]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/inode.c
Merge tag 'timers-urgent-2020-08-14' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/buffer_head.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "inode-map.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58 };
59
60 struct btrfs_dio_data {
61 u64 reserve;
62 u64 unsubmitted_oe_range_start;
63 u64 unsubmitted_oe_range_end;
64 int overwrite;
65 };
66
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_special_inode_operations;
70 static const struct inode_operations btrfs_file_inode_operations;
71 static const struct address_space_operations btrfs_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 static const struct extent_io_ops btrfs_extent_io_ops;
74
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 struct kmem_cache *btrfs_free_space_bitmap_cachep;
80
81 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
82 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
84 static noinline int cow_file_range(struct btrfs_inode *inode,
85 struct page *locked_page,
86 u64 start, u64 end, int *page_started,
87 unsigned long *nr_written, int unlock);
88 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
89 u64 len, u64 orig_start, u64 block_start,
90 u64 block_len, u64 orig_block_len,
91 u64 ram_bytes, int compress_type,
92 int type);
93
94 static void __endio_write_update_ordered(struct btrfs_inode *inode,
95 const u64 offset, const u64 bytes,
96 const bool uptodate);
97
98 /*
99 * Cleanup all submitted ordered extents in specified range to handle errors
100 * from the btrfs_run_delalloc_range() callback.
101 *
102 * NOTE: caller must ensure that when an error happens, it can not call
103 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
104 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
105 * to be released, which we want to happen only when finishing the ordered
106 * extent (btrfs_finish_ordered_io()).
107 */
108 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
109 struct page *locked_page,
110 u64 offset, u64 bytes)
111 {
112 unsigned long index = offset >> PAGE_SHIFT;
113 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
114 u64 page_start = page_offset(locked_page);
115 u64 page_end = page_start + PAGE_SIZE - 1;
116
117 struct page *page;
118
119 while (index <= end_index) {
120 page = find_get_page(inode->vfs_inode.i_mapping, index);
121 index++;
122 if (!page)
123 continue;
124 ClearPagePrivate2(page);
125 put_page(page);
126 }
127
128 /*
129 * In case this page belongs to the delalloc range being instantiated
130 * then skip it, since the first page of a range is going to be
131 * properly cleaned up by the caller of run_delalloc_range
132 */
133 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
134 offset += PAGE_SIZE;
135 bytes -= PAGE_SIZE;
136 }
137
138 return __endio_write_update_ordered(inode, offset, bytes, false);
139 }
140
141 static int btrfs_dirty_inode(struct inode *inode);
142
143 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
144 void btrfs_test_inode_set_ops(struct inode *inode)
145 {
146 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
147 }
148 #endif
149
150 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
151 struct inode *inode, struct inode *dir,
152 const struct qstr *qstr)
153 {
154 int err;
155
156 err = btrfs_init_acl(trans, inode, dir);
157 if (!err)
158 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
159 return err;
160 }
161
162 /*
163 * this does all the hard work for inserting an inline extent into
164 * the btree. The caller should have done a btrfs_drop_extents so that
165 * no overlapping inline items exist in the btree
166 */
167 static int insert_inline_extent(struct btrfs_trans_handle *trans,
168 struct btrfs_path *path, int extent_inserted,
169 struct btrfs_root *root, struct inode *inode,
170 u64 start, size_t size, size_t compressed_size,
171 int compress_type,
172 struct page **compressed_pages)
173 {
174 struct extent_buffer *leaf;
175 struct page *page = NULL;
176 char *kaddr;
177 unsigned long ptr;
178 struct btrfs_file_extent_item *ei;
179 int ret;
180 size_t cur_size = size;
181 unsigned long offset;
182
183 ASSERT((compressed_size > 0 && compressed_pages) ||
184 (compressed_size == 0 && !compressed_pages));
185
186 if (compressed_size && compressed_pages)
187 cur_size = compressed_size;
188
189 inode_add_bytes(inode, size);
190
191 if (!extent_inserted) {
192 struct btrfs_key key;
193 size_t datasize;
194
195 key.objectid = btrfs_ino(BTRFS_I(inode));
196 key.offset = start;
197 key.type = BTRFS_EXTENT_DATA_KEY;
198
199 datasize = btrfs_file_extent_calc_inline_size(cur_size);
200 path->leave_spinning = 1;
201 ret = btrfs_insert_empty_item(trans, root, path, &key,
202 datasize);
203 if (ret)
204 goto fail;
205 }
206 leaf = path->nodes[0];
207 ei = btrfs_item_ptr(leaf, path->slots[0],
208 struct btrfs_file_extent_item);
209 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
210 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
211 btrfs_set_file_extent_encryption(leaf, ei, 0);
212 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
213 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
214 ptr = btrfs_file_extent_inline_start(ei);
215
216 if (compress_type != BTRFS_COMPRESS_NONE) {
217 struct page *cpage;
218 int i = 0;
219 while (compressed_size > 0) {
220 cpage = compressed_pages[i];
221 cur_size = min_t(unsigned long, compressed_size,
222 PAGE_SIZE);
223
224 kaddr = kmap_atomic(cpage);
225 write_extent_buffer(leaf, kaddr, ptr, cur_size);
226 kunmap_atomic(kaddr);
227
228 i++;
229 ptr += cur_size;
230 compressed_size -= cur_size;
231 }
232 btrfs_set_file_extent_compression(leaf, ei,
233 compress_type);
234 } else {
235 page = find_get_page(inode->i_mapping,
236 start >> PAGE_SHIFT);
237 btrfs_set_file_extent_compression(leaf, ei, 0);
238 kaddr = kmap_atomic(page);
239 offset = offset_in_page(start);
240 write_extent_buffer(leaf, kaddr + offset, ptr, size);
241 kunmap_atomic(kaddr);
242 put_page(page);
243 }
244 btrfs_mark_buffer_dirty(leaf);
245 btrfs_release_path(path);
246
247 /*
248 * We align size to sectorsize for inline extents just for simplicity
249 * sake.
250 */
251 size = ALIGN(size, root->fs_info->sectorsize);
252 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
253 if (ret)
254 goto fail;
255
256 /*
257 * we're an inline extent, so nobody can
258 * extend the file past i_size without locking
259 * a page we already have locked.
260 *
261 * We must do any isize and inode updates
262 * before we unlock the pages. Otherwise we
263 * could end up racing with unlink.
264 */
265 BTRFS_I(inode)->disk_i_size = inode->i_size;
266 ret = btrfs_update_inode(trans, root, inode);
267
268 fail:
269 return ret;
270 }
271
272
273 /*
274 * conditionally insert an inline extent into the file. This
275 * does the checks required to make sure the data is small enough
276 * to fit as an inline extent.
277 */
278 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
279 u64 end, size_t compressed_size,
280 int compress_type,
281 struct page **compressed_pages)
282 {
283 struct btrfs_root *root = inode->root;
284 struct btrfs_fs_info *fs_info = root->fs_info;
285 struct btrfs_trans_handle *trans;
286 u64 isize = i_size_read(&inode->vfs_inode);
287 u64 actual_end = min(end + 1, isize);
288 u64 inline_len = actual_end - start;
289 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
290 u64 data_len = inline_len;
291 int ret;
292 struct btrfs_path *path;
293 int extent_inserted = 0;
294 u32 extent_item_size;
295
296 if (compressed_size)
297 data_len = compressed_size;
298
299 if (start > 0 ||
300 actual_end > fs_info->sectorsize ||
301 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
302 (!compressed_size &&
303 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
304 end + 1 < isize ||
305 data_len > fs_info->max_inline) {
306 return 1;
307 }
308
309 path = btrfs_alloc_path();
310 if (!path)
311 return -ENOMEM;
312
313 trans = btrfs_join_transaction(root);
314 if (IS_ERR(trans)) {
315 btrfs_free_path(path);
316 return PTR_ERR(trans);
317 }
318 trans->block_rsv = &inode->block_rsv;
319
320 if (compressed_size && compressed_pages)
321 extent_item_size = btrfs_file_extent_calc_inline_size(
322 compressed_size);
323 else
324 extent_item_size = btrfs_file_extent_calc_inline_size(
325 inline_len);
326
327 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
328 NULL, 1, 1, extent_item_size,
329 &extent_inserted);
330 if (ret) {
331 btrfs_abort_transaction(trans, ret);
332 goto out;
333 }
334
335 if (isize > actual_end)
336 inline_len = min_t(u64, isize, actual_end);
337 ret = insert_inline_extent(trans, path, extent_inserted,
338 root, &inode->vfs_inode, start,
339 inline_len, compressed_size,
340 compress_type, compressed_pages);
341 if (ret && ret != -ENOSPC) {
342 btrfs_abort_transaction(trans, ret);
343 goto out;
344 } else if (ret == -ENOSPC) {
345 ret = 1;
346 goto out;
347 }
348
349 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
350 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
351 out:
352 /*
353 * Don't forget to free the reserved space, as for inlined extent
354 * it won't count as data extent, free them directly here.
355 * And at reserve time, it's always aligned to page size, so
356 * just free one page here.
357 */
358 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
359 btrfs_free_path(path);
360 btrfs_end_transaction(trans);
361 return ret;
362 }
363
364 struct async_extent {
365 u64 start;
366 u64 ram_size;
367 u64 compressed_size;
368 struct page **pages;
369 unsigned long nr_pages;
370 int compress_type;
371 struct list_head list;
372 };
373
374 struct async_chunk {
375 struct inode *inode;
376 struct page *locked_page;
377 u64 start;
378 u64 end;
379 unsigned int write_flags;
380 struct list_head extents;
381 struct cgroup_subsys_state *blkcg_css;
382 struct btrfs_work work;
383 atomic_t *pending;
384 };
385
386 struct async_cow {
387 /* Number of chunks in flight; must be first in the structure */
388 atomic_t num_chunks;
389 struct async_chunk chunks[];
390 };
391
392 static noinline int add_async_extent(struct async_chunk *cow,
393 u64 start, u64 ram_size,
394 u64 compressed_size,
395 struct page **pages,
396 unsigned long nr_pages,
397 int compress_type)
398 {
399 struct async_extent *async_extent;
400
401 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
402 BUG_ON(!async_extent); /* -ENOMEM */
403 async_extent->start = start;
404 async_extent->ram_size = ram_size;
405 async_extent->compressed_size = compressed_size;
406 async_extent->pages = pages;
407 async_extent->nr_pages = nr_pages;
408 async_extent->compress_type = compress_type;
409 list_add_tail(&async_extent->list, &cow->extents);
410 return 0;
411 }
412
413 /*
414 * Check if the inode has flags compatible with compression
415 */
416 static inline bool inode_can_compress(struct btrfs_inode *inode)
417 {
418 if (inode->flags & BTRFS_INODE_NODATACOW ||
419 inode->flags & BTRFS_INODE_NODATASUM)
420 return false;
421 return true;
422 }
423
424 /*
425 * Check if the inode needs to be submitted to compression, based on mount
426 * options, defragmentation, properties or heuristics.
427 */
428 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
429 u64 end)
430 {
431 struct btrfs_fs_info *fs_info = inode->root->fs_info;
432
433 if (!inode_can_compress(inode)) {
434 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
435 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
436 btrfs_ino(inode));
437 return 0;
438 }
439 /* force compress */
440 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
441 return 1;
442 /* defrag ioctl */
443 if (inode->defrag_compress)
444 return 1;
445 /* bad compression ratios */
446 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
447 return 0;
448 if (btrfs_test_opt(fs_info, COMPRESS) ||
449 inode->flags & BTRFS_INODE_COMPRESS ||
450 inode->prop_compress)
451 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
452 return 0;
453 }
454
455 static inline void inode_should_defrag(struct btrfs_inode *inode,
456 u64 start, u64 end, u64 num_bytes, u64 small_write)
457 {
458 /* If this is a small write inside eof, kick off a defrag */
459 if (num_bytes < small_write &&
460 (start > 0 || end + 1 < inode->disk_i_size))
461 btrfs_add_inode_defrag(NULL, inode);
462 }
463
464 /*
465 * we create compressed extents in two phases. The first
466 * phase compresses a range of pages that have already been
467 * locked (both pages and state bits are locked).
468 *
469 * This is done inside an ordered work queue, and the compression
470 * is spread across many cpus. The actual IO submission is step
471 * two, and the ordered work queue takes care of making sure that
472 * happens in the same order things were put onto the queue by
473 * writepages and friends.
474 *
475 * If this code finds it can't get good compression, it puts an
476 * entry onto the work queue to write the uncompressed bytes. This
477 * makes sure that both compressed inodes and uncompressed inodes
478 * are written in the same order that the flusher thread sent them
479 * down.
480 */
481 static noinline int compress_file_range(struct async_chunk *async_chunk)
482 {
483 struct inode *inode = async_chunk->inode;
484 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
485 u64 blocksize = fs_info->sectorsize;
486 u64 start = async_chunk->start;
487 u64 end = async_chunk->end;
488 u64 actual_end;
489 u64 i_size;
490 int ret = 0;
491 struct page **pages = NULL;
492 unsigned long nr_pages;
493 unsigned long total_compressed = 0;
494 unsigned long total_in = 0;
495 int i;
496 int will_compress;
497 int compress_type = fs_info->compress_type;
498 int compressed_extents = 0;
499 int redirty = 0;
500
501 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
502 SZ_16K);
503
504 /*
505 * We need to save i_size before now because it could change in between
506 * us evaluating the size and assigning it. This is because we lock and
507 * unlock the page in truncate and fallocate, and then modify the i_size
508 * later on.
509 *
510 * The barriers are to emulate READ_ONCE, remove that once i_size_read
511 * does that for us.
512 */
513 barrier();
514 i_size = i_size_read(inode);
515 barrier();
516 actual_end = min_t(u64, i_size, end + 1);
517 again:
518 will_compress = 0;
519 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
520 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
521 nr_pages = min_t(unsigned long, nr_pages,
522 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
523
524 /*
525 * we don't want to send crud past the end of i_size through
526 * compression, that's just a waste of CPU time. So, if the
527 * end of the file is before the start of our current
528 * requested range of bytes, we bail out to the uncompressed
529 * cleanup code that can deal with all of this.
530 *
531 * It isn't really the fastest way to fix things, but this is a
532 * very uncommon corner.
533 */
534 if (actual_end <= start)
535 goto cleanup_and_bail_uncompressed;
536
537 total_compressed = actual_end - start;
538
539 /*
540 * skip compression for a small file range(<=blocksize) that
541 * isn't an inline extent, since it doesn't save disk space at all.
542 */
543 if (total_compressed <= blocksize &&
544 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
545 goto cleanup_and_bail_uncompressed;
546
547 total_compressed = min_t(unsigned long, total_compressed,
548 BTRFS_MAX_UNCOMPRESSED);
549 total_in = 0;
550 ret = 0;
551
552 /*
553 * we do compression for mount -o compress and when the
554 * inode has not been flagged as nocompress. This flag can
555 * change at any time if we discover bad compression ratios.
556 */
557 if (inode_need_compress(BTRFS_I(inode), start, end)) {
558 WARN_ON(pages);
559 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560 if (!pages) {
561 /* just bail out to the uncompressed code */
562 nr_pages = 0;
563 goto cont;
564 }
565
566 if (BTRFS_I(inode)->defrag_compress)
567 compress_type = BTRFS_I(inode)->defrag_compress;
568 else if (BTRFS_I(inode)->prop_compress)
569 compress_type = BTRFS_I(inode)->prop_compress;
570
571 /*
572 * we need to call clear_page_dirty_for_io on each
573 * page in the range. Otherwise applications with the file
574 * mmap'd can wander in and change the page contents while
575 * we are compressing them.
576 *
577 * If the compression fails for any reason, we set the pages
578 * dirty again later on.
579 *
580 * Note that the remaining part is redirtied, the start pointer
581 * has moved, the end is the original one.
582 */
583 if (!redirty) {
584 extent_range_clear_dirty_for_io(inode, start, end);
585 redirty = 1;
586 }
587
588 /* Compression level is applied here and only here */
589 ret = btrfs_compress_pages(
590 compress_type | (fs_info->compress_level << 4),
591 inode->i_mapping, start,
592 pages,
593 &nr_pages,
594 &total_in,
595 &total_compressed);
596
597 if (!ret) {
598 unsigned long offset = offset_in_page(total_compressed);
599 struct page *page = pages[nr_pages - 1];
600 char *kaddr;
601
602 /* zero the tail end of the last page, we might be
603 * sending it down to disk
604 */
605 if (offset) {
606 kaddr = kmap_atomic(page);
607 memset(kaddr + offset, 0,
608 PAGE_SIZE - offset);
609 kunmap_atomic(kaddr);
610 }
611 will_compress = 1;
612 }
613 }
614 cont:
615 if (start == 0) {
616 /* lets try to make an inline extent */
617 if (ret || total_in < actual_end) {
618 /* we didn't compress the entire range, try
619 * to make an uncompressed inline extent.
620 */
621 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
622 0, BTRFS_COMPRESS_NONE,
623 NULL);
624 } else {
625 /* try making a compressed inline extent */
626 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
627 total_compressed,
628 compress_type, pages);
629 }
630 if (ret <= 0) {
631 unsigned long clear_flags = EXTENT_DELALLOC |
632 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
633 EXTENT_DO_ACCOUNTING;
634 unsigned long page_error_op;
635
636 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
637
638 /*
639 * inline extent creation worked or returned error,
640 * we don't need to create any more async work items.
641 * Unlock and free up our temp pages.
642 *
643 * We use DO_ACCOUNTING here because we need the
644 * delalloc_release_metadata to be done _after_ we drop
645 * our outstanding extent for clearing delalloc for this
646 * range.
647 */
648 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
649 NULL,
650 clear_flags,
651 PAGE_UNLOCK |
652 PAGE_CLEAR_DIRTY |
653 PAGE_SET_WRITEBACK |
654 page_error_op |
655 PAGE_END_WRITEBACK);
656
657 /*
658 * Ensure we only free the compressed pages if we have
659 * them allocated, as we can still reach here with
660 * inode_need_compress() == false.
661 */
662 if (pages) {
663 for (i = 0; i < nr_pages; i++) {
664 WARN_ON(pages[i]->mapping);
665 put_page(pages[i]);
666 }
667 kfree(pages);
668 }
669 return 0;
670 }
671 }
672
673 if (will_compress) {
674 /*
675 * we aren't doing an inline extent round the compressed size
676 * up to a block size boundary so the allocator does sane
677 * things
678 */
679 total_compressed = ALIGN(total_compressed, blocksize);
680
681 /*
682 * one last check to make sure the compression is really a
683 * win, compare the page count read with the blocks on disk,
684 * compression must free at least one sector size
685 */
686 total_in = ALIGN(total_in, PAGE_SIZE);
687 if (total_compressed + blocksize <= total_in) {
688 compressed_extents++;
689
690 /*
691 * The async work queues will take care of doing actual
692 * allocation on disk for these compressed pages, and
693 * will submit them to the elevator.
694 */
695 add_async_extent(async_chunk, start, total_in,
696 total_compressed, pages, nr_pages,
697 compress_type);
698
699 if (start + total_in < end) {
700 start += total_in;
701 pages = NULL;
702 cond_resched();
703 goto again;
704 }
705 return compressed_extents;
706 }
707 }
708 if (pages) {
709 /*
710 * the compression code ran but failed to make things smaller,
711 * free any pages it allocated and our page pointer array
712 */
713 for (i = 0; i < nr_pages; i++) {
714 WARN_ON(pages[i]->mapping);
715 put_page(pages[i]);
716 }
717 kfree(pages);
718 pages = NULL;
719 total_compressed = 0;
720 nr_pages = 0;
721
722 /* flag the file so we don't compress in the future */
723 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
724 !(BTRFS_I(inode)->prop_compress)) {
725 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
726 }
727 }
728 cleanup_and_bail_uncompressed:
729 /*
730 * No compression, but we still need to write the pages in the file
731 * we've been given so far. redirty the locked page if it corresponds
732 * to our extent and set things up for the async work queue to run
733 * cow_file_range to do the normal delalloc dance.
734 */
735 if (async_chunk->locked_page &&
736 (page_offset(async_chunk->locked_page) >= start &&
737 page_offset(async_chunk->locked_page)) <= end) {
738 __set_page_dirty_nobuffers(async_chunk->locked_page);
739 /* unlocked later on in the async handlers */
740 }
741
742 if (redirty)
743 extent_range_redirty_for_io(inode, start, end);
744 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
745 BTRFS_COMPRESS_NONE);
746 compressed_extents++;
747
748 return compressed_extents;
749 }
750
751 static void free_async_extent_pages(struct async_extent *async_extent)
752 {
753 int i;
754
755 if (!async_extent->pages)
756 return;
757
758 for (i = 0; i < async_extent->nr_pages; i++) {
759 WARN_ON(async_extent->pages[i]->mapping);
760 put_page(async_extent->pages[i]);
761 }
762 kfree(async_extent->pages);
763 async_extent->nr_pages = 0;
764 async_extent->pages = NULL;
765 }
766
767 /*
768 * phase two of compressed writeback. This is the ordered portion
769 * of the code, which only gets called in the order the work was
770 * queued. We walk all the async extents created by compress_file_range
771 * and send them down to the disk.
772 */
773 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
774 {
775 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
776 struct btrfs_fs_info *fs_info = inode->root->fs_info;
777 struct async_extent *async_extent;
778 u64 alloc_hint = 0;
779 struct btrfs_key ins;
780 struct extent_map *em;
781 struct btrfs_root *root = inode->root;
782 struct extent_io_tree *io_tree = &inode->io_tree;
783 int ret = 0;
784
785 again:
786 while (!list_empty(&async_chunk->extents)) {
787 async_extent = list_entry(async_chunk->extents.next,
788 struct async_extent, list);
789 list_del(&async_extent->list);
790
791 retry:
792 lock_extent(io_tree, async_extent->start,
793 async_extent->start + async_extent->ram_size - 1);
794 /* did the compression code fall back to uncompressed IO? */
795 if (!async_extent->pages) {
796 int page_started = 0;
797 unsigned long nr_written = 0;
798
799 /* allocate blocks */
800 ret = cow_file_range(inode, async_chunk->locked_page,
801 async_extent->start,
802 async_extent->start +
803 async_extent->ram_size - 1,
804 &page_started, &nr_written, 0);
805
806 /* JDM XXX */
807
808 /*
809 * if page_started, cow_file_range inserted an
810 * inline extent and took care of all the unlocking
811 * and IO for us. Otherwise, we need to submit
812 * all those pages down to the drive.
813 */
814 if (!page_started && !ret)
815 extent_write_locked_range(&inode->vfs_inode,
816 async_extent->start,
817 async_extent->start +
818 async_extent->ram_size - 1,
819 WB_SYNC_ALL);
820 else if (ret && async_chunk->locked_page)
821 unlock_page(async_chunk->locked_page);
822 kfree(async_extent);
823 cond_resched();
824 continue;
825 }
826
827 ret = btrfs_reserve_extent(root, async_extent->ram_size,
828 async_extent->compressed_size,
829 async_extent->compressed_size,
830 0, alloc_hint, &ins, 1, 1);
831 if (ret) {
832 free_async_extent_pages(async_extent);
833
834 if (ret == -ENOSPC) {
835 unlock_extent(io_tree, async_extent->start,
836 async_extent->start +
837 async_extent->ram_size - 1);
838
839 /*
840 * we need to redirty the pages if we decide to
841 * fallback to uncompressed IO, otherwise we
842 * will not submit these pages down to lower
843 * layers.
844 */
845 extent_range_redirty_for_io(&inode->vfs_inode,
846 async_extent->start,
847 async_extent->start +
848 async_extent->ram_size - 1);
849
850 goto retry;
851 }
852 goto out_free;
853 }
854 /*
855 * here we're doing allocation and writeback of the
856 * compressed pages
857 */
858 em = create_io_em(inode, async_extent->start,
859 async_extent->ram_size, /* len */
860 async_extent->start, /* orig_start */
861 ins.objectid, /* block_start */
862 ins.offset, /* block_len */
863 ins.offset, /* orig_block_len */
864 async_extent->ram_size, /* ram_bytes */
865 async_extent->compress_type,
866 BTRFS_ORDERED_COMPRESSED);
867 if (IS_ERR(em))
868 /* ret value is not necessary due to void function */
869 goto out_free_reserve;
870 free_extent_map(em);
871
872 ret = btrfs_add_ordered_extent_compress(inode,
873 async_extent->start,
874 ins.objectid,
875 async_extent->ram_size,
876 ins.offset,
877 BTRFS_ORDERED_COMPRESSED,
878 async_extent->compress_type);
879 if (ret) {
880 btrfs_drop_extent_cache(inode, async_extent->start,
881 async_extent->start +
882 async_extent->ram_size - 1, 0);
883 goto out_free_reserve;
884 }
885 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
886
887 /*
888 * clear dirty, set writeback and unlock the pages.
889 */
890 extent_clear_unlock_delalloc(inode, async_extent->start,
891 async_extent->start +
892 async_extent->ram_size - 1,
893 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
894 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
895 PAGE_SET_WRITEBACK);
896 if (btrfs_submit_compressed_write(inode, async_extent->start,
897 async_extent->ram_size,
898 ins.objectid,
899 ins.offset, async_extent->pages,
900 async_extent->nr_pages,
901 async_chunk->write_flags,
902 async_chunk->blkcg_css)) {
903 struct page *p = async_extent->pages[0];
904 const u64 start = async_extent->start;
905 const u64 end = start + async_extent->ram_size - 1;
906
907 p->mapping = inode->vfs_inode.i_mapping;
908 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
909
910 p->mapping = NULL;
911 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
912 PAGE_END_WRITEBACK |
913 PAGE_SET_ERROR);
914 free_async_extent_pages(async_extent);
915 }
916 alloc_hint = ins.objectid + ins.offset;
917 kfree(async_extent);
918 cond_resched();
919 }
920 return;
921 out_free_reserve:
922 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
923 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
924 out_free:
925 extent_clear_unlock_delalloc(inode, async_extent->start,
926 async_extent->start +
927 async_extent->ram_size - 1,
928 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
929 EXTENT_DELALLOC_NEW |
930 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
931 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
932 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
933 PAGE_SET_ERROR);
934 free_async_extent_pages(async_extent);
935 kfree(async_extent);
936 goto again;
937 }
938
939 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
940 u64 num_bytes)
941 {
942 struct extent_map_tree *em_tree = &inode->extent_tree;
943 struct extent_map *em;
944 u64 alloc_hint = 0;
945
946 read_lock(&em_tree->lock);
947 em = search_extent_mapping(em_tree, start, num_bytes);
948 if (em) {
949 /*
950 * if block start isn't an actual block number then find the
951 * first block in this inode and use that as a hint. If that
952 * block is also bogus then just don't worry about it.
953 */
954 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
955 free_extent_map(em);
956 em = search_extent_mapping(em_tree, 0, 0);
957 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
958 alloc_hint = em->block_start;
959 if (em)
960 free_extent_map(em);
961 } else {
962 alloc_hint = em->block_start;
963 free_extent_map(em);
964 }
965 }
966 read_unlock(&em_tree->lock);
967
968 return alloc_hint;
969 }
970
971 /*
972 * when extent_io.c finds a delayed allocation range in the file,
973 * the call backs end up in this code. The basic idea is to
974 * allocate extents on disk for the range, and create ordered data structs
975 * in ram to track those extents.
976 *
977 * locked_page is the page that writepage had locked already. We use
978 * it to make sure we don't do extra locks or unlocks.
979 *
980 * *page_started is set to one if we unlock locked_page and do everything
981 * required to start IO on it. It may be clean and already done with
982 * IO when we return.
983 */
984 static noinline int cow_file_range(struct btrfs_inode *inode,
985 struct page *locked_page,
986 u64 start, u64 end, int *page_started,
987 unsigned long *nr_written, int unlock)
988 {
989 struct btrfs_root *root = inode->root;
990 struct btrfs_fs_info *fs_info = root->fs_info;
991 u64 alloc_hint = 0;
992 u64 num_bytes;
993 unsigned long ram_size;
994 u64 cur_alloc_size = 0;
995 u64 min_alloc_size;
996 u64 blocksize = fs_info->sectorsize;
997 struct btrfs_key ins;
998 struct extent_map *em;
999 unsigned clear_bits;
1000 unsigned long page_ops;
1001 bool extent_reserved = false;
1002 int ret = 0;
1003
1004 if (btrfs_is_free_space_inode(inode)) {
1005 WARN_ON_ONCE(1);
1006 ret = -EINVAL;
1007 goto out_unlock;
1008 }
1009
1010 num_bytes = ALIGN(end - start + 1, blocksize);
1011 num_bytes = max(blocksize, num_bytes);
1012 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1013
1014 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1015
1016 if (start == 0) {
1017 /* lets try to make an inline extent */
1018 ret = cow_file_range_inline(inode, start, end, 0,
1019 BTRFS_COMPRESS_NONE, NULL);
1020 if (ret == 0) {
1021 /*
1022 * We use DO_ACCOUNTING here because we need the
1023 * delalloc_release_metadata to be run _after_ we drop
1024 * our outstanding extent for clearing delalloc for this
1025 * range.
1026 */
1027 extent_clear_unlock_delalloc(inode, start, end, NULL,
1028 EXTENT_LOCKED | EXTENT_DELALLOC |
1029 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1030 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1031 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1032 PAGE_END_WRITEBACK);
1033 *nr_written = *nr_written +
1034 (end - start + PAGE_SIZE) / PAGE_SIZE;
1035 *page_started = 1;
1036 goto out;
1037 } else if (ret < 0) {
1038 goto out_unlock;
1039 }
1040 }
1041
1042 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1043 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1044
1045 /*
1046 * Relocation relies on the relocated extents to have exactly the same
1047 * size as the original extents. Normally writeback for relocation data
1048 * extents follows a NOCOW path because relocation preallocates the
1049 * extents. However, due to an operation such as scrub turning a block
1050 * group to RO mode, it may fallback to COW mode, so we must make sure
1051 * an extent allocated during COW has exactly the requested size and can
1052 * not be split into smaller extents, otherwise relocation breaks and
1053 * fails during the stage where it updates the bytenr of file extent
1054 * items.
1055 */
1056 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1057 min_alloc_size = num_bytes;
1058 else
1059 min_alloc_size = fs_info->sectorsize;
1060
1061 while (num_bytes > 0) {
1062 cur_alloc_size = num_bytes;
1063 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1064 min_alloc_size, 0, alloc_hint,
1065 &ins, 1, 1);
1066 if (ret < 0)
1067 goto out_unlock;
1068 cur_alloc_size = ins.offset;
1069 extent_reserved = true;
1070
1071 ram_size = ins.offset;
1072 em = create_io_em(inode, start, ins.offset, /* len */
1073 start, /* orig_start */
1074 ins.objectid, /* block_start */
1075 ins.offset, /* block_len */
1076 ins.offset, /* orig_block_len */
1077 ram_size, /* ram_bytes */
1078 BTRFS_COMPRESS_NONE, /* compress_type */
1079 BTRFS_ORDERED_REGULAR /* type */);
1080 if (IS_ERR(em)) {
1081 ret = PTR_ERR(em);
1082 goto out_reserve;
1083 }
1084 free_extent_map(em);
1085
1086 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1087 ram_size, cur_alloc_size, 0);
1088 if (ret)
1089 goto out_drop_extent_cache;
1090
1091 if (root->root_key.objectid ==
1092 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1093 ret = btrfs_reloc_clone_csums(inode, start,
1094 cur_alloc_size);
1095 /*
1096 * Only drop cache here, and process as normal.
1097 *
1098 * We must not allow extent_clear_unlock_delalloc()
1099 * at out_unlock label to free meta of this ordered
1100 * extent, as its meta should be freed by
1101 * btrfs_finish_ordered_io().
1102 *
1103 * So we must continue until @start is increased to
1104 * skip current ordered extent.
1105 */
1106 if (ret)
1107 btrfs_drop_extent_cache(inode, start,
1108 start + ram_size - 1, 0);
1109 }
1110
1111 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1112
1113 /* we're not doing compressed IO, don't unlock the first
1114 * page (which the caller expects to stay locked), don't
1115 * clear any dirty bits and don't set any writeback bits
1116 *
1117 * Do set the Private2 bit so we know this page was properly
1118 * setup for writepage
1119 */
1120 page_ops = unlock ? PAGE_UNLOCK : 0;
1121 page_ops |= PAGE_SET_PRIVATE2;
1122
1123 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1124 locked_page,
1125 EXTENT_LOCKED | EXTENT_DELALLOC,
1126 page_ops);
1127 if (num_bytes < cur_alloc_size)
1128 num_bytes = 0;
1129 else
1130 num_bytes -= cur_alloc_size;
1131 alloc_hint = ins.objectid + ins.offset;
1132 start += cur_alloc_size;
1133 extent_reserved = false;
1134
1135 /*
1136 * btrfs_reloc_clone_csums() error, since start is increased
1137 * extent_clear_unlock_delalloc() at out_unlock label won't
1138 * free metadata of current ordered extent, we're OK to exit.
1139 */
1140 if (ret)
1141 goto out_unlock;
1142 }
1143 out:
1144 return ret;
1145
1146 out_drop_extent_cache:
1147 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1148 out_reserve:
1149 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1150 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1151 out_unlock:
1152 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1153 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1154 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1155 PAGE_END_WRITEBACK;
1156 /*
1157 * If we reserved an extent for our delalloc range (or a subrange) and
1158 * failed to create the respective ordered extent, then it means that
1159 * when we reserved the extent we decremented the extent's size from
1160 * the data space_info's bytes_may_use counter and incremented the
1161 * space_info's bytes_reserved counter by the same amount. We must make
1162 * sure extent_clear_unlock_delalloc() does not try to decrement again
1163 * the data space_info's bytes_may_use counter, therefore we do not pass
1164 * it the flag EXTENT_CLEAR_DATA_RESV.
1165 */
1166 if (extent_reserved) {
1167 extent_clear_unlock_delalloc(inode, start,
1168 start + cur_alloc_size - 1,
1169 locked_page,
1170 clear_bits,
1171 page_ops);
1172 start += cur_alloc_size;
1173 if (start >= end)
1174 goto out;
1175 }
1176 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1177 clear_bits | EXTENT_CLEAR_DATA_RESV,
1178 page_ops);
1179 goto out;
1180 }
1181
1182 /*
1183 * work queue call back to started compression on a file and pages
1184 */
1185 static noinline void async_cow_start(struct btrfs_work *work)
1186 {
1187 struct async_chunk *async_chunk;
1188 int compressed_extents;
1189
1190 async_chunk = container_of(work, struct async_chunk, work);
1191
1192 compressed_extents = compress_file_range(async_chunk);
1193 if (compressed_extents == 0) {
1194 btrfs_add_delayed_iput(async_chunk->inode);
1195 async_chunk->inode = NULL;
1196 }
1197 }
1198
1199 /*
1200 * work queue call back to submit previously compressed pages
1201 */
1202 static noinline void async_cow_submit(struct btrfs_work *work)
1203 {
1204 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1205 work);
1206 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1207 unsigned long nr_pages;
1208
1209 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1210 PAGE_SHIFT;
1211
1212 /* atomic_sub_return implies a barrier */
1213 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1214 5 * SZ_1M)
1215 cond_wake_up_nomb(&fs_info->async_submit_wait);
1216
1217 /*
1218 * ->inode could be NULL if async_chunk_start has failed to compress,
1219 * in which case we don't have anything to submit, yet we need to
1220 * always adjust ->async_delalloc_pages as its paired with the init
1221 * happening in cow_file_range_async
1222 */
1223 if (async_chunk->inode)
1224 submit_compressed_extents(async_chunk);
1225 }
1226
1227 static noinline void async_cow_free(struct btrfs_work *work)
1228 {
1229 struct async_chunk *async_chunk;
1230
1231 async_chunk = container_of(work, struct async_chunk, work);
1232 if (async_chunk->inode)
1233 btrfs_add_delayed_iput(async_chunk->inode);
1234 if (async_chunk->blkcg_css)
1235 css_put(async_chunk->blkcg_css);
1236 /*
1237 * Since the pointer to 'pending' is at the beginning of the array of
1238 * async_chunk's, freeing it ensures the whole array has been freed.
1239 */
1240 if (atomic_dec_and_test(async_chunk->pending))
1241 kvfree(async_chunk->pending);
1242 }
1243
1244 static int cow_file_range_async(struct btrfs_inode *inode,
1245 struct writeback_control *wbc,
1246 struct page *locked_page,
1247 u64 start, u64 end, int *page_started,
1248 unsigned long *nr_written)
1249 {
1250 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1251 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1252 struct async_cow *ctx;
1253 struct async_chunk *async_chunk;
1254 unsigned long nr_pages;
1255 u64 cur_end;
1256 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1257 int i;
1258 bool should_compress;
1259 unsigned nofs_flag;
1260 const unsigned int write_flags = wbc_to_write_flags(wbc);
1261
1262 unlock_extent(&inode->io_tree, start, end);
1263
1264 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1265 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1266 num_chunks = 1;
1267 should_compress = false;
1268 } else {
1269 should_compress = true;
1270 }
1271
1272 nofs_flag = memalloc_nofs_save();
1273 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1274 memalloc_nofs_restore(nofs_flag);
1275
1276 if (!ctx) {
1277 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1278 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1279 EXTENT_DO_ACCOUNTING;
1280 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1281 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1282 PAGE_SET_ERROR;
1283
1284 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1285 clear_bits, page_ops);
1286 return -ENOMEM;
1287 }
1288
1289 async_chunk = ctx->chunks;
1290 atomic_set(&ctx->num_chunks, num_chunks);
1291
1292 for (i = 0; i < num_chunks; i++) {
1293 if (should_compress)
1294 cur_end = min(end, start + SZ_512K - 1);
1295 else
1296 cur_end = end;
1297
1298 /*
1299 * igrab is called higher up in the call chain, take only the
1300 * lightweight reference for the callback lifetime
1301 */
1302 ihold(&inode->vfs_inode);
1303 async_chunk[i].pending = &ctx->num_chunks;
1304 async_chunk[i].inode = &inode->vfs_inode;
1305 async_chunk[i].start = start;
1306 async_chunk[i].end = cur_end;
1307 async_chunk[i].write_flags = write_flags;
1308 INIT_LIST_HEAD(&async_chunk[i].extents);
1309
1310 /*
1311 * The locked_page comes all the way from writepage and its
1312 * the original page we were actually given. As we spread
1313 * this large delalloc region across multiple async_chunk
1314 * structs, only the first struct needs a pointer to locked_page
1315 *
1316 * This way we don't need racey decisions about who is supposed
1317 * to unlock it.
1318 */
1319 if (locked_page) {
1320 /*
1321 * Depending on the compressibility, the pages might or
1322 * might not go through async. We want all of them to
1323 * be accounted against wbc once. Let's do it here
1324 * before the paths diverge. wbc accounting is used
1325 * only for foreign writeback detection and doesn't
1326 * need full accuracy. Just account the whole thing
1327 * against the first page.
