
993 iput(inode);
994 continue;
995 }
996
997 /* if we have links, this was a truncate, lets do that */
998 if (inode->i_nlink) {
999 nr_truncate++;
1000 btrfs_truncate(inode);
1001 } else {
1002 nr_unlink++;
1003 }
1004
1005 /* this will do delete_inode and everything for us */
1006 iput(inode);
1007 }
1008
1009 if (nr_unlink)
1010 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1011 if (nr_truncate)
1012 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1013
1014 btrfs_free_path(path);
1015 btrfs_end_transaction(trans, root);
1016 }
1017
1018 void btrfs_read_locked_inode(struct inode *inode)
1019 {
1020 struct btrfs_path *path;
1021 struct extent_buffer *leaf;
1022 struct btrfs_inode_item *inode_item;
1023 struct btrfs_timespec *tspec;
1024 struct btrfs_root *root = BTRFS_I(inode)->root;
1025 struct btrfs_key location;
1026 u64 alloc_group_block;
1027 u32 rdev;
1028 int ret;
1029
1030 path = btrfs_alloc_path();
1031 BUG_ON(!path);
1032 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1033
1034 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1035 if (ret)
1036 goto make_bad;
1037
1038 leaf = path->nodes[0];
1039 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1040 struct btrfs_inode_item);
1041
1042 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1043 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1044 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1045 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1046 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1047
1048 tspec = btrfs_inode_atime(inode_item);
1049 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1050 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1051
1052 tspec = btrfs_inode_mtime(inode_item);
1053 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1054 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1055
1056 tspec = btrfs_inode_ctime(inode_item);
1057 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1058 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1059
1060 inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1061 inode->i_generation = btrfs_inode_generation(leaf, inode_item);
1062 inode->i_rdev = 0;
1063 rdev = btrfs_inode_rdev(leaf, inode_item);
1064
1065 BTRFS_I(inode)->index_cnt = (u64)-1;
1066
1067 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1068 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1069 alloc_group_block);
1070 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1071 if (!BTRFS_I(inode)->block_group) {
1072 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1073 NULL, 0,
1074 BTRFS_BLOCK_GROUP_METADATA, 0);
1075 }
1076 btrfs_free_path(path);
1077 inode_item = NULL;
1078
1079 switch (inode->i_mode & S_IFMT) {
1080 case S_IFREG:
1081 inode->i_mapping->a_ops = &btrfs_aops;
1082 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1083 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1084 inode->i_fop = &btrfs_file_operations;
1085 inode->i_op = &btrfs_file_inode_operations;
1086 break;
1087 case S_IFDIR:
1088 inode->i_fop = &btrfs_dir_file_operations;
1089 if (root == root->fs_info->tree_root)
1090 inode->i_op = &btrfs_dir_ro_inode_operations;
1091 else
1092 inode->i_op = &btrfs_dir_inode_operations;
1093 break;
1094 case S_IFLNK:
1095 inode->i_op = &btrfs_symlink_inode_operations;
1096 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1097 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1098 break;
1099 default:
1100 init_special_inode(inode, inode->i_mode, rdev);
1101 break;
1102 }
1103 return;
1104
1105 make_bad:
1106 btrfs_free_path(path);
1107 make_bad_inode(inode);
1108 }
1109
1110 static void fill_inode_item(struct extent_buffer *leaf,
1111 struct btrfs_inode_item *item,
1112 struct inode *inode)
1113 {
1114 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1115 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1116 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1117 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1118 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1119
1120 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1121 inode->i_atime.tv_sec);
1122 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1123 inode->i_atime.tv_nsec);
1124
1125 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1126 inode->i_mtime.tv_sec);
1127 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1128 inode->i_mtime.tv_nsec);
1129
1130 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1131 inode->i_ctime.tv_sec);
1132 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1133 inode->i_ctime.tv_nsec);
1134
1135 btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1136 btrfs_set_inode_generation(leaf, item, inode->i_generation);
1137 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1138 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1139 btrfs_set_inode_block_group(leaf, item,
1140 BTRFS_I(inode)->block_group->key.objectid);
1141 }
1142
1143 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1144 struct btrfs_root *root,
1145 struct inode *inode)
1146 {
1147 struct btrfs_inode_item *inode_item;
1148 struct btrfs_path *path;
1149 struct extent_buffer *leaf;
1150 int ret;
1151
1152 path = btrfs_alloc_path();
1153 BUG_ON(!path);
1154 ret = btrfs_lookup_inode(trans, root, path,
1155 &BTRFS_I(inode)->location, 1);
1156 if (ret) {
1157 if (ret > 0)
1158 ret = -ENOENT;
1159 goto failed;
1160 }
1161
1162 leaf = path->nodes[0];
1163 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1164 struct btrfs_inode_item);
1165
1166 fill_inode_item(leaf, inode_item, inode);
1167 btrfs_mark_buffer_dirty(leaf);
1168 btrfs_set_inode_last_trans(trans, inode);
1169 ret = 0;
1170 failed:
1171 btrfs_free_path(path);
1172 return ret;
1173 }
1174
1175
1176 static int btrfs_unlink_trans(struct btrfs_trans_handle *trans,
1177 struct btrfs_root *root,
1178 struct inode *dir,
1179 struct dentry *dentry)
1180 {
1181 struct btrfs_path *path;
1182 const char *name = dentry->d_name.name;
1183 int name_len = dentry->d_name.len;
1184 int ret = 0;
1185 struct extent_buffer *leaf;
1186 struct btrfs_dir_item *di;
1187 struct btrfs_key key;
1188 u64 index;
1189
1190 path = btrfs_alloc_path();
1191 if (!path) {
1192 ret = -ENOMEM;
1193 goto err;
1194 }
1195
1196 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1197 name, name_len, -1);
1198 if (IS_ERR(di)) {
1199 ret = PTR_ERR(di);
1200 goto err;
1201 }
1202 if (!di) {
1203 ret = -ENOENT;
1204 goto err;
1205 }
1206 leaf = path->nodes[0];
1207 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1208 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1209 if (ret)
1210 goto err;
1211 btrfs_release_path(root, path);
1212
1213 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1214 dentry->d_inode->i_ino,
1215 dentry->d_parent->d_inode->i_ino, &index);
1216 if (ret) {
1217 printk("failed to delete reference to %.*s, "
1218 "inode %lu parent %lu\n", name_len, name,
1219 dentry->d_inode->i_ino,
1220 dentry->d_parent->d_inode->i_ino);
1221 goto err;
1222 }
1223
1224 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1225 index, name, name_len, -1);
1226 if (IS_ERR(di)) {
1227 ret = PTR_ERR(di);
1228 goto err;
1229 }
1230 if (!di) {
1231 ret = -ENOENT;
1232 goto err;
1233 }
1234 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1235 btrfs_release_path(root, path);
1236
1237 dentry->d_inode->i_ctime = dir->i_ctime;
1238 err:
1239 btrfs_free_path(path);
1240 if (!ret) {
1241 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1242 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1243 btrfs_update_inode(trans, root, dir);
1244 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1245 dentry->d_inode->i_nlink--;
1246 #else
1247 drop_nlink(dentry->d_inode);
1248 #endif
1249 ret = btrfs_update_inode(trans, root, dentry->d_inode);
1250 dir->i_sb->s_dirt = 1;
1251 }
1252 return ret;
1253 }
1254
1255 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1256 {
1257 struct btrfs_root *root;
1258 struct btrfs_trans_handle *trans;
1259 struct inode *inode = dentry->d_inode;
1260 int ret;
1261 unsigned long nr = 0;
1262
1263 root = BTRFS_I(dir)->root;
1264
1265 ret = btrfs_check_free_space(root, 1, 1);
1266 if (ret)
1267 goto fail;
1268
1269 trans = btrfs_start_transaction(root, 1);
1270
1271 btrfs_set_trans_block_group(trans, dir);
1272 ret = btrfs_unlink_trans(trans, root, dir, dentry);
1273
1274 if (inode->i_nlink == 0)
1275 ret = btrfs_orphan_add(trans, inode);
1276
1277 nr = trans->blocks_used;
1278
1279 btrfs_end_transaction_throttle(trans, root);
1280 fail:
1281 btrfs_btree_balance_dirty(root, nr);
1282 return ret;
1283 }
1284
1285 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1286 {
1287 struct inode *inode = dentry->d_inode;
1288 int err = 0;
1289 int ret;
1290 struct btrfs_root *root = BTRFS_I(dir)->root;
1291 struct btrfs_trans_handle *trans;
1292 unsigned long nr = 0;
1293
1294 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1295 return -ENOTEMPTY;
1296 }
1297
1298 ret = btrfs_check_free_space(root, 1, 1);
1299 if (ret)
1300 goto fail;
1301
1302 trans = btrfs_start_transaction(root, 1);
1303 btrfs_set_trans_block_group(trans, dir);
1304
1305 err = btrfs_orphan_add(trans, inode);
1306 if (err)
1307 goto fail_trans;
1308
1309 /* now the directory is empty */
1310 err = btrfs_unlink_trans(trans, root, dir, dentry);
1311 if (!err) {
1312 btrfs_i_size_write(inode, 0);
1313 }
1314
1315 fail_trans:
1316 nr = trans->blocks_used;
1317 ret = btrfs_end_transaction_throttle(trans, root);
1318 fail:
1319 btrfs_btree_balance_dirty(root, nr);
1320
1321 if (ret && !err)
1322 err = ret;
1323 return err;
1324 }
1325
1326 /*
1327 * this can truncate away extent items, csum items and directory items.
1328 * It starts at a high offset and removes keys until it can't find
1329 * any higher than i_size.
1330 *
1331 * csum items that cross the new i_size are truncated to the new size
1332 * as well.
