]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/ioctl.c
Btrfs: improve multi-thread buffer read
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include "compat.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55 #include "rcu-string.h"
56
57 /* Mask out flags that are inappropriate for the given type of inode. */
58 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
59 {
60 if (S_ISDIR(mode))
61 return flags;
62 else if (S_ISREG(mode))
63 return flags & ~FS_DIRSYNC_FL;
64 else
65 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
66 }
67
68 /*
69 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
70 */
71 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
72 {
73 unsigned int iflags = 0;
74
75 if (flags & BTRFS_INODE_SYNC)
76 iflags |= FS_SYNC_FL;
77 if (flags & BTRFS_INODE_IMMUTABLE)
78 iflags |= FS_IMMUTABLE_FL;
79 if (flags & BTRFS_INODE_APPEND)
80 iflags |= FS_APPEND_FL;
81 if (flags & BTRFS_INODE_NODUMP)
82 iflags |= FS_NODUMP_FL;
83 if (flags & BTRFS_INODE_NOATIME)
84 iflags |= FS_NOATIME_FL;
85 if (flags & BTRFS_INODE_DIRSYNC)
86 iflags |= FS_DIRSYNC_FL;
87 if (flags & BTRFS_INODE_NODATACOW)
88 iflags |= FS_NOCOW_FL;
89
90 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
91 iflags |= FS_COMPR_FL;
92 else if (flags & BTRFS_INODE_NOCOMPRESS)
93 iflags |= FS_NOCOMP_FL;
94
95 return iflags;
96 }
97
98 /*
99 * Update inode->i_flags based on the btrfs internal flags.
100 */
101 void btrfs_update_iflags(struct inode *inode)
102 {
103 struct btrfs_inode *ip = BTRFS_I(inode);
104
105 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
106
107 if (ip->flags & BTRFS_INODE_SYNC)
108 inode->i_flags |= S_SYNC;
109 if (ip->flags & BTRFS_INODE_IMMUTABLE)
110 inode->i_flags |= S_IMMUTABLE;
111 if (ip->flags & BTRFS_INODE_APPEND)
112 inode->i_flags |= S_APPEND;
113 if (ip->flags & BTRFS_INODE_NOATIME)
114 inode->i_flags |= S_NOATIME;
115 if (ip->flags & BTRFS_INODE_DIRSYNC)
116 inode->i_flags |= S_DIRSYNC;
117 }
118
119 /*
120 * Inherit flags from the parent inode.
121 *
122 * Currently only the compression flags and the cow flags are inherited.
123 */
124 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
125 {
126 unsigned int flags;
127
128 if (!dir)
129 return;
130
131 flags = BTRFS_I(dir)->flags;
132
133 if (flags & BTRFS_INODE_NOCOMPRESS) {
134 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
135 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
136 } else if (flags & BTRFS_INODE_COMPRESS) {
137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
138 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
139 }
140
141 if (flags & BTRFS_INODE_NODATACOW)
142 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
143
144 btrfs_update_iflags(inode);
145 }
146
147 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
148 {
149 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
150 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
151
152 if (copy_to_user(arg, &flags, sizeof(flags)))
153 return -EFAULT;
154 return 0;
155 }
156
157 static int check_flags(unsigned int flags)
158 {
159 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
160 FS_NOATIME_FL | FS_NODUMP_FL | \
161 FS_SYNC_FL | FS_DIRSYNC_FL | \
162 FS_NOCOMP_FL | FS_COMPR_FL |
163 FS_NOCOW_FL))
164 return -EOPNOTSUPP;
165
166 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
167 return -EINVAL;
168
169 return 0;
170 }
171
172 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
173 {
174 struct inode *inode = file->f_path.dentry->d_inode;
175 struct btrfs_inode *ip = BTRFS_I(inode);
176 struct btrfs_root *root = ip->root;
177 struct btrfs_trans_handle *trans;
178 unsigned int flags, oldflags;
179 int ret;
180 u64 ip_oldflags;
181 unsigned int i_oldflags;
182
183 if (btrfs_root_readonly(root))
184 return -EROFS;
185
186 if (copy_from_user(&flags, arg, sizeof(flags)))
187 return -EFAULT;
188
189 ret = check_flags(flags);
190 if (ret)
191 return ret;
192
193 if (!inode_owner_or_capable(inode))
194 return -EACCES;
195
196 mutex_lock(&inode->i_mutex);
197
198 ip_oldflags = ip->flags;
199 i_oldflags = inode->i_flags;
200
201 flags = btrfs_mask_flags(inode->i_mode, flags);
202 oldflags = btrfs_flags_to_ioctl(ip->flags);
203 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
204 if (!capable(CAP_LINUX_IMMUTABLE)) {
205 ret = -EPERM;
206 goto out_unlock;
207 }
208 }
209
210 ret = mnt_want_write_file(file);
211 if (ret)
212 goto out_unlock;
213
214 if (flags & FS_SYNC_FL)
215 ip->flags |= BTRFS_INODE_SYNC;
216 else
217 ip->flags &= ~BTRFS_INODE_SYNC;
218 if (flags & FS_IMMUTABLE_FL)
219 ip->flags |= BTRFS_INODE_IMMUTABLE;
220 else
221 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
222 if (flags & FS_APPEND_FL)
223 ip->flags |= BTRFS_INODE_APPEND;
224 else
225 ip->flags &= ~BTRFS_INODE_APPEND;
226 if (flags & FS_NODUMP_FL)
227 ip->flags |= BTRFS_INODE_NODUMP;
228 else
229 ip->flags &= ~BTRFS_INODE_NODUMP;
230 if (flags & FS_NOATIME_FL)
231 ip->flags |= BTRFS_INODE_NOATIME;
232 else
233 ip->flags &= ~BTRFS_INODE_NOATIME;
234 if (flags & FS_DIRSYNC_FL)
235 ip->flags |= BTRFS_INODE_DIRSYNC;
236 else
237 ip->flags &= ~BTRFS_INODE_DIRSYNC;
238 if (flags & FS_NOCOW_FL)
239 ip->flags |= BTRFS_INODE_NODATACOW;
240 else
241 ip->flags &= ~BTRFS_INODE_NODATACOW;
242
243 /*
244 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
245 * flag may be changed automatically if compression code won't make
246 * things smaller.
247 */
248 if (flags & FS_NOCOMP_FL) {
249 ip->flags &= ~BTRFS_INODE_COMPRESS;
250 ip->flags |= BTRFS_INODE_NOCOMPRESS;
251 } else if (flags & FS_COMPR_FL) {
252 ip->flags |= BTRFS_INODE_COMPRESS;
253 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
254 } else {
255 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
256 }
257
258 trans = btrfs_start_transaction(root, 1);
259 if (IS_ERR(trans)) {
260 ret = PTR_ERR(trans);
261 goto out_drop;
262 }
263
264 btrfs_update_iflags(inode);
265 inode_inc_iversion(inode);
266 inode->i_ctime = CURRENT_TIME;
267 ret = btrfs_update_inode(trans, root, inode);
268
269 btrfs_end_transaction(trans, root);
270 out_drop:
271 if (ret) {
272 ip->flags = ip_oldflags;
273 inode->i_flags = i_oldflags;
274 }
275
276 mnt_drop_write_file(file);
277 out_unlock:
278 mutex_unlock(&inode->i_mutex);
279 return ret;
280 }
281
282 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
283 {
284 struct inode *inode = file->f_path.dentry->d_inode;
285
286 return put_user(inode->i_generation, arg);
287 }
288
289 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
290 {
291 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
292 struct btrfs_device *device;
293 struct request_queue *q;
294 struct fstrim_range range;
295 u64 minlen = ULLONG_MAX;
296 u64 num_devices = 0;
297 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
298 int ret;
299
300 if (!capable(CAP_SYS_ADMIN))
301 return -EPERM;
302
303 rcu_read_lock();
304 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
305 dev_list) {
306 if (!device->bdev)
307 continue;
308 q = bdev_get_queue(device->bdev);
309 if (blk_queue_discard(q)) {
310 num_devices++;
311 minlen = min((u64)q->limits.discard_granularity,
312 minlen);
313 }
314 }
315 rcu_read_unlock();
316
317 if (!num_devices)
318 return -EOPNOTSUPP;
319 if (copy_from_user(&range, arg, sizeof(range)))
320 return -EFAULT;
321 if (range.start > total_bytes)
322 return -EINVAL;
323
324 range.len = min(range.len, total_bytes - range.start);
325 range.minlen = max(range.minlen, minlen);
326 ret = btrfs_trim_fs(fs_info->tree_root, &range);
327 if (ret < 0)
328 return ret;
329
330 if (copy_to_user(arg, &range, sizeof(range)))
331 return -EFAULT;
332
333 return 0;
334 }
335
336 static noinline int create_subvol(struct btrfs_root *root,
337 struct dentry *dentry,
338 char *name, int namelen,
339 u64 *async_transid)
340 {
341 struct btrfs_trans_handle *trans;
342 struct btrfs_key key;
343 struct btrfs_root_item root_item;
344 struct btrfs_inode_item *inode_item;
345 struct extent_buffer *leaf;
346 struct btrfs_root *new_root;
347 struct dentry *parent = dentry->d_parent;
348 struct inode *dir;
349 int ret;
350 int err;
351 u64 objectid;
352 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
353 u64 index = 0;
354
355 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
356 if (ret)
357 return ret;
358
359 dir = parent->d_inode;
360
361 /*
362 * 1 - inode item
363 * 2 - refs
364 * 1 - root item
365 * 2 - dir items
366 */
367 trans = btrfs_start_transaction(root, 6);
368 if (IS_ERR(trans))
369 return PTR_ERR(trans);
370
371 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
372 0, objectid, NULL, 0, 0, 0);
373 if (IS_ERR(leaf)) {
374 ret = PTR_ERR(leaf);
375 goto fail;
376 }
377
378 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
379 btrfs_set_header_bytenr(leaf, leaf->start);
380 btrfs_set_header_generation(leaf, trans->transid);
381 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
382 btrfs_set_header_owner(leaf, objectid);
383
384 write_extent_buffer(leaf, root->fs_info->fsid,
385 (unsigned long)btrfs_header_fsid(leaf),
386 BTRFS_FSID_SIZE);
387 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
388 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
389 BTRFS_UUID_SIZE);
390 btrfs_mark_buffer_dirty(leaf);
391
392 inode_item = &root_item.inode;
393 memset(inode_item, 0, sizeof(*inode_item));
394 inode_item->generation = cpu_to_le64(1);
395 inode_item->size = cpu_to_le64(3);
396 inode_item->nlink = cpu_to_le32(1);
397 inode_item->nbytes = cpu_to_le64(root->leafsize);
398 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
399
400 root_item.flags = 0;
401 root_item.byte_limit = 0;
402 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
403
404 btrfs_set_root_bytenr(&root_item, leaf->start);
405 btrfs_set_root_generation(&root_item, trans->transid);
406 btrfs_set_root_level(&root_item, 0);
407 btrfs_set_root_refs(&root_item, 1);
408 btrfs_set_root_used(&root_item, leaf->len);
409 btrfs_set_root_last_snapshot(&root_item, 0);
410
411 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
412 root_item.drop_level = 0;
413
414 btrfs_tree_unlock(leaf);
415 free_extent_buffer(leaf);
416 leaf = NULL;
417
418 btrfs_set_root_dirid(&root_item, new_dirid);
419
420 key.objectid = objectid;
421 key.offset = 0;
422 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
423 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
424 &root_item);
425 if (ret)
426 goto fail;
427
428 key.offset = (u64)-1;
429 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
430 if (IS_ERR(new_root)) {
431 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
432 ret = PTR_ERR(new_root);
433 goto fail;
434 }
435
436 btrfs_record_root_in_trans(trans, new_root);
437
438 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
439 if (ret) {
440 /* We potentially lose an unused inode item here */
441 btrfs_abort_transaction(trans, root, ret);
442 goto fail;
443 }
444
445 /*
446 * insert the directory item
447 */
448 ret = btrfs_set_inode_index(dir, &index);
449 if (ret) {
450 btrfs_abort_transaction(trans, root, ret);
451 goto fail;
452 }
453
454 ret = btrfs_insert_dir_item(trans, root,
455 name, namelen, dir, &key,
456 BTRFS_FT_DIR, index);
457 if (ret) {
458 btrfs_abort_transaction(trans, root, ret);
459 goto fail;
460 }
461
462 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
463 ret = btrfs_update_inode(trans, root, dir);
464 BUG_ON(ret);
465
466 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
467 objectid, root->root_key.objectid,
468 btrfs_ino(dir), index, name, namelen);
469
470 BUG_ON(ret);
471
472 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
473 fail:
474 if (async_transid) {
475 *async_transid = trans->transid;
476 err = btrfs_commit_transaction_async(trans, root, 1);
477 } else {
478 err = btrfs_commit_transaction(trans, root);
479 }
480 if (err && !ret)
481 ret = err;
482 return ret;
483 }
484
485 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
486 char *name, int namelen, u64 *async_transid,
487 bool readonly)
488 {
489 struct inode *inode;
490 struct btrfs_pending_snapshot *pending_snapshot;
491 struct btrfs_trans_handle *trans;
492 int ret;
493
494 if (!root->ref_cows)
495 return -EINVAL;
496
497 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
498 if (!pending_snapshot)
499 return -ENOMEM;
500
501 btrfs_init_block_rsv(&pending_snapshot->block_rsv);
502 pending_snapshot->dentry = dentry;
503 pending_snapshot->root = root;
504 pending_snapshot->readonly = readonly;
505
506 trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
507 if (IS_ERR(trans)) {
508 ret = PTR_ERR(trans);
509 goto fail;
510 }
511
512 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
513 BUG_ON(ret);
514
515 spin_lock(&root->fs_info->trans_lock);
516 list_add(&pending_snapshot->list,
517 &trans->transaction->pending_snapshots);
518 spin_unlock(&root->fs_info->trans_lock);
519 if (async_transid) {
520 *async_transid = trans->transid;
521 ret = btrfs_commit_transaction_async(trans,
522 root->fs_info->extent_root, 1);
523 } else {
524 ret = btrfs_commit_transaction(trans,
525 root->fs_info->extent_root);
526 }
527 BUG_ON(ret);
528
529 ret = pending_snapshot->error;
530 if (ret)
531 goto fail;
532
533 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
534 if (ret)
535 goto fail;
536
537 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
538 if (IS_ERR(inode)) {
539 ret = PTR_ERR(inode);
540 goto fail;
541 }
542 BUG_ON(!inode);
543 d_instantiate(dentry, inode);
544 ret = 0;
545 fail:
546 kfree(pending_snapshot);
547 return ret;
548 }
549
550 /* copy of check_sticky in fs/namei.c()
551 * It's inline, so penalty for filesystems that don't use sticky bit is
552 * minimal.
