]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/ioctl.c
new helper: file_inode(file)
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include "compat.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59
60 /* Mask out flags that are inappropriate for the given type of inode. */
61 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
62 {
63 if (S_ISDIR(mode))
64 return flags;
65 else if (S_ISREG(mode))
66 return flags & ~FS_DIRSYNC_FL;
67 else
68 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
69 }
70
71 /*
72 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
73 */
74 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
75 {
76 unsigned int iflags = 0;
77
78 if (flags & BTRFS_INODE_SYNC)
79 iflags |= FS_SYNC_FL;
80 if (flags & BTRFS_INODE_IMMUTABLE)
81 iflags |= FS_IMMUTABLE_FL;
82 if (flags & BTRFS_INODE_APPEND)
83 iflags |= FS_APPEND_FL;
84 if (flags & BTRFS_INODE_NODUMP)
85 iflags |= FS_NODUMP_FL;
86 if (flags & BTRFS_INODE_NOATIME)
87 iflags |= FS_NOATIME_FL;
88 if (flags & BTRFS_INODE_DIRSYNC)
89 iflags |= FS_DIRSYNC_FL;
90 if (flags & BTRFS_INODE_NODATACOW)
91 iflags |= FS_NOCOW_FL;
92
93 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
94 iflags |= FS_COMPR_FL;
95 else if (flags & BTRFS_INODE_NOCOMPRESS)
96 iflags |= FS_NOCOMP_FL;
97
98 return iflags;
99 }
100
101 /*
102 * Update inode->i_flags based on the btrfs internal flags.
103 */
104 void btrfs_update_iflags(struct inode *inode)
105 {
106 struct btrfs_inode *ip = BTRFS_I(inode);
107
108 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
109
110 if (ip->flags & BTRFS_INODE_SYNC)
111 inode->i_flags |= S_SYNC;
112 if (ip->flags & BTRFS_INODE_IMMUTABLE)
113 inode->i_flags |= S_IMMUTABLE;
114 if (ip->flags & BTRFS_INODE_APPEND)
115 inode->i_flags |= S_APPEND;
116 if (ip->flags & BTRFS_INODE_NOATIME)
117 inode->i_flags |= S_NOATIME;
118 if (ip->flags & BTRFS_INODE_DIRSYNC)
119 inode->i_flags |= S_DIRSYNC;
120 }
121
122 /*
123 * Inherit flags from the parent inode.
124 *
125 * Currently only the compression flags and the cow flags are inherited.
126 */
127 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
128 {
129 unsigned int flags;
130
131 if (!dir)
132 return;
133
134 flags = BTRFS_I(dir)->flags;
135
136 if (flags & BTRFS_INODE_NOCOMPRESS) {
137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
138 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
139 } else if (flags & BTRFS_INODE_COMPRESS) {
140 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
141 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
142 }
143
144 if (flags & BTRFS_INODE_NODATACOW) {
145 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
146 if (S_ISREG(inode->i_mode))
147 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
148 }
149
150 btrfs_update_iflags(inode);
151 }
152
153 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
154 {
155 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
156 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
157
158 if (copy_to_user(arg, &flags, sizeof(flags)))
159 return -EFAULT;
160 return 0;
161 }
162
163 static int check_flags(unsigned int flags)
164 {
165 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
166 FS_NOATIME_FL | FS_NODUMP_FL | \
167 FS_SYNC_FL | FS_DIRSYNC_FL | \
168 FS_NOCOMP_FL | FS_COMPR_FL |
169 FS_NOCOW_FL))
170 return -EOPNOTSUPP;
171
172 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
173 return -EINVAL;
174
175 return 0;
176 }
177
178 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
179 {
180 struct inode *inode = file_inode(file);
181 struct btrfs_inode *ip = BTRFS_I(inode);
182 struct btrfs_root *root = ip->root;
183 struct btrfs_trans_handle *trans;
184 unsigned int flags, oldflags;
185 int ret;
186 u64 ip_oldflags;
187 unsigned int i_oldflags;
188 umode_t mode;
189
190 if (btrfs_root_readonly(root))
191 return -EROFS;
192
193 if (copy_from_user(&flags, arg, sizeof(flags)))
194 return -EFAULT;
195
196 ret = check_flags(flags);
197 if (ret)
198 return ret;
199
200 if (!inode_owner_or_capable(inode))
201 return -EACCES;
202
203 ret = mnt_want_write_file(file);
204 if (ret)
205 return ret;
206
207 mutex_lock(&inode->i_mutex);
208
209 ip_oldflags = ip->flags;
210 i_oldflags = inode->i_flags;
211 mode = inode->i_mode;
212
213 flags = btrfs_mask_flags(inode->i_mode, flags);
214 oldflags = btrfs_flags_to_ioctl(ip->flags);
215 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
216 if (!capable(CAP_LINUX_IMMUTABLE)) {
217 ret = -EPERM;
218 goto out_unlock;
219 }
220 }
221
222 if (flags & FS_SYNC_FL)
223 ip->flags |= BTRFS_INODE_SYNC;
224 else
225 ip->flags &= ~BTRFS_INODE_SYNC;
226 if (flags & FS_IMMUTABLE_FL)
227 ip->flags |= BTRFS_INODE_IMMUTABLE;
228 else
229 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
230 if (flags & FS_APPEND_FL)
231 ip->flags |= BTRFS_INODE_APPEND;
232 else
233 ip->flags &= ~BTRFS_INODE_APPEND;
234 if (flags & FS_NODUMP_FL)
235 ip->flags |= BTRFS_INODE_NODUMP;
236 else
237 ip->flags &= ~BTRFS_INODE_NODUMP;
238 if (flags & FS_NOATIME_FL)
239 ip->flags |= BTRFS_INODE_NOATIME;
240 else
241 ip->flags &= ~BTRFS_INODE_NOATIME;
242 if (flags & FS_DIRSYNC_FL)
243 ip->flags |= BTRFS_INODE_DIRSYNC;
244 else
245 ip->flags &= ~BTRFS_INODE_DIRSYNC;
246 if (flags & FS_NOCOW_FL) {
247 if (S_ISREG(mode)) {
248 /*
249 * It's safe to turn csums off here, no extents exist.
250 * Otherwise we want the flag to reflect the real COW
251 * status of the file and will not set it.
252 */
253 if (inode->i_size == 0)
254 ip->flags |= BTRFS_INODE_NODATACOW
255 | BTRFS_INODE_NODATASUM;
256 } else {
257 ip->flags |= BTRFS_INODE_NODATACOW;
258 }
259 } else {
260 /*
261 * Revert back under same assuptions as above
262 */
263 if (S_ISREG(mode)) {
264 if (inode->i_size == 0)
265 ip->flags &= ~(BTRFS_INODE_NODATACOW
266 | BTRFS_INODE_NODATASUM);
267 } else {
268 ip->flags &= ~BTRFS_INODE_NODATACOW;
269 }
270 }
271
272 /*
273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
274 * flag may be changed automatically if compression code won't make
275 * things smaller.
276 */
277 if (flags & FS_NOCOMP_FL) {
278 ip->flags &= ~BTRFS_INODE_COMPRESS;
279 ip->flags |= BTRFS_INODE_NOCOMPRESS;
280 } else if (flags & FS_COMPR_FL) {
281 ip->flags |= BTRFS_INODE_COMPRESS;
282 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
283 } else {
284 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
285 }
286
287 trans = btrfs_start_transaction(root, 1);
288 if (IS_ERR(trans)) {
289 ret = PTR_ERR(trans);
290 goto out_drop;
291 }
292
293 btrfs_update_iflags(inode);
294 inode_inc_iversion(inode);
295 inode->i_ctime = CURRENT_TIME;
296 ret = btrfs_update_inode(trans, root, inode);
297
298 btrfs_end_transaction(trans, root);
299 out_drop:
300 if (ret) {
301 ip->flags = ip_oldflags;
302 inode->i_flags = i_oldflags;
303 }
304
305 out_unlock:
306 mutex_unlock(&inode->i_mutex);
307 mnt_drop_write_file(file);
308 return ret;
309 }
310
311 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
312 {
313 struct inode *inode = file_inode(file);
314
315 return put_user(inode->i_generation, arg);
316 }
317
318 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
319 {
320 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
321 struct btrfs_device *device;
322 struct request_queue *q;
323 struct fstrim_range range;
324 u64 minlen = ULLONG_MAX;
325 u64 num_devices = 0;
326 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
327 int ret;
328
329 if (!capable(CAP_SYS_ADMIN))
330 return -EPERM;
331
332 rcu_read_lock();
333 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
334 dev_list) {
335 if (!device->bdev)
336 continue;
337 q = bdev_get_queue(device->bdev);
338 if (blk_queue_discard(q)) {
339 num_devices++;
340 minlen = min((u64)q->limits.discard_granularity,
341 minlen);
342 }
343 }
344 rcu_read_unlock();
345
346 if (!num_devices)
347 return -EOPNOTSUPP;
348 if (copy_from_user(&range, arg, sizeof(range)))
349 return -EFAULT;
350 if (range.start > total_bytes ||
351 range.len < fs_info->sb->s_blocksize)
352 return -EINVAL;
353
354 range.len = min(range.len, total_bytes - range.start);
355 range.minlen = max(range.minlen, minlen);
356 ret = btrfs_trim_fs(fs_info->tree_root, &range);
357 if (ret < 0)
358 return ret;
359
360 if (copy_to_user(arg, &range, sizeof(range)))
361 return -EFAULT;
362
363 return 0;
364 }
365
366 static noinline int create_subvol(struct btrfs_root *root,
367 struct dentry *dentry,
368 char *name, int namelen,
369 u64 *async_transid,
370 struct btrfs_qgroup_inherit **inherit)
371 {
372 struct btrfs_trans_handle *trans;
373 struct btrfs_key key;
374 struct btrfs_root_item root_item;
375 struct btrfs_inode_item *inode_item;
376 struct extent_buffer *leaf;
377 struct btrfs_root *new_root;
378 struct dentry *parent = dentry->d_parent;
379 struct inode *dir;
380 struct timespec cur_time = CURRENT_TIME;
381 int ret;
382 int err;
383 u64 objectid;
384 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
385 u64 index = 0;
386 uuid_le new_uuid;
387
388 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
389 if (ret)
390 return ret;
391
392 dir = parent->d_inode;
393
394 /*
395 * 1 - inode item
396 * 2 - refs
397 * 1 - root item
398 * 2 - dir items
399 */
400 trans = btrfs_start_transaction(root, 6);
401 if (IS_ERR(trans))
402 return PTR_ERR(trans);
403
404 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid,
405 inherit ? *inherit : NULL);
406 if (ret)
407 goto fail;
408
409 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
410 0, objectid, NULL, 0, 0, 0);
411 if (IS_ERR(leaf)) {
412 ret = PTR_ERR(leaf);
413 goto fail;
414 }
415
416 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
417 btrfs_set_header_bytenr(leaf, leaf->start);
418 btrfs_set_header_generation(leaf, trans->transid);
419 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
420 btrfs_set_header_owner(leaf, objectid);
421
422 write_extent_buffer(leaf, root->fs_info->fsid,
423 (unsigned long)btrfs_header_fsid(leaf),
424 BTRFS_FSID_SIZE);
425 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
426 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
427 BTRFS_UUID_SIZE);
428 btrfs_mark_buffer_dirty(leaf);
429
430 memset(&root_item, 0, sizeof(root_item));
431
432 inode_item = &root_item.inode;
433 inode_item->generation = cpu_to_le64(1);