1333 *
1334 * min_type is the minimum key type to truncate down to. If set to 0, this
1335 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1336 */
1337 static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans,
1338 struct btrfs_root *root,
1339 struct inode *inode,
1340 u32 min_type)
1341 {
1342 int ret;
1343 struct btrfs_path *path;
1344 struct btrfs_key key;
1345 struct btrfs_key found_key;
1346 u32 found_type;
1347 struct extent_buffer *leaf;
1348 struct btrfs_file_extent_item *fi;
1349 u64 extent_start = 0;
1350 u64 extent_num_bytes = 0;
1351 u64 item_end = 0;
1352 u64 root_gen = 0;
1353 u64 root_owner = 0;
1354 int found_extent;
1355 int del_item;
1356 int pending_del_nr = 0;
1357 int pending_del_slot = 0;
1358 int extent_type = -1;
1359 u64 mask = root->sectorsize - 1;
1360
1361 btrfs_drop_extent_cache(inode, inode->i_size & (~mask), (u64)-1);
1362 path = btrfs_alloc_path();
1363 path->reada = -1;
1364 BUG_ON(!path);
1365
1366 /* FIXME, add redo link to tree so we don't leak on crash */
1367 key.objectid = inode->i_ino;
1368 key.offset = (u64)-1;
1369 key.type = (u8)-1;
1370
1371 btrfs_init_path(path);
1372 search_again:
1373 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1374 if (ret < 0) {
1375 goto error;
1376 }
1377 if (ret > 0) {
1378 BUG_ON(path->slots[0] == 0);
1379 path->slots[0]--;
1380 }
1381
1382 while(1) {
1383 fi = NULL;
1384 leaf = path->nodes[0];
1385 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1386 found_type = btrfs_key_type(&found_key);
1387
1388 if (found_key.objectid != inode->i_ino)
1389 break;
1390
1391 if (found_type < min_type)
1392 break;
1393
1394 item_end = found_key.offset;
1395 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1396 fi = btrfs_item_ptr(leaf, path->slots[0],
1397 struct btrfs_file_extent_item);
1398 extent_type = btrfs_file_extent_type(leaf, fi);
1399 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1400 item_end +=
1401 btrfs_file_extent_num_bytes(leaf, fi);
1402 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1403 struct btrfs_item *item = btrfs_item_nr(leaf,
1404 path->slots[0]);
1405 item_end += btrfs_file_extent_inline_len(leaf,
1406 item);
1407 }
1408 item_end--;
1409 }
1410 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1411 ret = btrfs_csum_truncate(trans, root, path,
1412 inode->i_size);
1413 BUG_ON(ret);
1414 }
1415 if (item_end < inode->i_size) {
1416 if (found_type == BTRFS_DIR_ITEM_KEY) {
1417 found_type = BTRFS_INODE_ITEM_KEY;
1418 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1419 found_type = BTRFS_CSUM_ITEM_KEY;
1420 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1421 found_type = BTRFS_XATTR_ITEM_KEY;
1422 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1423 found_type = BTRFS_INODE_REF_KEY;
1424 } else if (found_type) {
1425 found_type--;
1426 } else {
1427 break;
1428 }
1429 btrfs_set_key_type(&key, found_type);
1430 goto next;
1431 }
1432 if (found_key.offset >= inode->i_size)
1433 del_item = 1;
1434 else
1435 del_item = 0;
1436 found_extent = 0;
1437
1438 /* FIXME, shrink the extent if the ref count is only 1 */
1439 if (found_type != BTRFS_EXTENT_DATA_KEY)
1440 goto delete;
1441
1442 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1443 u64 num_dec;
1444 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1445 if (!del_item) {
1446 u64 orig_num_bytes =
1447 btrfs_file_extent_num_bytes(leaf, fi);
1448 extent_num_bytes = inode->i_size -
1449 found_key.offset + root->sectorsize - 1;
1450 extent_num_bytes = extent_num_bytes &
1451 ~((u64)root->sectorsize - 1);
1452 btrfs_set_file_extent_num_bytes(leaf, fi,
1453 extent_num_bytes);
1454 num_dec = (orig_num_bytes -
1455 extent_num_bytes);
1456 if (extent_start != 0)
1457 dec_i_blocks(inode, num_dec);
1458 btrfs_mark_buffer_dirty(leaf);
1459 } else {
1460 extent_num_bytes =
1461 btrfs_file_extent_disk_num_bytes(leaf,
1462 fi);
1463 /* FIXME blocksize != 4096 */
1464 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1465 if (extent_start != 0) {
1466 found_extent = 1;
1467 dec_i_blocks(inode, num_dec);
1468 }
1469 root_gen = btrfs_header_generation(leaf);
1470 root_owner = btrfs_header_owner(leaf);
1471 }
1472 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1473 if (!del_item) {
1474 u32 newsize = inode->i_size - found_key.offset;
1475 dec_i_blocks(inode, item_end + 1 -
1476 found_key.offset - newsize);
1477 newsize =
1478 btrfs_file_extent_calc_inline_size(newsize);
1479 ret = btrfs_truncate_item(trans, root, path,
1480 newsize, 1);
1481 BUG_ON(ret);
1482 } else {
1483 dec_i_blocks(inode, item_end + 1 -
1484 found_key.offset);
1485 }
1486 }
1487 delete:
1488 if (del_item) {
1489 if (!pending_del_nr) {
1490 /* no pending yet, add ourselves */
1491 pending_del_slot = path->slots[0];
1492 pending_del_nr = 1;
1493 } else if (pending_del_nr &&
1494 path->slots[0] + 1 == pending_del_slot) {
1495 /* hop on the pending chunk */
1496 pending_del_nr++;
1497 pending_del_slot = path->slots[0];
1498 } else {
1499 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1500 }
1501 } else {
1502 break;
1503 }
1504 if (found_extent) {
1505 ret = btrfs_free_extent(trans, root, extent_start,
1506 extent_num_bytes,
1507 root_owner,
1508 root_gen, inode->i_ino,
1509 found_key.offset, 0);
1510 BUG_ON(ret);
1511 }
1512 next:
1513 if (path->slots[0] == 0) {
1514 if (pending_del_nr)
1515 goto del_pending;
1516 btrfs_release_path(root, path);
1517 goto search_again;
1518 }
1519
1520 path->slots[0]--;
1521 if (pending_del_nr &&
1522 path->slots[0] + 1 != pending_del_slot) {
1523 struct btrfs_key debug;
1524 del_pending:
1525 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1526 pending_del_slot);
1527 ret = btrfs_del_items(trans, root, path,
1528 pending_del_slot,
1529 pending_del_nr);
1530 BUG_ON(ret);
1531 pending_del_nr = 0;
1532 btrfs_release_path(root, path);
1533 goto search_again;
1534 }
1535 }
1536 ret = 0;
1537 error:
1538 if (pending_del_nr) {
1539 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1540 pending_del_nr);
1541 }
1542 btrfs_free_path(path);
1543 inode->i_sb->s_dirt = 1;
1544 return ret;
1545 }
1546
1547 /*
1548 * taken from block_truncate_page, but does cow as it zeros out
1549 * any bytes left in the last page in the file.
1550 */
1551 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1552 {
1553 struct inode *inode = mapping->host;
1554 struct btrfs_root *root = BTRFS_I(inode)->root;
1555 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1556 struct btrfs_ordered_extent *ordered;
1557 char *kaddr;
1558 u32 blocksize = root->sectorsize;
1559 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1560 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1561 struct page *page;
1562 int ret = 0;
1563 u64 page_start;
1564 u64 page_end;
1565
1566 if ((offset & (blocksize - 1)) == 0)
1567 goto out;
1568
1569 ret = -ENOMEM;
1570 again:
1571 page = grab_cache_page(mapping, index);
1572 if (!page)
1573 goto out;
1574
1575 page_start = page_offset(page);
1576 page_end = page_start + PAGE_CACHE_SIZE - 1;
1577
1578 if (!PageUptodate(page)) {
1579 ret = btrfs_readpage(NULL, page);
1580 lock_page(page);
1581 if (page->mapping != mapping) {
1582 unlock_page(page);
1583 page_cache_release(page);
1584 goto again;
1585 }
1586 if (!PageUptodate(page)) {
1587 ret = -EIO;
1588 goto out_unlock;
1589 }
1590 }
1591 wait_on_page_writeback(page);
1592
1593 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1594 set_page_extent_mapped(page);
1595
1596 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1597 if (ordered) {
1598 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1599 unlock_page(page);
1600 page_cache_release(page);
1601 btrfs_start_ordered_extent(inode, ordered, 1);
1602 btrfs_put_ordered_extent(ordered);
1603 goto again;
1604 }
1605
1606 btrfs_set_extent_delalloc(inode, page_start, page_end);
1607 ret = 0;
1608 if (offset != PAGE_CACHE_SIZE) {
1609 kaddr = kmap(page);
1610 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1611 flush_dcache_page(page);
1612 kunmap(page);
1613 }
1614 ClearPageChecked(page);
1615 set_page_dirty(page);
1616 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1617
1618 out_unlock:
1619 unlock_page(page);
1620 page_cache_release(page);
1621 out:
1622 return ret;
1623 }
1624
1625 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1626 {
1627 struct inode *inode = dentry->d_inode;
1628 int err;
1629
1630 err = inode_change_ok(inode, attr);
1631 if (err)
1632 return err;
1633
1634 if (S_ISREG(inode->i_mode) &&
1635 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1636 struct btrfs_trans_handle *trans;
1637 struct btrfs_root *root = BTRFS_I(inode)->root;
1638 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1639
1640 u64 mask = root->sectorsize - 1;
1641 u64 hole_start = (inode->i_size + mask) & ~mask;
1642 u64 block_end = (attr->ia_size + mask) & ~mask;
1643 u64 hole_size;
1644 u64 alloc_hint = 0;
1645
1646 if (attr->ia_size <= hole_start)
1647 goto out;
1648
1649 err = btrfs_check_free_space(root, 1, 0);
1650 if (err)
1651 goto fail;
1652
1653 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1654
1655 hole_size = block_end - hole_start;
1656 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1657 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1658
1659 trans = btrfs_start_transaction(root, 1);
1660 btrfs_set_trans_block_group(trans, inode);
1661 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1662 err = btrfs_drop_extents(trans, root, inode,
1663 hole_start, block_end, hole_start,
1664 &alloc_hint);
1665
1666 if (alloc_hint != EXTENT_MAP_INLINE) {
1667 err = btrfs_insert_file_extent(trans, root,
1668 inode->i_ino,
1669 hole_start, 0, 0,
1670 hole_size, 0);
1671 btrfs_drop_extent_cache(inode, hole_start,
1672 (u64)-1);
1673 btrfs_check_file(root, inode);
1674 }
1675 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1676 btrfs_end_transaction(trans, root);
1677 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1678 if (err)
1679 return err;
1680 }
1681 out:
1682 err = inode_setattr(inode, attr);
1683
1684 if (!err && ((attr->ia_valid & ATTR_MODE)))
1685 err = btrfs_acl_chmod(inode);
1686 fail:
1687 return err;
1688 }
1689
1690 void btrfs_delete_inode(struct inode *inode)
1691 {
1692 struct btrfs_trans_handle *trans;
1693 struct btrfs_root *root = BTRFS_I(inode)->root;
1694 unsigned long nr;
1695 int ret;
1696
1697 truncate_inode_pages(&inode->i_data, 0);
1698 if (is_bad_inode(inode)) {
1699 btrfs_orphan_del(NULL, inode);
1700 goto no_delete;
1701 }
1702 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1703
1704 btrfs_i_size_write(inode, 0);
1705 trans = btrfs_start_transaction(root, 1);
1706
1707 btrfs_set_trans_block_group(trans, inode);
1708 ret = btrfs_truncate_in_trans(trans, root, inode, 0);
1709 if (ret) {
1710 btrfs_orphan_del(NULL, inode);
1711 goto no_delete_lock;
1712 }
1713
1714 btrfs_orphan_del(trans, inode);
1715
1716 nr = trans->blocks_used;
1717 clear_inode(inode);
1718
1719 btrfs_end_transaction(trans, root);
1720 btrfs_btree_balance_dirty(root, nr);
1721 return;
1722
1723 no_delete_lock:
1724 nr = trans->blocks_used;
1725 btrfs_end_transaction(trans, root);
1726 btrfs_btree_balance_dirty(root, nr);
1727 no_delete:
1728 clear_inode(inode);
1729 }
1730
1731 /*
1732 * this returns the key found in the dir entry in the location pointer.