553 */
554 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
555 {
556 uid_t fsuid = current_fsuid();
557
558 if (!(dir->i_mode & S_ISVTX))
559 return 0;
560 if (inode->i_uid == fsuid)
561 return 0;
562 if (dir->i_uid == fsuid)
563 return 0;
564 return !capable(CAP_FOWNER);
565 }
566
567 /* copy of may_delete in fs/namei.c()
568 * Check whether we can remove a link victim from directory dir, check
569 * whether the type of victim is right.
570 * 1. We can't do it if dir is read-only (done in permission())
571 * 2. We should have write and exec permissions on dir
572 * 3. We can't remove anything from append-only dir
573 * 4. We can't do anything with immutable dir (done in permission())
574 * 5. If the sticky bit on dir is set we should either
575 * a. be owner of dir, or
576 * b. be owner of victim, or
577 * c. have CAP_FOWNER capability
578 * 6. If the victim is append-only or immutable we can't do antyhing with
579 * links pointing to it.
580 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
581 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
582 * 9. We can't remove a root or mountpoint.
583 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
584 * nfs_async_unlink().
585 */
586
587 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
588 {
589 int error;
590
591 if (!victim->d_inode)
592 return -ENOENT;
593
594 BUG_ON(victim->d_parent->d_inode != dir);
595 audit_inode_child(victim, dir);
596
597 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
598 if (error)
599 return error;
600 if (IS_APPEND(dir))
601 return -EPERM;
602 if (btrfs_check_sticky(dir, victim->d_inode)||
603 IS_APPEND(victim->d_inode)||
604 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
605 return -EPERM;
606 if (isdir) {
607 if (!S_ISDIR(victim->d_inode->i_mode))
608 return -ENOTDIR;
609 if (IS_ROOT(victim))
610 return -EBUSY;
611 } else if (S_ISDIR(victim->d_inode->i_mode))
612 return -EISDIR;
613 if (IS_DEADDIR(dir))
614 return -ENOENT;
615 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
616 return -EBUSY;
617 return 0;
618 }
619
620 /* copy of may_create in fs/namei.c() */
621 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
622 {
623 if (child->d_inode)
624 return -EEXIST;
625 if (IS_DEADDIR(dir))
626 return -ENOENT;
627 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
628 }
629
630 /*
631 * Create a new subvolume below @parent. This is largely modeled after
632 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
633 * inside this filesystem so it's quite a bit simpler.
634 */
635 static noinline int btrfs_mksubvol(struct path *parent,
636 char *name, int namelen,
637 struct btrfs_root *snap_src,
638 u64 *async_transid, bool readonly)
639 {
640 struct inode *dir = parent->dentry->d_inode;
641 struct dentry *dentry;
642 int error;
643
644 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
645
646 dentry = lookup_one_len(name, parent->dentry, namelen);
647 error = PTR_ERR(dentry);
648 if (IS_ERR(dentry))
649 goto out_unlock;
650
651 error = -EEXIST;
652 if (dentry->d_inode)
653 goto out_dput;
654
655 error = btrfs_may_create(dir, dentry);
656 if (error)
657 goto out_dput;
658
659 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
660
661 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
662 goto out_up_read;
663
664 if (snap_src) {
665 error = create_snapshot(snap_src, dentry,
666 name, namelen, async_transid, readonly);
667 } else {
668 error = create_subvol(BTRFS_I(dir)->root, dentry,
669 name, namelen, async_transid);
670 }
671 if (!error)
672 fsnotify_mkdir(dir, dentry);
673 out_up_read:
674 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
675 out_dput:
676 dput(dentry);
677 out_unlock:
678 mutex_unlock(&dir->i_mutex);
679 return error;
680 }
681
682 /*
683 * When we're defragging a range, we don't want to kick it off again
684 * if it is really just waiting for delalloc to send it down.
685 * If we find a nice big extent or delalloc range for the bytes in the
686 * file you want to defrag, we return 0 to let you know to skip this
687 * part of the file
688 */
689 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
690 {
691 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
692 struct extent_map *em = NULL;
693 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
694 u64 end;
695
696 read_lock(&em_tree->lock);
697 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
698 read_unlock(&em_tree->lock);
699
700 if (em) {
701 end = extent_map_end(em);
702 free_extent_map(em);
703 if (end - offset > thresh)
704 return 0;
705 }
706 /* if we already have a nice delalloc here, just stop */
707 thresh /= 2;
708 end = count_range_bits(io_tree, &offset, offset + thresh,
709 thresh, EXTENT_DELALLOC, 1);
710 if (end >= thresh)
711 return 0;
712 return 1;
713 }
714
715 /*
716 * helper function to walk through a file and find extents
717 * newer than a specific transid, and smaller than thresh.
718 *
719 * This is used by the defragging code to find new and small
720 * extents
721 */
722 static int find_new_extents(struct btrfs_root *root,
723 struct inode *inode, u64 newer_than,
724 u64 *off, int thresh)
725 {
726 struct btrfs_path *path;
727 struct btrfs_key min_key;
728 struct btrfs_key max_key;
729 struct extent_buffer *leaf;
730 struct btrfs_file_extent_item *extent;
731 int type;
732 int ret;
733 u64 ino = btrfs_ino(inode);
734
735 path = btrfs_alloc_path();
736 if (!path)
737 return -ENOMEM;
738
739 min_key.objectid = ino;
740 min_key.type = BTRFS_EXTENT_DATA_KEY;
741 min_key.offset = *off;
742
743 max_key.objectid = ino;
744 max_key.type = (u8)-1;
745 max_key.offset = (u64)-1;
746
747 path->keep_locks = 1;
748
749 while(1) {
750 ret = btrfs_search_forward(root, &min_key, &max_key,
751 path, 0, newer_than);
752 if (ret != 0)
753 goto none;
754 if (min_key.objectid != ino)
755 goto none;
756 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
757 goto none;
758
759 leaf = path->nodes[0];
760 extent = btrfs_item_ptr(leaf, path->slots[0],
761 struct btrfs_file_extent_item);
762
763 type = btrfs_file_extent_type(leaf, extent);
764 if (type == BTRFS_FILE_EXTENT_REG &&
765 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
766 check_defrag_in_cache(inode, min_key.offset, thresh)) {
767 *off = min_key.offset;
768 btrfs_free_path(path);
769 return 0;
770 }
771
772 if (min_key.offset == (u64)-1)
773 goto none;
774
775 min_key.offset++;
776 btrfs_release_path(path);
777 }
778 none:
779 btrfs_free_path(path);
780 return -ENOENT;
781 }
782
783 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
784 {
785 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
786 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
787 struct extent_map *em;
788 u64 len = PAGE_CACHE_SIZE;
789
790 /*
791 * hopefully we have this extent in the tree already, try without
792 * the full extent lock
793 */
794 read_lock(&em_tree->lock);
795 em = lookup_extent_mapping(em_tree, start, len);
796 read_unlock(&em_tree->lock);
797
798 if (!em) {
799 /* get the big lock and read metadata off disk */
800 lock_extent(io_tree, start, start + len - 1);
801 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
802 unlock_extent(io_tree, start, start + len - 1);
803
804 if (IS_ERR(em))
805 return NULL;
806 }
807
808 return em;
809 }
810
811 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
812 {
813 struct extent_map *next;
814 bool ret = true;
815
816 /* this is the last extent */
817 if (em->start + em->len >= i_size_read(inode))
818 return false;
819
820 next = defrag_lookup_extent(inode, em->start + em->len);
821 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
822 ret = false;
823
824 free_extent_map(next);
825 return ret;
826 }
827
828 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
829 u64 *last_len, u64 *skip, u64 *defrag_end,
830 int compress)
831 {
832 struct extent_map *em;
833 int ret = 1;
834 bool next_mergeable = true;
835
836 /*
837 * make sure that once we start defragging an extent, we keep on
838 * defragging it
839 */
840 if (start < *defrag_end)
841 return 1;
842
843 *skip = 0;
844
845 em = defrag_lookup_extent(inode, start);
846 if (!em)
847 return 0;
848
849 /* this will cover holes, and inline extents */
850 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
851 ret = 0;
852 goto out;
853 }
854
855 next_mergeable = defrag_check_next_extent(inode, em);
856
857 /*
858 * we hit a real extent, if it is big or the next extent is not a
859 * real extent, don't bother defragging it
860 */
861 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
862 (em->len >= thresh || !next_mergeable))
863 ret = 0;
864 out:
865 /*
866 * last_len ends up being a counter of how many bytes we've defragged.
867 * every time we choose not to defrag an extent, we reset *last_len
868 * so that the next tiny extent will force a defrag.
869 *
870 * The end result of this is that tiny extents before a single big
871 * extent will force at least part of that big extent to be defragged.
872 */
873 if (ret) {
874 *defrag_end = extent_map_end(em);
875 } else {
876 *last_len = 0;
877 *skip = extent_map_end(em);
878 *defrag_end = 0;
879 }
880
881 free_extent_map(em);
882 return ret;
883 }
884
885 /*
886 * it doesn't do much good to defrag one or two pages
887 * at a time. This pulls in a nice chunk of pages
888 * to COW and defrag.
889 *
890 * It also makes sure the delalloc code has enough
891 * dirty data to avoid making new small extents as part
892 * of the defrag
893 *
894 * It's a good idea to start RA on this range
895 * before calling this.
896 */
897 static int cluster_pages_for_defrag(struct inode *inode,
898 struct page **pages,
899 unsigned long start_index,
900 int num_pages)
901 {
902 unsigned long file_end;
903 u64 isize = i_size_read(inode);
904 u64 page_start;
905 u64 page_end;
906 u64 page_cnt;
907 int ret;
908 int i;
909 int i_done;
910 struct btrfs_ordered_extent *ordered;
911 struct extent_state *cached_state = NULL;
912 struct extent_io_tree *tree;
913 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
914
915 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
916 if (!isize || start_index > file_end)
917 return 0;
918
919 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
920
921 ret = btrfs_delalloc_reserve_space(inode,
922 page_cnt << PAGE_CACHE_SHIFT);
923 if (ret)
924 return ret;
925 i_done = 0;
926 tree = &BTRFS_I(inode)->io_tree;
927
928 /* step one, lock all the pages */
929 for (i = 0; i < page_cnt; i++) {
930 struct page *page;
931 again:
932 page = find_or_create_page(inode->i_mapping,
933 start_index + i, mask);
934 if (!page)
935 break;
936
937 page_start = page_offset(page);
938 page_end = page_start + PAGE_CACHE_SIZE - 1;
939 while (1) {
940 lock_extent(tree, page_start, page_end);
941 ordered = btrfs_lookup_ordered_extent(inode,
942 page_start);
943 unlock_extent(tree, page_start, page_end);
944 if (!ordered)
945 break;
946
947 unlock_page(page);
948 btrfs_start_ordered_extent(inode, ordered, 1);
949 btrfs_put_ordered_extent(ordered);
950 lock_page(page);
951 /*
952 * we unlocked the page above, so we need check if
953 * it was released or not.