434 inode_item->size = cpu_to_le64(3);
435 inode_item->nlink = cpu_to_le32(1);
436 inode_item->nbytes = cpu_to_le64(root->leafsize);
437 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
438
439 root_item.flags = 0;
440 root_item.byte_limit = 0;
441 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
442
443 btrfs_set_root_bytenr(&root_item, leaf->start);
444 btrfs_set_root_generation(&root_item, trans->transid);
445 btrfs_set_root_level(&root_item, 0);
446 btrfs_set_root_refs(&root_item, 1);
447 btrfs_set_root_used(&root_item, leaf->len);
448 btrfs_set_root_last_snapshot(&root_item, 0);
449
450 btrfs_set_root_generation_v2(&root_item,
451 btrfs_root_generation(&root_item));
452 uuid_le_gen(&new_uuid);
453 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
454 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec);
455 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec);
456 root_item.ctime = root_item.otime;
457 btrfs_set_root_ctransid(&root_item, trans->transid);
458 btrfs_set_root_otransid(&root_item, trans->transid);
459
460 btrfs_tree_unlock(leaf);
461 free_extent_buffer(leaf);
462 leaf = NULL;
463
464 btrfs_set_root_dirid(&root_item, new_dirid);
465
466 key.objectid = objectid;
467 key.offset = 0;
468 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
469 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
470 &root_item);
471 if (ret)
472 goto fail;
473
474 key.offset = (u64)-1;
475 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
476 if (IS_ERR(new_root)) {
477 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
478 ret = PTR_ERR(new_root);
479 goto fail;
480 }
481
482 btrfs_record_root_in_trans(trans, new_root);
483
484 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
485 if (ret) {
486 /* We potentially lose an unused inode item here */
487 btrfs_abort_transaction(trans, root, ret);
488 goto fail;
489 }
490
491 /*
492 * insert the directory item
493 */
494 ret = btrfs_set_inode_index(dir, &index);
495 if (ret) {
496 btrfs_abort_transaction(trans, root, ret);
497 goto fail;
498 }
499
500 ret = btrfs_insert_dir_item(trans, root,
501 name, namelen, dir, &key,
502 BTRFS_FT_DIR, index);
503 if (ret) {
504 btrfs_abort_transaction(trans, root, ret);
505 goto fail;
506 }
507
508 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
509 ret = btrfs_update_inode(trans, root, dir);
510 BUG_ON(ret);
511
512 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
513 objectid, root->root_key.objectid,
514 btrfs_ino(dir), index, name, namelen);
515
516 BUG_ON(ret);
517
518 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
519 fail:
520 if (async_transid) {
521 *async_transid = trans->transid;
522 err = btrfs_commit_transaction_async(trans, root, 1);
523 } else {
524 err = btrfs_commit_transaction(trans, root);
525 }
526 if (err && !ret)
527 ret = err;
528 return ret;
529 }
530
531 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
532 char *name, int namelen, u64 *async_transid,
533 bool readonly, struct btrfs_qgroup_inherit **inherit)
534 {
535 struct inode *inode;
536 struct btrfs_pending_snapshot *pending_snapshot;
537 struct btrfs_trans_handle *trans;
538 int ret;
539
540 if (!root->ref_cows)
541 return -EINVAL;
542
543 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
544 if (!pending_snapshot)
545 return -ENOMEM;
546
547 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
548 BTRFS_BLOCK_RSV_TEMP);
549 pending_snapshot->dentry = dentry;
550 pending_snapshot->root = root;
551 pending_snapshot->readonly = readonly;
552 if (inherit) {
553 pending_snapshot->inherit = *inherit;
554 *inherit = NULL; /* take responsibility to free it */
555 }
556
557 trans = btrfs_start_transaction(root->fs_info->extent_root, 6);
558 if (IS_ERR(trans)) {
559 ret = PTR_ERR(trans);
560 goto fail;
561 }
562
563 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
564 BUG_ON(ret);
565
566 spin_lock(&root->fs_info->trans_lock);
567 list_add(&pending_snapshot->list,
568 &trans->transaction->pending_snapshots);
569 spin_unlock(&root->fs_info->trans_lock);
570 if (async_transid) {
571 *async_transid = trans->transid;
572 ret = btrfs_commit_transaction_async(trans,
573 root->fs_info->extent_root, 1);
574 } else {
575 ret = btrfs_commit_transaction(trans,
576 root->fs_info->extent_root);
577 }
578 if (ret) {
579 /* cleanup_transaction has freed this for us */
580 if (trans->aborted)
581 pending_snapshot = NULL;
582 goto fail;
583 }
584
585 ret = pending_snapshot->error;
586 if (ret)
587 goto fail;
588
589 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
590 if (ret)
591 goto fail;
592
593 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
594 if (IS_ERR(inode)) {
595 ret = PTR_ERR(inode);
596 goto fail;
597 }
598 BUG_ON(!inode);
599 d_instantiate(dentry, inode);
600 ret = 0;
601 fail:
602 kfree(pending_snapshot);
603 return ret;
604 }
605
606 /* copy of check_sticky in fs/namei.c()
607 * It's inline, so penalty for filesystems that don't use sticky bit is
608 * minimal.
609 */
610 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
611 {
612 kuid_t fsuid = current_fsuid();
613
614 if (!(dir->i_mode & S_ISVTX))
615 return 0;
616 if (uid_eq(inode->i_uid, fsuid))
617 return 0;
618 if (uid_eq(dir->i_uid, fsuid))
619 return 0;
620 return !capable(CAP_FOWNER);
621 }
622
623 /* copy of may_delete in fs/namei.c()
624 * Check whether we can remove a link victim from directory dir, check
625 * whether the type of victim is right.
626 * 1. We can't do it if dir is read-only (done in permission())
627 * 2. We should have write and exec permissions on dir
628 * 3. We can't remove anything from append-only dir
629 * 4. We can't do anything with immutable dir (done in permission())
630 * 5. If the sticky bit on dir is set we should either
631 * a. be owner of dir, or
632 * b. be owner of victim, or
633 * c. have CAP_FOWNER capability
634 * 6. If the victim is append-only or immutable we can't do antyhing with
635 * links pointing to it.
636 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
637 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
638 * 9. We can't remove a root or mountpoint.
639 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
640 * nfs_async_unlink().
641 */
642
643 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
644 {
645 int error;
646
647 if (!victim->d_inode)
648 return -ENOENT;
649
650 BUG_ON(victim->d_parent->d_inode != dir);
651 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
652
653 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
654 if (error)
655 return error;
656 if (IS_APPEND(dir))
657 return -EPERM;
658 if (btrfs_check_sticky(dir, victim->d_inode)||
659 IS_APPEND(victim->d_inode)||
660 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
661 return -EPERM;
662 if (isdir) {
663 if (!S_ISDIR(victim->d_inode->i_mode))
664 return -ENOTDIR;
665 if (IS_ROOT(victim))
666 return -EBUSY;
667 } else if (S_ISDIR(victim->d_inode->i_mode))
668 return -EISDIR;
669 if (IS_DEADDIR(dir))
670 return -ENOENT;
671 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
672 return -EBUSY;
673 return 0;
674 }
675
676 /* copy of may_create in fs/namei.c() */
677 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
678 {
679 if (child->d_inode)
680 return -EEXIST;
681 if (IS_DEADDIR(dir))
682 return -ENOENT;
683 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
684 }
685
686 /*
687 * Create a new subvolume below @parent. This is largely modeled after
688 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
689 * inside this filesystem so it's quite a bit simpler.
690 */
691 static noinline int btrfs_mksubvol(struct path *parent,
692 char *name, int namelen,
693 struct btrfs_root *snap_src,
694 u64 *async_transid, bool readonly,
695 struct btrfs_qgroup_inherit **inherit)
696 {
697 struct inode *dir = parent->dentry->d_inode;
698 struct dentry *dentry;
699 int error;
700
701 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
702
703 dentry = lookup_one_len(name, parent->dentry, namelen);
704 error = PTR_ERR(dentry);
705 if (IS_ERR(dentry))
706 goto out_unlock;
707
708 error = -EEXIST;
709 if (dentry->d_inode)
710 goto out_dput;
711
712 error = btrfs_may_create(dir, dentry);
713 if (error)
714 goto out_dput;
715
716 /*
717 * even if this name doesn't exist, we may get hash collisions.
718 * check for them now when we can safely fail
719 */
720 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
721 dir->i_ino, name,
722 namelen);
723 if (error)
724 goto out_dput;
725
726 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
727
728 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
729 goto out_up_read;
730
731 if (snap_src) {
732 error = create_snapshot(snap_src, dentry, name, namelen,
733 async_transid, readonly, inherit);
734 } else {
735 error = create_subvol(BTRFS_I(dir)->root, dentry,
736 name, namelen, async_transid, inherit);
737 }
738 if (!error)
739 fsnotify_mkdir(dir, dentry);
740 out_up_read:
741 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
742 out_dput:
743 dput(dentry);
744 out_unlock:
745 mutex_unlock(&dir->i_mutex);
746 return error;
747 }
748
749 /*
750 * When we're defragging a range, we don't want to kick it off again
751 * if it is really just waiting for delalloc to send it down.
752 * If we find a nice big extent or delalloc range for the bytes in the
753 * file you want to defrag, we return 0 to let you know to skip this
754 * part of the file
755 */
756 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
757 {
758 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
759 struct extent_map *em = NULL;
760 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
761 u64 end;
762
763 read_lock(&em_tree->lock);
764 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
765 read_unlock(&em_tree->lock);
766
767 if (em) {
768 end = extent_map_end(em);
769 free_extent_map(em);
770 if (end - offset > thresh)
771 return 0;
772 }
773 /* if we already have a nice delalloc here, just stop */
774 thresh /= 2;
775 end = count_range_bits(io_tree, &offset, offset + thresh,
776 thresh, EXTENT_DELALLOC, 1);
777 if (end >= thresh)
778 return 0;
779 return 1;
780 }
781
782 /*
783 * helper function to walk through a file and find extents
784 * newer than a specific transid, and smaller than thresh.
