2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
63 #include "compression.h"
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
71 struct btrfs_ioctl_timespec_32
{
74 } __attribute__ ((__packed__
));
76 struct btrfs_ioctl_received_subvol_args_32
{
77 char uuid
[BTRFS_UUID_SIZE
]; /* in */
78 __u64 stransid
; /* in */
79 __u64 rtransid
; /* out */
80 struct btrfs_ioctl_timespec_32 stime
; /* in */
81 struct btrfs_ioctl_timespec_32 rtime
; /* out */
83 __u64 reserved
[16]; /* in */
84 } __attribute__ ((__packed__
));
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
91 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
92 u64 off
, u64 olen
, u64 olen_aligned
, u64 destoff
,
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
100 else if (S_ISREG(mode
))
101 return flags
& ~FS_DIRSYNC_FL
;
103 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
111 unsigned int iflags
= 0;
113 if (flags
& BTRFS_INODE_SYNC
)
114 iflags
|= FS_SYNC_FL
;
115 if (flags
& BTRFS_INODE_IMMUTABLE
)
116 iflags
|= FS_IMMUTABLE_FL
;
117 if (flags
& BTRFS_INODE_APPEND
)
118 iflags
|= FS_APPEND_FL
;
119 if (flags
& BTRFS_INODE_NODUMP
)
120 iflags
|= FS_NODUMP_FL
;
121 if (flags
& BTRFS_INODE_NOATIME
)
122 iflags
|= FS_NOATIME_FL
;
123 if (flags
& BTRFS_INODE_DIRSYNC
)
124 iflags
|= FS_DIRSYNC_FL
;
125 if (flags
& BTRFS_INODE_NODATACOW
)
126 iflags
|= FS_NOCOW_FL
;
128 if (flags
& BTRFS_INODE_NOCOMPRESS
)
129 iflags
|= FS_NOCOMP_FL
;
130 else if (flags
& BTRFS_INODE_COMPRESS
)
131 iflags
|= FS_COMPR_FL
;
137 * Update inode->i_flags based on the btrfs internal flags.
139 void btrfs_update_iflags(struct inode
*inode
)
141 struct btrfs_inode
*ip
= BTRFS_I(inode
);
142 unsigned int new_fl
= 0;
144 if (ip
->flags
& BTRFS_INODE_SYNC
)
146 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
147 new_fl
|= S_IMMUTABLE
;
148 if (ip
->flags
& BTRFS_INODE_APPEND
)
150 if (ip
->flags
& BTRFS_INODE_NOATIME
)
152 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
155 set_mask_bits(&inode
->i_flags
,
156 S_SYNC
| S_APPEND
| S_IMMUTABLE
| S_NOATIME
| S_DIRSYNC
,
161 * Inherit flags from the parent inode.
163 * Currently only the compression flags and the cow flags are inherited.
165 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
172 flags
= BTRFS_I(dir
)->flags
;
174 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
175 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
176 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
177 } else if (flags
& BTRFS_INODE_COMPRESS
) {
178 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
179 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
182 if (flags
& BTRFS_INODE_NODATACOW
) {
183 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
184 if (S_ISREG(inode
->i_mode
))
185 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
188 btrfs_update_iflags(inode
);
191 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
193 struct btrfs_inode
*ip
= BTRFS_I(file_inode(file
));
194 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
196 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
201 static int check_flags(unsigned int flags
)
203 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
204 FS_NOATIME_FL
| FS_NODUMP_FL
| \
205 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
206 FS_NOCOMP_FL
| FS_COMPR_FL
|
210 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
216 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
218 struct inode
*inode
= file_inode(file
);
219 struct btrfs_inode
*ip
= BTRFS_I(inode
);
220 struct btrfs_root
*root
= ip
->root
;
221 struct btrfs_trans_handle
*trans
;
222 unsigned int flags
, oldflags
;
225 unsigned int i_oldflags
;
228 if (!inode_owner_or_capable(inode
))
231 if (btrfs_root_readonly(root
))
234 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
237 ret
= check_flags(flags
);
241 ret
= mnt_want_write_file(file
);
247 ip_oldflags
= ip
->flags
;
248 i_oldflags
= inode
->i_flags
;
249 mode
= inode
->i_mode
;
251 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
252 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
253 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
254 if (!capable(CAP_LINUX_IMMUTABLE
)) {
260 if (flags
& FS_SYNC_FL
)
261 ip
->flags
|= BTRFS_INODE_SYNC
;
263 ip
->flags
&= ~BTRFS_INODE_SYNC
;
264 if (flags
& FS_IMMUTABLE_FL
)
265 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
267 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
268 if (flags
& FS_APPEND_FL
)
269 ip
->flags
|= BTRFS_INODE_APPEND
;
271 ip
->flags
&= ~BTRFS_INODE_APPEND
;
272 if (flags
& FS_NODUMP_FL
)
273 ip
->flags
|= BTRFS_INODE_NODUMP
;
275 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
276 if (flags
& FS_NOATIME_FL
)
277 ip
->flags
|= BTRFS_INODE_NOATIME
;
279 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
280 if (flags
& FS_DIRSYNC_FL
)
281 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
283 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
284 if (flags
& FS_NOCOW_FL
) {
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
291 if (inode
->i_size
== 0)
292 ip
->flags
|= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM
;
295 ip
->flags
|= BTRFS_INODE_NODATACOW
;
299 * Revert back under same assumptions as above
302 if (inode
->i_size
== 0)
303 ip
->flags
&= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM
);
306 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
315 if (flags
& FS_NOCOMP_FL
) {
316 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
317 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
319 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
320 if (ret
&& ret
!= -ENODATA
)
322 } else if (flags
& FS_COMPR_FL
) {
325 ip
->flags
|= BTRFS_INODE_COMPRESS
;
326 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
328 if (root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
332 ret
= btrfs_set_prop(inode
, "btrfs.compression",
333 comp
, strlen(comp
), 0);
338 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
339 if (ret
&& ret
!= -ENODATA
)
341 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
344 trans
= btrfs_start_transaction(root
, 1);
346 ret
= PTR_ERR(trans
);
350 btrfs_update_iflags(inode
);
351 inode_inc_iversion(inode
);
352 inode
->i_ctime
= current_fs_time(inode
->i_sb
);
353 ret
= btrfs_update_inode(trans
, root
, inode
);
355 btrfs_end_transaction(trans
, root
);
358 ip
->flags
= ip_oldflags
;
359 inode
->i_flags
= i_oldflags
;
364 mnt_drop_write_file(file
);
368 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
370 struct inode
*inode
= file_inode(file
);
372 return put_user(inode
->i_generation
, arg
);
375 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
377 struct btrfs_fs_info
*fs_info
= btrfs_sb(file_inode(file
)->i_sb
);
378 struct btrfs_device
*device
;
379 struct request_queue
*q
;
380 struct fstrim_range range
;
381 u64 minlen
= ULLONG_MAX
;
383 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
386 if (!capable(CAP_SYS_ADMIN
))
390 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
394 q
= bdev_get_queue(device
->bdev
);
395 if (blk_queue_discard(q
)) {
397 minlen
= min((u64
)q
->limits
.discard_granularity
,
405 if (copy_from_user(&range
, arg
, sizeof(range
)))
407 if (range
.start
> total_bytes
||
408 range
.len
< fs_info
->sb
->s_blocksize
)
411 range
.len
= min(range
.len
, total_bytes
- range
.start
);
412 range
.minlen
= max(range
.minlen
, minlen
);
413 ret
= btrfs_trim_fs(fs_info
->tree_root
, &range
);
417 if (copy_to_user(arg
, &range
, sizeof(range
)))
423 int btrfs_is_empty_uuid(u8
*uuid
)
427 for (i
= 0; i
< BTRFS_UUID_SIZE
; i
++) {
434 static noinline
int create_subvol(struct inode
*dir
,
435 struct dentry
*dentry
,
436 char *name
, int namelen
,
438 struct btrfs_qgroup_inherit
*inherit
)
440 struct btrfs_trans_handle
*trans
;
441 struct btrfs_key key
;
442 struct btrfs_root_item
*root_item
;
443 struct btrfs_inode_item
*inode_item
;
444 struct extent_buffer
*leaf
;
445 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
446 struct btrfs_root
*new_root
;
447 struct btrfs_block_rsv block_rsv
;
448 struct timespec cur_time
= current_fs_time(dir
->i_sb
);
453 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
458 root_item
= kzalloc(sizeof(*root_item
), GFP_KERNEL
);
462 ret
= btrfs_find_free_objectid(root
->fs_info
->tree_root
, &objectid
);
467 * Don't create subvolume whose level is not zero. Or qgroup will be
468 * screwed up since it assumes subvolume qgroup's level to be 0.
470 if (btrfs_qgroup_level(objectid
)) {
475 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
477 * The same as the snapshot creation, please see the comment
478 * of create_snapshot().
480 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
481 8, &qgroup_reserved
, false);
485 trans
= btrfs_start_transaction(root
, 0);
487 ret
= PTR_ERR(trans
);
488 btrfs_subvolume_release_metadata(root
, &block_rsv
,
492 trans
->block_rsv
= &block_rsv
;
493 trans
->bytes_reserved
= block_rsv
.size
;
495 ret
= btrfs_qgroup_inherit(trans
, root
->fs_info
, 0, objectid
, inherit
);
499 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
505 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
506 btrfs_set_header_bytenr(leaf
, leaf
->start
);
507 btrfs_set_header_generation(leaf
, trans
->transid
);
508 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
509 btrfs_set_header_owner(leaf
, objectid
);
511 write_extent_buffer(leaf
, root
->fs_info
->fsid
, btrfs_header_fsid(),
513 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
514 btrfs_header_chunk_tree_uuid(leaf
),
516 btrfs_mark_buffer_dirty(leaf
);
518 inode_item
= &root_item
->inode
;
519 btrfs_set_stack_inode_generation(inode_item
, 1);
520 btrfs_set_stack_inode_size(inode_item
, 3);
521 btrfs_set_stack_inode_nlink(inode_item
, 1);
522 btrfs_set_stack_inode_nbytes(inode_item
, root
->nodesize
);
523 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
525 btrfs_set_root_flags(root_item
, 0);
526 btrfs_set_root_limit(root_item
, 0);
527 btrfs_set_stack_inode_flags(inode_item
, BTRFS_INODE_ROOT_ITEM_INIT
);
529 btrfs_set_root_bytenr(root_item
, leaf
->start
);
530 btrfs_set_root_generation(root_item
, trans
->transid
);
531 btrfs_set_root_level(root_item
, 0);
532 btrfs_set_root_refs(root_item
, 1);
533 btrfs_set_root_used(root_item
, leaf
->len
);
534 btrfs_set_root_last_snapshot(root_item
, 0);
536 btrfs_set_root_generation_v2(root_item
,
537 btrfs_root_generation(root_item
));
538 uuid_le_gen(&new_uuid
);
539 memcpy(root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
540 btrfs_set_stack_timespec_sec(&root_item
->otime
, cur_time
.tv_sec
);
541 btrfs_set_stack_timespec_nsec(&root_item
->otime
, cur_time
.tv_nsec
);
542 root_item
->ctime
= root_item
->otime
;
543 btrfs_set_root_ctransid(root_item
, trans
->transid
);
544 btrfs_set_root_otransid(root_item
, trans
->transid
);
546 btrfs_tree_unlock(leaf
);
547 free_extent_buffer(leaf
);
550 btrfs_set_root_dirid(root_item
, new_dirid
);
552 key
.objectid
= objectid
;
554 key
.type
= BTRFS_ROOT_ITEM_KEY
;
555 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
560 key
.offset
= (u64
)-1;
561 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
562 if (IS_ERR(new_root
)) {
563 ret
= PTR_ERR(new_root
);
564 btrfs_abort_transaction(trans
, root
, ret
);
568 btrfs_record_root_in_trans(trans
, new_root
);
570 ret
= btrfs_create_subvol_root(trans
, new_root
, root
, new_dirid
);
572 /* We potentially lose an unused inode item here */
573 btrfs_abort_transaction(trans
, root
, ret
);
577 mutex_lock(&new_root
->objectid_mutex
);
578 new_root
->highest_objectid
= new_dirid
;
579 mutex_unlock(&new_root
->objectid_mutex
);
582 * insert the directory item
584 ret
= btrfs_set_inode_index(dir
, &index
);
586 btrfs_abort_transaction(trans
, root
, ret
);
590 ret
= btrfs_insert_dir_item(trans
, root
,
591 name
, namelen
, dir
, &key
,
592 BTRFS_FT_DIR
, index
);
594 btrfs_abort_transaction(trans
, root
, ret
);
598 btrfs_i_size_write(dir
, dir
->i_size
+ namelen
* 2);
599 ret
= btrfs_update_inode(trans
, root
, dir
);
602 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
603 objectid
, root
->root_key
.objectid
,
604 btrfs_ino(dir
), index
, name
, namelen
);
607 ret
= btrfs_uuid_tree_add(trans
, root
->fs_info
->uuid_root
,
608 root_item
->uuid
, BTRFS_UUID_KEY_SUBVOL
,
611 btrfs_abort_transaction(trans
, root
, ret
);
615 trans
->block_rsv
= NULL
;
616 trans
->bytes_reserved
= 0;
617 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
620 *async_transid
= trans
->transid
;
621 err
= btrfs_commit_transaction_async(trans
, root
, 1);
623 err
= btrfs_commit_transaction(trans
, root
);
625 err
= btrfs_commit_transaction(trans
, root
);
631 inode
= btrfs_lookup_dentry(dir
, dentry
);
633 return PTR_ERR(inode
);
634 d_instantiate(dentry
, inode
);
643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root
*root
)
649 prepare_to_wait(&root
->subv_writers
->wait
, &wait
,
650 TASK_UNINTERRUPTIBLE
);
652 writers
= percpu_counter_sum(&root
->subv_writers
->counter
);
656 finish_wait(&root
->subv_writers
->wait
, &wait
);
660 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
661 struct dentry
*dentry
, char *name
, int namelen
,
662 u64
*async_transid
, bool readonly
,
663 struct btrfs_qgroup_inherit
*inherit
)
666 struct btrfs_pending_snapshot
*pending_snapshot
;
667 struct btrfs_trans_handle
*trans
;
670 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
673 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_NOFS
);
674 if (!pending_snapshot
)
677 pending_snapshot
->root_item
= kzalloc(sizeof(struct btrfs_root_item
),
679 pending_snapshot
->path
= btrfs_alloc_path();
680 if (!pending_snapshot
->root_item
|| !pending_snapshot
->path
) {
685 atomic_inc(&root
->will_be_snapshoted
);
686 smp_mb__after_atomic();
687 btrfs_wait_for_no_snapshoting_writes(root
);
689 ret
= btrfs_start_delalloc_inodes(root
, 0);
693 btrfs_wait_ordered_extents(root
, -1, 0, (u64
)-1);
695 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
696 BTRFS_BLOCK_RSV_TEMP
);
698 * 1 - parent dir inode
701 * 2 - root ref/backref
702 * 1 - root of snapshot
705 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
706 &pending_snapshot
->block_rsv
, 8,
707 &pending_snapshot
->qgroup_reserved
,
712 pending_snapshot
->dentry
= dentry
;
713 pending_snapshot
->root
= root
;
714 pending_snapshot
->readonly
= readonly
;
715 pending_snapshot
->dir
= dir
;
716 pending_snapshot
->inherit
= inherit
;
718 trans
= btrfs_start_transaction(root
, 0);
720 ret
= PTR_ERR(trans
);
724 spin_lock(&root
->fs_info
->trans_lock
);
725 list_add(&pending_snapshot
->list
,
726 &trans
->transaction
->pending_snapshots
);
727 spin_unlock(&root
->fs_info
->trans_lock
);
729 *async_transid
= trans
->transid
;
730 ret
= btrfs_commit_transaction_async(trans
,
731 root
->fs_info
->extent_root
, 1);
733 ret
= btrfs_commit_transaction(trans
, root
);
735 ret
= btrfs_commit_transaction(trans
,
736 root
->fs_info
->extent_root
);
741 ret
= pending_snapshot
->error
;
745 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
749 inode
= btrfs_lookup_dentry(d_inode(dentry
->d_parent
), dentry
);
751 ret
= PTR_ERR(inode
);
755 d_instantiate(dentry
, inode
);
758 btrfs_subvolume_release_metadata(BTRFS_I(dir
)->root
,
759 &pending_snapshot
->block_rsv
,
760 pending_snapshot
->qgroup_reserved
);
762 if (atomic_dec_and_test(&root
->will_be_snapshoted
))
763 wake_up_atomic_t(&root
->will_be_snapshoted
);
765 kfree(pending_snapshot
->root_item
);
766 btrfs_free_path(pending_snapshot
->path
);
767 kfree(pending_snapshot
);
772 /* copy of may_delete in fs/namei.c()
773 * Check whether we can remove a link victim from directory dir, check
774 * whether the type of victim is right.