1733 * If no dir entries were found, location->objectid is 0.
1734 */
1735 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1736 struct btrfs_key *location)
1737 {
1738 const char *name = dentry->d_name.name;
1739 int namelen = dentry->d_name.len;
1740 struct btrfs_dir_item *di;
1741 struct btrfs_path *path;
1742 struct btrfs_root *root = BTRFS_I(dir)->root;
1743 int ret = 0;
1744
1745 if (namelen == 1 && strcmp(name, ".") == 0) {
1746 location->objectid = dir->i_ino;
1747 location->type = BTRFS_INODE_ITEM_KEY;
1748 location->offset = 0;
1749 return 0;
1750 }
1751 path = btrfs_alloc_path();
1752 BUG_ON(!path);
1753
1754 if (namelen == 2 && strcmp(name, "..") == 0) {
1755 struct btrfs_key key;
1756 struct extent_buffer *leaf;
1757 int slot;
1758
1759 key.objectid = dir->i_ino;
1760 key.offset = (u64)-1;
1761 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1762 if (ret < 0 || path->slots[0] == 0)
1763 goto out_err;
1764 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1765 BUG_ON(ret == 0);
1766 ret = 0;
1767 leaf = path->nodes[0];
1768 slot = path->slots[0] - 1;
1769
1770 btrfs_item_key_to_cpu(leaf, &key, slot);
1771 if (key.objectid != dir->i_ino ||
1772 key.type != BTRFS_INODE_REF_KEY) {
1773 goto out_err;
1774 }
1775 location->objectid = key.offset;
1776 location->type = BTRFS_INODE_ITEM_KEY;
1777 location->offset = 0;
1778 goto out;
1779 }
1780
1781 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1782 namelen, 0);
1783 if (IS_ERR(di))
1784 ret = PTR_ERR(di);
1785 if (!di || IS_ERR(di)) {
1786 goto out_err;
1787 }
1788 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1789 out:
1790 btrfs_free_path(path);
1791 return ret;
1792 out_err:
1793 location->objectid = 0;
1794 goto out;
1795 }
1796
1797 /*
1798 * when we hit a tree root in a directory, the btrfs part of the inode
1799 * needs to be changed to reflect the root directory of the tree root. This
1800 * is kind of like crossing a mount point.
1801 */
1802 static int fixup_tree_root_location(struct btrfs_root *root,
1803 struct btrfs_key *location,
1804 struct btrfs_root **sub_root,
1805 struct dentry *dentry)
1806 {
1807 struct btrfs_root_item *ri;
1808
1809 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1810 return 0;
1811 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1812 return 0;
1813
1814 *sub_root = btrfs_read_fs_root(root->fs_info, location,
1815 dentry->d_name.name,
1816 dentry->d_name.len);
1817 if (IS_ERR(*sub_root))
1818 return PTR_ERR(*sub_root);
1819
1820 ri = &(*sub_root)->root_item;
1821 location->objectid = btrfs_root_dirid(ri);
1822 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1823 location->offset = 0;
1824
1825 return 0;
1826 }
1827
1828 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1829 {
1830 struct btrfs_iget_args *args = p;
1831 inode->i_ino = args->ino;
1832 BTRFS_I(inode)->root = args->root;
1833 BTRFS_I(inode)->delalloc_bytes = 0;
1834 inode->i_mapping->writeback_index = 0;
1835 BTRFS_I(inode)->disk_i_size = 0;
1836 BTRFS_I(inode)->index_cnt = (u64)-1;
1837 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1838 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1839 inode->i_mapping, GFP_NOFS);
1840 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1841 inode->i_mapping, GFP_NOFS);
1842 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
1843 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1844 mutex_init(&BTRFS_I(inode)->csum_mutex);
1845 mutex_init(&BTRFS_I(inode)->extent_mutex);
1846 return 0;
1847 }
1848
1849 static int btrfs_find_actor(struct inode *inode, void *opaque)
1850 {
1851 struct btrfs_iget_args *args = opaque;
1852 return (args->ino == inode->i_ino &&
1853 args->root == BTRFS_I(inode)->root);
1854 }
1855
1856 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
1857 u64 root_objectid)
1858 {
1859 struct btrfs_iget_args args;
1860 args.ino = objectid;
1861 args.root = btrfs_lookup_fs_root(btrfs_sb(s)->fs_info, root_objectid);
1862
1863 if (!args.root)
1864 return NULL;
1865
1866 return ilookup5(s, objectid, btrfs_find_actor, (void *)&args);
1867 }
1868
1869 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1870 struct btrfs_root *root)
1871 {
1872 struct inode *inode;
1873 struct btrfs_iget_args args;
1874 args.ino = objectid;
1875 args.root = root;
1876
1877 inode = iget5_locked(s, objectid, btrfs_find_actor,
1878 btrfs_init_locked_inode,
1879 (void *)&args);
1880 return inode;
1881 }
1882
1883 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1884 struct nameidata *nd)
1885 {
1886 struct inode * inode;
1887 struct btrfs_inode *bi = BTRFS_I(dir);
1888 struct btrfs_root *root = bi->root;
1889 struct btrfs_root *sub_root = root;
1890 struct btrfs_key location;
1891 int ret, do_orphan = 0;
1892
1893 if (dentry->d_name.len > BTRFS_NAME_LEN)
1894 return ERR_PTR(-ENAMETOOLONG);
1895
1896 ret = btrfs_inode_by_name(dir, dentry, &location);
1897
1898 if (ret < 0)
1899 return ERR_PTR(ret);
1900
1901 inode = NULL;
1902 if (location.objectid) {
1903 ret = fixup_tree_root_location(root, &location, &sub_root,
1904 dentry);
1905 if (ret < 0)
1906 return ERR_PTR(ret);
1907 if (ret > 0)
1908 return ERR_PTR(-ENOENT);
1909
1910 inode = btrfs_iget_locked(dir->i_sb, location.objectid,
1911 sub_root);
1912 if (!inode)
1913 return ERR_PTR(-EACCES);
1914 if (inode->i_state & I_NEW) {
1915 /* the inode and parent dir are two different roots */
1916 if (sub_root != root) {
1917 igrab(inode);
1918 sub_root->inode = inode;
1919 do_orphan = 1;
1920 }
1921 BTRFS_I(inode)->root = sub_root;
1922 memcpy(&BTRFS_I(inode)->location, &location,
1923 sizeof(location));
1924 btrfs_read_locked_inode(inode);
1925 unlock_new_inode(inode);
1926 }
1927 }
1928
1929 if (unlikely(do_orphan))
1930 btrfs_orphan_cleanup(sub_root);
1931
1932 return d_splice_alias(inode, dentry);
1933 }
1934
1935 static unsigned char btrfs_filetype_table[] = {
1936 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1937 };
1938
1939 static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
1940 {
1941 struct inode *inode = filp->f_dentry->d_inode;
1942 struct btrfs_root *root = BTRFS_I(inode)->root;
1943 struct btrfs_item *item;
1944 struct btrfs_dir_item *di;
1945 struct btrfs_key key;
1946 struct btrfs_key found_key;
1947 struct btrfs_path *path;
1948 int ret;
1949 u32 nritems;
1950 struct extent_buffer *leaf;
1951 int slot;
1952 int advance;
1953 unsigned char d_type;
1954 int over = 0;
1955 u32 di_cur;
1956 u32 di_total;
1957 u32 di_len;
1958 int key_type = BTRFS_DIR_INDEX_KEY;
1959 char tmp_name[32];
1960 char *name_ptr;
1961 int name_len;
1962
1963 /* FIXME, use a real flag for deciding about the key type */
1964 if (root->fs_info->tree_root == root)
1965 key_type = BTRFS_DIR_ITEM_KEY;
1966
1967 /* special case for "." */
1968 if (filp->f_pos == 0) {
1969 over = filldir(dirent, ".", 1,
1970 1, inode->i_ino,
1971 DT_DIR);
1972 if (over)
1973 return 0;
1974 filp->f_pos = 1;
1975 }
1976
1977 key.objectid = inode->i_ino;
1978 path = btrfs_alloc_path();
1979 path->reada = 2;
1980
1981 /* special case for .., just use the back ref */
1982 if (filp->f_pos == 1) {
1983 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1984 key.offset = (u64)-1;
1985 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1986 if (ret < 0 || path->slots[0] == 0) {
1987 btrfs_release_path(root, path);
1988 goto read_dir_items;
1989 }
1990 BUG_ON(ret == 0);
1991 leaf = path->nodes[0];
1992 slot = path->slots[0] - 1;
1993 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1994 btrfs_release_path(root, path);
1995 if (found_key.objectid != key.objectid ||
1996 found_key.type != BTRFS_INODE_REF_KEY)
1997 goto read_dir_items;
1998 over = filldir(dirent, "..", 2,
1999 2, found_key.offset, DT_DIR);
2000 if (over)
2001 goto nopos;
2002 filp->f_pos = 2;
2003 }
2004
2005 read_dir_items:
2006 btrfs_set_key_type(&key, key_type);
2007 key.offset = filp->f_pos;
2008
2009 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2010 if (ret < 0)
2011 goto err;
2012 advance = 0;
2013 while(1) {
2014 leaf = path->nodes[0];
2015 nritems = btrfs_header_nritems(leaf);
2016 slot = path->slots[0];
2017 if (advance || slot >= nritems) {
2018 if (slot >= nritems -1) {
2019 ret = btrfs_next_leaf(root, path);
2020 if (ret)
2021 break;
2022 leaf = path->nodes[0];
2023 nritems = btrfs_header_nritems(leaf);
2024 slot = path->slots[0];
2025 } else {
2026 slot++;
2027 path->slots[0]++;
2028 }
2029 }
2030 advance = 1;
2031 item = btrfs_item_nr(leaf, slot);
2032 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2033
2034 if (found_key.objectid != key.objectid)
2035 break;
2036 if (btrfs_key_type(&found_key) != key_type)
2037 break;
2038 if (found_key.offset < filp->f_pos)
2039 continue;
2040
2041 filp->f_pos = found_key.offset;
2042 advance = 1;
2043 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2044 di_cur = 0;
2045 di_total = btrfs_item_size(leaf, item);
2046 while(di_cur < di_total) {
2047 struct btrfs_key location;
2048
2049 name_len = btrfs_dir_name_len(leaf, di);
2050 if (name_len < 32) {
2051 name_ptr = tmp_name;
2052 } else {
2053 name_ptr = kmalloc(name_len, GFP_NOFS);
2054 BUG_ON(!name_ptr);
2055 }
2056 read_extent_buffer(leaf, name_ptr,
2057 (unsigned long)(di + 1), name_len);
2058
2059 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2060 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2061 over = filldir(dirent, name_ptr, name_len,
2062 found_key.offset,
2063 location.objectid,
2064 d_type);
2065
2066 if (name_ptr != tmp_name)
2067 kfree(name_ptr);
2068
2069 if (over)
2070 goto nopos;
2071 di_len = btrfs_dir_name_len(leaf, di) +
2072 btrfs_dir_data_len(leaf, di) +sizeof(*di);
2073 di_cur += di_len;
2074 di = (struct btrfs_dir_item *)((char *)di + di_len);
2075 }
2076 }
2077 if (key_type == BTRFS_DIR_INDEX_KEY)
2078 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2079 else
2080 filp->f_pos++;
2081 nopos:
2082 ret = 0;
2083 err:
2084 btrfs_free_path(path);
2085 return ret;
2086 }
2087
2088 int btrfs_write_inode(struct inode *inode, int wait)
2089 {
2090 struct btrfs_root *root = BTRFS_I(inode)->root;
2091 struct btrfs_trans_handle *trans;
2092 int ret = 0;
2093
2094 if (root->fs_info->closing > 1)
2095 return 0;
2096
2097 if (wait) {
2098 trans = btrfs_join_transaction(root, 1);
2099 btrfs_set_trans_block_group(trans, inode);
2100 ret = btrfs_commit_transaction(trans, root);
2101 }
2102 return ret;
2103 }
2104
2105 /*
2106 * This is somewhat expensive, updating the tree every time the
2107 * inode changes. But, it is most likely to find the inode in cache.