954 */
955 if (page->mapping != inode->i_mapping) {
956 unlock_page(page);
957 page_cache_release(page);
958 goto again;
959 }
960 }
961
962 if (!PageUptodate(page)) {
963 btrfs_readpage(NULL, page);
964 lock_page(page);
965 if (!PageUptodate(page)) {
966 unlock_page(page);
967 page_cache_release(page);
968 ret = -EIO;
969 break;
970 }
971 }
972
973 if (page->mapping != inode->i_mapping) {
974 unlock_page(page);
975 page_cache_release(page);
976 goto again;
977 }
978
979 pages[i] = page;
980 i_done++;
981 }
982 if (!i_done || ret)
983 goto out;
984
985 if (!(inode->i_sb->s_flags & MS_ACTIVE))
986 goto out;
987
988 /*
989 * so now we have a nice long stream of locked
990 * and up to date pages, lets wait on them
991 */
992 for (i = 0; i < i_done; i++)
993 wait_on_page_writeback(pages[i]);
994
995 page_start = page_offset(pages[0]);
996 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
997
998 lock_extent_bits(&BTRFS_I(inode)->io_tree,
999 page_start, page_end - 1, 0, &cached_state);
1000 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1001 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1002 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1003 GFP_NOFS);
1004
1005 if (i_done != page_cnt) {
1006 spin_lock(&BTRFS_I(inode)->lock);
1007 BTRFS_I(inode)->outstanding_extents++;
1008 spin_unlock(&BTRFS_I(inode)->lock);
1009 btrfs_delalloc_release_space(inode,
1010 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1011 }
1012
1013
1014 btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
1015 &cached_state);
1016
1017 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1018 page_start, page_end - 1, &cached_state,
1019 GFP_NOFS);
1020
1021 for (i = 0; i < i_done; i++) {
1022 clear_page_dirty_for_io(pages[i]);
1023 ClearPageChecked(pages[i]);
1024 set_page_extent_mapped(pages[i]);
1025 set_page_dirty(pages[i]);
1026 unlock_page(pages[i]);
1027 page_cache_release(pages[i]);
1028 }
1029 return i_done;
1030 out:
1031 for (i = 0; i < i_done; i++) {
1032 unlock_page(pages[i]);
1033 page_cache_release(pages[i]);
1034 }
1035 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1036 return ret;
1037
1038 }
1039
1040 int btrfs_defrag_file(struct inode *inode, struct file *file,
1041 struct btrfs_ioctl_defrag_range_args *range,
1042 u64 newer_than, unsigned long max_to_defrag)
1043 {
1044 struct btrfs_root *root = BTRFS_I(inode)->root;
1045 struct btrfs_super_block *disk_super;
1046 struct file_ra_state *ra = NULL;
1047 unsigned long last_index;
1048 u64 isize = i_size_read(inode);
1049 u64 features;
1050 u64 last_len = 0;
1051 u64 skip = 0;
1052 u64 defrag_end = 0;
1053 u64 newer_off = range->start;
1054 unsigned long i;
1055 unsigned long ra_index = 0;
1056 int ret;
1057 int defrag_count = 0;
1058 int compress_type = BTRFS_COMPRESS_ZLIB;
1059 int extent_thresh = range->extent_thresh;
1060 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1061 int cluster = max_cluster;
1062 u64 new_align = ~((u64)128 * 1024 - 1);
1063 struct page **pages = NULL;
1064
1065 if (extent_thresh == 0)
1066 extent_thresh = 256 * 1024;
1067
1068 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1069 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1070 return -EINVAL;
1071 if (range->compress_type)
1072 compress_type = range->compress_type;
1073 }
1074
1075 if (isize == 0)
1076 return 0;
1077
1078 /*
1079 * if we were not given a file, allocate a readahead
1080 * context
1081 */
1082 if (!file) {
1083 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1084 if (!ra)
1085 return -ENOMEM;
1086 file_ra_state_init(ra, inode->i_mapping);
1087 } else {
1088 ra = &file->f_ra;
1089 }
1090
1091 pages = kmalloc(sizeof(struct page *) * max_cluster,
1092 GFP_NOFS);
1093 if (!pages) {
1094 ret = -ENOMEM;
1095 goto out_ra;
1096 }
1097
1098 /* find the last page to defrag */
1099 if (range->start + range->len > range->start) {
1100 last_index = min_t(u64, isize - 1,
1101 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1102 } else {
1103 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1104 }
1105
1106 if (newer_than) {
1107 ret = find_new_extents(root, inode, newer_than,
1108 &newer_off, 64 * 1024);
1109 if (!ret) {
1110 range->start = newer_off;
1111 /*
1112 * we always align our defrag to help keep
1113 * the extents in the file evenly spaced
1114 */
1115 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1116 } else
1117 goto out_ra;
1118 } else {
1119 i = range->start >> PAGE_CACHE_SHIFT;
1120 }
1121 if (!max_to_defrag)
1122 max_to_defrag = last_index + 1;
1123
1124 /*
1125 * make writeback starts from i, so the defrag range can be
1126 * written sequentially.
1127 */
1128 if (i < inode->i_mapping->writeback_index)
1129 inode->i_mapping->writeback_index = i;
1130
1131 while (i <= last_index && defrag_count < max_to_defrag &&
1132 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1133 PAGE_CACHE_SHIFT)) {
1134 /*
1135 * make sure we stop running if someone unmounts
1136 * the FS
1137 */
1138 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1139 break;
1140
1141 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1142 extent_thresh, &last_len, &skip,
1143 &defrag_end, range->flags &
1144 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1145 unsigned long next;
1146 /*
1147 * the should_defrag function tells us how much to skip
1148 * bump our counter by the suggested amount
1149 */
1150 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1151 i = max(i + 1, next);
1152 continue;
1153 }
1154
1155 if (!newer_than) {
1156 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1157 PAGE_CACHE_SHIFT) - i;
1158 cluster = min(cluster, max_cluster);
1159 } else {
1160 cluster = max_cluster;
1161 }
1162
1163 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1164 BTRFS_I(inode)->force_compress = compress_type;
1165
1166 if (i + cluster > ra_index) {
1167 ra_index = max(i, ra_index);
1168 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1169 cluster);
1170 ra_index += max_cluster;
1171 }
1172
1173 mutex_lock(&inode->i_mutex);
1174 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1175 if (ret < 0) {
1176 mutex_unlock(&inode->i_mutex);
1177 goto out_ra;
1178 }
1179
1180 defrag_count += ret;
1181 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1182 mutex_unlock(&inode->i_mutex);
1183
1184 if (newer_than) {
1185 if (newer_off == (u64)-1)
1186 break;
1187
1188 if (ret > 0)
1189 i += ret;
1190
1191 newer_off = max(newer_off + 1,
1192 (u64)i << PAGE_CACHE_SHIFT);
1193
1194 ret = find_new_extents(root, inode,
1195 newer_than, &newer_off,
1196 64 * 1024);
1197 if (!ret) {
1198 range->start = newer_off;
1199 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1200 } else {
1201 break;
1202 }
1203 } else {
1204 if (ret > 0) {
1205 i += ret;
1206 last_len += ret << PAGE_CACHE_SHIFT;
1207 } else {
1208 i++;
1209 last_len = 0;
1210 }
1211 }
1212 }
1213
1214 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1215 filemap_flush(inode->i_mapping);
1216
1217 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1218 /* the filemap_flush will queue IO into the worker threads, but
1219 * we have to make sure the IO is actually started and that
1220 * ordered extents get created before we return
1221 */
1222 atomic_inc(&root->fs_info->async_submit_draining);
1223 while (atomic_read(&root->fs_info->nr_async_submits) ||
1224 atomic_read(&root->fs_info->async_delalloc_pages)) {
1225 wait_event(root->fs_info->async_submit_wait,
1226 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1227 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1228 }
1229 atomic_dec(&root->fs_info->async_submit_draining);
1230
1231 mutex_lock(&inode->i_mutex);
1232 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1233 mutex_unlock(&inode->i_mutex);
1234 }
1235
1236 disk_super = root->fs_info->super_copy;
1237 features = btrfs_super_incompat_flags(disk_super);
1238 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1239 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1240 btrfs_set_super_incompat_flags(disk_super, features);
1241 }
1242
1243 ret = defrag_count;
1244
1245 out_ra:
1246 if (!file)
1247 kfree(ra);
1248 kfree(pages);
1249 return ret;
1250 }
1251
1252 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1253 void __user *arg)
1254 {
1255 u64 new_size;
1256 u64 old_size;
1257 u64 devid = 1;
1258 struct btrfs_ioctl_vol_args *vol_args;
1259 struct btrfs_trans_handle *trans;
1260 struct btrfs_device *device = NULL;
1261 char *sizestr;
1262 char *devstr = NULL;
1263 int ret = 0;
1264 int mod = 0;
1265
1266 if (root->fs_info->sb->s_flags & MS_RDONLY)
1267 return -EROFS;
1268
1269 if (!capable(CAP_SYS_ADMIN))
1270 return -EPERM;
1271
1272 mutex_lock(&root->fs_info->volume_mutex);
1273 if (root->fs_info->balance_ctl) {
1274 printk(KERN_INFO "btrfs: balance in progress\n");
1275 ret = -EINVAL;
1276 goto out;
1277 }
1278
1279 vol_args = memdup_user(arg, sizeof(*vol_args));
1280 if (IS_ERR(vol_args)) {
1281 ret = PTR_ERR(vol_args);
1282 goto out;
1283 }
1284
1285 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1286
1287 sizestr = vol_args->name;
1288 devstr = strchr(sizestr, ':');
1289 if (devstr) {
1290 char *end;
1291 sizestr = devstr + 1;
1292 *devstr = '\0';
1293 devstr = vol_args->name;
1294 devid = simple_strtoull(devstr, &end, 10);
1295 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1296 (unsigned long long)devid);
1297 }
1298 device = btrfs_find_device(root, devid, NULL, NULL);
1299 if (!device) {
1300 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1301 (unsigned long long)devid);
1302 ret = -EINVAL;
1303 goto out_free;
1304 }
1305 if (device->fs_devices && device->fs_devices->seeding) {
1306 printk(KERN_INFO "btrfs: resizer unable to apply on "
1307 "seeding device %llu\n",
1308 (unsigned long long)devid);
1309 ret = -EINVAL;
1310 goto out_free;
1311 }
1312
1313 if (!strcmp(sizestr, "max"))
1314 new_size = device->bdev->bd_inode->i_size;
1315 else {
1316 if (sizestr[0] == '-') {
1317 mod = -1;
1318 sizestr++;
1319 } else if (sizestr[0] == '+') {
1320 mod = 1;
1321 sizestr++;
1322 }
1323 new_size = memparse(sizestr, NULL);
1324 if (new_size == 0) {
1325 ret = -EINVAL;
1326 goto out_free;
1327 }
1328 }
1329
1330 old_size = device->total_bytes;
1331
1332 if (mod < 0) {
1333 if (new_size > old_size) {
1334 ret = -EINVAL;
1335 goto out_free;
1336 }
1337 new_size = old_size - new_size;
1338 } else if (mod > 0) {
1339 new_size = old_size + new_size;
1340 }
1341
1342 if (new_size < 256 * 1024 * 1024) {
1343 ret = -EINVAL;
1344 goto out_free;
1345 }
1346 if (new_size > device->bdev->bd_inode->i_size) {
1347 ret = -EFBIG;
1348 goto out_free;
1349 }
1350
1351 do_div(new_size, root->sectorsize);
1352 new_size *= root->sectorsize;
1353
1354 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1355 rcu_str_deref(device->name),
1356 (unsigned long long)new_size);
1357
1358 if (new_size > old_size) {
1359 trans = btrfs_start_transaction(root, 0);
1360 if (IS_ERR(trans)) {
1361 ret = PTR_ERR(trans);
1362 goto out_free;
1363 }
1364 ret = btrfs_grow_device(trans, device, new_size);
1365 btrfs_commit_transaction(trans, root);
1366 } else if (new_size < old_size) {
1367 ret = btrfs_shrink_device(device, new_size);
1368 }
1369
1370 out_free:
1371 kfree(vol_args);
1372 out:
1373 mutex_unlock(&root->fs_info->volume_mutex);