775 * 1. We can't do it if dir is read-only (done in permission())
776 * 2. We should have write and exec permissions on dir
777 * 3. We can't remove anything from append-only dir
778 * 4. We can't do anything with immutable dir (done in permission())
779 * 5. If the sticky bit on dir is set we should either
780 * a. be owner of dir, or
781 * b. be owner of victim, or
782 * c. have CAP_FOWNER capability
783 * 6. If the victim is append-only or immutable we can't do anything with
784 * links pointing to it.
785 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
786 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
787 * 9. We can't remove a root or mountpoint.
788 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
789 * nfs_async_unlink().
792 static int btrfs_may_delete(struct inode
*dir
, struct dentry
*victim
, int isdir
)
796 if (d_really_is_negative(victim
))
799 BUG_ON(d_inode(victim
->d_parent
) != dir
);
800 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
802 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
807 if (check_sticky(dir
, d_inode(victim
)) || IS_APPEND(d_inode(victim
)) ||
808 IS_IMMUTABLE(d_inode(victim
)) || IS_SWAPFILE(d_inode(victim
)))
811 if (!d_is_dir(victim
))
815 } else if (d_is_dir(victim
))
819 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
824 /* copy of may_create in fs/namei.c() */
825 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
827 if (d_really_is_positive(child
))
831 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
835 * Create a new subvolume below @parent. This is largely modeled after
836 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
837 * inside this filesystem so it's quite a bit simpler.
839 static noinline
int btrfs_mksubvol(struct path
*parent
,
840 char *name
, int namelen
,
841 struct btrfs_root
*snap_src
,
842 u64
*async_transid
, bool readonly
,
843 struct btrfs_qgroup_inherit
*inherit
)
845 struct inode
*dir
= d_inode(parent
->dentry
);
846 struct dentry
*dentry
;
849 inode_lock_nested(dir
, I_MUTEX_PARENT
);
850 // XXX: should've been
851 // mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
852 // if (error == -EINTR)
855 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
856 error
= PTR_ERR(dentry
);
860 error
= btrfs_may_create(dir
, dentry
);
865 * even if this name doesn't exist, we may get hash collisions.
866 * check for them now when we can safely fail
868 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
874 down_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
876 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
880 error
= create_snapshot(snap_src
, dir
, dentry
, name
, namelen
,
881 async_transid
, readonly
, inherit
);
883 error
= create_subvol(dir
, dentry
, name
, namelen
,
884 async_transid
, inherit
);
887 fsnotify_mkdir(dir
, dentry
);
889 up_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
898 * When we're defragging a range, we don't want to kick it off again
899 * if it is really just waiting for delalloc to send it down.
900 * If we find a nice big extent or delalloc range for the bytes in the
901 * file you want to defrag, we return 0 to let you know to skip this
904 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, u32 thresh
)
906 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
907 struct extent_map
*em
= NULL
;
908 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
911 read_lock(&em_tree
->lock
);
912 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_SIZE
);
913 read_unlock(&em_tree
->lock
);
916 end
= extent_map_end(em
);
918 if (end
- offset
> thresh
)
921 /* if we already have a nice delalloc here, just stop */
923 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
924 thresh
, EXTENT_DELALLOC
, 1);
931 * helper function to walk through a file and find extents
932 * newer than a specific transid, and smaller than thresh.
934 * This is used by the defragging code to find new and small
937 static int find_new_extents(struct btrfs_root
*root
,
938 struct inode
*inode
, u64 newer_than
,
939 u64
*off
, u32 thresh
)
941 struct btrfs_path
*path
;
942 struct btrfs_key min_key
;
943 struct extent_buffer
*leaf
;
944 struct btrfs_file_extent_item
*extent
;
947 u64 ino
= btrfs_ino(inode
);
949 path
= btrfs_alloc_path();
953 min_key
.objectid
= ino
;
954 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
955 min_key
.offset
= *off
;
958 ret
= btrfs_search_forward(root
, &min_key
, path
, newer_than
);
962 if (min_key
.objectid
!= ino
)
964 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
967 leaf
= path
->nodes
[0];
968 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
969 struct btrfs_file_extent_item
);
971 type
= btrfs_file_extent_type(leaf
, extent
);
972 if (type
== BTRFS_FILE_EXTENT_REG
&&
973 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
974 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
975 *off
= min_key
.offset
;
976 btrfs_free_path(path
);
981 if (path
->slots
[0] < btrfs_header_nritems(leaf
)) {
982 btrfs_item_key_to_cpu(leaf
, &min_key
, path
->slots
[0]);
986 if (min_key
.offset
== (u64
)-1)
990 btrfs_release_path(path
);
993 btrfs_free_path(path
);
997 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
999 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1000 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1001 struct extent_map
*em
;
1002 u64 len
= PAGE_SIZE
;
1005 * hopefully we have this extent in the tree already, try without
1006 * the full extent lock
1008 read_lock(&em_tree
->lock
);
1009 em
= lookup_extent_mapping(em_tree
, start
, len
);
1010 read_unlock(&em_tree
->lock
);
1013 struct extent_state
*cached
= NULL
;
1014 u64 end
= start
+ len
- 1;
1016 /* get the big lock and read metadata off disk */
1017 lock_extent_bits(io_tree
, start
, end
, &cached
);
1018 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
1019 unlock_extent_cached(io_tree
, start
, end
, &cached
, GFP_NOFS
);
1028 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
1030 struct extent_map
*next
;
1033 /* this is the last extent */
1034 if (em
->start
+ em
->len
>= i_size_read(inode
))
1037 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
1038 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
1040 else if ((em
->block_start
+ em
->block_len
== next
->block_start
) &&
1041 (em
->block_len
> SZ_128K
&& next
->block_len
> SZ_128K
))
1044 free_extent_map(next
);
1048 static int should_defrag_range(struct inode
*inode
, u64 start
, u32 thresh
,
1049 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
1052 struct extent_map
*em
;
1054 bool next_mergeable
= true;
1055 bool prev_mergeable
= true;
1058 * make sure that once we start defragging an extent, we keep on
1061 if (start
< *defrag_end
)
1066 em
= defrag_lookup_extent(inode
, start
);
1070 /* this will cover holes, and inline extents */
1071 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1077 prev_mergeable
= false;
1079 next_mergeable
= defrag_check_next_extent(inode
, em
);
1081 * we hit a real extent, if it is big or the next extent is not a
1082 * real extent, don't bother defragging it
1084 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
1085 (em
->len
>= thresh
|| (!next_mergeable
&& !prev_mergeable
)))
1089 * last_len ends up being a counter of how many bytes we've defragged.
1090 * every time we choose not to defrag an extent, we reset *last_len
1091 * so that the next tiny extent will force a defrag.
1093 * The end result of this is that tiny extents before a single big
1094 * extent will force at least part of that big extent to be defragged.
1097 *defrag_end
= extent_map_end(em
);
1100 *skip
= extent_map_end(em
);
1104 free_extent_map(em
);
1109 * it doesn't do much good to defrag one or two pages
1110 * at a time. This pulls in a nice chunk of pages
1111 * to COW and defrag.
1113 * It also makes sure the delalloc code has enough
1114 * dirty data to avoid making new small extents as part
1117 * It's a good idea to start RA on this range
1118 * before calling this.
1120 static int cluster_pages_for_defrag(struct inode
*inode
,
1121 struct page
**pages
,
1122 unsigned long start_index
,
1123 unsigned long num_pages
)
1125 unsigned long file_end
;
1126 u64 isize
= i_size_read(inode
);
1133 struct btrfs_ordered_extent
*ordered
;
1134 struct extent_state
*cached_state
= NULL
;
1135 struct extent_io_tree
*tree
;
1136 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1138 file_end
= (isize
- 1) >> PAGE_SHIFT
;
1139 if (!isize
|| start_index
> file_end
)
1142 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1144 ret
= btrfs_delalloc_reserve_space(inode
,
1145 start_index
<< PAGE_SHIFT
,
1146 page_cnt
<< PAGE_SHIFT
);
1150 tree
= &BTRFS_I(inode
)->io_tree
;
1152 /* step one, lock all the pages */
1153 for (i
= 0; i
< page_cnt
; i
++) {
1156 page
= find_or_create_page(inode
->i_mapping
,
1157 start_index
+ i
, mask
);
1161 page_start
= page_offset(page
);
1162 page_end
= page_start
+ PAGE_SIZE
- 1;
1164 lock_extent_bits(tree
, page_start
, page_end
,
1166 ordered
= btrfs_lookup_ordered_extent(inode
,
1168 unlock_extent_cached(tree
, page_start
, page_end
,
1169 &cached_state
, GFP_NOFS
);
1174 btrfs_start_ordered_extent(inode
, ordered
, 1);
1175 btrfs_put_ordered_extent(ordered
);
1178 * we unlocked the page above, so we need check if
1179 * it was released or not.
1181 if (page
->mapping
!= inode
->i_mapping
) {
1188 if (!PageUptodate(page
)) {
1189 btrfs_readpage(NULL
, page
);
1191 if (!PageUptodate(page
)) {
1199 if (page
->mapping
!= inode
->i_mapping
) {
1211 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1215 * so now we have a nice long stream of locked
1216 * and up to date pages, lets wait on them
1218 for (i
= 0; i
< i_done
; i
++)
1219 wait_on_page_writeback(pages
[i
]);
1221 page_start
= page_offset(pages
[0]);
1222 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_SIZE
;
1224 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1225 page_start
, page_end
- 1, &cached_state
);
1226 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1227 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1228 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1229 &cached_state
, GFP_NOFS
);
1231 if (i_done
!= page_cnt
) {
1232 spin_lock(&BTRFS_I(inode
)->lock
);
1233 BTRFS_I(inode
)->outstanding_extents
++;
1234 spin_unlock(&BTRFS_I(inode
)->lock
);
1235 btrfs_delalloc_release_space(inode
,
1236 start_index
<< PAGE_SHIFT
,
1237 (page_cnt
- i_done
) << PAGE_SHIFT
);
1241 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1244 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1245 page_start
, page_end
- 1, &cached_state
,
1248 for (i
= 0; i
< i_done
; i
++) {
1249 clear_page_dirty_for_io(pages
[i
]);
1250 ClearPageChecked(pages
[i
]);
1251 set_page_extent_mapped(pages
[i
]);
1252 set_page_dirty(pages
[i
]);
1253 unlock_page(pages
[i
]);
1258 for (i
= 0; i
< i_done
; i
++) {
1259 unlock_page(pages
[i
]);
1262 btrfs_delalloc_release_space(inode
,
1263 start_index
<< PAGE_SHIFT
,
1264 page_cnt
<< PAGE_SHIFT
);
1269 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1270 struct btrfs_ioctl_defrag_range_args
*range
,
1271 u64 newer_than
, unsigned long max_to_defrag
)
1273 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1274 struct file_ra_state
*ra
= NULL
;
1275 unsigned long last_index
;
1276 u64 isize
= i_size_read(inode
);
1280 u64 newer_off
= range
->start
;
1282 unsigned long ra_index
= 0;
1284 int defrag_count
= 0;
1285 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1286 u32 extent_thresh
= range
->extent_thresh
;
1287 unsigned long max_cluster
= SZ_256K
>> PAGE_SHIFT
;
1288 unsigned long cluster
= max_cluster
;
1289 u64 new_align
= ~((u64
)SZ_128K
- 1);
1290 struct page
**pages
= NULL
;
1295 if (range
->start
>= isize
)
1298 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1299 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1301 if (range
->compress_type
)
1302 compress_type
= range
->compress_type
;
1305 if (extent_thresh
== 0)
1306 extent_thresh
= SZ_256K
;
1309 * if we were not given a file, allocate a readahead
1313 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1316 file_ra_state_init(ra
, inode
->i_mapping
);
1321 pages
= kmalloc_array(max_cluster
, sizeof(struct page
*),
1328 /* find the last page to defrag */
1329 if (range
->start
+ range
->len
> range
->start
) {
1330 last_index
= min_t(u64
, isize
- 1,
1331 range
->start
+ range
->len
- 1) >> PAGE_SHIFT
;
1333 last_index
= (isize
- 1) >> PAGE_SHIFT
;
1337 ret
= find_new_extents(root
, inode
, newer_than
,
1338 &newer_off
, SZ_64K
);
1340 range
->start
= newer_off
;
1342 * we always align our defrag to help keep
1343 * the extents in the file evenly spaced
1345 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1349 i
= range
->start
>> PAGE_SHIFT
;
1352 max_to_defrag
= last_index
- i
+ 1;
1355 * make writeback starts from i, so the defrag range can be
1356 * written sequentially.