785 *
786 * This is used by the defragging code to find new and small
787 * extents
788 */
789 static int find_new_extents(struct btrfs_root *root,
790 struct inode *inode, u64 newer_than,
791 u64 *off, int thresh)
792 {
793 struct btrfs_path *path;
794 struct btrfs_key min_key;
795 struct btrfs_key max_key;
796 struct extent_buffer *leaf;
797 struct btrfs_file_extent_item *extent;
798 int type;
799 int ret;
800 u64 ino = btrfs_ino(inode);
801
802 path = btrfs_alloc_path();
803 if (!path)
804 return -ENOMEM;
805
806 min_key.objectid = ino;
807 min_key.type = BTRFS_EXTENT_DATA_KEY;
808 min_key.offset = *off;
809
810 max_key.objectid = ino;
811 max_key.type = (u8)-1;
812 max_key.offset = (u64)-1;
813
814 path->keep_locks = 1;
815
816 while(1) {
817 ret = btrfs_search_forward(root, &min_key, &max_key,
818 path, 0, newer_than);
819 if (ret != 0)
820 goto none;
821 if (min_key.objectid != ino)
822 goto none;
823 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
824 goto none;
825
826 leaf = path->nodes[0];
827 extent = btrfs_item_ptr(leaf, path->slots[0],
828 struct btrfs_file_extent_item);
829
830 type = btrfs_file_extent_type(leaf, extent);
831 if (type == BTRFS_FILE_EXTENT_REG &&
832 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
833 check_defrag_in_cache(inode, min_key.offset, thresh)) {
834 *off = min_key.offset;
835 btrfs_free_path(path);
836 return 0;
837 }
838
839 if (min_key.offset == (u64)-1)
840 goto none;
841
842 min_key.offset++;
843 btrfs_release_path(path);
844 }
845 none:
846 btrfs_free_path(path);
847 return -ENOENT;
848 }
849
850 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
851 {
852 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
853 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
854 struct extent_map *em;
855 u64 len = PAGE_CACHE_SIZE;
856
857 /*
858 * hopefully we have this extent in the tree already, try without
859 * the full extent lock
860 */
861 read_lock(&em_tree->lock);
862 em = lookup_extent_mapping(em_tree, start, len);
863 read_unlock(&em_tree->lock);
864
865 if (!em) {
866 /* get the big lock and read metadata off disk */
867 lock_extent(io_tree, start, start + len - 1);
868 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
869 unlock_extent(io_tree, start, start + len - 1);
870
871 if (IS_ERR(em))
872 return NULL;
873 }
874
875 return em;
876 }
877
878 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
879 {
880 struct extent_map *next;
881 bool ret = true;
882
883 /* this is the last extent */
884 if (em->start + em->len >= i_size_read(inode))
885 return false;
886
887 next = defrag_lookup_extent(inode, em->start + em->len);
888 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
889 ret = false;
890
891 free_extent_map(next);
892 return ret;
893 }
894
895 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
896 u64 *last_len, u64 *skip, u64 *defrag_end,
897 int compress)
898 {
899 struct extent_map *em;
900 int ret = 1;
901 bool next_mergeable = true;
902
903 /*
904 * make sure that once we start defragging an extent, we keep on
905 * defragging it
906 */
907 if (start < *defrag_end)
908 return 1;
909
910 *skip = 0;
911
912 em = defrag_lookup_extent(inode, start);
913 if (!em)
914 return 0;
915
916 /* this will cover holes, and inline extents */
917 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
918 ret = 0;
919 goto out;
920 }
921
922 next_mergeable = defrag_check_next_extent(inode, em);
923
924 /*
925 * we hit a real extent, if it is big or the next extent is not a
926 * real extent, don't bother defragging it
927 */
928 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
929 (em->len >= thresh || !next_mergeable))
930 ret = 0;
931 out:
932 /*
933 * last_len ends up being a counter of how many bytes we've defragged.
934 * every time we choose not to defrag an extent, we reset *last_len
935 * so that the next tiny extent will force a defrag.
936 *
937 * The end result of this is that tiny extents before a single big
938 * extent will force at least part of that big extent to be defragged.
939 */
940 if (ret) {
941 *defrag_end = extent_map_end(em);
942 } else {
943 *last_len = 0;
944 *skip = extent_map_end(em);
945 *defrag_end = 0;
946 }
947
948 free_extent_map(em);
949 return ret;
950 }
951
952 /*
953 * it doesn't do much good to defrag one or two pages
954 * at a time. This pulls in a nice chunk of pages
955 * to COW and defrag.
956 *
957 * It also makes sure the delalloc code has enough
958 * dirty data to avoid making new small extents as part
959 * of the defrag
960 *
961 * It's a good idea to start RA on this range
962 * before calling this.
963 */
964 static int cluster_pages_for_defrag(struct inode *inode,
965 struct page **pages,
966 unsigned long start_index,
967 int num_pages)
968 {
969 unsigned long file_end;
970 u64 isize = i_size_read(inode);
971 u64 page_start;
972 u64 page_end;
973 u64 page_cnt;
974 int ret;
975 int i;
976 int i_done;
977 struct btrfs_ordered_extent *ordered;
978 struct extent_state *cached_state = NULL;
979 struct extent_io_tree *tree;
980 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
981
982 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
983 if (!isize || start_index > file_end)
984 return 0;
985
986 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
987
988 ret = btrfs_delalloc_reserve_space(inode,
989 page_cnt << PAGE_CACHE_SHIFT);
990 if (ret)
991 return ret;
992 i_done = 0;
993 tree = &BTRFS_I(inode)->io_tree;
994
995 /* step one, lock all the pages */
996 for (i = 0; i < page_cnt; i++) {
997 struct page *page;
998 again:
999 page = find_or_create_page(inode->i_mapping,
1000 start_index + i, mask);
1001 if (!page)
1002 break;
1003
1004 page_start = page_offset(page);
1005 page_end = page_start + PAGE_CACHE_SIZE - 1;
1006 while (1) {
1007 lock_extent(tree, page_start, page_end);
1008 ordered = btrfs_lookup_ordered_extent(inode,
1009 page_start);
1010 unlock_extent(tree, page_start, page_end);
1011 if (!ordered)
1012 break;
1013
1014 unlock_page(page);
1015 btrfs_start_ordered_extent(inode, ordered, 1);
1016 btrfs_put_ordered_extent(ordered);
1017 lock_page(page);
1018 /*
1019 * we unlocked the page above, so we need check if
1020 * it was released or not.
1021 */
1022 if (page->mapping != inode->i_mapping) {
1023 unlock_page(page);
1024 page_cache_release(page);
1025 goto again;
1026 }
1027 }
1028
1029 if (!PageUptodate(page)) {
1030 btrfs_readpage(NULL, page);
1031 lock_page(page);
1032 if (!PageUptodate(page)) {
1033 unlock_page(page);
1034 page_cache_release(page);
1035 ret = -EIO;
1036 break;
1037 }
1038 }
1039
1040 if (page->mapping != inode->i_mapping) {
1041 unlock_page(page);
1042 page_cache_release(page);
1043 goto again;
1044 }
1045
1046 pages[i] = page;
1047 i_done++;
1048 }
1049 if (!i_done || ret)
1050 goto out;
1051
1052 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1053 goto out;
1054
1055 /*
1056 * so now we have a nice long stream of locked
1057 * and up to date pages, lets wait on them
1058 */
1059 for (i = 0; i < i_done; i++)
1060 wait_on_page_writeback(pages[i]);
1061
1062 page_start = page_offset(pages[0]);
1063 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1064
1065 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1066 page_start, page_end - 1, 0, &cached_state);
1067 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1068 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1069 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1070 &cached_state, GFP_NOFS);
1071
1072 if (i_done != page_cnt) {
1073 spin_lock(&BTRFS_I(inode)->lock);
1074 BTRFS_I(inode)->outstanding_extents++;
1075 spin_unlock(&BTRFS_I(inode)->lock);
1076 btrfs_delalloc_release_space(inode,
1077 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1078 }
1079
1080
1081 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1082 &cached_state, GFP_NOFS);
1083
1084 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1085 page_start, page_end - 1, &cached_state,
1086 GFP_NOFS);
1087
1088 for (i = 0; i < i_done; i++) {
1089 clear_page_dirty_for_io(pages[i]);
1090 ClearPageChecked(pages[i]);
1091 set_page_extent_mapped(pages[i]);
1092 set_page_dirty(pages[i]);
1093 unlock_page(pages[i]);
1094 page_cache_release(pages[i]);
1095 }
1096 return i_done;
1097 out:
1098 for (i = 0; i < i_done; i++) {
1099 unlock_page(pages[i]);
1100 page_cache_release(pages[i]);
1101 }
1102 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1103 return ret;
1104
1105 }
1106
1107 int btrfs_defrag_file(struct inode *inode, struct file *file,
1108 struct btrfs_ioctl_defrag_range_args *range,
1109 u64 newer_than, unsigned long max_to_defrag)
1110 {
1111 struct btrfs_root *root = BTRFS_I(inode)->root;
1112 struct file_ra_state *ra = NULL;
1113 unsigned long last_index;
1114 u64 isize = i_size_read(inode);
1115 u64 last_len = 0;
1116 u64 skip = 0;
1117 u64 defrag_end = 0;
1118 u64 newer_off = range->start;
1119 unsigned long i;
1120 unsigned long ra_index = 0;
1121 int ret;
1122 int defrag_count = 0;
1123 int compress_type = BTRFS_COMPRESS_ZLIB;
1124 int extent_thresh = range->extent_thresh;
1125 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1126 int cluster = max_cluster;
1127 u64 new_align = ~((u64)128 * 1024 - 1);
1128 struct page **pages = NULL;
1129
1130 if (extent_thresh == 0)
1131 extent_thresh = 256 * 1024;
1132
1133 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1134 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1135 return -EINVAL;
1136 if (range->compress_type)
1137 compress_type = range->compress_type;
1138 }
1139
1140 if (isize == 0)
1141 return 0;
1142
1143 /*
1144 * if we were not given a file, allocate a readahead
1145 * context
1146 */
1147 if (!file) {
1148 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1149 if (!ra)
1150 return -ENOMEM;
1151 file_ra_state_init(ra, inode->i_mapping);
1152 } else {
1153 ra = &file->f_ra;
1154 }
1155
1156 pages = kmalloc(sizeof(struct page *) * max_cluster,
1157 GFP_NOFS);
1158 if (!pages) {
1159 ret = -ENOMEM;
1160 goto out_ra;
1161 }
1162
1163 /* find the last page to defrag */
1164 if (range->start + range->len > range->start) {
1165 last_index = min_t(u64, isize - 1,
1166 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1167 } else {
1168 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1169 }
1170
1171 if (newer_than) {
1172 ret = find_new_extents(root, inode, newer_than,
1173 &newer_off, 64 * 1024);
1174 if (!ret) {
1175 range->start = newer_off;
1176 /*
1177 * we always align our defrag to help keep
1178 * the extents in the file evenly spaced
1179 */
1180 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1181 } else
1182 goto out_ra;
1183 } else {
1184 i = range->start >> PAGE_CACHE_SHIFT;
1185 }
1186 if (!max_to_defrag)
1187 max_to_defrag = last_index + 1;
1188
1189 /*
1190 * make writeback starts from i, so the defrag range can be
1191 * written sequentially.