1328 */
1329 wbc_account_cgroup_owner(wbc, locked_page,
1330 cur_end - start);
1331 async_chunk[i].locked_page = locked_page;
1332 locked_page = NULL;
1333 } else {
1334 async_chunk[i].locked_page = NULL;
1335 }
1336
1337 if (blkcg_css != blkcg_root_css) {
1338 css_get(blkcg_css);
1339 async_chunk[i].blkcg_css = blkcg_css;
1340 } else {
1341 async_chunk[i].blkcg_css = NULL;
1342 }
1343
1344 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1345 async_cow_submit, async_cow_free);
1346
1347 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1348 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1349
1350 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1351
1352 *nr_written += nr_pages;
1353 start = cur_end + 1;
1354 }
1355 *page_started = 1;
1356 return 0;
1357 }
1358
1359 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1360 u64 bytenr, u64 num_bytes)
1361 {
1362 int ret;
1363 struct btrfs_ordered_sum *sums;
1364 LIST_HEAD(list);
1365
1366 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1367 bytenr + num_bytes - 1, &list, 0);
1368 if (ret == 0 && list_empty(&list))
1369 return 0;
1370
1371 while (!list_empty(&list)) {
1372 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1373 list_del(&sums->list);
1374 kfree(sums);
1375 }
1376 if (ret < 0)
1377 return ret;
1378 return 1;
1379 }
1380
1381 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1382 const u64 start, const u64 end,
1383 int *page_started, unsigned long *nr_written)
1384 {
1385 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1386 const bool is_reloc_ino = (inode->root->root_key.objectid ==
1387 BTRFS_DATA_RELOC_TREE_OBJECTID);
1388 const u64 range_bytes = end + 1 - start;
1389 struct extent_io_tree *io_tree = &inode->io_tree;
1390 u64 range_start = start;
1391 u64 count;
1392
1393 /*
1394 * If EXTENT_NORESERVE is set it means that when the buffered write was
1395 * made we had not enough available data space and therefore we did not
1396 * reserve data space for it, since we though we could do NOCOW for the
1397 * respective file range (either there is prealloc extent or the inode
1398 * has the NOCOW bit set).
1399 *
1400 * However when we need to fallback to COW mode (because for example the
1401 * block group for the corresponding extent was turned to RO mode by a
1402 * scrub or relocation) we need to do the following:
1403 *
1404 * 1) We increment the bytes_may_use counter of the data space info.
1405 * If COW succeeds, it allocates a new data extent and after doing
1406 * that it decrements the space info's bytes_may_use counter and
1407 * increments its bytes_reserved counter by the same amount (we do
1408 * this at btrfs_add_reserved_bytes()). So we need to increment the
1409 * bytes_may_use counter to compensate (when space is reserved at
1410 * buffered write time, the bytes_may_use counter is incremented);
1411 *
1412 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1413 * that if the COW path fails for any reason, it decrements (through
1414 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1415 * data space info, which we incremented in the step above.
1416 *
1417 * If we need to fallback to cow and the inode corresponds to a free
1418 * space cache inode or an inode of the data relocation tree, we must
1419 * also increment bytes_may_use of the data space_info for the same
1420 * reason. Space caches and relocated data extents always get a prealloc
1421 * extent for them, however scrub or balance may have set the block
1422 * group that contains that extent to RO mode and therefore force COW
1423 * when starting writeback.
1424 */
1425 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1426 EXTENT_NORESERVE, 0);
1427 if (count > 0 || is_space_ino || is_reloc_ino) {
1428 u64 bytes = count;
1429 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1430 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1431
1432 if (is_space_ino || is_reloc_ino)
1433 bytes = range_bytes;
1434
1435 spin_lock(&sinfo->lock);
1436 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1437 spin_unlock(&sinfo->lock);
1438
1439 if (count > 0)
1440 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1441 0, 0, NULL);
1442 }
1443
1444 return cow_file_range(inode, locked_page, start, end, page_started,
1445 nr_written, 1);
1446 }
1447
1448 /*
1449 * when nowcow writeback call back. This checks for snapshots or COW copies
1450 * of the extents that exist in the file, and COWs the file as required.
1451 *
1452 * If no cow copies or snapshots exist, we write directly to the existing
1453 * blocks on disk
1454 */
1455 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1456 struct page *locked_page,
1457 const u64 start, const u64 end,
1458 int *page_started, int force,
1459 unsigned long *nr_written)
1460 {
1461 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1462 struct btrfs_root *root = inode->root;
1463 struct btrfs_path *path;
1464 u64 cow_start = (u64)-1;
1465 u64 cur_offset = start;
1466 int ret;
1467 bool check_prev = true;
1468 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1469 u64 ino = btrfs_ino(inode);
1470 bool nocow = false;
1471 u64 disk_bytenr = 0;
1472
1473 path = btrfs_alloc_path();
1474 if (!path) {
1475 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1476 EXTENT_LOCKED | EXTENT_DELALLOC |
1477 EXTENT_DO_ACCOUNTING |
1478 EXTENT_DEFRAG, PAGE_UNLOCK |
1479 PAGE_CLEAR_DIRTY |
1480 PAGE_SET_WRITEBACK |
1481 PAGE_END_WRITEBACK);
1482 return -ENOMEM;
1483 }
1484
1485 while (1) {
1486 struct btrfs_key found_key;
1487 struct btrfs_file_extent_item *fi;
1488 struct extent_buffer *leaf;
1489 u64 extent_end;
1490 u64 extent_offset;
1491 u64 num_bytes = 0;
1492 u64 disk_num_bytes;
1493 u64 ram_bytes;
1494 int extent_type;
1495
1496 nocow = false;
1497
1498 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1499 cur_offset, 0);
1500 if (ret < 0)
1501 goto error;
1502
1503 /*
1504 * If there is no extent for our range when doing the initial
1505 * search, then go back to the previous slot as it will be the
1506 * one containing the search offset
1507 */
1508 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1509 leaf = path->nodes[0];
1510 btrfs_item_key_to_cpu(leaf, &found_key,
1511 path->slots[0] - 1);
1512 if (found_key.objectid == ino &&
1513 found_key.type == BTRFS_EXTENT_DATA_KEY)
1514 path->slots[0]--;
1515 }
1516 check_prev = false;
1517 next_slot:
1518 /* Go to next leaf if we have exhausted the current one */
1519 leaf = path->nodes[0];
1520 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1521 ret = btrfs_next_leaf(root, path);
1522 if (ret < 0) {
1523 if (cow_start != (u64)-1)
1524 cur_offset = cow_start;
1525 goto error;
1526 }
1527 if (ret > 0)
1528 break;
1529 leaf = path->nodes[0];
1530 }
1531
1532 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1533
1534 /* Didn't find anything for our INO */
1535 if (found_key.objectid > ino)
1536 break;
1537 /*
1538 * Keep searching until we find an EXTENT_ITEM or there are no
1539 * more extents for this inode
1540 */
1541 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1542 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1543 path->slots[0]++;
1544 goto next_slot;
1545 }
1546
1547 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1548 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1549 found_key.offset > end)
1550 break;
1551
1552 /*
1553 * If the found extent starts after requested offset, then
1554 * adjust extent_end to be right before this extent begins
1555 */
1556 if (found_key.offset > cur_offset) {
1557 extent_end = found_key.offset;
1558 extent_type = 0;
1559 goto out_check;
1560 }
1561
1562 /*
1563 * Found extent which begins before our range and potentially
1564 * intersect it
1565 */
1566 fi = btrfs_item_ptr(leaf, path->slots[0],
1567 struct btrfs_file_extent_item);
1568 extent_type = btrfs_file_extent_type(leaf, fi);
1569
1570 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1571 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1572 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1573 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1574 extent_offset = btrfs_file_extent_offset(leaf, fi);
1575 extent_end = found_key.offset +
1576 btrfs_file_extent_num_bytes(leaf, fi);
1577 disk_num_bytes =
1578 btrfs_file_extent_disk_num_bytes(leaf, fi);
1579 /*
1580 * If the extent we got ends before our current offset,
1581 * skip to the next extent.
1582 */
1583 if (extent_end <= cur_offset) {
1584 path->slots[0]++;
1585 goto next_slot;
1586 }
1587 /* Skip holes */
1588 if (disk_bytenr == 0)
1589 goto out_check;
1590 /* Skip compressed/encrypted/encoded extents */
1591 if (btrfs_file_extent_compression(leaf, fi) ||
1592 btrfs_file_extent_encryption(leaf, fi) ||
1593 btrfs_file_extent_other_encoding(leaf, fi))
1594 goto out_check;
1595 /*
1596 * If extent is created before the last volume's snapshot
1597 * this implies the extent is shared, hence we can't do
1598 * nocow. This is the same check as in
1599 * btrfs_cross_ref_exist but without calling
1600 * btrfs_search_slot.
1601 */
1602 if (!freespace_inode &&
1603 btrfs_file_extent_generation(leaf, fi) <=
1604 btrfs_root_last_snapshot(&root->root_item))
1605 goto out_check;
1606 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1607 goto out_check;
1608 /* If extent is RO, we must COW it */
1609 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1610 goto out_check;
1611 ret = btrfs_cross_ref_exist(root, ino,
1612 found_key.offset -
1613 extent_offset, disk_bytenr);
1614 if (ret) {
1615 /*
1616 * ret could be -EIO if the above fails to read
1617 * metadata.
1618 */
1619 if (ret < 0) {
1620 if (cow_start != (u64)-1)
1621 cur_offset = cow_start;
1622 goto error;
1623 }
1624
1625 WARN_ON_ONCE(freespace_inode);
1626 goto out_check;
1627 }
1628 disk_bytenr += extent_offset;
1629 disk_bytenr += cur_offset - found_key.offset;
1630 num_bytes = min(end + 1, extent_end) - cur_offset;
1631 /*
1632 * If there are pending snapshots for this root, we
1633 * fall into common COW way
1634 */
1635 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1636 goto out_check;
1637 /*
1638 * force cow if csum exists in the range.
1639 * this ensure that csum for a given extent are
1640 * either valid or do not exist.
1641 */
1642 ret = csum_exist_in_range(fs_info, disk_bytenr,
1643 num_bytes);
1644 if (ret) {
1645 /*
1646 * ret could be -EIO if the above fails to read
1647 * metadata.
1648 */
1649 if (ret < 0) {
1650 if (cow_start != (u64)-1)
1651 cur_offset = cow_start;
1652 goto error;
1653 }
1654 WARN_ON_ONCE(freespace_inode);
1655 goto out_check;
1656 }
1657 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1658 goto out_check;
1659 nocow = true;
1660 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1661 extent_end = found_key.offset + ram_bytes;
1662 extent_end = ALIGN(extent_end, fs_info->sectorsize);
1663 /* Skip extents outside of our requested range */
1664 if (extent_end <= start) {
1665 path->slots[0]++;
1666 goto next_slot;
1667 }
1668 } else {
1669 /* If this triggers then we have a memory corruption */
1670 BUG();
1671 }
1672 out_check:
1673 /*
1674 * If nocow is false then record the beginning of the range
1675 * that needs to be COWed
1676 */
1677 if (!nocow) {
1678 if (cow_start == (u64)-1)
1679 cow_start = cur_offset;
1680 cur_offset = extent_end;
1681 if (cur_offset > end)
1682 break;
1683 path->slots[0]++;
1684 goto next_slot;
1685 }
1686
1687 btrfs_release_path(path);
1688
1689 /*
1690 * COW range from cow_start to found_key.offset - 1. As the key
1691 * will contain the beginning of the first extent that can be
1692 * NOCOW, following one which needs to be COW'ed
1693 */
1694 if (cow_start != (u64)-1) {
1695 ret = fallback_to_cow(inode, locked_page,
1696 cow_start, found_key.offset - 1,
1697 page_started, nr_written);
1698 if (ret)
1699 goto error;
1700 cow_start = (u64)-1;
1701 }
1702
1703 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1704 u64 orig_start = found_key.offset - extent_offset;
1705 struct extent_map *em;
1706
1707 em = create_io_em(inode, cur_offset, num_bytes,
1708 orig_start,
1709 disk_bytenr, /* block_start */
1710 num_bytes, /* block_len */
1711 disk_num_bytes, /* orig_block_len */
1712 ram_bytes, BTRFS_COMPRESS_NONE,
1713 BTRFS_ORDERED_PREALLOC);
1714 if (IS_ERR(em)) {
1715 ret = PTR_ERR(em);
1716 goto error;
1717 }
1718 free_extent_map(em);
1719 ret = btrfs_add_ordered_extent(inode, cur_offset,
1720 disk_bytenr, num_bytes,
1721 num_bytes,
1722 BTRFS_ORDERED_PREALLOC);
1723 if (ret) {
1724 btrfs_drop_extent_cache(inode, cur_offset,
1725 cur_offset + num_bytes - 1,
1726 0);
1727 goto error;
1728 }
1729 } else {
1730 ret = btrfs_add_ordered_extent(inode, cur_offset,
1731 disk_bytenr, num_bytes,
1732 num_bytes,
1733 BTRFS_ORDERED_NOCOW);
1734 if (ret)
1735 goto error;
1736 }
1737
1738 if (nocow)
1739 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1740 nocow = false;
1741
1742 if (root->root_key.objectid ==
1743 BTRFS_DATA_RELOC_TREE_OBJECTID)
1744 /*
1745 * Error handled later, as we must prevent
1746 * extent_clear_unlock_delalloc() in error handler
1747 * from freeing metadata of created ordered extent.
1748 */
1749 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1750 num_bytes);
1751
1752 extent_clear_unlock_delalloc(inode, cur_offset,
1753 cur_offset + num_bytes - 1,
1754 locked_page, EXTENT_LOCKED |
1755 EXTENT_DELALLOC |
1756 EXTENT_CLEAR_DATA_RESV,
1757 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1758
1759 cur_offset = extent_end;
1760
1761 /*
1762 * btrfs_reloc_clone_csums() error, now we're OK to call error
1763 * handler, as metadata for created ordered extent will only
1764 * be freed by btrfs_finish_ordered_io().
1765 */
1766 if (ret)
1767 goto error;
1768 if (cur_offset > end)
1769 break;
1770 }
1771 btrfs_release_path(path);
1772
1773 if (cur_offset <= end && cow_start == (u64)-1)
1774 cow_start = cur_offset;
1775
1776 if (cow_start != (u64)-1) {
1777 cur_offset = end;
1778 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1779 page_started, nr_written);
1780 if (ret)
1781 goto error;
1782 }
1783
1784 error:
1785 if (nocow)
1786 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1787
1788 if (ret && cur_offset < end)
1789 extent_clear_unlock_delalloc(inode, cur_offset, end,
1790 locked_page, EXTENT_LOCKED |
1791 EXTENT_DELALLOC | EXTENT_DEFRAG |
1792 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1793 PAGE_CLEAR_DIRTY |
1794 PAGE_SET_WRITEBACK |
1795 PAGE_END_WRITEBACK);
1796 btrfs_free_path(path);
1797 return ret;
1798 }
1799
1800 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
1801 {
1802
1803 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1804 !(inode->flags & BTRFS_INODE_PREALLOC))
1805 return 0;
1806
1807 /*
1808 * @defrag_bytes is a hint value, no spinlock held here,
1809 * if is not zero, it means the file is defragging.
1810 * Force cow if given extent needs to be defragged.
1811 */
1812 if (inode->defrag_bytes &&
1813 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
1814 return 1;
1815
1816 return 0;
1817 }
1818
1819 /*
1820 * Function to process delayed allocation (create CoW) for ranges which are
1821 * being touched for the first time.
1822 */
1823 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1824 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1825 struct writeback_control *wbc)
1826 {
1827 int ret;
1828 int force_cow = need_force_cow(inode, start, end);
1829
1830 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1831 ret = run_delalloc_nocow(inode, locked_page, start, end,
1832 page_started, 1, nr_written);
1833 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1834 ret = run_delalloc_nocow(inode, locked_page, start, end,
1835 page_started, 0, nr_written);
1836 } else if (!inode_can_compress(inode) ||
1837 !inode_need_compress(inode, start, end)) {
1838 ret = cow_file_range(inode, locked_page, start, end,
1839 page_started, nr_written, 1);
1840 } else {
1841 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1842 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1843 page_started, nr_written);
1844 }
1845 if (ret)
1846 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1847 end - start + 1);
1848 return ret;
1849 }
1850
1851 void btrfs_split_delalloc_extent(struct inode *inode,
1852 struct extent_state *orig, u64 split)
1853 {
1854 u64 size;
1855
1856 /* not delalloc, ignore it */
1857 if (!(orig->state & EXTENT_DELALLOC))
1858 return;
1859
1860 size = orig->end - orig->start + 1;
1861 if (size > BTRFS_MAX_EXTENT_SIZE) {
1862 u32 num_extents;
1863 u64 new_size;
1864
1865 /*
1866 * See the explanation in btrfs_merge_delalloc_extent, the same
1867 * applies here, just in reverse.
1868 */
1869 new_size = orig->end - split + 1;
1870 num_extents = count_max_extents(new_size);
1871 new_size = split - orig->start;
1872 num_extents += count_max_extents(new_size);
1873 if (count_max_extents(size) >= num_extents)
1874 return;
1875 }
1876
1877 spin_lock(&BTRFS_I(inode)->lock);
1878 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1879 spin_unlock(&BTRFS_I(inode)->lock);
1880 }
1881
1882 /*
1883 * Handle merged delayed allocation extents so we can keep track of new extents
1884 * that are just merged onto old extents, such as when we are doing sequential
1885 * writes, so we can properly account for the metadata space we'll need.
1886 */
1887 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1888 struct extent_state *other)
1889 {
1890 u64 new_size, old_size;
1891 u32 num_extents;
1892
1893 /* not delalloc, ignore it */
1894 if (!(other->state & EXTENT_DELALLOC))
1895 return;
1896
1897 if (new->start > other->start)
1898 new_size = new->end - other->start + 1;
1899 else
1900 new_size = other->end - new->start + 1;
1901
1902 /* we're not bigger than the max, unreserve the space and go */
1903 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1904 spin_lock(&BTRFS_I(inode)->lock);
1905 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1906 spin_unlock(&BTRFS_I(inode)->lock);
1907 return;
1908 }
1909
1910 /*
1911 * We have to add up either side to figure out how many extents were
1912 * accounted for before we merged into one big extent. If the number of
1913 * extents we accounted for is <= the amount we need for the new range
1914 * then we can return, otherwise drop. Think of it like this
1915 *
1916 * [ 4k][MAX_SIZE]
1917 *
1918 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1919 * need 2 outstanding extents, on one side we have 1 and the other side
1920 * we have 1 so they are == and we can return. But in this case
1921 *
1922 * [MAX_SIZE+4k][MAX_SIZE+4k]
1923 *
1924 * Each range on their own accounts for 2 extents, but merged together
1925 * they are only 3 extents worth of accounting, so we need to drop in
1926 * this case.
1927 */
1928 old_size = other->end - other->start + 1;
1929 num_extents = count_max_extents(old_size);
1930 old_size = new->end - new->start + 1;
1931 num_extents += count_max_extents(old_size);
1932 if (count_max_extents(new_size) >= num_extents)
1933 return;
1934
1935 spin_lock(&BTRFS_I(inode)->lock);
1936 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1937 spin_unlock(&BTRFS_I(inode)->lock);
1938 }
1939
1940 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1941 struct inode *inode)
1942 {
1943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1944
1945 spin_lock(&root->delalloc_lock);
1946 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1947 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1948 &root->delalloc_inodes);
1949 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1950 &BTRFS_I(inode)->runtime_flags);
1951 root->nr_delalloc_inodes++;
1952 if (root->nr_delalloc_inodes == 1) {
1953 spin_lock(&fs_info->delalloc_root_lock);
1954 BUG_ON(!list_empty(&root->delalloc_root));
1955 list_add_tail(&root->delalloc_root,
1956 &fs_info->delalloc_roots);
1957 spin_unlock(&fs_info->delalloc_root_lock);
1958 }
1959 }
1960 spin_unlock(&root->delalloc_lock);
1961 }
1962
1963
1964 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1965 struct btrfs_inode *inode)
1966 {
1967 struct btrfs_fs_info *fs_info = root->fs_info;
1968
1969 if (!list_empty(&inode->delalloc_inodes)) {
1970 list_del_init(&inode->delalloc_inodes);
1971 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1972 &inode->runtime_flags);
1973 root->nr_delalloc_inodes--;
1974 if (!root->nr_delalloc_inodes) {
1975 ASSERT(list_empty(&root->delalloc_inodes));
1976 spin_lock(&fs_info->delalloc_root_lock);
1977 BUG_ON(list_empty(&root->delalloc_root));
1978 list_del_init(&root->delalloc_root);
1979 spin_unlock(&fs_info->delalloc_root_lock);
1980 }
1981 }
1982 }
1983
1984 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1985 struct btrfs_inode *inode)
1986 {
1987 spin_lock(&root->delalloc_lock);
1988 __btrfs_del_delalloc_inode(root, inode);
1989 spin_unlock(&root->delalloc_lock);
1990 }
1991
1992 /*
1993 * Properly track delayed allocation bytes in the inode and to maintain the
1994 * list of inodes that have pending delalloc work to be done.
1995 */
1996 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1997 unsigned *bits)
1998 {
1999 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2000
2001 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2002 WARN_ON(1);
2003 /*
2004 * set_bit and clear bit hooks normally require _irqsave/restore
2005 * but in this case, we are only testing for the DELALLOC
2006 * bit, which is only set or cleared with irqs on
2007 */
2008 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2009 struct btrfs_root *root = BTRFS_I(inode)->root;
2010 u64 len = state->end + 1 - state->start;
2011 u32 num_extents = count_max_extents(len);
2012 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2013
2014 spin_lock(&BTRFS_I(inode)->lock);
2015 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2016 spin_unlock(&BTRFS_I(inode)->lock);
2017
2018 /* For sanity tests */
2019 if (btrfs_is_testing(fs_info))
2020 return;
2021
2022 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2023 fs_info->delalloc_batch);
2024 spin_lock(&BTRFS_I(inode)->lock);
2025 BTRFS_I(inode)->delalloc_bytes += len;
2026 if (*bits & EXTENT_DEFRAG)
2027 BTRFS_I(inode)->defrag_bytes += len;
2028 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2029 &BTRFS_I(inode)->runtime_flags))
2030 btrfs_add_delalloc_inodes(root, inode);
2031 spin_unlock(&BTRFS_I(inode)->lock);
2032 }
2033
2034 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2035 (*bits & EXTENT_DELALLOC_NEW)) {
2036 spin_lock(&BTRFS_I(inode)->lock);
2037 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2038 state->start;
2039 spin_unlock(&BTRFS_I(inode)->lock);
2040 }
2041 }
2042
2043 /*
2044 * Once a range is no longer delalloc this function ensures that proper
2045 * accounting happens.
2046 */
2047 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2048 struct extent_state *state, unsigned *bits)
2049 {
2050 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2051 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2052 u64 len = state->end + 1 - state->start;
2053 u32 num_extents = count_max_extents(len);
2054
2055 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2056 spin_lock(&inode->lock);
2057 inode->defrag_bytes -= len;
2058 spin_unlock(&inode->lock);
2059 }
2060
2061 /*
2062 * set_bit and clear bit hooks normally require _irqsave/restore
2063 * but in this case, we are only testing for the DELALLOC
2064 * bit, which is only set or cleared with irqs on
2065 */
2066 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2067 struct btrfs_root *root = inode->root;
2068 bool do_list = !btrfs_is_free_space_inode(inode);
2069
2070 spin_lock(&inode->lock);
2071 btrfs_mod_outstanding_extents(inode, -num_extents);
2072 spin_unlock(&inode->lock);
2073
2074 /*
2075 * We don't reserve metadata space for space cache inodes so we
2076 * don't need to call delalloc_release_metadata if there is an
2077 * error.
2078 */
2079 if (*bits & EXTENT_CLEAR_META_RESV &&
2080 root != fs_info->tree_root)
2081 btrfs_delalloc_release_metadata(inode, len, false);
2082
2083 /* For sanity tests. */
2084 if (btrfs_is_testing(fs_info))
2085 return;
2086
2087 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2088 do_list && !(state->state & EXTENT_NORESERVE) &&
2089 (*bits & EXTENT_CLEAR_DATA_RESV))
2090 btrfs_free_reserved_data_space_noquota(fs_info, len);
2091
2092 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2093 fs_info->delalloc_batch);
2094 spin_lock(&inode->lock);
2095 inode->delalloc_bytes -= len;
2096 if (do_list && inode->delalloc_bytes == 0 &&
2097 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2098 &inode->runtime_flags))
2099 btrfs_del_delalloc_inode(root, inode);
2100 spin_unlock(&inode->lock);
2101 }
2102
2103 if ((state->state & EXTENT_DELALLOC_NEW) &&
2104 (*bits & EXTENT_DELALLOC_NEW)) {
2105 spin_lock(&inode->lock);
2106 ASSERT(inode->new_delalloc_bytes >= len);
2107 inode->new_delalloc_bytes -= len;
2108 spin_unlock(&inode->lock);
2109 }
2110 }
2111
2112 /*
2113 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2114 * in a chunk's stripe. This function ensures that bios do not span a
2115 * stripe/chunk
2116 *
2117 * @page - The page we are about to add to the bio
2118 * @size - size we want to add to the bio
2119 * @bio - bio we want to ensure is smaller than a stripe
2120 * @bio_flags - flags of the bio
2121 *
2122 * return 1 if page cannot be added to the bio
2123 * return 0 if page can be added to the bio
2124 * return error otherwise
2125 */
2126 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2127 unsigned long bio_flags)
2128 {
2129 struct inode *inode = page->mapping->host;
2130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2131 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2132 u64 length = 0;
2133 u64 map_length;
2134 int ret;
2135 struct btrfs_io_geometry geom;
2136
2137 if (bio_flags & EXTENT_BIO_COMPRESSED)
2138 return 0;
2139
2140 length = bio->bi_iter.bi_size;
2141 map_length = length;
2142 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2143 &geom);
2144 if (ret < 0)
2145 return ret;
2146
2147 if (geom.len < length + size)
2148 return 1;
2149 return 0;
2150 }
2151
2152 /*
2153 * in order to insert checksums into the metadata in large chunks,
2154 * we wait until bio submission time. All the pages in the bio are
2155 * checksummed and sums are attached onto the ordered extent record.
2156 *
2157 * At IO completion time the cums attached on the ordered extent record
2158 * are inserted into the btree
2159 */
2160 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2161 u64 bio_offset)
2162 {
2163 struct inode *inode = private_data;
2164 blk_status_t ret = 0;
2165
2166 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2167 BUG_ON(ret); /* -ENOMEM */
2168 return 0;
2169 }
2170
2171 /*
2172 * extent_io.c submission hook. This does the right thing for csum calculation
2173 * on write, or reading the csums from the tree before a read.
2174 *
2175 * Rules about async/sync submit,
2176 * a) read: sync submit
2177 *
2178 * b) write without checksum: sync submit
2179 *
2180 * c) write with checksum:
2181 * c-1) if bio is issued by fsync: sync submit
2182 * (sync_writers != 0)
2183 *
2184 * c-2) if root is reloc root: sync submit
2185 * (only in case of buffered IO)
2186 *
2187 * c-3) otherwise: async submit
2188 */
2189 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2190 int mirror_num,
2191 unsigned long bio_flags)
2192
2193 {
2194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2195 struct btrfs_root *root = BTRFS_I(inode)->root;
2196 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2197 blk_status_t ret = 0;
2198 int skip_sum;
2199 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2200
2201 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2202
2203 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2204 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2205
2206 if (bio_op(bio) != REQ_OP_WRITE) {
2207 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2208 if (ret)
2209 goto out;
2210
2211 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2212 ret = btrfs_submit_compressed_read(inode, bio,
2213 mirror_num,
2214 bio_flags);
2215 goto out;
2216 } else if (!skip_sum) {
2217 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
2218 if (ret)
2219 goto out;
2220 }
2221 goto mapit;
2222 } else if (async && !skip_sum) {
2223 /* csum items have already been cloned */
2224 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2225 goto mapit;
2226 /* we're doing a write, do the async checksumming */
2227 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2228 0, inode, btrfs_submit_bio_start);
2229 goto out;
2230 } else if (!skip_sum) {
2231 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2232 if (ret)
2233 goto out;
2234 }
2235
2236 mapit:
2237 ret = btrfs_map_bio(fs_info, bio, mirror_num);
2238
2239 out:
2240 if (ret) {
2241 bio->bi_status = ret;
2242 bio_endio(bio);
2243 }
2244 return ret;
2245 }
2246
2247 /*
2248 * given a list of ordered sums record them in the inode. This happens
2249 * at IO completion time based on sums calculated at bio submission time.
2250 */
2251 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2252 struct inode *inode, struct list_head *list)
2253 {
2254 struct btrfs_ordered_sum *sum;
2255 int ret;
2256
2257 list_for_each_entry(sum, list, list) {
2258 trans->adding_csums = true;
2259 ret = btrfs_csum_file_blocks(trans,
2260 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2261 trans->adding_csums = false;
2262 if (ret)
2263 return ret;
2264 }
2265 return 0;
2266 }
2267
2268 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2269 unsigned int extra_bits,
2270 struct extent_state **cached_state)
2271 {
2272 WARN_ON(PAGE_ALIGNED(end));
2273 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2274 cached_state);
2275 }
2276
2277 /* see btrfs_writepage_start_hook for details on why this is required */
2278 struct btrfs_writepage_fixup {
2279 struct page *page;
2280 struct inode *inode;
2281 struct btrfs_work work;
2282 };
2283
2284 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2285 {
2286 struct btrfs_writepage_fixup *fixup;
2287 struct btrfs_ordered_extent *ordered;
2288 struct extent_state *cached_state = NULL;
2289 struct extent_changeset *data_reserved = NULL;
2290 struct page *page;
2291 struct btrfs_inode *inode;
2292 u64 page_start;
2293 u64 page_end;
2294 int ret = 0;
2295 bool free_delalloc_space = true;
2296
2297 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2298 page = fixup->page;
2299 inode = BTRFS_I(fixup->inode);
2300 page_start = page_offset(page);
2301 page_end = page_offset(page) + PAGE_SIZE - 1;
2302
2303 /*
2304 * This is similar to page_mkwrite, we need to reserve the space before
2305 * we take the page lock.
2306 */
2307 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2308 PAGE_SIZE);
2309 again:
2310 lock_page(page);
2311
2312 /*
2313 * Before we queued this fixup, we took a reference on the page.
2314 * page->mapping may go NULL, but it shouldn't be moved to a different
2315 * address space.
2316 */
2317 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2318 /*
2319 * Unfortunately this is a little tricky, either
2320 *
2321 * 1) We got here and our page had already been dealt with and
2322 * we reserved our space, thus ret == 0, so we need to just
2323 * drop our space reservation and bail. This can happen the
2324 * first time we come into the fixup worker, or could happen
2325 * while waiting for the ordered extent.
2326 * 2) Our page was already dealt with, but we happened to get an
2327 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2328 * this case we obviously don't have anything to release, but
2329 * because the page was already dealt with we don't want to
2330 * mark the page with an error, so make sure we're resetting
2331 * ret to 0. This is why we have this check _before_ the ret
2332 * check, because we do not want to have a surprise ENOSPC
2333 * when the page was already properly dealt with.
2334 */
2335 if (!ret) {
2336 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2337 btrfs_delalloc_release_space(inode, data_reserved,
2338 page_start, PAGE_SIZE,
2339 true);
2340 }
2341 ret = 0;
2342 goto out_page;
2343 }
2344
2345 /*
2346 * We can't mess with the page state unless it is locked, so now that
2347 * it is locked bail if we failed to make our space reservation.
2348 */
2349 if (ret)
2350 goto out_page;
2351
2352 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2353
2354 /* already ordered? We're done */
2355 if (PagePrivate2(page))
2356 goto out_reserved;
2357
2358 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2359 if (ordered) {
2360 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2361 &cached_state);
2362 unlock_page(page);
2363 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
2364 btrfs_put_ordered_extent(ordered);
2365 goto again;
2366 }
2367
2368 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2369 &cached_state);
2370 if (ret)
2371 goto out_reserved;
2372
2373 /*
2374 * Everything went as planned, we're now the owner of a dirty page with
2375 * delayed allocation bits set and space reserved for our COW
2376 * destination.
2377 *
2378 * The page was dirty when we started, nothing should have cleaned it.
2379 */
2380 BUG_ON(!PageDirty(page));
2381 free_delalloc_space = false;
2382 out_reserved:
2383 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2384 if (free_delalloc_space)
2385 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2386 PAGE_SIZE, true);
2387 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2388 &cached_state);
2389 out_page:
2390 if (ret) {
2391 /*
2392 * We hit ENOSPC or other errors. Update the mapping and page
2393 * to reflect the errors and clean the page.
2394 */
2395 mapping_set_error(page->mapping, ret);
2396 end_extent_writepage(page, ret, page_start, page_end);
2397 clear_page_dirty_for_io(page);
2398 SetPageError(page);
2399 }
2400 ClearPageChecked(page);
2401 unlock_page(page);
2402 put_page(page);
2403 kfree(fixup);
2404 extent_changeset_free(data_reserved);
2405 /*
2406 * As a precaution, do a delayed iput in case it would be the last iput
2407 * that could need flushing space. Recursing back to fixup worker would
2408 * deadlock.
2409 */
2410 btrfs_add_delayed_iput(&inode->vfs_inode);
2411 }
2412
2413 /*
2414 * There are a few paths in the higher layers of the kernel that directly
2415 * set the page dirty bit without asking the filesystem if it is a
2416 * good idea. This causes problems because we want to make sure COW
2417 * properly happens and the data=ordered rules are followed.
2418 *
2419 * In our case any range that doesn't have the ORDERED bit set
2420 * hasn't been properly setup for IO. We kick off an async process
2421 * to fix it up. The async helper will wait for ordered extents, set
2422 * the delalloc bit and make it safe to write the page.
2423 */
2424 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2425 {
2426 struct inode *inode = page->mapping->host;
2427 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2428 struct btrfs_writepage_fixup *fixup;
2429
2430 /* this page is properly in the ordered list */
2431 if (TestClearPagePrivate2(page))
2432 return 0;
2433
2434 /*
2435 * PageChecked is set below when we create a fixup worker for this page,
2436 * don't try to create another one if we're already PageChecked()
2437 *
2438 * The extent_io writepage code will redirty the page if we send back
2439 * EAGAIN.
2440 */
2441 if (PageChecked(page))
2442 return -EAGAIN;
2443
2444 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2445 if (!fixup)
2446 return -EAGAIN;
2447
2448 /*
2449 * We are already holding a reference to this inode from
2450 * write_cache_pages. We need to hold it because the space reservation
2451 * takes place outside of the page lock, and we can't trust
2452 * page->mapping outside of the page lock.
2453 */
2454 ihold(inode);
2455 SetPageChecked(page);
2456 get_page(page);
2457 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2458 fixup->page = page;
2459 fixup->inode = inode;
2460 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2461
2462 return -EAGAIN;
2463 }
2464
2465 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2466 struct btrfs_inode *inode, u64 file_pos,
2467 struct btrfs_file_extent_item *stack_fi,
2468 u64 qgroup_reserved)
2469 {
2470 struct btrfs_root *root = inode->root;
2471 struct btrfs_path *path;
2472 struct extent_buffer *leaf;
2473 struct btrfs_key ins;
2474 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2475 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2476 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2477 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2478 int extent_inserted = 0;
2479 int ret;
2480
2481 path = btrfs_alloc_path();
2482 if (!path)
2483 return -ENOMEM;
2484
2485 /*
2486 * we may be replacing one extent in the tree with another.
2487 * The new extent is pinned in the extent map, and we don't want
2488 * to drop it from the cache until it is completely in the btree.
2489 *
2490 * So, tell btrfs_drop_extents to leave this extent in the cache.
2491 * the caller is expected to unpin it and allow it to be merged
2492 * with the others.
2493 */
2494 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2495 file_pos + num_bytes, NULL, 0,
2496 1, sizeof(*stack_fi), &extent_inserted);
2497 if (ret)
2498 goto out;
2499
2500 if (!extent_inserted) {
2501 ins.objectid = btrfs_ino(inode);
2502 ins.offset = file_pos;
2503 ins.type = BTRFS_EXTENT_DATA_KEY;
2504
2505 path->leave_spinning = 1;
2506 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2507 sizeof(*stack_fi));
2508 if (ret)
2509 goto out;
2510 }
2511 leaf = path->nodes[0];
2512 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2513 write_extent_buffer(leaf, stack_fi,
2514 btrfs_item_ptr_offset(leaf, path->slots[0]),
2515 sizeof(struct btrfs_file_extent_item));
2516
2517 btrfs_mark_buffer_dirty(leaf);
2518 btrfs_release_path(path);
2519
2520 inode_add_bytes(&inode->vfs_inode, num_bytes);
2521
2522 ins.objectid = disk_bytenr;
2523 ins.offset = disk_num_bytes;
2524 ins.type = BTRFS_EXTENT_ITEM_KEY;
2525
2526 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2527 if (ret)
2528 goto out;
2529
2530 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2531 file_pos, qgroup_reserved, &ins);
2532 out:
2533 btrfs_free_path(path);
2534
2535 return ret;
2536 }
2537
2538 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2539 u64 start, u64 len)
2540 {
2541 struct btrfs_block_group *cache;
2542
2543 cache = btrfs_lookup_block_group(fs_info, start);
2544 ASSERT(cache);
2545
2546 spin_lock(&cache->lock);
2547 cache->delalloc_bytes -= len;
2548 spin_unlock(&cache->lock);
2549
2550 btrfs_put_block_group(cache);
2551 }
2552
2553 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2554 struct inode *inode,
2555 struct btrfs_ordered_extent *oe)
2556 {
2557 struct btrfs_file_extent_item stack_fi;
2558 u64 logical_len;
2559
2560 memset(&stack_fi, 0, sizeof(stack_fi));
2561 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2562 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2563 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2564 oe->disk_num_bytes);
2565 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2566 logical_len = oe->truncated_len;
2567 else
2568 logical_len = oe->num_bytes;
2569 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2570 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2571 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2572 /* Encryption and other encoding is reserved and all 0 */
2573
2574 return insert_reserved_file_extent(trans, BTRFS_I(inode), oe->file_offset,
2575 &stack_fi, oe->qgroup_rsv);
2576 }
2577
2578 /*
2579 * As ordered data IO finishes, this gets called so we can finish
2580 * an ordered extent if the range of bytes in the file it covers are
2581 * fully written.