1374 return ret;
1375 }
1376
1377 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1378 char *name,
1379 unsigned long fd,
1380 int subvol,
1381 u64 *transid,
1382 bool readonly)
1383 {
1384 struct file *src_file;
1385 int namelen;
1386 int ret = 0;
1387
1388 ret = mnt_want_write_file(file);
1389 if (ret)
1390 goto out;
1391
1392 namelen = strlen(name);
1393 if (strchr(name, '/')) {
1394 ret = -EINVAL;
1395 goto out_drop_write;
1396 }
1397
1398 if (name[0] == '.' &&
1399 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1400 ret = -EEXIST;
1401 goto out_drop_write;
1402 }
1403
1404 if (subvol) {
1405 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1406 NULL, transid, readonly);
1407 } else {
1408 struct inode *src_inode;
1409 src_file = fget(fd);
1410 if (!src_file) {
1411 ret = -EINVAL;
1412 goto out_drop_write;
1413 }
1414
1415 src_inode = src_file->f_path.dentry->d_inode;
1416 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1417 printk(KERN_INFO "btrfs: Snapshot src from "
1418 "another FS\n");
1419 ret = -EINVAL;
1420 fput(src_file);
1421 goto out_drop_write;
1422 }
1423 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1424 BTRFS_I(src_inode)->root,
1425 transid, readonly);
1426 fput(src_file);
1427 }
1428 out_drop_write:
1429 mnt_drop_write_file(file);
1430 out:
1431 return ret;
1432 }
1433
1434 static noinline int btrfs_ioctl_snap_create(struct file *file,
1435 void __user *arg, int subvol)
1436 {
1437 struct btrfs_ioctl_vol_args *vol_args;
1438 int ret;
1439
1440 vol_args = memdup_user(arg, sizeof(*vol_args));
1441 if (IS_ERR(vol_args))
1442 return PTR_ERR(vol_args);
1443 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1444
1445 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1446 vol_args->fd, subvol,
1447 NULL, false);
1448
1449 kfree(vol_args);
1450 return ret;
1451 }
1452
1453 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1454 void __user *arg, int subvol)
1455 {
1456 struct btrfs_ioctl_vol_args_v2 *vol_args;
1457 int ret;
1458 u64 transid = 0;
1459 u64 *ptr = NULL;
1460 bool readonly = false;
1461
1462 vol_args = memdup_user(arg, sizeof(*vol_args));
1463 if (IS_ERR(vol_args))
1464 return PTR_ERR(vol_args);
1465 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1466
1467 if (vol_args->flags &
1468 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1469 ret = -EOPNOTSUPP;
1470 goto out;
1471 }
1472
1473 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1474 ptr = &transid;
1475 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1476 readonly = true;
1477
1478 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1479 vol_args->fd, subvol,
1480 ptr, readonly);
1481
1482 if (ret == 0 && ptr &&
1483 copy_to_user(arg +
1484 offsetof(struct btrfs_ioctl_vol_args_v2,
1485 transid), ptr, sizeof(*ptr)))
1486 ret = -EFAULT;
1487 out:
1488 kfree(vol_args);
1489 return ret;
1490 }
1491
1492 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1493 void __user *arg)
1494 {
1495 struct inode *inode = fdentry(file)->d_inode;
1496 struct btrfs_root *root = BTRFS_I(inode)->root;
1497 int ret = 0;
1498 u64 flags = 0;
1499
1500 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1501 return -EINVAL;
1502
1503 down_read(&root->fs_info->subvol_sem);
1504 if (btrfs_root_readonly(root))
1505 flags |= BTRFS_SUBVOL_RDONLY;
1506 up_read(&root->fs_info->subvol_sem);
1507
1508 if (copy_to_user(arg, &flags, sizeof(flags)))
1509 ret = -EFAULT;
1510
1511 return ret;
1512 }
1513
1514 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1515 void __user *arg)
1516 {
1517 struct inode *inode = fdentry(file)->d_inode;
1518 struct btrfs_root *root = BTRFS_I(inode)->root;
1519 struct btrfs_trans_handle *trans;
1520 u64 root_flags;
1521 u64 flags;
1522 int ret = 0;
1523
1524 ret = mnt_want_write_file(file);
1525 if (ret)
1526 goto out;
1527
1528 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1529 ret = -EINVAL;
1530 goto out_drop_write;
1531 }
1532
1533 if (copy_from_user(&flags, arg, sizeof(flags))) {
1534 ret = -EFAULT;
1535 goto out_drop_write;
1536 }
1537
1538 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1539 ret = -EINVAL;
1540 goto out_drop_write;
1541 }
1542
1543 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1544 ret = -EOPNOTSUPP;
1545 goto out_drop_write;
1546 }
1547
1548 if (!inode_owner_or_capable(inode)) {
1549 ret = -EACCES;
1550 goto out_drop_write;
1551 }
1552
1553 down_write(&root->fs_info->subvol_sem);
1554
1555 /* nothing to do */
1556 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1557 goto out_drop_sem;
1558
1559 root_flags = btrfs_root_flags(&root->root_item);
1560 if (flags & BTRFS_SUBVOL_RDONLY)
1561 btrfs_set_root_flags(&root->root_item,
1562 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1563 else
1564 btrfs_set_root_flags(&root->root_item,
1565 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1566
1567 trans = btrfs_start_transaction(root, 1);
1568 if (IS_ERR(trans)) {
1569 ret = PTR_ERR(trans);
1570 goto out_reset;
1571 }
1572
1573 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1574 &root->root_key, &root->root_item);
1575
1576 btrfs_commit_transaction(trans, root);
1577 out_reset:
1578 if (ret)
1579 btrfs_set_root_flags(&root->root_item, root_flags);
1580 out_drop_sem:
1581 up_write(&root->fs_info->subvol_sem);
1582 out_drop_write:
1583 mnt_drop_write_file(file);
1584 out:
1585 return ret;
1586 }
1587
1588 /*
1589 * helper to check if the subvolume references other subvolumes
1590 */
1591 static noinline int may_destroy_subvol(struct btrfs_root *root)
1592 {
1593 struct btrfs_path *path;
1594 struct btrfs_key key;
1595 int ret;
1596
1597 path = btrfs_alloc_path();
1598 if (!path)
1599 return -ENOMEM;
1600
1601 key.objectid = root->root_key.objectid;
1602 key.type = BTRFS_ROOT_REF_KEY;
1603 key.offset = (u64)-1;
1604
1605 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1606 &key, path, 0, 0);
1607 if (ret < 0)
1608 goto out;
1609 BUG_ON(ret == 0);
1610
1611 ret = 0;
1612 if (path->slots[0] > 0) {
1613 path->slots[0]--;
1614 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1615 if (key.objectid == root->root_key.objectid &&
1616 key.type == BTRFS_ROOT_REF_KEY)
1617 ret = -ENOTEMPTY;
1618 }
1619 out:
1620 btrfs_free_path(path);
1621 return ret;
1622 }
1623
1624 static noinline int key_in_sk(struct btrfs_key *key,
1625 struct btrfs_ioctl_search_key *sk)
1626 {
1627 struct btrfs_key test;
1628 int ret;
1629
1630 test.objectid = sk->min_objectid;
1631 test.type = sk->min_type;
1632 test.offset = sk->min_offset;
1633
1634 ret = btrfs_comp_cpu_keys(key, &test);
1635 if (ret < 0)
1636 return 0;
1637
1638 test.objectid = sk->max_objectid;
1639 test.type = sk->max_type;
1640 test.offset = sk->max_offset;
1641
1642 ret = btrfs_comp_cpu_keys(key, &test);
1643 if (ret > 0)
1644 return 0;
1645 return 1;
1646 }
1647
1648 static noinline int copy_to_sk(struct btrfs_root *root,
1649 struct btrfs_path *path,
1650 struct btrfs_key *key,
1651 struct btrfs_ioctl_search_key *sk,
1652 char *buf,
1653 unsigned long *sk_offset,
1654 int *num_found)
1655 {
1656 u64 found_transid;
1657 struct extent_buffer *leaf;
1658 struct btrfs_ioctl_search_header sh;
1659 unsigned long item_off;
1660 unsigned long item_len;
1661 int nritems;
1662 int i;
1663 int slot;
1664 int ret = 0;
1665
1666 leaf = path->nodes[0];
1667 slot = path->slots[0];
1668 nritems = btrfs_header_nritems(leaf);
1669
1670 if (btrfs_header_generation(leaf) > sk->max_transid) {
1671 i = nritems;
1672 goto advance_key;
1673 }
1674 found_transid = btrfs_header_generation(leaf);
1675
1676 for (i = slot; i < nritems; i++) {
1677 item_off = btrfs_item_ptr_offset(leaf, i);
1678 item_len = btrfs_item_size_nr(leaf, i);
1679
1680 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1681 item_len = 0;
1682
1683 if (sizeof(sh) + item_len + *sk_offset >
1684 BTRFS_SEARCH_ARGS_BUFSIZE) {
1685 ret = 1;
1686 goto overflow;
1687 }
1688
1689 btrfs_item_key_to_cpu(leaf, key, i);
1690 if (!key_in_sk(key, sk))
1691 continue;
1692
1693 sh.objectid = key->objectid;
1694 sh.offset = key->offset;
1695 sh.type = key->type;
1696 sh.len = item_len;
1697 sh.transid = found_transid;
1698
1699 /* copy search result header */
1700 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1701 *sk_offset += sizeof(sh);
1702
1703 if (item_len) {
1704 char *p = buf + *sk_offset;
1705 /* copy the item */
1706 read_extent_buffer(leaf, p,
1707 item_off, item_len);
1708 *sk_offset += item_len;
1709 }
1710 (*num_found)++;
1711
1712 if (*num_found >= sk->nr_items)
1713 break;
1714 }
1715 advance_key:
1716 ret = 0;
1717 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1718 key->offset++;
1719 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1720 key->offset = 0;
1721 key->type++;
1722 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1723 key->offset = 0;
1724 key->type = 0;
1725 key->objectid++;
1726 } else
1727 ret = 1;
1728 overflow:
1729 return ret;
1730 }
1731
1732 static noinline int search_ioctl(struct inode *inode,
1733 struct btrfs_ioctl_search_args *args)
1734 {
1735 struct btrfs_root *root;
1736 struct btrfs_key key;
1737 struct btrfs_key max_key;
1738 struct btrfs_path *path;
1739 struct btrfs_ioctl_search_key *sk = &args->key;
1740 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1741 int ret;
1742 int num_found = 0;
1743 unsigned long sk_offset = 0;
1744
1745 path = btrfs_alloc_path();
1746 if (!path)
1747 return -ENOMEM;
1748
1749 if (sk->tree_id == 0) {
1750 /* search the root of the inode that was passed */
1751 root = BTRFS_I(inode)->root;
1752 } else {
1753 key.objectid = sk->tree_id;
1754 key.type = BTRFS_ROOT_ITEM_KEY;
1755 key.offset = (u64)-1;
1756 root = btrfs_read_fs_root_no_name(info, &key);
1757 if (IS_ERR(root)) {
1758 printk(KERN_ERR "could not find root %llu\n",
1759 sk->tree_id);
1760 btrfs_free_path(path);
1761 return -ENOENT;
1762 }
1763 }
1764
1765 key.objectid = sk->min_objectid;
1766 key.type = sk->min_type;
1767 key.offset = sk->min_offset;
1768
1769 max_key.objectid = sk->max_objectid;
1770 max_key.type = sk->max_type;
1771 max_key.offset = sk->max_offset;
1772
1773 path->keep_locks = 1;
1774
1775 while(1) {
1776 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1777 sk->min_transid);
1778 if (ret != 0) {
1779 if (ret > 0)
1780 ret = 0;
1781 goto err;
1782 }
1783 ret = copy_to_sk(root, path, &key, sk, args->buf,
1784 &sk_offset, &num_found);
1785 btrfs_release_path(path);
1786 if (ret || num_found >= sk->nr_items)
1787 break;
1788
1789 }
1790 ret = 0;
1791 err:
1792 sk->nr_items = num_found;
1793 btrfs_free_path(path);
1794 return ret;
1795 }
1796
1797 static noinline int btrfs_ioctl_tree_search(struct file *file,
1798 void __user *argp)
1799 {
1800 struct btrfs_ioctl_search_args *args;
1801 struct inode *inode;
1802 int ret;
1803
1804 if (!capable(CAP_SYS_ADMIN))
1805 return -EPERM;
1806
1807 args = memdup_user(argp, sizeof(*args));
1808 if (IS_ERR(args))
1809 return PTR_ERR(args);
1810
1811 inode = fdentry(file)->d_inode;
1812 ret = search_ioctl(inode, args);
1813 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1814 ret = -EFAULT;
1815 kfree(args);
1816 return ret;
1817 }
1818
1819 /*
1820 * Search INODE_REFs to identify path name of 'dirid' directory
1821 * in a 'tree_id' tree. and sets path name to 'name'.