1192 */
1193 if (i < inode->i_mapping->writeback_index)
1194 inode->i_mapping->writeback_index = i;
1195
1196 while (i <= last_index && defrag_count < max_to_defrag &&
1197 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1198 PAGE_CACHE_SHIFT)) {
1199 /*
1200 * make sure we stop running if someone unmounts
1201 * the FS
1202 */
1203 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1204 break;
1205
1206 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1207 extent_thresh, &last_len, &skip,
1208 &defrag_end, range->flags &
1209 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1210 unsigned long next;
1211 /*
1212 * the should_defrag function tells us how much to skip
1213 * bump our counter by the suggested amount
1214 */
1215 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1216 i = max(i + 1, next);
1217 continue;
1218 }
1219
1220 if (!newer_than) {
1221 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1222 PAGE_CACHE_SHIFT) - i;
1223 cluster = min(cluster, max_cluster);
1224 } else {
1225 cluster = max_cluster;
1226 }
1227
1228 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1229 BTRFS_I(inode)->force_compress = compress_type;
1230
1231 if (i + cluster > ra_index) {
1232 ra_index = max(i, ra_index);
1233 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1234 cluster);
1235 ra_index += max_cluster;
1236 }
1237
1238 mutex_lock(&inode->i_mutex);
1239 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1240 if (ret < 0) {
1241 mutex_unlock(&inode->i_mutex);
1242 goto out_ra;
1243 }
1244
1245 defrag_count += ret;
1246 balance_dirty_pages_ratelimited(inode->i_mapping);
1247 mutex_unlock(&inode->i_mutex);
1248
1249 if (newer_than) {
1250 if (newer_off == (u64)-1)
1251 break;
1252
1253 if (ret > 0)
1254 i += ret;
1255
1256 newer_off = max(newer_off + 1,
1257 (u64)i << PAGE_CACHE_SHIFT);
1258
1259 ret = find_new_extents(root, inode,
1260 newer_than, &newer_off,
1261 64 * 1024);
1262 if (!ret) {
1263 range->start = newer_off;
1264 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1265 } else {
1266 break;
1267 }
1268 } else {
1269 if (ret > 0) {
1270 i += ret;
1271 last_len += ret << PAGE_CACHE_SHIFT;
1272 } else {
1273 i++;
1274 last_len = 0;
1275 }
1276 }
1277 }
1278
1279 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1280 filemap_flush(inode->i_mapping);
1281
1282 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1283 /* the filemap_flush will queue IO into the worker threads, but
1284 * we have to make sure the IO is actually started and that
1285 * ordered extents get created before we return
1286 */
1287 atomic_inc(&root->fs_info->async_submit_draining);
1288 while (atomic_read(&root->fs_info->nr_async_submits) ||
1289 atomic_read(&root->fs_info->async_delalloc_pages)) {
1290 wait_event(root->fs_info->async_submit_wait,
1291 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1292 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1293 }
1294 atomic_dec(&root->fs_info->async_submit_draining);
1295
1296 mutex_lock(&inode->i_mutex);
1297 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1298 mutex_unlock(&inode->i_mutex);
1299 }
1300
1301 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1302 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1303 }
1304
1305 ret = defrag_count;
1306
1307 out_ra:
1308 if (!file)
1309 kfree(ra);
1310 kfree(pages);
1311 return ret;
1312 }
1313
1314 static noinline int btrfs_ioctl_resize(struct file *file,
1315 void __user *arg)
1316 {
1317 u64 new_size;
1318 u64 old_size;
1319 u64 devid = 1;
1320 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1321 struct btrfs_ioctl_vol_args *vol_args;
1322 struct btrfs_trans_handle *trans;
1323 struct btrfs_device *device = NULL;
1324 char *sizestr;
1325 char *devstr = NULL;
1326 int ret = 0;
1327 int mod = 0;
1328
1329 if (root->fs_info->sb->s_flags & MS_RDONLY)
1330 return -EROFS;
1331
1332 if (!capable(CAP_SYS_ADMIN))
1333 return -EPERM;
1334
1335 ret = mnt_want_write_file(file);
1336 if (ret)
1337 return ret;
1338
1339 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1340 1)) {
1341 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
1342 return -EINPROGRESS;
1343 }
1344
1345 mutex_lock(&root->fs_info->volume_mutex);
1346 vol_args = memdup_user(arg, sizeof(*vol_args));
1347 if (IS_ERR(vol_args)) {
1348 ret = PTR_ERR(vol_args);
1349 goto out;
1350 }
1351
1352 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1353
1354 sizestr = vol_args->name;
1355 devstr = strchr(sizestr, ':');
1356 if (devstr) {
1357 char *end;
1358 sizestr = devstr + 1;
1359 *devstr = '\0';
1360 devstr = vol_args->name;
1361 devid = simple_strtoull(devstr, &end, 10);
1362 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1363 (unsigned long long)devid);
1364 }
1365 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1366 if (!device) {
1367 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1368 (unsigned long long)devid);
1369 ret = -EINVAL;
1370 goto out_free;
1371 }
1372 if (device->fs_devices && device->fs_devices->seeding) {
1373 printk(KERN_INFO "btrfs: resizer unable to apply on "
1374 "seeding device %llu\n",
1375 (unsigned long long)devid);
1376 ret = -EINVAL;
1377 goto out_free;
1378 }
1379
1380 if (!strcmp(sizestr, "max"))
1381 new_size = device->bdev->bd_inode->i_size;
1382 else {
1383 if (sizestr[0] == '-') {
1384 mod = -1;
1385 sizestr++;
1386 } else if (sizestr[0] == '+') {
1387 mod = 1;
1388 sizestr++;
1389 }
1390 new_size = memparse(sizestr, NULL);
1391 if (new_size == 0) {
1392 ret = -EINVAL;
1393 goto out_free;
1394 }
1395 }
1396
1397 if (device->is_tgtdev_for_dev_replace) {
1398 ret = -EINVAL;
1399 goto out_free;
1400 }
1401
1402 old_size = device->total_bytes;
1403
1404 if (mod < 0) {
1405 if (new_size > old_size) {
1406 ret = -EINVAL;
1407 goto out_free;
1408 }
1409 new_size = old_size - new_size;
1410 } else if (mod > 0) {
1411 new_size = old_size + new_size;
1412 }
1413
1414 if (new_size < 256 * 1024 * 1024) {
1415 ret = -EINVAL;
1416 goto out_free;
1417 }
1418 if (new_size > device->bdev->bd_inode->i_size) {
1419 ret = -EFBIG;
1420 goto out_free;
1421 }
1422
1423 do_div(new_size, root->sectorsize);
1424 new_size *= root->sectorsize;
1425
1426 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1427 rcu_str_deref(device->name),
1428 (unsigned long long)new_size);
1429
1430 if (new_size > old_size) {
1431 trans = btrfs_start_transaction(root, 0);
1432 if (IS_ERR(trans)) {
1433 ret = PTR_ERR(trans);
1434 goto out_free;
1435 }
1436 ret = btrfs_grow_device(trans, device, new_size);
1437 btrfs_commit_transaction(trans, root);
1438 } else if (new_size < old_size) {
1439 ret = btrfs_shrink_device(device, new_size);
1440 } /* equal, nothing need to do */
1441
1442 out_free:
1443 kfree(vol_args);
1444 out:
1445 mutex_unlock(&root->fs_info->volume_mutex);
1446 mnt_drop_write_file(file);
1447 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1448 return ret;
1449 }
1450
1451 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1452 char *name, unsigned long fd, int subvol,
1453 u64 *transid, bool readonly,
1454 struct btrfs_qgroup_inherit **inherit)
1455 {
1456 int namelen;
1457 int ret = 0;
1458
1459 ret = mnt_want_write_file(file);
1460 if (ret)
1461 goto out;
1462
1463 namelen = strlen(name);
1464 if (strchr(name, '/')) {
1465 ret = -EINVAL;
1466 goto out_drop_write;
1467 }
1468
1469 if (name[0] == '.' &&
1470 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1471 ret = -EEXIST;
1472 goto out_drop_write;
1473 }
1474
1475 if (subvol) {
1476 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1477 NULL, transid, readonly, inherit);
1478 } else {
1479 struct fd src = fdget(fd);
1480 struct inode *src_inode;
1481 if (!src.file) {
1482 ret = -EINVAL;
1483 goto out_drop_write;
1484 }
1485
1486 src_inode = file_inode(src.file);
1487 if (src_inode->i_sb != file_inode(file)->i_sb) {
1488 printk(KERN_INFO "btrfs: Snapshot src from "
1489 "another FS\n");
1490 ret = -EINVAL;
1491 } else {
1492 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1493 BTRFS_I(src_inode)->root,
1494 transid, readonly, inherit);
1495 }
1496 fdput(src);
1497 }
1498 out_drop_write:
1499 mnt_drop_write_file(file);
1500 out:
1501 return ret;
1502 }
1503
1504 static noinline int btrfs_ioctl_snap_create(struct file *file,
1505 void __user *arg, int subvol)
1506 {
1507 struct btrfs_ioctl_vol_args *vol_args;
1508 int ret;
1509
1510 vol_args = memdup_user(arg, sizeof(*vol_args));
1511 if (IS_ERR(vol_args))
1512 return PTR_ERR(vol_args);
1513 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1514
1515 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1516 vol_args->fd, subvol,
1517 NULL, false, NULL);
1518
1519 kfree(vol_args);
1520 return ret;
1521 }
1522
1523 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1524 void __user *arg, int subvol)
1525 {
1526 struct btrfs_ioctl_vol_args_v2 *vol_args;
1527 int ret;
1528 u64 transid = 0;
1529 u64 *ptr = NULL;
1530 bool readonly = false;
1531 struct btrfs_qgroup_inherit *inherit = NULL;
1532
1533 vol_args = memdup_user(arg, sizeof(*vol_args));
1534 if (IS_ERR(vol_args))
1535 return PTR_ERR(vol_args);
1536 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1537
1538 if (vol_args->flags &