2108 * FIXME, needs more benchmarking...there are no reasons other than performance
2109 * to keep or drop this code.
2110 */
2111 void btrfs_dirty_inode(struct inode *inode)
2112 {
2113 struct btrfs_root *root = BTRFS_I(inode)->root;
2114 struct btrfs_trans_handle *trans;
2115
2116 trans = btrfs_join_transaction(root, 1);
2117 btrfs_set_trans_block_group(trans, inode);
2118 btrfs_update_inode(trans, root, inode);
2119 btrfs_end_transaction(trans, root);
2120 }
2121
2122 static int btrfs_set_inode_index_count(struct inode *inode)
2123 {
2124 struct btrfs_root *root = BTRFS_I(inode)->root;
2125 struct btrfs_key key, found_key;
2126 struct btrfs_path *path;
2127 struct extent_buffer *leaf;
2128 int ret;
2129
2130 key.objectid = inode->i_ino;
2131 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2132 key.offset = (u64)-1;
2133
2134 path = btrfs_alloc_path();
2135 if (!path)
2136 return -ENOMEM;
2137
2138 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2139 if (ret < 0)
2140 goto out;
2141 /* FIXME: we should be able to handle this */
2142 if (ret == 0)
2143 goto out;
2144 ret = 0;
2145
2146 /*
2147 * MAGIC NUMBER EXPLANATION:
2148 * since we search a directory based on f_pos we have to start at 2
2149 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2150 * else has to start at 2
2151 */
2152 if (path->slots[0] == 0) {
2153 BTRFS_I(inode)->index_cnt = 2;
2154 goto out;
2155 }
2156
2157 path->slots[0]--;
2158
2159 leaf = path->nodes[0];
2160 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2161
2162 if (found_key.objectid != inode->i_ino ||
2163 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2164 BTRFS_I(inode)->index_cnt = 2;
2165 goto out;
2166 }
2167
2168 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2169 out:
2170 btrfs_free_path(path);
2171 return ret;
2172 }
2173
2174 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2175 u64 *index)
2176 {
2177 int ret = 0;
2178
2179 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2180 ret = btrfs_set_inode_index_count(dir);
2181 if (ret)
2182 return ret;
2183 }
2184
2185 *index = BTRFS_I(dir)->index_cnt;
2186 BTRFS_I(dir)->index_cnt++;
2187
2188 return ret;
2189 }
2190
2191 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2192 struct btrfs_root *root,
2193 struct inode *dir,
2194 const char *name, int name_len,
2195 u64 ref_objectid,
2196 u64 objectid,
2197 struct btrfs_block_group_cache *group,
2198 int mode, u64 *index)
2199 {
2200 struct inode *inode;
2201 struct btrfs_inode_item *inode_item;
2202 struct btrfs_block_group_cache *new_inode_group;
2203 struct btrfs_key *location;
2204 struct btrfs_path *path;
2205 struct btrfs_inode_ref *ref;
2206 struct btrfs_key key[2];
2207 u32 sizes[2];
2208 unsigned long ptr;
2209 int ret;
2210 int owner;
2211
2212 path = btrfs_alloc_path();
2213 BUG_ON(!path);
2214
2215 inode = new_inode(root->fs_info->sb);
2216 if (!inode)
2217 return ERR_PTR(-ENOMEM);
2218
2219 if (dir) {
2220 ret = btrfs_set_inode_index(dir, inode, index);
2221 if (ret)
2222 return ERR_PTR(ret);
2223 }
2224 /*
2225 * index_cnt is ignored for everything but a dir,
2226 * btrfs_get_inode_index_count has an explanation for the magic
2227 * number
2228 */
2229 BTRFS_I(inode)->index_cnt = 2;
2230
2231 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2232 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2233 inode->i_mapping, GFP_NOFS);
2234 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2235 inode->i_mapping, GFP_NOFS);
2236 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2237 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2238 mutex_init(&BTRFS_I(inode)->csum_mutex);
2239 mutex_init(&BTRFS_I(inode)->extent_mutex);
2240 BTRFS_I(inode)->delalloc_bytes = 0;
2241 inode->i_mapping->writeback_index = 0;
2242 BTRFS_I(inode)->disk_i_size = 0;
2243 BTRFS_I(inode)->root = root;
2244
2245 if (mode & S_IFDIR)
2246 owner = 0;
2247 else
2248 owner = 1;
2249 new_inode_group = btrfs_find_block_group(root, group, 0,
2250 BTRFS_BLOCK_GROUP_METADATA, owner);
2251 if (!new_inode_group) {
2252 printk("find_block group failed\n");
2253 new_inode_group = group;
2254 }
2255 BTRFS_I(inode)->block_group = new_inode_group;
2256 BTRFS_I(inode)->flags = 0;
2257
2258 key[0].objectid = objectid;
2259 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2260 key[0].offset = 0;
2261
2262 key[1].objectid = objectid;
2263 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2264 key[1].offset = ref_objectid;
2265
2266 sizes[0] = sizeof(struct btrfs_inode_item);
2267 sizes[1] = name_len + sizeof(*ref);
2268
2269 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2270 if (ret != 0)
2271 goto fail;
2272
2273 if (objectid > root->highest_inode)
2274 root->highest_inode = objectid;
2275
2276 inode->i_uid = current->fsuid;
2277 inode->i_gid = current->fsgid;
2278 inode->i_mode = mode;
2279 inode->i_ino = objectid;
2280 inode->i_blocks = 0;
2281 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2282 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2283 struct btrfs_inode_item);
2284 fill_inode_item(path->nodes[0], inode_item, inode);
2285
2286 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2287 struct btrfs_inode_ref);
2288 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2289 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2290 ptr = (unsigned long)(ref + 1);
2291 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2292
2293 btrfs_mark_buffer_dirty(path->nodes[0]);
2294 btrfs_free_path(path);
2295
2296 location = &BTRFS_I(inode)->location;
2297 location->objectid = objectid;
2298 location->offset = 0;
2299 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2300
2301 insert_inode_hash(inode);
2302 return inode;
2303 fail:
2304 if (dir)
2305 BTRFS_I(dir)->index_cnt--;
2306 btrfs_free_path(path);
2307 return ERR_PTR(ret);
2308 }
2309
2310 static inline u8 btrfs_inode_type(struct inode *inode)
2311 {
2312 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2313 }
2314
2315 static int btrfs_add_link(struct btrfs_trans_handle *trans,
2316 struct dentry *dentry, struct inode *inode,
2317 int add_backref, u64 index)
2318 {
2319 int ret;
2320 struct btrfs_key key;
2321 struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root;
2322 struct inode *parent_inode = dentry->d_parent->d_inode;
2323
2324 key.objectid = inode->i_ino;
2325 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2326 key.offset = 0;
2327
2328 ret = btrfs_insert_dir_item(trans, root,
2329 dentry->d_name.name, dentry->d_name.len,
2330 dentry->d_parent->d_inode->i_ino,
2331 &key, btrfs_inode_type(inode),
2332 index);
2333 if (ret == 0) {
2334 if (add_backref) {
2335 ret = btrfs_insert_inode_ref(trans, root,
2336 dentry->d_name.name,
2337 dentry->d_name.len,
2338 inode->i_ino,
2339 parent_inode->i_ino,
2340 index);
2341 }
2342 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2343 dentry->d_name.len * 2);
2344 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2345 ret = btrfs_update_inode(trans, root,
2346 dentry->d_parent->d_inode);
2347 }
2348 return ret;
2349 }
2350
2351 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2352 struct dentry *dentry, struct inode *inode,
2353 int backref, u64 index)
2354 {
2355 int err = btrfs_add_link(trans, dentry, inode, backref, index);
2356 if (!err) {
2357 d_instantiate(dentry, inode);
2358 return 0;
2359 }
2360 if (err > 0)
2361 err = -EEXIST;
2362 return err;
2363 }
2364
2365 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2366 int mode, dev_t rdev)
2367 {
2368 struct btrfs_trans_handle *trans;
2369 struct btrfs_root *root = BTRFS_I(dir)->root;
2370 struct inode *inode = NULL;
2371 int err;
2372 int drop_inode = 0;
2373 u64 objectid;
2374 unsigned long nr = 0;
2375 u64 index = 0;
2376
2377 if (!new_valid_dev(rdev))
2378 return -EINVAL;
2379
2380 err = btrfs_check_free_space(root, 1, 0);
2381 if (err)
2382 goto fail;
2383
2384 trans = btrfs_start_transaction(root, 1);
2385 btrfs_set_trans_block_group(trans, dir);
2386
2387 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2388 if (err) {
2389 err = -ENOSPC;
2390 goto out_unlock;
2391 }
2392
2393 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2394 dentry->d_name.len,
2395 dentry->d_parent->d_inode->i_ino, objectid,
2396 BTRFS_I(dir)->block_group, mode, &index);
2397 err = PTR_ERR(inode);
2398 if (IS_ERR(inode))
2399 goto out_unlock;
2400
2401 err = btrfs_init_acl(inode, dir);
2402 if (err) {
2403 drop_inode = 1;
2404 goto out_unlock;
2405 }
2406
2407 btrfs_set_trans_block_group(trans, inode);
2408 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2409 if (err)
2410 drop_inode = 1;
2411 else {
2412 inode->i_op = &btrfs_special_inode_operations;
2413 init_special_inode(inode, inode->i_mode, rdev);
2414 btrfs_update_inode(trans, root, inode);
2415 }
2416 dir->i_sb->s_dirt = 1;
2417 btrfs_update_inode_block_group(trans, inode);
2418 btrfs_update_inode_block_group(trans, dir);
2419 out_unlock:
2420 nr = trans->blocks_used;
2421 btrfs_end_transaction_throttle(trans, root);
2422 fail:
2423 if (drop_inode) {
2424 inode_dec_link_count(inode);
2425 iput(inode);
2426 }
2427 btrfs_btree_balance_dirty(root, nr);
2428 return err;
2429 }
2430