1358 if (i
< inode
->i_mapping
->writeback_index
)
1359 inode
->i_mapping
->writeback_index
= i
;
1361 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1362 (i
< DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
))) {
1364 * make sure we stop running if someone unmounts
1367 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1370 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1371 btrfs_debug(root
->fs_info
, "defrag_file cancelled");
1376 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_SHIFT
,
1377 extent_thresh
, &last_len
, &skip
,
1378 &defrag_end
, range
->flags
&
1379 BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1382 * the should_defrag function tells us how much to skip
1383 * bump our counter by the suggested amount
1385 next
= DIV_ROUND_UP(skip
, PAGE_SIZE
);
1386 i
= max(i
+ 1, next
);
1391 cluster
= (PAGE_ALIGN(defrag_end
) >>
1393 cluster
= min(cluster
, max_cluster
);
1395 cluster
= max_cluster
;
1398 if (i
+ cluster
> ra_index
) {
1399 ra_index
= max(i
, ra_index
);
1400 btrfs_force_ra(inode
->i_mapping
, ra
, file
, ra_index
,
1402 ra_index
+= cluster
;
1406 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1407 BTRFS_I(inode
)->force_compress
= compress_type
;
1408 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1410 inode_unlock(inode
);
1414 defrag_count
+= ret
;
1415 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1416 inode_unlock(inode
);
1419 if (newer_off
== (u64
)-1)
1425 newer_off
= max(newer_off
+ 1,
1426 (u64
)i
<< PAGE_SHIFT
);
1428 ret
= find_new_extents(root
, inode
, newer_than
,
1429 &newer_off
, SZ_64K
);
1431 range
->start
= newer_off
;
1432 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1439 last_len
+= ret
<< PAGE_SHIFT
;
1447 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
)) {
1448 filemap_flush(inode
->i_mapping
);
1449 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1450 &BTRFS_I(inode
)->runtime_flags
))
1451 filemap_flush(inode
->i_mapping
);
1454 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1455 /* the filemap_flush will queue IO into the worker threads, but
1456 * we have to make sure the IO is actually started and that
1457 * ordered extents get created before we return
1459 atomic_inc(&root
->fs_info
->async_submit_draining
);
1460 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
1461 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1462 wait_event(root
->fs_info
->async_submit_wait
,
1463 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
1464 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
1466 atomic_dec(&root
->fs_info
->async_submit_draining
);
1469 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1470 btrfs_set_fs_incompat(root
->fs_info
, COMPRESS_LZO
);
1476 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1478 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1479 inode_unlock(inode
);
1487 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1493 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
1494 struct btrfs_ioctl_vol_args
*vol_args
;
1495 struct btrfs_trans_handle
*trans
;
1496 struct btrfs_device
*device
= NULL
;
1499 char *devstr
= NULL
;
1503 if (!capable(CAP_SYS_ADMIN
))
1506 ret
= mnt_want_write_file(file
);
1510 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
1512 mnt_drop_write_file(file
);
1513 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
1516 mutex_lock(&root
->fs_info
->volume_mutex
);
1517 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1518 if (IS_ERR(vol_args
)) {
1519 ret
= PTR_ERR(vol_args
);
1523 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1525 sizestr
= vol_args
->name
;
1526 devstr
= strchr(sizestr
, ':');
1528 sizestr
= devstr
+ 1;
1530 devstr
= vol_args
->name
;
1531 ret
= kstrtoull(devstr
, 10, &devid
);
1538 btrfs_info(root
->fs_info
, "resizing devid %llu", devid
);
1541 device
= btrfs_find_device(root
->fs_info
, devid
, NULL
, NULL
);
1543 btrfs_info(root
->fs_info
, "resizer unable to find device %llu",
1549 if (!device
->writeable
) {
1550 btrfs_info(root
->fs_info
,
1551 "resizer unable to apply on readonly device %llu",
1557 if (!strcmp(sizestr
, "max"))
1558 new_size
= device
->bdev
->bd_inode
->i_size
;
1560 if (sizestr
[0] == '-') {
1563 } else if (sizestr
[0] == '+') {
1567 new_size
= memparse(sizestr
, &retptr
);
1568 if (*retptr
!= '\0' || new_size
== 0) {
1574 if (device
->is_tgtdev_for_dev_replace
) {
1579 old_size
= btrfs_device_get_total_bytes(device
);
1582 if (new_size
> old_size
) {
1586 new_size
= old_size
- new_size
;
1587 } else if (mod
> 0) {
1588 if (new_size
> ULLONG_MAX
- old_size
) {
1592 new_size
= old_size
+ new_size
;
1595 if (new_size
< SZ_256M
) {
1599 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1604 new_size
= div_u64(new_size
, root
->sectorsize
);
1605 new_size
*= root
->sectorsize
;
1607 btrfs_info_in_rcu(root
->fs_info
, "new size for %s is %llu",
1608 rcu_str_deref(device
->name
), new_size
);
1610 if (new_size
> old_size
) {
1611 trans
= btrfs_start_transaction(root
, 0);
1612 if (IS_ERR(trans
)) {
1613 ret
= PTR_ERR(trans
);
1616 ret
= btrfs_grow_device(trans
, device
, new_size
);
1617 btrfs_commit_transaction(trans
, root
);
1618 } else if (new_size
< old_size
) {
1619 ret
= btrfs_shrink_device(device
, new_size
);
1620 } /* equal, nothing need to do */
1625 mutex_unlock(&root
->fs_info
->volume_mutex
);
1626 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
1627 mnt_drop_write_file(file
);
1631 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1632 char *name
, unsigned long fd
, int subvol
,
1633 u64
*transid
, bool readonly
,
1634 struct btrfs_qgroup_inherit
*inherit
)
1639 ret
= mnt_want_write_file(file
);
1643 namelen
= strlen(name
);
1644 if (strchr(name
, '/')) {
1646 goto out_drop_write
;
1649 if (name
[0] == '.' &&
1650 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1652 goto out_drop_write
;
1656 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1657 NULL
, transid
, readonly
, inherit
);
1659 struct fd src
= fdget(fd
);
1660 struct inode
*src_inode
;
1663 goto out_drop_write
;
1666 src_inode
= file_inode(src
.file
);
1667 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1668 btrfs_info(BTRFS_I(file_inode(file
))->root
->fs_info
,
1669 "Snapshot src from another FS");
1671 } else if (!inode_owner_or_capable(src_inode
)) {
1673 * Subvolume creation is not restricted, but snapshots
1674 * are limited to own subvolumes only
1678 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1679 BTRFS_I(src_inode
)->root
,
1680 transid
, readonly
, inherit
);
1685 mnt_drop_write_file(file
);
1690 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1691 void __user
*arg
, int subvol
)
1693 struct btrfs_ioctl_vol_args
*vol_args
;
1696 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1697 if (IS_ERR(vol_args
))
1698 return PTR_ERR(vol_args
);
1699 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1701 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1702 vol_args
->fd
, subvol
,
1709 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1710 void __user
*arg
, int subvol
)
1712 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1716 bool readonly
= false;
1717 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1719 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1720 if (IS_ERR(vol_args
))
1721 return PTR_ERR(vol_args
);
1722 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1724 if (vol_args
->flags
&
1725 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1726 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1731 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1733 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1735 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1736 if (vol_args
->size
> PAGE_SIZE
) {
1740 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1741 if (IS_ERR(inherit
)) {
1742 ret
= PTR_ERR(inherit
);
1747 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1748 vol_args
->fd
, subvol
, ptr
,
1753 if (ptr
&& copy_to_user(arg
+
1754 offsetof(struct btrfs_ioctl_vol_args_v2
,
1766 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1769 struct inode
*inode
= file_inode(file
);
1770 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1774 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1777 down_read(&root
->fs_info
->subvol_sem
);
1778 if (btrfs_root_readonly(root
))
1779 flags
|= BTRFS_SUBVOL_RDONLY
;
1780 up_read(&root
->fs_info
->subvol_sem
);
1782 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1788 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1791 struct inode
*inode
= file_inode(file
);
1792 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1793 struct btrfs_trans_handle
*trans
;
1798 if (!inode_owner_or_capable(inode
))
1801 ret
= mnt_want_write_file(file
);
1805 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
1807 goto out_drop_write
;
1810 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1812 goto out_drop_write
;
1815 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1817 goto out_drop_write
;
1820 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1822 goto out_drop_write
;
1825 down_write(&root
->fs_info
->subvol_sem
);
1828 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1831 root_flags
= btrfs_root_flags(&root
->root_item
);
1832 if (flags
& BTRFS_SUBVOL_RDONLY
) {
1833 btrfs_set_root_flags(&root
->root_item
,
1834 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1837 * Block RO -> RW transition if this subvolume is involved in
1840 spin_lock(&root
->root_item_lock
);
1841 if (root
->send_in_progress
== 0) {
1842 btrfs_set_root_flags(&root
->root_item
,
1843 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1844 spin_unlock(&root
->root_item_lock
);
1846 spin_unlock(&root
->root_item_lock
);
1847 btrfs_warn(root
->fs_info
,
1848 "Attempt to set subvolume %llu read-write during send",
1849 root
->root_key
.objectid
);
1855 trans
= btrfs_start_transaction(root
, 1);
1856 if (IS_ERR(trans
)) {
1857 ret
= PTR_ERR(trans
);
1861 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
1862 &root
->root_key
, &root
->root_item
);
1864 btrfs_commit_transaction(trans
, root
);
1867 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1869 up_write(&root
->fs_info
->subvol_sem
);
1871 mnt_drop_write_file(file
);
1877 * helper to check if the subvolume references other subvolumes
1879 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1881 struct btrfs_path
*path
;
1882 struct btrfs_dir_item
*di
;
1883 struct btrfs_key key
;
1887 path
= btrfs_alloc_path();
1891 /* Make sure this root isn't set as the default subvol */
1892 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
1893 di
= btrfs_lookup_dir_item(NULL
, root
->fs_info
->tree_root
, path
,
1894 dir_id
, "default", 7, 0);
1895 if (di
&& !IS_ERR(di
)) {
1896 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1897 if (key
.objectid
== root
->root_key
.objectid
) {
1899 btrfs_err(root
->fs_info
, "deleting default subvolume "
1900 "%llu is not allowed", key
.objectid
);
1903 btrfs_release_path(path
);
1906 key
.objectid
= root
->root_key
.objectid
;
1907 key
.type
= BTRFS_ROOT_REF_KEY
;
1908 key
.offset
= (u64
)-1;
1910 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
,
1917 if (path
->slots
[0] > 0) {
1919 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1920 if (key
.objectid
== root
->root_key
.objectid
&&
1921 key
.type
== BTRFS_ROOT_REF_KEY
)
1925 btrfs_free_path(path
);
1929 static noinline
int key_in_sk(struct btrfs_key
*key
,
1930 struct btrfs_ioctl_search_key
*sk
)
1932 struct btrfs_key test
;
1935 test
.objectid
= sk
->min_objectid
;
1936 test
.type
= sk
->min_type
;
1937 test
.offset
= sk
->min_offset
;
1939 ret
= btrfs_comp_cpu_keys(key
, &test
);
1943 test
.objectid
= sk
->max_objectid
;
1944 test
.type
= sk
->max_type
;
1945 test
.offset
= sk
->max_offset
;
1947 ret
= btrfs_comp_cpu_keys(key
, &test
);
1953 static noinline
int copy_to_sk(struct btrfs_root
*root
,
1954 struct btrfs_path
*path
,
1955 struct btrfs_key
*key
,
1956 struct btrfs_ioctl_search_key
*sk
,
1959 unsigned long *sk_offset
,
1963 struct extent_buffer
*leaf
;
1964 struct btrfs_ioctl_search_header sh
;
1965 struct btrfs_key test
;
1966 unsigned long item_off
;
1967 unsigned long item_len
;
1973 leaf
= path
->nodes
[0];
1974 slot
= path
->slots
[0];
1975 nritems
= btrfs_header_nritems(leaf
);
1977 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1981 found_transid
= btrfs_header_generation(leaf
);
1983 for (i
= slot
; i
< nritems
; i
++) {
1984 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1985 item_len
= btrfs_item_size_nr(leaf
, i
);
1987 btrfs_item_key_to_cpu(leaf
, key
, i
);
1988 if (!key_in_sk(key
, sk
))
1991 if (sizeof(sh
) + item_len
> *buf_size
) {
1998 * return one empty item back for v1, which does not
2002 *buf_size
= sizeof(sh
) + item_len
;
2007 if (sizeof(sh
) + item_len
+ *sk_offset
> *buf_size
) {
2012 sh
.objectid
= key
->objectid
;
2013 sh
.offset
= key
->offset
;
2014 sh
.type
= key
->type
;
2016 sh
.transid
= found_transid
;
2018 /* copy search result header */
2019 if (copy_to_user(ubuf
+ *sk_offset
, &sh
, sizeof(sh
))) {
2024 *sk_offset
+= sizeof(sh
);
2027 char __user
*up
= ubuf
+ *sk_offset
;
2029 if (read_extent_buffer_to_user(leaf
, up
,
2030 item_off
, item_len
)) {
2035 *sk_offset
+= item_len
;
2039 if (ret
) /* -EOVERFLOW from above */
2042 if (*num_found
>= sk
->nr_items
) {
2049 test
.objectid
= sk
->max_objectid
;
2050 test
.type
= sk
->max_type
;
2051 test
.offset
= sk
->max_offset
;
2052 if (btrfs_comp_cpu_keys(key
, &test
) >= 0)
2054 else if (key
->offset
< (u64
)-1)
2056 else if (key
->type
< (u8
)-1) {
2059 } else if (key
->objectid
< (u64
)-1) {
2067 * 0: all items from this leaf copied, continue with next
2068 * 1: * more items can be copied, but unused buffer is too small
2069 * * all items were found
2070 * Either way, it will stops the loop which iterates to the next
2072 * -EOVERFLOW: item was to large for buffer
2073 * -EFAULT: could not copy extent buffer back to userspace
2078 static noinline
int search_ioctl(struct inode
*inode
,
2079 struct btrfs_ioctl_search_key
*sk
,
2083 struct btrfs_root
*root
;
2084 struct btrfs_key key
;
2085 struct btrfs_path
*path
;
2086 struct btrfs_fs_info
*info
= BTRFS_I(inode
)->root
->fs_info
;
2089 unsigned long sk_offset
= 0;
2091 if (*buf_size
< sizeof(struct btrfs_ioctl_search_header
)) {
2092 *buf_size
= sizeof(struct btrfs_ioctl_search_header
);
2096 path
= btrfs_alloc_path();
2100 if (sk
->tree_id
== 0) {
2101 /* search the root of the inode that was passed */
2102 root
= BTRFS_I(inode
)->root
;
2104 key
.objectid
= sk
->tree_id
;
2105 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2106 key
.offset
= (u64
)-1;
2107 root
= btrfs_read_fs_root_no_name(info
, &key
);
2109 btrfs_free_path(path
);
2114 key
.objectid
= sk
->min_objectid
;
2115 key
.type
= sk
->min_type
;
2116 key
.offset
= sk
->min_offset
;
2119 ret
= btrfs_search_forward(root
, &key
, path
, sk
->min_transid
);
2125 ret
= copy_to_sk(root
, path
, &key
, sk
, buf_size
, ubuf
,
2126 &sk_offset
, &num_found
);
2127 btrfs_release_path(path
);
2135 sk
->nr_items
= num_found
;
2136 btrfs_free_path(path
);
2140 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
2143 struct btrfs_ioctl_search_args __user
*uargs
;
2144 struct btrfs_ioctl_search_key sk
;
2145 struct inode
*inode
;
2149 if (!capable(CAP_SYS_ADMIN
))
2152 uargs
= (struct btrfs_ioctl_search_args __user
*)argp
;
2154 if (copy_from_user(&sk
, &uargs
->key
, sizeof(sk
)))
2157 buf_size
= sizeof(uargs
->buf
);
2159 inode
= file_inode(file
);
2160 ret
= search_ioctl(inode
, &sk
, &buf_size
, uargs
->buf
);
2163 * In the origin implementation an overflow is handled by returning a
2164 * search header with a len of zero, so reset ret.
2166 if (ret
== -EOVERFLOW
)
2169 if (ret
== 0 && copy_to_user(&uargs
->key
, &sk
, sizeof(sk
)))
2174 static noinline
int btrfs_ioctl_tree_search_v2(struct file
*file
,
2177 struct btrfs_ioctl_search_args_v2 __user
*uarg
;
2178 struct btrfs_ioctl_search_args_v2 args
;
2179 struct inode
*inode
;
2182 const size_t buf_limit
= SZ_16M
;
2184 if (!capable(CAP_SYS_ADMIN
))
2187 /* copy search header and buffer size */
2188 uarg
= (struct btrfs_ioctl_search_args_v2 __user
*)argp
;
2189 if (copy_from_user(&args
, uarg
, sizeof(args
)))
2192 buf_size
= args
.buf_size
;
2194 if (buf_size
< sizeof(struct btrfs_ioctl_search_header
))
2197 /* limit result size to 16MB */
2198 if (buf_size
> buf_limit
)
2199 buf_size
= buf_limit
;
2201 inode
= file_inode(file
);
2202 ret
= search_ioctl(inode
, &args
.key
, &buf_size
,
2203 (char *)(&uarg
->buf
[0]));
2204 if (ret
== 0 && copy_to_user(&uarg
->key
, &args
.key
, sizeof(args
.key
)))
2206 else if (ret
== -EOVERFLOW
&&
2207 copy_to_user(&uarg
->buf_size
, &buf_size
, sizeof(buf_size
)))
2214 * Search INODE_REFs to identify path name of 'dirid' directory
2215 * in a 'tree_id' tree. and sets path name to 'name'.
2217 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
2218 u64 tree_id
, u64 dirid
, char *name
)
2220 struct btrfs_root
*root
;
2221 struct btrfs_key key
;
2227 struct btrfs_inode_ref
*iref
;
2228 struct extent_buffer
*l
;
2229 struct btrfs_path
*path
;
2231 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
2236 path
= btrfs_alloc_path();
2240 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
2242 key
.objectid
= tree_id
;
2243 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2244 key
.offset
= (u64
)-1;
2245 root
= btrfs_read_fs_root_no_name(info
, &key
);
2247 btrfs_err(info
, "could not find root %llu", tree_id
);
2252 key
.objectid
= dirid
;
2253 key
.type
= BTRFS_INODE_REF_KEY
;
2254 key
.offset
= (u64
)-1;
2257 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2261 ret
= btrfs_previous_item(root
, path
, dirid
,
2262 BTRFS_INODE_REF_KEY
);
2272 slot
= path
->slots
[0];
2273 btrfs_item_key_to_cpu(l
, &key
, slot
);
2275 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
2276 len
= btrfs_inode_ref_name_len(l
, iref
);
2278 total_len
+= len
+ 1;
2280 ret
= -ENAMETOOLONG
;
2285 read_extent_buffer(l
, ptr
, (unsigned long)(iref
+ 1), len
);
2287 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2290 btrfs_release_path(path
);
2291 key
.objectid
= key
.offset
;
2292 key
.offset
= (u64
)-1;
2293 dirid
= key
.objectid
;
2295 memmove(name
, ptr
, total_len
);
2296 name
[total_len
] = '\0';
2299 btrfs_free_path(path
);
2303 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2306 struct btrfs_ioctl_ino_lookup_args
*args
;
2307 struct inode
*inode
;
2310 args
= memdup_user(argp
, sizeof(*args
));
2312 return PTR_ERR(args
);
2314 inode
= file_inode(file
);
2317 * Unprivileged query to obtain the containing subvolume root id. The
2318 * path is reset so it's consistent with btrfs_search_path_in_tree.