1539 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1540 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1541 ret = -EOPNOTSUPP;
1542 goto out;
1543 }
1544
1545 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1546 ptr = &transid;
1547 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1548 readonly = true;
1549 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1550 if (vol_args->size > PAGE_CACHE_SIZE) {
1551 ret = -EINVAL;
1552 goto out;
1553 }
1554 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1555 if (IS_ERR(inherit)) {
1556 ret = PTR_ERR(inherit);
1557 goto out;
1558 }
1559 }
1560
1561 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1562 vol_args->fd, subvol, ptr,
1563 readonly, &inherit);
1564
1565 if (ret == 0 && ptr &&
1566 copy_to_user(arg +
1567 offsetof(struct btrfs_ioctl_vol_args_v2,
1568 transid), ptr, sizeof(*ptr)))
1569 ret = -EFAULT;
1570 out:
1571 kfree(vol_args);
1572 kfree(inherit);
1573 return ret;
1574 }
1575
1576 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1577 void __user *arg)
1578 {
1579 struct inode *inode = file_inode(file);
1580 struct btrfs_root *root = BTRFS_I(inode)->root;
1581 int ret = 0;
1582 u64 flags = 0;
1583
1584 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1585 return -EINVAL;
1586
1587 down_read(&root->fs_info->subvol_sem);
1588 if (btrfs_root_readonly(root))
1589 flags |= BTRFS_SUBVOL_RDONLY;
1590 up_read(&root->fs_info->subvol_sem);
1591
1592 if (copy_to_user(arg, &flags, sizeof(flags)))
1593 ret = -EFAULT;
1594
1595 return ret;
1596 }
1597
1598 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1599 void __user *arg)
1600 {
1601 struct inode *inode = file_inode(file);
1602 struct btrfs_root *root = BTRFS_I(inode)->root;
1603 struct btrfs_trans_handle *trans;
1604 u64 root_flags;
1605 u64 flags;
1606 int ret = 0;
1607
1608 ret = mnt_want_write_file(file);
1609 if (ret)
1610 goto out;
1611
1612 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1613 ret = -EINVAL;
1614 goto out_drop_write;
1615 }
1616
1617 if (copy_from_user(&flags, arg, sizeof(flags))) {
1618 ret = -EFAULT;
1619 goto out_drop_write;
1620 }
1621
1622 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1623 ret = -EINVAL;
1624 goto out_drop_write;
1625 }
1626
1627 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1628 ret = -EOPNOTSUPP;
1629 goto out_drop_write;
1630 }
1631
1632 if (!inode_owner_or_capable(inode)) {
1633 ret = -EACCES;
1634 goto out_drop_write;
1635 }
1636
1637 down_write(&root->fs_info->subvol_sem);
1638
1639 /* nothing to do */
1640 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1641 goto out_drop_sem;
1642
1643 root_flags = btrfs_root_flags(&root->root_item);
1644 if (flags & BTRFS_SUBVOL_RDONLY)
1645 btrfs_set_root_flags(&root->root_item,
1646 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1647 else
1648 btrfs_set_root_flags(&root->root_item,
1649 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1650
1651 trans = btrfs_start_transaction(root, 1);
1652 if (IS_ERR(trans)) {
1653 ret = PTR_ERR(trans);
1654 goto out_reset;
1655 }
1656
1657 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1658 &root->root_key, &root->root_item);
1659
1660 btrfs_commit_transaction(trans, root);
1661 out_reset:
1662 if (ret)
1663 btrfs_set_root_flags(&root->root_item, root_flags);
1664 out_drop_sem:
1665 up_write(&root->fs_info->subvol_sem);
1666 out_drop_write:
1667 mnt_drop_write_file(file);
1668 out:
1669 return ret;
1670 }
1671
1672 /*
1673 * helper to check if the subvolume references other subvolumes
1674 */
1675 static noinline int may_destroy_subvol(struct btrfs_root *root)
1676 {
1677 struct btrfs_path *path;
1678 struct btrfs_key key;
1679 int ret;
1680
1681 path = btrfs_alloc_path();
1682 if (!path)
1683 return -ENOMEM;
1684
1685 key.objectid = root->root_key.objectid;
1686 key.type = BTRFS_ROOT_REF_KEY;
1687 key.offset = (u64)-1;
1688
1689 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1690 &key, path, 0, 0);
1691 if (ret < 0)
1692 goto out;
1693 BUG_ON(ret == 0);
1694
1695 ret = 0;
1696 if (path->slots[0] > 0) {
1697 path->slots[0]--;
1698 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1699 if (key.objectid == root->root_key.objectid &&
1700 key.type == BTRFS_ROOT_REF_KEY)
1701 ret = -ENOTEMPTY;
1702 }
1703 out:
1704 btrfs_free_path(path);
1705 return ret;
1706 }
1707
1708 static noinline int key_in_sk(struct btrfs_key *key,
1709 struct btrfs_ioctl_search_key *sk)
1710 {
1711 struct btrfs_key test;
1712 int ret;
1713
1714 test.objectid = sk->min_objectid;
1715 test.type = sk->min_type;
1716 test.offset = sk->min_offset;
1717
1718 ret = btrfs_comp_cpu_keys(key, &test);
1719 if (ret < 0)
1720 return 0;
1721
1722 test.objectid = sk->max_objectid;
1723 test.type = sk->max_type;
1724 test.offset = sk->max_offset;
1725
1726 ret = btrfs_comp_cpu_keys(key, &test);
1727 if (ret > 0)
1728 return 0;
1729 return 1;
1730 }
1731
1732 static noinline int copy_to_sk(struct btrfs_root *root,
1733 struct btrfs_path *path,
1734 struct btrfs_key *key,
1735 struct btrfs_ioctl_search_key *sk,
1736 char *buf,
1737 unsigned long *sk_offset,
1738 int *num_found)
1739 {
1740 u64 found_transid;
1741 struct extent_buffer *leaf;
1742 struct btrfs_ioctl_search_header sh;
1743 unsigned long item_off;
1744 unsigned long item_len;
1745 int nritems;
1746 int i;
1747 int slot;
1748 int ret = 0;
1749
1750 leaf = path->nodes[0];
1751 slot = path->slots[0];
1752 nritems = btrfs_header_nritems(leaf);
1753
1754 if (btrfs_header_generation(leaf) > sk->max_transid) {
1755 i = nritems;
1756 goto advance_key;
1757 }
1758 found_transid = btrfs_header_generation(leaf);
1759
1760 for (i = slot; i < nritems; i++) {
1761 item_off = btrfs_item_ptr_offset(leaf, i);
1762 item_len = btrfs_item_size_nr(leaf, i);
1763
1764 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1765 item_len = 0;
1766
1767 if (sizeof(sh) + item_len + *sk_offset >
1768 BTRFS_SEARCH_ARGS_BUFSIZE) {
1769 ret = 1;
1770 goto overflow;
1771 }
1772
1773 btrfs_item_key_to_cpu(leaf, key, i);
1774 if (!key_in_sk(key, sk))
1775 continue;
1776
1777 sh.objectid = key->objectid;
1778 sh.offset = key->offset;
1779 sh.type = key->type;
1780 sh.len = item_len;
1781 sh.transid = found_transid;
1782
1783 /* copy search result header */
1784 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1785 *sk_offset += sizeof(sh);
1786
1787 if (item_len) {
1788 char *p = buf + *sk_offset;
1789 /* copy the item */
1790 read_extent_buffer(leaf, p,
1791 item_off, item_len);
1792 *sk_offset += item_len;
1793 }
1794 (*num_found)++;
1795
1796 if (*num_found >= sk->nr_items)
1797 break;
1798 }
1799 advance_key:
1800 ret = 0;
1801 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1802 key->offset++;
1803 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1804 key->offset = 0;
1805 key->type++;
1806 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1807 key->offset = 0;
1808 key->type = 0;
1809 key->objectid++;
1810 } else
1811 ret = 1;
1812 overflow:
1813 return ret;
1814 }
1815
1816 static noinline int search_ioctl(struct inode *inode,
1817 struct btrfs_ioctl_search_args *args)
1818 {
1819 struct btrfs_root *root;
1820 struct btrfs_key key;
1821 struct btrfs_key max_key;
1822 struct btrfs_path *path;
1823 struct btrfs_ioctl_search_key *sk = &args->key;
1824 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1825 int ret;
1826 int num_found = 0;
1827 unsigned long sk_offset = 0;
1828
1829 path = btrfs_alloc_path();
1830 if (!path)
1831 return -ENOMEM;
1832
1833 if (sk->tree_id == 0) {
1834 /* search the root of the inode that was passed */
1835 root = BTRFS_I(inode)->root;
1836 } else {
1837 key.objectid = sk->tree_id;
1838 key.type = BTRFS_ROOT_ITEM_KEY;
1839 key.offset = (u64)-1;
1840 root = btrfs_read_fs_root_no_name(info, &key);
1841 if (IS_ERR(root)) {
1842 printk(KERN_ERR "could not find root %llu\n",
1843 sk->tree_id);
1844 btrfs_free_path(path);
1845 return -ENOENT;
1846 }
1847 }
1848
1849 key.objectid = sk->min_objectid;
1850 key.type = sk->min_type;
1851 key.offset = sk->min_offset;
1852
1853 max_key.objectid = sk->max_objectid;
1854 max_key.type = sk->max_type;
1855 max_key.offset = sk->max_offset;
1856
1857 path->keep_locks = 1;
1858
1859 while(1) {
1860 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1861 sk->min_transid);
1862 if (ret != 0) {
1863 if (ret > 0)
1864 ret = 0;
1865 goto err;
1866 }
1867 ret = copy_to_sk(root, path, &key, sk, args->buf,
1868 &sk_offset, &num_found);
1869 btrfs_release_path(path);
1870 if (ret || num_found >= sk->nr_items)
1871 break;
1872
1873 }
1874 ret = 0;
1875 err:
1876 sk->nr_items = num_found;
1877 btrfs_free_path(path);
1878 return ret;
1879 }
1880
1881 static noinline int btrfs_ioctl_tree_search(struct file *file,
1882 void __user *argp)
1883 {
1884 struct btrfs_ioctl_search_args *args;
1885 struct inode *inode;
1886 int ret;
1887
1888 if (!capable(CAP_SYS_ADMIN))
1889 return -EPERM;
1890
1891 args = memdup_user(argp, sizeof(*args));
1892 if (IS_ERR(args))
1893 return PTR_ERR(args);
1894
1895 inode = file_inode(file);
1896 ret = search_ioctl(inode, args);
1897 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1898 ret = -EFAULT;
1899 kfree(args);
1900 return ret;
1901 }
1902
1903 /*
1904 * Search INODE_REFs to identify path name of 'dirid' directory
1905 * in a 'tree_id' tree. and sets path name to 'name'.