2582 */
2583 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2584 {
2585 struct inode *inode = ordered_extent->inode;
2586 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2587 struct btrfs_root *root = BTRFS_I(inode)->root;
2588 struct btrfs_trans_handle *trans = NULL;
2589 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2590 struct extent_state *cached_state = NULL;
2591 u64 start, end;
2592 int compress_type = 0;
2593 int ret = 0;
2594 u64 logical_len = ordered_extent->num_bytes;
2595 bool freespace_inode;
2596 bool truncated = false;
2597 bool range_locked = false;
2598 bool clear_new_delalloc_bytes = false;
2599 bool clear_reserved_extent = true;
2600 unsigned int clear_bits;
2601
2602 start = ordered_extent->file_offset;
2603 end = start + ordered_extent->num_bytes - 1;
2604
2605 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2606 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2607 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2608 clear_new_delalloc_bytes = true;
2609
2610 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
2611
2612 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2613 ret = -EIO;
2614 goto out;
2615 }
2616
2617 btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
2618
2619 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2620 truncated = true;
2621 logical_len = ordered_extent->truncated_len;
2622 /* Truncated the entire extent, don't bother adding */
2623 if (!logical_len)
2624 goto out;
2625 }
2626
2627 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2628 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2629
2630 btrfs_inode_safe_disk_i_size_write(inode, 0);
2631 if (freespace_inode)
2632 trans = btrfs_join_transaction_spacecache(root);
2633 else
2634 trans = btrfs_join_transaction(root);
2635 if (IS_ERR(trans)) {
2636 ret = PTR_ERR(trans);
2637 trans = NULL;
2638 goto out;
2639 }
2640 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2641 ret = btrfs_update_inode_fallback(trans, root, inode);
2642 if (ret) /* -ENOMEM or corruption */
2643 btrfs_abort_transaction(trans, ret);
2644 goto out;
2645 }
2646
2647 range_locked = true;
2648 lock_extent_bits(io_tree, start, end, &cached_state);
2649
2650 if (freespace_inode)
2651 trans = btrfs_join_transaction_spacecache(root);
2652 else
2653 trans = btrfs_join_transaction(root);
2654 if (IS_ERR(trans)) {
2655 ret = PTR_ERR(trans);
2656 trans = NULL;
2657 goto out;
2658 }
2659
2660 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2661
2662 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2663 compress_type = ordered_extent->compress_type;
2664 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2665 BUG_ON(compress_type);
2666 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2667 ordered_extent->file_offset,
2668 ordered_extent->file_offset +
2669 logical_len);
2670 } else {
2671 BUG_ON(root == fs_info->tree_root);
2672 ret = insert_ordered_extent_file_extent(trans, inode,
2673 ordered_extent);
2674 if (!ret) {
2675 clear_reserved_extent = false;
2676 btrfs_release_delalloc_bytes(fs_info,
2677 ordered_extent->disk_bytenr,
2678 ordered_extent->disk_num_bytes);
2679 }
2680 }
2681 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2682 ordered_extent->file_offset,
2683 ordered_extent->num_bytes, trans->transid);
2684 if (ret < 0) {
2685 btrfs_abort_transaction(trans, ret);
2686 goto out;
2687 }
2688
2689 ret = add_pending_csums(trans, inode, &ordered_extent->list);
2690 if (ret) {
2691 btrfs_abort_transaction(trans, ret);
2692 goto out;
2693 }
2694
2695 btrfs_inode_safe_disk_i_size_write(inode, 0);
2696 ret = btrfs_update_inode_fallback(trans, root, inode);
2697 if (ret) { /* -ENOMEM or corruption */
2698 btrfs_abort_transaction(trans, ret);
2699 goto out;
2700 }
2701 ret = 0;
2702 out:
2703 clear_bits = EXTENT_DEFRAG;
2704 if (range_locked)
2705 clear_bits |= EXTENT_LOCKED;
2706 if (clear_new_delalloc_bytes)
2707 clear_bits |= EXTENT_DELALLOC_NEW;
2708 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2709 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2710 &cached_state);
2711
2712 if (trans)
2713 btrfs_end_transaction(trans);
2714
2715 if (ret || truncated) {
2716 u64 unwritten_start = start;
2717
2718 if (truncated)
2719 unwritten_start += logical_len;
2720 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
2721
2722 /* Drop the cache for the part of the extent we didn't write. */
2723 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
2724
2725 /*
2726 * If the ordered extent had an IOERR or something else went
2727 * wrong we need to return the space for this ordered extent
2728 * back to the allocator. We only free the extent in the
2729 * truncated case if we didn't write out the extent at all.
2730 *
2731 * If we made it past insert_reserved_file_extent before we
2732 * errored out then we don't need to do this as the accounting
2733 * has already been done.
2734 */
2735 if ((ret || !logical_len) &&
2736 clear_reserved_extent &&
2737 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2738 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2739 /*
2740 * Discard the range before returning it back to the
2741 * free space pool
2742 */
2743 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
2744 btrfs_discard_extent(fs_info,
2745 ordered_extent->disk_bytenr,
2746 ordered_extent->disk_num_bytes,
2747 NULL);
2748 btrfs_free_reserved_extent(fs_info,
2749 ordered_extent->disk_bytenr,
2750 ordered_extent->disk_num_bytes, 1);
2751 }
2752 }
2753
2754 /*
2755 * This needs to be done to make sure anybody waiting knows we are done
2756 * updating everything for this ordered extent.
2757 */
2758 btrfs_remove_ordered_extent(inode, ordered_extent);
2759
2760 /* once for us */
2761 btrfs_put_ordered_extent(ordered_extent);
2762 /* once for the tree */
2763 btrfs_put_ordered_extent(ordered_extent);
2764
2765 return ret;
2766 }
2767
2768 static void finish_ordered_fn(struct btrfs_work *work)
2769 {
2770 struct btrfs_ordered_extent *ordered_extent;
2771 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2772 btrfs_finish_ordered_io(ordered_extent);
2773 }
2774
2775 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2776 u64 end, int uptodate)
2777 {
2778 struct inode *inode = page->mapping->host;
2779 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2780 struct btrfs_ordered_extent *ordered_extent = NULL;
2781 struct btrfs_workqueue *wq;
2782
2783 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2784
2785 ClearPagePrivate2(page);
2786 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2787 end - start + 1, uptodate))
2788 return;
2789
2790 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2791 wq = fs_info->endio_freespace_worker;
2792 else
2793 wq = fs_info->endio_write_workers;
2794
2795 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2796 btrfs_queue_work(wq, &ordered_extent->work);
2797 }
2798
2799 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2800 int icsum, struct page *page, int pgoff, u64 start,
2801 size_t len)
2802 {
2803 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2804 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2805 char *kaddr;
2806 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2807 u8 *csum_expected;
2808 u8 csum[BTRFS_CSUM_SIZE];
2809
2810 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
2811
2812 kaddr = kmap_atomic(page);
2813 shash->tfm = fs_info->csum_shash;
2814
2815 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
2816
2817 if (memcmp(csum, csum_expected, csum_size))
2818 goto zeroit;
2819
2820 kunmap_atomic(kaddr);
2821 return 0;
2822 zeroit:
2823 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2824 io_bio->mirror_num);
2825 if (io_bio->device)
2826 btrfs_dev_stat_inc_and_print(io_bio->device,
2827 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2828 memset(kaddr + pgoff, 1, len);
2829 flush_dcache_page(page);
2830 kunmap_atomic(kaddr);
2831 return -EIO;
2832 }
2833
2834 /*
2835 * when reads are done, we need to check csums to verify the data is correct
2836 * if there's a match, we allow the bio to finish. If not, the code in
2837 * extent_io.c will try to find good copies for us.
2838 */
2839 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2840 u64 phy_offset, struct page *page,
2841 u64 start, u64 end, int mirror)
2842 {
2843 size_t offset = start - page_offset(page);
2844 struct inode *inode = page->mapping->host;
2845 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2846 struct btrfs_root *root = BTRFS_I(inode)->root;
2847
2848 if (PageChecked(page)) {
2849 ClearPageChecked(page);
2850 return 0;
2851 }
2852
2853 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2854 return 0;
2855
2856 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2857 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2858 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
2859 return 0;
2860 }
2861
2862 phy_offset >>= inode->i_sb->s_blocksize_bits;
2863 return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2864 (size_t)(end - start + 1));
2865 }
2866
2867 /*
2868 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2869 *
2870 * @inode: The inode we want to perform iput on
2871 *
2872 * This function uses the generic vfs_inode::i_count to track whether we should
2873 * just decrement it (in case it's > 1) or if this is the last iput then link
2874 * the inode to the delayed iput machinery. Delayed iputs are processed at
2875 * transaction commit time/superblock commit/cleaner kthread.
2876 */
2877 void btrfs_add_delayed_iput(struct inode *inode)
2878 {
2879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2880 struct btrfs_inode *binode = BTRFS_I(inode);
2881
2882 if (atomic_add_unless(&inode->i_count, -1, 1))
2883 return;
2884
2885 atomic_inc(&fs_info->nr_delayed_iputs);
2886 spin_lock(&fs_info->delayed_iput_lock);
2887 ASSERT(list_empty(&binode->delayed_iput));
2888 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
2889 spin_unlock(&fs_info->delayed_iput_lock);
2890 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2891 wake_up_process(fs_info->cleaner_kthread);
2892 }
2893
2894 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2895 struct btrfs_inode *inode)
2896 {
2897 list_del_init(&inode->delayed_iput);
2898 spin_unlock(&fs_info->delayed_iput_lock);
2899 iput(&inode->vfs_inode);
2900 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2901 wake_up(&fs_info->delayed_iputs_wait);
2902 spin_lock(&fs_info->delayed_iput_lock);
2903 }
2904
2905 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2906 struct btrfs_inode *inode)
2907 {
2908 if (!list_empty(&inode->delayed_iput)) {
2909 spin_lock(&fs_info->delayed_iput_lock);
2910 if (!list_empty(&inode->delayed_iput))
2911 run_delayed_iput_locked(fs_info, inode);
2912 spin_unlock(&fs_info->delayed_iput_lock);
2913 }
2914 }
2915
2916 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
2917 {
2918
2919 spin_lock(&fs_info->delayed_iput_lock);
2920 while (!list_empty(&fs_info->delayed_iputs)) {
2921 struct btrfs_inode *inode;
2922
2923 inode = list_first_entry(&fs_info->delayed_iputs,
2924 struct btrfs_inode, delayed_iput);
2925 run_delayed_iput_locked(fs_info, inode);
2926 }
2927 spin_unlock(&fs_info->delayed_iput_lock);
2928 }
2929
2930 /**
2931 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2932 * @fs_info - the fs_info for this fs
2933 * @return - EINTR if we were killed, 0 if nothing's pending
2934 *
2935 * This will wait on any delayed iputs that are currently running with KILLABLE
2936 * set. Once they are all done running we will return, unless we are killed in
2937 * which case we return EINTR. This helps in user operations like fallocate etc
2938 * that might get blocked on the iputs.
2939 */
2940 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2941 {
2942 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2943 atomic_read(&fs_info->nr_delayed_iputs) == 0);
2944 if (ret)
2945 return -EINTR;
2946 return 0;
2947 }
2948
2949 /*
2950 * This creates an orphan entry for the given inode in case something goes wrong
2951 * in the middle of an unlink.
2952 */
2953 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
2954 struct btrfs_inode *inode)
2955 {
2956 int ret;
2957
2958 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2959 if (ret && ret != -EEXIST) {
2960 btrfs_abort_transaction(trans, ret);
2961 return ret;
2962 }
2963
2964 return 0;
2965 }
2966
2967 /*
2968 * We have done the delete so we can go ahead and remove the orphan item for
2969 * this particular inode.
2970 */
2971 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
2972 struct btrfs_inode *inode)
2973 {
2974 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
2975 }
2976
2977 /*
2978 * this cleans up any orphans that may be left on the list from the last use
2979 * of this root.
2980 */
2981 int btrfs_orphan_cleanup(struct btrfs_root *root)
2982 {
2983 struct btrfs_fs_info *fs_info = root->fs_info;
2984 struct btrfs_path *path;
2985 struct extent_buffer *leaf;
2986 struct btrfs_key key, found_key;
2987 struct btrfs_trans_handle *trans;
2988 struct inode *inode;
2989 u64 last_objectid = 0;
2990 int ret = 0, nr_unlink = 0;
2991
2992 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2993 return 0;
2994
2995 path = btrfs_alloc_path();
2996 if (!path) {
2997 ret = -ENOMEM;
2998 goto out;
2999 }
3000 path->reada = READA_BACK;
3001
3002 key.objectid = BTRFS_ORPHAN_OBJECTID;
3003 key.type = BTRFS_ORPHAN_ITEM_KEY;
3004 key.offset = (u64)-1;
3005
3006 while (1) {
3007 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3008 if (ret < 0)
3009 goto out;
3010
3011 /*
3012 * if ret == 0 means we found what we were searching for, which
3013 * is weird, but possible, so only screw with path if we didn't
3014 * find the key and see if we have stuff that matches
3015 */
3016 if (ret > 0) {
3017 ret = 0;
3018 if (path->slots[0] == 0)
3019 break;
3020 path->slots[0]--;
3021 }
3022
3023 /* pull out the item */
3024 leaf = path->nodes[0];
3025 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3026
3027 /* make sure the item matches what we want */
3028 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3029 break;
3030 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3031 break;
3032
3033 /* release the path since we're done with it */
3034 btrfs_release_path(path);
3035
3036 /*
3037 * this is where we are basically btrfs_lookup, without the
3038 * crossing root thing. we store the inode number in the
3039 * offset of the orphan item.
3040 */
3041
3042 if (found_key.offset == last_objectid) {
3043 btrfs_err(fs_info,
3044 "Error removing orphan entry, stopping orphan cleanup");
3045 ret = -EINVAL;
3046 goto out;
3047 }
3048
3049 last_objectid = found_key.offset;
3050
3051 found_key.objectid = found_key.offset;
3052 found_key.type = BTRFS_INODE_ITEM_KEY;
3053 found_key.offset = 0;
3054 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3055 ret = PTR_ERR_OR_ZERO(inode);
3056 if (ret && ret != -ENOENT)
3057 goto out;
3058
3059 if (ret == -ENOENT && root == fs_info->tree_root) {
3060 struct btrfs_root *dead_root;
3061 struct btrfs_fs_info *fs_info = root->fs_info;
3062 int is_dead_root = 0;
3063
3064 /*
3065 * this is an orphan in the tree root. Currently these
3066 * could come from 2 sources:
3067 * a) a snapshot deletion in progress
3068 * b) a free space cache inode
3069 * We need to distinguish those two, as the snapshot
3070 * orphan must not get deleted.
3071 * find_dead_roots already ran before us, so if this
3072 * is a snapshot deletion, we should find the root
3073 * in the fs_roots radix tree.
3074 */
3075
3076 spin_lock(&fs_info->fs_roots_radix_lock);
3077 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3078 (unsigned long)found_key.objectid);
3079 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3080 is_dead_root = 1;
3081 spin_unlock(&fs_info->fs_roots_radix_lock);
3082
3083 if (is_dead_root) {
3084 /* prevent this orphan from being found again */
3085 key.offset = found_key.objectid - 1;
3086 continue;
3087 }
3088
3089 }
3090
3091 /*
3092 * If we have an inode with links, there are a couple of
3093 * possibilities. Old kernels (before v3.12) used to create an
3094 * orphan item for truncate indicating that there were possibly
3095 * extent items past i_size that needed to be deleted. In v3.12,
3096 * truncate was changed to update i_size in sync with the extent
3097 * items, but the (useless) orphan item was still created. Since
3098 * v4.18, we don't create the orphan item for truncate at all.
3099 *
3100 * So, this item could mean that we need to do a truncate, but
3101 * only if this filesystem was last used on a pre-v3.12 kernel
3102 * and was not cleanly unmounted. The odds of that are quite
3103 * slim, and it's a pain to do the truncate now, so just delete
3104 * the orphan item.
3105 *
3106 * It's also possible that this orphan item was supposed to be
3107 * deleted but wasn't. The inode number may have been reused,
3108 * but either way, we can delete the orphan item.
3109 */
3110 if (ret == -ENOENT || inode->i_nlink) {
3111 if (!ret)
3112 iput(inode);
3113 trans = btrfs_start_transaction(root, 1);
3114 if (IS_ERR(trans)) {
3115 ret = PTR_ERR(trans);
3116 goto out;
3117 }
3118 btrfs_debug(fs_info, "auto deleting %Lu",
3119 found_key.objectid);
3120 ret = btrfs_del_orphan_item(trans, root,
3121 found_key.objectid);
3122 btrfs_end_transaction(trans);
3123 if (ret)
3124 goto out;
3125 continue;
3126 }
3127
3128 nr_unlink++;
3129
3130 /* this will do delete_inode and everything for us */
3131 iput(inode);
3132 }
3133 /* release the path since we're done with it */
3134 btrfs_release_path(path);
3135
3136 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3137
3138 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3139 trans = btrfs_join_transaction(root);
3140 if (!IS_ERR(trans))
3141 btrfs_end_transaction(trans);
3142 }
3143
3144 if (nr_unlink)
3145 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3146
3147 out:
3148 if (ret)
3149 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3150 btrfs_free_path(path);
3151 return ret;
3152 }
3153
3154 /*
3155 * very simple check to peek ahead in the leaf looking for xattrs. If we
3156 * don't find any xattrs, we know there can't be any acls.
3157 *
3158 * slot is the slot the inode is in, objectid is the objectid of the inode
3159 */
3160 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3161 int slot, u64 objectid,
3162 int *first_xattr_slot)
3163 {
3164 u32 nritems = btrfs_header_nritems(leaf);
3165 struct btrfs_key found_key;
3166 static u64 xattr_access = 0;
3167 static u64 xattr_default = 0;
3168 int scanned = 0;
3169
3170 if (!xattr_access) {
3171 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3172 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3173 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3174 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3175 }
3176
3177 slot++;
3178 *first_xattr_slot = -1;
3179 while (slot < nritems) {
3180 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3181
3182 /* we found a different objectid, there must not be acls */
3183 if (found_key.objectid != objectid)
3184 return 0;
3185
3186 /* we found an xattr, assume we've got an acl */
3187 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3188 if (*first_xattr_slot == -1)
3189 *first_xattr_slot = slot;
3190 if (found_key.offset == xattr_access ||
3191 found_key.offset == xattr_default)
3192 return 1;
3193 }
3194
3195 /*
3196 * we found a key greater than an xattr key, there can't
3197 * be any acls later on
3198 */
3199 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3200 return 0;
3201
3202 slot++;
3203 scanned++;
3204
3205 /*
3206 * it goes inode, inode backrefs, xattrs, extents,
3207 * so if there are a ton of hard links to an inode there can
3208 * be a lot of backrefs. Don't waste time searching too hard,
3209 * this is just an optimization
3210 */
3211 if (scanned >= 8)
3212 break;
3213 }
3214 /* we hit the end of the leaf before we found an xattr or
3215 * something larger than an xattr. We have to assume the inode
3216 * has acls
3217 */
3218 if (*first_xattr_slot == -1)
3219 *first_xattr_slot = slot;
3220 return 1;
3221 }
3222
3223 /*
3224 * read an inode from the btree into the in-memory inode
3225 */
3226 static int btrfs_read_locked_inode(struct inode *inode,
3227 struct btrfs_path *in_path)
3228 {
3229 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3230 struct btrfs_path *path = in_path;
3231 struct extent_buffer *leaf;
3232 struct btrfs_inode_item *inode_item;
3233 struct btrfs_root *root = BTRFS_I(inode)->root;
3234 struct btrfs_key location;
3235 unsigned long ptr;
3236 int maybe_acls;
3237 u32 rdev;
3238 int ret;
3239 bool filled = false;
3240 int first_xattr_slot;
3241
3242 ret = btrfs_fill_inode(inode, &rdev);
3243 if (!ret)
3244 filled = true;
3245
3246 if (!path) {
3247 path = btrfs_alloc_path();
3248 if (!path)
3249 return -ENOMEM;
3250 }
3251
3252 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3253
3254 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3255 if (ret) {
3256 if (path != in_path)
3257 btrfs_free_path(path);
3258 return ret;
3259 }
3260
3261 leaf = path->nodes[0];
3262
3263 if (filled)
3264 goto cache_index;
3265
3266 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3267 struct btrfs_inode_item);
3268 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3269 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3270 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3271 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3272 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3273 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3274 round_up(i_size_read(inode), fs_info->sectorsize));
3275
3276 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3277 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3278
3279 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3280 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3281
3282 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3283 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3284
3285 BTRFS_I(inode)->i_otime.tv_sec =
3286 btrfs_timespec_sec(leaf, &inode_item->otime);
3287 BTRFS_I(inode)->i_otime.tv_nsec =
3288 btrfs_timespec_nsec(leaf, &inode_item->otime);
3289
3290 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3291 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3292 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3293
3294 inode_set_iversion_queried(inode,
3295 btrfs_inode_sequence(leaf, inode_item));
3296 inode->i_generation = BTRFS_I(inode)->generation;
3297 inode->i_rdev = 0;
3298 rdev = btrfs_inode_rdev(leaf, inode_item);
3299
3300 BTRFS_I(inode)->index_cnt = (u64)-1;
3301 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3302
3303 cache_index:
3304 /*
3305 * If we were modified in the current generation and evicted from memory
3306 * and then re-read we need to do a full sync since we don't have any
3307 * idea about which extents were modified before we were evicted from
3308 * cache.
3309 *
3310 * This is required for both inode re-read from disk and delayed inode
3311 * in delayed_nodes_tree.
3312 */
3313 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3314 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3315 &BTRFS_I(inode)->runtime_flags);
3316
3317 /*
3318 * We don't persist the id of the transaction where an unlink operation
3319 * against the inode was last made. So here we assume the inode might
3320 * have been evicted, and therefore the exact value of last_unlink_trans
3321 * lost, and set it to last_trans to avoid metadata inconsistencies
3322 * between the inode and its parent if the inode is fsync'ed and the log
3323 * replayed. For example, in the scenario:
3324 *
3325 * touch mydir/foo
3326 * ln mydir/foo mydir/bar
3327 * sync
3328 * unlink mydir/bar
3329 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3330 * xfs_io -c fsync mydir/foo
3331 * <power failure>
3332 * mount fs, triggers fsync log replay
3333 *
3334 * We must make sure that when we fsync our inode foo we also log its
3335 * parent inode, otherwise after log replay the parent still has the
3336 * dentry with the "bar" name but our inode foo has a link count of 1
3337 * and doesn't have an inode ref with the name "bar" anymore.
3338 *
3339 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3340 * but it guarantees correctness at the expense of occasional full
3341 * transaction commits on fsync if our inode is a directory, or if our
3342 * inode is not a directory, logging its parent unnecessarily.
3343 */
3344 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3345
3346 /*
3347 * Same logic as for last_unlink_trans. We don't persist the generation
3348 * of the last transaction where this inode was used for a reflink
3349 * operation, so after eviction and reloading the inode we must be
3350 * pessimistic and assume the last transaction that modified the inode.
3351 */
3352 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3353
3354 path->slots[0]++;
3355 if (inode->i_nlink != 1 ||
3356 path->slots[0] >= btrfs_header_nritems(leaf))
3357 goto cache_acl;
3358
3359 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3360 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3361 goto cache_acl;
3362
3363 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3364 if (location.type == BTRFS_INODE_REF_KEY) {
3365 struct btrfs_inode_ref *ref;
3366
3367 ref = (struct btrfs_inode_ref *)ptr;
3368 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3369 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3370 struct btrfs_inode_extref *extref;
3371
3372 extref = (struct btrfs_inode_extref *)ptr;
3373 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3374 extref);
3375 }
3376 cache_acl:
3377 /*
3378 * try to precache a NULL acl entry for files that don't have
3379 * any xattrs or acls
3380 */
3381 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3382 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3383 if (first_xattr_slot != -1) {
3384 path->slots[0] = first_xattr_slot;
3385 ret = btrfs_load_inode_props(inode, path);
3386 if (ret)
3387 btrfs_err(fs_info,
3388 "error loading props for ino %llu (root %llu): %d",
3389 btrfs_ino(BTRFS_I(inode)),
3390 root->root_key.objectid, ret);
3391 }
3392 if (path != in_path)
3393 btrfs_free_path(path);
3394
3395 if (!maybe_acls)
3396 cache_no_acl(inode);
3397
3398 switch (inode->i_mode & S_IFMT) {
3399 case S_IFREG:
3400 inode->i_mapping->a_ops = &btrfs_aops;
3401 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3402 inode->i_fop = &btrfs_file_operations;
3403 inode->i_op = &btrfs_file_inode_operations;
3404 break;
3405 case S_IFDIR:
3406 inode->i_fop = &btrfs_dir_file_operations;
3407 inode->i_op = &btrfs_dir_inode_operations;
3408 break;
3409 case S_IFLNK:
3410 inode->i_op = &btrfs_symlink_inode_operations;
3411 inode_nohighmem(inode);
3412 inode->i_mapping->a_ops = &btrfs_aops;
3413 break;
3414 default:
3415 inode->i_op = &btrfs_special_inode_operations;
3416 init_special_inode(inode, inode->i_mode, rdev);
3417 break;
3418 }
3419
3420 btrfs_sync_inode_flags_to_i_flags(inode);
3421 return 0;
3422 }
3423
3424 /*
3425 * given a leaf and an inode, copy the inode fields into the leaf
3426 */
3427 static void fill_inode_item(struct btrfs_trans_handle *trans,
3428 struct extent_buffer *leaf,
3429 struct btrfs_inode_item *item,
3430 struct inode *inode)
3431 {
3432 struct btrfs_map_token token;
3433
3434 btrfs_init_map_token(&token, leaf);
3435
3436 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3437 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3438 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3439 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3440 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3441
3442 btrfs_set_token_timespec_sec(&token, &item->atime,
3443 inode->i_atime.tv_sec);
3444 btrfs_set_token_timespec_nsec(&token, &item->atime,
3445 inode->i_atime.tv_nsec);
3446
3447 btrfs_set_token_timespec_sec(&token, &item->mtime,
3448 inode->i_mtime.tv_sec);
3449 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3450 inode->i_mtime.tv_nsec);
3451
3452 btrfs_set_token_timespec_sec(&token, &item->ctime,
3453 inode->i_ctime.tv_sec);
3454 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3455 inode->i_ctime.tv_nsec);
3456
3457 btrfs_set_token_timespec_sec(&token, &item->otime,
3458 BTRFS_I(inode)->i_otime.tv_sec);
3459 btrfs_set_token_timespec_nsec(&token, &item->otime,
3460 BTRFS_I(inode)->i_otime.tv_nsec);
3461
3462 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3463 btrfs_set_token_inode_generation(&token, item,
3464 BTRFS_I(inode)->generation);
3465 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3466 btrfs_set_token_inode_transid(&token, item, trans->transid);
3467 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3468 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3469 btrfs_set_token_inode_block_group(&token, item, 0);
3470 }
3471
3472 /*
3473 * copy everything in the in-memory inode into the btree.
3474 */
3475 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3476 struct btrfs_root *root, struct inode *inode)
3477 {
3478 struct btrfs_inode_item *inode_item;
3479 struct btrfs_path *path;
3480 struct extent_buffer *leaf;
3481 int ret;
3482
3483 path = btrfs_alloc_path();
3484 if (!path)
3485 return -ENOMEM;
3486
3487 path->leave_spinning = 1;
3488 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3489 1);
3490 if (ret) {
3491 if (ret > 0)
3492 ret = -ENOENT;
3493 goto failed;
3494 }
3495
3496 leaf = path->nodes[0];
3497 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3498 struct btrfs_inode_item);
3499
3500 fill_inode_item(trans, leaf, inode_item, inode);
3501 btrfs_mark_buffer_dirty(leaf);
3502 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3503 ret = 0;
3504 failed:
3505 btrfs_free_path(path);
3506 return ret;
3507 }
3508
3509 /*
3510 * copy everything in the in-memory inode into the btree.
3511 */
3512 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3513 struct btrfs_root *root, struct inode *inode)
3514 {
3515 struct btrfs_fs_info *fs_info = root->fs_info;
3516 int ret;
3517
3518 /*
3519 * If the inode is a free space inode, we can deadlock during commit
3520 * if we put it into the delayed code.
3521 *
3522 * The data relocation inode should also be directly updated
3523 * without delay
3524 */
3525 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3526 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3527 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3528 btrfs_update_root_times(trans, root);
3529
3530 ret = btrfs_delayed_update_inode(trans, root, inode);
3531 if (!ret)
3532 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3533 return ret;
3534 }
3535
3536 return btrfs_update_inode_item(trans, root, inode);
3537 }
3538
3539 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3540 struct btrfs_root *root,
3541 struct inode *inode)
3542 {
3543 int ret;
3544
3545 ret = btrfs_update_inode(trans, root, inode);
3546 if (ret == -ENOSPC)
3547 return btrfs_update_inode_item(trans, root, inode);
3548 return ret;
3549 }
3550
3551 /*
3552 * unlink helper that gets used here in inode.c and in the tree logging
3553 * recovery code. It remove a link in a directory with a given name, and
3554 * also drops the back refs in the inode to the directory
3555 */
3556 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3557 struct btrfs_root *root,
3558 struct btrfs_inode *dir,
3559 struct btrfs_inode *inode,
3560 const char *name, int name_len)
3561 {
3562 struct btrfs_fs_info *fs_info = root->fs_info;
3563 struct btrfs_path *path;
3564 int ret = 0;
3565 struct btrfs_dir_item *di;
3566 u64 index;
3567 u64 ino = btrfs_ino(inode);
3568 u64 dir_ino = btrfs_ino(dir);
3569
3570 path = btrfs_alloc_path();
3571 if (!path) {
3572 ret = -ENOMEM;
3573 goto out;
3574 }
3575
3576 path->leave_spinning = 1;
3577 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3578 name, name_len, -1);
3579 if (IS_ERR_OR_NULL(di)) {
3580 ret = di ? PTR_ERR(di) : -ENOENT;
3581 goto err;
3582 }
3583 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3584 if (ret)
3585 goto err;
3586 btrfs_release_path(path);
3587
3588 /*
3589 * If we don't have dir index, we have to get it by looking up
3590 * the inode ref, since we get the inode ref, remove it directly,
3591 * it is unnecessary to do delayed deletion.
3592 *
3593 * But if we have dir index, needn't search inode ref to get it.
3594 * Since the inode ref is close to the inode item, it is better
3595 * that we delay to delete it, and just do this deletion when
3596 * we update the inode item.
3597 */
3598 if (inode->dir_index) {
3599 ret = btrfs_delayed_delete_inode_ref(inode);
3600 if (!ret) {
3601 index = inode->dir_index;
3602 goto skip_backref;
3603 }
3604 }
3605
3606 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3607 dir_ino, &index);
3608 if (ret) {
3609 btrfs_info(fs_info,
3610 "failed to delete reference to %.*s, inode %llu parent %llu",
3611 name_len, name, ino, dir_ino);
3612 btrfs_abort_transaction(trans, ret);
3613 goto err;
3614 }
3615 skip_backref:
3616 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3617 if (ret) {
3618 btrfs_abort_transaction(trans, ret);
3619 goto err;
3620 }
3621
3622 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3623 dir_ino);
3624 if (ret != 0 && ret != -ENOENT) {
3625 btrfs_abort_transaction(trans, ret);
3626 goto err;
3627 }
3628
3629 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3630 index);
3631 if (ret == -ENOENT)
3632 ret = 0;
3633 else if (ret)
3634 btrfs_abort_transaction(trans, ret);
3635
3636 /*
3637 * If we have a pending delayed iput we could end up with the final iput
3638 * being run in btrfs-cleaner context. If we have enough of these built
3639 * up we can end up burning a lot of time in btrfs-cleaner without any
3640 * way to throttle the unlinks. Since we're currently holding a ref on
3641 * the inode we can run the delayed iput here without any issues as the
3642 * final iput won't be done until after we drop the ref we're currently
3643 * holding.
3644 */
3645 btrfs_run_delayed_iput(fs_info, inode);
3646 err:
3647 btrfs_free_path(path);
3648 if (ret)
3649 goto out;
3650
3651 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3652 inode_inc_iversion(&inode->vfs_inode);
3653 inode_inc_iversion(&dir->vfs_inode);
3654 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3655 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3656 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3657 out:
3658 return ret;
3659 }
3660
3661 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3662 struct btrfs_root *root,
3663 struct btrfs_inode *dir, struct btrfs_inode *inode,
3664 const char *name, int name_len)
3665 {
3666 int ret;
3667 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3668 if (!ret) {
3669 drop_nlink(&inode->vfs_inode);
3670 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3671 }
3672 return ret;
3673 }
3674
3675 /*
3676 * helper to start transaction for unlink and rmdir.
3677 *
3678 * unlink and rmdir are special in btrfs, they do not always free space, so
3679 * if we cannot make our reservations the normal way try and see if there is
3680 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3681 * allow the unlink to occur.
3682 */
3683 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3684 {
3685 struct btrfs_root *root = BTRFS_I(dir)->root;
3686
3687 /*
3688 * 1 for the possible orphan item
3689 * 1 for the dir item
3690 * 1 for the dir index
3691 * 1 for the inode ref
3692 * 1 for the inode
3693 */
3694 return btrfs_start_transaction_fallback_global_rsv(root, 5);
3695 }
3696
3697 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3698 {
3699 struct btrfs_root *root = BTRFS_I(dir)->root;
3700 struct btrfs_trans_handle *trans;
3701 struct inode *inode = d_inode(dentry);
3702 int ret;
3703
3704 trans = __unlink_start_trans(dir);
3705 if (IS_ERR(trans))
3706 return PTR_ERR(trans);
3707
3708 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3709 0);
3710
3711 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3712 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3713 dentry->d_name.len);
3714 if (ret)
3715 goto out;
3716
3717 if (inode->i_nlink == 0) {
3718 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3719 if (ret)
3720 goto out;
3721 }
3722
3723 out:
3724 btrfs_end_transaction(trans);
3725 btrfs_btree_balance_dirty(root->fs_info);
3726 return ret;
3727 }
3728
3729 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3730 struct inode *dir, struct dentry *dentry)
3731 {
3732 struct btrfs_root *root = BTRFS_I(dir)->root;
3733 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
3734 struct btrfs_path *path;
3735 struct extent_buffer *leaf;
3736 struct btrfs_dir_item *di;
3737 struct btrfs_key key;
3738 const char *name = dentry->d_name.name;
3739 int name_len = dentry->d_name.len;
3740 u64 index;
3741 int ret;
3742 u64 objectid;
3743 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
3744
3745 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3746 objectid = inode->root->root_key.objectid;
3747 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3748 objectid = inode->location.objectid;
3749 } else {
3750 WARN_ON(1);
3751 return -EINVAL;
3752 }
3753
3754 path = btrfs_alloc_path();
3755 if (!path)
3756 return -ENOMEM;
3757
3758 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3759 name, name_len, -1);
3760 if (IS_ERR_OR_NULL(di)) {
3761 ret = di ? PTR_ERR(di) : -ENOENT;
3762 goto out;
3763 }
3764
3765 leaf = path->nodes[0];
3766 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3767 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3768 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3769 if (ret) {
3770 btrfs_abort_transaction(trans, ret);
3771 goto out;
3772 }
3773 btrfs_release_path(path);
3774
3775 /*
3776 * This is a placeholder inode for a subvolume we didn't have a
3777 * reference to at the time of the snapshot creation. In the meantime
3778 * we could have renamed the real subvol link into our snapshot, so
3779 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3780 * Instead simply lookup the dir_index_item for this entry so we can
3781 * remove it. Otherwise we know we have a ref to the root and we can
3782 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3783 */
3784 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3785 di = btrfs_search_dir_index_item(root, path, dir_ino,
3786 name, name_len);
3787 if (IS_ERR_OR_NULL(di)) {
3788 if (!di)
3789 ret = -ENOENT;
3790 else
3791 ret = PTR_ERR(di);
3792 btrfs_abort_transaction(trans, ret);
3793 goto out;
3794 }
3795
3796 leaf = path->nodes[0];
3797 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3798 index = key.offset;
3799 btrfs_release_path(path);
3800 } else {
3801 ret = btrfs_del_root_ref(trans, objectid,
3802 root->root_key.objectid, dir_ino,
3803 &index, name, name_len);
3804 if (ret) {
3805 btrfs_abort_transaction(trans, ret);
3806 goto out;
3807 }
3808 }
3809
3810 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
3811 if (ret) {
3812 btrfs_abort_transaction(trans, ret);
3813 goto out;
3814 }
3815
3816 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
3817 inode_inc_iversion(dir);
3818 dir->i_mtime = dir->i_ctime = current_time(dir);
3819 ret = btrfs_update_inode_fallback(trans, root, dir);
3820 if (ret)
3821 btrfs_abort_transaction(trans, ret);
3822 out:
3823 btrfs_free_path(path);
3824 return ret;
3825 }
3826
3827 /*
3828 * Helper to check if the subvolume references other subvolumes or if it's
3829 * default.
3830 */
3831 static noinline int may_destroy_subvol(struct btrfs_root *root)
3832 {
3833 struct btrfs_fs_info *fs_info = root->fs_info;
3834 struct btrfs_path *path;
3835 struct btrfs_dir_item *di;
3836 struct btrfs_key key;
3837 u64 dir_id;
3838 int ret;
3839
3840 path = btrfs_alloc_path();
3841 if (!path)
3842 return -ENOMEM;
3843
3844 /* Make sure this root isn't set as the default subvol */
3845 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3846 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3847 dir_id, "default", 7, 0);
3848 if (di && !IS_ERR(di)) {
3849 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3850 if (key.objectid == root->root_key.objectid) {
3851 ret = -EPERM;
3852 btrfs_err(fs_info,
3853 "deleting default subvolume %llu is not allowed",
3854 key.objectid);
3855 goto out;
3856 }
3857 btrfs_release_path(path);
3858 }
3859
3860 key.objectid = root->root_key.objectid;
3861 key.type = BTRFS_ROOT_REF_KEY;
3862 key.offset = (u64)-1;
3863
3864 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3865 if (ret < 0)
3866 goto out;
3867 BUG_ON(ret == 0);
3868
3869 ret = 0;
3870 if (path->slots[0] > 0) {
3871 path->slots[0]--;
3872 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3873 if (key.objectid == root->root_key.objectid &&
3874 key.type == BTRFS_ROOT_REF_KEY)
3875 ret = -ENOTEMPTY;
3876 }
3877 out:
3878 btrfs_free_path(path);
3879 return ret;
3880 }
3881
3882 /* Delete all dentries for inodes belonging to the root */
3883 static void btrfs_prune_dentries(struct btrfs_root *root)
3884 {
3885 struct btrfs_fs_info *fs_info = root->fs_info;
3886 struct rb_node *node;
3887 struct rb_node *prev;
3888 struct btrfs_inode *entry;
3889 struct inode *inode;
3890 u64 objectid = 0;
3891
3892 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3893 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3894
3895 spin_lock(&root->inode_lock);
3896 again:
3897 node = root->inode_tree.rb_node;
3898 prev = NULL;
3899 while (node) {
3900 prev = node;
3901 entry = rb_entry(node, struct btrfs_inode, rb_node);
3902
3903 if (objectid < btrfs_ino(entry))
3904 node = node->rb_left;
3905 else if (objectid > btrfs_ino(entry))
3906 node = node->rb_right;
3907 else
3908 break;
3909 }
3910 if (!node) {
3911 while (prev) {
3912 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3913 if (objectid <= btrfs_ino(entry)) {
3914 node = prev;
3915 break;
3916 }
3917 prev = rb_next(prev);
3918 }
3919 }
3920 while (node) {
3921 entry = rb_entry(node, struct btrfs_inode, rb_node);
3922 objectid = btrfs_ino(entry) + 1;
3923 inode = igrab(&entry->vfs_inode);
3924 if (inode) {
3925 spin_unlock(&root->inode_lock);
3926 if (atomic_read(&inode->i_count) > 1)
3927 d_prune_aliases(inode);
3928 /*
3929 * btrfs_drop_inode will have it removed from the inode
3930 * cache when its usage count hits zero.