2320 if (args
->treeid
== 0)
2321 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2323 if (args
->objectid
== BTRFS_FIRST_FREE_OBJECTID
) {
2328 if (!capable(CAP_SYS_ADMIN
)) {
2333 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2334 args
->treeid
, args
->objectid
,
2338 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2345 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2348 struct dentry
*parent
= file
->f_path
.dentry
;
2349 struct dentry
*dentry
;
2350 struct inode
*dir
= d_inode(parent
);
2351 struct inode
*inode
;
2352 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2353 struct btrfs_root
*dest
= NULL
;
2354 struct btrfs_ioctl_vol_args
*vol_args
;
2355 struct btrfs_trans_handle
*trans
;
2356 struct btrfs_block_rsv block_rsv
;
2358 u64 qgroup_reserved
;
2363 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2364 if (IS_ERR(vol_args
))
2365 return PTR_ERR(vol_args
);
2367 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2368 namelen
= strlen(vol_args
->name
);
2369 if (strchr(vol_args
->name
, '/') ||
2370 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2375 err
= mnt_want_write_file(file
);
2380 inode_lock_nested(dir
, I_MUTEX_PARENT
);
2381 // XXX: should've been
2382 // err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2383 // if (err == -EINTR)
2384 // goto out_drop_write;
2385 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2386 if (IS_ERR(dentry
)) {
2387 err
= PTR_ERR(dentry
);
2388 goto out_unlock_dir
;
2391 if (d_really_is_negative(dentry
)) {
2396 inode
= d_inode(dentry
);
2397 dest
= BTRFS_I(inode
)->root
;
2398 if (!capable(CAP_SYS_ADMIN
)) {
2400 * Regular user. Only allow this with a special mount
2401 * option, when the user has write+exec access to the
2402 * subvol root, and when rmdir(2) would have been
2405 * Note that this is _not_ check that the subvol is
2406 * empty or doesn't contain data that we wouldn't
2407 * otherwise be able to delete.
2409 * Users who want to delete empty subvols should try
2413 if (!btrfs_test_opt(root
, USER_SUBVOL_RM_ALLOWED
))
2417 * Do not allow deletion if the parent dir is the same
2418 * as the dir to be deleted. That means the ioctl
2419 * must be called on the dentry referencing the root
2420 * of the subvol, not a random directory contained
2427 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2432 /* check if subvolume may be deleted by a user */
2433 err
= btrfs_may_delete(dir
, dentry
, 1);
2437 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
2445 * Don't allow to delete a subvolume with send in progress. This is
2446 * inside the i_mutex so the error handling that has to drop the bit
2447 * again is not run concurrently.
2449 spin_lock(&dest
->root_item_lock
);
2450 root_flags
= btrfs_root_flags(&dest
->root_item
);
2451 if (dest
->send_in_progress
== 0) {
2452 btrfs_set_root_flags(&dest
->root_item
,
2453 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
2454 spin_unlock(&dest
->root_item_lock
);
2456 spin_unlock(&dest
->root_item_lock
);
2457 btrfs_warn(root
->fs_info
,
2458 "Attempt to delete subvolume %llu during send",
2459 dest
->root_key
.objectid
);
2461 goto out_unlock_inode
;
2464 down_write(&root
->fs_info
->subvol_sem
);
2466 err
= may_destroy_subvol(dest
);
2470 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
2472 * One for dir inode, two for dir entries, two for root
2475 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
2476 5, &qgroup_reserved
, true);
2480 trans
= btrfs_start_transaction(root
, 0);
2481 if (IS_ERR(trans
)) {
2482 err
= PTR_ERR(trans
);
2485 trans
->block_rsv
= &block_rsv
;
2486 trans
->bytes_reserved
= block_rsv
.size
;
2488 btrfs_record_snapshot_destroy(trans
, dir
);
2490 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2491 dest
->root_key
.objectid
,
2492 dentry
->d_name
.name
,
2493 dentry
->d_name
.len
);
2496 btrfs_abort_transaction(trans
, root
, ret
);
2500 btrfs_record_root_in_trans(trans
, dest
);
2502 memset(&dest
->root_item
.drop_progress
, 0,
2503 sizeof(dest
->root_item
.drop_progress
));
2504 dest
->root_item
.drop_level
= 0;
2505 btrfs_set_root_refs(&dest
->root_item
, 0);
2507 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
2508 ret
= btrfs_insert_orphan_item(trans
,
2509 root
->fs_info
->tree_root
,
2510 dest
->root_key
.objectid
);
2512 btrfs_abort_transaction(trans
, root
, ret
);
2518 ret
= btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
2519 dest
->root_item
.uuid
, BTRFS_UUID_KEY_SUBVOL
,
2520 dest
->root_key
.objectid
);
2521 if (ret
&& ret
!= -ENOENT
) {
2522 btrfs_abort_transaction(trans
, root
, ret
);
2526 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
2527 ret
= btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
2528 dest
->root_item
.received_uuid
,
2529 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
2530 dest
->root_key
.objectid
);
2531 if (ret
&& ret
!= -ENOENT
) {
2532 btrfs_abort_transaction(trans
, root
, ret
);
2539 trans
->block_rsv
= NULL
;
2540 trans
->bytes_reserved
= 0;
2541 ret
= btrfs_end_transaction(trans
, root
);
2544 inode
->i_flags
|= S_DEAD
;
2546 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
2548 up_write(&root
->fs_info
->subvol_sem
);
2550 spin_lock(&dest
->root_item_lock
);
2551 root_flags
= btrfs_root_flags(&dest
->root_item
);
2552 btrfs_set_root_flags(&dest
->root_item
,
2553 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
2554 spin_unlock(&dest
->root_item_lock
);
2557 inode_unlock(inode
);
2559 d_invalidate(dentry
);
2560 btrfs_invalidate_inodes(dest
);
2562 ASSERT(dest
->send_in_progress
== 0);
2565 if (dest
->ino_cache_inode
) {
2566 iput(dest
->ino_cache_inode
);
2567 dest
->ino_cache_inode
= NULL
;
2575 mnt_drop_write_file(file
);
2581 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2583 struct inode
*inode
= file_inode(file
);
2584 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2585 struct btrfs_ioctl_defrag_range_args
*range
;
2588 ret
= mnt_want_write_file(file
);
2592 if (btrfs_root_readonly(root
)) {
2597 switch (inode
->i_mode
& S_IFMT
) {
2599 if (!capable(CAP_SYS_ADMIN
)) {
2603 ret
= btrfs_defrag_root(root
);
2606 ret
= btrfs_defrag_root(root
->fs_info
->extent_root
);
2609 if (!(file
->f_mode
& FMODE_WRITE
)) {
2614 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2621 if (copy_from_user(range
, argp
,
2627 /* compression requires us to start the IO */
2628 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2629 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2630 range
->extent_thresh
= (u32
)-1;
2633 /* the rest are all set to zero by kzalloc */
2634 range
->len
= (u64
)-1;
2636 ret
= btrfs_defrag_file(file_inode(file
), file
,
2646 mnt_drop_write_file(file
);
2650 static long btrfs_ioctl_add_dev(struct btrfs_root
*root
, void __user
*arg
)
2652 struct btrfs_ioctl_vol_args
*vol_args
;
2655 if (!capable(CAP_SYS_ADMIN
))
2658 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2660 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2663 mutex_lock(&root
->fs_info
->volume_mutex
);
2664 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2665 if (IS_ERR(vol_args
)) {
2666 ret
= PTR_ERR(vol_args
);
2670 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2671 ret
= btrfs_init_new_device(root
, vol_args
->name
);
2674 btrfs_info(root
->fs_info
, "disk added %s",vol_args
->name
);
2678 mutex_unlock(&root
->fs_info
->volume_mutex
);
2679 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2683 static long btrfs_ioctl_rm_dev_v2(struct file
*file
, void __user
*arg
)
2685 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
2686 struct btrfs_ioctl_vol_args_v2
*vol_args
;
2689 if (!capable(CAP_SYS_ADMIN
))
2692 ret
= mnt_want_write_file(file
);
2696 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2697 if (IS_ERR(vol_args
)) {
2698 ret
= PTR_ERR(vol_args
);
2702 /* Check for compatibility reject unknown flags */
2703 if (vol_args
->flags
& ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED
)
2706 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2708 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2712 mutex_lock(&root
->fs_info
->volume_mutex
);
2713 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
) {
2714 ret
= btrfs_rm_device(root
, NULL
, vol_args
->devid
);
2716 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
2717 ret
= btrfs_rm_device(root
, vol_args
->name
, 0);
2719 mutex_unlock(&root
->fs_info
->volume_mutex
);
2720 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2723 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
)
2724 btrfs_info(root
->fs_info
, "device deleted: id %llu",
2727 btrfs_info(root
->fs_info
, "device deleted: %s",
2733 mnt_drop_write_file(file
);
2737 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
2739 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
2740 struct btrfs_ioctl_vol_args
*vol_args
;
2743 if (!capable(CAP_SYS_ADMIN
))
2746 ret
= mnt_want_write_file(file
);
2750 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2752 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2753 goto out_drop_write
;
2756 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2757 if (IS_ERR(vol_args
)) {
2758 ret
= PTR_ERR(vol_args
);
2762 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2763 mutex_lock(&root
->fs_info
->volume_mutex
);
2764 ret
= btrfs_rm_device(root
, vol_args
->name
, 0);
2765 mutex_unlock(&root
->fs_info
->volume_mutex
);
2768 btrfs_info(root
->fs_info
, "disk deleted %s",vol_args
->name
);
2771 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2773 mnt_drop_write_file(file
);
2778 static long btrfs_ioctl_fs_info(struct btrfs_root
*root
, void __user
*arg
)
2780 struct btrfs_ioctl_fs_info_args
*fi_args
;
2781 struct btrfs_device
*device
;
2782 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2785 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2789 mutex_lock(&fs_devices
->device_list_mutex
);
2790 fi_args
->num_devices
= fs_devices
->num_devices
;
2791 memcpy(&fi_args
->fsid
, root
->fs_info
->fsid
, sizeof(fi_args
->fsid
));
2793 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
2794 if (device
->devid
> fi_args
->max_id
)
2795 fi_args
->max_id
= device
->devid
;
2797 mutex_unlock(&fs_devices
->device_list_mutex
);
2799 fi_args
->nodesize
= root
->fs_info
->super_copy
->nodesize
;
2800 fi_args
->sectorsize
= root
->fs_info
->super_copy
->sectorsize
;
2801 fi_args
->clone_alignment
= root
->fs_info
->super_copy
->sectorsize
;
2803 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2810 static long btrfs_ioctl_dev_info(struct btrfs_root
*root
, void __user
*arg
)
2812 struct btrfs_ioctl_dev_info_args
*di_args
;
2813 struct btrfs_device
*dev
;
2814 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2816 char *s_uuid
= NULL
;
2818 di_args
= memdup_user(arg
, sizeof(*di_args
));
2819 if (IS_ERR(di_args
))
2820 return PTR_ERR(di_args
);
2822 if (!btrfs_is_empty_uuid(di_args
->uuid
))
2823 s_uuid
= di_args
->uuid
;
2825 mutex_lock(&fs_devices
->device_list_mutex
);
2826 dev
= btrfs_find_device(root
->fs_info
, di_args
->devid
, s_uuid
, NULL
);
2833 di_args
->devid
= dev
->devid
;
2834 di_args
->bytes_used
= btrfs_device_get_bytes_used(dev
);
2835 di_args
->total_bytes
= btrfs_device_get_total_bytes(dev
);
2836 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2838 struct rcu_string
*name
;
2841 name
= rcu_dereference(dev
->name
);
2842 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
));
2844 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2846 di_args
->path
[0] = '\0';
2850 mutex_unlock(&fs_devices
->device_list_mutex
);
2851 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2858 static struct page
*extent_same_get_page(struct inode
*inode
, pgoff_t index
)
2862 page
= grab_cache_page(inode
->i_mapping
, index
);
2864 return ERR_PTR(-ENOMEM
);
2866 if (!PageUptodate(page
)) {
2869 ret
= btrfs_readpage(NULL
, page
);
2871 return ERR_PTR(ret
);
2873 if (!PageUptodate(page
)) {
2876 return ERR_PTR(-EIO
);
2878 if (page
->mapping
!= inode
->i_mapping
) {
2881 return ERR_PTR(-EAGAIN
);
2888 static int gather_extent_pages(struct inode
*inode
, struct page
**pages
,
2889 int num_pages
, u64 off
)
2892 pgoff_t index
= off
>> PAGE_SHIFT
;
2894 for (i
= 0; i
< num_pages
; i
++) {
2896 pages
[i
] = extent_same_get_page(inode
, index
+ i
);
2897 if (IS_ERR(pages
[i
])) {
2898 int err
= PTR_ERR(pages
[i
]);
2909 static int lock_extent_range(struct inode
*inode
, u64 off
, u64 len
,
2910 bool retry_range_locking
)
2913 * Do any pending delalloc/csum calculations on inode, one way or
2914 * another, and lock file content.
2915 * The locking order is:
2918 * 2) range in the inode's io tree
2921 struct btrfs_ordered_extent
*ordered
;
2922 lock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2923 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2926 ordered
->file_offset
+ ordered
->len
<= off
||
2927 ordered
->file_offset
>= off
+ len
) &&
2928 !test_range_bit(&BTRFS_I(inode
)->io_tree
, off
,
2929 off
+ len
- 1, EXTENT_DELALLOC
, 0, NULL
)) {
2931 btrfs_put_ordered_extent(ordered
);
2934 unlock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2936 btrfs_put_ordered_extent(ordered
);
2937 if (!retry_range_locking
)
2939 btrfs_wait_ordered_range(inode
, off
, len
);
2944 static void btrfs_double_inode_unlock(struct inode
*inode1
, struct inode
*inode2
)
2946 inode_unlock(inode1
);
2947 inode_unlock(inode2
);
2950 static void btrfs_double_inode_lock(struct inode
*inode1
, struct inode
*inode2
)
2952 if (inode1
< inode2
)
2953 swap(inode1
, inode2
);
2955 inode_lock_nested(inode1
, I_MUTEX_PARENT
);
2956 inode_lock_nested(inode2
, I_MUTEX_CHILD
);
2959 static void btrfs_double_extent_unlock(struct inode
*inode1
, u64 loff1
,
2960 struct inode
*inode2
, u64 loff2
, u64 len
)
2962 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
, loff1
+ len
- 1);
2963 unlock_extent(&BTRFS_I(inode2
)->io_tree
, loff2
, loff2
+ len
- 1);
2966 static int btrfs_double_extent_lock(struct inode
*inode1
, u64 loff1
,
2967 struct inode
*inode2
, u64 loff2
, u64 len
,
2968 bool retry_range_locking
)
2972 if (inode1
< inode2
) {
2973 swap(inode1
, inode2
);
2976 ret
= lock_extent_range(inode1
, loff1
, len
, retry_range_locking
);
2979 ret
= lock_extent_range(inode2
, loff2
, len
, retry_range_locking
);
2981 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
,
2988 struct page
**src_pages
;
2989 struct page
**dst_pages
;
2992 static void btrfs_cmp_data_free(struct cmp_pages
*cmp
)
2997 for (i
= 0; i
< cmp
->num_pages
; i
++) {
2998 pg
= cmp
->src_pages
[i
];
3003 pg
= cmp
->dst_pages
[i
];
3009 kfree(cmp
->src_pages
);
3010 kfree(cmp
->dst_pages
);
3013 static int btrfs_cmp_data_prepare(struct inode
*src
, u64 loff
,
3014 struct inode
*dst
, u64 dst_loff
,
3015 u64 len
, struct cmp_pages
*cmp
)
3018 int num_pages
= PAGE_ALIGN(len
) >> PAGE_SHIFT
;
3019 struct page
**src_pgarr
, **dst_pgarr
;
3022 * We must gather up all the pages before we initiate our
3023 * extent locking. We use an array for the page pointers. Size
3024 * of the array is bounded by len, which is in turn bounded by
3025 * BTRFS_MAX_DEDUPE_LEN.