1906 */
1907 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1908 u64 tree_id, u64 dirid, char *name)
1909 {
1910 struct btrfs_root *root;
1911 struct btrfs_key key;
1912 char *ptr;
1913 int ret = -1;
1914 int slot;
1915 int len;
1916 int total_len = 0;
1917 struct btrfs_inode_ref *iref;
1918 struct extent_buffer *l;
1919 struct btrfs_path *path;
1920
1921 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1922 name[0]='\0';
1923 return 0;
1924 }
1925
1926 path = btrfs_alloc_path();
1927 if (!path)
1928 return -ENOMEM;
1929
1930 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1931
1932 key.objectid = tree_id;
1933 key.type = BTRFS_ROOT_ITEM_KEY;
1934 key.offset = (u64)-1;
1935 root = btrfs_read_fs_root_no_name(info, &key);
1936 if (IS_ERR(root)) {
1937 printk(KERN_ERR "could not find root %llu\n", tree_id);
1938 ret = -ENOENT;
1939 goto out;
1940 }
1941
1942 key.objectid = dirid;
1943 key.type = BTRFS_INODE_REF_KEY;
1944 key.offset = (u64)-1;
1945
1946 while(1) {
1947 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1948 if (ret < 0)
1949 goto out;
1950
1951 l = path->nodes[0];
1952 slot = path->slots[0];
1953 if (ret > 0 && slot > 0)
1954 slot--;
1955 btrfs_item_key_to_cpu(l, &key, slot);
1956
1957 if (ret > 0 && (key.objectid != dirid ||
1958 key.type != BTRFS_INODE_REF_KEY)) {
1959 ret = -ENOENT;
1960 goto out;
1961 }
1962
1963 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1964 len = btrfs_inode_ref_name_len(l, iref);
1965 ptr -= len + 1;
1966 total_len += len + 1;
1967 if (ptr < name)
1968 goto out;
1969
1970 *(ptr + len) = '/';
1971 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1972
1973 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1974 break;
1975
1976 btrfs_release_path(path);
1977 key.objectid = key.offset;
1978 key.offset = (u64)-1;
1979 dirid = key.objectid;
1980 }
1981 if (ptr < name)
1982 goto out;
1983 memmove(name, ptr, total_len);
1984 name[total_len]='\0';
1985 ret = 0;
1986 out:
1987 btrfs_free_path(path);
1988 return ret;
1989 }
1990
1991 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1992 void __user *argp)
1993 {
1994 struct btrfs_ioctl_ino_lookup_args *args;
1995 struct inode *inode;
1996 int ret;
1997
1998 if (!capable(CAP_SYS_ADMIN))
1999 return -EPERM;
2000
2001 args = memdup_user(argp, sizeof(*args));
2002 if (IS_ERR(args))
2003 return PTR_ERR(args);
2004
2005 inode = file_inode(file);
2006
2007 if (args->treeid == 0)
2008 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2009
2010 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2011 args->treeid, args->objectid,
2012 args->name);
2013
2014 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2015 ret = -EFAULT;
2016
2017 kfree(args);
2018 return ret;
2019 }
2020
2021 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2022 void __user *arg)
2023 {
2024 struct dentry *parent = fdentry(file);
2025 struct dentry *dentry;
2026 struct inode *dir = parent->d_inode;
2027 struct inode *inode;
2028 struct btrfs_root *root = BTRFS_I(dir)->root;
2029 struct btrfs_root *dest = NULL;
2030 struct btrfs_ioctl_vol_args *vol_args;
2031 struct btrfs_trans_handle *trans;
2032 int namelen;
2033 int ret;
2034 int err = 0;
2035
2036 vol_args = memdup_user(arg, sizeof(*vol_args));
2037 if (IS_ERR(vol_args))
2038 return PTR_ERR(vol_args);
2039
2040 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2041 namelen = strlen(vol_args->name);
2042 if (strchr(vol_args->name, '/') ||
2043 strncmp(vol_args->name, "..", namelen) == 0) {
2044 err = -EINVAL;
2045 goto out;
2046 }
2047
2048 err = mnt_want_write_file(file);
2049 if (err)
2050 goto out;
2051
2052 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
2053 dentry = lookup_one_len(vol_args->name, parent, namelen);
2054 if (IS_ERR(dentry)) {
2055 err = PTR_ERR(dentry);
2056 goto out_unlock_dir;
2057 }
2058
2059 if (!dentry->d_inode) {
2060 err = -ENOENT;
2061 goto out_dput;
2062 }
2063
2064 inode = dentry->d_inode;
2065 dest = BTRFS_I(inode)->root;
2066 if (!capable(CAP_SYS_ADMIN)){
2067 /*
2068 * Regular user. Only allow this with a special mount
2069 * option, when the user has write+exec access to the
2070 * subvol root, and when rmdir(2) would have been
2071 * allowed.
2072 *
2073 * Note that this is _not_ check that the subvol is
2074 * empty or doesn't contain data that we wouldn't
2075 * otherwise be able to delete.
2076 *
2077 * Users who want to delete empty subvols should try
2078 * rmdir(2).
2079 */
2080 err = -EPERM;
2081 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2082 goto out_dput;
2083
2084 /*
2085 * Do not allow deletion if the parent dir is the same
2086 * as the dir to be deleted. That means the ioctl
2087 * must be called on the dentry referencing the root
2088 * of the subvol, not a random directory contained
2089 * within it.
2090 */
2091 err = -EINVAL;
2092 if (root == dest)
2093 goto out_dput;
2094
2095 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2096 if (err)
2097 goto out_dput;
2098
2099 /* check if subvolume may be deleted by a non-root user */
2100 err = btrfs_may_delete(dir, dentry, 1);
2101 if (err)
2102 goto out_dput;
2103 }
2104
2105 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2106 err = -EINVAL;
2107 goto out_dput;
2108 }
2109
2110 mutex_lock(&inode->i_mutex);
2111 err = d_invalidate(dentry);
2112 if (err)
2113 goto out_unlock;
2114
2115 down_write(&root->fs_info->subvol_sem);
2116
2117 err = may_destroy_subvol(dest);
2118 if (err)
2119 goto out_up_write;
2120
2121 trans = btrfs_start_transaction(root, 0);
2122 if (IS_ERR(trans)) {
2123 err = PTR_ERR(trans);
2124 goto out_up_write;
2125 }
2126 trans->block_rsv = &root->fs_info->global_block_rsv;
2127
2128 ret = btrfs_unlink_subvol(trans, root, dir,
2129 dest->root_key.objectid,
2130 dentry->d_name.name,
2131 dentry->d_name.len);
2132 if (ret) {
2133 err = ret;
2134 btrfs_abort_transaction(trans, root, ret);
2135 goto out_end_trans;
2136 }
2137
2138 btrfs_record_root_in_trans(trans, dest);
2139
2140 memset(&dest->root_item.drop_progress, 0,
2141 sizeof(dest->root_item.drop_progress));
2142 dest->root_item.drop_level = 0;
2143 btrfs_set_root_refs(&dest->root_item, 0);
2144
2145 if (!xchg(&dest->orphan_item_inserted, 1)) {
2146 ret = btrfs_insert_orphan_item(trans,
2147 root->fs_info->tree_root,
2148 dest->root_key.objectid);
2149 if (ret) {
2150 btrfs_abort_transaction(trans, root, ret);
2151 err = ret;
2152 goto out_end_trans;
2153 }
2154 }
2155 out_end_trans:
2156 ret = btrfs_end_transaction(trans, root);
2157 if (ret && !err)
2158 err = ret;
2159 inode->i_flags |= S_DEAD;
2160 out_up_write:
2161 up_write(&root->fs_info->subvol_sem);
2162 out_unlock:
2163 mutex_unlock(&inode->i_mutex);
2164 if (!err) {
2165 shrink_dcache_sb(root->fs_info->sb);
2166 btrfs_invalidate_inodes(dest);
2167 d_delete(dentry);
2168 }
2169 out_dput:
2170 dput(dentry);
2171 out_unlock_dir:
2172 mutex_unlock(&dir->i_mutex);
2173 mnt_drop_write_file(file);
2174 out:
2175 kfree(vol_args);
2176 return err;
2177 }
2178
2179 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2180 {
2181 struct inode *inode = file_inode(file);
2182 struct btrfs_root *root = BTRFS_I(inode)->root;
2183 struct btrfs_ioctl_defrag_range_args *range;
2184 int ret;
2185
2186 if (btrfs_root_readonly(root))
2187 return -EROFS;
2188
2189 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2190 1)) {
2191 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2192 return -EINPROGRESS;
2193 }
2194 ret = mnt_want_write_file(file);
2195 if (ret) {
2196 atomic_set(&root->fs_info->mutually_exclusive_operation_running,
2197 0);
2198 return ret;
2199 }
2200
2201 switch (inode->i_mode & S_IFMT) {
2202 case S_IFDIR:
2203 if (!capable(CAP_SYS_ADMIN)) {
2204 ret = -EPERM;
2205 goto out;
2206 }
2207 ret = btrfs_defrag_root(root, 0);
2208 if (ret)
2209 goto out;
2210 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2211 break;
2212 case S_IFREG:
2213 if (!(file->f_mode & FMODE_WRITE)) {
2214 ret = -EINVAL;
2215 goto out;
2216 }
2217
2218 range = kzalloc(sizeof(*range), GFP_KERNEL);
2219 if (!range) {
2220 ret = -ENOMEM;
2221 goto out;
2222 }
2223
2224 if (argp) {
2225 if (copy_from_user(range, argp,
2226 sizeof(*range))) {
2227 ret = -EFAULT;
2228 kfree(range);
2229 goto out;
2230 }
2231 /* compression requires us to start the IO */
2232 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2233 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2234 range->extent_thresh = (u32)-1;
2235 }
2236 } else {
2237 /* the rest are all set to zero by kzalloc */
2238 range->len = (u64)-1;
2239 }
2240 ret = btrfs_defrag_file(file_inode(file), file,
2241 range, 0, 0);
2242 if (ret > 0)
2243 ret = 0;
2244 kfree(range);
2245 break;
2246 default:
2247 ret = -EINVAL;
2248 }
2249 out:
2250 mnt_drop_write_file(file);
2251 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2252 return ret;
2253 }
2254
2255 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2256 {
2257 struct btrfs_ioctl_vol_args *vol_args;
2258 int ret;
2259
2260 if (!capable(CAP_SYS_ADMIN))
2261 return -EPERM;
2262
2263 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2264 1)) {
2265 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2266 return -EINPROGRESS;
2267 }
2268
2269 mutex_lock(&root->fs_info->volume_mutex);
2270 vol_args = memdup_user(arg, sizeof(*vol_args));
2271 if (IS_ERR(vol_args)) {
2272 ret = PTR_ERR(vol_args);
2273 goto out;
2274 }
2275
2276 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2277 ret = btrfs_init_new_device(root, vol_args->name);
2278
2279 kfree(vol_args);
2280 out:
2281 mutex_unlock(&root->fs_info->volume_mutex);
2282 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2283 return ret;
2284 }
2285
2286 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2287 {
2288 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2289 struct btrfs_ioctl_vol_args *vol_args;
2290 int ret;
2291
2292 if (!capable(CAP_SYS_ADMIN))
2293 return -EPERM;
2294
2295 ret = mnt_want_write_file(file);
2296 if (ret)
2297 return ret;
2298
2299 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2300 1)) {
2301 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2302 mnt_drop_write_file(file);
2303 return -EINPROGRESS;
2304 }
2305
2306 mutex_lock(&root->fs_info->volume_mutex);
2307 vol_args = memdup_user(arg, sizeof(*vol_args));
2308 if (IS_ERR(vol_args)) {
2309 ret = PTR_ERR(vol_args);
2310 goto out;
2311 }
2312
2313 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2314 ret = btrfs_rm_device(root, vol_args->name);
2315
2316 kfree(vol_args);
2317 out:
2318 mutex_unlock(&root->fs_info->volume_mutex);
2319 mnt_drop_write_file(file);
2320 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2321 return ret;
2322 }
2323
2324 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2325 {
2326 struct btrfs_ioctl_fs_info_args *fi_args;
2327 struct btrfs_device *device;
2328 struct btrfs_device *next;
2329 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2330 int ret = 0;
2331
2332 if (!capable(CAP_SYS_ADMIN))
2333 return -EPERM;
2334
2335 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2336 if (!fi_args)
2337 return -ENOMEM;
2338
2339 fi_args->num_devices = fs_devices->num_devices;
2340 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2341
2342 mutex_lock(&fs_devices->device_list_mutex);
2343 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2344 if (device->devid > fi_args->max_id)
2345 fi_args->max_id = device->devid;
2346 }
2347 mutex_unlock(&fs_devices->device_list_mutex);
2348
2349 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2350 ret = -EFAULT;
2351
2352 kfree(fi_args);
2353 return ret;
2354 }
2355
2356 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2357 {
2358 struct btrfs_ioctl_dev_info_args *di_args;
2359 struct btrfs_device *dev;
2360 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2361 int ret = 0;
2362 char *s_uuid = NULL;
2363 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2364
2365 if (!capable(CAP_SYS_ADMIN))
2366 return -EPERM;
2367
2368 di_args = memdup_user(arg, sizeof(*di_args));
2369 if (IS_ERR(di_args))
2370 return PTR_ERR(di_args);
2371
2372 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2373 s_uuid = di_args->uuid;
2374
2375 mutex_lock(&fs_devices->device_list_mutex);
2376 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2377 mutex_unlock(&fs_devices->device_list_mutex);
2378
2379 if (!dev) {
2380 ret = -ENODEV;
2381 goto out;
2382 }
2383
2384 di_args->devid = dev->devid;
2385 di_args->bytes_used = dev->bytes_used;
2386 di_args->total_bytes = dev->total_bytes;
2387 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2388 if (dev->name) {
2389 struct rcu_string *name;
2390
2391 rcu_read_lock();
2392 name = rcu_dereference(dev->name);
2393 strncpy(di_args->path, name->str, sizeof(di_args->path));
2394 rcu_read_unlock();
2395 di_args->path[sizeof(di_args->path) - 1] = 0;
2396 } else {
2397 di_args->path[0] = '\0';
2398 }
2399
2400 out:
2401 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2402 ret = -EFAULT;
2403
2404 kfree(di_args);
2405 return ret;
2406 }
2407
2408 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2409 u64 off, u64 olen, u64 destoff)
2410 {
2411 struct inode *inode = file_inode(file);
2412 struct btrfs_root *root = BTRFS_I(inode)->root;
2413 struct fd src_file;
2414 struct inode *src;
2415 struct btrfs_trans_handle *trans;
2416 struct btrfs_path *path;
2417 struct extent_buffer *leaf;
2418 char *buf;
2419 struct btrfs_key key;
2420 u32 nritems;
2421 int slot;
2422 int ret;
2423 u64 len = olen;
2424 u64 bs = root->fs_info->sb->s_blocksize;
2425
2426 /*
2427 * TODO:
2428 * - split compressed inline extents. annoying: we need to
2429 * decompress into destination's address_space (the file offset
2430 * may change, so source mapping won't do), then recompress (or
2431 * otherwise reinsert) a subrange.