2431 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2432 int mode, struct nameidata *nd)
2433 {
2434 struct btrfs_trans_handle *trans;
2435 struct btrfs_root *root = BTRFS_I(dir)->root;
2436 struct inode *inode = NULL;
2437 int err;
2438 int drop_inode = 0;
2439 unsigned long nr = 0;
2440 u64 objectid;
2441 u64 index = 0;
2442
2443 err = btrfs_check_free_space(root, 1, 0);
2444 if (err)
2445 goto fail;
2446 trans = btrfs_start_transaction(root, 1);
2447 btrfs_set_trans_block_group(trans, dir);
2448
2449 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2450 if (err) {
2451 err = -ENOSPC;
2452 goto out_unlock;
2453 }
2454
2455 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2456 dentry->d_name.len,
2457 dentry->d_parent->d_inode->i_ino,
2458 objectid, BTRFS_I(dir)->block_group, mode,
2459 &index);
2460 err = PTR_ERR(inode);
2461 if (IS_ERR(inode))
2462 goto out_unlock;
2463
2464 err = btrfs_init_acl(inode, dir);
2465 if (err) {
2466 drop_inode = 1;
2467 goto out_unlock;
2468 }
2469
2470 btrfs_set_trans_block_group(trans, inode);
2471 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2472 if (err)
2473 drop_inode = 1;
2474 else {
2475 inode->i_mapping->a_ops = &btrfs_aops;
2476 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2477 inode->i_fop = &btrfs_file_operations;
2478 inode->i_op = &btrfs_file_inode_operations;
2479 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2480 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2481 inode->i_mapping, GFP_NOFS);
2482 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2483 inode->i_mapping, GFP_NOFS);
2484 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2485 mutex_init(&BTRFS_I(inode)->csum_mutex);
2486 mutex_init(&BTRFS_I(inode)->extent_mutex);
2487 BTRFS_I(inode)->delalloc_bytes = 0;
2488 BTRFS_I(inode)->disk_i_size = 0;
2489 inode->i_mapping->writeback_index = 0;
2490 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2491 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2492 }
2493 dir->i_sb->s_dirt = 1;
2494 btrfs_update_inode_block_group(trans, inode);
2495 btrfs_update_inode_block_group(trans, dir);
2496 out_unlock:
2497 nr = trans->blocks_used;
2498 btrfs_end_transaction_throttle(trans, root);
2499 fail:
2500 if (drop_inode) {
2501 inode_dec_link_count(inode);
2502 iput(inode);
2503 }
2504 btrfs_btree_balance_dirty(root, nr);
2505 return err;
2506 }
2507
2508 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2509 struct dentry *dentry)
2510 {
2511 struct btrfs_trans_handle *trans;
2512 struct btrfs_root *root = BTRFS_I(dir)->root;
2513 struct inode *inode = old_dentry->d_inode;
2514 u64 index;
2515 unsigned long nr = 0;
2516 int err;
2517 int drop_inode = 0;
2518
2519 if (inode->i_nlink == 0)
2520 return -ENOENT;
2521
2522 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
2523 inode->i_nlink++;
2524 #else
2525 inc_nlink(inode);
2526 #endif
2527 err = btrfs_check_free_space(root, 1, 0);
2528 if (err)
2529 goto fail;
2530 err = btrfs_set_inode_index(dir, inode, &index);
2531 if (err)
2532 goto fail;
2533
2534 trans = btrfs_start_transaction(root, 1);
2535
2536 btrfs_set_trans_block_group(trans, dir);
2537 atomic_inc(&inode->i_count);
2538
2539 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2540
2541 if (err)
2542 drop_inode = 1;
2543
2544 dir->i_sb->s_dirt = 1;
2545 btrfs_update_inode_block_group(trans, dir);
2546 err = btrfs_update_inode(trans, root, inode);
2547
2548 if (err)
2549 drop_inode = 1;
2550
2551 nr = trans->blocks_used;
2552 btrfs_end_transaction_throttle(trans, root);
2553 fail:
2554 if (drop_inode) {
2555 inode_dec_link_count(inode);
2556 iput(inode);
2557 }
2558 btrfs_btree_balance_dirty(root, nr);
2559 return err;
2560 }
2561
2562 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2563 {
2564 struct inode *inode = NULL;
2565 struct btrfs_trans_handle *trans;
2566 struct btrfs_root *root = BTRFS_I(dir)->root;
2567 int err = 0;
2568 int drop_on_err = 0;
2569 u64 objectid = 0;
2570 u64 index = 0;
2571 unsigned long nr = 1;
2572
2573 err = btrfs_check_free_space(root, 1, 0);
2574 if (err)
2575 goto out_unlock;
2576
2577 trans = btrfs_start_transaction(root, 1);
2578 btrfs_set_trans_block_group(trans, dir);
2579
2580 if (IS_ERR(trans)) {
2581 err = PTR_ERR(trans);
2582 goto out_unlock;
2583 }
2584
2585 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2586 if (err) {
2587 err = -ENOSPC;
2588 goto out_unlock;
2589 }
2590
2591 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2592 dentry->d_name.len,
2593 dentry->d_parent->d_inode->i_ino, objectid,
2594 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2595 &index);
2596 if (IS_ERR(inode)) {
2597 err = PTR_ERR(inode);
2598 goto out_fail;
2599 }
2600
2601 drop_on_err = 1;
2602
2603 err = btrfs_init_acl(inode, dir);
2604 if (err)
2605 goto out_fail;
2606
2607 inode->i_op = &btrfs_dir_inode_operations;
2608 inode->i_fop = &btrfs_dir_file_operations;
2609 btrfs_set_trans_block_group(trans, inode);
2610
2611 btrfs_i_size_write(inode, 0);
2612 err = btrfs_update_inode(trans, root, inode);
2613 if (err)
2614 goto out_fail;
2615
2616 err = btrfs_add_link(trans, dentry, inode, 0, index);
2617 if (err)
2618 goto out_fail;
2619
2620 d_instantiate(dentry, inode);
2621 drop_on_err = 0;
2622 dir->i_sb->s_dirt = 1;
2623 btrfs_update_inode_block_group(trans, inode);
2624 btrfs_update_inode_block_group(trans, dir);
2625
2626 out_fail:
2627 nr = trans->blocks_used;
2628 btrfs_end_transaction_throttle(trans, root);
2629
2630 out_unlock:
2631 if (drop_on_err)
2632 iput(inode);
2633 btrfs_btree_balance_dirty(root, nr);
2634 return err;
2635 }
2636
2637 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2638 struct extent_map *existing,
2639 struct extent_map *em,
2640 u64 map_start, u64 map_len)
2641 {
2642 u64 start_diff;
2643
2644 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2645 start_diff = map_start - em->start;
2646 em->start = map_start;
2647 em->len = map_len;
2648 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2649 em->block_start += start_diff;
2650 return add_extent_mapping(em_tree, em);
2651 }
2652
2653 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2654 size_t pg_offset, u64 start, u64 len,
2655 int create)
2656 {
2657 int ret;
2658 int err = 0;
2659 u64 bytenr;
2660 u64 extent_start = 0;
2661 u64 extent_end = 0;
2662 u64 objectid = inode->i_ino;
2663 u32 found_type;
2664 struct btrfs_path *path = NULL;
2665 struct btrfs_root *root = BTRFS_I(inode)->root;
2666 struct btrfs_file_extent_item *item;
2667 struct extent_buffer *leaf;
2668 struct btrfs_key found_key;
2669 struct extent_map *em = NULL;
2670 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2671 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2672 struct btrfs_trans_handle *trans = NULL;
2673
2674 again:
2675 spin_lock(&em_tree->lock);
2676 em = lookup_extent_mapping(em_tree, start, len);
2677 if (em)
2678 em->bdev = root->fs_info->fs_devices->latest_bdev;
2679 spin_unlock(&em_tree->lock);
2680
2681 if (em) {
2682 if (em->start > start || em->start + em->len <= start)
2683 free_extent_map(em);
2684 else if (em->block_start == EXTENT_MAP_INLINE && page)
2685 free_extent_map(em);
2686 else
2687 goto out;
2688 }
2689 em = alloc_extent_map(GFP_NOFS);
2690 if (!em) {
2691 err = -ENOMEM;
2692 goto out;
2693 }
2694 em->bdev = root->fs_info->fs_devices->latest_bdev;
2695 em->start = EXTENT_MAP_HOLE;
2696 em->len = (u64)-1;
2697
2698 if (!path) {
2699 path = btrfs_alloc_path();
2700 BUG_ON(!path);
2701 }
2702
2703 ret = btrfs_lookup_file_extent(trans, root, path,
2704 objectid, start, trans != NULL);
2705 if (ret < 0) {
2706 err = ret;
2707 goto out;
2708 }
2709
2710 if (ret != 0) {
2711 if (path->slots[0] == 0)
2712 goto not_found;
2713 path->slots[0]--;
2714 }
2715
2716 leaf = path->nodes[0];
2717 item = btrfs_item_ptr(leaf, path->slots[0],
2718 struct btrfs_file_extent_item);
2719 /* are we inside the extent that was found? */
2720 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2721 found_type = btrfs_key_type(&found_key);
2722 if (found_key.objectid != objectid ||
2723 found_type != BTRFS_EXTENT_DATA_KEY) {
2724 goto not_found;
2725 }
2726
2727 found_type = btrfs_file_extent_type(leaf, item);
2728 extent_start = found_key.offset;
2729 if (found_type == BTRFS_FILE_EXTENT_REG) {
2730 extent_end = extent_start +
2731 btrfs_file_extent_num_bytes(leaf, item);
2732 err = 0;
2733 if (start < extent_start || start >= extent_end) {
2734 em->start = start;
2735 if (start < extent_start) {
2736 if (start + len <= extent_start)
2737 goto not_found;
2738 em->len = extent_end - extent_start;
2739 } else {
2740 em->len = len;
2741 }
2742 goto not_found_em;
2743 }
2744 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2745 if (bytenr == 0) {
2746 em->start = extent_start;
2747 em->len = extent_end - extent_start;
2748 em->block_start = EXTENT_MAP_HOLE;
2749 goto insert;
2750 }
2751 bytenr += btrfs_file_extent_offset(leaf, item);
2752 em->block_start = bytenr;
2753 em->start = extent_start;
2754 em->len = extent_end - extent_start;
2755 goto insert;
2756 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2757 u64 page_start;
2758 unsigned long ptr;
2759 char *map;