3027 src_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
3028 dst_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
3029 if (!src_pgarr
|| !dst_pgarr
) {
3034 cmp
->num_pages
= num_pages
;
3035 cmp
->src_pages
= src_pgarr
;
3036 cmp
->dst_pages
= dst_pgarr
;
3038 ret
= gather_extent_pages(src
, cmp
->src_pages
, cmp
->num_pages
, loff
);
3042 ret
= gather_extent_pages(dst
, cmp
->dst_pages
, cmp
->num_pages
, dst_loff
);
3046 btrfs_cmp_data_free(cmp
);
3050 static int btrfs_cmp_data(struct inode
*src
, u64 loff
, struct inode
*dst
,
3051 u64 dst_loff
, u64 len
, struct cmp_pages
*cmp
)
3055 struct page
*src_page
, *dst_page
;
3056 unsigned int cmp_len
= PAGE_SIZE
;
3057 void *addr
, *dst_addr
;
3061 if (len
< PAGE_SIZE
)
3064 BUG_ON(i
>= cmp
->num_pages
);
3066 src_page
= cmp
->src_pages
[i
];
3067 dst_page
= cmp
->dst_pages
[i
];
3068 ASSERT(PageLocked(src_page
));
3069 ASSERT(PageLocked(dst_page
));
3071 addr
= kmap_atomic(src_page
);
3072 dst_addr
= kmap_atomic(dst_page
);
3074 flush_dcache_page(src_page
);
3075 flush_dcache_page(dst_page
);
3077 if (memcmp(addr
, dst_addr
, cmp_len
))
3080 kunmap_atomic(addr
);
3081 kunmap_atomic(dst_addr
);
3093 static int extent_same_check_offsets(struct inode
*inode
, u64 off
, u64
*plen
,
3097 u64 bs
= BTRFS_I(inode
)->root
->fs_info
->sb
->s_blocksize
;
3099 if (off
+ olen
> inode
->i_size
|| off
+ olen
< off
)
3102 /* if we extend to eof, continue to block boundary */
3103 if (off
+ len
== inode
->i_size
)
3104 *plen
= len
= ALIGN(inode
->i_size
, bs
) - off
;
3106 /* Check that we are block aligned - btrfs_clone() requires this */
3107 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
))
3113 static int btrfs_extent_same(struct inode
*src
, u64 loff
, u64 olen
,
3114 struct inode
*dst
, u64 dst_loff
)
3118 struct cmp_pages cmp
;
3120 u64 same_lock_start
= 0;
3121 u64 same_lock_len
= 0;
3132 ret
= extent_same_check_offsets(src
, loff
, &len
, olen
);
3135 ret
= extent_same_check_offsets(src
, dst_loff
, &len
, olen
);
3140 * Single inode case wants the same checks, except we
3141 * don't want our length pushed out past i_size as
3142 * comparing that data range makes no sense.
3144 * extent_same_check_offsets() will do this for an
3145 * unaligned length at i_size, so catch it here and
3146 * reject the request.
3148 * This effectively means we require aligned extents
3149 * for the single-inode case, whereas the other cases
3150 * allow an unaligned length so long as it ends at
3158 /* Check for overlapping ranges */
3159 if (dst_loff
+ len
> loff
&& dst_loff
< loff
+ len
) {
3164 same_lock_start
= min_t(u64
, loff
, dst_loff
);
3165 same_lock_len
= max_t(u64
, loff
, dst_loff
) + len
- same_lock_start
;
3167 btrfs_double_inode_lock(src
, dst
);
3169 ret
= extent_same_check_offsets(src
, loff
, &len
, olen
);
3173 ret
= extent_same_check_offsets(dst
, dst_loff
, &len
, olen
);
3178 /* don't make the dst file partly checksummed */
3179 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3180 (BTRFS_I(dst
)->flags
& BTRFS_INODE_NODATASUM
)) {
3186 ret
= btrfs_cmp_data_prepare(src
, loff
, dst
, dst_loff
, olen
, &cmp
);
3191 ret
= lock_extent_range(src
, same_lock_start
, same_lock_len
,
3194 ret
= btrfs_double_extent_lock(src
, loff
, dst
, dst_loff
, len
,
3197 * If one of the inodes has dirty pages in the respective range or
3198 * ordered extents, we need to flush dellaloc and wait for all ordered
3199 * extents in the range. We must unlock the pages and the ranges in the
3200 * io trees to avoid deadlocks when flushing delalloc (requires locking
3201 * pages) and when waiting for ordered extents to complete (they require
3204 if (ret
== -EAGAIN
) {
3206 * Ranges in the io trees already unlocked. Now unlock all
3207 * pages before waiting for all IO to complete.
3209 btrfs_cmp_data_free(&cmp
);
3211 btrfs_wait_ordered_range(src
, same_lock_start
,
3214 btrfs_wait_ordered_range(src
, loff
, len
);
3215 btrfs_wait_ordered_range(dst
, dst_loff
, len
);
3221 /* ranges in the io trees already unlocked */
3222 btrfs_cmp_data_free(&cmp
);
3226 /* pass original length for comparison so we stay within i_size */
3227 ret
= btrfs_cmp_data(src
, loff
, dst
, dst_loff
, olen
, &cmp
);
3229 ret
= btrfs_clone(src
, dst
, loff
, olen
, len
, dst_loff
, 1);
3232 unlock_extent(&BTRFS_I(src
)->io_tree
, same_lock_start
,
3233 same_lock_start
+ same_lock_len
- 1);
3235 btrfs_double_extent_unlock(src
, loff
, dst
, dst_loff
, len
);
3237 btrfs_cmp_data_free(&cmp
);
3242 btrfs_double_inode_unlock(src
, dst
);
3247 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3249 ssize_t
btrfs_dedupe_file_range(struct file
*src_file
, u64 loff
, u64 olen
,
3250 struct file
*dst_file
, u64 dst_loff
)
3252 struct inode
*src
= file_inode(src_file
);
3253 struct inode
*dst
= file_inode(dst_file
);
3254 u64 bs
= BTRFS_I(src
)->root
->fs_info
->sb
->s_blocksize
;
3257 if (olen
> BTRFS_MAX_DEDUPE_LEN
)
3258 olen
= BTRFS_MAX_DEDUPE_LEN
;
3260 if (WARN_ON_ONCE(bs
< PAGE_SIZE
)) {
3262 * Btrfs does not support blocksize < page_size. As a
3263 * result, btrfs_cmp_data() won't correctly handle
3264 * this situation without an update.
3269 res
= btrfs_extent_same(src
, loff
, olen
, dst
, dst_loff
);
3275 static int clone_finish_inode_update(struct btrfs_trans_handle
*trans
,
3276 struct inode
*inode
,
3282 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3285 inode_inc_iversion(inode
);
3286 if (!no_time_update
)
3287 inode
->i_mtime
= inode
->i_ctime
= current_fs_time(inode
->i_sb
);
3289 * We round up to the block size at eof when determining which
3290 * extents to clone above, but shouldn't round up the file size.
3292 if (endoff
> destoff
+ olen
)
3293 endoff
= destoff
+ olen
;
3294 if (endoff
> inode
->i_size
)
3295 btrfs_i_size_write(inode
, endoff
);
3297 ret
= btrfs_update_inode(trans
, root
, inode
);
3299 btrfs_abort_transaction(trans
, root
, ret
);
3300 btrfs_end_transaction(trans
, root
);
3303 ret
= btrfs_end_transaction(trans
, root
);
3308 static void clone_update_extent_map(struct inode
*inode
,
3309 const struct btrfs_trans_handle
*trans
,
3310 const struct btrfs_path
*path
,
3311 const u64 hole_offset
,
3314 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
3315 struct extent_map
*em
;
3318 em
= alloc_extent_map();
3320 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3321 &BTRFS_I(inode
)->runtime_flags
);
3326 struct btrfs_file_extent_item
*fi
;
3328 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3329 struct btrfs_file_extent_item
);
3330 btrfs_extent_item_to_extent_map(inode
, path
, fi
, false, em
);
3331 em
->generation
= -1;
3332 if (btrfs_file_extent_type(path
->nodes
[0], fi
) ==
3333 BTRFS_FILE_EXTENT_INLINE
)
3334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3335 &BTRFS_I(inode
)->runtime_flags
);
3337 em
->start
= hole_offset
;
3339 em
->ram_bytes
= em
->len
;
3340 em
->orig_start
= hole_offset
;
3341 em
->block_start
= EXTENT_MAP_HOLE
;
3343 em
->orig_block_len
= 0;
3344 em
->compress_type
= BTRFS_COMPRESS_NONE
;
3345 em
->generation
= trans
->transid
;
3349 write_lock(&em_tree
->lock
);
3350 ret
= add_extent_mapping(em_tree
, em
, 1);
3351 write_unlock(&em_tree
->lock
);
3352 if (ret
!= -EEXIST
) {
3353 free_extent_map(em
);
3356 btrfs_drop_extent_cache(inode
, em
->start
,
3357 em
->start
+ em
->len
- 1, 0);
3361 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3362 &BTRFS_I(inode
)->runtime_flags
);
3366 * Make sure we do not end up inserting an inline extent into a file that has
3367 * already other (non-inline) extents. If a file has an inline extent it can
3368 * not have any other extents and the (single) inline extent must start at the
3369 * file offset 0. Failing to respect these rules will lead to file corruption,
3370 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3372 * We can have extents that have been already written to disk or we can have
3373 * dirty ranges still in delalloc, in which case the extent maps and items are
3374 * created only when we run delalloc, and the delalloc ranges might fall outside
3375 * the range we are currently locking in the inode's io tree. So we check the
3376 * inode's i_size because of that (i_size updates are done while holding the
3377 * i_mutex, which we are holding here).
3378 * We also check to see if the inode has a size not greater than "datal" but has
3379 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3380 * protected against such concurrent fallocate calls by the i_mutex).
3382 * If the file has no extents but a size greater than datal, do not allow the
3383 * copy because we would need turn the inline extent into a non-inline one (even
3384 * with NO_HOLES enabled). If we find our destination inode only has one inline
3385 * extent, just overwrite it with the source inline extent if its size is less
3386 * than the source extent's size, or we could copy the source inline extent's
3387 * data into the destination inode's inline extent if the later is greater then
3390 static int clone_copy_inline_extent(struct inode
*src
,
3392 struct btrfs_trans_handle
*trans
,
3393 struct btrfs_path
*path
,
3394 struct btrfs_key
*new_key
,
3395 const u64 drop_start
,
3401 struct btrfs_root
*root
= BTRFS_I(dst
)->root
;
3402 const u64 aligned_end
= ALIGN(new_key
->offset
+ datal
,
3405 struct btrfs_key key
;
3407 if (new_key
->offset
> 0)
3410 key
.objectid
= btrfs_ino(dst
);
3411 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3413 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3416 } else if (ret
> 0) {
3417 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
3418 ret
= btrfs_next_leaf(root
, path
);
3422 goto copy_inline_extent
;
3424 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
3425 if (key
.objectid
== btrfs_ino(dst
) &&
3426 key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3427 ASSERT(key
.offset
> 0);
3430 } else if (i_size_read(dst
) <= datal
) {
3431 struct btrfs_file_extent_item
*ei
;
3435 * If the file size is <= datal, make sure there are no other
3436 * extents following (can happen do to an fallocate call with
3437 * the flag FALLOC_FL_KEEP_SIZE).
3439 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3440 struct btrfs_file_extent_item
);
3442 * If it's an inline extent, it can not have other extents
3445 if (btrfs_file_extent_type(path
->nodes
[0], ei
) ==
3446 BTRFS_FILE_EXTENT_INLINE
)
3447 goto copy_inline_extent
;
3449 ext_len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
3450 if (ext_len
> aligned_end
)
3453 ret
= btrfs_next_item(root
, path
);
3456 } else if (ret
== 0) {
3457 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3459 if (key
.objectid
== btrfs_ino(dst
) &&
3460 key
.type
== BTRFS_EXTENT_DATA_KEY
)
3467 * We have no extent items, or we have an extent at offset 0 which may
3468 * or may not be inlined. All these cases are dealt the same way.
3470 if (i_size_read(dst
) > datal
) {
3472 * If the destination inode has an inline extent...
3473 * This would require copying the data from the source inline
3474 * extent into the beginning of the destination's inline extent.
3475 * But this is really complex, both extents can be compressed
3476 * or just one of them, which would require decompressing and
3477 * re-compressing data (which could increase the new compressed
3478 * size, not allowing the compressed data to fit anymore in an
3480 * So just don't support this case for now (it should be rare,
3481 * we are not really saving space when cloning inline extents).
3486 btrfs_release_path(path
);
3487 ret
= btrfs_drop_extents(trans
, root
, dst
, drop_start
, aligned_end
, 1);
3490 ret
= btrfs_insert_empty_item(trans
, root
, path
, new_key
, size
);
3495 const u32 start
= btrfs_file_extent_calc_inline_size(0);
3497 memmove(inline_data
+ start
, inline_data
+ start
+ skip
, datal
);
3500 write_extent_buffer(path
->nodes
[0], inline_data
,
3501 btrfs_item_ptr_offset(path
->nodes
[0],
3504 inode_add_bytes(dst
, datal
);
3510 * btrfs_clone() - clone a range from inode file to another
3512 * @src: Inode to clone from
3513 * @inode: Inode to clone to
3514 * @off: Offset within source to start clone from
3515 * @olen: Original length, passed by user, of range to clone
3516 * @olen_aligned: Block-aligned value of olen
3517 * @destoff: Offset within @inode to start clone
3518 * @no_time_update: Whether to update mtime/ctime on the target inode
3520 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
3521 const u64 off
, const u64 olen
, const u64 olen_aligned
,
3522 const u64 destoff
, int no_time_update
)
3524 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3525 struct btrfs_path
*path
= NULL
;
3526 struct extent_buffer
*leaf
;
3527 struct btrfs_trans_handle
*trans
;
3529 struct btrfs_key key
;
3533 const u64 len
= olen_aligned
;
3534 u64 last_dest_end
= destoff
;
3537 buf
= kmalloc(root
->nodesize
, GFP_KERNEL
| __GFP_NOWARN
);
3539 buf
= vmalloc(root
->nodesize
);
3544 path
= btrfs_alloc_path();
3550 path
->reada
= READA_FORWARD
;
3552 key
.objectid
= btrfs_ino(src
);
3553 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3557 u64 next_key_min_offset
= key
.offset
+ 1;
3560 * note the key will change type as we walk through the
3563 path
->leave_spinning
= 1;
3564 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
3569 * First search, if no extent item that starts at offset off was
3570 * found but the previous item is an extent item, it's possible
3571 * it might overlap our target range, therefore process it.
3573 if (key
.offset
== off
&& ret
> 0 && path
->slots
[0] > 0) {
3574 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3575 path
->slots
[0] - 1);
3576 if (key
.type
== BTRFS_EXTENT_DATA_KEY
)
3580 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3582 if (path
->slots
[0] >= nritems
) {
3583 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
3588 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3590 leaf
= path
->nodes
[0];
3591 slot
= path
->slots
[0];
3593 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
3594 if (key
.type
> BTRFS_EXTENT_DATA_KEY
||
3595 key
.objectid
!= btrfs_ino(src
))
3598 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3599 struct btrfs_file_extent_item
*extent
;
3602 struct btrfs_key new_key
;
3603 u64 disko
= 0, diskl
= 0;
3604 u64 datao
= 0, datal
= 0;
3608 extent
= btrfs_item_ptr(leaf
, slot
,
3609 struct btrfs_file_extent_item
);
3610 comp
= btrfs_file_extent_compression(leaf
, extent
);
3611 type
= btrfs_file_extent_type(leaf
, extent
);
3612 if (type
== BTRFS_FILE_EXTENT_REG
||
3613 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3614 disko
= btrfs_file_extent_disk_bytenr(leaf
,
3616 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
3618 datao
= btrfs_file_extent_offset(leaf
, extent
);
3619 datal
= btrfs_file_extent_num_bytes(leaf
,
3621 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3622 /* take upper bound, may be compressed */
3623 datal
= btrfs_file_extent_ram_bytes(leaf
,
3628 * The first search might have left us at an extent
3629 * item that ends before our target range's start, can
3630 * happen if we have holes and NO_HOLES feature enabled.
3632 if (key
.offset
+ datal
<= off
) {
3635 } else if (key
.offset
>= off
+ len
) {
3638 next_key_min_offset
= key
.offset
+ datal
;
3639 size
= btrfs_item_size_nr(leaf
, slot
);
3640 read_extent_buffer(leaf
, buf
,
3641 btrfs_item_ptr_offset(leaf
, slot
),
3644 btrfs_release_path(path
);
3645 path
->leave_spinning
= 0;
3647 memcpy(&new_key
, &key
, sizeof(new_key
));
3648 new_key
.objectid
= btrfs_ino(inode
);
3649 if (off
<= key
.offset
)
3650 new_key
.offset
= key
.offset
+ destoff
- off
;
3652 new_key
.offset
= destoff
;
3655 * Deal with a hole that doesn't have an extent item
3656 * that represents it (NO_HOLES feature enabled).
3657 * This hole is either in the middle of the cloning
3658 * range or at the beginning (fully overlaps it or
3659 * partially overlaps it).