2432 * - allow ranges within the same file to be cloned (provided
2433 * they don't overlap)?
2434 */
2435
2436 /* the destination must be opened for writing */
2437 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2438 return -EINVAL;
2439
2440 if (btrfs_root_readonly(root))
2441 return -EROFS;
2442
2443 ret = mnt_want_write_file(file);
2444 if (ret)
2445 return ret;
2446
2447 src_file = fdget(srcfd);
2448 if (!src_file.file) {
2449 ret = -EBADF;
2450 goto out_drop_write;
2451 }
2452
2453 ret = -EXDEV;
2454 if (src_file.file->f_path.mnt != file->f_path.mnt)
2455 goto out_fput;
2456
2457 src = file_inode(src_file.file);
2458
2459 ret = -EINVAL;
2460 if (src == inode)
2461 goto out_fput;
2462
2463 /* the src must be open for reading */
2464 if (!(src_file.file->f_mode & FMODE_READ))
2465 goto out_fput;
2466
2467 /* don't make the dst file partly checksummed */
2468 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2469 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2470 goto out_fput;
2471
2472 ret = -EISDIR;
2473 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2474 goto out_fput;
2475
2476 ret = -EXDEV;
2477 if (src->i_sb != inode->i_sb)
2478 goto out_fput;
2479
2480 ret = -ENOMEM;
2481 buf = vmalloc(btrfs_level_size(root, 0));
2482 if (!buf)
2483 goto out_fput;
2484
2485 path = btrfs_alloc_path();
2486 if (!path) {
2487 vfree(buf);
2488 goto out_fput;
2489 }
2490 path->reada = 2;
2491
2492 if (inode < src) {
2493 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2494 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2495 } else {
2496 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2497 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2498 }
2499
2500 /* determine range to clone */
2501 ret = -EINVAL;
2502 if (off + len > src->i_size || off + len < off)
2503 goto out_unlock;
2504 if (len == 0)
2505 olen = len = src->i_size - off;
2506 /* if we extend to eof, continue to block boundary */
2507 if (off + len == src->i_size)
2508 len = ALIGN(src->i_size, bs) - off;
2509
2510 /* verify the end result is block aligned */
2511 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2512 !IS_ALIGNED(destoff, bs))
2513 goto out_unlock;
2514
2515 if (destoff > inode->i_size) {
2516 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2517 if (ret)
2518 goto out_unlock;
2519 }
2520
2521 /* truncate page cache pages from target inode range */
2522 truncate_inode_pages_range(&inode->i_data, destoff,
2523 PAGE_CACHE_ALIGN(destoff + len) - 1);
2524
2525 /* do any pending delalloc/csum calc on src, one way or
2526 another, and lock file content */
2527 while (1) {
2528 struct btrfs_ordered_extent *ordered;
2529 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2530 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1);
2531 if (!ordered &&
2532 !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1,
2533 EXTENT_DELALLOC, 0, NULL))
2534 break;
2535 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2536 if (ordered)
2537 btrfs_put_ordered_extent(ordered);
2538 btrfs_wait_ordered_range(src, off, len);
2539 }
2540
2541 /* clone data */
2542 key.objectid = btrfs_ino(src);
2543 key.type = BTRFS_EXTENT_DATA_KEY;
2544 key.offset = 0;
2545
2546 while (1) {
2547 /*
2548 * note the key will change type as we walk through the
2549 * tree.
2550 */
2551 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2552 0, 0);
2553 if (ret < 0)
2554 goto out;
2555
2556 nritems = btrfs_header_nritems(path->nodes[0]);
2557 if (path->slots[0] >= nritems) {
2558 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2559 if (ret < 0)
2560 goto out;
2561 if (ret > 0)
2562 break;
2563 nritems = btrfs_header_nritems(path->nodes[0]);
2564 }
2565 leaf = path->nodes[0];
2566 slot = path->slots[0];
2567
2568 btrfs_item_key_to_cpu(leaf, &key, slot);
2569 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2570 key.objectid != btrfs_ino(src))
2571 break;
2572
2573 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2574 struct btrfs_file_extent_item *extent;
2575 int type;
2576 u32 size;
2577 struct btrfs_key new_key;
2578 u64 disko = 0, diskl = 0;
2579 u64 datao = 0, datal = 0;
2580 u8 comp;
2581 u64 endoff;
2582
2583 size = btrfs_item_size_nr(leaf, slot);
2584 read_extent_buffer(leaf, buf,
2585 btrfs_item_ptr_offset(leaf, slot),
2586 size);
2587
2588 extent = btrfs_item_ptr(leaf, slot,
2589 struct btrfs_file_extent_item);
2590 comp = btrfs_file_extent_compression(leaf, extent);
2591 type = btrfs_file_extent_type(leaf, extent);
2592 if (type == BTRFS_FILE_EXTENT_REG ||
2593 type == BTRFS_FILE_EXTENT_PREALLOC) {
2594 disko = btrfs_file_extent_disk_bytenr(leaf,
2595 extent);
2596 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2597 extent);
2598 datao = btrfs_file_extent_offset(leaf, extent);
2599 datal = btrfs_file_extent_num_bytes(leaf,
2600 extent);
2601 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2602 /* take upper bound, may be compressed */
2603 datal = btrfs_file_extent_ram_bytes(leaf,
2604 extent);
2605 }
2606 btrfs_release_path(path);
2607
2608 if (key.offset + datal <= off ||
2609 key.offset >= off + len - 1)
2610 goto next;
2611
2612 memcpy(&new_key, &key, sizeof(new_key));
2613 new_key.objectid = btrfs_ino(inode);
2614 if (off <= key.offset)
2615 new_key.offset = key.offset + destoff - off;
2616 else
2617 new_key.offset = destoff;
2618
2619 /*
2620 * 1 - adjusting old extent (we may have to split it)
2621 * 1 - add new extent
2622 * 1 - inode update
2623 */
2624 trans = btrfs_start_transaction(root, 3);
2625 if (IS_ERR(trans)) {
2626 ret = PTR_ERR(trans);
2627 goto out;
2628 }
2629
2630 if (type == BTRFS_FILE_EXTENT_REG ||
2631 type == BTRFS_FILE_EXTENT_PREALLOC) {
2632 /*
2633 * a | --- range to clone ---| b
2634 * | ------------- extent ------------- |
2635 */
2636
2637 /* substract range b */
2638 if (key.offset + datal > off + len)
2639 datal = off + len - key.offset;
2640
2641 /* substract range a */
2642 if (off > key.offset) {
2643 datao += off - key.offset;
2644 datal -= off - key.offset;
2645 }
2646
2647 ret = btrfs_drop_extents(trans, root, inode,
2648 new_key.offset,
2649 new_key.offset + datal,
2650 1);
2651 if (ret) {
2652 btrfs_abort_transaction(trans, root,
2653 ret);
2654 btrfs_end_transaction(trans, root);
2655 goto out;
2656 }
2657
2658 ret = btrfs_insert_empty_item(trans, root, path,
2659 &new_key, size);
2660 if (ret) {
2661 btrfs_abort_transaction(trans, root,
2662 ret);
2663 btrfs_end_transaction(trans, root);
2664 goto out;
2665 }
2666
2667 leaf = path->nodes[0];
2668 slot = path->slots[0];
2669 write_extent_buffer(leaf, buf,
2670 btrfs_item_ptr_offset(leaf, slot),
2671 size);
2672
2673 extent = btrfs_item_ptr(leaf, slot,
2674 struct btrfs_file_extent_item);
2675
2676 /* disko == 0 means it's a hole */
2677 if (!disko)
2678 datao = 0;
2679
2680 btrfs_set_file_extent_offset(leaf, extent,
2681 datao);
2682 btrfs_set_file_extent_num_bytes(leaf, extent,
2683 datal);
2684 if (disko) {
2685 inode_add_bytes(inode, datal);
2686 ret = btrfs_inc_extent_ref(trans, root,
2687 disko, diskl, 0,
2688 root->root_key.objectid,
2689 btrfs_ino(inode),
2690 new_key.offset - datao,
2691 0);
2692 if (ret) {
2693 btrfs_abort_transaction(trans,
2694 root,
2695 ret);
2696 btrfs_end_transaction(trans,
2697 root);
2698 goto out;
2699
2700 }
2701 }
2702 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2703 u64 skip = 0;
2704 u64 trim = 0;
2705 if (off > key.offset) {
2706 skip = off - key.offset;
2707 new_key.offset += skip;
2708 }
2709
2710 if (key.offset + datal > off + len)
2711 trim = key.offset + datal - (off + len);
2712
2713 if (comp && (skip || trim)) {
2714 ret = -EINVAL;
2715 btrfs_end_transaction(trans, root);
2716 goto out;
2717 }
2718 size -= skip + trim;
2719 datal -= skip + trim;
2720
2721 ret = btrfs_drop_extents(trans, root, inode,
2722 new_key.offset,
2723 new_key.offset + datal,
2724 1);
2725 if (ret) {
2726 btrfs_abort_transaction(trans, root,
2727 ret);
2728 btrfs_end_transaction(trans, root);
2729 goto out;
2730 }
2731
2732 ret = btrfs_insert_empty_item(trans, root, path,
2733 &new_key, size);
2734 if (ret) {
2735 btrfs_abort_transaction(trans, root,
2736 ret);
2737 btrfs_end_transaction(trans, root);
2738 goto out;
2739 }
2740
2741 if (skip) {
2742 u32 start =
2743 btrfs_file_extent_calc_inline_size(0);
2744 memmove(buf+start, buf+start+skip,
2745 datal);
2746 }
2747
2748 leaf = path->nodes[0];
2749 slot = path->slots[0];
2750 write_extent_buffer(leaf, buf,
2751 btrfs_item_ptr_offset(leaf, slot),
2752 size);
2753 inode_add_bytes(inode, datal);
2754 }
2755
2756 btrfs_mark_buffer_dirty(leaf);
2757 btrfs_release_path(path);
2758
2759 inode_inc_iversion(inode);
2760 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2761
2762 /*
2763 * we round up to the block size at eof when
2764 * determining which extents to clone above,
2765 * but shouldn't round up the file size
2766 */
2767 endoff = new_key.offset + datal;
2768 if (endoff > destoff+olen)
2769 endoff = destoff+olen;
2770 if (endoff > inode->i_size)
2771 btrfs_i_size_write(inode, endoff);
2772
2773 ret = btrfs_update_inode(trans, root, inode);
2774 if (ret) {
2775 btrfs_abort_transaction(trans, root, ret);
2776 btrfs_end_transaction(trans, root);
2777 goto out;
2778 }
2779 ret = btrfs_end_transaction(trans, root);
2780 }
2781 next:
2782 btrfs_release_path(path);
2783 key.offset++;
2784 }
2785 ret = 0;
2786 out:
2787 btrfs_release_path(path);
2788 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2789 out_unlock:
2790 mutex_unlock(&src->i_mutex);
2791 mutex_unlock(&inode->i_mutex);
2792 vfree(buf);
2793 btrfs_free_path(path);
2794 out_fput:
2795 fdput(src_file);
2796 out_drop_write:
2797 mnt_drop_write_file(file);
2798 return ret;
2799 }
2800
2801 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2802 {
2803 struct btrfs_ioctl_clone_range_args args;
2804
2805 if (copy_from_user(&args, argp, sizeof(args)))
2806 return -EFAULT;
2807 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2808 args.src_length, args.dest_offset);
2809 }
2810
2811 /*
2812 * there are many ways the trans_start and trans_end ioctls can lead
2813 * to deadlocks. They should only be used by applications that
2814 * basically own the machine, and have a very in depth understanding
2815 * of all the possible deadlocks and enospc problems.