2760 size_t size;
2761 size_t extent_offset;
2762 size_t copy_size;
2763
2764 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2765 path->slots[0]));
2766 extent_end = (extent_start + size + root->sectorsize - 1) &
2767 ~((u64)root->sectorsize - 1);
2768 if (start < extent_start || start >= extent_end) {
2769 em->start = start;
2770 if (start < extent_start) {
2771 if (start + len <= extent_start)
2772 goto not_found;
2773 em->len = extent_end - extent_start;
2774 } else {
2775 em->len = len;
2776 }
2777 goto not_found_em;
2778 }
2779 em->block_start = EXTENT_MAP_INLINE;
2780
2781 if (!page) {
2782 em->start = extent_start;
2783 em->len = size;
2784 goto out;
2785 }
2786
2787 page_start = page_offset(page) + pg_offset;
2788 extent_offset = page_start - extent_start;
2789 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2790 size - extent_offset);
2791 em->start = extent_start + extent_offset;
2792 em->len = (copy_size + root->sectorsize - 1) &
2793 ~((u64)root->sectorsize - 1);
2794 map = kmap(page);
2795 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2796 if (create == 0 && !PageUptodate(page)) {
2797 read_extent_buffer(leaf, map + pg_offset, ptr,
2798 copy_size);
2799 flush_dcache_page(page);
2800 } else if (create && PageUptodate(page)) {
2801 if (!trans) {
2802 kunmap(page);
2803 free_extent_map(em);
2804 em = NULL;
2805 btrfs_release_path(root, path);
2806 trans = btrfs_join_transaction(root, 1);
2807 goto again;
2808 }
2809 write_extent_buffer(leaf, map + pg_offset, ptr,
2810 copy_size);
2811 btrfs_mark_buffer_dirty(leaf);
2812 }
2813 kunmap(page);
2814 set_extent_uptodate(io_tree, em->start,
2815 extent_map_end(em) - 1, GFP_NOFS);
2816 goto insert;
2817 } else {
2818 printk("unkknown found_type %d\n", found_type);
2819 WARN_ON(1);
2820 }
2821 not_found:
2822 em->start = start;
2823 em->len = len;
2824 not_found_em:
2825 em->block_start = EXTENT_MAP_HOLE;
2826 insert:
2827 btrfs_release_path(root, path);
2828 if (em->start > start || extent_map_end(em) <= start) {
2829 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2830 err = -EIO;
2831 goto out;
2832 }
2833
2834 err = 0;
2835 spin_lock(&em_tree->lock);
2836 ret = add_extent_mapping(em_tree, em);
2837 /* it is possible that someone inserted the extent into the tree
2838 * while we had the lock dropped. It is also possible that
2839 * an overlapping map exists in the tree
2840 */
2841 if (ret == -EEXIST) {
2842 struct extent_map *existing;
2843
2844 ret = 0;
2845
2846 existing = lookup_extent_mapping(em_tree, start, len);
2847 if (existing && (existing->start > start ||
2848 existing->start + existing->len <= start)) {
2849 free_extent_map(existing);
2850 existing = NULL;
2851 }
2852 if (!existing) {
2853 existing = lookup_extent_mapping(em_tree, em->start,
2854 em->len);
2855 if (existing) {
2856 err = merge_extent_mapping(em_tree, existing,
2857 em, start,
2858 root->sectorsize);
2859 free_extent_map(existing);
2860 if (err) {
2861 free_extent_map(em);
2862 em = NULL;
2863 }
2864 } else {
2865 err = -EIO;
2866 printk("failing to insert %Lu %Lu\n",
2867 start, len);
2868 free_extent_map(em);
2869 em = NULL;
2870 }
2871 } else {
2872 free_extent_map(em);
2873 em = existing;
2874 err = 0;
2875 }
2876 }
2877 spin_unlock(&em_tree->lock);
2878 out:
2879 if (path)
2880 btrfs_free_path(path);
2881 if (trans) {
2882 ret = btrfs_end_transaction(trans, root);
2883 if (!err) {
2884 err = ret;
2885 }
2886 }
2887 if (err) {
2888 free_extent_map(em);
2889 WARN_ON(1);
2890 return ERR_PTR(err);
2891 }
2892 return em;
2893 }
2894
2895 #if 0 /* waiting for O_DIRECT reads */
2896 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2897 struct buffer_head *bh_result, int create)
2898 {
2899 struct extent_map *em;
2900 u64 start = (u64)iblock << inode->i_blkbits;
2901 struct btrfs_multi_bio *multi = NULL;
2902 struct btrfs_root *root = BTRFS_I(inode)->root;
2903 u64 len;
2904 u64 logical;
2905 u64 map_length;
2906 int ret = 0;
2907
2908 em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2909
2910 if (!em || IS_ERR(em))
2911 goto out;
2912
2913 if (em->start > start || em->start + em->len <= start) {
2914 goto out;
2915 }
2916
2917 if (em->block_start == EXTENT_MAP_INLINE) {
2918 ret = -EINVAL;
2919 goto out;
2920 }
2921
2922 len = em->start + em->len - start;
2923 len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2924
2925 if (em->block_start == EXTENT_MAP_HOLE ||
2926 em->block_start == EXTENT_MAP_DELALLOC) {
2927 bh_result->b_size = len;
2928 goto out;
2929 }
2930
2931 logical = start - em->start;
2932 logical = em->block_start + logical;
2933
2934 map_length = len;
2935 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2936 logical, &map_length, &multi, 0);
2937 BUG_ON(ret);
2938 bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2939 bh_result->b_size = min(map_length, len);
2940
2941 bh_result->b_bdev = multi->stripes[0].dev->bdev;
2942 set_buffer_mapped(bh_result);
2943 kfree(multi);
2944 out:
2945 free_extent_map(em);
2946 return ret;
2947 }
2948 #endif
2949
2950 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2951 const struct iovec *iov, loff_t offset,
2952 unsigned long nr_segs)
2953 {
2954 return -EINVAL;
2955 #if 0
2956 struct file *file = iocb->ki_filp;
2957 struct inode *inode = file->f_mapping->host;
2958
2959 if (rw == WRITE)
2960 return -EINVAL;
2961
2962 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2963 offset, nr_segs, btrfs_get_block, NULL);
2964 #endif
2965 }
2966
2967 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
2968 {
2969 return extent_bmap(mapping, iblock, btrfs_get_extent);
2970 }
2971
2972 int btrfs_readpage(struct file *file, struct page *page)
2973 {
2974 struct extent_io_tree *tree;
2975 tree = &BTRFS_I(page->mapping->host)->io_tree;
2976 return extent_read_full_page(tree, page, btrfs_get_extent);
2977 }
2978
2979 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
2980 {
2981 struct extent_io_tree *tree;
2982
2983
2984 if (current->flags & PF_MEMALLOC) {
2985 redirty_page_for_writepage(wbc, page);
2986 unlock_page(page);
2987 return 0;
2988 }
2989 tree = &BTRFS_I(page->mapping->host)->io_tree;
2990 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
2991 }
2992
2993 int btrfs_writepages(struct address_space *mapping,
2994 struct writeback_control *wbc)
2995 {
2996 struct extent_io_tree *tree;
2997 tree = &BTRFS_I(mapping->host)->io_tree;
2998 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
2999 }
3000
3001 static int
3002 btrfs_readpages(struct file *file, struct address_space *mapping,
3003 struct list_head *pages, unsigned nr_pages)
3004 {
3005 struct extent_io_tree *tree;
3006 tree = &BTRFS_I(mapping->host)->io_tree;
3007 return extent_readpages(tree, mapping, pages, nr_pages,
3008 btrfs_get_extent);
3009 }
3010 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3011 {
3012 struct extent_io_tree *tree;
3013 struct extent_map_tree *map;
3014 int ret;
3015
3016 tree = &BTRFS_I(page->mapping->host)->io_tree;
3017 map = &BTRFS_I(page->mapping->host)->extent_tree;
3018 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3019 if (ret == 1) {
3020 ClearPagePrivate(page);
3021 set_page_private(page, 0);
3022 page_cache_release(page);
3023 }
3024 return ret;
3025 }
3026
3027 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3028 {
3029 return __btrfs_releasepage(page, gfp_flags);
3030 }
3031
3032 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3033 {
3034 struct extent_io_tree *tree;
3035 struct btrfs_ordered_extent *ordered;
3036 u64 page_start = page_offset(page);
3037 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3038
3039 wait_on_page_writeback(page);
3040 tree = &BTRFS_I(page->mapping->host)->io_tree;
3041 if (offset) {
3042 btrfs_releasepage(page, GFP_NOFS);
3043 return;
3044 }
3045
3046 lock_extent(tree, page_start, page_end, GFP_NOFS);
3047 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3048 page_offset(page));
3049 if (ordered) {
3050 /*
3051 * IO on this page will never be started, so we need
3052 * to account for any ordered extents now
3053 */
3054 clear_extent_bit(tree, page_start, page_end,
3055 EXTENT_DIRTY | EXTENT_DELALLOC |
3056 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3057 btrfs_finish_ordered_io(page->mapping->host,
3058 page_start, page_end);
3059 btrfs_put_ordered_extent(ordered);
3060 lock_extent(tree, page_start, page_end, GFP_NOFS);
3061 }
3062 clear_extent_bit(tree, page_start, page_end,
3063 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3064 EXTENT_ORDERED,
3065 1, 1, GFP_NOFS);
3066 __btrfs_releasepage(page, GFP_NOFS);
3067
3068 ClearPageChecked(page);
3069 if (PagePrivate(page)) {
3070 ClearPagePrivate(page);
3071 set_page_private(page, 0);
3072 page_cache_release(page);
3073 }
3074 }
3075
3076 /*
3077 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3078 * called from a page fault handler when a page is first dirtied. Hence we must
3079 * be careful to check for EOF conditions here. We set the page up correctly
3080 * for a written page which means we get ENOSPC checking when writing into
3081 * holes and correct delalloc and unwritten extent mapping on filesystems that
3082 * support these features.