3661 if (new_key
.offset
!= last_dest_end
)
3662 drop_start
= last_dest_end
;
3664 drop_start
= new_key
.offset
;
3667 * 1 - adjusting old extent (we may have to split it)
3668 * 1 - add new extent
3671 trans
= btrfs_start_transaction(root
, 3);
3672 if (IS_ERR(trans
)) {
3673 ret
= PTR_ERR(trans
);
3677 if (type
== BTRFS_FILE_EXTENT_REG
||
3678 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3680 * a | --- range to clone ---| b
3681 * | ------------- extent ------------- |
3684 /* subtract range b */
3685 if (key
.offset
+ datal
> off
+ len
)
3686 datal
= off
+ len
- key
.offset
;
3688 /* subtract range a */
3689 if (off
> key
.offset
) {
3690 datao
+= off
- key
.offset
;
3691 datal
-= off
- key
.offset
;
3694 ret
= btrfs_drop_extents(trans
, root
, inode
,
3696 new_key
.offset
+ datal
,
3699 if (ret
!= -EOPNOTSUPP
)
3700 btrfs_abort_transaction(trans
,
3702 btrfs_end_transaction(trans
, root
);
3706 ret
= btrfs_insert_empty_item(trans
, root
, path
,
3709 btrfs_abort_transaction(trans
, root
,
3711 btrfs_end_transaction(trans
, root
);
3715 leaf
= path
->nodes
[0];
3716 slot
= path
->slots
[0];
3717 write_extent_buffer(leaf
, buf
,
3718 btrfs_item_ptr_offset(leaf
, slot
),
3721 extent
= btrfs_item_ptr(leaf
, slot
,
3722 struct btrfs_file_extent_item
);
3724 /* disko == 0 means it's a hole */
3728 btrfs_set_file_extent_offset(leaf
, extent
,
3730 btrfs_set_file_extent_num_bytes(leaf
, extent
,
3734 inode_add_bytes(inode
, datal
);
3735 ret
= btrfs_inc_extent_ref(trans
, root
,
3737 root
->root_key
.objectid
,
3739 new_key
.offset
- datao
);
3741 btrfs_abort_transaction(trans
,
3744 btrfs_end_transaction(trans
,
3750 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3754 if (off
> key
.offset
) {
3755 skip
= off
- key
.offset
;
3756 new_key
.offset
+= skip
;
3759 if (key
.offset
+ datal
> off
+ len
)
3760 trim
= key
.offset
+ datal
- (off
+ len
);
3762 if (comp
&& (skip
|| trim
)) {
3764 btrfs_end_transaction(trans
, root
);
3767 size
-= skip
+ trim
;
3768 datal
-= skip
+ trim
;
3770 ret
= clone_copy_inline_extent(src
, inode
,
3777 if (ret
!= -EOPNOTSUPP
)
3778 btrfs_abort_transaction(trans
,
3781 btrfs_end_transaction(trans
, root
);
3784 leaf
= path
->nodes
[0];
3785 slot
= path
->slots
[0];
3788 /* If we have an implicit hole (NO_HOLES feature). */
3789 if (drop_start
< new_key
.offset
)
3790 clone_update_extent_map(inode
, trans
,
3792 new_key
.offset
- drop_start
);
3794 clone_update_extent_map(inode
, trans
, path
, 0, 0);
3796 btrfs_mark_buffer_dirty(leaf
);
3797 btrfs_release_path(path
);
3799 last_dest_end
= ALIGN(new_key
.offset
+ datal
,
3801 ret
= clone_finish_inode_update(trans
, inode
,
3807 if (new_key
.offset
+ datal
>= destoff
+ len
)
3810 btrfs_release_path(path
);
3811 key
.offset
= next_key_min_offset
;
3815 if (last_dest_end
< destoff
+ len
) {
3817 * We have an implicit hole (NO_HOLES feature is enabled) that
3818 * fully or partially overlaps our cloning range at its end.
3820 btrfs_release_path(path
);
3823 * 1 - remove extent(s)
3826 trans
= btrfs_start_transaction(root
, 2);
3827 if (IS_ERR(trans
)) {
3828 ret
= PTR_ERR(trans
);
3831 ret
= btrfs_drop_extents(trans
, root
, inode
,
3832 last_dest_end
, destoff
+ len
, 1);
3834 if (ret
!= -EOPNOTSUPP
)
3835 btrfs_abort_transaction(trans
, root
, ret
);
3836 btrfs_end_transaction(trans
, root
);
3839 clone_update_extent_map(inode
, trans
, NULL
, last_dest_end
,
3840 destoff
+ len
- last_dest_end
);
3841 ret
= clone_finish_inode_update(trans
, inode
, destoff
+ len
,
3842 destoff
, olen
, no_time_update
);
3846 btrfs_free_path(path
);
3851 static noinline
int btrfs_clone_files(struct file
*file
, struct file
*file_src
,
3852 u64 off
, u64 olen
, u64 destoff
)
3854 struct inode
*inode
= file_inode(file
);
3855 struct inode
*src
= file_inode(file_src
);
3856 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3859 u64 bs
= root
->fs_info
->sb
->s_blocksize
;
3860 int same_inode
= src
== inode
;
3864 * - split compressed inline extents. annoying: we need to
3865 * decompress into destination's address_space (the file offset
3866 * may change, so source mapping won't do), then recompress (or
3867 * otherwise reinsert) a subrange.
3869 * - split destination inode's inline extents. The inline extents can
3870 * be either compressed or non-compressed.
3873 if (btrfs_root_readonly(root
))
3876 if (file_src
->f_path
.mnt
!= file
->f_path
.mnt
||
3877 src
->i_sb
!= inode
->i_sb
)
3880 /* don't make the dst file partly checksummed */
3881 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3882 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
3885 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
3889 btrfs_double_inode_lock(src
, inode
);
3894 /* determine range to clone */
3896 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
3899 olen
= len
= src
->i_size
- off
;
3900 /* if we extend to eof, continue to block boundary */
3901 if (off
+ len
== src
->i_size
)
3902 len
= ALIGN(src
->i_size
, bs
) - off
;
3909 /* verify the end result is block aligned */
3910 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
3911 !IS_ALIGNED(destoff
, bs
))
3914 /* verify if ranges are overlapped within the same file */
3916 if (destoff
+ len
> off
&& destoff
< off
+ len
)
3920 if (destoff
> inode
->i_size
) {
3921 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
3927 * Lock the target range too. Right after we replace the file extent
3928 * items in the fs tree (which now point to the cloned data), we might
3929 * have a worker replace them with extent items relative to a write
3930 * operation that was issued before this clone operation (i.e. confront
3931 * with inode.c:btrfs_finish_ordered_io).
3934 u64 lock_start
= min_t(u64
, off
, destoff
);
3935 u64 lock_len
= max_t(u64
, off
, destoff
) + len
- lock_start
;
3937 ret
= lock_extent_range(src
, lock_start
, lock_len
, true);
3939 ret
= btrfs_double_extent_lock(src
, off
, inode
, destoff
, len
,
3944 /* ranges in the io trees already unlocked */
3948 ret
= btrfs_clone(src
, inode
, off
, olen
, len
, destoff
, 0);
3951 u64 lock_start
= min_t(u64
, off
, destoff
);
3952 u64 lock_end
= max_t(u64
, off
, destoff
) + len
- 1;
3954 unlock_extent(&BTRFS_I(src
)->io_tree
, lock_start
, lock_end
);
3956 btrfs_double_extent_unlock(src
, off
, inode
, destoff
, len
);
3959 * Truncate page cache pages so that future reads will see the cloned
3960 * data immediately and not the previous data.
3962 truncate_inode_pages_range(&inode
->i_data
,
3963 round_down(destoff
, PAGE_SIZE
),
3964 round_up(destoff
+ len
, PAGE_SIZE
) - 1);
3967 btrfs_double_inode_unlock(src
, inode
);
3973 ssize_t
btrfs_copy_file_range(struct file
*file_in
, loff_t pos_in
,
3974 struct file
*file_out
, loff_t pos_out
,
3975 size_t len
, unsigned int flags
)
3979 ret
= btrfs_clone_files(file_out
, file_in
, pos_in
, len
, pos_out
);
3985 int btrfs_clone_file_range(struct file
*src_file
, loff_t off
,
3986 struct file
*dst_file
, loff_t destoff
, u64 len
)
3988 return btrfs_clone_files(dst_file
, src_file
, off
, len
, destoff
);
3992 * there are many ways the trans_start and trans_end ioctls can lead
3993 * to deadlocks. They should only be used by applications that
3994 * basically own the machine, and have a very in depth understanding
3995 * of all the possible deadlocks and enospc problems.
3997 static long btrfs_ioctl_trans_start(struct file
*file
)
3999 struct inode
*inode
= file_inode(file
);
4000 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4001 struct btrfs_trans_handle
*trans
;
4005 if (!capable(CAP_SYS_ADMIN
))
4009 if (file
->private_data
)
4013 if (btrfs_root_readonly(root
))
4016 ret
= mnt_want_write_file(file
);
4020 atomic_inc(&root
->fs_info
->open_ioctl_trans
);
4023 trans
= btrfs_start_ioctl_transaction(root
);
4027 file
->private_data
= trans
;
4031 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
4032 mnt_drop_write_file(file
);
4037 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
4039 struct inode
*inode
= file_inode(file
);
4040 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4041 struct btrfs_root
*new_root
;
4042 struct btrfs_dir_item
*di
;
4043 struct btrfs_trans_handle
*trans
;
4044 struct btrfs_path
*path
;
4045 struct btrfs_key location
;
4046 struct btrfs_disk_key disk_key
;
4051 if (!capable(CAP_SYS_ADMIN
))
4054 ret
= mnt_want_write_file(file
);
4058 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
4064 objectid
= BTRFS_FS_TREE_OBJECTID
;
4066 location
.objectid
= objectid
;
4067 location
.type
= BTRFS_ROOT_ITEM_KEY
;
4068 location
.offset
= (u64
)-1;
4070 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
4071 if (IS_ERR(new_root
)) {
4072 ret
= PTR_ERR(new_root
);
4076 path
= btrfs_alloc_path();
4081 path
->leave_spinning
= 1;
4083 trans
= btrfs_start_transaction(root
, 1);
4084 if (IS_ERR(trans
)) {
4085 btrfs_free_path(path
);
4086 ret
= PTR_ERR(trans
);
4090 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
4091 di
= btrfs_lookup_dir_item(trans
, root
->fs_info
->tree_root
, path
,
4092 dir_id
, "default", 7, 1);
4093 if (IS_ERR_OR_NULL(di
)) {
4094 btrfs_free_path(path
);
4095 btrfs_end_transaction(trans
, root
);
4096 btrfs_err(new_root
->fs_info
, "Umm, you don't have the default dir"
4097 "item, this isn't going to work");
4102 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
4103 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
4104 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4105 btrfs_free_path(path
);
4107 btrfs_set_fs_incompat(root
->fs_info
, DEFAULT_SUBVOL
);
4108 btrfs_end_transaction(trans
, root
);
4110 mnt_drop_write_file(file
);
4114 void btrfs_get_block_group_info(struct list_head
*groups_list
,
4115 struct btrfs_ioctl_space_info
*space
)
4117 struct btrfs_block_group_cache
*block_group
;
4119 space
->total_bytes
= 0;
4120 space
->used_bytes
= 0;
4122 list_for_each_entry(block_group
, groups_list
, list
) {
4123 space
->flags
= block_group
->flags
;
4124 space
->total_bytes
+= block_group
->key
.offset
;
4125 space
->used_bytes
+=
4126 btrfs_block_group_used(&block_group
->item
);
4130 static long btrfs_ioctl_space_info(struct btrfs_root
*root
, void __user
*arg
)
4132 struct btrfs_ioctl_space_args space_args
;
4133 struct btrfs_ioctl_space_info space
;
4134 struct btrfs_ioctl_space_info
*dest
;
4135 struct btrfs_ioctl_space_info
*dest_orig
;
4136 struct btrfs_ioctl_space_info __user
*user_dest
;
4137 struct btrfs_space_info
*info
;
4138 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
4139 BTRFS_BLOCK_GROUP_SYSTEM
,
4140 BTRFS_BLOCK_GROUP_METADATA
,
4141 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
4148 if (copy_from_user(&space_args
,
4149 (struct btrfs_ioctl_space_args __user
*)arg
,
4150 sizeof(space_args
)))
4153 for (i
= 0; i
< num_types
; i
++) {
4154 struct btrfs_space_info
*tmp
;
4158 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
4160 if (tmp
->flags
== types
[i
]) {
4170 down_read(&info
->groups_sem
);
4171 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4172 if (!list_empty(&info
->block_groups
[c
]))
4175 up_read(&info
->groups_sem
);
4179 * Global block reserve, exported as a space_info
4183 /* space_slots == 0 means they are asking for a count */
4184 if (space_args
.space_slots
== 0) {
4185 space_args
.total_spaces
= slot_count
;
4189 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
4191 alloc_size
= sizeof(*dest
) * slot_count
;
4193 /* we generally have at most 6 or so space infos, one for each raid
4194 * level. So, a whole page should be more than enough for everyone
4196 if (alloc_size
> PAGE_SIZE
)
4199 space_args
.total_spaces
= 0;
4200 dest
= kmalloc(alloc_size
, GFP_KERNEL
);
4205 /* now we have a buffer to copy into */
4206 for (i
= 0; i
< num_types
; i
++) {
4207 struct btrfs_space_info
*tmp
;
4214 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
4216 if (tmp
->flags
== types
[i
]) {
4225 down_read(&info
->groups_sem
);
4226 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4227 if (!list_empty(&info
->block_groups
[c
])) {
4228 btrfs_get_block_group_info(
4229 &info
->block_groups
[c
], &space
);
4230 memcpy(dest
, &space
, sizeof(space
));
4232 space_args
.total_spaces
++;
4238 up_read(&info
->groups_sem
);
4242 * Add global block reserve
4245 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->global_block_rsv
;
4247 spin_lock(&block_rsv
->lock
);
4248 space
.total_bytes
= block_rsv
->size
;
4249 space
.used_bytes
= block_rsv
->size
- block_rsv
->reserved
;
4250 spin_unlock(&block_rsv
->lock
);
4251 space
.flags
= BTRFS_SPACE_INFO_GLOBAL_RSV
;
4252 memcpy(dest
, &space
, sizeof(space
));
4253 space_args
.total_spaces
++;
4256 user_dest
= (struct btrfs_ioctl_space_info __user
*)
4257 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
4259 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
4264 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
4271 * there are many ways the trans_start and trans_end ioctls can lead
4272 * to deadlocks. They should only be used by applications that
4273 * basically own the machine, and have a very in depth understanding
4274 * of all the possible deadlocks and enospc problems.