3931 */
3932 iput(inode);
3933 cond_resched();
3934 spin_lock(&root->inode_lock);
3935 goto again;
3936 }
3937
3938 if (cond_resched_lock(&root->inode_lock))
3939 goto again;
3940
3941 node = rb_next(node);
3942 }
3943 spin_unlock(&root->inode_lock);
3944 }
3945
3946 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3947 {
3948 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3949 struct btrfs_root *root = BTRFS_I(dir)->root;
3950 struct inode *inode = d_inode(dentry);
3951 struct btrfs_root *dest = BTRFS_I(inode)->root;
3952 struct btrfs_trans_handle *trans;
3953 struct btrfs_block_rsv block_rsv;
3954 u64 root_flags;
3955 int ret;
3956 int err;
3957
3958 /*
3959 * Don't allow to delete a subvolume with send in progress. This is
3960 * inside the inode lock so the error handling that has to drop the bit
3961 * again is not run concurrently.
3962 */
3963 spin_lock(&dest->root_item_lock);
3964 if (dest->send_in_progress) {
3965 spin_unlock(&dest->root_item_lock);
3966 btrfs_warn(fs_info,
3967 "attempt to delete subvolume %llu during send",
3968 dest->root_key.objectid);
3969 return -EPERM;
3970 }
3971 root_flags = btrfs_root_flags(&dest->root_item);
3972 btrfs_set_root_flags(&dest->root_item,
3973 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3974 spin_unlock(&dest->root_item_lock);
3975
3976 down_write(&fs_info->subvol_sem);
3977
3978 err = may_destroy_subvol(dest);
3979 if (err)
3980 goto out_up_write;
3981
3982 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3983 /*
3984 * One for dir inode,
3985 * two for dir entries,
3986 * two for root ref/backref.
3987 */
3988 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
3989 if (err)
3990 goto out_up_write;
3991
3992 trans = btrfs_start_transaction(root, 0);
3993 if (IS_ERR(trans)) {
3994 err = PTR_ERR(trans);
3995 goto out_release;
3996 }
3997 trans->block_rsv = &block_rsv;
3998 trans->bytes_reserved = block_rsv.size;
3999
4000 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4001
4002 ret = btrfs_unlink_subvol(trans, dir, dentry);
4003 if (ret) {
4004 err = ret;
4005 btrfs_abort_transaction(trans, ret);
4006 goto out_end_trans;
4007 }
4008
4009 btrfs_record_root_in_trans(trans, dest);
4010
4011 memset(&dest->root_item.drop_progress, 0,
4012 sizeof(dest->root_item.drop_progress));
4013 dest->root_item.drop_level = 0;
4014 btrfs_set_root_refs(&dest->root_item, 0);
4015
4016 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4017 ret = btrfs_insert_orphan_item(trans,
4018 fs_info->tree_root,
4019 dest->root_key.objectid);
4020 if (ret) {
4021 btrfs_abort_transaction(trans, ret);
4022 err = ret;
4023 goto out_end_trans;
4024 }
4025 }
4026
4027 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4028 BTRFS_UUID_KEY_SUBVOL,
4029 dest->root_key.objectid);
4030 if (ret && ret != -ENOENT) {
4031 btrfs_abort_transaction(trans, ret);
4032 err = ret;
4033 goto out_end_trans;
4034 }
4035 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4036 ret = btrfs_uuid_tree_remove(trans,
4037 dest->root_item.received_uuid,
4038 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4039 dest->root_key.objectid);
4040 if (ret && ret != -ENOENT) {
4041 btrfs_abort_transaction(trans, ret);
4042 err = ret;
4043 goto out_end_trans;
4044 }
4045 }
4046
4047 free_anon_bdev(dest->anon_dev);
4048 dest->anon_dev = 0;
4049 out_end_trans:
4050 trans->block_rsv = NULL;
4051 trans->bytes_reserved = 0;
4052 ret = btrfs_end_transaction(trans);
4053 if (ret && !err)
4054 err = ret;
4055 inode->i_flags |= S_DEAD;
4056 out_release:
4057 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4058 out_up_write:
4059 up_write(&fs_info->subvol_sem);
4060 if (err) {
4061 spin_lock(&dest->root_item_lock);
4062 root_flags = btrfs_root_flags(&dest->root_item);
4063 btrfs_set_root_flags(&dest->root_item,
4064 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4065 spin_unlock(&dest->root_item_lock);
4066 } else {
4067 d_invalidate(dentry);
4068 btrfs_prune_dentries(dest);
4069 ASSERT(dest->send_in_progress == 0);
4070
4071 /* the last ref */
4072 if (dest->ino_cache_inode) {
4073 iput(dest->ino_cache_inode);
4074 dest->ino_cache_inode = NULL;
4075 }
4076 }
4077
4078 return err;
4079 }
4080
4081 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4082 {
4083 struct inode *inode = d_inode(dentry);
4084 int err = 0;
4085 struct btrfs_root *root = BTRFS_I(dir)->root;
4086 struct btrfs_trans_handle *trans;
4087 u64 last_unlink_trans;
4088
4089 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4090 return -ENOTEMPTY;
4091 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4092 return btrfs_delete_subvolume(dir, dentry);
4093
4094 trans = __unlink_start_trans(dir);
4095 if (IS_ERR(trans))
4096 return PTR_ERR(trans);
4097
4098 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4099 err = btrfs_unlink_subvol(trans, dir, dentry);
4100 goto out;
4101 }
4102
4103 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4104 if (err)
4105 goto out;
4106
4107 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4108
4109 /* now the directory is empty */
4110 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4111 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4112 dentry->d_name.len);
4113 if (!err) {
4114 btrfs_i_size_write(BTRFS_I(inode), 0);
4115 /*
4116 * Propagate the last_unlink_trans value of the deleted dir to
4117 * its parent directory. This is to prevent an unrecoverable
4118 * log tree in the case we do something like this:
4119 * 1) create dir foo
4120 * 2) create snapshot under dir foo
4121 * 3) delete the snapshot
4122 * 4) rmdir foo
4123 * 5) mkdir foo
4124 * 6) fsync foo or some file inside foo
4125 */
4126 if (last_unlink_trans >= trans->transid)
4127 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4128 }
4129 out:
4130 btrfs_end_transaction(trans);
4131 btrfs_btree_balance_dirty(root->fs_info);
4132
4133 return err;
4134 }
4135
4136 /*
4137 * Return this if we need to call truncate_block for the last bit of the
4138 * truncate.
4139 */
4140 #define NEED_TRUNCATE_BLOCK 1
4141
4142 /*
4143 * this can truncate away extent items, csum items and directory items.
4144 * It starts at a high offset and removes keys until it can't find
4145 * any higher than new_size
4146 *
4147 * csum items that cross the new i_size are truncated to the new size
4148 * as well.
4149 *
4150 * min_type is the minimum key type to truncate down to. If set to 0, this
4151 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4152 */
4153 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4154 struct btrfs_root *root,
4155 struct inode *inode,
4156 u64 new_size, u32 min_type)
4157 {
4158 struct btrfs_fs_info *fs_info = root->fs_info;
4159 struct btrfs_path *path;
4160 struct extent_buffer *leaf;
4161 struct btrfs_file_extent_item *fi;
4162 struct btrfs_key key;
4163 struct btrfs_key found_key;
4164 u64 extent_start = 0;
4165 u64 extent_num_bytes = 0;
4166 u64 extent_offset = 0;
4167 u64 item_end = 0;
4168 u64 last_size = new_size;
4169 u32 found_type = (u8)-1;
4170 int found_extent;
4171 int del_item;
4172 int pending_del_nr = 0;
4173 int pending_del_slot = 0;
4174 int extent_type = -1;
4175 int ret;
4176 u64 ino = btrfs_ino(BTRFS_I(inode));
4177 u64 bytes_deleted = 0;
4178 bool be_nice = false;
4179 bool should_throttle = false;
4180 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4181 struct extent_state *cached_state = NULL;
4182
4183 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4184
4185 /*
4186 * For non-free space inodes and non-shareable roots, we want to back
4187 * off from time to time. This means all inodes in subvolume roots,
4188 * reloc roots, and data reloc roots.
4189 */
4190 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4191 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4192 be_nice = true;
4193
4194 path = btrfs_alloc_path();
4195 if (!path)
4196 return -ENOMEM;
4197 path->reada = READA_BACK;
4198
4199 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4200 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4201 &cached_state);
4202
4203 /*
4204 * We want to drop from the next block forward in case this
4205 * new size is not block aligned since we will be keeping the
4206 * last block of the extent just the way it is.
4207 */
4208 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4209 fs_info->sectorsize),
4210 (u64)-1, 0);
4211 }
4212
4213 /*
4214 * This function is also used to drop the items in the log tree before
4215 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4216 * it is used to drop the logged items. So we shouldn't kill the delayed
4217 * items.
4218 */
4219 if (min_type == 0 && root == BTRFS_I(inode)->root)
4220 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4221
4222 key.objectid = ino;
4223 key.offset = (u64)-1;
4224 key.type = (u8)-1;
4225
4226 search_again:
4227 /*
4228 * with a 16K leaf size and 128MB extents, you can actually queue
4229 * up a huge file in a single leaf. Most of the time that
4230 * bytes_deleted is > 0, it will be huge by the time we get here
4231 */
4232 if (be_nice && bytes_deleted > SZ_32M &&
4233 btrfs_should_end_transaction(trans)) {
4234 ret = -EAGAIN;
4235 goto out;
4236 }
4237
4238 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4239 if (ret < 0)
4240 goto out;
4241
4242 if (ret > 0) {
4243 ret = 0;
4244 /* there are no items in the tree for us to truncate, we're
4245 * done
4246 */
4247 if (path->slots[0] == 0)
4248 goto out;
4249 path->slots[0]--;
4250 }
4251
4252 while (1) {
4253 u64 clear_start = 0, clear_len = 0;
4254
4255 fi = NULL;
4256 leaf = path->nodes[0];
4257 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4258 found_type = found_key.type;
4259
4260 if (found_key.objectid != ino)
4261 break;
4262
4263 if (found_type < min_type)
4264 break;
4265
4266 item_end = found_key.offset;
4267 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4268 fi = btrfs_item_ptr(leaf, path->slots[0],
4269 struct btrfs_file_extent_item);
4270 extent_type = btrfs_file_extent_type(leaf, fi);
4271 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4272 item_end +=
4273 btrfs_file_extent_num_bytes(leaf, fi);
4274
4275 trace_btrfs_truncate_show_fi_regular(
4276 BTRFS_I(inode), leaf, fi,
4277 found_key.offset);
4278 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4279 item_end += btrfs_file_extent_ram_bytes(leaf,
4280 fi);
4281
4282 trace_btrfs_truncate_show_fi_inline(
4283 BTRFS_I(inode), leaf, fi, path->slots[0],
4284 found_key.offset);
4285 }
4286 item_end--;
4287 }
4288 if (found_type > min_type) {
4289 del_item = 1;
4290 } else {
4291 if (item_end < new_size)
4292 break;
4293 if (found_key.offset >= new_size)
4294 del_item = 1;
4295 else
4296 del_item = 0;
4297 }
4298 found_extent = 0;
4299 /* FIXME, shrink the extent if the ref count is only 1 */
4300 if (found_type != BTRFS_EXTENT_DATA_KEY)
4301 goto delete;
4302
4303 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4304 u64 num_dec;
4305
4306 clear_start = found_key.offset;
4307 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4308 if (!del_item) {
4309 u64 orig_num_bytes =
4310 btrfs_file_extent_num_bytes(leaf, fi);
4311 extent_num_bytes = ALIGN(new_size -
4312 found_key.offset,
4313 fs_info->sectorsize);
4314 clear_start = ALIGN(new_size, fs_info->sectorsize);
4315 btrfs_set_file_extent_num_bytes(leaf, fi,
4316 extent_num_bytes);
4317 num_dec = (orig_num_bytes -
4318 extent_num_bytes);
4319 if (test_bit(BTRFS_ROOT_SHAREABLE,
4320 &root->state) &&
4321 extent_start != 0)
4322 inode_sub_bytes(inode, num_dec);
4323 btrfs_mark_buffer_dirty(leaf);
4324 } else {
4325 extent_num_bytes =
4326 btrfs_file_extent_disk_num_bytes(leaf,
4327 fi);
4328 extent_offset = found_key.offset -
4329 btrfs_file_extent_offset(leaf, fi);
4330
4331 /* FIXME blocksize != 4096 */
4332 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4333 if (extent_start != 0) {
4334 found_extent = 1;
4335 if (test_bit(BTRFS_ROOT_SHAREABLE,
4336 &root->state))
4337 inode_sub_bytes(inode, num_dec);
4338 }
4339 }
4340 clear_len = num_dec;
4341 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4342 /*
4343 * we can't truncate inline items that have had
4344 * special encodings
4345 */
4346 if (!del_item &&
4347 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4348 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4349 btrfs_file_extent_compression(leaf, fi) == 0) {
4350 u32 size = (u32)(new_size - found_key.offset);
4351
4352 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4353 size = btrfs_file_extent_calc_inline_size(size);
4354 btrfs_truncate_item(path, size, 1);
4355 } else if (!del_item) {
4356 /*
4357 * We have to bail so the last_size is set to
4358 * just before this extent.
4359 */
4360 ret = NEED_TRUNCATE_BLOCK;
4361 break;
4362 } else {
4363 /*
4364 * Inline extents are special, we just treat
4365 * them as a full sector worth in the file
4366 * extent tree just for simplicity sake.
4367 */
4368 clear_len = fs_info->sectorsize;
4369 }
4370
4371 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4372 inode_sub_bytes(inode, item_end + 1 - new_size);
4373 }
4374 delete:
4375 /*
4376 * We use btrfs_truncate_inode_items() to clean up log trees for
4377 * multiple fsyncs, and in this case we don't want to clear the
4378 * file extent range because it's just the log.
4379 */
4380 if (root == BTRFS_I(inode)->root) {
4381 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4382 clear_start, clear_len);
4383 if (ret) {
4384 btrfs_abort_transaction(trans, ret);
4385 break;
4386 }
4387 }
4388
4389 if (del_item)
4390 last_size = found_key.offset;
4391 else
4392 last_size = new_size;
4393 if (del_item) {
4394 if (!pending_del_nr) {
4395 /* no pending yet, add ourselves */
4396 pending_del_slot = path->slots[0];
4397 pending_del_nr = 1;
4398 } else if (pending_del_nr &&
4399 path->slots[0] + 1 == pending_del_slot) {
4400 /* hop on the pending chunk */
4401 pending_del_nr++;
4402 pending_del_slot = path->slots[0];
4403 } else {
4404 BUG();
4405 }
4406 } else {
4407 break;
4408 }
4409 should_throttle = false;
4410
4411 if (found_extent &&
4412 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4413 struct btrfs_ref ref = { 0 };
4414
4415 bytes_deleted += extent_num_bytes;
4416
4417 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4418 extent_start, extent_num_bytes, 0);
4419 ref.real_root = root->root_key.objectid;
4420 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4421 ino, extent_offset);
4422 ret = btrfs_free_extent(trans, &ref);
4423 if (ret) {
4424 btrfs_abort_transaction(trans, ret);
4425 break;
4426 }
4427 if (be_nice) {
4428 if (btrfs_should_throttle_delayed_refs(trans))
4429 should_throttle = true;
4430 }
4431 }
4432
4433 if (found_type == BTRFS_INODE_ITEM_KEY)
4434 break;
4435
4436 if (path->slots[0] == 0 ||
4437 path->slots[0] != pending_del_slot ||
4438 should_throttle) {
4439 if (pending_del_nr) {
4440 ret = btrfs_del_items(trans, root, path,
4441 pending_del_slot,
4442 pending_del_nr);
4443 if (ret) {
4444 btrfs_abort_transaction(trans, ret);
4445 break;
4446 }
4447 pending_del_nr = 0;
4448 }
4449 btrfs_release_path(path);
4450
4451 /*
4452 * We can generate a lot of delayed refs, so we need to
4453 * throttle every once and a while and make sure we're
4454 * adding enough space to keep up with the work we are
4455 * generating. Since we hold a transaction here we
4456 * can't flush, and we don't want to FLUSH_LIMIT because
4457 * we could have generated too many delayed refs to
4458 * actually allocate, so just bail if we're short and
4459 * let the normal reservation dance happen higher up.
4460 */
4461 if (should_throttle) {
4462 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4463 BTRFS_RESERVE_NO_FLUSH);
4464 if (ret) {
4465 ret = -EAGAIN;
4466 break;
4467 }
4468 }
4469 goto search_again;
4470 } else {
4471 path->slots[0]--;
4472 }
4473 }
4474 out:
4475 if (ret >= 0 && pending_del_nr) {
4476 int err;
4477
4478 err = btrfs_del_items(trans, root, path, pending_del_slot,
4479 pending_del_nr);
4480 if (err) {
4481 btrfs_abort_transaction(trans, err);
4482 ret = err;
4483 }
4484 }
4485 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4486 ASSERT(last_size >= new_size);
4487 if (!ret && last_size > new_size)
4488 last_size = new_size;
4489 btrfs_inode_safe_disk_i_size_write(inode, last_size);
4490 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4491 (u64)-1, &cached_state);
4492 }
4493
4494 btrfs_free_path(path);
4495 return ret;
4496 }
4497
4498 /*
4499 * btrfs_truncate_block - read, zero a chunk and write a block
4500 * @inode - inode that we're zeroing
4501 * @from - the offset to start zeroing
4502 * @len - the length to zero, 0 to zero the entire range respective to the
4503 * offset
4504 * @front - zero up to the offset instead of from the offset on
4505 *
4506 * This will find the block for the "from" offset and cow the block and zero the
4507 * part we want to zero. This is used with truncate and hole punching.
4508 */
4509 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4510 int front)
4511 {
4512 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4513 struct address_space *mapping = inode->i_mapping;
4514 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4515 struct btrfs_ordered_extent *ordered;
4516 struct extent_state *cached_state = NULL;
4517 struct extent_changeset *data_reserved = NULL;
4518 char *kaddr;
4519 bool only_release_metadata = false;
4520 u32 blocksize = fs_info->sectorsize;
4521 pgoff_t index = from >> PAGE_SHIFT;
4522 unsigned offset = from & (blocksize - 1);
4523 struct page *page;
4524 gfp_t mask = btrfs_alloc_write_mask(mapping);
4525 size_t write_bytes = blocksize;
4526 int ret = 0;
4527 u64 block_start;
4528 u64 block_end;
4529
4530 if (IS_ALIGNED(offset, blocksize) &&
4531 (!len || IS_ALIGNED(len, blocksize)))
4532 goto out;
4533
4534 block_start = round_down(from, blocksize);
4535 block_end = block_start + blocksize - 1;
4536
4537 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4538 block_start, blocksize);
4539 if (ret < 0) {
4540 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4541 &write_bytes) > 0) {
4542 /* For nocow case, no need to reserve data space */
4543 only_release_metadata = true;
4544 } else {
4545 goto out;
4546 }
4547 }
4548 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4549 if (ret < 0) {
4550 if (!only_release_metadata)
4551 btrfs_free_reserved_data_space(BTRFS_I(inode),
4552 data_reserved, block_start, blocksize);
4553 goto out;
4554 }
4555 again:
4556 page = find_or_create_page(mapping, index, mask);
4557 if (!page) {
4558 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4559 block_start, blocksize, true);
4560 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4561 ret = -ENOMEM;
4562 goto out;
4563 }
4564
4565 if (!PageUptodate(page)) {
4566 ret = btrfs_readpage(NULL, page);
4567 lock_page(page);
4568 if (page->mapping != mapping) {
4569 unlock_page(page);
4570 put_page(page);
4571 goto again;
4572 }
4573 if (!PageUptodate(page)) {
4574 ret = -EIO;
4575 goto out_unlock;
4576 }
4577 }
4578 wait_on_page_writeback(page);
4579
4580 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4581 set_page_extent_mapped(page);
4582
4583 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
4584 if (ordered) {
4585 unlock_extent_cached(io_tree, block_start, block_end,
4586 &cached_state);
4587 unlock_page(page);
4588 put_page(page);
4589 btrfs_start_ordered_extent(inode, ordered, 1);
4590 btrfs_put_ordered_extent(ordered);
4591 goto again;
4592 }
4593
4594 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4595 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4596 0, 0, &cached_state);
4597
4598 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
4599 &cached_state);
4600 if (ret) {
4601 unlock_extent_cached(io_tree, block_start, block_end,
4602 &cached_state);
4603 goto out_unlock;
4604 }
4605
4606 if (offset != blocksize) {
4607 if (!len)
4608 len = blocksize - offset;
4609 kaddr = kmap(page);
4610 if (front)
4611 memset(kaddr + (block_start - page_offset(page)),
4612 0, offset);
4613 else
4614 memset(kaddr + (block_start - page_offset(page)) + offset,
4615 0, len);
4616 flush_dcache_page(page);
4617 kunmap(page);
4618 }
4619 ClearPageChecked(page);
4620 set_page_dirty(page);
4621 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4622
4623 if (only_release_metadata)
4624 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4625 block_end, EXTENT_NORESERVE, NULL, NULL,
4626 GFP_NOFS);
4627
4628 out_unlock:
4629 if (ret) {
4630 if (only_release_metadata)
4631 btrfs_delalloc_release_metadata(BTRFS_I(inode),
4632 blocksize, true);
4633 else
4634 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4635 block_start, blocksize, true);
4636 }
4637 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4638 unlock_page(page);
4639 put_page(page);
4640 out:
4641 if (only_release_metadata)
4642 btrfs_check_nocow_unlock(BTRFS_I(inode));
4643 extent_changeset_free(data_reserved);
4644 return ret;
4645 }
4646
4647 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4648 u64 offset, u64 len)
4649 {
4650 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4651 struct btrfs_trans_handle *trans;
4652 int ret;
4653
4654 /*
4655 * Still need to make sure the inode looks like it's been updated so
4656 * that any holes get logged if we fsync.
4657 */
4658 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4659 BTRFS_I(inode)->last_trans = fs_info->generation;
4660 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4661 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4662 return 0;
4663 }
4664
4665 /*
4666 * 1 - for the one we're dropping
4667 * 1 - for the one we're adding
4668 * 1 - for updating the inode.
4669 */
4670 trans = btrfs_start_transaction(root, 3);
4671 if (IS_ERR(trans))
4672 return PTR_ERR(trans);
4673
4674 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4675 if (ret) {
4676 btrfs_abort_transaction(trans, ret);
4677 btrfs_end_transaction(trans);
4678 return ret;
4679 }
4680
4681 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4682 offset, 0, 0, len, 0, len, 0, 0, 0);
4683 if (ret)
4684 btrfs_abort_transaction(trans, ret);
4685 else
4686 btrfs_update_inode(trans, root, inode);
4687 btrfs_end_transaction(trans);
4688 return ret;
4689 }
4690
4691 /*
4692 * This function puts in dummy file extents for the area we're creating a hole
4693 * for. So if we are truncating this file to a larger size we need to insert
4694 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4695 * the range between oldsize and size
4696 */
4697 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4698 {
4699 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4700 struct btrfs_root *root = BTRFS_I(inode)->root;
4701 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4702 struct extent_map *em = NULL;
4703 struct extent_state *cached_state = NULL;
4704 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4705 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4706 u64 block_end = ALIGN(size, fs_info->sectorsize);
4707 u64 last_byte;
4708 u64 cur_offset;
4709 u64 hole_size;
4710 int err = 0;
4711
4712 /*
4713 * If our size started in the middle of a block we need to zero out the
4714 * rest of the block before we expand the i_size, otherwise we could
4715 * expose stale data.
4716 */
4717 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4718 if (err)
4719 return err;
4720
4721 if (size <= hole_start)
4722 return 0;
4723
4724 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
4725 block_end - 1, &cached_state);
4726 cur_offset = hole_start;
4727 while (1) {
4728 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4729 block_end - cur_offset);
4730 if (IS_ERR(em)) {
4731 err = PTR_ERR(em);
4732 em = NULL;
4733 break;
4734 }
4735 last_byte = min(extent_map_end(em), block_end);
4736 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4737 hole_size = last_byte - cur_offset;
4738
4739 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4740 struct extent_map *hole_em;
4741
4742 err = maybe_insert_hole(root, inode, cur_offset,
4743 hole_size);
4744 if (err)
4745 break;
4746
4747 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4748 cur_offset, hole_size);
4749 if (err)
4750 break;
4751
4752 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4753 cur_offset + hole_size - 1, 0);
4754 hole_em = alloc_extent_map();
4755 if (!hole_em) {
4756 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4757 &BTRFS_I(inode)->runtime_flags);
4758 goto next;
4759 }
4760 hole_em->start = cur_offset;
4761 hole_em->len = hole_size;
4762 hole_em->orig_start = cur_offset;
4763
4764 hole_em->block_start = EXTENT_MAP_HOLE;
4765 hole_em->block_len = 0;
4766 hole_em->orig_block_len = 0;
4767 hole_em->ram_bytes = hole_size;
4768 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4769 hole_em->generation = fs_info->generation;
4770
4771 while (1) {
4772 write_lock(&em_tree->lock);
4773 err = add_extent_mapping(em_tree, hole_em, 1);
4774 write_unlock(&em_tree->lock);
4775 if (err != -EEXIST)
4776 break;
4777 btrfs_drop_extent_cache(BTRFS_I(inode),
4778 cur_offset,
4779 cur_offset +
4780 hole_size - 1, 0);
4781 }
4782 free_extent_map(hole_em);
4783 } else {
4784 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4785 cur_offset, hole_size);
4786 if (err)
4787 break;
4788 }
4789 next:
4790 free_extent_map(em);
4791 em = NULL;
4792 cur_offset = last_byte;
4793 if (cur_offset >= block_end)
4794 break;
4795 }
4796 free_extent_map(em);
4797 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4798 return err;
4799 }
4800
4801 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4802 {
4803 struct btrfs_root *root = BTRFS_I(inode)->root;
4804 struct btrfs_trans_handle *trans;
4805 loff_t oldsize = i_size_read(inode);
4806 loff_t newsize = attr->ia_size;
4807 int mask = attr->ia_valid;
4808 int ret;
4809
4810 /*
4811 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4812 * special case where we need to update the times despite not having
4813 * these flags set. For all other operations the VFS set these flags
4814 * explicitly if it wants a timestamp update.
4815 */
4816 if (newsize != oldsize) {
4817 inode_inc_iversion(inode);
4818 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4819 inode->i_ctime = inode->i_mtime =
4820 current_time(inode);
4821 }
4822
4823 if (newsize > oldsize) {
4824 /*
4825 * Don't do an expanding truncate while snapshotting is ongoing.
4826 * This is to ensure the snapshot captures a fully consistent
4827 * state of this file - if the snapshot captures this expanding
4828 * truncation, it must capture all writes that happened before
4829 * this truncation.
4830 */
4831 btrfs_drew_write_lock(&root->snapshot_lock);
4832 ret = btrfs_cont_expand(inode, oldsize, newsize);
4833 if (ret) {
4834 btrfs_drew_write_unlock(&root->snapshot_lock);
4835 return ret;
4836 }
4837
4838 trans = btrfs_start_transaction(root, 1);
4839 if (IS_ERR(trans)) {
4840 btrfs_drew_write_unlock(&root->snapshot_lock);
4841 return PTR_ERR(trans);
4842 }
4843
4844 i_size_write(inode, newsize);
4845 btrfs_inode_safe_disk_i_size_write(inode, 0);
4846 pagecache_isize_extended(inode, oldsize, newsize);
4847 ret = btrfs_update_inode(trans, root, inode);
4848 btrfs_drew_write_unlock(&root->snapshot_lock);
4849 btrfs_end_transaction(trans);
4850 } else {
4851
4852 /*
4853 * We're truncating a file that used to have good data down to
4854 * zero. Make sure it gets into the ordered flush list so that
4855 * any new writes get down to disk quickly.
4856 */
4857 if (newsize == 0)
4858 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4859 &BTRFS_I(inode)->runtime_flags);
4860
4861 truncate_setsize(inode, newsize);
4862
4863 /* Disable nonlocked read DIO to avoid the endless truncate */
4864 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
4865 inode_dio_wait(inode);
4866 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
4867
4868 ret = btrfs_truncate(inode, newsize == oldsize);
4869 if (ret && inode->i_nlink) {
4870 int err;
4871
4872 /*
4873 * Truncate failed, so fix up the in-memory size. We
4874 * adjusted disk_i_size down as we removed extents, so
4875 * wait for disk_i_size to be stable and then update the
4876 * in-memory size to match.
4877 */
4878 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
4879 if (err)
4880 return err;
4881 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4882 }
4883 }
4884
4885 return ret;
4886 }
4887
4888 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4889 {
4890 struct inode *inode = d_inode(dentry);
4891 struct btrfs_root *root = BTRFS_I(inode)->root;
4892 int err;
4893
4894 if (btrfs_root_readonly(root))
4895 return -EROFS;
4896
4897 err = setattr_prepare(dentry, attr);
4898 if (err)
4899 return err;
4900
4901 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4902 err = btrfs_setsize(inode, attr);
4903 if (err)
4904 return err;
4905 }
4906
4907 if (attr->ia_valid) {
4908 setattr_copy(inode, attr);
4909 inode_inc_iversion(inode);
4910 err = btrfs_dirty_inode(inode);
4911
4912 if (!err && attr->ia_valid & ATTR_MODE)
4913 err = posix_acl_chmod(inode, inode->i_mode);
4914 }
4915
4916 return err;
4917 }
4918
4919 /*
4920 * While truncating the inode pages during eviction, we get the VFS calling
4921 * btrfs_invalidatepage() against each page of the inode. This is slow because
4922 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4923 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4924 * extent_state structures over and over, wasting lots of time.
4925 *
4926 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4927 * those expensive operations on a per page basis and do only the ordered io
4928 * finishing, while we release here the extent_map and extent_state structures,
4929 * without the excessive merging and splitting.
4930 */
4931 static void evict_inode_truncate_pages(struct inode *inode)
4932 {
4933 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4934 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4935 struct rb_node *node;
4936
4937 ASSERT(inode->i_state & I_FREEING);
4938 truncate_inode_pages_final(&inode->i_data);
4939
4940 write_lock(&map_tree->lock);
4941 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
4942 struct extent_map *em;
4943
4944 node = rb_first_cached(&map_tree->map);
4945 em = rb_entry(node, struct extent_map, rb_node);
4946 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4947 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4948 remove_extent_mapping(map_tree, em);
4949 free_extent_map(em);
4950 if (need_resched()) {
4951 write_unlock(&map_tree->lock);
4952 cond_resched();
4953 write_lock(&map_tree->lock);
4954 }
4955 }
4956 write_unlock(&map_tree->lock);
4957
4958 /*
4959 * Keep looping until we have no more ranges in the io tree.
4960 * We can have ongoing bios started by readahead that have
4961 * their endio callback (extent_io.c:end_bio_extent_readpage)
4962 * still in progress (unlocked the pages in the bio but did not yet
4963 * unlocked the ranges in the io tree). Therefore this means some
4964 * ranges can still be locked and eviction started because before
4965 * submitting those bios, which are executed by a separate task (work
4966 * queue kthread), inode references (inode->i_count) were not taken
4967 * (which would be dropped in the end io callback of each bio).
4968 * Therefore here we effectively end up waiting for those bios and
4969 * anyone else holding locked ranges without having bumped the inode's
4970 * reference count - if we don't do it, when they access the inode's
4971 * io_tree to unlock a range it may be too late, leading to an
4972 * use-after-free issue.
4973 */
4974 spin_lock(&io_tree->lock);
4975 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4976 struct extent_state *state;
4977 struct extent_state *cached_state = NULL;
4978 u64 start;
4979 u64 end;
4980 unsigned state_flags;
4981
4982 node = rb_first(&io_tree->state);
4983 state = rb_entry(node, struct extent_state, rb_node);
4984 start = state->start;
4985 end = state->end;
4986 state_flags = state->state;
4987 spin_unlock(&io_tree->lock);
4988
4989 lock_extent_bits(io_tree, start, end, &cached_state);
4990
4991 /*
4992 * If still has DELALLOC flag, the extent didn't reach disk,
4993 * and its reserved space won't be freed by delayed_ref.
4994 * So we need to free its reserved space here.
4995 * (Refer to comment in btrfs_invalidatepage, case 2)
4996 *
4997 * Note, end is the bytenr of last byte, so we need + 1 here.
4998 */
4999 if (state_flags & EXTENT_DELALLOC)
5000 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5001 end - start + 1);
5002
5003 clear_extent_bit(io_tree, start, end,
5004 EXTENT_LOCKED | EXTENT_DELALLOC |
5005 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5006 &cached_state);
5007
5008 cond_resched();
5009 spin_lock(&io_tree->lock);
5010 }
5011 spin_unlock(&io_tree->lock);
5012 }
5013
5014 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5015 struct btrfs_block_rsv *rsv)
5016 {
5017 struct btrfs_fs_info *fs_info = root->fs_info;
5018 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5019 struct btrfs_trans_handle *trans;
5020 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5021 int ret;
5022
5023 /*
5024 * Eviction should be taking place at some place safe because of our
5025 * delayed iputs. However the normal flushing code will run delayed
5026 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5027 *
5028 * We reserve the delayed_refs_extra here again because we can't use
5029 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5030 * above. We reserve our extra bit here because we generate a ton of
5031 * delayed refs activity by truncating.
5032 *
5033 * If we cannot make our reservation we'll attempt to steal from the
5034 * global reserve, because we really want to be able to free up space.
5035 */
5036 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5037 BTRFS_RESERVE_FLUSH_EVICT);
5038 if (ret) {
5039 /*
5040 * Try to steal from the global reserve if there is space for
5041 * it.
5042 */
5043 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5044 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5045 btrfs_warn(fs_info,
5046 "could not allocate space for delete; will truncate on mount");
5047 return ERR_PTR(-ENOSPC);
5048 }
5049 delayed_refs_extra = 0;
5050 }
5051
5052 trans = btrfs_join_transaction(root);
5053 if (IS_ERR(trans))
5054 return trans;
5055
5056 if (delayed_refs_extra) {
5057 trans->block_rsv = &fs_info->trans_block_rsv;
5058 trans->bytes_reserved = delayed_refs_extra;
5059 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5060 delayed_refs_extra, 1);
5061 }
5062 return trans;
5063 }
5064
5065 void btrfs_evict_inode(struct inode *inode)
5066 {
5067 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5068 struct btrfs_trans_handle *trans;
5069 struct btrfs_root *root = BTRFS_I(inode)->root;
5070 struct btrfs_block_rsv *rsv;
5071 int ret;
5072
5073 trace_btrfs_inode_evict(inode);
5074
5075 if (!root) {
5076 clear_inode(inode);
5077 return;
5078 }
5079
5080 evict_inode_truncate_pages(inode);
5081
5082 if (inode->i_nlink &&
5083 ((btrfs_root_refs(&root->root_item) != 0 &&
5084 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5085 btrfs_is_free_space_inode(BTRFS_I(inode))))
5086 goto no_delete;
5087
5088 if (is_bad_inode(inode))
5089 goto no_delete;
5090
5091 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5092
5093 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5094 goto no_delete;
5095
5096 if (inode->i_nlink > 0) {
5097 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5098 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5099 goto no_delete;
5100 }
5101
5102 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5103 if (ret)
5104 goto no_delete;
5105
5106 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5107 if (!rsv)
5108 goto no_delete;
5109 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5110 rsv->failfast = 1;
5111
5112 btrfs_i_size_write(BTRFS_I(inode), 0);
5113
5114 while (1) {
5115 trans = evict_refill_and_join(root, rsv);
5116 if (IS_ERR(trans))
5117 goto free_rsv;
5118
5119 trans->block_rsv = rsv;
5120
5121 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5122 trans->block_rsv = &fs_info->trans_block_rsv;
5123 btrfs_end_transaction(trans);
5124 btrfs_btree_balance_dirty(fs_info);
5125 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5126 goto free_rsv;
5127 else if (!ret)
5128 break;
5129 }
5130
5131 /*
5132 * Errors here aren't a big deal, it just means we leave orphan items in
5133 * the tree. They will be cleaned up on the next mount. If the inode
5134 * number gets reused, cleanup deletes the orphan item without doing
5135 * anything, and unlink reuses the existing orphan item.
5136 *
5137 * If it turns out that we are dropping too many of these, we might want
5138 * to add a mechanism for retrying these after a commit.
5139 */
5140 trans = evict_refill_and_join(root, rsv);
5141 if (!IS_ERR(trans)) {
5142 trans->block_rsv = rsv;
5143 btrfs_orphan_del(trans, BTRFS_I(inode));
5144 trans->block_rsv = &fs_info->trans_block_rsv;
5145 btrfs_end_transaction(trans);
5146 }
5147
5148 if (!(root == fs_info->tree_root ||
5149 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5150 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5151
5152 free_rsv:
5153 btrfs_free_block_rsv(fs_info, rsv);
5154 no_delete:
5155 /*
5156 * If we didn't successfully delete, the orphan item will still be in
5157 * the tree and we'll retry on the next mount. Again, we might also want
5158 * to retry these periodically in the future.
5159 */
5160 btrfs_remove_delayed_node(BTRFS_I(inode));
5161 clear_inode(inode);
5162 }
5163
5164 /*
5165 * Return the key found in the dir entry in the location pointer, fill @type
5166 * with BTRFS_FT_*, and return 0.
5167 *
5168 * If no dir entries were found, returns -ENOENT.
5169 * If found a corrupted location in dir entry, returns -EUCLEAN.
5170 */
5171 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5172 struct btrfs_key *location, u8 *type)
5173 {
5174 const char *name = dentry->d_name.name;
5175 int namelen = dentry->d_name.len;
5176 struct btrfs_dir_item *di;
5177 struct btrfs_path *path;
5178 struct btrfs_root *root = BTRFS_I(dir)->root;
5179 int ret = 0;
5180
5181 path = btrfs_alloc_path();
5182 if (!path)
5183 return -ENOMEM;
5184
5185 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5186 name, namelen, 0);
5187 if (IS_ERR_OR_NULL(di)) {
5188 ret = di ? PTR_ERR(di) : -ENOENT;
5189 goto out;
5190 }
5191
5192 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5193 if (location->type != BTRFS_INODE_ITEM_KEY &&
5194 location->type != BTRFS_ROOT_ITEM_KEY) {
5195 ret = -EUCLEAN;
5196 btrfs_warn(root->fs_info,
5197 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5198 __func__, name, btrfs_ino(BTRFS_I(dir)),
5199 location->objectid, location->type, location->offset);
5200 }
5201 if (!ret)
5202 *type = btrfs_dir_type(path->nodes[0], di);
5203 out:
5204 btrfs_free_path(path);
5205 return ret;
5206 }
5207
5208 /*
5209 * when we hit a tree root in a directory, the btrfs part of the inode
5210 * needs to be changed to reflect the root directory of the tree root. This
5211 * is kind of like crossing a mount point.