3083 *
3084 * We are not allowed to take the i_mutex here so we have to play games to
3085 * protect against truncate races as the page could now be beyond EOF. Because
3086 * vmtruncate() writes the inode size before removing pages, once we have the
3087 * page lock we can determine safely if the page is beyond EOF. If it is not
3088 * beyond EOF, then the page is guaranteed safe against truncation until we
3089 * unlock the page.
3090 */
3091 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3092 {
3093 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3094 struct btrfs_root *root = BTRFS_I(inode)->root;
3095 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3096 struct btrfs_ordered_extent *ordered;
3097 char *kaddr;
3098 unsigned long zero_start;
3099 loff_t size;
3100 int ret;
3101 u64 page_start;
3102 u64 page_end;
3103
3104 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3105 if (ret)
3106 goto out;
3107
3108 ret = -EINVAL;
3109 again:
3110 lock_page(page);
3111 size = i_size_read(inode);
3112 page_start = page_offset(page);
3113 page_end = page_start + PAGE_CACHE_SIZE - 1;
3114
3115 if ((page->mapping != inode->i_mapping) ||
3116 (page_start >= size)) {
3117 /* page got truncated out from underneath us */
3118 goto out_unlock;
3119 }
3120 wait_on_page_writeback(page);
3121
3122 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3123 set_page_extent_mapped(page);
3124
3125 /*
3126 * we can't set the delalloc bits if there are pending ordered
3127 * extents. Drop our locks and wait for them to finish
3128 */
3129 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3130 if (ordered) {
3131 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3132 unlock_page(page);
3133 btrfs_start_ordered_extent(inode, ordered, 1);
3134 btrfs_put_ordered_extent(ordered);
3135 goto again;
3136 }
3137
3138 btrfs_set_extent_delalloc(inode, page_start, page_end);
3139 ret = 0;
3140
3141 /* page is wholly or partially inside EOF */
3142 if (page_start + PAGE_CACHE_SIZE > size)
3143 zero_start = size & ~PAGE_CACHE_MASK;
3144 else
3145 zero_start = PAGE_CACHE_SIZE;
3146
3147 if (zero_start != PAGE_CACHE_SIZE) {
3148 kaddr = kmap(page);
3149 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3150 flush_dcache_page(page);
3151 kunmap(page);
3152 }
3153 ClearPageChecked(page);
3154 set_page_dirty(page);
3155 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3156
3157 out_unlock:
3158 unlock_page(page);
3159 out:
3160 return ret;
3161 }
3162
3163 static void btrfs_truncate(struct inode *inode)
3164 {
3165 struct btrfs_root *root = BTRFS_I(inode)->root;
3166 int ret;
3167 struct btrfs_trans_handle *trans;
3168 unsigned long nr;
3169 u64 mask = root->sectorsize - 1;
3170
3171 if (!S_ISREG(inode->i_mode))
3172 return;
3173 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3174 return;
3175
3176 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3177 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3178
3179 trans = btrfs_start_transaction(root, 1);
3180 btrfs_set_trans_block_group(trans, inode);
3181 btrfs_i_size_write(inode, inode->i_size);
3182
3183 ret = btrfs_orphan_add(trans, inode);
3184 if (ret)
3185 goto out;
3186 /* FIXME, add redo link to tree so we don't leak on crash */
3187 ret = btrfs_truncate_in_trans(trans, root, inode,
3188 BTRFS_EXTENT_DATA_KEY);
3189 btrfs_update_inode(trans, root, inode);
3190
3191 ret = btrfs_orphan_del(trans, inode);
3192 BUG_ON(ret);
3193
3194 out:
3195 nr = trans->blocks_used;
3196 ret = btrfs_end_transaction_throttle(trans, root);
3197 BUG_ON(ret);
3198 btrfs_btree_balance_dirty(root, nr);
3199 }
3200
3201 /*
3202 * Invalidate a single dcache entry at the root of the filesystem.
3203 * Needed after creation of snapshot or subvolume.
3204 */
3205 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3206 int namelen)
3207 {
3208 struct dentry *alias, *entry;
3209 struct qstr qstr;
3210
3211 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3212 if (alias) {
3213 qstr.name = name;
3214 qstr.len = namelen;
3215 /* change me if btrfs ever gets a d_hash operation */
3216 qstr.hash = full_name_hash(qstr.name, qstr.len);
3217 entry = d_lookup(alias, &qstr);
3218 dput(alias);
3219 if (entry) {
3220 d_invalidate(entry);
3221 dput(entry);
3222 }
3223 }
3224 }
3225
3226 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3227 struct btrfs_trans_handle *trans, u64 new_dirid,
3228 struct btrfs_block_group_cache *block_group)
3229 {
3230 struct inode *inode;
3231 u64 index = 0;
3232
3233 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3234 new_dirid, block_group, S_IFDIR | 0700, &index);
3235 if (IS_ERR(inode))
3236 return PTR_ERR(inode);
3237 inode->i_op = &btrfs_dir_inode_operations;
3238 inode->i_fop = &btrfs_dir_file_operations;
3239 new_root->inode = inode;
3240
3241 inode->i_nlink = 1;
3242 btrfs_i_size_write(inode, 0);
3243
3244 return btrfs_update_inode(trans, new_root, inode);
3245 }
3246
3247 unsigned long btrfs_force_ra(struct address_space *mapping,
3248 struct file_ra_state *ra, struct file *file,
3249 pgoff_t offset, pgoff_t last_index)
3250 {
3251 pgoff_t req_size = last_index - offset + 1;
3252
3253 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3254 offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3255 return offset;
3256 #else
3257 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3258 return offset + req_size;
3259 #endif
3260 }
3261
3262 struct inode *btrfs_alloc_inode(struct super_block *sb)
3263 {
3264 struct btrfs_inode *ei;
3265
3266 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3267 if (!ei)
3268 return NULL;
3269 ei->last_trans = 0;
3270 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3271 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3272 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3273 INIT_LIST_HEAD(&ei->i_orphan);
3274 return &ei->vfs_inode;
3275 }
3276
3277 void btrfs_destroy_inode(struct inode *inode)
3278 {
3279 struct btrfs_ordered_extent *ordered;
3280 WARN_ON(!list_empty(&inode->i_dentry));
3281 WARN_ON(inode->i_data.nrpages);
3282
3283 if (BTRFS_I(inode)->i_acl &&
3284 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3285 posix_acl_release(BTRFS_I(inode)->i_acl);
3286 if (BTRFS_I(inode)->i_default_acl &&
3287 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3288 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3289
3290 spin_lock(&BTRFS_I(inode)->root->list_lock);
3291 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3292 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3293 " list\n", inode->i_ino);
3294 dump_stack();
3295 }
3296 spin_unlock(&BTRFS_I(inode)->root->list_lock);
3297
3298 while(1) {
3299 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3300 if (!ordered)
3301 break;
3302 else {
3303 printk("found ordered extent %Lu %Lu\n",
3304 ordered->file_offset, ordered->len);
3305 btrfs_remove_ordered_extent(inode, ordered);
3306 btrfs_put_ordered_extent(ordered);
3307 btrfs_put_ordered_extent(ordered);
3308 }
3309 }
3310 btrfs_drop_extent_cache(inode, 0, (u64)-1);
3311 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3312 }
3313
3314 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3315 static void init_once(void *foo)
3316 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3317 static void init_once(struct kmem_cache * cachep, void *foo)
3318 #else
3319 static void init_once(void * foo, struct kmem_cache * cachep,
3320 unsigned long flags)
3321 #endif
3322 {
3323 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3324
3325 inode_init_once(&ei->vfs_inode);
3326 }
3327
3328 void btrfs_destroy_cachep(void)
3329 {
3330 if (btrfs_inode_cachep)
3331 kmem_cache_destroy(btrfs_inode_cachep);
3332 if (btrfs_trans_handle_cachep)
3333 kmem_cache_destroy(btrfs_trans_handle_cachep);
3334 if (btrfs_transaction_cachep)
3335 kmem_cache_destroy(btrfs_transaction_cachep);
3336 if (btrfs_bit_radix_cachep)
3337 kmem_cache_destroy(btrfs_bit_radix_cachep);
3338 if (btrfs_path_cachep)
3339 kmem_cache_destroy(btrfs_path_cachep);
3340 }
3341
3342 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3343 unsigned long extra_flags,
3344 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3345 void (*ctor)(void *)
3346 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3347 void (*ctor)(struct kmem_cache *, void *)
3348 #else
3349 void (*ctor)(void *, struct kmem_cache *,
3350 unsigned long)
3351 #endif
3352 )
3353 {
3354 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3355 SLAB_MEM_SPREAD | extra_flags), ctor
3356 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3357 ,NULL
3358 #endif
3359 );
3360 }
3361
3362 int btrfs_init_cachep(void)
3363 {
3364 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3365 sizeof(struct btrfs_inode),
3366 0, init_once);
3367 if (!btrfs_inode_cachep)
3368 goto fail;
3369 btrfs_trans_handle_cachep =
3370 btrfs_cache_create("btrfs_trans_handle_cache",
3371 sizeof(struct btrfs_trans_handle),
3372 0, NULL);
3373 if (!btrfs_trans_handle_cachep)
3374 goto fail;
3375 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3376 sizeof(struct btrfs_transaction),
3377 0, NULL);
3378 if (!btrfs_transaction_cachep)
3379 goto fail;
3380 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3381 sizeof(struct btrfs_path),
3382 0, NULL);
3383 if (!btrfs_path_cachep)
3384 goto fail;
3385 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3386 SLAB_DESTROY_BY_RCU, NULL);
3387 if (!btrfs_bit_radix_cachep)
3388 goto fail;
3389 return 0;
3390 fail:
3391 btrfs_destroy_cachep();
3392 return -ENOMEM;
3393 }
3394
3395 static int btrfs_getattr(struct vfsmount *mnt,
3396 struct dentry *dentry, struct kstat *stat)
3397 {
3398 struct inode *inode = dentry->d_inode;
3399 generic_fillattr(inode, stat);
3400 stat->blksize = PAGE_CACHE_SIZE;
3401 stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3402 return 0;
3403 }
3404