4276 long btrfs_ioctl_trans_end(struct file
*file
)
4278 struct inode
*inode
= file_inode(file
);
4279 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4280 struct btrfs_trans_handle
*trans
;
4282 trans
= file
->private_data
;
4285 file
->private_data
= NULL
;
4287 btrfs_end_transaction(trans
, root
);
4289 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
4291 mnt_drop_write_file(file
);
4295 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
4298 struct btrfs_trans_handle
*trans
;
4302 trans
= btrfs_attach_transaction_barrier(root
);
4303 if (IS_ERR(trans
)) {
4304 if (PTR_ERR(trans
) != -ENOENT
)
4305 return PTR_ERR(trans
);
4307 /* No running transaction, don't bother */
4308 transid
= root
->fs_info
->last_trans_committed
;
4311 transid
= trans
->transid
;
4312 ret
= btrfs_commit_transaction_async(trans
, root
, 0);
4314 btrfs_end_transaction(trans
, root
);
4319 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
4324 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_root
*root
,
4330 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
4333 transid
= 0; /* current trans */
4335 return btrfs_wait_for_commit(root
, transid
);
4338 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
4340 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4341 struct btrfs_ioctl_scrub_args
*sa
;
4344 if (!capable(CAP_SYS_ADMIN
))
4347 sa
= memdup_user(arg
, sizeof(*sa
));
4351 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
4352 ret
= mnt_want_write_file(file
);
4357 ret
= btrfs_scrub_dev(root
->fs_info
, sa
->devid
, sa
->start
, sa
->end
,
4358 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
4361 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4364 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
4365 mnt_drop_write_file(file
);
4371 static long btrfs_ioctl_scrub_cancel(struct btrfs_root
*root
, void __user
*arg
)
4373 if (!capable(CAP_SYS_ADMIN
))
4376 return btrfs_scrub_cancel(root
->fs_info
);
4379 static long btrfs_ioctl_scrub_progress(struct btrfs_root
*root
,
4382 struct btrfs_ioctl_scrub_args
*sa
;
4385 if (!capable(CAP_SYS_ADMIN
))
4388 sa
= memdup_user(arg
, sizeof(*sa
));
4392 ret
= btrfs_scrub_progress(root
, sa
->devid
, &sa
->progress
);
4394 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4401 static long btrfs_ioctl_get_dev_stats(struct btrfs_root
*root
,
4404 struct btrfs_ioctl_get_dev_stats
*sa
;
4407 sa
= memdup_user(arg
, sizeof(*sa
));
4411 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
4416 ret
= btrfs_get_dev_stats(root
, sa
);
4418 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4425 static long btrfs_ioctl_dev_replace(struct btrfs_root
*root
, void __user
*arg
)
4427 struct btrfs_ioctl_dev_replace_args
*p
;
4430 if (!capable(CAP_SYS_ADMIN
))
4433 p
= memdup_user(arg
, sizeof(*p
));
4438 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
4439 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
) {
4444 &root
->fs_info
->mutually_exclusive_operation_running
,
4446 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4448 ret
= btrfs_dev_replace_by_ioctl(root
, p
);
4450 &root
->fs_info
->mutually_exclusive_operation_running
,
4454 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
4455 btrfs_dev_replace_status(root
->fs_info
, p
);
4458 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
4459 ret
= btrfs_dev_replace_cancel(root
->fs_info
, p
);
4466 if (copy_to_user(arg
, p
, sizeof(*p
)))
4473 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
4479 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
4480 struct inode_fs_paths
*ipath
= NULL
;
4481 struct btrfs_path
*path
;
4483 if (!capable(CAP_DAC_READ_SEARCH
))
4486 path
= btrfs_alloc_path();
4492 ipa
= memdup_user(arg
, sizeof(*ipa
));
4499 size
= min_t(u32
, ipa
->size
, 4096);
4500 ipath
= init_ipath(size
, root
, path
);
4501 if (IS_ERR(ipath
)) {
4502 ret
= PTR_ERR(ipath
);
4507 ret
= paths_from_inode(ipa
->inum
, ipath
);
4511 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
4512 rel_ptr
= ipath
->fspath
->val
[i
] -
4513 (u64
)(unsigned long)ipath
->fspath
->val
;
4514 ipath
->fspath
->val
[i
] = rel_ptr
;
4517 ret
= copy_to_user((void *)(unsigned long)ipa
->fspath
,
4518 (void *)(unsigned long)ipath
->fspath
, size
);
4525 btrfs_free_path(path
);
4532 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4534 struct btrfs_data_container
*inodes
= ctx
;
4535 const size_t c
= 3 * sizeof(u64
);
4537 if (inodes
->bytes_left
>= c
) {
4538 inodes
->bytes_left
-= c
;
4539 inodes
->val
[inodes
->elem_cnt
] = inum
;
4540 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
4541 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
4542 inodes
->elem_cnt
+= 3;
4544 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
4545 inodes
->bytes_left
= 0;
4546 inodes
->elem_missed
+= 3;
4552 static long btrfs_ioctl_logical_to_ino(struct btrfs_root
*root
,
4557 struct btrfs_ioctl_logical_ino_args
*loi
;
4558 struct btrfs_data_container
*inodes
= NULL
;
4559 struct btrfs_path
*path
= NULL
;
4561 if (!capable(CAP_SYS_ADMIN
))
4564 loi
= memdup_user(arg
, sizeof(*loi
));
4571 path
= btrfs_alloc_path();
4577 size
= min_t(u32
, loi
->size
, SZ_64K
);
4578 inodes
= init_data_container(size
);
4579 if (IS_ERR(inodes
)) {
4580 ret
= PTR_ERR(inodes
);
4585 ret
= iterate_inodes_from_logical(loi
->logical
, root
->fs_info
, path
,
4586 build_ino_list
, inodes
);
4592 ret
= copy_to_user((void *)(unsigned long)loi
->inodes
,
4593 (void *)(unsigned long)inodes
, size
);
4598 btrfs_free_path(path
);
4605 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
4606 struct btrfs_ioctl_balance_args
*bargs
)
4608 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4610 bargs
->flags
= bctl
->flags
;
4612 if (atomic_read(&fs_info
->balance_running
))
4613 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
4614 if (atomic_read(&fs_info
->balance_pause_req
))
4615 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
4616 if (atomic_read(&fs_info
->balance_cancel_req
))
4617 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
4619 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
4620 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
4621 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
4624 spin_lock(&fs_info
->balance_lock
);
4625 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4626 spin_unlock(&fs_info
->balance_lock
);
4628 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4632 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
4634 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4635 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4636 struct btrfs_ioctl_balance_args
*bargs
;
4637 struct btrfs_balance_control
*bctl
;
4638 bool need_unlock
; /* for mut. excl. ops lock */
4641 if (!capable(CAP_SYS_ADMIN
))
4644 ret
= mnt_want_write_file(file
);
4649 if (!atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1)) {
4650 mutex_lock(&fs_info
->volume_mutex
);
4651 mutex_lock(&fs_info
->balance_mutex
);
4657 * mut. excl. ops lock is locked. Three possibilities:
4658 * (1) some other op is running
4659 * (2) balance is running
4660 * (3) balance is paused -- special case (think resume)
4662 mutex_lock(&fs_info
->balance_mutex
);
4663 if (fs_info
->balance_ctl
) {
4664 /* this is either (2) or (3) */
4665 if (!atomic_read(&fs_info
->balance_running
)) {
4666 mutex_unlock(&fs_info
->balance_mutex
);
4667 if (!mutex_trylock(&fs_info
->volume_mutex
))
4669 mutex_lock(&fs_info
->balance_mutex
);
4671 if (fs_info
->balance_ctl
&&
4672 !atomic_read(&fs_info
->balance_running
)) {
4674 need_unlock
= false;
4678 mutex_unlock(&fs_info
->balance_mutex
);
4679 mutex_unlock(&fs_info
->volume_mutex
);
4683 mutex_unlock(&fs_info
->balance_mutex
);
4689 mutex_unlock(&fs_info
->balance_mutex
);
4690 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4695 BUG_ON(!atomic_read(&fs_info
->mutually_exclusive_operation_running
));
4698 bargs
= memdup_user(arg
, sizeof(*bargs
));
4699 if (IS_ERR(bargs
)) {
4700 ret
= PTR_ERR(bargs
);
4704 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
4705 if (!fs_info
->balance_ctl
) {
4710 bctl
= fs_info
->balance_ctl
;
4711 spin_lock(&fs_info
->balance_lock
);
4712 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4713 spin_unlock(&fs_info
->balance_lock
);
4721 if (fs_info
->balance_ctl
) {
4726 bctl
= kzalloc(sizeof(*bctl
), GFP_KERNEL
);
4732 bctl
->fs_info
= fs_info
;
4734 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
4735 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
4736 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
4738 bctl
->flags
= bargs
->flags
;
4740 /* balance everything - no filters */
4741 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
4744 if (bctl
->flags
& ~(BTRFS_BALANCE_ARGS_MASK
| BTRFS_BALANCE_TYPE_MASK
)) {
4751 * Ownership of bctl and mutually_exclusive_operation_running
4752 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4753 * or, if restriper was paused all the way until unmount, in
4754 * free_fs_info. mutually_exclusive_operation_running is
4755 * cleared in __cancel_balance.
4757 need_unlock
= false;
4759 ret
= btrfs_balance(bctl
, bargs
);
4763 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4772 mutex_unlock(&fs_info
->balance_mutex
);
4773 mutex_unlock(&fs_info
->volume_mutex
);
4775 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
4777 mnt_drop_write_file(file
);
4781 static long btrfs_ioctl_balance_ctl(struct btrfs_root
*root
, int cmd
)
4783 if (!capable(CAP_SYS_ADMIN
))
4787 case BTRFS_BALANCE_CTL_PAUSE
:
4788 return btrfs_pause_balance(root
->fs_info
);
4789 case BTRFS_BALANCE_CTL_CANCEL
:
4790 return btrfs_cancel_balance(root
->fs_info
);
4796 static long btrfs_ioctl_balance_progress(struct btrfs_root
*root
,
4799 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4800 struct btrfs_ioctl_balance_args
*bargs
;
4803 if (!capable(CAP_SYS_ADMIN
))
4806 mutex_lock(&fs_info
->balance_mutex
);
4807 if (!fs_info
->balance_ctl
) {
4812 bargs
= kzalloc(sizeof(*bargs
), GFP_KERNEL
);
4818 update_ioctl_balance_args(fs_info
, 1, bargs
);
4820 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4825 mutex_unlock(&fs_info
->balance_mutex
);
4829 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
4831 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4832 struct btrfs_ioctl_quota_ctl_args
*sa
;
4833 struct btrfs_trans_handle
*trans
= NULL
;
4837 if (!capable(CAP_SYS_ADMIN
))
4840 ret
= mnt_want_write_file(file
);
4844 sa
= memdup_user(arg
, sizeof(*sa
));
4850 down_write(&root
->fs_info
->subvol_sem
);
4851 trans
= btrfs_start_transaction(root
->fs_info
->tree_root
, 2);
4852 if (IS_ERR(trans
)) {
4853 ret
= PTR_ERR(trans
);
4858 case BTRFS_QUOTA_CTL_ENABLE
:
4859 ret
= btrfs_quota_enable(trans
, root
->fs_info
);
4861 case BTRFS_QUOTA_CTL_DISABLE
:
4862 ret
= btrfs_quota_disable(trans
, root
->fs_info
);
4869 err
= btrfs_commit_transaction(trans
, root
->fs_info
->tree_root
);
4874 up_write(&root
->fs_info
->subvol_sem
);
4876 mnt_drop_write_file(file
);
4880 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
4882 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4883 struct btrfs_ioctl_qgroup_assign_args
*sa
;
4884 struct btrfs_trans_handle
*trans
;
4888 if (!capable(CAP_SYS_ADMIN
))
4891 ret
= mnt_want_write_file(file
);
4895 sa
= memdup_user(arg
, sizeof(*sa
));
4901 trans
= btrfs_join_transaction(root
);
4902 if (IS_ERR(trans
)) {
4903 ret
= PTR_ERR(trans
);
4907 /* FIXME: check if the IDs really exist */
4909 ret
= btrfs_add_qgroup_relation(trans
, root
->fs_info
,
4912 ret
= btrfs_del_qgroup_relation(trans
, root
->fs_info
,
4916 /* update qgroup status and info */
4917 err
= btrfs_run_qgroups(trans
, root
->fs_info
);
4919 btrfs_handle_fs_error(root
->fs_info
, err
,
4920 "failed to update qgroup status and info");
4921 err
= btrfs_end_transaction(trans
, root
);
4928 mnt_drop_write_file(file
);
4932 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
4934 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4935 struct btrfs_ioctl_qgroup_create_args
*sa
;
4936 struct btrfs_trans_handle
*trans
;
4940 if (!capable(CAP_SYS_ADMIN
))
4943 ret
= mnt_want_write_file(file
);
4947 sa
= memdup_user(arg
, sizeof(*sa
));
4953 if (!sa
->qgroupid
) {
4958 trans
= btrfs_join_transaction(root
);
4959 if (IS_ERR(trans
)) {
4960 ret
= PTR_ERR(trans
);
4964 /* FIXME: check if the IDs really exist */
4966 ret
= btrfs_create_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
4968 ret
= btrfs_remove_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
4971 err
= btrfs_end_transaction(trans
, root
);
4978 mnt_drop_write_file(file
);
4982 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
4984 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4985 struct btrfs_ioctl_qgroup_limit_args
*sa
;
4986 struct btrfs_trans_handle
*trans
;
4991 if (!capable(CAP_SYS_ADMIN
))
4994 ret
= mnt_want_write_file(file
);
4998 sa
= memdup_user(arg
, sizeof(*sa
));
5004 trans
= btrfs_join_transaction(root
);
5005 if (IS_ERR(trans
)) {
5006 ret
= PTR_ERR(trans
);
5010 qgroupid
= sa
->qgroupid
;
5012 /* take the current subvol as qgroup */
5013 qgroupid
= root
->root_key
.objectid
;
5016 /* FIXME: check if the IDs really exist */
5017 ret
= btrfs_limit_qgroup(trans
, root
->fs_info
, qgroupid
, &sa
->lim
);
5019 err
= btrfs_end_transaction(trans
, root
);
5026 mnt_drop_write_file(file
);
5030 static long btrfs_ioctl_quota_rescan(struct file
*file
, void __user
*arg
)
5032 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5033 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5036 if (!capable(CAP_SYS_ADMIN
))
5039 ret
= mnt_want_write_file(file
);
5043 qsa
= memdup_user(arg
, sizeof(*qsa
));
5054 ret
= btrfs_qgroup_rescan(root
->fs_info
);
5059 mnt_drop_write_file(file
);
5063 static long btrfs_ioctl_quota_rescan_status(struct file
*file
, void __user
*arg
)
5065 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5066 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5069 if (!capable(CAP_SYS_ADMIN
))
5072 qsa
= kzalloc(sizeof(*qsa
), GFP_KERNEL
);
5076 if (root
->fs_info
->qgroup_flags
& BTRFS_QGROUP_STATUS_FLAG_RESCAN
) {
5078 qsa
->progress
= root
->fs_info
->qgroup_rescan_progress
.objectid
;
5081 if (copy_to_user(arg
, qsa
, sizeof(*qsa
)))
5088 static long btrfs_ioctl_quota_rescan_wait(struct file
*file
, void __user
*arg
)
5090 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5092 if (!capable(CAP_SYS_ADMIN
))
5095 return btrfs_qgroup_wait_for_completion(root
->fs_info
);
5098 static long _btrfs_ioctl_set_received_subvol(struct file
*file
,
5099 struct btrfs_ioctl_received_subvol_args
*sa
)
5101 struct inode
*inode
= file_inode(file
);
5102 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5103 struct btrfs_root_item
*root_item
= &root
->root_item
;
5104 struct btrfs_trans_handle
*trans
;
5105 struct timespec ct
= current_fs_time(inode
->i_sb
);
5107 int received_uuid_changed
;
5109 if (!inode_owner_or_capable(inode
))
5112 ret
= mnt_want_write_file(file
);
5116 down_write(&root