5212 */
5213 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5214 struct inode *dir,
5215 struct dentry *dentry,
5216 struct btrfs_key *location,
5217 struct btrfs_root **sub_root)
5218 {
5219 struct btrfs_path *path;
5220 struct btrfs_root *new_root;
5221 struct btrfs_root_ref *ref;
5222 struct extent_buffer *leaf;
5223 struct btrfs_key key;
5224 int ret;
5225 int err = 0;
5226
5227 path = btrfs_alloc_path();
5228 if (!path) {
5229 err = -ENOMEM;
5230 goto out;
5231 }
5232
5233 err = -ENOENT;
5234 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5235 key.type = BTRFS_ROOT_REF_KEY;
5236 key.offset = location->objectid;
5237
5238 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5239 if (ret) {
5240 if (ret < 0)
5241 err = ret;
5242 goto out;
5243 }
5244
5245 leaf = path->nodes[0];
5246 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5247 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5248 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5249 goto out;
5250
5251 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5252 (unsigned long)(ref + 1),
5253 dentry->d_name.len);
5254 if (ret)
5255 goto out;
5256
5257 btrfs_release_path(path);
5258
5259 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5260 if (IS_ERR(new_root)) {
5261 err = PTR_ERR(new_root);
5262 goto out;
5263 }
5264
5265 *sub_root = new_root;
5266 location->objectid = btrfs_root_dirid(&new_root->root_item);
5267 location->type = BTRFS_INODE_ITEM_KEY;
5268 location->offset = 0;
5269 err = 0;
5270 out:
5271 btrfs_free_path(path);
5272 return err;
5273 }
5274
5275 static void inode_tree_add(struct inode *inode)
5276 {
5277 struct btrfs_root *root = BTRFS_I(inode)->root;
5278 struct btrfs_inode *entry;
5279 struct rb_node **p;
5280 struct rb_node *parent;
5281 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5282 u64 ino = btrfs_ino(BTRFS_I(inode));
5283
5284 if (inode_unhashed(inode))
5285 return;
5286 parent = NULL;
5287 spin_lock(&root->inode_lock);
5288 p = &root->inode_tree.rb_node;
5289 while (*p) {
5290 parent = *p;
5291 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5292
5293 if (ino < btrfs_ino(entry))
5294 p = &parent->rb_left;
5295 else if (ino > btrfs_ino(entry))
5296 p = &parent->rb_right;
5297 else {
5298 WARN_ON(!(entry->vfs_inode.i_state &
5299 (I_WILL_FREE | I_FREEING)));
5300 rb_replace_node(parent, new, &root->inode_tree);
5301 RB_CLEAR_NODE(parent);
5302 spin_unlock(&root->inode_lock);
5303 return;
5304 }
5305 }
5306 rb_link_node(new, parent, p);
5307 rb_insert_color(new, &root->inode_tree);
5308 spin_unlock(&root->inode_lock);
5309 }
5310
5311 static void inode_tree_del(struct inode *inode)
5312 {
5313 struct btrfs_root *root = BTRFS_I(inode)->root;
5314 int empty = 0;
5315
5316 spin_lock(&root->inode_lock);
5317 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5318 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5319 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5320 empty = RB_EMPTY_ROOT(&root->inode_tree);
5321 }
5322 spin_unlock(&root->inode_lock);
5323
5324 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5325 spin_lock(&root->inode_lock);
5326 empty = RB_EMPTY_ROOT(&root->inode_tree);
5327 spin_unlock(&root->inode_lock);
5328 if (empty)
5329 btrfs_add_dead_root(root);
5330 }
5331 }
5332
5333
5334 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5335 {
5336 struct btrfs_iget_args *args = p;
5337
5338 inode->i_ino = args->ino;
5339 BTRFS_I(inode)->location.objectid = args->ino;
5340 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5341 BTRFS_I(inode)->location.offset = 0;
5342 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5343 BUG_ON(args->root && !BTRFS_I(inode)->root);
5344 return 0;
5345 }
5346
5347 static int btrfs_find_actor(struct inode *inode, void *opaque)
5348 {
5349 struct btrfs_iget_args *args = opaque;
5350
5351 return args->ino == BTRFS_I(inode)->location.objectid &&
5352 args->root == BTRFS_I(inode)->root;
5353 }
5354
5355 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5356 struct btrfs_root *root)
5357 {
5358 struct inode *inode;
5359 struct btrfs_iget_args args;
5360 unsigned long hashval = btrfs_inode_hash(ino, root);
5361
5362 args.ino = ino;
5363 args.root = root;
5364
5365 inode = iget5_locked(s, hashval, btrfs_find_actor,
5366 btrfs_init_locked_inode,
5367 (void *)&args);
5368 return inode;
5369 }
5370
5371 /*
5372 * Get an inode object given its inode number and corresponding root.
5373 * Path can be preallocated to prevent recursing back to iget through
5374 * allocator. NULL is also valid but may require an additional allocation
5375 * later.
5376 */
5377 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5378 struct btrfs_root *root, struct btrfs_path *path)
5379 {
5380 struct inode *inode;
5381
5382 inode = btrfs_iget_locked(s, ino, root);
5383 if (!inode)
5384 return ERR_PTR(-ENOMEM);
5385
5386 if (inode->i_state & I_NEW) {
5387 int ret;
5388
5389 ret = btrfs_read_locked_inode(inode, path);
5390 if (!ret) {
5391 inode_tree_add(inode);
5392 unlock_new_inode(inode);
5393 } else {
5394 iget_failed(inode);
5395 /*
5396 * ret > 0 can come from btrfs_search_slot called by
5397 * btrfs_read_locked_inode, this means the inode item
5398 * was not found.
5399 */
5400 if (ret > 0)
5401 ret = -ENOENT;
5402 inode = ERR_PTR(ret);
5403 }
5404 }
5405
5406 return inode;
5407 }
5408
5409 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5410 {
5411 return btrfs_iget_path(s, ino, root, NULL);
5412 }
5413
5414 static struct inode *new_simple_dir(struct super_block *s,
5415 struct btrfs_key *key,
5416 struct btrfs_root *root)
5417 {
5418 struct inode *inode = new_inode(s);
5419
5420 if (!inode)
5421 return ERR_PTR(-ENOMEM);
5422
5423 BTRFS_I(inode)->root = btrfs_grab_root(root);
5424 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5425 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5426
5427 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5428 /*
5429 * We only need lookup, the rest is read-only and there's no inode
5430 * associated with the dentry
5431 */
5432 inode->i_op = &simple_dir_inode_operations;
5433 inode->i_opflags &= ~IOP_XATTR;
5434 inode->i_fop = &simple_dir_operations;
5435 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5436 inode->i_mtime = current_time(inode);
5437 inode->i_atime = inode->i_mtime;
5438 inode->i_ctime = inode->i_mtime;
5439 BTRFS_I(inode)->i_otime = inode->i_mtime;
5440
5441 return inode;
5442 }
5443
5444 static inline u8 btrfs_inode_type(struct inode *inode)
5445 {
5446 /*
5447 * Compile-time asserts that generic FT_* types still match
5448 * BTRFS_FT_* types
5449 */
5450 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5451 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5452 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5453 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5454 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5455 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5456 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5457 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5458
5459 return fs_umode_to_ftype(inode->i_mode);
5460 }
5461
5462 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5463 {
5464 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5465 struct inode *inode;
5466 struct btrfs_root *root = BTRFS_I(dir)->root;
5467 struct btrfs_root *sub_root = root;
5468 struct btrfs_key location;
5469 u8 di_type = 0;
5470 int ret = 0;
5471
5472 if (dentry->d_name.len > BTRFS_NAME_LEN)
5473 return ERR_PTR(-ENAMETOOLONG);
5474
5475 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5476 if (ret < 0)
5477 return ERR_PTR(ret);
5478
5479 if (location.type == BTRFS_INODE_ITEM_KEY) {
5480 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5481 if (IS_ERR(inode))
5482 return inode;
5483
5484 /* Do extra check against inode mode with di_type */
5485 if (btrfs_inode_type(inode) != di_type) {
5486 btrfs_crit(fs_info,
5487 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5488 inode->i_mode, btrfs_inode_type(inode),
5489 di_type);
5490 iput(inode);
5491 return ERR_PTR(-EUCLEAN);
5492 }
5493 return inode;
5494 }
5495
5496 ret = fixup_tree_root_location(fs_info, dir, dentry,
5497 &location, &sub_root);
5498 if (ret < 0) {
5499 if (ret != -ENOENT)
5500 inode = ERR_PTR(ret);
5501 else
5502 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5503 } else {
5504 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5505 }
5506 if (root != sub_root)
5507 btrfs_put_root(sub_root);
5508
5509 if (!IS_ERR(inode) && root != sub_root) {
5510 down_read(&fs_info->cleanup_work_sem);
5511 if (!sb_rdonly(inode->i_sb))
5512 ret = btrfs_orphan_cleanup(sub_root);
5513 up_read(&fs_info->cleanup_work_sem);
5514 if (ret) {
5515 iput(inode);
5516 inode = ERR_PTR(ret);
5517 }
5518 }
5519
5520 return inode;
5521 }
5522
5523 static int btrfs_dentry_delete(const struct dentry *dentry)
5524 {
5525 struct btrfs_root *root;
5526 struct inode *inode = d_inode(dentry);
5527
5528 if (!inode && !IS_ROOT(dentry))
5529 inode = d_inode(dentry->d_parent);
5530
5531 if (inode) {
5532 root = BTRFS_I(inode)->root;
5533 if (btrfs_root_refs(&root->root_item) == 0)
5534 return 1;
5535
5536 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5537 return 1;
5538 }
5539 return 0;
5540 }
5541
5542 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5543 unsigned int flags)
5544 {
5545 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5546
5547 if (inode == ERR_PTR(-ENOENT))
5548 inode = NULL;
5549 return d_splice_alias(inode, dentry);
5550 }
5551
5552 /*
5553 * All this infrastructure exists because dir_emit can fault, and we are holding
5554 * the tree lock when doing readdir. For now just allocate a buffer and copy
5555 * our information into that, and then dir_emit from the buffer. This is
5556 * similar to what NFS does, only we don't keep the buffer around in pagecache
5557 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5558 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5559 * tree lock.
5560 */
5561 static int btrfs_opendir(struct inode *inode, struct file *file)
5562 {
5563 struct btrfs_file_private *private;
5564
5565 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5566 if (!private)
5567 return -ENOMEM;
5568 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5569 if (!private->filldir_buf) {
5570 kfree(private);
5571 return -ENOMEM;
5572 }
5573 file->private_data = private;
5574 return 0;
5575 }
5576
5577 struct dir_entry {
5578 u64 ino;
5579 u64 offset;
5580 unsigned type;
5581 int name_len;
5582 };
5583
5584 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5585 {
5586 while (entries--) {
5587 struct dir_entry *entry = addr;
5588 char *name = (char *)(entry + 1);
5589
5590 ctx->pos = get_unaligned(&entry->offset);
5591 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5592 get_unaligned(&entry->ino),
5593 get_unaligned(&entry->type)))
5594 return 1;
5595 addr += sizeof(struct dir_entry) +
5596 get_unaligned(&entry->name_len);
5597 ctx->pos++;
5598 }
5599 return 0;
5600 }
5601
5602 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5603 {
5604 struct inode *inode = file_inode(file);
5605 struct btrfs_root *root = BTRFS_I(inode)->root;
5606 struct btrfs_file_private *private = file->private_data;
5607 struct btrfs_dir_item *di;
5608 struct btrfs_key key;
5609 struct btrfs_key found_key;
5610 struct btrfs_path *path;
5611 void *addr;
5612 struct list_head ins_list;
5613 struct list_head del_list;
5614 int ret;
5615 struct extent_buffer *leaf;
5616 int slot;
5617 char *name_ptr;
5618 int name_len;
5619 int entries = 0;
5620 int total_len = 0;
5621 bool put = false;
5622 struct btrfs_key location;
5623
5624 if (!dir_emit_dots(file, ctx))
5625 return 0;
5626
5627 path = btrfs_alloc_path();
5628 if (!path)
5629 return -ENOMEM;
5630
5631 addr = private->filldir_buf;
5632 path->reada = READA_FORWARD;
5633
5634 INIT_LIST_HEAD(&ins_list);
5635 INIT_LIST_HEAD(&del_list);
5636 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5637
5638 again:
5639 key.type = BTRFS_DIR_INDEX_KEY;
5640 key.offset = ctx->pos;
5641 key.objectid = btrfs_ino(BTRFS_I(inode));
5642
5643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5644 if (ret < 0)
5645 goto err;
5646
5647 while (1) {
5648 struct dir_entry *entry;
5649
5650 leaf = path->nodes[0];
5651 slot = path->slots[0];
5652 if (slot >= btrfs_header_nritems(leaf)) {
5653 ret = btrfs_next_leaf(root, path);
5654 if (ret < 0)
5655 goto err;
5656 else if (ret > 0)
5657 break;
5658 continue;
5659 }
5660
5661 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5662
5663 if (found_key.objectid != key.objectid)
5664 break;
5665 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5666 break;
5667 if (found_key.offset < ctx->pos)
5668 goto next;
5669 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5670 goto next;
5671 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5672 name_len = btrfs_dir_name_len(leaf, di);
5673 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5674 PAGE_SIZE) {
5675 btrfs_release_path(path);
5676 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5677 if (ret)
5678 goto nopos;
5679 addr = private->filldir_buf;
5680 entries = 0;
5681 total_len = 0;
5682 goto again;
5683 }
5684
5685 entry = addr;
5686 put_unaligned(name_len, &entry->name_len);
5687 name_ptr = (char *)(entry + 1);
5688 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5689 name_len);
5690 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5691 &entry->type);
5692 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5693 put_unaligned(location.objectid, &entry->ino);
5694 put_unaligned(found_key.offset, &entry->offset);
5695 entries++;
5696 addr += sizeof(struct dir_entry) + name_len;
5697 total_len += sizeof(struct dir_entry) + name_len;
5698 next:
5699 path->slots[0]++;
5700 }
5701 btrfs_release_path(path);
5702
5703 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5704 if (ret)
5705 goto nopos;
5706
5707 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5708 if (ret)
5709 goto nopos;
5710
5711 /*
5712 * Stop new entries from being returned after we return the last
5713 * entry.
5714 *
5715 * New directory entries are assigned a strictly increasing
5716 * offset. This means that new entries created during readdir
5717 * are *guaranteed* to be seen in the future by that readdir.
5718 * This has broken buggy programs which operate on names as
5719 * they're returned by readdir. Until we re-use freed offsets
5720 * we have this hack to stop new entries from being returned
5721 * under the assumption that they'll never reach this huge
5722 * offset.
5723 *
5724 * This is being careful not to overflow 32bit loff_t unless the
5725 * last entry requires it because doing so has broken 32bit apps
5726 * in the past.
5727 */
5728 if (ctx->pos >= INT_MAX)
5729 ctx->pos = LLONG_MAX;
5730 else
5731 ctx->pos = INT_MAX;
5732 nopos:
5733 ret = 0;
5734 err:
5735 if (put)
5736 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5737 btrfs_free_path(path);
5738 return ret;
5739 }
5740
5741 /*
5742 * This is somewhat expensive, updating the tree every time the
5743 * inode changes. But, it is most likely to find the inode in cache.
5744 * FIXME, needs more benchmarking...there are no reasons other than performance
5745 * to keep or drop this code.
5746 */
5747 static int btrfs_dirty_inode(struct inode *inode)
5748 {
5749 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5750 struct btrfs_root *root = BTRFS_I(inode)->root;
5751 struct btrfs_trans_handle *trans;
5752 int ret;
5753
5754 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5755 return 0;
5756
5757 trans = btrfs_join_transaction(root);
5758 if (IS_ERR(trans))
5759 return PTR_ERR(trans);
5760
5761 ret = btrfs_update_inode(trans, root, inode);
5762 if (ret && ret == -ENOSPC) {
5763 /* whoops, lets try again with the full transaction */
5764 btrfs_end_transaction(trans);
5765 trans = btrfs_start_transaction(root, 1);
5766 if (IS_ERR(trans))
5767 return PTR_ERR(trans);
5768
5769 ret = btrfs_update_inode(trans, root, inode);
5770 }
5771 btrfs_end_transaction(trans);
5772 if (BTRFS_I(inode)->delayed_node)
5773 btrfs_balance_delayed_items(fs_info);
5774
5775 return ret;
5776 }
5777
5778 /*
5779 * This is a copy of file_update_time. We need this so we can return error on
5780 * ENOSPC for updating the inode in the case of file write and mmap writes.
5781 */
5782 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5783 int flags)
5784 {
5785 struct btrfs_root *root = BTRFS_I(inode)->root;
5786 bool dirty = flags & ~S_VERSION;
5787
5788 if (btrfs_root_readonly(root))
5789 return -EROFS;
5790
5791 if (flags & S_VERSION)
5792 dirty |= inode_maybe_inc_iversion(inode, dirty);
5793 if (flags & S_CTIME)
5794 inode->i_ctime = *now;
5795 if (flags & S_MTIME)
5796 inode->i_mtime = *now;
5797 if (flags & S_ATIME)
5798 inode->i_atime = *now;
5799 return dirty ? btrfs_dirty_inode(inode) : 0;
5800 }
5801
5802 /*
5803 * find the highest existing sequence number in a directory
5804 * and then set the in-memory index_cnt variable to reflect
5805 * free sequence numbers
5806 */
5807 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5808 {
5809 struct btrfs_root *root = inode->root;
5810 struct btrfs_key key, found_key;
5811 struct btrfs_path *path;
5812 struct extent_buffer *leaf;
5813 int ret;
5814
5815 key.objectid = btrfs_ino(inode);
5816 key.type = BTRFS_DIR_INDEX_KEY;
5817 key.offset = (u64)-1;
5818
5819 path = btrfs_alloc_path();
5820 if (!path)
5821 return -ENOMEM;
5822
5823 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5824 if (ret < 0)
5825 goto out;
5826 /* FIXME: we should be able to handle this */
5827 if (ret == 0)
5828 goto out;
5829 ret = 0;
5830
5831 /*
5832 * MAGIC NUMBER EXPLANATION:
5833 * since we search a directory based on f_pos we have to start at 2
5834 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5835 * else has to start at 2
5836 */
5837 if (path->slots[0] == 0) {
5838 inode->index_cnt = 2;
5839 goto out;
5840 }
5841
5842 path->slots[0]--;
5843
5844 leaf = path->nodes[0];
5845 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5846
5847 if (found_key.objectid != btrfs_ino(inode) ||
5848 found_key.type != BTRFS_DIR_INDEX_KEY) {
5849 inode->index_cnt = 2;
5850 goto out;
5851 }
5852
5853 inode->index_cnt = found_key.offset + 1;
5854 out:
5855 btrfs_free_path(path);
5856 return ret;
5857 }
5858
5859 /*
5860 * helper to find a free sequence number in a given directory. This current
5861 * code is very simple, later versions will do smarter things in the btree
5862 */
5863 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
5864 {
5865 int ret = 0;
5866
5867 if (dir->index_cnt == (u64)-1) {
5868 ret = btrfs_inode_delayed_dir_index_count(dir);
5869 if (ret) {
5870 ret = btrfs_set_inode_index_count(dir);
5871 if (ret)
5872 return ret;
5873 }
5874 }
5875
5876 *index = dir->index_cnt;
5877 dir->index_cnt++;
5878
5879 return ret;
5880 }
5881
5882 static int btrfs_insert_inode_locked(struct inode *inode)
5883 {
5884 struct btrfs_iget_args args;
5885
5886 args.ino = BTRFS_I(inode)->location.objectid;
5887 args.root = BTRFS_I(inode)->root;
5888
5889 return insert_inode_locked4(inode,
5890 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5891 btrfs_find_actor, &args);
5892 }
5893
5894 /*
5895 * Inherit flags from the parent inode.
5896 *
5897 * Currently only the compression flags and the cow flags are inherited.
5898 */
5899 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5900 {
5901 unsigned int flags;
5902
5903 if (!dir)
5904 return;
5905
5906 flags = BTRFS_I(dir)->flags;
5907
5908 if (flags & BTRFS_INODE_NOCOMPRESS) {
5909 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5910 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5911 } else if (flags & BTRFS_INODE_COMPRESS) {
5912 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5913 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5914 }
5915
5916 if (flags & BTRFS_INODE_NODATACOW) {
5917 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5918 if (S_ISREG(inode->i_mode))
5919 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5920 }
5921
5922 btrfs_sync_inode_flags_to_i_flags(inode);
5923 }
5924
5925 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5926 struct btrfs_root *root,
5927 struct inode *dir,
5928 const char *name, int name_len,
5929 u64 ref_objectid, u64 objectid,
5930 umode_t mode, u64 *index)
5931 {
5932 struct btrfs_fs_info *fs_info = root->fs_info;
5933 struct inode *inode;
5934 struct btrfs_inode_item *inode_item;
5935 struct btrfs_key *location;
5936 struct btrfs_path *path;
5937 struct btrfs_inode_ref *ref;
5938 struct btrfs_key key[2];
5939 u32 sizes[2];
5940 int nitems = name ? 2 : 1;
5941 unsigned long ptr;
5942 unsigned int nofs_flag;
5943 int ret;
5944
5945 path = btrfs_alloc_path();
5946 if (!path)
5947 return ERR_PTR(-ENOMEM);
5948
5949 nofs_flag = memalloc_nofs_save();
5950 inode = new_inode(fs_info->sb);
5951 memalloc_nofs_restore(nofs_flag);
5952 if (!inode) {
5953 btrfs_free_path(path);
5954 return ERR_PTR(-ENOMEM);
5955 }
5956
5957 /*
5958 * O_TMPFILE, set link count to 0, so that after this point,
5959 * we fill in an inode item with the correct link count.
5960 */
5961 if (!name)
5962 set_nlink(inode, 0);
5963
5964 /*
5965 * we have to initialize this early, so we can reclaim the inode
5966 * number if we fail afterwards in this function.
5967 */
5968 inode->i_ino = objectid;
5969
5970 if (dir && name) {
5971 trace_btrfs_inode_request(dir);
5972
5973 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
5974 if (ret) {
5975 btrfs_free_path(path);
5976 iput(inode);
5977 return ERR_PTR(ret);
5978 }
5979 } else if (dir) {
5980 *index = 0;
5981 }
5982 /*
5983 * index_cnt is ignored for everything but a dir,
5984 * btrfs_set_inode_index_count has an explanation for the magic
5985 * number
5986 */
5987 BTRFS_I(inode)->index_cnt = 2;
5988 BTRFS_I(inode)->dir_index = *index;
5989 BTRFS_I(inode)->root = btrfs_grab_root(root);
5990 BTRFS_I(inode)->generation = trans->transid;
5991 inode->i_generation = BTRFS_I(inode)->generation;
5992
5993 /*
5994 * We could have gotten an inode number from somebody who was fsynced
5995 * and then removed in this same transaction, so let's just set full
5996 * sync since it will be a full sync anyway and this will blow away the
5997 * old info in the log.
5998 */
5999 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6000
6001 key[0].objectid = objectid;
6002 key[0].type = BTRFS_INODE_ITEM_KEY;
6003 key[0].offset = 0;
6004
6005 sizes[0] = sizeof(struct btrfs_inode_item);
6006
6007 if (name) {
6008 /*
6009 * Start new inodes with an inode_ref. This is slightly more
6010 * efficient for small numbers of hard links since they will
6011 * be packed into one item. Extended refs will kick in if we
6012 * add more hard links than can fit in the ref item.
6013 */
6014 key[1].objectid = objectid;
6015 key[1].type = BTRFS_INODE_REF_KEY;
6016 key[1].offset = ref_objectid;
6017
6018 sizes[1] = name_len + sizeof(*ref);
6019 }
6020
6021 location = &BTRFS_I(inode)->location;
6022 location->objectid = objectid;
6023 location->offset = 0;
6024 location->type = BTRFS_INODE_ITEM_KEY;
6025
6026 ret = btrfs_insert_inode_locked(inode);
6027 if (ret < 0) {
6028 iput(inode);
6029 goto fail;
6030 }
6031
6032 path->leave_spinning = 1;
6033 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6034 if (ret != 0)
6035 goto fail_unlock;
6036
6037 inode_init_owner(inode, dir, mode);
6038 inode_set_bytes(inode, 0);
6039
6040 inode->i_mtime = current_time(inode);
6041 inode->i_atime = inode->i_mtime;
6042 inode->i_ctime = inode->i_mtime;
6043 BTRFS_I(inode)->i_otime = inode->i_mtime;
6044
6045 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6046 struct btrfs_inode_item);
6047 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6048 sizeof(*inode_item));
6049 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6050
6051 if (name) {
6052 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6053 struct btrfs_inode_ref);
6054 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6055 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6056 ptr = (unsigned long)(ref + 1);
6057 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6058 }
6059
6060 btrfs_mark_buffer_dirty(path->nodes[0]);
6061 btrfs_free_path(path);
6062
6063 btrfs_inherit_iflags(inode, dir);
6064
6065 if (S_ISREG(mode)) {
6066 if (btrfs_test_opt(fs_info, NODATASUM))
6067 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6068 if (btrfs_test_opt(fs_info, NODATACOW))
6069 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6070 BTRFS_INODE_NODATASUM;
6071 }
6072
6073 inode_tree_add(inode);
6074
6075 trace_btrfs_inode_new(inode);
6076 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6077
6078 btrfs_update_root_times(trans, root);
6079
6080 ret = btrfs_inode_inherit_props(trans, inode, dir);
6081 if (ret)
6082 btrfs_err(fs_info,
6083 "error inheriting props for ino %llu (root %llu): %d",
6084 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6085
6086 return inode;
6087
6088 fail_unlock:
6089 discard_new_inode(inode);
6090 fail:
6091 if (dir && name)
6092 BTRFS_I(dir)->index_cnt--;
6093 btrfs_free_path(path);
6094 return ERR_PTR(ret);
6095 }
6096
6097 /*
6098 * utility function to add 'inode' into 'parent_inode' with
6099 * a give name and a given sequence number.
6100 * if 'add_backref' is true, also insert a backref from the
6101 * inode to the parent directory.
6102 */
6103 int btrfs_add_link(struct btrfs_trans_handle *trans,
6104 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6105 const char *name, int name_len, int add_backref, u64 index)
6106 {
6107 int ret = 0;
6108 struct btrfs_key key;
6109 struct btrfs_root *root = parent_inode->root;
6110 u64 ino = btrfs_ino(inode);
6111 u64 parent_ino = btrfs_ino(parent_inode);
6112
6113 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6114 memcpy(&key, &inode->root->root_key, sizeof(key));
6115 } else {
6116 key.objectid = ino;
6117 key.type = BTRFS_INODE_ITEM_KEY;
6118 key.offset = 0;
6119 }
6120
6121 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6122 ret = btrfs_add_root_ref(trans, key.objectid,
6123 root->root_key.objectid, parent_ino,
6124 index, name, name_len);
6125 } else if (add_backref) {
6126 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6127 parent_ino, index);
6128 }
6129
6130 /* Nothing to clean up yet */
6131 if (ret)
6132 return ret;
6133
6134 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6135 btrfs_inode_type(&inode->vfs_inode), index);
6136 if (ret == -EEXIST || ret == -EOVERFLOW)
6137 goto fail_dir_item;
6138 else if (ret) {
6139 btrfs_abort_transaction(trans, ret);
6140 return ret;
6141 }
6142
6143 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6144 name_len * 2);
6145 inode_inc_iversion(&parent_inode->vfs_inode);
6146 /*
6147 * If we are replaying a log tree, we do not want to update the mtime
6148 * and ctime of the parent directory with the current time, since the
6149 * log replay procedure is responsible for setting them to their correct
6150 * values (the ones it had when the fsync was done).
6151 */
6152 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6153 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6154
6155 parent_inode->vfs_inode.i_mtime = now;
6156 parent_inode->vfs_inode.i_ctime = now;
6157 }
6158 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6159 if (ret)
6160 btrfs_abort_transaction(trans, ret);
6161 return ret;
6162
6163 fail_dir_item:
6164 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6165 u64 local_index;
6166 int err;
6167 err = btrfs_del_root_ref(trans, key.objectid,
6168 root->root_key.objectid, parent_ino,
6169 &local_index, name, name_len);
6170 if (err)
6171 btrfs_abort_transaction(trans, err);
6172 } else if (add_backref) {
6173 u64 local_index;
6174 int err;
6175
6176 err = btrfs_del_inode_ref(trans, root, name, name_len,
6177 ino, parent_ino, &local_index);
6178 if (err)
6179 btrfs_abort_transaction(trans, err);
6180 }
6181
6182 /* Return the original error code */
6183 return ret;
6184 }
6185
6186 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6187 struct btrfs_inode *dir, struct dentry *dentry,
6188 struct btrfs_inode *inode, int backref, u64 index)
6189 {
6190 int err = btrfs_add_link(trans, dir, inode,
6191 dentry->d_name.name, dentry->d_name.len,
6192 backref, index);
6193 if (err > 0)
6194 err = -EEXIST;
6195 return err;
6196 }
6197
6198 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6199 umode_t mode, dev_t rdev)
6200 {
6201 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6202 struct btrfs_trans_handle *trans;
6203 struct btrfs_root *root = BTRFS_I(dir)->root;
6204 struct inode *inode = NULL;
6205 int err;
6206 u64 objectid;
6207 u64 index = 0;
6208
6209 /*
6210 * 2 for inode item and ref
6211 * 2 for dir items
6212 * 1 for xattr if selinux is on
6213 */
6214 trans = btrfs_start_transaction(root, 5);
6215 if (IS_ERR(trans))
6216 return PTR_ERR(trans);
6217
6218 err = btrfs_find_free_ino(root, &objectid);
6219 if (err)
6220 goto out_unlock;
6221
6222 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6223 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6224 mode, &index);
6225 if (IS_ERR(inode)) {
6226 err = PTR_ERR(inode);
6227 inode = NULL;
6228 goto out_unlock;
6229 }
6230
6231 /*
6232 * If the active LSM wants to access the inode during
6233 * d_instantiate it needs these. Smack checks to see
6234 * if the filesystem supports xattrs by looking at the
6235 * ops vector.
6236 */
6237 inode->i_op = &btrfs_special_inode_operations;
6238 init_special_inode(inode, inode->i_mode, rdev);
6239
6240 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6241 if (err)
6242 goto out_unlock;
6243
6244 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6245 0, index);
6246 if (err)
6247 goto out_unlock;
6248
6249 btrfs_update_inode(trans, root, inode);
6250 d_instantiate_new(dentry, inode);
6251
6252 out_unlock:
6253 btrfs_end_transaction(trans);
6254 btrfs_btree_balance_dirty(fs_info);
6255 if (err && inode) {
6256 inode_dec_link_count(inode);
6257 discard_new_inode(inode);
6258 }
6259 return err;
6260 }
6261
6262 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6263 umode_t mode, bool excl)
6264 {
6265 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6266 struct btrfs_trans_handle *trans;
6267 struct btrfs_root *root = BTRFS_I(dir)->root;
6268 struct inode *inode = NULL;
6269 int err;
6270 u64 objectid;
6271 u64 index = 0;
6272
6273 /*
6274 * 2 for inode item and ref
6275 * 2 for dir items
6276 * 1 for xattr if selinux is on
6277 */
6278 trans = btrfs_start_transaction(root, 5);
6279 if (IS_ERR(trans))
6280 return PTR_ERR(trans);
6281
6282 err = btrfs_find_free_ino(root, &objectid);
6283 if (err)
6284 goto out_unlock;
6285
6286 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6287 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6288 mode, &index);
6289 if (IS_ERR(inode)) {
6290 err = PTR_ERR(inode);
6291 inode = NULL;
6292 goto out_unlock;
6293 }
6294 /*
6295 * If the active LSM wants to access the inode during
6296 * d_instantiate it needs these. Smack checks to see
6297 * if the filesystem supports xattrs by looking at the
6298 * ops vector.
6299 */
6300 inode->i_fop = &btrfs_file_operations;
6301 inode->i_op = &btrfs_file_inode_operations;
6302 inode->i_mapping->a_ops = &btrfs_aops;
6303
6304 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6305 if (err)
6306 goto out_unlock;
6307
6308 err = btrfs_update_inode(trans, root, inode);
6309 if (err)
6310 goto out_unlock;
6311
6312 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6313 0, index);
6314 if (err)
6315 goto out_unlock;
6316
6317 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6318 d_instantiate_new(dentry, inode);
6319
6320 out_unlock:
6321 btrfs_end_transaction(trans);
6322 if (err && inode) {
6323 inode_dec_link_count(inode);
6324 discard_new_inode(inode);
6325 }
6326 btrfs_btree_balance_dirty(fs_info);
6327 return err;
6328 }
6329
6330 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6331 struct dentry *dentry)
6332 {
6333 struct btrfs_trans_handle *trans = NULL;
6334 struct btrfs_root *root = BTRFS_I(dir)->root;
6335 struct inode *inode = d_inode(old_dentry);
6336 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6337 u64 index;
6338 int err;
6339 int drop_inode = 0;
6340
6341 /* do not allow sys_link's with other subvols of the same device */
6342 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6343 return -EXDEV;
6344
6345 if (inode->i_nlink >= BTRFS_LINK_MAX)
6346 return -EMLINK;
6347
6348 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6349 if (err)
6350 goto fail;
6351
6352 /*
6353 * 2 items for inode and inode ref
6354 * 2 items for dir items
6355 * 1 item for parent inode
6356 * 1 item for orphan item deletion if O_TMPFILE
6357 */
6358 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6359 if (IS_ERR(trans)) {
6360 err = PTR_ERR(trans);
6361 trans = NULL;
6362 goto fail;
6363 }
6364
6365 /* There are several dir indexes for this inode, clear the cache. */
6366 BTRFS_I(inode)->dir_index = 0ULL;
6367 inc_nlink(inode);
6368 inode_inc_iversion(inode);
6369 inode->i_ctime = current_time(inode);
6370 ihold(inode);
6371 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6372
6373 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6374 1, index);
6375
6376 if (err) {
6377 drop_inode = 1;
6378 } else {
6379 struct dentry *parent = dentry->d_parent;
6380 int ret;
6381
6382 err = btrfs_update_inode(trans, root, inode);
6383 if (err)
6384 goto fail;
6385 if (inode->i_nlink == 1) {
6386 /*
6387 * If new hard link count is 1, it's a file created
6388 * with open(2) O_TMPFILE flag.
6389 */
6390 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6391 if (err)
6392 goto fail;
6393 }
6394 d_instantiate(dentry, inode);
6395 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6396 true, NULL);
6397 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6398 err = btrfs_commit_transaction(trans);
6399 trans = NULL;
6400 }
6401 }
6402
6403 fail:
6404 if (trans)
6405 btrfs_end_transaction(trans);
6406 if (drop_inode) {
6407 inode_dec_link_count(inode);
6408 iput(inode);
6409 }
6410 btrfs_btree_balance_dirty(fs_info);
6411 return err;
6412 }
6413
6414 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6415 {
6416 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6417 struct inode *inode = NULL;
6418 struct btrfs_trans_handle *trans;
6419 struct btrfs_root *root = BTRFS_I(dir)->root;
6420 int err = 0;
6421 u64 objectid = 0;
6422 u64 index = 0;
6423
6424 /*
6425 * 2 items for inode and ref
6426 * 2 items for dir items
6427 * 1 for xattr if selinux is on
6428 */
6429 trans = btrfs_start_transaction(root, 5);
6430 if (IS_ERR(trans))
6431 return PTR_ERR(trans);
6432
6433 err = btrfs_find_free_ino(root, &objectid);
6434 if (err)
6435 goto out_fail;
6436
6437 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6438 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6439 S_IFDIR | mode, &index);
6440 if (IS_ERR(inode)) {
6441 err = PTR_ERR(inode);
6442 inode = NULL;
6443 goto out_fail;
6444 }
6445
6446 /* these must be set before we unlock the inode */
6447 inode->i_op = &btrfs_dir_inode_operations;
6448 inode->i_fop = &btrfs_dir_file_operations;
6449
6450 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6451 if (err)
6452 goto out_fail;
6453
6454 btrfs_i_size_write(BTRFS_I(inode), 0);
6455 err = btrfs_update_inode(trans, root, inode);
6456 if (err)
6457 goto out_fail;
6458
6459 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6460 dentry->d_name.name,
6461 dentry->d_name.len, 0, index);
6462 if (err)
6463 goto out_fail;
6464
6465 d_instantiate_new(dentry, inode);
6466
6467 out_fail:
6468 btrfs_end_transaction(trans);
6469 if (err && inode) {
6470 inode_dec_link_count(inode);
6471 discard_new_inode(inode);
6472 }
6473 btrfs_btree_balance_dirty(fs_info);
6474 return err;
6475 }
6476
6477 static noinline int uncompress_inline(struct btrfs_path *path,
6478 struct page *page,
6479 size_t pg_offset, u64 extent_offset,
6480 struct btrfs_file_extent_item *item)
6481 {
6482 int ret;
6483 struct extent_buffer *leaf = path->nodes[0];
6484 char *tmp;
6485 size_t max_size;
6486 unsigned long inline_size;
6487 unsigned long ptr;
6488 int compress_type;
6489
6490 WARN_ON(pg_offset != 0);
6491 compress_type = btrfs_file_extent_compression(leaf, item);
6492 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6493 inline_size = btrfs_file_extent_inline_item_len(leaf,
6494 btrfs_item_nr(path->slots[0]));
6495 tmp = kmalloc(inline_size, GFP_NOFS);
6496 if (!tmp)
6497 return -ENOMEM;
6498 ptr = btrfs_file_extent_inline_start(item);
6499
6500 read_extent_buffer(leaf, tmp, ptr, inline_size);
6501
6502 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6503 ret = btrfs_decompress(compress_type, tmp, page,
6504 extent_offset, inline_size, max_size);
6505
6506 /*
6507 * decompression code contains a memset to fill in any space between the end
6508 * of the uncompressed data and the end of max_size in case the decompressed
6509 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6510 * the end of an inline extent and the beginning of the next block, so we
6511 * cover that region here.
6512 */
6513
6514 if (max_size + pg_offset < PAGE_SIZE) {
6515 char *map = kmap(page);
6516 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6517 kunmap(page);
6518 }
6519 kfree(tmp);
6520 return ret;
6521 }
6522
6523 /**
6524 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6525 * @inode: file to search in
6526 * @page: page to read extent data into if the extent is inline
6527 * @pg_offset: offset into @page to copy to
6528 * @start: file offset
6529 * @len: length of range starting at @start
6530 *
6531 * This returns the first &struct extent_map which overlaps with the given
6532 * range, reading it from the B-tree and caching it if necessary. Note that
6533 * there may be more extents which overlap the given range after the returned
6534 * extent_map.