1822 */
1823 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1824 u64 tree_id, u64 dirid, char *name)
1825 {
1826 struct btrfs_root *root;
1827 struct btrfs_key key;
1828 char *ptr;
1829 int ret = -1;
1830 int slot;
1831 int len;
1832 int total_len = 0;
1833 struct btrfs_inode_ref *iref;
1834 struct extent_buffer *l;
1835 struct btrfs_path *path;
1836
1837 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1838 name[0]='\0';
1839 return 0;
1840 }
1841
1842 path = btrfs_alloc_path();
1843 if (!path)
1844 return -ENOMEM;
1845
1846 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1847
1848 key.objectid = tree_id;
1849 key.type = BTRFS_ROOT_ITEM_KEY;
1850 key.offset = (u64)-1;
1851 root = btrfs_read_fs_root_no_name(info, &key);
1852 if (IS_ERR(root)) {
1853 printk(KERN_ERR "could not find root %llu\n", tree_id);
1854 ret = -ENOENT;
1855 goto out;
1856 }
1857
1858 key.objectid = dirid;
1859 key.type = BTRFS_INODE_REF_KEY;
1860 key.offset = (u64)-1;
1861
1862 while(1) {
1863 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1864 if (ret < 0)
1865 goto out;
1866
1867 l = path->nodes[0];
1868 slot = path->slots[0];
1869 if (ret > 0 && slot > 0)
1870 slot--;
1871 btrfs_item_key_to_cpu(l, &key, slot);
1872
1873 if (ret > 0 && (key.objectid != dirid ||
1874 key.type != BTRFS_INODE_REF_KEY)) {
1875 ret = -ENOENT;
1876 goto out;
1877 }
1878
1879 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1880 len = btrfs_inode_ref_name_len(l, iref);
1881 ptr -= len + 1;
1882 total_len += len + 1;
1883 if (ptr < name)
1884 goto out;
1885
1886 *(ptr + len) = '/';
1887 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1888
1889 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1890 break;
1891
1892 btrfs_release_path(path);
1893 key.objectid = key.offset;
1894 key.offset = (u64)-1;
1895 dirid = key.objectid;
1896 }
1897 if (ptr < name)
1898 goto out;
1899 memmove(name, ptr, total_len);
1900 name[total_len]='\0';
1901 ret = 0;
1902 out:
1903 btrfs_free_path(path);
1904 return ret;
1905 }
1906
1907 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1908 void __user *argp)
1909 {
1910 struct btrfs_ioctl_ino_lookup_args *args;
1911 struct inode *inode;
1912 int ret;
1913
1914 if (!capable(CAP_SYS_ADMIN))
1915 return -EPERM;
1916
1917 args = memdup_user(argp, sizeof(*args));
1918 if (IS_ERR(args))
1919 return PTR_ERR(args);
1920
1921 inode = fdentry(file)->d_inode;
1922
1923 if (args->treeid == 0)
1924 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1925
1926 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1927 args->treeid, args->objectid,
1928 args->name);
1929
1930 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1931 ret = -EFAULT;
1932
1933 kfree(args);
1934 return ret;
1935 }
1936
1937 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1938 void __user *arg)
1939 {
1940 struct dentry *parent = fdentry(file);
1941 struct dentry *dentry;
1942 struct inode *dir = parent->d_inode;
1943 struct inode *inode;
1944 struct btrfs_root *root = BTRFS_I(dir)->root;
1945 struct btrfs_root *dest = NULL;
1946 struct btrfs_ioctl_vol_args *vol_args;
1947 struct btrfs_trans_handle *trans;
1948 int namelen;
1949 int ret;
1950 int err = 0;
1951
1952 vol_args = memdup_user(arg, sizeof(*vol_args));
1953 if (IS_ERR(vol_args))
1954 return PTR_ERR(vol_args);
1955
1956 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1957 namelen = strlen(vol_args->name);
1958 if (strchr(vol_args->name, '/') ||
1959 strncmp(vol_args->name, "..", namelen) == 0) {
1960 err = -EINVAL;
1961 goto out;
1962 }
1963
1964 err = mnt_want_write_file(file);
1965 if (err)
1966 goto out;
1967
1968 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1969 dentry = lookup_one_len(vol_args->name, parent, namelen);
1970 if (IS_ERR(dentry)) {
1971 err = PTR_ERR(dentry);
1972 goto out_unlock_dir;
1973 }
1974
1975 if (!dentry->d_inode) {
1976 err = -ENOENT;
1977 goto out_dput;
1978 }
1979
1980 inode = dentry->d_inode;
1981 dest = BTRFS_I(inode)->root;
1982 if (!capable(CAP_SYS_ADMIN)){
1983 /*
1984 * Regular user. Only allow this with a special mount
1985 * option, when the user has write+exec access to the
1986 * subvol root, and when rmdir(2) would have been
1987 * allowed.
1988 *
1989 * Note that this is _not_ check that the subvol is
1990 * empty or doesn't contain data that we wouldn't
1991 * otherwise be able to delete.
1992 *
1993 * Users who want to delete empty subvols should try
1994 * rmdir(2).
1995 */
1996 err = -EPERM;
1997 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1998 goto out_dput;
1999
2000 /*
2001 * Do not allow deletion if the parent dir is the same
2002 * as the dir to be deleted. That means the ioctl
2003 * must be called on the dentry referencing the root
2004 * of the subvol, not a random directory contained
2005 * within it.
2006 */
2007 err = -EINVAL;
2008 if (root == dest)
2009 goto out_dput;
2010
2011 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2012 if (err)
2013 goto out_dput;
2014
2015 /* check if subvolume may be deleted by a non-root user */
2016 err = btrfs_may_delete(dir, dentry, 1);
2017 if (err)
2018 goto out_dput;
2019 }
2020
2021 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2022 err = -EINVAL;
2023 goto out_dput;
2024 }
2025
2026 mutex_lock(&inode->i_mutex);
2027 err = d_invalidate(dentry);
2028 if (err)
2029 goto out_unlock;
2030
2031 down_write(&root->fs_info->subvol_sem);
2032
2033 err = may_destroy_subvol(dest);
2034 if (err)
2035 goto out_up_write;
2036
2037 trans = btrfs_start_transaction(root, 0);
2038 if (IS_ERR(trans)) {
2039 err = PTR_ERR(trans);
2040 goto out_up_write;
2041 }
2042 trans->block_rsv = &root->fs_info->global_block_rsv;
2043
2044 ret = btrfs_unlink_subvol(trans, root, dir,
2045 dest->root_key.objectid,
2046 dentry->d_name.name,
2047 dentry->d_name.len);
2048 if (ret) {
2049 err = ret;
2050 btrfs_abort_transaction(trans, root, ret);
2051 goto out_end_trans;
2052 }
2053
2054 btrfs_record_root_in_trans(trans, dest);
2055
2056 memset(&dest->root_item.drop_progress, 0,
2057 sizeof(dest->root_item.drop_progress));
2058 dest->root_item.drop_level = 0;
2059 btrfs_set_root_refs(&dest->root_item, 0);
2060
2061 if (!xchg(&dest->orphan_item_inserted, 1)) {
2062 ret = btrfs_insert_orphan_item(trans,
2063 root->fs_info->tree_root,
2064 dest->root_key.objectid);
2065 if (ret) {
2066 btrfs_abort_transaction(trans, root, ret);
2067 err = ret;
2068 goto out_end_trans;
2069 }
2070 }
2071 out_end_trans:
2072 ret = btrfs_end_transaction(trans, root);
2073 if (ret && !err)
2074 err = ret;
2075 inode->i_flags |= S_DEAD;
2076 out_up_write:
2077 up_write(&root->fs_info->subvol_sem);
2078 out_unlock:
2079 mutex_unlock(&inode->i_mutex);
2080 if (!err) {
2081 shrink_dcache_sb(root->fs_info->sb);
2082 btrfs_invalidate_inodes(dest);
2083 d_delete(dentry);
2084 }
2085 out_dput:
2086 dput(dentry);
2087 out_unlock_dir:
2088 mutex_unlock(&dir->i_mutex);
2089 mnt_drop_write_file(file);
2090 out:
2091 kfree(vol_args);
2092 return err;
2093 }
2094
2095 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2096 {
2097 struct inode *inode = fdentry(file)->d_inode;
2098 struct btrfs_root *root = BTRFS_I(inode)->root;
2099 struct btrfs_ioctl_defrag_range_args *range;
2100 int ret;
2101
2102 if (btrfs_root_readonly(root))
2103 return -EROFS;
2104
2105 ret = mnt_want_write_file(file);
2106 if (ret)
2107 return ret;
2108
2109 switch (inode->i_mode & S_IFMT) {
2110 case S_IFDIR:
2111 if (!capable(CAP_SYS_ADMIN)) {
2112 ret = -EPERM;
2113 goto out;
2114 }
2115 ret = btrfs_defrag_root(root, 0);
2116 if (ret)
2117 goto out;
2118 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2119 break;
2120 case S_IFREG:
2121 if (!(file->f_mode & FMODE_WRITE)) {
2122 ret = -EINVAL;
2123 goto out;
2124 }
2125
2126 range = kzalloc(sizeof(*range), GFP_KERNEL);
2127 if (!range) {
2128 ret = -ENOMEM;
2129 goto out;
2130 }
2131
2132 if (argp) {
2133 if (copy_from_user(range, argp,
2134 sizeof(*range))) {
2135 ret = -EFAULT;
2136 kfree(range);
2137 goto out;
2138 }
2139 /* compression requires us to start the IO */
2140 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2141 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2142 range->extent_thresh = (u32)-1;
2143 }
2144 } else {
2145 /* the rest are all set to zero by kzalloc */
2146 range->len = (u64)-1;
2147 }
2148 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2149 range, 0, 0);
2150 if (ret > 0)
2151 ret = 0;
2152 kfree(range);
2153 break;
2154 default:
2155 ret = -EINVAL;
2156 }
2157 out:
2158 mnt_drop_write_file(file);
2159 return ret;
2160 }
2161
2162 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2163 {
2164 struct btrfs_ioctl_vol_args *vol_args;
2165 int ret;
2166
2167 if (!capable(CAP_SYS_ADMIN))
2168 return -EPERM;
2169
2170 mutex_lock(&root->fs_info->volume_mutex);
2171 if (root->fs_info->balance_ctl) {
2172 printk(KERN_INFO "btrfs: balance in progress\n");
2173 ret = -EINVAL;
2174 goto out;
2175 }
2176
2177 vol_args = memdup_user(arg, sizeof(*vol_args));
2178 if (IS_ERR(vol_args)) {
2179 ret = PTR_ERR(vol_args);
2180 goto out;
2181 }
2182
2183 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2184 ret = btrfs_init_new_device(root, vol_args->name);
2185
2186 kfree(vol_args);
2187 out:
2188 mutex_unlock(&root->fs_info->volume_mutex);
2189 return ret;
2190 }
2191
2192 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2193 {
2194 struct btrfs_ioctl_vol_args *vol_args;
2195 int ret;
2196
2197 if (!capable(CAP_SYS_ADMIN))
2198 return -EPERM;
2199
2200 if (root->fs_info->sb->s_flags & MS_RDONLY)
2201 return -EROFS;
2202
2203 mutex_lock(&root->fs_info->volume_mutex);
2204 if (root->fs_info->balance_ctl) {
2205 printk(KERN_INFO "btrfs: balance in progress\n");
2206 ret = -EINVAL;
2207 goto out;
2208 }
2209
2210 vol_args = memdup_user(arg, sizeof(*vol_args));
2211 if (IS_ERR(vol_args)) {
2212 ret = PTR_ERR(vol_args);
2213 goto out;
2214 }
2215
2216 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2217 ret = btrfs_rm_device(root, vol_args->name);
2218
2219 kfree(vol_args);
2220 out:
2221 mutex_unlock(&root->fs_info->volume_mutex);
2222 return ret;
2223 }
2224
2225 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2226 {
2227 struct btrfs_ioctl_fs_info_args *fi_args;
2228 struct btrfs_device *device;
2229 struct btrfs_device *next;
2230 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2231 int ret = 0;
2232
2233 if (!capable(CAP_SYS_ADMIN))
2234 return -EPERM;
2235
2236 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2237 if (!fi_args)
2238 return -ENOMEM;
2239
2240 fi_args->num_devices = fs_devices->num_devices;
2241 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2242
2243 mutex_lock(&fs_devices->device_list_mutex);
2244 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2245 if (device->devid > fi_args->max_id)
2246 fi_args->max_id = device->devid;
2247 }
2248 mutex_unlock(&fs_devices->device_list_mutex);
2249
2250 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2251 ret = -EFAULT;
2252
2253 kfree(fi_args);
2254 return ret;
2255 }
2256
2257 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2258 {
2259 struct btrfs_ioctl_dev_info_args *di_args;
2260 struct btrfs_device *dev;
2261 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2262 int ret = 0;
2263 char *s_uuid = NULL;
2264 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2265
2266 if (!capable(CAP_SYS_ADMIN))
2267 return -EPERM;
2268
2269 di_args = memdup_user(arg, sizeof(*di_args));
2270 if (IS_ERR(di_args))
2271 return PTR_ERR(di_args);
2272
2273 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2274 s_uuid = di_args->uuid;
2275
2276 mutex_lock(&fs_devices->device_list_mutex);
2277 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2278 mutex_unlock(&fs_devices->device_list_mutex);
2279
2280 if (!dev) {
2281 ret = -ENODEV;
2282 goto out;
2283 }
2284
2285 di_args->devid = dev->devid;
2286 di_args->bytes_used = dev->bytes_used;
2287 di_args->total_bytes = dev->total_bytes;
2288 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2289 if (dev->name) {
2290 struct rcu_string *name;
2291
2292 rcu_read_lock();
2293 name = rcu_dereference(dev->name);
2294 strncpy(di_args->path, name->str, sizeof(di_args->path));
2295 rcu_read_unlock();
2296 di_args->path[sizeof(di_args->path) - 1] = 0;
2297 } else {
2298 di_args->path[0] = '\0';
2299 }
2300
2301 out:
2302 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2303 ret = -EFAULT;
2304
2305 kfree(di_args);
2306 return ret;
2307 }
2308
2309 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2310 u64 off, u64 olen, u64 destoff)
2311 {
2312 struct inode *inode = fdentry(file)->d_inode;
2313 struct btrfs_root *root = BTRFS_I(inode)->root;
2314 struct file *src_file;
2315 struct inode *src;
2316 struct btrfs_trans_handle *trans;
2317 struct btrfs_path *path;
2318 struct extent_buffer *leaf;
2319 char *buf;
2320 struct btrfs_key key;
2321 u32 nritems;
2322 int slot;
2323 int ret;
2324 u64 len = olen;
2325 u64 bs = root->fs_info->sb->s_blocksize;
2326 u64 hint_byte;
2327
2328 /*
2329 * TODO:
2330 * - split compressed inline extents. annoying: we need to
2331 * decompress into destination's address_space (the file offset
2332 * may change, so source mapping won't do), then recompress (or
2333 * otherwise reinsert) a subrange.