3405 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3406 struct inode * new_dir,struct dentry *new_dentry)
3407 {
3408 struct btrfs_trans_handle *trans;
3409 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3410 struct inode *new_inode = new_dentry->d_inode;
3411 struct inode *old_inode = old_dentry->d_inode;
3412 struct timespec ctime = CURRENT_TIME;
3413 u64 index = 0;
3414 int ret;
3415
3416 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3417 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3418 return -ENOTEMPTY;
3419 }
3420
3421 ret = btrfs_check_free_space(root, 1, 0);
3422 if (ret)
3423 goto out_unlock;
3424
3425 trans = btrfs_start_transaction(root, 1);
3426
3427 btrfs_set_trans_block_group(trans, new_dir);
3428
3429 old_dentry->d_inode->i_nlink++;
3430 old_dir->i_ctime = old_dir->i_mtime = ctime;
3431 new_dir->i_ctime = new_dir->i_mtime = ctime;
3432 old_inode->i_ctime = ctime;
3433
3434 ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry);
3435 if (ret)
3436 goto out_fail;
3437
3438 if (new_inode) {
3439 new_inode->i_ctime = CURRENT_TIME;
3440 ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry);
3441 if (ret)
3442 goto out_fail;
3443 if (new_inode->i_nlink == 0) {
3444 ret = btrfs_orphan_add(trans, new_inode);
3445 if (ret)
3446 goto out_fail;
3447 }
3448 }
3449 ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3450 if (ret)
3451 goto out_fail;
3452
3453 ret = btrfs_add_link(trans, new_dentry, old_inode, 1, index);
3454 if (ret)
3455 goto out_fail;
3456
3457 out_fail:
3458 btrfs_end_transaction_throttle(trans, root);
3459 out_unlock:
3460 return ret;
3461 }
3462
3463 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3464 {
3465 struct list_head *head = &root->fs_info->delalloc_inodes;
3466 struct btrfs_inode *binode;
3467 unsigned long flags;
3468
3469 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3470 while(!list_empty(head)) {
3471 binode = list_entry(head->next, struct btrfs_inode,
3472 delalloc_inodes);
3473 atomic_inc(&binode->vfs_inode.i_count);
3474 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3475 filemap_write_and_wait(binode->vfs_inode.i_mapping);
3476 iput(&binode->vfs_inode);
3477 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3478 }
3479 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3480 return 0;
3481 }
3482
3483 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3484 const char *symname)
3485 {
3486 struct btrfs_trans_handle *trans;
3487 struct btrfs_root *root = BTRFS_I(dir)->root;
3488 struct btrfs_path *path;
3489 struct btrfs_key key;
3490 struct inode *inode = NULL;
3491 int err;
3492 int drop_inode = 0;
3493 u64 objectid;
3494 u64 index = 0 ;
3495 int name_len;
3496 int datasize;
3497 unsigned long ptr;
3498 struct btrfs_file_extent_item *ei;
3499 struct extent_buffer *leaf;
3500 unsigned long nr = 0;
3501
3502 name_len = strlen(symname) + 1;
3503 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3504 return -ENAMETOOLONG;
3505
3506 err = btrfs_check_free_space(root, 1, 0);
3507 if (err)
3508 goto out_fail;
3509
3510 trans = btrfs_start_transaction(root, 1);
3511 btrfs_set_trans_block_group(trans, dir);
3512
3513 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3514 if (err) {
3515 err = -ENOSPC;
3516 goto out_unlock;
3517 }
3518
3519 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3520 dentry->d_name.len,
3521 dentry->d_parent->d_inode->i_ino, objectid,
3522 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3523 &index);
3524 err = PTR_ERR(inode);
3525 if (IS_ERR(inode))
3526 goto out_unlock;
3527
3528 err = btrfs_init_acl(inode, dir);
3529 if (err) {
3530 drop_inode = 1;
3531 goto out_unlock;
3532 }
3533
3534 btrfs_set_trans_block_group(trans, inode);
3535 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3536 if (err)
3537 drop_inode = 1;
3538 else {
3539 inode->i_mapping->a_ops = &btrfs_aops;
3540 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3541 inode->i_fop = &btrfs_file_operations;
3542 inode->i_op = &btrfs_file_inode_operations;
3543 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3544 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3545 inode->i_mapping, GFP_NOFS);
3546 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3547 inode->i_mapping, GFP_NOFS);
3548 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3549 mutex_init(&BTRFS_I(inode)->csum_mutex);
3550 mutex_init(&BTRFS_I(inode)->extent_mutex);
3551 BTRFS_I(inode)->delalloc_bytes = 0;
3552 BTRFS_I(inode)->disk_i_size = 0;
3553 inode->i_mapping->writeback_index = 0;
3554 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3555 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3556 }
3557 dir->i_sb->s_dirt = 1;
3558 btrfs_update_inode_block_group(trans, inode);
3559 btrfs_update_inode_block_group(trans, dir);
3560 if (drop_inode)
3561 goto out_unlock;
3562
3563 path = btrfs_alloc_path();
3564 BUG_ON(!path);
3565 key.objectid = inode->i_ino;
3566 key.offset = 0;
3567 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3568 datasize = btrfs_file_extent_calc_inline_size(name_len);
3569 err = btrfs_insert_empty_item(trans, root, path, &key,
3570 datasize);
3571 if (err) {
3572 drop_inode = 1;
3573 goto out_unlock;
3574 }
3575 leaf = path->nodes[0];
3576 ei = btrfs_item_ptr(leaf, path->slots[0],
3577 struct btrfs_file_extent_item);
3578 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3579 btrfs_set_file_extent_type(leaf, ei,
3580 BTRFS_FILE_EXTENT_INLINE);
3581 ptr = btrfs_file_extent_inline_start(ei);
3582 write_extent_buffer(leaf, symname, ptr, name_len);
3583 btrfs_mark_buffer_dirty(leaf);
3584 btrfs_free_path(path);
3585
3586 inode->i_op = &btrfs_symlink_inode_operations;
3587 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3588 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3589 btrfs_i_size_write(inode, name_len - 1);
3590 err = btrfs_update_inode(trans, root, inode);
3591 if (err)
3592 drop_inode = 1;
3593
3594 out_unlock:
3595 nr = trans->blocks_used;
3596 btrfs_end_transaction_throttle(trans, root);
3597 out_fail:
3598 if (drop_inode) {
3599 inode_dec_link_count(inode);
3600 iput(inode);
3601 }
3602 btrfs_btree_balance_dirty(root, nr);
3603 return err;
3604 }
3605
3606 static int btrfs_set_page_dirty(struct page *page)
3607 {
3608 return __set_page_dirty_nobuffers(page);
3609 }
3610
3611 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3612 static int btrfs_permission(struct inode *inode, int mask)
3613 #else
3614 static int btrfs_permission(struct inode *inode, int mask,
3615 struct nameidata *nd)
3616 #endif
3617 {
3618 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3619 return -EACCES;
3620 return generic_permission(inode, mask, btrfs_check_acl);
3621 }
3622
3623 static struct inode_operations btrfs_dir_inode_operations = {
3624 .lookup = btrfs_lookup,
3625 .create = btrfs_create,
3626 .unlink = btrfs_unlink,
3627 .link = btrfs_link,
3628 .mkdir = btrfs_mkdir,
3629 .rmdir = btrfs_rmdir,
3630 .rename = btrfs_rename,
3631 .symlink = btrfs_symlink,
3632 .setattr = btrfs_setattr,
3633 .mknod = btrfs_mknod,
3634 .setxattr = generic_setxattr,
3635 .getxattr = generic_getxattr,
3636 .listxattr = btrfs_listxattr,
3637 .removexattr = generic_removexattr,
3638 .permission = btrfs_permission,
3639 };
3640 static struct inode_operations btrfs_dir_ro_inode_operations = {
3641 .lookup = btrfs_lookup,
3642 .permission = btrfs_permission,
3643 };
3644 static struct file_operations btrfs_dir_file_operations = {
3645 .llseek = generic_file_llseek,
3646 .read = generic_read_dir,
3647 .readdir = btrfs_readdir,
3648 .unlocked_ioctl = btrfs_ioctl,
3649 #ifdef CONFIG_COMPAT
3650 .compat_ioctl = btrfs_ioctl,
3651 #endif
3652 .release = btrfs_release_file,
3653 };
3654
3655 static struct extent_io_ops btrfs_extent_io_ops = {
3656 .fill_delalloc = run_delalloc_range,
3657 .submit_bio_hook = btrfs_submit_bio_hook,
3658 .merge_bio_hook = btrfs_merge_bio_hook,
3659 .readpage_io_hook = btrfs_readpage_io_hook,
3660 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3661 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3662 .writepage_start_hook = btrfs_writepage_start_hook,
3663 .readpage_io_failed_hook = btrfs_io_failed_hook,
3664 .set_bit_hook = btrfs_set_bit_hook,
3665 .clear_bit_hook = btrfs_clear_bit_hook,
3666 };
3667
3668 static struct address_space_operations btrfs_aops = {
3669 .readpage = btrfs_readpage,
3670 .writepage = btrfs_writepage,
3671 .writepages = btrfs_writepages,
3672 .readpages = btrfs_readpages,
3673 .sync_page = block_sync_page,
3674 .bmap = btrfs_bmap,
3675 .direct_IO = btrfs_direct_IO,
3676 .invalidatepage = btrfs_invalidatepage,
3677 .releasepage = btrfs_releasepage,
3678 .set_page_dirty = btrfs_set_page_dirty,
3679 };
3680
3681 static struct address_space_operations btrfs_symlink_aops = {
3682 .readpage = btrfs_readpage,
3683 .writepage = btrfs_writepage,
3684 .invalidatepage = btrfs_invalidatepage,
3685 .releasepage = btrfs_releasepage,
3686 };
3687
3688 static struct inode_operations btrfs_file_inode_operations = {
3689 .truncate = btrfs_truncate,
3690 .getattr = btrfs_getattr,
3691 .setattr = btrfs_setattr,
3692 .setxattr = generic_setxattr,
3693 .getxattr = generic_getxattr,
3694 .listxattr = btrfs_listxattr,
3695 .removexattr = generic_removexattr,
3696 .permission = btrfs_permission,
3697 };
3698 static struct inode_operations btrfs_special_inode_operations = {
3699 .getattr = btrfs_getattr,
3700 .setattr = btrfs_setattr,
3701 .permission = btrfs_permission,
3702 .setxattr = generic_setxattr,
3703 .getxattr = generic_getxattr,
3704 .listxattr = btrfs_listxattr,
3705 .removexattr = generic_removexattr,
3706 };
3707 static struct inode_operations btrfs_symlink_inode_operations = {
3708 .readlink = generic_readlink,
3709 .follow_link = page_follow_link_light,
3710 .put_link = page_put_link,
3711 .permission = btrfs_permission,
3712 };