6535 *
6536 * If @page is not NULL and the extent is inline, this also reads the extent
6537 * data directly into the page and marks the extent up to date in the io_tree.
6538 *
6539 * Return: ERR_PTR on error, non-NULL extent_map on success.
6540 */
6541 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6542 struct page *page, size_t pg_offset,
6543 u64 start, u64 len)
6544 {
6545 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6546 int ret;
6547 int err = 0;
6548 u64 extent_start = 0;
6549 u64 extent_end = 0;
6550 u64 objectid = btrfs_ino(inode);
6551 int extent_type = -1;
6552 struct btrfs_path *path = NULL;
6553 struct btrfs_root *root = inode->root;
6554 struct btrfs_file_extent_item *item;
6555 struct extent_buffer *leaf;
6556 struct btrfs_key found_key;
6557 struct extent_map *em = NULL;
6558 struct extent_map_tree *em_tree = &inode->extent_tree;
6559 struct extent_io_tree *io_tree = &inode->io_tree;
6560
6561 read_lock(&em_tree->lock);
6562 em = lookup_extent_mapping(em_tree, start, len);
6563 read_unlock(&em_tree->lock);
6564
6565 if (em) {
6566 if (em->start > start || em->start + em->len <= start)
6567 free_extent_map(em);
6568 else if (em->block_start == EXTENT_MAP_INLINE && page)
6569 free_extent_map(em);
6570 else
6571 goto out;
6572 }
6573 em = alloc_extent_map();
6574 if (!em) {
6575 err = -ENOMEM;
6576 goto out;
6577 }
6578 em->start = EXTENT_MAP_HOLE;
6579 em->orig_start = EXTENT_MAP_HOLE;
6580 em->len = (u64)-1;
6581 em->block_len = (u64)-1;
6582
6583 path = btrfs_alloc_path();
6584 if (!path) {
6585 err = -ENOMEM;
6586 goto out;
6587 }
6588
6589 /* Chances are we'll be called again, so go ahead and do readahead */
6590 path->reada = READA_FORWARD;
6591
6592 /*
6593 * Unless we're going to uncompress the inline extent, no sleep would
6594 * happen.
6595 */
6596 path->leave_spinning = 1;
6597
6598 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6599 if (ret < 0) {
6600 err = ret;
6601 goto out;
6602 } else if (ret > 0) {
6603 if (path->slots[0] == 0)
6604 goto not_found;
6605 path->slots[0]--;
6606 }
6607
6608 leaf = path->nodes[0];
6609 item = btrfs_item_ptr(leaf, path->slots[0],
6610 struct btrfs_file_extent_item);
6611 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6612 if (found_key.objectid != objectid ||
6613 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6614 /*
6615 * If we backup past the first extent we want to move forward
6616 * and see if there is an extent in front of us, otherwise we'll
6617 * say there is a hole for our whole search range which can
6618 * cause problems.
6619 */
6620 extent_end = start;
6621 goto next;
6622 }
6623
6624 extent_type = btrfs_file_extent_type(leaf, item);
6625 extent_start = found_key.offset;
6626 extent_end = btrfs_file_extent_end(path);
6627 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6628 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6629 /* Only regular file could have regular/prealloc extent */
6630 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6631 err = -EUCLEAN;
6632 btrfs_crit(fs_info,
6633 "regular/prealloc extent found for non-regular inode %llu",
6634 btrfs_ino(inode));
6635 goto out;
6636 }
6637 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6638 extent_start);
6639 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6640 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6641 path->slots[0],
6642 extent_start);
6643 }
6644 next:
6645 if (start >= extent_end) {
6646 path->slots[0]++;
6647 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6648 ret = btrfs_next_leaf(root, path);
6649 if (ret < 0) {
6650 err = ret;
6651 goto out;
6652 } else if (ret > 0) {
6653 goto not_found;
6654 }
6655 leaf = path->nodes[0];
6656 }
6657 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6658 if (found_key.objectid != objectid ||
6659 found_key.type != BTRFS_EXTENT_DATA_KEY)
6660 goto not_found;
6661 if (start + len <= found_key.offset)
6662 goto not_found;
6663 if (start > found_key.offset)
6664 goto next;
6665
6666 /* New extent overlaps with existing one */
6667 em->start = start;
6668 em->orig_start = start;
6669 em->len = found_key.offset - start;
6670 em->block_start = EXTENT_MAP_HOLE;
6671 goto insert;
6672 }
6673
6674 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6675
6676 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6677 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6678 goto insert;
6679 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6680 unsigned long ptr;
6681 char *map;
6682 size_t size;
6683 size_t extent_offset;
6684 size_t copy_size;
6685
6686 if (!page)
6687 goto out;
6688
6689 size = btrfs_file_extent_ram_bytes(leaf, item);
6690 extent_offset = page_offset(page) + pg_offset - extent_start;
6691 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6692 size - extent_offset);
6693 em->start = extent_start + extent_offset;
6694 em->len = ALIGN(copy_size, fs_info->sectorsize);
6695 em->orig_block_len = em->len;
6696 em->orig_start = em->start;
6697 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6698
6699 btrfs_set_path_blocking(path);
6700 if (!PageUptodate(page)) {
6701 if (btrfs_file_extent_compression(leaf, item) !=
6702 BTRFS_COMPRESS_NONE) {
6703 ret = uncompress_inline(path, page, pg_offset,
6704 extent_offset, item);
6705 if (ret) {
6706 err = ret;
6707 goto out;
6708 }
6709 } else {
6710 map = kmap(page);
6711 read_extent_buffer(leaf, map + pg_offset, ptr,
6712 copy_size);
6713 if (pg_offset + copy_size < PAGE_SIZE) {
6714 memset(map + pg_offset + copy_size, 0,
6715 PAGE_SIZE - pg_offset -
6716 copy_size);
6717 }
6718 kunmap(page);
6719 }
6720 flush_dcache_page(page);
6721 }
6722 set_extent_uptodate(io_tree, em->start,
6723 extent_map_end(em) - 1, NULL, GFP_NOFS);
6724 goto insert;
6725 }
6726 not_found:
6727 em->start = start;
6728 em->orig_start = start;
6729 em->len = len;
6730 em->block_start = EXTENT_MAP_HOLE;
6731 insert:
6732 btrfs_release_path(path);
6733 if (em->start > start || extent_map_end(em) <= start) {
6734 btrfs_err(fs_info,
6735 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6736 em->start, em->len, start, len);
6737 err = -EIO;
6738 goto out;
6739 }
6740
6741 err = 0;
6742 write_lock(&em_tree->lock);
6743 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6744 write_unlock(&em_tree->lock);
6745 out:
6746 btrfs_free_path(path);
6747
6748 trace_btrfs_get_extent(root, inode, em);
6749
6750 if (err) {
6751 free_extent_map(em);
6752 return ERR_PTR(err);
6753 }
6754 BUG_ON(!em); /* Error is always set */
6755 return em;
6756 }
6757
6758 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6759 u64 start, u64 len)
6760 {
6761 struct extent_map *em;
6762 struct extent_map *hole_em = NULL;
6763 u64 delalloc_start = start;
6764 u64 end;
6765 u64 delalloc_len;
6766 u64 delalloc_end;
6767 int err = 0;
6768
6769 em = btrfs_get_extent(inode, NULL, 0, start, len);
6770 if (IS_ERR(em))
6771 return em;
6772 /*
6773 * If our em maps to:
6774 * - a hole or
6775 * - a pre-alloc extent,
6776 * there might actually be delalloc bytes behind it.
6777 */
6778 if (em->block_start != EXTENT_MAP_HOLE &&
6779 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6780 return em;
6781 else
6782 hole_em = em;
6783
6784 /* check to see if we've wrapped (len == -1 or similar) */
6785 end = start + len;
6786 if (end < start)
6787 end = (u64)-1;
6788 else
6789 end -= 1;
6790
6791 em = NULL;
6792
6793 /* ok, we didn't find anything, lets look for delalloc */
6794 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6795 end, len, EXTENT_DELALLOC, 1);
6796 delalloc_end = delalloc_start + delalloc_len;
6797 if (delalloc_end < delalloc_start)
6798 delalloc_end = (u64)-1;
6799
6800 /*
6801 * We didn't find anything useful, return the original results from
6802 * get_extent()
6803 */
6804 if (delalloc_start > end || delalloc_end <= start) {
6805 em = hole_em;
6806 hole_em = NULL;
6807 goto out;
6808 }
6809
6810 /*
6811 * Adjust the delalloc_start to make sure it doesn't go backwards from
6812 * the start they passed in
6813 */
6814 delalloc_start = max(start, delalloc_start);
6815 delalloc_len = delalloc_end - delalloc_start;
6816
6817 if (delalloc_len > 0) {
6818 u64 hole_start;
6819 u64 hole_len;
6820 const u64 hole_end = extent_map_end(hole_em);
6821
6822 em = alloc_extent_map();
6823 if (!em) {
6824 err = -ENOMEM;
6825 goto out;
6826 }
6827
6828 ASSERT(hole_em);
6829 /*
6830 * When btrfs_get_extent can't find anything it returns one
6831 * huge hole
6832 *
6833 * Make sure what it found really fits our range, and adjust to
6834 * make sure it is based on the start from the caller
6835 */
6836 if (hole_end <= start || hole_em->start > end) {
6837 free_extent_map(hole_em);
6838 hole_em = NULL;
6839 } else {
6840 hole_start = max(hole_em->start, start);
6841 hole_len = hole_end - hole_start;
6842 }
6843
6844 if (hole_em && delalloc_start > hole_start) {
6845 /*
6846 * Our hole starts before our delalloc, so we have to
6847 * return just the parts of the hole that go until the
6848 * delalloc starts
6849 */
6850 em->len = min(hole_len, delalloc_start - hole_start);
6851 em->start = hole_start;
6852 em->orig_start = hole_start;
6853 /*
6854 * Don't adjust block start at all, it is fixed at
6855 * EXTENT_MAP_HOLE
6856 */
6857 em->block_start = hole_em->block_start;
6858 em->block_len = hole_len;
6859 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6860 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6861 } else {
6862 /*
6863 * Hole is out of passed range or it starts after
6864 * delalloc range
6865 */
6866 em->start = delalloc_start;
6867 em->len = delalloc_len;
6868 em->orig_start = delalloc_start;
6869 em->block_start = EXTENT_MAP_DELALLOC;
6870 em->block_len = delalloc_len;
6871 }
6872 } else {
6873 return hole_em;
6874 }
6875 out:
6876
6877 free_extent_map(hole_em);
6878 if (err) {
6879 free_extent_map(em);
6880 return ERR_PTR(err);
6881 }
6882 return em;
6883 }
6884
6885 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6886 const u64 start,
6887 const u64 len,
6888 const u64 orig_start,
6889 const u64 block_start,
6890 const u64 block_len,
6891 const u64 orig_block_len,
6892 const u64 ram_bytes,
6893 const int type)
6894 {
6895 struct extent_map *em = NULL;
6896 int ret;
6897
6898 if (type != BTRFS_ORDERED_NOCOW) {
6899 em = create_io_em(inode, start, len, orig_start, block_start,
6900 block_len, orig_block_len, ram_bytes,
6901 BTRFS_COMPRESS_NONE, /* compress_type */
6902 type);
6903 if (IS_ERR(em))
6904 goto out;
6905 }
6906 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6907 block_len, type);
6908 if (ret) {
6909 if (em) {
6910 free_extent_map(em);
6911 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
6912 }
6913 em = ERR_PTR(ret);
6914 }
6915 out:
6916
6917 return em;
6918 }
6919
6920 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6921 u64 start, u64 len)
6922 {
6923 struct btrfs_root *root = inode->root;
6924 struct btrfs_fs_info *fs_info = root->fs_info;
6925 struct extent_map *em;
6926 struct btrfs_key ins;
6927 u64 alloc_hint;
6928 int ret;
6929
6930 alloc_hint = get_extent_allocation_hint(inode, start, len);
6931 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6932 0, alloc_hint, &ins, 1, 1);
6933 if (ret)
6934 return ERR_PTR(ret);
6935
6936 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
6937 ins.objectid, ins.offset, ins.offset,
6938 ins.offset, BTRFS_ORDERED_REGULAR);
6939 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6940 if (IS_ERR(em))
6941 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6942 1);
6943
6944 return em;
6945 }
6946
6947 /*
6948 * Check if we can do nocow write into the range [@offset, @offset + @len)
6949 *
6950 * @offset: File offset
6951 * @len: The length to write, will be updated to the nocow writeable
6952 * range
6953 * @orig_start: (optional) Return the original file offset of the file extent
6954 * @orig_len: (optional) Return the original on-disk length of the file extent
6955 * @ram_bytes: (optional) Return the ram_bytes of the file extent
6956 *
6957 * This function will flush ordered extents in the range to ensure proper
6958 * nocow checks for (nowait == false) case.
6959 *
6960 * Return:
6961 * >0 and update @len if we can do nocow write
6962 * 0 if we can't do nocow write
6963 * <0 if error happened
6964 *
6965 * NOTE: This only checks the file extents, caller is responsible to wait for
6966 * any ordered extents.
6967 */
6968 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6969 u64 *orig_start, u64 *orig_block_len,
6970 u64 *ram_bytes)
6971 {
6972 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6973 struct btrfs_path *path;
6974 int ret;
6975 struct extent_buffer *leaf;
6976 struct btrfs_root *root = BTRFS_I(inode)->root;
6977 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6978 struct btrfs_file_extent_item *fi;
6979 struct btrfs_key key;
6980 u64 disk_bytenr;
6981 u64 backref_offset;
6982 u64 extent_end;
6983 u64 num_bytes;
6984 int slot;
6985 int found_type;
6986 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6987
6988 path = btrfs_alloc_path();
6989 if (!path)
6990 return -ENOMEM;
6991
6992 ret = btrfs_lookup_file_extent(NULL, root, path,
6993 btrfs_ino(BTRFS_I(inode)), offset, 0);
6994 if (ret < 0)
6995 goto out;
6996
6997 slot = path->slots[0];
6998 if (ret == 1) {
6999 if (slot == 0) {
7000 /* can't find the item, must cow */
7001 ret = 0;
7002 goto out;
7003 }
7004 slot--;
7005 }
7006 ret = 0;
7007 leaf = path->nodes[0];
7008 btrfs_item_key_to_cpu(leaf, &key, slot);
7009 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7010 key.type != BTRFS_EXTENT_DATA_KEY) {
7011 /* not our file or wrong item type, must cow */
7012 goto out;
7013 }
7014
7015 if (key.offset > offset) {
7016 /* Wrong offset, must cow */
7017 goto out;
7018 }
7019
7020 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7021 found_type = btrfs_file_extent_type(leaf, fi);
7022 if (found_type != BTRFS_FILE_EXTENT_REG &&
7023 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7024 /* not a regular extent, must cow */
7025 goto out;
7026 }
7027
7028 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7029 goto out;
7030
7031 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7032 if (extent_end <= offset)
7033 goto out;
7034
7035 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7036 if (disk_bytenr == 0)
7037 goto out;
7038
7039 if (btrfs_file_extent_compression(leaf, fi) ||
7040 btrfs_file_extent_encryption(leaf, fi) ||
7041 btrfs_file_extent_other_encoding(leaf, fi))
7042 goto out;
7043
7044 /*
7045 * Do the same check as in btrfs_cross_ref_exist but without the
7046 * unnecessary search.
7047 */
7048 if (btrfs_file_extent_generation(leaf, fi) <=
7049 btrfs_root_last_snapshot(&root->root_item))
7050 goto out;
7051
7052 backref_offset = btrfs_file_extent_offset(leaf, fi);
7053
7054 if (orig_start) {
7055 *orig_start = key.offset - backref_offset;
7056 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7057 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7058 }
7059
7060 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7061 goto out;
7062
7063 num_bytes = min(offset + *len, extent_end) - offset;
7064 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7065 u64 range_end;
7066
7067 range_end = round_up(offset + num_bytes,
7068 root->fs_info->sectorsize) - 1;
7069 ret = test_range_bit(io_tree, offset, range_end,
7070 EXTENT_DELALLOC, 0, NULL);
7071 if (ret) {
7072 ret = -EAGAIN;
7073 goto out;
7074 }
7075 }
7076
7077 btrfs_release_path(path);
7078
7079 /*
7080 * look for other files referencing this extent, if we
7081 * find any we must cow
7082 */
7083
7084 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7085 key.offset - backref_offset, disk_bytenr);
7086 if (ret) {
7087 ret = 0;
7088 goto out;
7089 }
7090
7091 /*
7092 * adjust disk_bytenr and num_bytes to cover just the bytes
7093 * in this extent we are about to write. If there
7094 * are any csums in that range we have to cow in order
7095 * to keep the csums correct
7096 */
7097 disk_bytenr += backref_offset;
7098 disk_bytenr += offset - key.offset;
7099 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7100 goto out;
7101 /*
7102 * all of the above have passed, it is safe to overwrite this extent
7103 * without cow
7104 */
7105 *len = num_bytes;
7106 ret = 1;
7107 out:
7108 btrfs_free_path(path);
7109 return ret;
7110 }
7111
7112 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7113 struct extent_state **cached_state, int writing)
7114 {
7115 struct btrfs_ordered_extent *ordered;
7116 int ret = 0;
7117
7118 while (1) {
7119 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7120 cached_state);
7121 /*
7122 * We're concerned with the entire range that we're going to be
7123 * doing DIO to, so we need to make sure there's no ordered
7124 * extents in this range.
7125 */
7126 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7127 lockend - lockstart + 1);
7128
7129 /*
7130 * We need to make sure there are no buffered pages in this
7131 * range either, we could have raced between the invalidate in
7132 * generic_file_direct_write and locking the extent. The
7133 * invalidate needs to happen so that reads after a write do not
7134 * get stale data.
7135 */
7136 if (!ordered &&
7137 (!writing || !filemap_range_has_page(inode->i_mapping,
7138 lockstart, lockend)))
7139 break;
7140
7141 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7142 cached_state);
7143
7144 if (ordered) {
7145 /*
7146 * If we are doing a DIO read and the ordered extent we
7147 * found is for a buffered write, we can not wait for it
7148 * to complete and retry, because if we do so we can
7149 * deadlock with concurrent buffered writes on page
7150 * locks. This happens only if our DIO read covers more
7151 * than one extent map, if at this point has already
7152 * created an ordered extent for a previous extent map
7153 * and locked its range in the inode's io tree, and a
7154 * concurrent write against that previous extent map's
7155 * range and this range started (we unlock the ranges
7156 * in the io tree only when the bios complete and
7157 * buffered writes always lock pages before attempting
7158 * to lock range in the io tree).
7159 */
7160 if (writing ||
7161 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7162 btrfs_start_ordered_extent(inode, ordered, 1);
7163 else
7164 ret = -ENOTBLK;
7165 btrfs_put_ordered_extent(ordered);
7166 } else {
7167 /*
7168 * We could trigger writeback for this range (and wait
7169 * for it to complete) and then invalidate the pages for
7170 * this range (through invalidate_inode_pages2_range()),
7171 * but that can lead us to a deadlock with a concurrent
7172 * call to readahead (a buffered read or a defrag call
7173 * triggered a readahead) on a page lock due to an
7174 * ordered dio extent we created before but did not have
7175 * yet a corresponding bio submitted (whence it can not
7176 * complete), which makes readahead wait for that
7177 * ordered extent to complete while holding a lock on
7178 * that page.
7179 */
7180 ret = -ENOTBLK;
7181 }
7182
7183 if (ret)
7184 break;
7185
7186 cond_resched();
7187 }
7188
7189 return ret;
7190 }
7191
7192 /* The callers of this must take lock_extent() */
7193 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7194 u64 len, u64 orig_start, u64 block_start,
7195 u64 block_len, u64 orig_block_len,
7196 u64 ram_bytes, int compress_type,
7197 int type)
7198 {
7199 struct extent_map_tree *em_tree;
7200 struct extent_map *em;
7201 int ret;
7202
7203 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7204 type == BTRFS_ORDERED_COMPRESSED ||
7205 type == BTRFS_ORDERED_NOCOW ||
7206 type == BTRFS_ORDERED_REGULAR);
7207
7208 em_tree = &inode->extent_tree;
7209 em = alloc_extent_map();
7210 if (!em)
7211 return ERR_PTR(-ENOMEM);
7212
7213 em->start = start;
7214 em->orig_start = orig_start;
7215 em->len = len;
7216 em->block_len = block_len;
7217 em->block_start = block_start;
7218 em->orig_block_len = orig_block_len;
7219 em->ram_bytes = ram_bytes;
7220 em->generation = -1;
7221 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7222 if (type == BTRFS_ORDERED_PREALLOC) {
7223 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7224 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7225 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7226 em->compress_type = compress_type;
7227 }
7228
7229 do {
7230 btrfs_drop_extent_cache(inode, em->start,
7231 em->start + em->len - 1, 0);
7232 write_lock(&em_tree->lock);
7233 ret = add_extent_mapping(em_tree, em, 1);
7234 write_unlock(&em_tree->lock);
7235 /*
7236 * The caller has taken lock_extent(), who could race with us
7237 * to add em?
7238 */
7239 } while (ret == -EEXIST);
7240
7241 if (ret) {
7242 free_extent_map(em);
7243 return ERR_PTR(ret);
7244 }
7245
7246 /* em got 2 refs now, callers needs to do free_extent_map once. */
7247 return em;
7248 }
7249
7250
7251 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7252 struct buffer_head *bh_result,
7253 struct inode *inode,
7254 u64 start, u64 len)
7255 {
7256 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7257
7258 if (em->block_start == EXTENT_MAP_HOLE ||
7259 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7260 return -ENOENT;
7261
7262 len = min(len, em->len - (start - em->start));
7263
7264 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7265 inode->i_blkbits;
7266 bh_result->b_size = len;
7267 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7268 set_buffer_mapped(bh_result);
7269
7270 return 0;
7271 }
7272
7273 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7274 struct buffer_head *bh_result,
7275 struct inode *inode,
7276 struct btrfs_dio_data *dio_data,
7277 u64 start, u64 len)
7278 {
7279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7280 struct extent_map *em = *map;
7281 int ret = 0;
7282
7283 /*
7284 * We don't allocate a new extent in the following cases
7285 *
7286 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7287 * existing extent.
7288 * 2) The extent is marked as PREALLOC. We're good to go here and can
7289 * just use the extent.
7290 *
7291 */
7292 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7293 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7294 em->block_start != EXTENT_MAP_HOLE)) {
7295 int type;
7296 u64 block_start, orig_start, orig_block_len, ram_bytes;
7297
7298 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7299 type = BTRFS_ORDERED_PREALLOC;
7300 else
7301 type = BTRFS_ORDERED_NOCOW;
7302 len = min(len, em->len - (start - em->start));
7303 block_start = em->block_start + (start - em->start);
7304
7305 if (can_nocow_extent(inode, start, &len, &orig_start,
7306 &orig_block_len, &ram_bytes) == 1 &&
7307 btrfs_inc_nocow_writers(fs_info, block_start)) {
7308 struct extent_map *em2;
7309
7310 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7311 orig_start, block_start,
7312 len, orig_block_len,
7313 ram_bytes, type);
7314 btrfs_dec_nocow_writers(fs_info, block_start);
7315 if (type == BTRFS_ORDERED_PREALLOC) {
7316 free_extent_map(em);
7317 *map = em = em2;
7318 }
7319
7320 if (em2 && IS_ERR(em2)) {
7321 ret = PTR_ERR(em2);
7322 goto out;
7323 }
7324 /*
7325 * For inode marked NODATACOW or extent marked PREALLOC,
7326 * use the existing or preallocated extent, so does not
7327 * need to adjust btrfs_space_info's bytes_may_use.
7328 */
7329 btrfs_free_reserved_data_space_noquota(fs_info, len);
7330 goto skip_cow;
7331 }
7332 }
7333
7334 /* this will cow the extent */
7335 len = bh_result->b_size;
7336 free_extent_map(em);
7337 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7338 if (IS_ERR(em)) {
7339 ret = PTR_ERR(em);
7340 goto out;
7341 }
7342
7343 len = min(len, em->len - (start - em->start));
7344
7345 skip_cow:
7346 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7347 inode->i_blkbits;
7348 bh_result->b_size = len;
7349 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7350 set_buffer_mapped(bh_result);
7351
7352 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7353 set_buffer_new(bh_result);
7354
7355 /*
7356 * Need to update the i_size under the extent lock so buffered
7357 * readers will get the updated i_size when we unlock.
7358 */
7359 if (!dio_data->overwrite && start + len > i_size_read(inode))
7360 i_size_write(inode, start + len);
7361
7362 WARN_ON(dio_data->reserve < len);
7363 dio_data->reserve -= len;
7364 dio_data->unsubmitted_oe_range_end = start + len;
7365 current->journal_info = dio_data;
7366 out:
7367 return ret;
7368 }
7369
7370 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7371 struct buffer_head *bh_result, int create)
7372 {
7373 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7374 struct extent_map *em;
7375 struct extent_state *cached_state = NULL;
7376 struct btrfs_dio_data *dio_data = NULL;
7377 u64 start = iblock << inode->i_blkbits;
7378 u64 lockstart, lockend;
7379 u64 len = bh_result->b_size;
7380 int ret = 0;
7381
7382 if (!create)
7383 len = min_t(u64, len, fs_info->sectorsize);
7384
7385 lockstart = start;
7386 lockend = start + len - 1;
7387
7388 if (current->journal_info) {
7389 /*
7390 * Need to pull our outstanding extents and set journal_info to NULL so
7391 * that anything that needs to check if there's a transaction doesn't get
7392 * confused.
7393 */
7394 dio_data = current->journal_info;
7395 current->journal_info = NULL;
7396 }
7397
7398 /*
7399 * If this errors out it's because we couldn't invalidate pagecache for
7400 * this range and we need to fallback to buffered.
7401 */
7402 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7403 create)) {
7404 ret = -ENOTBLK;
7405 goto err;
7406 }
7407
7408 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7409 if (IS_ERR(em)) {
7410 ret = PTR_ERR(em);
7411 goto unlock_err;
7412 }
7413
7414 /*
7415 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7416 * io. INLINE is special, and we could probably kludge it in here, but
7417 * it's still buffered so for safety lets just fall back to the generic
7418 * buffered path.
7419 *
7420 * For COMPRESSED we _have_ to read the entire extent in so we can
7421 * decompress it, so there will be buffering required no matter what we
7422 * do, so go ahead and fallback to buffered.
7423 *
7424 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7425 * to buffered IO. Don't blame me, this is the price we pay for using
7426 * the generic code.
7427 */
7428 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7429 em->block_start == EXTENT_MAP_INLINE) {
7430 free_extent_map(em);
7431 ret = -ENOTBLK;
7432 goto unlock_err;
7433 }
7434
7435 if (create) {
7436 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7437 dio_data, start, len);
7438 if (ret < 0)
7439 goto unlock_err;
7440
7441 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7442 lockend, &cached_state);
7443 } else {
7444 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7445 start, len);
7446 /* Can be negative only if we read from a hole */
7447 if (ret < 0) {
7448 ret = 0;
7449 free_extent_map(em);
7450 goto unlock_err;
7451 }
7452 /*
7453 * We need to unlock only the end area that we aren't using.
7454 * The rest is going to be unlocked by the endio routine.
7455 */
7456 lockstart = start + bh_result->b_size;
7457 if (lockstart < lockend) {
7458 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7459 lockstart, lockend, &cached_state);
7460 } else {
7461 free_extent_state(cached_state);
7462 }
7463 }
7464
7465 free_extent_map(em);
7466
7467 return 0;
7468
7469 unlock_err:
7470 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7471 &cached_state);
7472 err:
7473 if (dio_data)
7474 current->journal_info = dio_data;
7475 return ret;
7476 }
7477
7478 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7479 {
7480 /*
7481 * This implies a barrier so that stores to dio_bio->bi_status before
7482 * this and loads of dio_bio->bi_status after this are fully ordered.
7483 */
7484 if (!refcount_dec_and_test(&dip->refs))
7485 return;
7486
7487 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
7488 __endio_write_update_ordered(BTRFS_I(dip->inode),
7489 dip->logical_offset,
7490 dip->bytes,
7491 !dip->dio_bio->bi_status);
7492 } else {
7493 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7494 dip->logical_offset,
7495 dip->logical_offset + dip->bytes - 1);
7496 }
7497
7498 dio_end_io(dip->dio_bio);
7499 kfree(dip);
7500 }
7501
7502 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7503 int mirror_num,
7504 unsigned long bio_flags)
7505 {
7506 struct btrfs_dio_private *dip = bio->bi_private;
7507 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7508 blk_status_t ret;
7509
7510 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7511
7512 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7513 if (ret)
7514 return ret;
7515
7516 refcount_inc(&dip->refs);
7517 ret = btrfs_map_bio(fs_info, bio, mirror_num);
7518 if (ret)
7519 refcount_dec(&dip->refs);
7520 return ret;
7521 }
7522
7523 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7524 struct btrfs_io_bio *io_bio,
7525 const bool uptodate)
7526 {
7527 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7528 const u32 sectorsize = fs_info->sectorsize;
7529 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7530 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7531 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7532 struct bio_vec bvec;
7533 struct bvec_iter iter;
7534 u64 start = io_bio->logical;
7535 int icsum = 0;
7536 blk_status_t err = BLK_STS_OK;
7537
7538 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7539 unsigned int i, nr_sectors, pgoff;
7540
7541 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7542 pgoff = bvec.bv_offset;
7543 for (i = 0; i < nr_sectors; i++) {
7544 ASSERT(pgoff < PAGE_SIZE);
7545 if (uptodate &&
7546 (!csum || !check_data_csum(inode, io_bio, icsum,
7547 bvec.bv_page, pgoff,
7548 start, sectorsize))) {
7549 clean_io_failure(fs_info, failure_tree, io_tree,
7550 start, bvec.bv_page,
7551 btrfs_ino(BTRFS_I(inode)),
7552 pgoff);
7553 } else {
7554 blk_status_t status;
7555
7556 status = btrfs_submit_read_repair(inode,
7557 &io_bio->bio,
7558 start - io_bio->logical,
7559 bvec.bv_page, pgoff,
7560 start,
7561 start + sectorsize - 1,
7562 io_bio->mirror_num,
7563 submit_dio_repair_bio);
7564 if (status)
7565 err = status;
7566 }
7567 start += sectorsize;
7568 icsum++;
7569 pgoff += sectorsize;
7570 }
7571 }
7572 return err;
7573 }
7574
7575 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7576 const u64 offset, const u64 bytes,
7577 const bool uptodate)
7578 {
7579 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7580 struct btrfs_ordered_extent *ordered = NULL;
7581 struct btrfs_workqueue *wq;
7582 u64 ordered_offset = offset;
7583 u64 ordered_bytes = bytes;
7584 u64 last_offset;
7585
7586 if (btrfs_is_free_space_inode(inode))
7587 wq = fs_info->endio_freespace_worker;
7588 else
7589 wq = fs_info->endio_write_workers;
7590
7591 while (ordered_offset < offset + bytes) {
7592 last_offset = ordered_offset;
7593 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7594 &ordered_offset,
7595 ordered_bytes,
7596 uptodate)) {
7597 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7598 NULL);
7599 btrfs_queue_work(wq, &ordered->work);
7600 }
7601 /*
7602 * If btrfs_dec_test_ordered_pending does not find any ordered
7603 * extent in the range, we can exit.
7604 */
7605 if (ordered_offset == last_offset)
7606 return;
7607 /*
7608 * Our bio might span multiple ordered extents. In this case
7609 * we keep going until we have accounted the whole dio.
7610 */
7611 if (ordered_offset < offset + bytes) {
7612 ordered_bytes = offset + bytes - ordered_offset;
7613 ordered = NULL;
7614 }
7615 }
7616 }
7617
7618 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
7619 struct bio *bio, u64 offset)
7620 {
7621 struct inode *inode = private_data;
7622 blk_status_t ret;
7623 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
7624 BUG_ON(ret); /* -ENOMEM */
7625 return 0;
7626 }
7627
7628 static void btrfs_end_dio_bio(struct bio *bio)
7629 {
7630 struct btrfs_dio_private *dip = bio->bi_private;
7631 blk_status_t err = bio->bi_status;
7632
7633 if (err)
7634 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7635 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7636 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7637 bio->bi_opf,
7638 (unsigned long long)bio->bi_iter.bi_sector,
7639 bio->bi_iter.bi_size, err);
7640
7641 if (bio_op(bio) == REQ_OP_READ) {
7642 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
7643 !err);
7644 }
7645
7646 if (err)
7647 dip->dio_bio->bi_status = err;
7648
7649 bio_put(bio);
7650 btrfs_dio_private_put(dip);
7651 }
7652
7653 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7654 struct inode *inode, u64 file_offset, int async_submit)
7655 {
7656 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7657 struct btrfs_dio_private *dip = bio->bi_private;
7658 bool write = bio_op(bio) == REQ_OP_WRITE;
7659 blk_status_t ret;
7660
7661 /* Check btrfs_submit_bio_hook() for rules about async submit. */
7662 if (async_submit)
7663 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7664
7665 if (!write) {
7666 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7667 if (ret)
7668 goto err;
7669 }
7670
7671 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7672 goto map;
7673
7674 if (write && async_submit) {
7675 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7676 file_offset, inode,
7677 btrfs_submit_bio_start_direct_io);
7678 goto err;
7679 } else if (write) {
7680 /*
7681 * If we aren't doing async submit, calculate the csum of the
7682 * bio now.
7683 */
7684 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
7685 if (ret)
7686 goto err;
7687 } else {
7688 u64 csum_offset;
7689
7690 csum_offset = file_offset - dip->logical_offset;
7691 csum_offset >>= inode->i_sb->s_blocksize_bits;
7692 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7693 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
7694 }
7695 map:
7696 ret = btrfs_map_bio(fs_info, bio, 0);
7697 err:
7698 return ret;
7699 }
7700
7701 /*
7702 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7703 * or ordered extents whether or not we submit any bios.
7704 */
7705 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7706 struct inode *inode,
7707 loff_t file_offset)
7708 {
7709 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7710 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7711 size_t dip_size;
7712 struct btrfs_dio_private *dip;
7713
7714 dip_size = sizeof(*dip);
7715 if (!write && csum) {
7716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7717 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7718 size_t nblocks;
7719
7720 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7721 dip_size += csum_size * nblocks;
7722 }
7723
7724 dip = kzalloc(dip_size, GFP_NOFS);
7725 if (!dip)
7726 return NULL;
7727
7728 dip->inode = inode;
7729 dip->logical_offset = file_offset;
7730 dip->bytes = dio_bio->bi_iter.bi_size;
7731 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7732 dip->dio_bio = dio_bio;
7733 refcount_set(&dip->refs, 1);
7734
7735 if (write) {
7736 struct btrfs_dio_data *dio_data = current->journal_info;
7737
7738 /*
7739 * Setting range start and end to the same value means that
7740 * no cleanup will happen in btrfs_direct_IO
7741 */
7742 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
7743 dip->bytes;
7744 dio_data->unsubmitted_oe_range_start =
7745 dio_data->unsubmitted_oe_range_end;
7746 }
7747 return dip;
7748 }
7749
7750 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
7751 loff_t file_offset)
7752 {
7753 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7754 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7755 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7756 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7757 BTRFS_BLOCK_GROUP_RAID56_MASK);
7758 struct btrfs_dio_private *dip;
7759 struct bio *bio;
7760 u64 start_sector;
7761 int async_submit = 0;
7762 u64 submit_len;
7763 int clone_offset = 0;
7764 int clone_len;
7765 int ret;
7766 blk_status_t status;
7767 struct btrfs_io_geometry geom;
7768
7769 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7770 if (!dip) {
7771 if (!write) {
7772 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7773 file_offset + dio_bio->bi_iter.bi_size - 1);
7774 }
7775 dio_bio->bi_status = BLK_STS_RESOURCE;
7776 dio_end_io(dio_bio);
7777 return;
7778 }
7779
7780 if (!write && csum) {
7781 /*
7782 * Load the csums up front to reduce csum tree searches and
7783 * contention when submitting bios.
7784 */
7785 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7786 dip->csums);
7787 if (status != BLK_STS_OK)
7788 goto out_err;
7789 }
7790
7791 start_sector = dio_bio->bi_iter.bi_sector;
7792 submit_len = dio_bio->bi_iter.bi_size;
7793
7794 do {
7795 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7796 start_sector << 9, submit_len,
7797 &geom);
7798 if (ret) {
7799 status = errno_to_blk_status(ret);
7800 goto out_err;
7801 }
7802 ASSERT(geom.len <= INT_MAX);
7803
7804 clone_len = min_t(int, submit_len, geom.len);
7805
7806 /*
7807 * This will never fail as it's passing GPF_NOFS and
7808 * the allocation is backed by btrfs_bioset.
7809 */
7810 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
7811 bio->bi_private = dip;
7812 bio->bi_end_io = btrfs_end_dio_bio;
7813 btrfs_io_bio(bio)->logical = file_offset;
7814
7815 ASSERT(submit_len >= clone_len);
7816 submit_len -= clone_len;
7817
7818 /*
7819 * Increase the count before we submit the bio so we know
7820 * the end IO handler won't happen before we increase the
7821 * count. Otherwise, the dip might get freed before we're
7822 * done setting it up.
7823 *
7824 * We transfer the initial reference to the last bio, so we
7825 * don't need to increment the reference count for the last one.
7826 */
7827 if (submit_len > 0) {
7828 refcount_inc(&dip->refs);
7829 /*
7830 * If we are submitting more than one bio, submit them
7831 * all asynchronously. The exception is RAID 5 or 6, as
7832 * asynchronous checksums make it difficult to collect
7833 * full stripe writes.
7834 */
7835 if (!raid56)
7836 async_submit = 1;
7837 }
7838
7839 status = btrfs_submit_dio_bio(bio, inode, file_offset,
7840 async_submit);
7841 if (status) {
7842 bio_put(bio);
7843 if (submit_len > 0)
7844 refcount_dec(&dip->refs);
7845 goto out_err;
7846 }
7847
7848 clone_offset += clone_len;
7849 start_sector += clone_len >> 9;
7850 file_offset += clone_len;
7851 } while (submit_len > 0);
7852 return;
7853
7854 out_err:
7855 dip->dio_bio->bi_status = status;
7856 btrfs_dio_private_put(dip);
7857 }
7858
7859 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7860 const struct iov_iter *iter, loff_t offset)
7861 {
7862 int seg;
7863 int i;
7864 unsigned int blocksize_mask = fs_info->sectorsize - 1;
7865 ssize_t retval = -EINVAL;
7866
7867 if (offset & blocksize_mask)
7868 goto out;
7869
7870 if (iov_iter_alignment(iter) & blocksize_mask)
7871 goto out;
7872
7873 /* If this is a write we don't need to check anymore */
7874 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7875 return 0;
7876 /*
7877 * Check to make sure we don't have duplicate iov_base's in this
7878 * iovec, if so return EINVAL, otherwise we'll get csum errors
7879 * when reading back.