2334 * - allow ranges within the same file to be cloned (provided
2335 * they don't overlap)?
2336 */
2337
2338 /* the destination must be opened for writing */
2339 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2340 return -EINVAL;
2341
2342 if (btrfs_root_readonly(root))
2343 return -EROFS;
2344
2345 ret = mnt_want_write_file(file);
2346 if (ret)
2347 return ret;
2348
2349 src_file = fget(srcfd);
2350 if (!src_file) {
2351 ret = -EBADF;
2352 goto out_drop_write;
2353 }
2354
2355 src = src_file->f_dentry->d_inode;
2356
2357 ret = -EINVAL;
2358 if (src == inode)
2359 goto out_fput;
2360
2361 /* the src must be open for reading */
2362 if (!(src_file->f_mode & FMODE_READ))
2363 goto out_fput;
2364
2365 /* don't make the dst file partly checksummed */
2366 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2367 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2368 goto out_fput;
2369
2370 ret = -EISDIR;
2371 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2372 goto out_fput;
2373
2374 ret = -EXDEV;
2375 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2376 goto out_fput;
2377
2378 ret = -ENOMEM;
2379 buf = vmalloc(btrfs_level_size(root, 0));
2380 if (!buf)
2381 goto out_fput;
2382
2383 path = btrfs_alloc_path();
2384 if (!path) {
2385 vfree(buf);
2386 goto out_fput;
2387 }
2388 path->reada = 2;
2389
2390 if (inode < src) {
2391 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2392 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2393 } else {
2394 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2395 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2396 }
2397
2398 /* determine range to clone */
2399 ret = -EINVAL;
2400 if (off + len > src->i_size || off + len < off)
2401 goto out_unlock;
2402 if (len == 0)
2403 olen = len = src->i_size - off;
2404 /* if we extend to eof, continue to block boundary */
2405 if (off + len == src->i_size)
2406 len = ALIGN(src->i_size, bs) - off;
2407
2408 /* verify the end result is block aligned */
2409 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2410 !IS_ALIGNED(destoff, bs))
2411 goto out_unlock;
2412
2413 if (destoff > inode->i_size) {
2414 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2415 if (ret)
2416 goto out_unlock;
2417 }
2418
2419 /* truncate page cache pages from target inode range */
2420 truncate_inode_pages_range(&inode->i_data, destoff,
2421 PAGE_CACHE_ALIGN(destoff + len) - 1);
2422
2423 /* do any pending delalloc/csum calc on src, one way or
2424 another, and lock file content */
2425 while (1) {
2426 struct btrfs_ordered_extent *ordered;
2427 lock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2428 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2429 if (!ordered &&
2430 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2431 EXTENT_DELALLOC, 0, NULL))
2432 break;
2433 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2434 if (ordered)
2435 btrfs_put_ordered_extent(ordered);
2436 btrfs_wait_ordered_range(src, off, len);
2437 }
2438
2439 /* clone data */
2440 key.objectid = btrfs_ino(src);
2441 key.type = BTRFS_EXTENT_DATA_KEY;
2442 key.offset = 0;
2443
2444 while (1) {
2445 /*
2446 * note the key will change type as we walk through the
2447 * tree.
2448 */
2449 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2450 if (ret < 0)
2451 goto out;
2452
2453 nritems = btrfs_header_nritems(path->nodes[0]);
2454 if (path->slots[0] >= nritems) {
2455 ret = btrfs_next_leaf(root, path);
2456 if (ret < 0)
2457 goto out;
2458 if (ret > 0)
2459 break;
2460 nritems = btrfs_header_nritems(path->nodes[0]);
2461 }
2462 leaf = path->nodes[0];
2463 slot = path->slots[0];
2464
2465 btrfs_item_key_to_cpu(leaf, &key, slot);
2466 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2467 key.objectid != btrfs_ino(src))
2468 break;
2469
2470 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2471 struct btrfs_file_extent_item *extent;
2472 int type;
2473 u32 size;
2474 struct btrfs_key new_key;
2475 u64 disko = 0, diskl = 0;
2476 u64 datao = 0, datal = 0;
2477 u8 comp;
2478 u64 endoff;
2479
2480 size = btrfs_item_size_nr(leaf, slot);
2481 read_extent_buffer(leaf, buf,
2482 btrfs_item_ptr_offset(leaf, slot),
2483 size);
2484
2485 extent = btrfs_item_ptr(leaf, slot,
2486 struct btrfs_file_extent_item);
2487 comp = btrfs_file_extent_compression(leaf, extent);
2488 type = btrfs_file_extent_type(leaf, extent);
2489 if (type == BTRFS_FILE_EXTENT_REG ||
2490 type == BTRFS_FILE_EXTENT_PREALLOC) {
2491 disko = btrfs_file_extent_disk_bytenr(leaf,
2492 extent);
2493 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2494 extent);
2495 datao = btrfs_file_extent_offset(leaf, extent);
2496 datal = btrfs_file_extent_num_bytes(leaf,
2497 extent);
2498 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2499 /* take upper bound, may be compressed */
2500 datal = btrfs_file_extent_ram_bytes(leaf,
2501 extent);
2502 }
2503 btrfs_release_path(path);
2504
2505 if (key.offset + datal <= off ||
2506 key.offset >= off+len)
2507 goto next;
2508
2509 memcpy(&new_key, &key, sizeof(new_key));
2510 new_key.objectid = btrfs_ino(inode);
2511 if (off <= key.offset)
2512 new_key.offset = key.offset + destoff - off;
2513 else
2514 new_key.offset = destoff;
2515
2516 /*
2517 * 1 - adjusting old extent (we may have to split it)
2518 * 1 - add new extent
2519 * 1 - inode update
2520 */
2521 trans = btrfs_start_transaction(root, 3);
2522 if (IS_ERR(trans)) {
2523 ret = PTR_ERR(trans);
2524 goto out;
2525 }
2526
2527 if (type == BTRFS_FILE_EXTENT_REG ||
2528 type == BTRFS_FILE_EXTENT_PREALLOC) {
2529 /*
2530 * a | --- range to clone ---| b
2531 * | ------------- extent ------------- |
2532 */
2533
2534 /* substract range b */
2535 if (key.offset + datal > off + len)
2536 datal = off + len - key.offset;
2537
2538 /* substract range a */
2539 if (off > key.offset) {
2540 datao += off - key.offset;
2541 datal -= off - key.offset;
2542 }
2543
2544 ret = btrfs_drop_extents(trans, inode,
2545 new_key.offset,
2546 new_key.offset + datal,
2547 &hint_byte, 1);
2548 if (ret) {
2549 btrfs_abort_transaction(trans, root,
2550 ret);
2551 btrfs_end_transaction(trans, root);
2552 goto out;
2553 }
2554
2555 ret = btrfs_insert_empty_item(trans, root, path,
2556 &new_key, size);
2557 if (ret) {
2558 btrfs_abort_transaction(trans, root,
2559 ret);
2560 btrfs_end_transaction(trans, root);
2561 goto out;
2562 }
2563
2564 leaf = path->nodes[0];
2565 slot = path->slots[0];
2566 write_extent_buffer(leaf, buf,
2567 btrfs_item_ptr_offset(leaf, slot),
2568 size);
2569
2570 extent = btrfs_item_ptr(leaf, slot,
2571 struct btrfs_file_extent_item);
2572
2573 /* disko == 0 means it's a hole */
2574 if (!disko)
2575 datao = 0;
2576
2577 btrfs_set_file_extent_offset(leaf, extent,
2578 datao);
2579 btrfs_set_file_extent_num_bytes(leaf, extent,
2580 datal);
2581 if (disko) {
2582 inode_add_bytes(inode, datal);
2583 ret = btrfs_inc_extent_ref(trans, root,
2584 disko, diskl, 0,
2585 root->root_key.objectid,
2586 btrfs_ino(inode),
2587 new_key.offset - datao,
2588 0);
2589 if (ret) {
2590 btrfs_abort_transaction(trans,
2591 root,
2592 ret);
2593 btrfs_end_transaction(trans,
2594 root);
2595 goto out;
2596
2597 }
2598 }
2599 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2600 u64 skip = 0;
2601 u64 trim = 0;
2602 if (off > key.offset) {
2603 skip = off - key.offset;
2604 new_key.offset += skip;
2605 }
2606
2607 if (key.offset + datal > off+len)
2608 trim = key.offset + datal - (off+len);
2609
2610 if (comp && (skip || trim)) {
2611 ret = -EINVAL;
2612 btrfs_end_transaction(trans, root);
2613 goto out;
2614 }
2615 size -= skip + trim;
2616 datal -= skip + trim;
2617
2618 ret = btrfs_drop_extents(trans, inode,
2619 new_key.offset,
2620 new_key.offset + datal,
2621 &hint_byte, 1);
2622 if (ret) {
2623 btrfs_abort_transaction(trans, root,
2624 ret);
2625 btrfs_end_transaction(trans, root);
2626 goto out;
2627 }
2628
2629 ret = btrfs_insert_empty_item(trans, root, path,
2630 &new_key, size);
2631 if (ret) {
2632 btrfs_abort_transaction(trans, root,
2633 ret);
2634 btrfs_end_transaction(trans, root);
2635 goto out;
2636 }
2637
2638 if (skip) {
2639 u32 start =
2640 btrfs_file_extent_calc_inline_size(0);
2641 memmove(buf+start, buf+start+skip,
2642 datal);
2643 }
2644
2645 leaf = path->nodes[0];
2646 slot = path->slots[0];
2647 write_extent_buffer(leaf, buf,
2648 btrfs_item_ptr_offset(leaf, slot),
2649 size);
2650 inode_add_bytes(inode, datal);
2651 }
2652
2653 btrfs_mark_buffer_dirty(leaf);
2654 btrfs_release_path(path);
2655
2656 inode_inc_iversion(inode);
2657 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2658
2659 /*
2660 * we round up to the block size at eof when
2661 * determining which extents to clone above,
2662 * but shouldn't round up the file size
2663 */
2664 endoff = new_key.offset + datal;
2665 if (endoff > destoff+olen)
2666 endoff = destoff+olen;
2667 if (endoff > inode->i_size)
2668 btrfs_i_size_write(inode, endoff);
2669
2670 ret = btrfs_update_inode(trans, root, inode);
2671 if (ret) {
2672 btrfs_abort_transaction(trans, root, ret);
2673 btrfs_end_transaction(trans, root);
2674 goto out;
2675 }
2676 ret = btrfs_end_transaction(trans, root);
2677 }
2678 next:
2679 btrfs_release_path(path);
2680 key.offset++;
2681 }
2682 ret = 0;
2683 out:
2684 btrfs_release_path(path);
2685 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2686 out_unlock:
2687 mutex_unlock(&src->i_mutex);
2688 mutex_unlock(&inode->i_mutex);
2689 vfree(buf);
2690 btrfs_free_path(path);
2691 out_fput:
2692 fput(src_file);
2693 out_drop_write:
2694 mnt_drop_write_file(file);
2695 return ret;
2696 }
2697
2698 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2699 {
2700 struct btrfs_ioctl_clone_range_args args;
2701
2702 if (copy_from_user(&args, argp, sizeof(args)))
2703 return -EFAULT;
2704 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2705 args.src_length, args.dest_offset);
2706 }
2707
2708 /*
2709 * there are many ways the trans_start and trans_end ioctls can lead
2710 * to deadlocks. They should only be used by applications that
2711 * basically own the machine, and have a very in depth understanding
2712 * of all the possible deadlocks and enospc problems.