->fs_info
->subvol_sem
);
5118 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
5123 if (btrfs_root_readonly(root
)) {
5130 * 2 - uuid items (received uuid + subvol uuid)
5132 trans
= btrfs_start_transaction(root
, 3);
5133 if (IS_ERR(trans
)) {
5134 ret
= PTR_ERR(trans
);
5139 sa
->rtransid
= trans
->transid
;
5140 sa
->rtime
.sec
= ct
.tv_sec
;
5141 sa
->rtime
.nsec
= ct
.tv_nsec
;
5143 received_uuid_changed
= memcmp(root_item
->received_uuid
, sa
->uuid
,
5145 if (received_uuid_changed
&&
5146 !btrfs_is_empty_uuid(root_item
->received_uuid
))
5147 btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
5148 root_item
->received_uuid
,
5149 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5150 root
->root_key
.objectid
);
5151 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
5152 btrfs_set_root_stransid(root_item
, sa
->stransid
);
5153 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
5154 btrfs_set_stack_timespec_sec(&root_item
->stime
, sa
->stime
.sec
);
5155 btrfs_set_stack_timespec_nsec(&root_item
->stime
, sa
->stime
.nsec
);
5156 btrfs_set_stack_timespec_sec(&root_item
->rtime
, sa
->rtime
.sec
);
5157 btrfs_set_stack_timespec_nsec(&root_item
->rtime
, sa
->rtime
.nsec
);
5159 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
5160 &root
->root_key
, &root
->root_item
);
5162 btrfs_end_transaction(trans
, root
);
5165 if (received_uuid_changed
&& !btrfs_is_empty_uuid(sa
->uuid
)) {
5166 ret
= btrfs_uuid_tree_add(trans
, root
->fs_info
->uuid_root
,
5168 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5169 root
->root_key
.objectid
);
5170 if (ret
< 0 && ret
!= -EEXIST
) {
5171 btrfs_abort_transaction(trans
, root
, ret
);
5175 ret
= btrfs_commit_transaction(trans
, root
);
5177 btrfs_abort_transaction(trans
, root
, ret
);
5182 up_write(&root
->fs_info
->subvol_sem
);
5183 mnt_drop_write_file(file
);
5188 static long btrfs_ioctl_set_received_subvol_32(struct file
*file
,
5191 struct btrfs_ioctl_received_subvol_args_32
*args32
= NULL
;
5192 struct btrfs_ioctl_received_subvol_args
*args64
= NULL
;
5195 args32
= memdup_user(arg
, sizeof(*args32
));
5196 if (IS_ERR(args32
)) {
5197 ret
= PTR_ERR(args32
);
5202 args64
= kmalloc(sizeof(*args64
), GFP_KERNEL
);
5208 memcpy(args64
->uuid
, args32
->uuid
, BTRFS_UUID_SIZE
);
5209 args64
->stransid
= args32
->stransid
;
5210 args64
->rtransid
= args32
->rtransid
;
5211 args64
->stime
.sec
= args32
->stime
.sec
;
5212 args64
->stime
.nsec
= args32
->stime
.nsec
;
5213 args64
->rtime
.sec
= args32
->rtime
.sec
;
5214 args64
->rtime
.nsec
= args32
->rtime
.nsec
;
5215 args64
->flags
= args32
->flags
;
5217 ret
= _btrfs_ioctl_set_received_subvol(file
, args64
);
5221 memcpy(args32
->uuid
, args64
->uuid
, BTRFS_UUID_SIZE
);
5222 args32
->stransid
= args64
->stransid
;
5223 args32
->rtransid
= args64
->rtransid
;
5224 args32
->stime
.sec
= args64
->stime
.sec
;
5225 args32
->stime
.nsec
= args64
->stime
.nsec
;
5226 args32
->rtime
.sec
= args64
->rtime
.sec
;
5227 args32
->rtime
.nsec
= args64
->rtime
.nsec
;
5228 args32
->flags
= args64
->flags
;
5230 ret
= copy_to_user(arg
, args32
, sizeof(*args32
));
5241 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
5244 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
5247 sa
= memdup_user(arg
, sizeof(*sa
));
5254 ret
= _btrfs_ioctl_set_received_subvol(file
, sa
);
5259 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
5268 static int btrfs_ioctl_get_fslabel(struct file
*file
, void __user
*arg
)
5270 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5273 char label
[BTRFS_LABEL_SIZE
];
5275 spin_lock(&root
->fs_info
->super_lock
);
5276 memcpy(label
, root
->fs_info
->super_copy
->label
, BTRFS_LABEL_SIZE
);
5277 spin_unlock(&root
->fs_info
->super_lock
);
5279 len
= strnlen(label
, BTRFS_LABEL_SIZE
);
5281 if (len
== BTRFS_LABEL_SIZE
) {
5282 btrfs_warn(root
->fs_info
,
5283 "label is too long, return the first %zu bytes", --len
);
5286 ret
= copy_to_user(arg
, label
, len
);
5288 return ret
? -EFAULT
: 0;
5291 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
5293 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5294 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5295 struct btrfs_trans_handle
*trans
;
5296 char label
[BTRFS_LABEL_SIZE
];
5299 if (!capable(CAP_SYS_ADMIN
))
5302 if (copy_from_user(label
, arg
, sizeof(label
)))
5305 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
5306 btrfs_err(root
->fs_info
, "unable to set label with more than %d bytes",
5307 BTRFS_LABEL_SIZE
- 1);
5311 ret
= mnt_want_write_file(file
);
5315 trans
= btrfs_start_transaction(root
, 0);
5316 if (IS_ERR(trans
)) {
5317 ret
= PTR_ERR(trans
);
5321 spin_lock(&root
->fs_info
->super_lock
);
5322 strcpy(super_block
->label
, label
);
5323 spin_unlock(&root
->fs_info
->super_lock
);
5324 ret
= btrfs_commit_transaction(trans
, root
);
5327 mnt_drop_write_file(file
);
5331 #define INIT_FEATURE_FLAGS(suffix) \
5332 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5333 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5334 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5336 int btrfs_ioctl_get_supported_features(void __user
*arg
)
5338 static const struct btrfs_ioctl_feature_flags features
[3] = {
5339 INIT_FEATURE_FLAGS(SUPP
),
5340 INIT_FEATURE_FLAGS(SAFE_SET
),
5341 INIT_FEATURE_FLAGS(SAFE_CLEAR
)
5344 if (copy_to_user(arg
, &features
, sizeof(features
)))
5350 static int btrfs_ioctl_get_features(struct file
*file
, void __user
*arg
)
5352 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5353 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5354 struct btrfs_ioctl_feature_flags features
;
5356 features
.compat_flags
= btrfs_super_compat_flags(super_block
);
5357 features
.compat_ro_flags
= btrfs_super_compat_ro_flags(super_block
);
5358 features
.incompat_flags
= btrfs_super_incompat_flags(super_block
);
5360 if (copy_to_user(arg
, &features
, sizeof(features
)))
5366 static int check_feature_bits(struct btrfs_root
*root
,
5367 enum btrfs_feature_set set
,
5368 u64 change_mask
, u64 flags
, u64 supported_flags
,
5369 u64 safe_set
, u64 safe_clear
)
5371 const char *type
= btrfs_feature_set_names
[set
];
5373 u64 disallowed
, unsupported
;
5374 u64 set_mask
= flags
& change_mask
;
5375 u64 clear_mask
= ~flags
& change_mask
;
5377 unsupported
= set_mask
& ~supported_flags
;
5379 names
= btrfs_printable_features(set
, unsupported
);
5381 btrfs_warn(root
->fs_info
,
5382 "this kernel does not support the %s feature bit%s",
5383 names
, strchr(names
, ',') ? "s" : "");
5386 btrfs_warn(root
->fs_info
,
5387 "this kernel does not support %s bits 0x%llx",
5392 disallowed
= set_mask
& ~safe_set
;
5394 names
= btrfs_printable_features(set
, disallowed
);
5396 btrfs_warn(root
->fs_info
,
5397 "can't set the %s feature bit%s while mounted",
5398 names
, strchr(names
, ',') ? "s" : "");
5401 btrfs_warn(root
->fs_info
,
5402 "can't set %s bits 0x%llx while mounted",
5407 disallowed
= clear_mask
& ~safe_clear
;
5409 names
= btrfs_printable_features(set
, disallowed
);
5411 btrfs_warn(root
->fs_info
,
5412 "can't clear the %s feature bit%s while mounted",
5413 names
, strchr(names
, ',') ? "s" : "");
5416 btrfs_warn(root
->fs_info
,
5417 "can't clear %s bits 0x%llx while mounted",
5425 #define check_feature(root, change_mask, flags, mask_base) \
5426 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5427 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5428 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5429 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5431 static int btrfs_ioctl_set_features(struct file
*file
, void __user
*arg
)
5433 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5434 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5435 struct btrfs_ioctl_feature_flags flags
[2];
5436 struct btrfs_trans_handle
*trans
;
5440 if (!capable(CAP_SYS_ADMIN
))
5443 if (copy_from_user(flags
, arg
, sizeof(flags
)))
5447 if (!flags
[0].compat_flags
&& !flags
[0].compat_ro_flags
&&
5448 !flags
[0].incompat_flags
)
5451 ret
= check_feature(root
, flags
[0].compat_flags
,
5452 flags
[1].compat_flags
, COMPAT
);
5456 ret
= check_feature(root
, flags
[0].compat_ro_flags
,
5457 flags
[1].compat_ro_flags
, COMPAT_RO
);
5461 ret
= check_feature(root
, flags
[0].incompat_flags
,
5462 flags
[1].incompat_flags
, INCOMPAT
);
5466 ret
= mnt_want_write_file(file
);
5470 trans
= btrfs_start_transaction(root
, 0);
5471 if (IS_ERR(trans
)) {
5472 ret
= PTR_ERR(trans
);
5473 goto out_drop_write
;
5476 spin_lock(&root
->fs_info
->super_lock
);
5477 newflags
= btrfs_super_compat_flags(super_block
);
5478 newflags
|= flags
[0].compat_flags
& flags
[1].compat_flags
;
5479 newflags
&= ~(flags
[0].compat_flags
& ~flags
[1].compat_flags
);
5480 btrfs_set_super_compat_flags(super_block
, newflags
);
5482 newflags
= btrfs_super_compat_ro_flags(super_block
);
5483 newflags
|= flags
[0].compat_ro_flags
& flags
[1].compat_ro_flags
;
5484 newflags
&= ~(flags
[0].compat_ro_flags
& ~flags
[1].compat_ro_flags
);
5485 btrfs_set_super_compat_ro_flags(super_block
, newflags
);
5487 newflags
= btrfs_super_incompat_flags(super_block
);
5488 newflags
|= flags
[0].incompat_flags
& flags
[1].incompat_flags
;
5489 newflags
&= ~(flags
[0].incompat_flags
& ~flags
[1].incompat_flags
);
5490 btrfs_set_super_incompat_flags(super_block
, newflags
);
5491 spin_unlock(&root
->fs_info
->super_lock
);
5493 ret
= btrfs_commit_transaction(trans
, root
);
5495 mnt_drop_write_file(file
);
5500 long btrfs_ioctl(struct file
*file
, unsigned int
5501 cmd
, unsigned long arg
)
5503 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5504 void __user
*argp
= (void __user
*)arg
;
5507 case FS_IOC_GETFLAGS
:
5508 return btrfs_ioctl_getflags(file
, argp
);
5509 case FS_IOC_SETFLAGS
:
5510 return btrfs_ioctl_setflags(file
, argp
);
5511 case FS_IOC_GETVERSION
:
5512 return btrfs_ioctl_getversion(file
, argp
);
5514 return btrfs_ioctl_fitrim(file
, argp
);
5515 case BTRFS_IOC_SNAP_CREATE
:
5516 return btrfs_ioctl_snap_create(file
, argp
, 0);
5517 case BTRFS_IOC_SNAP_CREATE_V2
:
5518 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
5519 case BTRFS_IOC_SUBVOL_CREATE
:
5520 return btrfs_ioctl_snap_create(file
, argp
, 1);
5521 case BTRFS_IOC_SUBVOL_CREATE_V2
:
5522 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
5523 case BTRFS_IOC_SNAP_DESTROY
:
5524 return btrfs_ioctl_snap_destroy(file
, argp
);
5525 case BTRFS_IOC_SUBVOL_GETFLAGS
:
5526 return btrfs_ioctl_subvol_getflags(file
, argp
);
5527 case BTRFS_IOC_SUBVOL_SETFLAGS
:
5528 return btrfs_ioctl_subvol_setflags(file
, argp
);
5529 case BTRFS_IOC_DEFAULT_SUBVOL
:
5530 return btrfs_ioctl_default_subvol(file
, argp
);
5531 case BTRFS_IOC_DEFRAG
:
5532 return btrfs_ioctl_defrag(file
, NULL
);
5533 case BTRFS_IOC_DEFRAG_RANGE
:
5534 return btrfs_ioctl_defrag(file
, argp
);
5535 case BTRFS_IOC_RESIZE
:
5536 return btrfs_ioctl_resize(file
, argp
);
5537 case BTRFS_IOC_ADD_DEV
:
5538 return btrfs_ioctl_add_dev(root
, argp
);
5539 case BTRFS_IOC_RM_DEV
:
5540 return btrfs_ioctl_rm_dev(file
, argp
);
5541 case BTRFS_IOC_RM_DEV_V2
:
5542 return btrfs_ioctl_rm_dev_v2(file
, argp
);
5543 case BTRFS_IOC_FS_INFO
:
5544 return btrfs_ioctl_fs_info(root
, argp
);
5545 case BTRFS_IOC_DEV_INFO
:
5546 return btrfs_ioctl_dev_info(root
, argp
);
5547 case BTRFS_IOC_BALANCE
:
5548 return btrfs_ioctl_balance(file
, NULL
);
5549 case BTRFS_IOC_TRANS_START
:
5550 return btrfs_ioctl_trans_start(file
);
5551 case BTRFS_IOC_TRANS_END
:
5552 return btrfs_ioctl_trans_end(file
);
5553 case BTRFS_IOC_TREE_SEARCH
:
5554 return btrfs_ioctl_tree_search(file
, argp
);
5555 case BTRFS_IOC_TREE_SEARCH_V2
:
5556 return btrfs_ioctl_tree_search_v2(file
, argp
);
5557 case BTRFS_IOC_INO_LOOKUP
:
5558 return btrfs_ioctl_ino_lookup(file
, argp
);
5559 case BTRFS_IOC_INO_PATHS
:
5560 return btrfs_ioctl_ino_to_path(root
, argp
);
5561 case BTRFS_IOC_LOGICAL_INO
:
5562 return btrfs_ioctl_logical_to_ino(root
, argp
);
5563 case BTRFS_IOC_SPACE_INFO
:
5564 return btrfs_ioctl_space_info(root
, argp
);
5565 case BTRFS_IOC_SYNC
: {
5568 ret
= btrfs_start_delalloc_roots(root
->fs_info
, 0, -1);
5571 ret
= btrfs_sync_fs(file_inode(file
)->i_sb
, 1);
5573 * The transaction thread may want to do more work,
5574 * namely it pokes the cleaner kthread that will start
5575 * processing uncleaned subvols.
5577 wake_up_process(root
->fs_info
->transaction_kthread
);
5580 case BTRFS_IOC_START_SYNC
:
5581 return btrfs_ioctl_start_sync(root
, argp
);
5582 case BTRFS_IOC_WAIT_SYNC
:
5583 return btrfs_ioctl_wait_sync(root
, argp
);
5584 case BTRFS_IOC_SCRUB
:
5585 return btrfs_ioctl_scrub(file
, argp
);
5586 case BTRFS_IOC_SCRUB_CANCEL
:
5587 return btrfs_ioctl_scrub_cancel(root
, argp
);
5588 case BTRFS_IOC_SCRUB_PROGRESS
:
5589 return btrfs_ioctl_scrub_progress(root
, argp
);
5590 case BTRFS_IOC_BALANCE_V2
:
5591 return btrfs_ioctl_balance(file
, argp
);
5592 case BTRFS_IOC_BALANCE_CTL
:
5593 return btrfs_ioctl_balance_ctl(root
, arg
);
5594 case BTRFS_IOC_BALANCE_PROGRESS
:
5595 return btrfs_ioctl_balance_progress(root
, argp
);
5596 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
5597 return btrfs_ioctl_set_received_subvol(file
, argp
);
5599 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32
:
5600 return btrfs_ioctl_set_received_subvol_32(file
, argp
);
5602 case BTRFS_IOC_SEND
:
5603 return btrfs_ioctl_send(file
, argp
);
5604 case BTRFS_IOC_GET_DEV_STATS
:
5605 return btrfs_ioctl_get_dev_stats(root
, argp
);
5606 case BTRFS_IOC_QUOTA_CTL
:
5607 return btrfs_ioctl_quota_ctl(file
, argp
);
5608 case BTRFS_IOC_QGROUP_ASSIGN
:
5609 return btrfs_ioctl_qgroup_assign(file
, argp
);
5610 case BTRFS_IOC_QGROUP_CREATE
:
5611 return btrfs_ioctl_qgroup_create(file
, argp
);
5612 case BTRFS_IOC_QGROUP_LIMIT
:
5613 return btrfs_ioctl_qgroup_limit(file
, argp
);
5614 case BTRFS_IOC_QUOTA_RESCAN
:
5615 return btrfs_ioctl_quota_rescan(file
, argp
);
5616 case BTRFS_IOC_QUOTA_RESCAN_STATUS
:
5617 return btrfs_ioctl_quota_rescan_status(file
, argp
);
5618 case BTRFS_IOC_QUOTA_RESCAN_WAIT
:
5619 return btrfs_ioctl_quota_rescan_wait(file
, argp
);
5620 case BTRFS_IOC_DEV_REPLACE
:
5621 return btrfs_ioctl_dev_replace(root
, argp
);
5622 case BTRFS_IOC_GET_FSLABEL
:
5623 return btrfs_ioctl_get_fslabel(file
, argp
);
5624 case BTRFS_IOC_SET_FSLABEL
:
5625 return btrfs_ioctl_set_fslabel(file
, argp
);
5626 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
5627 return btrfs_ioctl_get_supported_features(argp
);
5628 case BTRFS_IOC_GET_FEATURES
:
5629 return btrfs_ioctl_get_features(file
, argp
);
5630 case BTRFS_IOC_SET_FEATURES
:
5631 return btrfs_ioctl_set_features(file
, argp
);
5637 #ifdef CONFIG_COMPAT
5638 long btrfs_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5641 case FS_IOC32_GETFLAGS
:
5642 cmd
= FS_IOC_GETFLAGS
;
5644 case FS_IOC32_SETFLAGS
:
5645 cmd
= FS_IOC_SETFLAGS
;
5647 case FS_IOC32_GETVERSION
:
5648 cmd
= FS_IOC_GETVERSION
;
5651 return -ENOIOCTLCMD
;
5654 return btrfs_ioctl(file
, cmd
, (unsigned long) compat_ptr(arg
));