7880 */
7881 for (seg = 0; seg < iter->nr_segs; seg++) {
7882 for (i = seg + 1; i < iter->nr_segs; i++) {
7883 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7884 goto out;
7885 }
7886 }
7887 retval = 0;
7888 out:
7889 return retval;
7890 }
7891
7892 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
7893 {
7894 struct file *file = iocb->ki_filp;
7895 struct inode *inode = file->f_mapping->host;
7896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7897 struct btrfs_dio_data dio_data = { 0 };
7898 struct extent_changeset *data_reserved = NULL;
7899 loff_t offset = iocb->ki_pos;
7900 size_t count = 0;
7901 int flags = 0;
7902 bool wakeup = true;
7903 bool relock = false;
7904 ssize_t ret;
7905
7906 if (check_direct_IO(fs_info, iter, offset))
7907 return 0;
7908
7909 inode_dio_begin(inode);
7910
7911 /*
7912 * The generic stuff only does filemap_write_and_wait_range, which
7913 * isn't enough if we've written compressed pages to this area, so
7914 * we need to flush the dirty pages again to make absolutely sure
7915 * that any outstanding dirty pages are on disk.
7916 */
7917 count = iov_iter_count(iter);
7918 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7919 &BTRFS_I(inode)->runtime_flags))
7920 filemap_fdatawrite_range(inode->i_mapping, offset,
7921 offset + count - 1);
7922
7923 if (iov_iter_rw(iter) == WRITE) {
7924 /*
7925 * If the write DIO is beyond the EOF, we need update
7926 * the isize, but it is protected by i_mutex. So we can
7927 * not unlock the i_mutex at this case.
7928 */
7929 if (offset + count <= inode->i_size) {
7930 dio_data.overwrite = 1;
7931 inode_unlock(inode);
7932 relock = true;
7933 }
7934 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
7935 offset, count);
7936 if (ret)
7937 goto out;
7938
7939 /*
7940 * We need to know how many extents we reserved so that we can
7941 * do the accounting properly if we go over the number we
7942 * originally calculated. Abuse current->journal_info for this.
7943 */
7944 dio_data.reserve = round_up(count,
7945 fs_info->sectorsize);
7946 dio_data.unsubmitted_oe_range_start = (u64)offset;
7947 dio_data.unsubmitted_oe_range_end = (u64)offset;
7948 current->journal_info = &dio_data;
7949 down_read(&BTRFS_I(inode)->dio_sem);
7950 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7951 &BTRFS_I(inode)->runtime_flags)) {
7952 inode_dio_end(inode);
7953 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7954 wakeup = false;
7955 }
7956
7957 ret = __blockdev_direct_IO(iocb, inode,
7958 fs_info->fs_devices->latest_bdev,
7959 iter, btrfs_get_blocks_direct, NULL,
7960 btrfs_submit_direct, flags);
7961 if (iov_iter_rw(iter) == WRITE) {
7962 up_read(&BTRFS_I(inode)->dio_sem);
7963 current->journal_info = NULL;
7964 if (ret < 0 && ret != -EIOCBQUEUED) {
7965 if (dio_data.reserve)
7966 btrfs_delalloc_release_space(BTRFS_I(inode),
7967 data_reserved, offset, dio_data.reserve,
7968 true);
7969 /*
7970 * On error we might have left some ordered extents
7971 * without submitting corresponding bios for them, so
7972 * cleanup them up to avoid other tasks getting them
7973 * and waiting for them to complete forever.
7974 */
7975 if (dio_data.unsubmitted_oe_range_start <
7976 dio_data.unsubmitted_oe_range_end)
7977 __endio_write_update_ordered(BTRFS_I(inode),
7978 dio_data.unsubmitted_oe_range_start,
7979 dio_data.unsubmitted_oe_range_end -
7980 dio_data.unsubmitted_oe_range_start,
7981 false);
7982 } else if (ret >= 0 && (size_t)ret < count)
7983 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
7984 offset, count - (size_t)ret, true);
7985 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
7986 }
7987 out:
7988 if (wakeup)
7989 inode_dio_end(inode);
7990 if (relock)
7991 inode_lock(inode);
7992
7993 extent_changeset_free(data_reserved);
7994 return ret;
7995 }
7996
7997 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7998 u64 start, u64 len)
7999 {
8000 int ret;
8001
8002 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8003 if (ret)
8004 return ret;
8005
8006 return extent_fiemap(inode, fieinfo, start, len);
8007 }
8008
8009 int btrfs_readpage(struct file *file, struct page *page)
8010 {
8011 return extent_read_full_page(page, btrfs_get_extent, 0);
8012 }
8013
8014 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8015 {
8016 struct inode *inode = page->mapping->host;
8017 int ret;
8018
8019 if (current->flags & PF_MEMALLOC) {
8020 redirty_page_for_writepage(wbc, page);
8021 unlock_page(page);
8022 return 0;
8023 }
8024
8025 /*
8026 * If we are under memory pressure we will call this directly from the
8027 * VM, we need to make sure we have the inode referenced for the ordered
8028 * extent. If not just return like we didn't do anything.
8029 */
8030 if (!igrab(inode)) {
8031 redirty_page_for_writepage(wbc, page);
8032 return AOP_WRITEPAGE_ACTIVATE;
8033 }
8034 ret = extent_write_full_page(page, wbc);
8035 btrfs_add_delayed_iput(inode);
8036 return ret;
8037 }
8038
8039 static int btrfs_writepages(struct address_space *mapping,
8040 struct writeback_control *wbc)
8041 {
8042 return extent_writepages(mapping, wbc);
8043 }
8044
8045 static void btrfs_readahead(struct readahead_control *rac)
8046 {
8047 extent_readahead(rac);
8048 }
8049
8050 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8051 {
8052 int ret = try_release_extent_mapping(page, gfp_flags);
8053 if (ret == 1)
8054 detach_page_private(page);
8055 return ret;
8056 }
8057
8058 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8059 {
8060 if (PageWriteback(page) || PageDirty(page))
8061 return 0;
8062 return __btrfs_releasepage(page, gfp_flags);
8063 }
8064
8065 #ifdef CONFIG_MIGRATION
8066 static int btrfs_migratepage(struct address_space *mapping,
8067 struct page *newpage, struct page *page,
8068 enum migrate_mode mode)
8069 {
8070 int ret;
8071
8072 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8073 if (ret != MIGRATEPAGE_SUCCESS)
8074 return ret;
8075
8076 if (page_has_private(page))
8077 attach_page_private(newpage, detach_page_private(page));
8078
8079 if (PagePrivate2(page)) {
8080 ClearPagePrivate2(page);
8081 SetPagePrivate2(newpage);
8082 }
8083
8084 if (mode != MIGRATE_SYNC_NO_COPY)
8085 migrate_page_copy(newpage, page);
8086 else
8087 migrate_page_states(newpage, page);
8088 return MIGRATEPAGE_SUCCESS;
8089 }
8090 #endif
8091
8092 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8093 unsigned int length)
8094 {
8095 struct inode *inode = page->mapping->host;
8096 struct extent_io_tree *tree;
8097 struct btrfs_ordered_extent *ordered;
8098 struct extent_state *cached_state = NULL;
8099 u64 page_start = page_offset(page);
8100 u64 page_end = page_start + PAGE_SIZE - 1;
8101 u64 start;
8102 u64 end;
8103 int inode_evicting = inode->i_state & I_FREEING;
8104
8105 /*
8106 * we have the page locked, so new writeback can't start,
8107 * and the dirty bit won't be cleared while we are here.
8108 *
8109 * Wait for IO on this page so that we can safely clear
8110 * the PagePrivate2 bit and do ordered accounting
8111 */
8112 wait_on_page_writeback(page);
8113
8114 tree = &BTRFS_I(inode)->io_tree;
8115 if (offset) {
8116 btrfs_releasepage(page, GFP_NOFS);
8117 return;
8118 }
8119
8120 if (!inode_evicting)
8121 lock_extent_bits(tree, page_start, page_end, &cached_state);
8122 again:
8123 start = page_start;
8124 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8125 page_end - start + 1);
8126 if (ordered) {
8127 end = min(page_end,
8128 ordered->file_offset + ordered->num_bytes - 1);
8129 /*
8130 * IO on this page will never be started, so we need
8131 * to account for any ordered extents now
8132 */
8133 if (!inode_evicting)
8134 clear_extent_bit(tree, start, end,
8135 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8136 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8137 EXTENT_DEFRAG, 1, 0, &cached_state);
8138 /*
8139 * whoever cleared the private bit is responsible
8140 * for the finish_ordered_io
8141 */
8142 if (TestClearPagePrivate2(page)) {
8143 struct btrfs_ordered_inode_tree *tree;
8144 u64 new_len;
8145
8146 tree = &BTRFS_I(inode)->ordered_tree;
8147
8148 spin_lock_irq(&tree->lock);
8149 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8150 new_len = start - ordered->file_offset;
8151 if (new_len < ordered->truncated_len)
8152 ordered->truncated_len = new_len;
8153 spin_unlock_irq(&tree->lock);
8154
8155 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8156 start,
8157 end - start + 1, 1))
8158 btrfs_finish_ordered_io(ordered);
8159 }
8160 btrfs_put_ordered_extent(ordered);
8161 if (!inode_evicting) {
8162 cached_state = NULL;
8163 lock_extent_bits(tree, start, end,
8164 &cached_state);
8165 }
8166
8167 start = end + 1;
8168 if (start < page_end)
8169 goto again;
8170 }
8171
8172 /*
8173 * Qgroup reserved space handler
8174 * Page here will be either
8175 * 1) Already written to disk or ordered extent already submitted
8176 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8177 * Qgroup will be handled by its qgroup_record then.
8178 * btrfs_qgroup_free_data() call will do nothing here.
8179 *
8180 * 2) Not written to disk yet
8181 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8182 * bit of its io_tree, and free the qgroup reserved data space.
8183 * Since the IO will never happen for this page.
8184 */
8185 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, page_start, PAGE_SIZE);
8186 if (!inode_evicting) {
8187 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8188 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8189 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8190 &cached_state);
8191
8192 __btrfs_releasepage(page, GFP_NOFS);
8193 }
8194
8195 ClearPageChecked(page);
8196 detach_page_private(page);
8197 }
8198
8199 /*
8200 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8201 * called from a page fault handler when a page is first dirtied. Hence we must
8202 * be careful to check for EOF conditions here. We set the page up correctly
8203 * for a written page which means we get ENOSPC checking when writing into
8204 * holes and correct delalloc and unwritten extent mapping on filesystems that
8205 * support these features.
8206 *
8207 * We are not allowed to take the i_mutex here so we have to play games to
8208 * protect against truncate races as the page could now be beyond EOF. Because
8209 * truncate_setsize() writes the inode size before removing pages, once we have
8210 * the page lock we can determine safely if the page is beyond EOF. If it is not
8211 * beyond EOF, then the page is guaranteed safe against truncation until we
8212 * unlock the page.
8213 */
8214 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8215 {
8216 struct page *page = vmf->page;
8217 struct inode *inode = file_inode(vmf->vma->vm_file);
8218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8219 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8220 struct btrfs_ordered_extent *ordered;
8221 struct extent_state *cached_state = NULL;
8222 struct extent_changeset *data_reserved = NULL;
8223 char *kaddr;
8224 unsigned long zero_start;
8225 loff_t size;
8226 vm_fault_t ret;
8227 int ret2;
8228 int reserved = 0;
8229 u64 reserved_space;
8230 u64 page_start;
8231 u64 page_end;
8232 u64 end;
8233
8234 reserved_space = PAGE_SIZE;
8235
8236 sb_start_pagefault(inode->i_sb);
8237 page_start = page_offset(page);
8238 page_end = page_start + PAGE_SIZE - 1;
8239 end = page_end;
8240
8241 /*
8242 * Reserving delalloc space after obtaining the page lock can lead to
8243 * deadlock. For example, if a dirty page is locked by this function
8244 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8245 * dirty page write out, then the btrfs_writepage() function could
8246 * end up waiting indefinitely to get a lock on the page currently
8247 * being processed by btrfs_page_mkwrite() function.
8248 */
8249 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8250 page_start, reserved_space);
8251 if (!ret2) {
8252 ret2 = file_update_time(vmf->vma->vm_file);
8253 reserved = 1;
8254 }
8255 if (ret2) {
8256 ret = vmf_error(ret2);
8257 if (reserved)
8258 goto out;
8259 goto out_noreserve;
8260 }
8261
8262 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8263 again:
8264 lock_page(page);
8265 size = i_size_read(inode);
8266
8267 if ((page->mapping != inode->i_mapping) ||
8268 (page_start >= size)) {
8269 /* page got truncated out from underneath us */
8270 goto out_unlock;
8271 }
8272 wait_on_page_writeback(page);
8273
8274 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8275 set_page_extent_mapped(page);
8276
8277 /*
8278 * we can't set the delalloc bits if there are pending ordered
8279 * extents. Drop our locks and wait for them to finish
8280 */
8281 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8282 PAGE_SIZE);
8283 if (ordered) {
8284 unlock_extent_cached(io_tree, page_start, page_end,
8285 &cached_state);
8286 unlock_page(page);
8287 btrfs_start_ordered_extent(inode, ordered, 1);
8288 btrfs_put_ordered_extent(ordered);
8289 goto again;
8290 }
8291
8292 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8293 reserved_space = round_up(size - page_start,
8294 fs_info->sectorsize);
8295 if (reserved_space < PAGE_SIZE) {
8296 end = page_start + reserved_space - 1;
8297 btrfs_delalloc_release_space(BTRFS_I(inode),
8298 data_reserved, page_start,
8299 PAGE_SIZE - reserved_space, true);
8300 }
8301 }
8302
8303 /*
8304 * page_mkwrite gets called when the page is firstly dirtied after it's
8305 * faulted in, but write(2) could also dirty a page and set delalloc
8306 * bits, thus in this case for space account reason, we still need to
8307 * clear any delalloc bits within this page range since we have to
8308 * reserve data&meta space before lock_page() (see above comments).
8309 */
8310 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8311 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8312 EXTENT_DEFRAG, 0, 0, &cached_state);
8313
8314 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8315 &cached_state);
8316 if (ret2) {
8317 unlock_extent_cached(io_tree, page_start, page_end,
8318 &cached_state);
8319 ret = VM_FAULT_SIGBUS;
8320 goto out_unlock;
8321 }
8322
8323 /* page is wholly or partially inside EOF */
8324 if (page_start + PAGE_SIZE > size)
8325 zero_start = offset_in_page(size);
8326 else
8327 zero_start = PAGE_SIZE;
8328
8329 if (zero_start != PAGE_SIZE) {
8330 kaddr = kmap(page);
8331 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8332 flush_dcache_page(page);
8333 kunmap(page);
8334 }
8335 ClearPageChecked(page);
8336 set_page_dirty(page);
8337 SetPageUptodate(page);
8338
8339 BTRFS_I(inode)->last_trans = fs_info->generation;
8340 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8341 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8342
8343 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8344
8345 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8346 sb_end_pagefault(inode->i_sb);
8347 extent_changeset_free(data_reserved);
8348 return VM_FAULT_LOCKED;
8349
8350 out_unlock:
8351 unlock_page(page);
8352 out:
8353 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8354 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8355 reserved_space, (ret != 0));
8356 out_noreserve:
8357 sb_end_pagefault(inode->i_sb);
8358 extent_changeset_free(data_reserved);
8359 return ret;
8360 }
8361
8362 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8363 {
8364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8365 struct btrfs_root *root = BTRFS_I(inode)->root;
8366 struct btrfs_block_rsv *rsv;
8367 int ret;
8368 struct btrfs_trans_handle *trans;
8369 u64 mask = fs_info->sectorsize - 1;
8370 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8371
8372 if (!skip_writeback) {
8373 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8374 (u64)-1);
8375 if (ret)
8376 return ret;
8377 }
8378
8379 /*
8380 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8381 * things going on here:
8382 *
8383 * 1) We need to reserve space to update our inode.
8384 *
8385 * 2) We need to have something to cache all the space that is going to
8386 * be free'd up by the truncate operation, but also have some slack
8387 * space reserved in case it uses space during the truncate (thank you
8388 * very much snapshotting).
8389 *
8390 * And we need these to be separate. The fact is we can use a lot of
8391 * space doing the truncate, and we have no earthly idea how much space
8392 * we will use, so we need the truncate reservation to be separate so it
8393 * doesn't end up using space reserved for updating the inode. We also
8394 * need to be able to stop the transaction and start a new one, which
8395 * means we need to be able to update the inode several times, and we
8396 * have no idea of knowing how many times that will be, so we can't just
8397 * reserve 1 item for the entirety of the operation, so that has to be
8398 * done separately as well.
8399 *
8400 * So that leaves us with
8401 *
8402 * 1) rsv - for the truncate reservation, which we will steal from the
8403 * transaction reservation.
8404 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8405 * updating the inode.
8406 */
8407 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8408 if (!rsv)
8409 return -ENOMEM;
8410 rsv->size = min_size;
8411 rsv->failfast = 1;
8412
8413 /*
8414 * 1 for the truncate slack space
8415 * 1 for updating the inode.
8416 */
8417 trans = btrfs_start_transaction(root, 2);
8418 if (IS_ERR(trans)) {
8419 ret = PTR_ERR(trans);
8420 goto out;
8421 }
8422
8423 /* Migrate the slack space for the truncate to our reserve */
8424 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8425 min_size, false);
8426 BUG_ON(ret);
8427
8428 /*
8429 * So if we truncate and then write and fsync we normally would just
8430 * write the extents that changed, which is a problem if we need to
8431 * first truncate that entire inode. So set this flag so we write out
8432 * all of the extents in the inode to the sync log so we're completely
8433 * safe.
8434 */
8435 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8436 trans->block_rsv = rsv;
8437
8438 while (1) {
8439 ret = btrfs_truncate_inode_items(trans, root, inode,
8440 inode->i_size,
8441 BTRFS_EXTENT_DATA_KEY);
8442 trans->block_rsv = &fs_info->trans_block_rsv;
8443 if (ret != -ENOSPC && ret != -EAGAIN)
8444 break;
8445
8446 ret = btrfs_update_inode(trans, root, inode);
8447 if (ret)
8448 break;
8449
8450 btrfs_end_transaction(trans);
8451 btrfs_btree_balance_dirty(fs_info);
8452
8453 trans = btrfs_start_transaction(root, 2);
8454 if (IS_ERR(trans)) {
8455 ret = PTR_ERR(trans);
8456 trans = NULL;
8457 break;
8458 }
8459
8460 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8461 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8462 rsv, min_size, false);
8463 BUG_ON(ret); /* shouldn't happen */
8464 trans->block_rsv = rsv;
8465 }
8466
8467 /*
8468 * We can't call btrfs_truncate_block inside a trans handle as we could
8469 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8470 * we've truncated everything except the last little bit, and can do
8471 * btrfs_truncate_block and then update the disk_i_size.
8472 */
8473 if (ret == NEED_TRUNCATE_BLOCK) {
8474 btrfs_end_transaction(trans);
8475 btrfs_btree_balance_dirty(fs_info);
8476
8477 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8478 if (ret)
8479 goto out;
8480 trans = btrfs_start_transaction(root, 1);
8481 if (IS_ERR(trans)) {
8482 ret = PTR_ERR(trans);
8483 goto out;
8484 }
8485 btrfs_inode_safe_disk_i_size_write(inode, 0);
8486 }
8487
8488 if (trans) {
8489 int ret2;
8490
8491 trans->block_rsv = &fs_info->trans_block_rsv;
8492 ret2 = btrfs_update_inode(trans, root, inode);
8493 if (ret2 && !ret)
8494 ret = ret2;
8495
8496 ret2 = btrfs_end_transaction(trans);
8497 if (ret2 && !ret)
8498 ret = ret2;
8499 btrfs_btree_balance_dirty(fs_info);
8500 }
8501 out:
8502 btrfs_free_block_rsv(fs_info, rsv);
8503
8504 return ret;
8505 }
8506
8507 /*
8508 * create a new subvolume directory/inode (helper for the ioctl).
8509 */
8510 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8511 struct btrfs_root *new_root,
8512 struct btrfs_root *parent_root,
8513 u64 new_dirid)
8514 {
8515 struct inode *inode;
8516 int err;
8517 u64 index = 0;
8518
8519 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8520 new_dirid, new_dirid,
8521 S_IFDIR | (~current_umask() & S_IRWXUGO),
8522 &index);
8523 if (IS_ERR(inode))
8524 return PTR_ERR(inode);
8525 inode->i_op = &btrfs_dir_inode_operations;
8526 inode->i_fop = &btrfs_dir_file_operations;
8527
8528 set_nlink(inode, 1);
8529 btrfs_i_size_write(BTRFS_I(inode), 0);
8530 unlock_new_inode(inode);
8531
8532 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8533 if (err)
8534 btrfs_err(new_root->fs_info,
8535 "error inheriting subvolume %llu properties: %d",
8536 new_root->root_key.objectid, err);
8537
8538 err = btrfs_update_inode(trans, new_root, inode);
8539
8540 iput(inode);
8541 return err;
8542 }
8543
8544 struct inode *btrfs_alloc_inode(struct super_block *sb)
8545 {
8546 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8547 struct btrfs_inode *ei;
8548 struct inode *inode;
8549
8550 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8551 if (!ei)
8552 return NULL;
8553
8554 ei->root = NULL;
8555 ei->generation = 0;
8556 ei->last_trans = 0;
8557 ei->last_sub_trans = 0;
8558 ei->logged_trans = 0;
8559 ei->delalloc_bytes = 0;
8560 ei->new_delalloc_bytes = 0;
8561 ei->defrag_bytes = 0;
8562 ei->disk_i_size = 0;
8563 ei->flags = 0;
8564 ei->csum_bytes = 0;
8565 ei->index_cnt = (u64)-1;
8566 ei->dir_index = 0;
8567 ei->last_unlink_trans = 0;
8568 ei->last_reflink_trans = 0;
8569 ei->last_log_commit = 0;
8570
8571 spin_lock_init(&ei->lock);
8572 ei->outstanding_extents = 0;
8573 if (sb->s_magic != BTRFS_TEST_MAGIC)
8574 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8575 BTRFS_BLOCK_RSV_DELALLOC);
8576 ei->runtime_flags = 0;
8577 ei->prop_compress = BTRFS_COMPRESS_NONE;
8578 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8579
8580 ei->delayed_node = NULL;
8581
8582 ei->i_otime.tv_sec = 0;
8583 ei->i_otime.tv_nsec = 0;
8584
8585 inode = &ei->vfs_inode;
8586 extent_map_tree_init(&ei->extent_tree);
8587 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8588 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8589 IO_TREE_INODE_IO_FAILURE, inode);
8590 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8591 IO_TREE_INODE_FILE_EXTENT, inode);
8592 ei->io_tree.track_uptodate = true;
8593 ei->io_failure_tree.track_uptodate = true;
8594 atomic_set(&ei->sync_writers, 0);
8595 mutex_init(&ei->log_mutex);
8596 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8597 INIT_LIST_HEAD(&ei->delalloc_inodes);
8598 INIT_LIST_HEAD(&ei->delayed_iput);
8599 RB_CLEAR_NODE(&ei->rb_node);
8600 init_rwsem(&ei->dio_sem);
8601
8602 return inode;
8603 }
8604
8605 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8606 void btrfs_test_destroy_inode(struct inode *inode)
8607 {
8608 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8609 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8610 }
8611 #endif
8612
8613 void btrfs_free_inode(struct inode *inode)
8614 {
8615 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8616 }
8617
8618 void btrfs_destroy_inode(struct inode *inode)
8619 {
8620 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8621 struct btrfs_ordered_extent *ordered;
8622 struct btrfs_root *root = BTRFS_I(inode)->root;
8623
8624 WARN_ON(!hlist_empty(&inode->i_dentry));
8625 WARN_ON(inode->i_data.nrpages);
8626 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
8627 WARN_ON(BTRFS_I(inode)->block_rsv.size);
8628 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8629 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8630 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
8631 WARN_ON(BTRFS_I(inode)->csum_bytes);
8632 WARN_ON(BTRFS_I(inode)->defrag_bytes);
8633
8634 /*
8635 * This can happen where we create an inode, but somebody else also
8636 * created the same inode and we need to destroy the one we already
8637 * created.
8638 */
8639 if (!root)
8640 return;
8641
8642 while (1) {
8643 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8644 if (!ordered)
8645 break;
8646 else {
8647 btrfs_err(fs_info,
8648 "found ordered extent %llu %llu on inode cleanup",
8649 ordered->file_offset, ordered->num_bytes);
8650 btrfs_remove_ordered_extent(inode, ordered);
8651 btrfs_put_ordered_extent(ordered);
8652 btrfs_put_ordered_extent(ordered);
8653 }
8654 }
8655 btrfs_qgroup_check_reserved_leak(BTRFS_I(inode));
8656 inode_tree_del(inode);
8657 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8658 btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1);
8659 btrfs_put_root(BTRFS_I(inode)->root);
8660 }
8661
8662 int btrfs_drop_inode(struct inode *inode)
8663 {
8664 struct btrfs_root *root = BTRFS_I(inode)->root;
8665
8666 if (root == NULL)
8667 return 1;
8668
8669 /* the snap/subvol tree is on deleting */
8670 if (btrfs_root_refs(&root->root_item) == 0)
8671 return 1;
8672 else
8673 return generic_drop_inode(inode);
8674 }
8675
8676 static void init_once(void *foo)
8677 {
8678 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8679
8680 inode_init_once(&ei->vfs_inode);
8681 }
8682
8683 void __cold btrfs_destroy_cachep(void)
8684 {
8685 /*
8686 * Make sure all delayed rcu free inodes are flushed before we
8687 * destroy cache.
8688 */
8689 rcu_barrier();
8690 kmem_cache_destroy(btrfs_inode_cachep);
8691 kmem_cache_destroy(btrfs_trans_handle_cachep);
8692 kmem_cache_destroy(btrfs_path_cachep);
8693 kmem_cache_destroy(btrfs_free_space_cachep);
8694 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8695 }
8696
8697 int __init btrfs_init_cachep(void)
8698 {
8699 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8700 sizeof(struct btrfs_inode), 0,
8701 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8702 init_once);
8703 if (!btrfs_inode_cachep)
8704 goto fail;
8705
8706 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8707 sizeof(struct btrfs_trans_handle), 0,
8708 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8709 if (!btrfs_trans_handle_cachep)
8710 goto fail;
8711
8712 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8713 sizeof(struct btrfs_path), 0,
8714 SLAB_MEM_SPREAD, NULL);
8715 if (!btrfs_path_cachep)
8716 goto fail;
8717
8718 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8719 sizeof(struct btrfs_free_space), 0,
8720 SLAB_MEM_SPREAD, NULL);
8721 if (!btrfs_free_space_cachep)
8722 goto fail;
8723
8724 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8725 PAGE_SIZE, PAGE_SIZE,
8726 SLAB_RED_ZONE, NULL);
8727 if (!btrfs_free_space_bitmap_cachep)
8728 goto fail;
8729
8730 return 0;
8731 fail:
8732 btrfs_destroy_cachep();
8733 return -ENOMEM;
8734 }
8735
8736 static int btrfs_getattr(const struct path *path, struct kstat *stat,
8737 u32 request_mask, unsigned int flags)
8738 {
8739 u64 delalloc_bytes;
8740 struct inode *inode = d_inode(path->dentry);
8741 u32 blocksize = inode->i_sb->s_blocksize;
8742 u32 bi_flags = BTRFS_I(inode)->flags;
8743
8744 stat->result_mask |= STATX_BTIME;
8745 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8746 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8747 if (bi_flags & BTRFS_INODE_APPEND)
8748 stat->attributes |= STATX_ATTR_APPEND;
8749 if (bi_flags & BTRFS_INODE_COMPRESS)
8750 stat->attributes |= STATX_ATTR_COMPRESSED;
8751 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8752 stat->attributes |= STATX_ATTR_IMMUTABLE;
8753 if (bi_flags & BTRFS_INODE_NODUMP)
8754 stat->attributes |= STATX_ATTR_NODUMP;
8755
8756 stat->attributes_mask |= (STATX_ATTR_APPEND |
8757 STATX_ATTR_COMPRESSED |
8758 STATX_ATTR_IMMUTABLE |
8759 STATX_ATTR_NODUMP);
8760
8761 generic_fillattr(inode, stat);
8762 stat->dev = BTRFS_I(inode)->root->anon_dev;
8763
8764 spin_lock(&BTRFS_I(inode)->lock);
8765 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8766 spin_unlock(&BTRFS_I(inode)->lock);
8767 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8768 ALIGN(delalloc_bytes, blocksize)) >> 9;
8769 return 0;
8770 }
8771
8772 static int btrfs_rename_exchange(struct inode *old_dir,
8773 struct dentry *old_dentry,
8774 struct inode *new_dir,
8775 struct dentry *new_dentry)
8776 {
8777 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8778 struct btrfs_trans_handle *trans;
8779 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8780 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8781 struct inode *new_inode = new_dentry->d_inode;
8782 struct inode *old_inode = old_dentry->d_inode;
8783 struct timespec64 ctime = current_time(old_inode);
8784 struct dentry *parent;
8785 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8786 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8787 u64 old_idx = 0;
8788 u64 new_idx = 0;
8789 int ret;
8790 bool root_log_pinned = false;
8791 bool dest_log_pinned = false;
8792 struct btrfs_log_ctx ctx_root;
8793 struct btrfs_log_ctx ctx_dest;
8794 bool sync_log_root = false;
8795 bool sync_log_dest = false;
8796 bool commit_transaction = false;
8797
8798 /* we only allow rename subvolume link between subvolumes */
8799 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8800 return -EXDEV;
8801
8802 btrfs_init_log_ctx(&ctx_root, old_inode);
8803 btrfs_init_log_ctx(&ctx_dest, new_inode);
8804
8805 /* close the race window with snapshot create/destroy ioctl */
8806 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8807 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8808 down_read(&fs_info->subvol_sem);
8809
8810 /*
8811 * We want to reserve the absolute worst case amount of items. So if
8812 * both inodes are subvols and we need to unlink them then that would
8813 * require 4 item modifications, but if they are both normal inodes it
8814 * would require 5 item modifications, so we'll assume their normal
8815 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8816 * should cover the worst case number of items we'll modify.
8817 */
8818 trans = btrfs_start_transaction(root, 12);
8819 if (IS_ERR(trans)) {
8820 ret = PTR_ERR(trans);
8821 goto out_notrans;
8822 }
8823
8824 if (dest != root)
8825 btrfs_record_root_in_trans(trans, dest);
8826
8827 /*
8828 * We need to find a free sequence number both in the source and
8829 * in the destination directory for the exchange.
8830 */
8831 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8832 if (ret)
8833 goto out_fail;
8834 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8835 if (ret)
8836 goto out_fail;
8837
8838 BTRFS_I(old_inode)->dir_index = 0ULL;
8839 BTRFS_I(new_inode)->dir_index = 0ULL;
8840
8841 /* Reference for the source. */
8842 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8843 /* force full log commit if subvolume involved. */
8844 btrfs_set_log_full_commit(trans);
8845 } else {
8846 btrfs_pin_log_trans(root);
8847 root_log_pinned = true;
8848 ret = btrfs_insert_inode_ref(trans, dest,
8849 new_dentry->d_name.name,
8850 new_dentry->d_name.len,
8851 old_ino,
8852 btrfs_ino(BTRFS_I(new_dir)),
8853 old_idx);
8854 if (ret)
8855 goto out_fail;
8856 }
8857
8858 /* And now for the dest. */
8859 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8860 /* force full log commit if subvolume involved. */
8861 btrfs_set_log_full_commit(trans);
8862 } else {
8863 btrfs_pin_log_trans(dest);
8864 dest_log_pinned = true;
8865 ret = btrfs_insert_inode_ref(trans, root,
8866 old_dentry->d_name.name,
8867 old_dentry->d_name.len,
8868 new_ino,
8869 btrfs_ino(BTRFS_I(old_dir)),
8870 new_idx);
8871 if (ret)
8872 goto out_fail;
8873 }
8874
8875 /* Update inode version and ctime/mtime. */
8876 inode_inc_iversion(old_dir);
8877 inode_inc_iversion(new_dir);
8878 inode_inc_iversion(old_inode);
8879 inode_inc_iversion(new_inode);
8880 old_dir->i_ctime = old_dir->i_mtime = ctime;
8881 new_dir->i_ctime = new_dir->i_mtime = ctime;
8882 old_inode->i_ctime = ctime;
8883 new_inode->i_ctime = ctime;
8884
8885 if (old_dentry->d_parent != new_dentry->d_parent) {
8886 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8887 BTRFS_I(old_inode), 1);
8888 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8889 BTRFS_I(new_inode), 1);
8890 }
8891
8892 /* src is a subvolume */
8893 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8894 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
8895 } else { /* src is an inode */
8896 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8897 BTRFS_I(old_dentry->d_inode),
8898 old_dentry->d_name.name,
8899 old_dentry->d_name.len);
8900 if (!ret)
8901 ret = btrfs_update_inode(trans, root, old_inode);
8902 }
8903 if (ret) {
8904 btrfs_abort_transaction(trans, ret);
8905 goto out_fail;
8906 }
8907
8908 /* dest is a subvolume */
8909 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8910 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
8911 } else { /* dest is an inode */
8912 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8913 BTRFS_I(new_dentry->d_inode),
8914 new_dentry->d_name.name,
8915 new_dentry->d_name.len);
8916 if (!ret)
8917 ret = btrfs_update_inode(trans, dest, new_inode);
8918 }
8919 if (ret) {
8920 btrfs_abort_transaction(trans, ret);
8921 goto out_fail;
8922 }
8923
8924 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8925 new_dentry->d_name.name,
8926 new_dentry->d_name.len, 0, old_idx);
8927 if (ret) {
8928 btrfs_abort_transaction(trans, ret);
8929 goto out_fail;
8930 }
8931
8932 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8933 old_dentry->d_name.name,
8934 old_dentry->d_name.len, 0, new_idx);
8935 if (ret) {
8936 btrfs_abort_transaction(trans, ret);
8937 goto out_fail;
8938 }
8939
8940 if (old_inode->i_nlink == 1)
8941 BTRFS_I(old_inode)->dir_index = old_idx;
8942 if (new_inode->i_nlink == 1)
8943 BTRFS_I(new_inode)->dir_index = new_idx;
8944
8945 if (root_log_pinned) {
8946 parent = new_dentry->d_parent;
8947 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
8948 BTRFS_I(old_dir), parent,
8949 false, &ctx_root);
8950 if (ret == BTRFS_NEED_LOG_SYNC)
8951 sync_log_root = true;
8952 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8953 commit_transaction = true;
8954 ret = 0;
8955 btrfs_end_log_trans(root);
8956 root_log_pinned = false;
8957 }
8958 if (dest_log_pinned) {
8959 if (!commit_transaction) {
8960 parent = old_dentry->d_parent;
8961 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
8962 BTRFS_I(new_dir), parent,
8963 false, &ctx_dest);
8964 if (ret == BTRFS_NEED_LOG_SYNC)
8965 sync_log_dest = true;
8966 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8967 commit_transaction = true;
8968 ret = 0;
8969 }
8970 btrfs_end_log_trans(dest);
8971 dest_log_pinned = false;
8972 }
8973 out_fail:
8974 /*
8975 * If we have pinned a log and an error happened, we unpin tasks
8976 * trying to sync the log and force them to fallback to a transaction
8977 * commit if the log currently contains any of the inodes involved in
8978 * this rename operation (to ensure we do not persist a log with an
8979 * inconsistent state for any of these inodes or leading to any
8980 * inconsistencies when replayed). If the transaction was aborted, the
8981 * abortion reason is propagated to userspace when attempting to commit
8982 * the transaction. If the log does not contain any of these inodes, we
8983 * allow the tasks to sync it.
8984 */
8985 if (ret && (root_log_pinned || dest_log_pinned)) {
8986 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8987 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8988 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
8989 (new_inode &&
8990 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
8991 btrfs_set_log_full_commit(trans);
8992
8993 if (root_log_pinned) {
8994 btrfs_end_log_trans(root);
8995 root_log_pinned = false;
8996 }
8997 if (dest_log_pinned) {
8998 btrfs_end_log_trans(dest);
8999 dest_log_pinned = false;
9000 }
9001 }
9002 if (!ret && sync_log_root && !commit_transaction) {
9003 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9004 &ctx_root);
9005 if (ret)
9006 commit_transaction = true;
9007 }
9008 if (!ret && sync_log_dest && !commit_transaction) {
9009 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9010 &ctx_dest);
9011 if (ret)
9012 commit_transaction = true;
9013 }
9014 if (commit_transaction) {
9015 /*
9016 * We may have set commit_transaction when logging the new name
9017 * in the destination root, in which case we left the source
9018 * root context in the list of log contextes. So make sure we
9019 * remove it to avoid invalid memory accesses, since the context
9020 * was allocated in our stack frame.