2713 */
2714 static long btrfs_ioctl_trans_start(struct file *file)
2715 {
2716 struct inode *inode = fdentry(file)->d_inode;
2717 struct btrfs_root *root = BTRFS_I(inode)->root;
2718 struct btrfs_trans_handle *trans;
2719 int ret;
2720
2721 ret = -EPERM;
2722 if (!capable(CAP_SYS_ADMIN))
2723 goto out;
2724
2725 ret = -EINPROGRESS;
2726 if (file->private_data)
2727 goto out;
2728
2729 ret = -EROFS;
2730 if (btrfs_root_readonly(root))
2731 goto out;
2732
2733 ret = mnt_want_write_file(file);
2734 if (ret)
2735 goto out;
2736
2737 atomic_inc(&root->fs_info->open_ioctl_trans);
2738
2739 ret = -ENOMEM;
2740 trans = btrfs_start_ioctl_transaction(root);
2741 if (IS_ERR(trans))
2742 goto out_drop;
2743
2744 file->private_data = trans;
2745 return 0;
2746
2747 out_drop:
2748 atomic_dec(&root->fs_info->open_ioctl_trans);
2749 mnt_drop_write_file(file);
2750 out:
2751 return ret;
2752 }
2753
2754 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2755 {
2756 struct inode *inode = fdentry(file)->d_inode;
2757 struct btrfs_root *root = BTRFS_I(inode)->root;
2758 struct btrfs_root *new_root;
2759 struct btrfs_dir_item *di;
2760 struct btrfs_trans_handle *trans;
2761 struct btrfs_path *path;
2762 struct btrfs_key location;
2763 struct btrfs_disk_key disk_key;
2764 struct btrfs_super_block *disk_super;
2765 u64 features;
2766 u64 objectid = 0;
2767 u64 dir_id;
2768
2769 if (!capable(CAP_SYS_ADMIN))
2770 return -EPERM;
2771
2772 if (copy_from_user(&objectid, argp, sizeof(objectid)))
2773 return -EFAULT;
2774
2775 if (!objectid)
2776 objectid = root->root_key.objectid;
2777
2778 location.objectid = objectid;
2779 location.type = BTRFS_ROOT_ITEM_KEY;
2780 location.offset = (u64)-1;
2781
2782 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2783 if (IS_ERR(new_root))
2784 return PTR_ERR(new_root);
2785
2786 if (btrfs_root_refs(&new_root->root_item) == 0)
2787 return -ENOENT;
2788
2789 path = btrfs_alloc_path();
2790 if (!path)
2791 return -ENOMEM;
2792 path->leave_spinning = 1;
2793
2794 trans = btrfs_start_transaction(root, 1);
2795 if (IS_ERR(trans)) {
2796 btrfs_free_path(path);
2797 return PTR_ERR(trans);
2798 }
2799
2800 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2801 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2802 dir_id, "default", 7, 1);
2803 if (IS_ERR_OR_NULL(di)) {
2804 btrfs_free_path(path);
2805 btrfs_end_transaction(trans, root);
2806 printk(KERN_ERR "Umm, you don't have the default dir item, "
2807 "this isn't going to work\n");
2808 return -ENOENT;
2809 }
2810
2811 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2812 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2813 btrfs_mark_buffer_dirty(path->nodes[0]);
2814 btrfs_free_path(path);
2815
2816 disk_super = root->fs_info->super_copy;
2817 features = btrfs_super_incompat_flags(disk_super);
2818 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2819 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2820 btrfs_set_super_incompat_flags(disk_super, features);
2821 }
2822 btrfs_end_transaction(trans, root);
2823
2824 return 0;
2825 }
2826
2827 static void get_block_group_info(struct list_head *groups_list,
2828 struct btrfs_ioctl_space_info *space)
2829 {
2830 struct btrfs_block_group_cache *block_group;
2831
2832 space->total_bytes = 0;
2833 space->used_bytes = 0;
2834 space->flags = 0;
2835 list_for_each_entry(block_group, groups_list, list) {
2836 space->flags = block_group->flags;
2837 space->total_bytes += block_group->key.offset;
2838 space->used_bytes +=
2839 btrfs_block_group_used(&block_group->item);
2840 }
2841 }
2842
2843 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2844 {
2845 struct btrfs_ioctl_space_args space_args;
2846 struct btrfs_ioctl_space_info space;
2847 struct btrfs_ioctl_space_info *dest;
2848 struct btrfs_ioctl_space_info *dest_orig;
2849 struct btrfs_ioctl_space_info __user *user_dest;
2850 struct btrfs_space_info *info;
2851 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2852 BTRFS_BLOCK_GROUP_SYSTEM,
2853 BTRFS_BLOCK_GROUP_METADATA,
2854 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2855 int num_types = 4;
2856 int alloc_size;
2857 int ret = 0;
2858 u64 slot_count = 0;
2859 int i, c;
2860
2861 if (copy_from_user(&space_args,
2862 (struct btrfs_ioctl_space_args __user *)arg,
2863 sizeof(space_args)))
2864 return -EFAULT;
2865
2866 for (i = 0; i < num_types; i++) {
2867 struct btrfs_space_info *tmp;
2868
2869 info = NULL;
2870 rcu_read_lock();
2871 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2872 list) {
2873 if (tmp->flags == types[i]) {
2874 info = tmp;
2875 break;
2876 }
2877 }
2878 rcu_read_unlock();
2879
2880 if (!info)
2881 continue;
2882
2883 down_read(&info->groups_sem);
2884 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2885 if (!list_empty(&info->block_groups[c]))
2886 slot_count++;
2887 }
2888 up_read(&info->groups_sem);
2889 }
2890
2891 /* space_slots == 0 means they are asking for a count */
2892 if (space_args.space_slots == 0) {
2893 space_args.total_spaces = slot_count;
2894 goto out;
2895 }
2896
2897 slot_count = min_t(u64, space_args.space_slots, slot_count);
2898
2899 alloc_size = sizeof(*dest) * slot_count;
2900
2901 /* we generally have at most 6 or so space infos, one for each raid
2902 * level. So, a whole page should be more than enough for everyone
2903 */
2904 if (alloc_size > PAGE_CACHE_SIZE)
2905 return -ENOMEM;
2906
2907 space_args.total_spaces = 0;
2908 dest = kmalloc(alloc_size, GFP_NOFS);
2909 if (!dest)
2910 return -ENOMEM;
2911 dest_orig = dest;
2912
2913 /* now we have a buffer to copy into */
2914 for (i = 0; i < num_types; i++) {
2915 struct btrfs_space_info *tmp;
2916
2917 if (!slot_count)
2918 break;
2919
2920 info = NULL;
2921 rcu_read_lock();
2922 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2923 list) {
2924 if (tmp->flags == types[i]) {
2925 info = tmp;
2926 break;
2927 }
2928 }
2929 rcu_read_unlock();
2930
2931 if (!info)
2932 continue;
2933 down_read(&info->groups_sem);
2934 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2935 if (!list_empty(&info->block_groups[c])) {
2936 get_block_group_info(&info->block_groups[c],
2937 &space);
2938 memcpy(dest, &space, sizeof(space));
2939 dest++;
2940 space_args.total_spaces++;
2941 slot_count--;
2942 }
2943 if (!slot_count)
2944 break;
2945 }
2946 up_read(&info->groups_sem);
2947 }
2948
2949 user_dest = (struct btrfs_ioctl_space_info __user *)
2950 (arg + sizeof(struct btrfs_ioctl_space_args));
2951
2952 if (copy_to_user(user_dest, dest_orig, alloc_size))
2953 ret = -EFAULT;
2954
2955 kfree(dest_orig);
2956 out:
2957 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2958 ret = -EFAULT;
2959
2960 return ret;
2961 }
2962
2963 /*
2964 * there are many ways the trans_start and trans_end ioctls can lead
2965 * to deadlocks. They should only be used by applications that
2966 * basically own the machine, and have a very in depth understanding
2967 * of all the possible deadlocks and enospc problems.
2968 */
2969 long btrfs_ioctl_trans_end(struct file *file)
2970 {
2971 struct inode *inode = fdentry(file)->d_inode;
2972 struct btrfs_root *root = BTRFS_I(inode)->root;
2973 struct btrfs_trans_handle *trans;
2974
2975 trans = file->private_data;
2976 if (!trans)
2977 return -EINVAL;
2978 file->private_data = NULL;
2979
2980 btrfs_end_transaction(trans, root);
2981
2982 atomic_dec(&root->fs_info->open_ioctl_trans);
2983
2984 mnt_drop_write_file(file);
2985 return 0;
2986 }
2987
2988 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2989 {
2990 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2991 struct btrfs_trans_handle *trans;
2992 u64 transid;
2993 int ret;
2994
2995 trans = btrfs_start_transaction(root, 0);
2996 if (IS_ERR(trans))
2997 return PTR_ERR(trans);
2998 transid = trans->transid;
2999 ret = btrfs_commit_transaction_async(trans, root, 0);
3000 if (ret) {
3001 btrfs_end_transaction(trans, root);
3002 return ret;
3003 }
3004
3005 if (argp)
3006 if (copy_to_user(argp, &transid, sizeof(transid)))
3007 return -EFAULT;
3008 return 0;
3009 }
3010
3011 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
3012 {
3013 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
3014 u64 transid;
3015
3016 if (argp) {
3017 if (copy_from_user(&transid, argp, sizeof(transid)))
3018 return -EFAULT;
3019 } else {
3020 transid = 0; /* current trans */
3021 }
3022 return btrfs_wait_for_commit(root, transid);
3023 }
3024
3025 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
3026 {
3027 int ret;
3028 struct btrfs_ioctl_scrub_args *sa;
3029
3030 if (!capable(CAP_SYS_ADMIN))
3031 return -EPERM;
3032
3033 sa = memdup_user(arg, sizeof(*sa));
3034 if (IS_ERR(sa))
3035 return PTR_ERR(sa);
3036
3037 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
3038 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
3039
3040 if (copy_to_user(arg, sa, sizeof(*sa)))
3041 ret = -EFAULT;
3042
3043 kfree(sa);
3044 return ret;
3045 }
3046
3047 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3048 {
3049 if (!capable(CAP_SYS_ADMIN))
3050 return -EPERM;
3051
3052 return btrfs_scrub_cancel(root);
3053 }
3054
3055 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3056 void __user *arg)
3057 {
3058 struct btrfs_ioctl_scrub_args *sa;
3059 int ret;
3060
3061 if (!capable(CAP_SYS_ADMIN))
3062 return -EPERM;
3063
3064 sa = memdup_user(arg, sizeof(*sa));
3065 if (IS_ERR(sa))
3066 return PTR_ERR(sa);
3067
3068 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3069
3070 if (copy_to_user(arg, sa, sizeof(*sa)))
3071 ret = -EFAULT;
3072
3073 kfree(sa);
3074 return ret;
3075 }
3076
3077 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3078 void __user *arg)
3079 {
3080 struct btrfs_ioctl_get_dev_stats *sa;
3081 int ret;
3082
3083 sa = memdup_user(arg, sizeof(*sa));
3084 if (IS_ERR(sa))
3085 return PTR_ERR(sa);
3086
3087 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3088 kfree(sa);
3089 return -EPERM;
3090 }
3091
3092 ret = btrfs_get_dev_stats(root, sa);
3093
3094 if (copy_to_user(arg, sa, sizeof(*sa)))
3095 ret = -EFAULT;
3096
3097 kfree(sa);
3098 return ret;
3099 }
3100
3101 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3102 {
3103 int ret = 0;
3104 int i;
3105 u64 rel_ptr;
3106 int size;
3107 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3108 struct inode_fs_paths *ipath = NULL;
3109 struct btrfs_path *path;
3110
3111 if (!capable(CAP_SYS_ADMIN))
3112 return -EPERM;
3113
3114 path = btrfs_alloc_path();
3115 if (!path) {