9021 */
9022 if (sync_log_root) {
9023 mutex_lock(&root->log_mutex);
9024 list_del_init(&ctx_root.list);
9025 mutex_unlock(&root->log_mutex);
9026 }
9027 ret = btrfs_commit_transaction(trans);
9028 } else {
9029 int ret2;
9030
9031 ret2 = btrfs_end_transaction(trans);
9032 ret = ret ? ret : ret2;
9033 }
9034 out_notrans:
9035 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9036 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9037 up_read(&fs_info->subvol_sem);
9038
9039 ASSERT(list_empty(&ctx_root.list));
9040 ASSERT(list_empty(&ctx_dest.list));
9041
9042 return ret;
9043 }
9044
9045 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9046 struct btrfs_root *root,
9047 struct inode *dir,
9048 struct dentry *dentry)
9049 {
9050 int ret;
9051 struct inode *inode;
9052 u64 objectid;
9053 u64 index;
9054
9055 ret = btrfs_find_free_ino(root, &objectid);
9056 if (ret)
9057 return ret;
9058
9059 inode = btrfs_new_inode(trans, root, dir,
9060 dentry->d_name.name,
9061 dentry->d_name.len,
9062 btrfs_ino(BTRFS_I(dir)),
9063 objectid,
9064 S_IFCHR | WHITEOUT_MODE,
9065 &index);
9066
9067 if (IS_ERR(inode)) {
9068 ret = PTR_ERR(inode);
9069 return ret;
9070 }
9071
9072 inode->i_op = &btrfs_special_inode_operations;
9073 init_special_inode(inode, inode->i_mode,
9074 WHITEOUT_DEV);
9075
9076 ret = btrfs_init_inode_security(trans, inode, dir,
9077 &dentry->d_name);
9078 if (ret)
9079 goto out;
9080
9081 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9082 BTRFS_I(inode), 0, index);
9083 if (ret)
9084 goto out;
9085
9086 ret = btrfs_update_inode(trans, root, inode);
9087 out:
9088 unlock_new_inode(inode);
9089 if (ret)
9090 inode_dec_link_count(inode);
9091 iput(inode);
9092
9093 return ret;
9094 }
9095
9096 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9097 struct inode *new_dir, struct dentry *new_dentry,
9098 unsigned int flags)
9099 {
9100 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9101 struct btrfs_trans_handle *trans;
9102 unsigned int trans_num_items;
9103 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9104 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9105 struct inode *new_inode = d_inode(new_dentry);
9106 struct inode *old_inode = d_inode(old_dentry);
9107 u64 index = 0;
9108 int ret;
9109 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9110 bool log_pinned = false;
9111 struct btrfs_log_ctx ctx;
9112 bool sync_log = false;
9113 bool commit_transaction = false;
9114
9115 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9116 return -EPERM;
9117
9118 /* we only allow rename subvolume link between subvolumes */
9119 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9120 return -EXDEV;
9121
9122 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9123 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9124 return -ENOTEMPTY;
9125
9126 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9127 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9128 return -ENOTEMPTY;
9129
9130
9131 /* check for collisions, even if the name isn't there */
9132 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9133 new_dentry->d_name.name,
9134 new_dentry->d_name.len);
9135
9136 if (ret) {
9137 if (ret == -EEXIST) {
9138 /* we shouldn't get
9139 * eexist without a new_inode */
9140 if (WARN_ON(!new_inode)) {
9141 return ret;
9142 }
9143 } else {
9144 /* maybe -EOVERFLOW */
9145 return ret;
9146 }
9147 }
9148 ret = 0;
9149
9150 /*
9151 * we're using rename to replace one file with another. Start IO on it
9152 * now so we don't add too much work to the end of the transaction
9153 */
9154 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9155 filemap_flush(old_inode->i_mapping);
9156
9157 /* close the racy window with snapshot create/destroy ioctl */
9158 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9159 down_read(&fs_info->subvol_sem);
9160 /*
9161 * We want to reserve the absolute worst case amount of items. So if
9162 * both inodes are subvols and we need to unlink them then that would
9163 * require 4 item modifications, but if they are both normal inodes it
9164 * would require 5 item modifications, so we'll assume they are normal
9165 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9166 * should cover the worst case number of items we'll modify.
9167 * If our rename has the whiteout flag, we need more 5 units for the
9168 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9169 * when selinux is enabled).
9170 */
9171 trans_num_items = 11;
9172 if (flags & RENAME_WHITEOUT)
9173 trans_num_items += 5;
9174 trans = btrfs_start_transaction(root, trans_num_items);
9175 if (IS_ERR(trans)) {
9176 ret = PTR_ERR(trans);
9177 goto out_notrans;
9178 }
9179
9180 if (dest != root)
9181 btrfs_record_root_in_trans(trans, dest);
9182
9183 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9184 if (ret)
9185 goto out_fail;
9186
9187 BTRFS_I(old_inode)->dir_index = 0ULL;
9188 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9189 /* force full log commit if subvolume involved. */
9190 btrfs_set_log_full_commit(trans);
9191 } else {
9192 btrfs_pin_log_trans(root);
9193 log_pinned = true;
9194 ret = btrfs_insert_inode_ref(trans, dest,
9195 new_dentry->d_name.name,
9196 new_dentry->d_name.len,
9197 old_ino,
9198 btrfs_ino(BTRFS_I(new_dir)), index);
9199 if (ret)
9200 goto out_fail;
9201 }
9202
9203 inode_inc_iversion(old_dir);
9204 inode_inc_iversion(new_dir);
9205 inode_inc_iversion(old_inode);
9206 old_dir->i_ctime = old_dir->i_mtime =
9207 new_dir->i_ctime = new_dir->i_mtime =
9208 old_inode->i_ctime = current_time(old_dir);
9209
9210 if (old_dentry->d_parent != new_dentry->d_parent)
9211 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9212 BTRFS_I(old_inode), 1);
9213
9214 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9215 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9216 } else {
9217 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9218 BTRFS_I(d_inode(old_dentry)),
9219 old_dentry->d_name.name,
9220 old_dentry->d_name.len);
9221 if (!ret)
9222 ret = btrfs_update_inode(trans, root, old_inode);
9223 }
9224 if (ret) {
9225 btrfs_abort_transaction(trans, ret);
9226 goto out_fail;
9227 }
9228
9229 if (new_inode) {
9230 inode_inc_iversion(new_inode);
9231 new_inode->i_ctime = current_time(new_inode);
9232 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9233 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9234 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9235 BUG_ON(new_inode->i_nlink == 0);
9236 } else {
9237 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9238 BTRFS_I(d_inode(new_dentry)),
9239 new_dentry->d_name.name,
9240 new_dentry->d_name.len);
9241 }
9242 if (!ret && new_inode->i_nlink == 0)
9243 ret = btrfs_orphan_add(trans,
9244 BTRFS_I(d_inode(new_dentry)));
9245 if (ret) {
9246 btrfs_abort_transaction(trans, ret);
9247 goto out_fail;
9248 }
9249 }
9250
9251 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9252 new_dentry->d_name.name,
9253 new_dentry->d_name.len, 0, index);
9254 if (ret) {
9255 btrfs_abort_transaction(trans, ret);
9256 goto out_fail;
9257 }
9258
9259 if (old_inode->i_nlink == 1)
9260 BTRFS_I(old_inode)->dir_index = index;
9261
9262 if (log_pinned) {
9263 struct dentry *parent = new_dentry->d_parent;
9264
9265 btrfs_init_log_ctx(&ctx, old_inode);
9266 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9267 BTRFS_I(old_dir), parent,
9268 false, &ctx);
9269 if (ret == BTRFS_NEED_LOG_SYNC)
9270 sync_log = true;
9271 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9272 commit_transaction = true;
9273 ret = 0;
9274 btrfs_end_log_trans(root);
9275 log_pinned = false;
9276 }
9277
9278 if (flags & RENAME_WHITEOUT) {
9279 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9280 old_dentry);
9281
9282 if (ret) {
9283 btrfs_abort_transaction(trans, ret);
9284 goto out_fail;
9285 }
9286 }
9287 out_fail:
9288 /*
9289 * If we have pinned the log and an error happened, we unpin tasks
9290 * trying to sync the log and force them to fallback to a transaction
9291 * commit if the log currently contains any of the inodes involved in
9292 * this rename operation (to ensure we do not persist a log with an
9293 * inconsistent state for any of these inodes or leading to any
9294 * inconsistencies when replayed). If the transaction was aborted, the
9295 * abortion reason is propagated to userspace when attempting to commit
9296 * the transaction. If the log does not contain any of these inodes, we
9297 * allow the tasks to sync it.
9298 */
9299 if (ret && log_pinned) {
9300 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9301 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9302 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9303 (new_inode &&
9304 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9305 btrfs_set_log_full_commit(trans);
9306
9307 btrfs_end_log_trans(root);
9308 log_pinned = false;
9309 }
9310 if (!ret && sync_log) {
9311 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9312 if (ret)
9313 commit_transaction = true;
9314 } else if (sync_log) {
9315 mutex_lock(&root->log_mutex);
9316 list_del(&ctx.list);
9317 mutex_unlock(&root->log_mutex);
9318 }
9319 if (commit_transaction) {
9320 ret = btrfs_commit_transaction(trans);
9321 } else {
9322 int ret2;
9323
9324 ret2 = btrfs_end_transaction(trans);
9325 ret = ret ? ret : ret2;
9326 }
9327 out_notrans:
9328 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9329 up_read(&fs_info->subvol_sem);
9330
9331 return ret;
9332 }
9333
9334 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9335 struct inode *new_dir, struct dentry *new_dentry,
9336 unsigned int flags)
9337 {
9338 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9339 return -EINVAL;
9340
9341 if (flags & RENAME_EXCHANGE)
9342 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9343 new_dentry);
9344
9345 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9346 }
9347
9348 struct btrfs_delalloc_work {
9349 struct inode *inode;
9350 struct completion completion;
9351 struct list_head list;
9352 struct btrfs_work work;
9353 };
9354
9355 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9356 {
9357 struct btrfs_delalloc_work *delalloc_work;
9358 struct inode *inode;
9359
9360 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9361 work);
9362 inode = delalloc_work->inode;
9363 filemap_flush(inode->i_mapping);
9364 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9365 &BTRFS_I(inode)->runtime_flags))
9366 filemap_flush(inode->i_mapping);
9367
9368 iput(inode);
9369 complete(&delalloc_work->completion);
9370 }
9371
9372 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9373 {
9374 struct btrfs_delalloc_work *work;
9375
9376 work = kmalloc(sizeof(*work), GFP_NOFS);
9377 if (!work)
9378 return NULL;
9379
9380 init_completion(&work->completion);
9381 INIT_LIST_HEAD(&work->list);
9382 work->inode = inode;
9383 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9384
9385 return work;
9386 }
9387
9388 /*
9389 * some fairly slow code that needs optimization. This walks the list
9390 * of all the inodes with pending delalloc and forces them to disk.
9391 */
9392 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
9393 {
9394 struct btrfs_inode *binode;
9395 struct inode *inode;
9396 struct btrfs_delalloc_work *work, *next;
9397 struct list_head works;
9398 struct list_head splice;
9399 int ret = 0;
9400
9401 INIT_LIST_HEAD(&works);
9402 INIT_LIST_HEAD(&splice);
9403
9404 mutex_lock(&root->delalloc_mutex);
9405 spin_lock(&root->delalloc_lock);
9406 list_splice_init(&root->delalloc_inodes, &splice);
9407 while (!list_empty(&splice)) {
9408 binode = list_entry(splice.next, struct btrfs_inode,
9409 delalloc_inodes);
9410
9411 list_move_tail(&binode->delalloc_inodes,
9412 &root->delalloc_inodes);
9413 inode = igrab(&binode->vfs_inode);
9414 if (!inode) {
9415 cond_resched_lock(&root->delalloc_lock);
9416 continue;
9417 }
9418 spin_unlock(&root->delalloc_lock);
9419
9420 if (snapshot)
9421 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9422 &binode->runtime_flags);
9423 work = btrfs_alloc_delalloc_work(inode);
9424 if (!work) {
9425 iput(inode);
9426 ret = -ENOMEM;
9427 goto out;
9428 }
9429 list_add_tail(&work->list, &works);
9430 btrfs_queue_work(root->fs_info->flush_workers,
9431 &work->work);
9432 ret++;
9433 if (nr != -1 && ret >= nr)
9434 goto out;
9435 cond_resched();
9436 spin_lock(&root->delalloc_lock);
9437 }
9438 spin_unlock(&root->delalloc_lock);
9439
9440 out:
9441 list_for_each_entry_safe(work, next, &works, list) {
9442 list_del_init(&work->list);
9443 wait_for_completion(&work->completion);
9444 kfree(work);
9445 }
9446
9447 if (!list_empty(&splice)) {
9448 spin_lock(&root->delalloc_lock);
9449 list_splice_tail(&splice, &root->delalloc_inodes);
9450 spin_unlock(&root->delalloc_lock);
9451 }
9452 mutex_unlock(&root->delalloc_mutex);
9453 return ret;
9454 }
9455
9456 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9457 {
9458 struct btrfs_fs_info *fs_info = root->fs_info;
9459 int ret;
9460
9461 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9462 return -EROFS;
9463
9464 ret = start_delalloc_inodes(root, -1, true);
9465 if (ret > 0)
9466 ret = 0;
9467 return ret;
9468 }
9469
9470 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
9471 {
9472 struct btrfs_root *root;
9473 struct list_head splice;
9474 int ret;
9475
9476 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9477 return -EROFS;
9478
9479 INIT_LIST_HEAD(&splice);
9480
9481 mutex_lock(&fs_info->delalloc_root_mutex);
9482 spin_lock(&fs_info->delalloc_root_lock);
9483 list_splice_init(&fs_info->delalloc_roots, &splice);
9484 while (!list_empty(&splice) && nr) {
9485 root = list_first_entry(&splice, struct btrfs_root,
9486 delalloc_root);
9487 root = btrfs_grab_root(root);
9488 BUG_ON(!root);
9489 list_move_tail(&root->delalloc_root,
9490 &fs_info->delalloc_roots);
9491 spin_unlock(&fs_info->delalloc_root_lock);
9492
9493 ret = start_delalloc_inodes(root, nr, false);
9494 btrfs_put_root(root);
9495 if (ret < 0)
9496 goto out;
9497
9498 if (nr != -1) {
9499 nr -= ret;
9500 WARN_ON(nr < 0);
9501 }
9502 spin_lock(&fs_info->delalloc_root_lock);
9503 }
9504 spin_unlock(&fs_info->delalloc_root_lock);
9505
9506 ret = 0;
9507 out:
9508 if (!list_empty(&splice)) {
9509 spin_lock(&fs_info->delalloc_root_lock);
9510 list_splice_tail(&splice, &fs_info->delalloc_roots);
9511 spin_unlock(&fs_info->delalloc_root_lock);
9512 }
9513 mutex_unlock(&fs_info->delalloc_root_mutex);
9514 return ret;
9515 }
9516
9517 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9518 const char *symname)
9519 {
9520 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9521 struct btrfs_trans_handle *trans;
9522 struct btrfs_root *root = BTRFS_I(dir)->root;
9523 struct btrfs_path *path;
9524 struct btrfs_key key;
9525 struct inode *inode = NULL;
9526 int err;
9527 u64 objectid;
9528 u64 index = 0;
9529 int name_len;
9530 int datasize;
9531 unsigned long ptr;
9532 struct btrfs_file_extent_item *ei;
9533 struct extent_buffer *leaf;
9534
9535 name_len = strlen(symname);
9536 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9537 return -ENAMETOOLONG;
9538
9539 /*
9540 * 2 items for inode item and ref
9541 * 2 items for dir items
9542 * 1 item for updating parent inode item
9543 * 1 item for the inline extent item
9544 * 1 item for xattr if selinux is on
9545 */
9546 trans = btrfs_start_transaction(root, 7);
9547 if (IS_ERR(trans))
9548 return PTR_ERR(trans);
9549
9550 err = btrfs_find_free_ino(root, &objectid);
9551 if (err)
9552 goto out_unlock;
9553
9554 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9555 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9556 objectid, S_IFLNK|S_IRWXUGO, &index);
9557 if (IS_ERR(inode)) {
9558 err = PTR_ERR(inode);
9559 inode = NULL;
9560 goto out_unlock;
9561 }
9562
9563 /*
9564 * If the active LSM wants to access the inode during
9565 * d_instantiate it needs these. Smack checks to see
9566 * if the filesystem supports xattrs by looking at the
9567 * ops vector.
9568 */
9569 inode->i_fop = &btrfs_file_operations;
9570 inode->i_op = &btrfs_file_inode_operations;
9571 inode->i_mapping->a_ops = &btrfs_aops;
9572 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9573
9574 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9575 if (err)
9576 goto out_unlock;
9577
9578 path = btrfs_alloc_path();
9579 if (!path) {
9580 err = -ENOMEM;
9581 goto out_unlock;
9582 }
9583 key.objectid = btrfs_ino(BTRFS_I(inode));
9584 key.offset = 0;
9585 key.type = BTRFS_EXTENT_DATA_KEY;
9586 datasize = btrfs_file_extent_calc_inline_size(name_len);
9587 err = btrfs_insert_empty_item(trans, root, path, &key,
9588 datasize);
9589 if (err) {
9590 btrfs_free_path(path);
9591 goto out_unlock;
9592 }
9593 leaf = path->nodes[0];
9594 ei = btrfs_item_ptr(leaf, path->slots[0],
9595 struct btrfs_file_extent_item);
9596 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9597 btrfs_set_file_extent_type(leaf, ei,
9598 BTRFS_FILE_EXTENT_INLINE);
9599 btrfs_set_file_extent_encryption(leaf, ei, 0);
9600 btrfs_set_file_extent_compression(leaf, ei, 0);
9601 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9602 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9603
9604 ptr = btrfs_file_extent_inline_start(ei);
9605 write_extent_buffer(leaf, symname, ptr, name_len);
9606 btrfs_mark_buffer_dirty(leaf);
9607 btrfs_free_path(path);
9608
9609 inode->i_op = &btrfs_symlink_inode_operations;
9610 inode_nohighmem(inode);
9611 inode_set_bytes(inode, name_len);
9612 btrfs_i_size_write(BTRFS_I(inode), name_len);
9613 err = btrfs_update_inode(trans, root, inode);
9614 /*
9615 * Last step, add directory indexes for our symlink inode. This is the
9616 * last step to avoid extra cleanup of these indexes if an error happens
9617 * elsewhere above.
9618 */
9619 if (!err)
9620 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9621 BTRFS_I(inode), 0, index);
9622 if (err)
9623 goto out_unlock;
9624
9625 d_instantiate_new(dentry, inode);
9626
9627 out_unlock:
9628 btrfs_end_transaction(trans);
9629 if (err && inode) {
9630 inode_dec_link_count(inode);
9631 discard_new_inode(inode);
9632 }
9633 btrfs_btree_balance_dirty(fs_info);
9634 return err;
9635 }
9636
9637 static int insert_prealloc_file_extent(struct btrfs_trans_handle *trans,
9638 struct inode *inode, struct btrfs_key *ins,
9639 u64 file_offset)
9640 {
9641 struct btrfs_file_extent_item stack_fi;
9642 u64 start = ins->objectid;
9643 u64 len = ins->offset;
9644 int ret;
9645
9646 memset(&stack_fi, 0, sizeof(stack_fi));
9647
9648 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9649 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9650 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9651 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9652 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9653 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9654 /* Encryption and other encoding is reserved and all 0 */
9655
9656 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9657 if (ret < 0)
9658 return ret;
9659 return insert_reserved_file_extent(trans, BTRFS_I(inode), file_offset,
9660 &stack_fi, ret);
9661 }
9662 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9663 u64 start, u64 num_bytes, u64 min_size,
9664 loff_t actual_len, u64 *alloc_hint,
9665 struct btrfs_trans_handle *trans)
9666 {
9667 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9668 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9669 struct extent_map *em;
9670 struct btrfs_root *root = BTRFS_I(inode)->root;
9671 struct btrfs_key ins;
9672 u64 cur_offset = start;
9673 u64 clear_offset = start;
9674 u64 i_size;
9675 u64 cur_bytes;
9676 u64 last_alloc = (u64)-1;
9677 int ret = 0;
9678 bool own_trans = true;
9679 u64 end = start + num_bytes - 1;
9680
9681 if (trans)
9682 own_trans = false;
9683 while (num_bytes > 0) {
9684 if (own_trans) {
9685 trans = btrfs_start_transaction(root, 3);
9686 if (IS_ERR(trans)) {
9687 ret = PTR_ERR(trans);
9688 break;
9689 }
9690 }
9691
9692 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9693 cur_bytes = max(cur_bytes, min_size);
9694 /*
9695 * If we are severely fragmented we could end up with really
9696 * small allocations, so if the allocator is returning small
9697 * chunks lets make its job easier by only searching for those
9698 * sized chunks.
9699 */
9700 cur_bytes = min(cur_bytes, last_alloc);
9701 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9702 min_size, 0, *alloc_hint, &ins, 1, 0);
9703 if (ret) {
9704 if (own_trans)
9705 btrfs_end_transaction(trans);
9706 break;
9707 }
9708
9709 /*
9710 * We've reserved this space, and thus converted it from
9711 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9712 * from here on out we will only need to clear our reservation
9713 * for the remaining unreserved area, so advance our
9714 * clear_offset by our extent size.
9715 */
9716 clear_offset += ins.offset;
9717 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9718
9719 last_alloc = ins.offset;
9720 ret = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
9721 if (ret) {
9722 btrfs_free_reserved_extent(fs_info, ins.objectid,
9723 ins.offset, 0);
9724 btrfs_abort_transaction(trans, ret);
9725 if (own_trans)
9726 btrfs_end_transaction(trans);
9727 break;
9728 }
9729
9730 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9731 cur_offset + ins.offset -1, 0);
9732
9733 em = alloc_extent_map();
9734 if (!em) {
9735 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9736 &BTRFS_I(inode)->runtime_flags);
9737 goto next;
9738 }
9739
9740 em->start = cur_offset;
9741 em->orig_start = cur_offset;
9742 em->len = ins.offset;
9743 em->block_start = ins.objectid;
9744 em->block_len = ins.offset;
9745 em->orig_block_len = ins.offset;
9746 em->ram_bytes = ins.offset;
9747 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9748 em->generation = trans->transid;
9749
9750 while (1) {
9751 write_lock(&em_tree->lock);
9752 ret = add_extent_mapping(em_tree, em, 1);
9753 write_unlock(&em_tree->lock);
9754 if (ret != -EEXIST)
9755 break;
9756 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9757 cur_offset + ins.offset - 1,
9758 0);
9759 }
9760 free_extent_map(em);
9761 next:
9762 num_bytes -= ins.offset;
9763 cur_offset += ins.offset;
9764 *alloc_hint = ins.objectid + ins.offset;
9765
9766 inode_inc_iversion(inode);
9767 inode->i_ctime = current_time(inode);
9768 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9769 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9770 (actual_len > inode->i_size) &&
9771 (cur_offset > inode->i_size)) {
9772 if (cur_offset > actual_len)
9773 i_size = actual_len;
9774 else
9775 i_size = cur_offset;
9776 i_size_write(inode, i_size);
9777 btrfs_inode_safe_disk_i_size_write(inode, 0);
9778 }
9779
9780 ret = btrfs_update_inode(trans, root, inode);
9781
9782 if (ret) {
9783 btrfs_abort_transaction(trans, ret);
9784 if (own_trans)
9785 btrfs_end_transaction(trans);
9786 break;
9787 }
9788
9789 if (own_trans)
9790 btrfs_end_transaction(trans);
9791 }
9792 if (clear_offset < end)
9793 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9794 end - clear_offset + 1);
9795 return ret;
9796 }
9797
9798 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9799 u64 start, u64 num_bytes, u64 min_size,
9800 loff_t actual_len, u64 *alloc_hint)
9801 {
9802 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9803 min_size, actual_len, alloc_hint,
9804 NULL);
9805 }
9806
9807 int btrfs_prealloc_file_range_trans(struct inode *inode,
9808 struct btrfs_trans_handle *trans, int mode,
9809 u64 start, u64 num_bytes, u64 min_size,
9810 loff_t actual_len, u64 *alloc_hint)
9811 {
9812 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9813 min_size, actual_len, alloc_hint, trans);
9814 }
9815
9816 static int btrfs_set_page_dirty(struct page *page)
9817 {
9818 return __set_page_dirty_nobuffers(page);
9819 }
9820
9821 static int btrfs_permission(struct inode *inode, int mask)
9822 {
9823 struct btrfs_root *root = BTRFS_I(inode)->root;
9824 umode_t mode = inode->i_mode;
9825
9826 if (mask & MAY_WRITE &&
9827 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9828 if (btrfs_root_readonly(root))
9829 return -EROFS;
9830 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9831 return -EACCES;
9832 }
9833 return generic_permission(inode, mask);
9834 }
9835
9836 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9837 {
9838 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9839 struct btrfs_trans_handle *trans;
9840 struct btrfs_root *root = BTRFS_I(dir)->root;
9841 struct inode *inode = NULL;
9842 u64 objectid;
9843 u64 index;
9844 int ret = 0;
9845
9846 /*
9847 * 5 units required for adding orphan entry
9848 */
9849 trans = btrfs_start_transaction(root, 5);
9850 if (IS_ERR(trans))
9851 return PTR_ERR(trans);
9852
9853 ret = btrfs_find_free_ino(root, &objectid);
9854 if (ret)
9855 goto out;
9856
9857 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9858 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
9859 if (IS_ERR(inode)) {
9860 ret = PTR_ERR(inode);
9861 inode = NULL;
9862 goto out;
9863 }
9864
9865 inode->i_fop = &btrfs_file_operations;
9866 inode->i_op = &btrfs_file_inode_operations;
9867
9868 inode->i_mapping->a_ops = &btrfs_aops;
9869 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9870
9871 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9872 if (ret)
9873 goto out;
9874
9875 ret = btrfs_update_inode(trans, root, inode);
9876 if (ret)
9877 goto out;
9878 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
9879 if (ret)
9880 goto out;
9881
9882 /*
9883 * We set number of links to 0 in btrfs_new_inode(), and here we set
9884 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9885 * through:
9886 *
9887 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9888 */
9889 set_nlink(inode, 1);
9890 d_tmpfile(dentry, inode);
9891 unlock_new_inode(inode);
9892 mark_inode_dirty(inode);
9893 out:
9894 btrfs_end_transaction(trans);
9895 if (ret && inode)
9896 discard_new_inode(inode);
9897 btrfs_btree_balance_dirty(fs_info);
9898 return ret;
9899 }
9900
9901 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
9902 {
9903 struct inode *inode = tree->private_data;
9904 unsigned long index = start >> PAGE_SHIFT;
9905 unsigned long end_index = end >> PAGE_SHIFT;
9906 struct page *page;
9907
9908 while (index <= end_index) {
9909 page = find_get_page(inode->i_mapping, index);
9910 ASSERT(page); /* Pages should be in the extent_io_tree */
9911 set_page_writeback(page);
9912 put_page(page);
9913 index++;
9914 }
9915 }
9916
9917 #ifdef CONFIG_SWAP
9918 /*
9919 * Add an entry indicating a block group or device which is pinned by a
9920 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9921 * negative errno on failure.
9922 */
9923 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9924 bool is_block_group)
9925 {
9926 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9927 struct btrfs_swapfile_pin *sp, *entry;
9928 struct rb_node **p;
9929 struct rb_node *parent = NULL;
9930
9931 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9932 if (!sp)
9933 return -ENOMEM;
9934 sp->ptr = ptr;
9935 sp->inode = inode;
9936 sp->is_block_group = is_block_group;
9937
9938 spin_lock(&fs_info->swapfile_pins_lock);
9939 p = &fs_info->swapfile_pins.rb_node;
9940 while (*p) {
9941 parent = *p;
9942 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9943 if (sp->ptr < entry->ptr ||
9944 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9945 p = &(*p)->rb_left;
9946 } else if (sp->ptr > entry->ptr ||
9947 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9948 p = &(*p)->rb_right;
9949 } else {
9950 spin_unlock(&fs_info->swapfile_pins_lock);
9951 kfree(sp);
9952 return 1;
9953 }
9954 }
9955 rb_link_node(&sp->node, parent, p);
9956 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9957 spin_unlock(&fs_info->swapfile_pins_lock);
9958 return 0;
9959 }
9960
9961 /* Free all of the entries pinned by this swapfile. */
9962 static void btrfs_free_swapfile_pins(struct inode *inode)
9963 {
9964 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9965 struct btrfs_swapfile_pin *sp;
9966 struct rb_node *node, *next;
9967
9968 spin_lock(&fs_info->swapfile_pins_lock);
9969 node = rb_first(&fs_info->swapfile_pins);
9970 while (node) {
9971 next = rb_next(node);
9972 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9973 if (sp->inode == inode) {
9974 rb_erase(&sp->node, &fs_info->swapfile_pins);
9975 if (sp->is_block_group)
9976 btrfs_put_block_group(sp->ptr);
9977 kfree(sp);
9978 }
9979 node = next;
9980 }
9981 spin_unlock(&fs_info->swapfile_pins_lock);
9982 }
9983
9984 struct btrfs_swap_info {
9985 u64 start;
9986 u64 block_start;
9987 u64 block_len;
9988 u64 lowest_ppage;
9989 u64 highest_ppage;
9990 unsigned long nr_pages;
9991 int nr_extents;
9992 };
9993
9994 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9995 struct btrfs_swap_info *bsi)
9996 {
9997 unsigned long nr_pages;
9998 u64 first_ppage, first_ppage_reported, next_ppage;
9999 int ret;
10000
10001 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10002 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10003 PAGE_SIZE) >> PAGE_SHIFT;
10004
10005 if (first_ppage >= next_ppage)
10006 return 0;
10007 nr_pages = next_ppage - first_ppage;
10008
10009 first_ppage_reported = first_ppage;
10010 if (bsi->start == 0)
10011 first_ppage_reported++;
10012 if (bsi->lowest_ppage > first_ppage_reported)
10013 bsi->lowest_ppage = first_ppage_reported;
10014 if (bsi->highest_ppage < (next_ppage - 1))
10015 bsi->highest_ppage = next_ppage - 1;
10016
10017 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10018 if (ret < 0)
10019 return ret;
10020 bsi->nr_extents += ret;
10021 bsi->nr_pages += nr_pages;
10022 return 0;
10023 }
10024
10025 static void btrfs_swap_deactivate(struct file *file)
10026 {
10027 struct inode *inode = file_inode(file);
10028
10029 btrfs_free_swapfile_pins(inode);
10030 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10031 }
10032
10033 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10034 sector_t *span)
10035 {
10036 struct inode *inode = file_inode(file);
10037 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10038 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10039 struct extent_state *cached_state = NULL;
10040 struct extent_map *em = NULL;
10041 struct btrfs_device *device = NULL;
10042 struct btrfs_swap_info bsi = {
10043 .lowest_ppage = (sector_t)-1ULL,
10044 };
10045 int ret = 0;
10046 u64 isize;
10047 u64 start;
10048
10049 /*
10050 * If the swap file was just created, make sure delalloc is done. If the
10051 * file changes again after this, the user is doing something stupid and
10052 * we don't really care.
10053 */
10054 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10055 if (ret)
10056 return ret;
10057
10058 /*
10059 * The inode is locked, so these flags won't change after we check them.
10060 */
10061 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10062 btrfs_warn(fs_info, "swapfile must not be compressed");
10063 return -EINVAL;
10064 }
10065 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10066 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10067 return -EINVAL;
10068 }
10069 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10070 btrfs_warn(fs_info, "swapfile must not be checksummed");
10071 return -EINVAL;
10072 }
10073
10074 /*
10075 * Balance or device remove/replace/resize can move stuff around from
10076 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10077 * concurrently while we are mapping the swap extents, and
10078 * fs_info->swapfile_pins prevents them from running while the swap file
10079 * is active and moving the extents. Note that this also prevents a
10080 * concurrent device add which isn't actually necessary, but it's not
10081 * really worth the trouble to allow it.
10082 */
10083 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10084 btrfs_warn(fs_info,
10085 "cannot activate swapfile while exclusive operation is running");
10086 return -EBUSY;
10087 }
10088 /*
10089 * Snapshots can create extents which require COW even if NODATACOW is
10090 * set. We use this counter to prevent snapshots. We must increment it
10091 * before walking the extents because we don't want a concurrent
10092 * snapshot to run after we've already checked the extents.
10093 */
10094 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10095
10096 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10097
10098 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10099 start = 0;
10100 while (start < isize) {
10101 u64 logical_block_start, physical_block_start;
10102 struct btrfs_block_group *bg;
10103 u64 len = isize - start;
10104
10105 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10106 if (IS_ERR(em)) {
10107 ret = PTR_ERR(em);
10108 goto out;
10109 }
10110
10111 if (em->block_start == EXTENT_MAP_HOLE) {
10112 btrfs_warn(fs_info, "swapfile must not have holes");
10113 ret = -EINVAL;
10114 goto out;
10115 }
10116 if (em->block_start == EXTENT_MAP_INLINE) {
10117 /*
10118 * It's unlikely we'll ever actually find ourselves
10119 * here, as a file small enough to fit inline won't be
10120 * big enough to store more than the swap header, but in
10121 * case something changes in the future, let's catch it
10122 * here rather than later.
10123 */
10124 btrfs_warn(fs_info, "swapfile must not be inline");
10125 ret = -EINVAL;
10126 goto out;
10127 }
10128 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10129 btrfs_warn(fs_info, "swapfile must not be compressed");
10130 ret = -EINVAL;
10131 goto out;
10132 }
10133
10134 logical_block_start = em->block_start + (start - em->start);
10135 len = min(len, em->len - (start - em->start));
10136 free_extent_map(em);
10137 em = NULL;
10138
10139 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10140 if (ret < 0) {
10141 goto out;
10142 } else if (ret) {
10143 ret = 0;
10144 } else {
10145 btrfs_warn(fs_info,
10146 "swapfile must not be copy-on-write");
10147 ret = -EINVAL;
10148 goto out;
10149 }
10150
10151 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10152 if (IS_ERR(em)) {
10153 ret = PTR_ERR(em);
10154 goto out;
10155 }
10156
10157 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10158 btrfs_warn(fs_info,
10159 "swapfile must have single data profile");
10160 ret = -EINVAL;
10161 goto out;
10162 }
10163
10164 if (device == NULL) {
10165 device = em->map_lookup->stripes[0].dev;
10166 ret = btrfs_add_swapfile_pin(inode, device, false);
10167 if (ret == 1)
10168 ret = 0;
10169 else if (ret)
10170 goto out;
10171 } else if (device != em->map_lookup->stripes[0].dev) {
10172 btrfs_warn(fs_info, "swapfile must be on one device");
10173 ret = -EINVAL;
10174 goto out;
10175 }
10176
10177 physical_block_start = (em->map_lookup->stripes[0].physical +
10178 (logical_block_start - em->start));
10179 len = min(len, em->len - (logical_block_start - em->start));
10180 free_extent_map(em);
10181 em = NULL;
10182
10183 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10184 if (!bg) {
10185 btrfs_warn(fs_info,
10186 "could not find block group containing swapfile");
10187 ret = -EINVAL;
10188 goto out;
10189 }
10190
10191 ret = btrfs_add_swapfile_pin(inode, bg, true);
10192 if (ret) {
10193 btrfs_put_block_group(bg);
10194 if (ret == 1)
10195 ret = 0;
10196 else
10197 goto out;
10198 }
10199
10200 if (bsi.block_len &&
10201 bsi.block_start + bsi.block_len == physical_block_start) {
10202 bsi.block_len += len;
10203 } else {
10204 if (bsi.block_len) {
10205 ret = btrfs_add_swap_extent(sis, &bsi);
10206 if (ret)
10207 goto out;
10208 }
10209 bsi.start = start;
10210 bsi.block_start = physical_block_start;
10211 bsi.block_len = len;
10212 }
10213
10214 start += len;
10215 }
10216
10217 if (bsi.block_len)
10218 ret = btrfs_add_swap_extent(sis, &bsi);
10219
10220 out:
10221 if (!IS_ERR_OR_NULL(em))
10222 free_extent_map(em);
10223
10224 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10225
10226 if (ret)
10227 btrfs_swap_deactivate(file);
10228
10229 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10230
10231 if (ret)
10232 return ret;
10233
10234 if (device)
10235 sis->bdev = device->bdev;
10236 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10237 sis->max = bsi.nr_pages;
10238 sis->pages = bsi.nr_pages - 1;
10239 sis->highest_bit = bsi.nr_pages - 1;
10240 return bsi.nr_extents;
10241 }
10242 #else
10243 static void btrfs_swap_deactivate(struct file *file)
10244 {
10245 }
10246
10247 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10248 sector_t *span)
10249 {
10250 return -EOPNOTSUPP;
10251 }
10252 #endif
10253
10254 static const struct inode_operations btrfs_dir_inode_operations = {
10255 .getattr = btrfs_getattr,
10256 .lookup = btrfs_lookup,
10257 .create = btrfs_create,
10258 .unlink = btrfs_unlink,
10259 .link = btrfs_link,
10260 .mkdir = btrfs_mkdir,
10261 .rmdir = btrfs_rmdir,
10262 .rename = btrfs_rename2,
10263 .symlink = btrfs_symlink,
10264 .setattr = btrfs_setattr,
10265 .mknod = btrfs_mknod,
10266 .listxattr = btrfs_listxattr,
10267 .permission = btrfs_permission,
10268 .get_acl = btrfs_get_acl,
10269 .set_acl = btrfs_set_acl,
10270 .update_time = btrfs_update_time,
10271 .tmpfile = btrfs_tmpfile,
10272 };
10273
10274 static const struct file_operations btrfs_dir_file_operations = {
10275 .llseek = generic_file_llseek,
10276 .read = generic_read_dir,
10277 .iterate_shared = btrfs_real_readdir,
10278 .open = btrfs_opendir,
10279 .unlocked_ioctl = btrfs_ioctl,
10280 #ifdef CONFIG_COMPAT
10281 .compat_ioctl = btrfs_compat_ioctl,
10282 #endif
10283 .release = btrfs_release_file,
10284 .fsync = btrfs_sync_file,
10285 };
10286
10287 static const struct extent_io_ops btrfs_extent_io_ops = {
10288 /* mandatory callbacks */
10289 .submit_bio_hook = btrfs_submit_bio_hook,
10290 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10291 };
10292
10293 /*
10294 * btrfs doesn't support the bmap operation because swapfiles
10295 * use bmap to make a mapping of extents in the file. They assume
10296 * these extents won't change over the life of the file and they
10297 * use the bmap result to do IO directly to the drive.
10298 *
10299 * the btrfs bmap call would return logical addresses that aren't
10300 * suitable for IO and they also will change frequently as COW
10301 * operations happen. So, swapfile + btrfs == corruption.
10302 *
10303 * For now we're avoiding this by dropping bmap.
10304 */
10305 static const struct address_space_operations btrfs_aops = {
10306 .readpage = btrfs_readpage,
10307 .writepage = btrfs_writepage,
10308 .writepages = btrfs_writepages,
10309 .readahead = btrfs_readahead,
10310 .direct_IO = btrfs_direct_IO,
10311 .invalidatepage = btrfs_invalidatepage,
10312 .releasepage = btrfs_releasepage,
10313 #ifdef CONFIG_MIGRATION
10314 .migratepage = btrfs_migratepage,
10315 #endif
10316 .set_page_dirty = btrfs_set_page_dirty,
10317 .error_remove_page = generic_error_remove_page,
10318 .swap_activate = btrfs_swap_activate,
10319 .swap_deactivate = btrfs_swap_deactivate,
10320 };
10321
10322 static const struct inode_operations btrfs_file_inode_operations = {
10323 .getattr = btrfs_getattr,
10324 .setattr = btrfs_setattr,
10325 .listxattr = btrfs_listxattr,
10326 .permission = btrfs_permission,
10327 .fiemap = btrfs_fiemap,
10328 .get_acl = btrfs_get_acl,
10329 .set_acl = btrfs_set_acl,
10330 .update_time = btrfs_update_time,
10331 };
10332 static const struct inode_operations btrfs_special_inode_operations = {
10333 .getattr = btrfs_getattr,
10334 .setattr = btrfs_setattr,
10335 .permission = btrfs_permission,
10336 .listxattr = btrfs_listxattr,
10337 .get_acl = btrfs_get_acl,
10338 .set_acl = btrfs_set_acl,
10339 .update_time = btrfs_update_time,
10340 };
10341 static const struct inode_operations btrfs_symlink_inode_operations = {
10342 .get_link = page_get_link,
10343 .getattr = btrfs_getattr,
10344 .setattr = btrfs_setattr,
10345 .permission = btrfs_permission,
10346 .listxattr = btrfs_listxattr,
10347 .update_time = btrfs_update_time,
10348 };
10349
10350 const struct dentry_operations btrfs_dentry_operations = {
10351 .d_delete = btrfs_dentry_delete,
10352 };