3116 ret = -ENOMEM;
3117 goto out;
3118 }
3119
3120 ipa = memdup_user(arg, sizeof(*ipa));
3121 if (IS_ERR(ipa)) {
3122 ret = PTR_ERR(ipa);
3123 ipa = NULL;
3124 goto out;
3125 }
3126
3127 size = min_t(u32, ipa->size, 4096);
3128 ipath = init_ipath(size, root, path);
3129 if (IS_ERR(ipath)) {
3130 ret = PTR_ERR(ipath);
3131 ipath = NULL;
3132 goto out;
3133 }
3134
3135 ret = paths_from_inode(ipa->inum, ipath);
3136 if (ret < 0)
3137 goto out;
3138
3139 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3140 rel_ptr = ipath->fspath->val[i] -
3141 (u64)(unsigned long)ipath->fspath->val;
3142 ipath->fspath->val[i] = rel_ptr;
3143 }
3144
3145 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3146 (void *)(unsigned long)ipath->fspath, size);
3147 if (ret) {
3148 ret = -EFAULT;
3149 goto out;
3150 }
3151
3152 out:
3153 btrfs_free_path(path);
3154 free_ipath(ipath);
3155 kfree(ipa);
3156
3157 return ret;
3158 }
3159
3160 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3161 {
3162 struct btrfs_data_container *inodes = ctx;
3163 const size_t c = 3 * sizeof(u64);
3164
3165 if (inodes->bytes_left >= c) {
3166 inodes->bytes_left -= c;
3167 inodes->val[inodes->elem_cnt] = inum;
3168 inodes->val[inodes->elem_cnt + 1] = offset;
3169 inodes->val[inodes->elem_cnt + 2] = root;
3170 inodes->elem_cnt += 3;
3171 } else {
3172 inodes->bytes_missing += c - inodes->bytes_left;
3173 inodes->bytes_left = 0;
3174 inodes->elem_missed += 3;
3175 }
3176
3177 return 0;
3178 }
3179
3180 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3181 void __user *arg)
3182 {
3183 int ret = 0;
3184 int size;
3185 u64 extent_item_pos;
3186 struct btrfs_ioctl_logical_ino_args *loi;
3187 struct btrfs_data_container *inodes = NULL;
3188 struct btrfs_path *path = NULL;
3189 struct btrfs_key key;
3190
3191 if (!capable(CAP_SYS_ADMIN))
3192 return -EPERM;
3193
3194 loi = memdup_user(arg, sizeof(*loi));
3195 if (IS_ERR(loi)) {
3196 ret = PTR_ERR(loi);
3197 loi = NULL;
3198 goto out;
3199 }
3200
3201 path = btrfs_alloc_path();
3202 if (!path) {
3203 ret = -ENOMEM;
3204 goto out;
3205 }
3206
3207 size = min_t(u32, loi->size, 4096);
3208 inodes = init_data_container(size);
3209 if (IS_ERR(inodes)) {
3210 ret = PTR_ERR(inodes);
3211 inodes = NULL;
3212 goto out;
3213 }
3214
3215 ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
3216 btrfs_release_path(path);
3217
3218 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3219 ret = -ENOENT;
3220 if (ret < 0)
3221 goto out;
3222
3223 extent_item_pos = loi->logical - key.objectid;
3224 ret = iterate_extent_inodes(root->fs_info, key.objectid,
3225 extent_item_pos, 0, build_ino_list,
3226 inodes);
3227
3228 if (ret < 0)
3229 goto out;
3230
3231 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3232 (void *)(unsigned long)inodes, size);
3233 if (ret)
3234 ret = -EFAULT;
3235
3236 out:
3237 btrfs_free_path(path);
3238 kfree(inodes);
3239 kfree(loi);
3240
3241 return ret;
3242 }
3243
3244 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3245 struct btrfs_ioctl_balance_args *bargs)
3246 {
3247 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3248
3249 bargs->flags = bctl->flags;
3250
3251 if (atomic_read(&fs_info->balance_running))
3252 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3253 if (atomic_read(&fs_info->balance_pause_req))
3254 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3255 if (atomic_read(&fs_info->balance_cancel_req))
3256 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3257
3258 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3259 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3260 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3261
3262 if (lock) {
3263 spin_lock(&fs_info->balance_lock);
3264 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3265 spin_unlock(&fs_info->balance_lock);
3266 } else {
3267 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3268 }
3269 }
3270
3271 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3272 {
3273 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3274 struct btrfs_fs_info *fs_info = root->fs_info;
3275 struct btrfs_ioctl_balance_args *bargs;
3276 struct btrfs_balance_control *bctl;
3277 int ret;
3278
3279 if (!capable(CAP_SYS_ADMIN))
3280 return -EPERM;
3281
3282 ret = mnt_want_write_file(file);
3283 if (ret)
3284 return ret;
3285
3286 mutex_lock(&fs_info->volume_mutex);
3287 mutex_lock(&fs_info->balance_mutex);
3288
3289 if (arg) {
3290 bargs = memdup_user(arg, sizeof(*bargs));
3291 if (IS_ERR(bargs)) {
3292 ret = PTR_ERR(bargs);
3293 goto out;
3294 }
3295
3296 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3297 if (!fs_info->balance_ctl) {
3298 ret = -ENOTCONN;
3299 goto out_bargs;
3300 }
3301
3302 bctl = fs_info->balance_ctl;
3303 spin_lock(&fs_info->balance_lock);
3304 bctl->flags |= BTRFS_BALANCE_RESUME;
3305 spin_unlock(&fs_info->balance_lock);
3306
3307 goto do_balance;
3308 }
3309 } else {
3310 bargs = NULL;
3311 }
3312
3313 if (fs_info->balance_ctl) {
3314 ret = -EINPROGRESS;
3315 goto out_bargs;
3316 }
3317
3318 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3319 if (!bctl) {
3320 ret = -ENOMEM;
3321 goto out_bargs;
3322 }
3323
3324 bctl->fs_info = fs_info;
3325 if (arg) {
3326 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3327 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3328 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3329
3330 bctl->flags = bargs->flags;
3331 } else {
3332 /* balance everything - no filters */
3333 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3334 }
3335
3336 do_balance:
3337 ret = btrfs_balance(bctl, bargs);
3338 /*
3339 * bctl is freed in __cancel_balance or in free_fs_info if
3340 * restriper was paused all the way until unmount
3341 */
3342 if (arg) {
3343 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3344 ret = -EFAULT;
3345 }
3346
3347 out_bargs:
3348 kfree(bargs);
3349 out:
3350 mutex_unlock(&fs_info->balance_mutex);
3351 mutex_unlock(&fs_info->volume_mutex);
3352 mnt_drop_write_file(file);
3353 return ret;
3354 }
3355
3356 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3357 {
3358 if (!capable(CAP_SYS_ADMIN))
3359 return -EPERM;
3360
3361 switch (cmd) {
3362 case BTRFS_BALANCE_CTL_PAUSE:
3363 return btrfs_pause_balance(root->fs_info);
3364 case BTRFS_BALANCE_CTL_CANCEL:
3365 return btrfs_cancel_balance(root->fs_info);
3366 }
3367
3368 return -EINVAL;
3369 }
3370
3371 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3372 void __user *arg)
3373 {
3374 struct btrfs_fs_info *fs_info = root->fs_info;
3375 struct btrfs_ioctl_balance_args *bargs;
3376 int ret = 0;
3377
3378 if (!capable(CAP_SYS_ADMIN))
3379 return -EPERM;
3380
3381 mutex_lock(&fs_info->balance_mutex);
3382 if (!fs_info->balance_ctl) {
3383 ret = -ENOTCONN;
3384 goto out;
3385 }
3386
3387 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3388 if (!bargs) {
3389 ret = -ENOMEM;
3390 goto out;
3391 }
3392
3393 update_ioctl_balance_args(fs_info, 1, bargs);
3394
3395 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3396 ret = -EFAULT;
3397
3398 kfree(bargs);
3399 out:
3400 mutex_unlock(&fs_info->balance_mutex);
3401 return ret;
3402 }
3403
3404 long btrfs_ioctl(struct file *file, unsigned int
3405 cmd, unsigned long arg)
3406 {
3407 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3408 void __user *argp = (void __user *)arg;
3409
3410 switch (cmd) {
3411 case FS_IOC_GETFLAGS:
3412 return btrfs_ioctl_getflags(file, argp);
3413 case FS_IOC_SETFLAGS:
3414 return btrfs_ioctl_setflags(file, argp);
3415 case FS_IOC_GETVERSION:
3416 return btrfs_ioctl_getversion(file, argp);
3417 case FITRIM:
3418 return btrfs_ioctl_fitrim(file, argp);
3419 case BTRFS_IOC_SNAP_CREATE:
3420 return btrfs_ioctl_snap_create(file, argp, 0);
3421 case BTRFS_IOC_SNAP_CREATE_V2:
3422 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3423 case BTRFS_IOC_SUBVOL_CREATE:
3424 return btrfs_ioctl_snap_create(file, argp, 1);
3425 case BTRFS_IOC_SNAP_DESTROY:
3426 return btrfs_ioctl_snap_destroy(file, argp);
3427 case BTRFS_IOC_SUBVOL_GETFLAGS:
3428 return btrfs_ioctl_subvol_getflags(file, argp);
3429 case BTRFS_IOC_SUBVOL_SETFLAGS:
3430 return btrfs_ioctl_subvol_setflags(file, argp);
3431 case BTRFS_IOC_DEFAULT_SUBVOL:
3432 return btrfs_ioctl_default_subvol(file, argp);
3433 case BTRFS_IOC_DEFRAG:
3434 return btrfs_ioctl_defrag(file, NULL);
3435 case BTRFS_IOC_DEFRAG_RANGE:
3436 return btrfs_ioctl_defrag(file, argp);
3437 case BTRFS_IOC_RESIZE:
3438 return btrfs_ioctl_resize(root, argp);
3439 case BTRFS_IOC_ADD_DEV:
3440 return btrfs_ioctl_add_dev(root, argp);
3441 case BTRFS_IOC_RM_DEV:
3442 return btrfs_ioctl_rm_dev(root, argp);
3443 case BTRFS_IOC_FS_INFO:
3444 return btrfs_ioctl_fs_info(root, argp);
3445 case BTRFS_IOC_DEV_INFO:
3446 return btrfs_ioctl_dev_info(root, argp);
3447 case BTRFS_IOC_BALANCE:
3448 return btrfs_ioctl_balance(file, NULL);
3449 case BTRFS_IOC_CLONE:
3450 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3451 case BTRFS_IOC_CLONE_RANGE:
3452 return btrfs_ioctl_clone_range(file, argp);
3453 case BTRFS_IOC_TRANS_START:
3454 return btrfs_ioctl_trans_start(file);
3455 case BTRFS_IOC_TRANS_END:
3456 return btrfs_ioctl_trans_end(file);
3457 case BTRFS_IOC_TREE_SEARCH:
3458 return btrfs_ioctl_tree_search(file, argp);
3459 case BTRFS_IOC_INO_LOOKUP:
3460 return btrfs_ioctl_ino_lookup(file, argp);
3461 case BTRFS_IOC_INO_PATHS:
3462 return btrfs_ioctl_ino_to_path(root, argp);
3463 case BTRFS_IOC_LOGICAL_INO:
3464 return btrfs_ioctl_logical_to_ino(root, argp);
3465 case BTRFS_IOC_SPACE_INFO:
3466 return btrfs_ioctl_space_info(root, argp);
3467 case BTRFS_IOC_SYNC:
3468 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3469 return 0;
3470 case BTRFS_IOC_START_SYNC:
3471 return btrfs_ioctl_start_sync(file, argp);
3472 case BTRFS_IOC_WAIT_SYNC:
3473 return btrfs_ioctl_wait_sync(file, argp);
3474 case BTRFS_IOC_SCRUB:
3475 return btrfs_ioctl_scrub(root, argp);
3476 case BTRFS_IOC_SCRUB_CANCEL:
3477 return btrfs_ioctl_scrub_cancel(root, argp);
3478 case BTRFS_IOC_SCRUB_PROGRESS:
3479 return btrfs_ioctl_scrub_progress(root, argp);
3480 case BTRFS_IOC_BALANCE_V2:
3481 return btrfs_ioctl_balance(file, argp);
3482 case BTRFS_IOC_BALANCE_CTL:
3483 return btrfs_ioctl_balance_ctl(root, arg);
3484 case BTRFS_IOC_BALANCE_PROGRESS:
3485 return btrfs_ioctl_balance_progress(root, argp);
3486 case BTRFS_IOC_GET_DEV_STATS:
3487 return btrfs_ioctl_get_dev_stats(root, argp);
3488 }
3489
3490 return -ENOTTY;
3491 }