2816 */
2817 static long btrfs_ioctl_trans_start(struct file *file)
2818 {
2819 struct inode *inode = file_inode(file);
2820 struct btrfs_root *root = BTRFS_I(inode)->root;
2821 struct btrfs_trans_handle *trans;
2822 int ret;
2823
2824 ret = -EPERM;
2825 if (!capable(CAP_SYS_ADMIN))
2826 goto out;
2827
2828 ret = -EINPROGRESS;
2829 if (file->private_data)
2830 goto out;
2831
2832 ret = -EROFS;
2833 if (btrfs_root_readonly(root))
2834 goto out;
2835
2836 ret = mnt_want_write_file(file);
2837 if (ret)
2838 goto out;
2839
2840 atomic_inc(&root->fs_info->open_ioctl_trans);
2841
2842 ret = -ENOMEM;
2843 trans = btrfs_start_ioctl_transaction(root);
2844 if (IS_ERR(trans))
2845 goto out_drop;
2846
2847 file->private_data = trans;
2848 return 0;
2849
2850 out_drop:
2851 atomic_dec(&root->fs_info->open_ioctl_trans);
2852 mnt_drop_write_file(file);
2853 out:
2854 return ret;
2855 }
2856
2857 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2858 {
2859 struct inode *inode = file_inode(file);
2860 struct btrfs_root *root = BTRFS_I(inode)->root;
2861 struct btrfs_root *new_root;
2862 struct btrfs_dir_item *di;
2863 struct btrfs_trans_handle *trans;
2864 struct btrfs_path *path;
2865 struct btrfs_key location;
2866 struct btrfs_disk_key disk_key;
2867 u64 objectid = 0;
2868 u64 dir_id;
2869 int ret;
2870
2871 if (!capable(CAP_SYS_ADMIN))
2872 return -EPERM;
2873
2874 ret = mnt_want_write_file(file);
2875 if (ret)
2876 return ret;
2877
2878 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2879 ret = -EFAULT;
2880 goto out;
2881 }
2882
2883 if (!objectid)
2884 objectid = root->root_key.objectid;
2885
2886 location.objectid = objectid;
2887 location.type = BTRFS_ROOT_ITEM_KEY;
2888 location.offset = (u64)-1;
2889
2890 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2891 if (IS_ERR(new_root)) {
2892 ret = PTR_ERR(new_root);
2893 goto out;
2894 }
2895
2896 if (btrfs_root_refs(&new_root->root_item) == 0) {
2897 ret = -ENOENT;
2898 goto out;
2899 }
2900
2901 path = btrfs_alloc_path();
2902 if (!path) {
2903 ret = -ENOMEM;
2904 goto out;
2905 }
2906 path->leave_spinning = 1;
2907
2908 trans = btrfs_start_transaction(root, 1);
2909 if (IS_ERR(trans)) {
2910 btrfs_free_path(path);
2911 ret = PTR_ERR(trans);
2912 goto out;
2913 }
2914
2915 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2916 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2917 dir_id, "default", 7, 1);
2918 if (IS_ERR_OR_NULL(di)) {
2919 btrfs_free_path(path);
2920 btrfs_end_transaction(trans, root);
2921 printk(KERN_ERR "Umm, you don't have the default dir item, "
2922 "this isn't going to work\n");
2923 ret = -ENOENT;
2924 goto out;
2925 }
2926
2927 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2928 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2929 btrfs_mark_buffer_dirty(path->nodes[0]);
2930 btrfs_free_path(path);
2931
2932 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
2933 btrfs_end_transaction(trans, root);
2934 out:
2935 mnt_drop_write_file(file);
2936 return ret;
2937 }
2938
2939 void btrfs_get_block_group_info(struct list_head *groups_list,
2940 struct btrfs_ioctl_space_info *space)
2941 {
2942 struct btrfs_block_group_cache *block_group;
2943
2944 space->total_bytes = 0;
2945 space->used_bytes = 0;
2946 space->flags = 0;
2947 list_for_each_entry(block_group, groups_list, list) {
2948 space->flags = block_group->flags;
2949 space->total_bytes += block_group->key.offset;
2950 space->used_bytes +=
2951 btrfs_block_group_used(&block_group->item);
2952 }
2953 }
2954
2955 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2956 {
2957 struct btrfs_ioctl_space_args space_args;
2958 struct btrfs_ioctl_space_info space;
2959 struct btrfs_ioctl_space_info *dest;
2960 struct btrfs_ioctl_space_info *dest_orig;
2961 struct btrfs_ioctl_space_info __user *user_dest;
2962 struct btrfs_space_info *info;
2963 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2964 BTRFS_BLOCK_GROUP_SYSTEM,
2965 BTRFS_BLOCK_GROUP_METADATA,
2966 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2967 int num_types = 4;
2968 int alloc_size;
2969 int ret = 0;
2970 u64 slot_count = 0;
2971 int i, c;
2972
2973 if (copy_from_user(&space_args,
2974 (struct btrfs_ioctl_space_args __user *)arg,
2975 sizeof(space_args)))
2976 return -EFAULT;
2977
2978 for (i = 0; i < num_types; i++) {
2979 struct btrfs_space_info *tmp;
2980
2981 info = NULL;
2982 rcu_read_lock();
2983 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2984 list) {
2985 if (tmp->flags == types[i]) {
2986 info = tmp;
2987 break;
2988 }
2989 }
2990 rcu_read_unlock();
2991
2992 if (!info)
2993 continue;
2994
2995 down_read(&info->groups_sem);
2996 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2997 if (!list_empty(&info->block_groups[c]))
2998 slot_count++;
2999 }
3000 up_read(&info->groups_sem);
3001 }
3002
3003 /* space_slots == 0 means they are asking for a count */
3004 if (space_args.space_slots == 0) {
3005 space_args.total_spaces = slot_count;
3006 goto out;
3007 }
3008
3009 slot_count = min_t(u64, space_args.space_slots, slot_count);
3010
3011 alloc_size = sizeof(*dest) * slot_count;
3012
3013 /* we generally have at most 6 or so space infos, one for each raid
3014 * level. So, a whole page should be more than enough for everyone
3015 */
3016 if (alloc_size > PAGE_CACHE_SIZE)
3017 return -ENOMEM;
3018
3019 space_args.total_spaces = 0;
3020 dest = kmalloc(alloc_size, GFP_NOFS);
3021 if (!dest)
3022 return -ENOMEM;
3023 dest_orig = dest;
3024
3025 /* now we have a buffer to copy into */
3026 for (i = 0; i < num_types; i++) {
3027 struct btrfs_space_info *tmp;
3028
3029 if (!slot_count)
3030 break;
3031
3032 info = NULL;
3033 rcu_read_lock();
3034 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3035 list) {
3036 if (tmp->flags == types[i]) {
3037 info = tmp;
3038 break;
3039 }
3040 }
3041 rcu_read_unlock();
3042
3043 if (!info)
3044 continue;
3045 down_read(&info->groups_sem);
3046 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3047 if (!list_empty(&info->block_groups[c])) {
3048 btrfs_get_block_group_info(
3049 &info->block_groups[c], &space);
3050 memcpy(dest, &space, sizeof(space));
3051 dest++;
3052 space_args.total_spaces++;
3053 slot_count--;
3054 }
3055 if (!slot_count)
3056 break;
3057 }
3058 up_read(&info->groups_sem);
3059 }
3060
3061 user_dest = (struct btrfs_ioctl_space_info __user *)
3062 (arg + sizeof(struct btrfs_ioctl_space_args));
3063
3064 if (copy_to_user(user_dest, dest_orig, alloc_size))
3065 ret = -EFAULT;
3066
3067 kfree(dest_orig);
3068 out:
3069 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3070 ret = -EFAULT;
3071
3072 return ret;
3073 }
3074
3075 /*
3076 * there are many ways the trans_start and trans_end ioctls can lead
3077 * to deadlocks. They should only be used by applications that
3078 * basically own the machine, and have a very in depth understanding
3079 * of all the possible deadlocks and enospc problems.
3080 */
3081 long btrfs_ioctl_trans_end(struct file *file)
3082 {
3083 struct inode *inode = file_inode(file);
3084 struct btrfs_root *root = BTRFS_I(inode)->root;
3085 struct btrfs_trans_handle *trans;
3086
3087 trans = file->private_data;
3088 if (!trans)
3089 return -EINVAL;
3090 file->private_data = NULL;
3091
3092 btrfs_end_transaction(trans, root);
3093
3094 atomic_dec(&root->fs_info->open_ioctl_trans);
3095
3096 mnt_drop_write_file(file);
3097 return 0;
3098 }
3099
3100 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3101 void __user *argp)
3102 {
3103 struct btrfs_trans_handle *trans;
3104 u64 transid;
3105 int ret;
3106
3107 trans = btrfs_attach_transaction(root);
3108 if (IS_ERR(trans)) {
3109 if (PTR_ERR(trans) != -ENOENT)
3110 return PTR_ERR(trans);
3111
3112 /* No running transaction, don't bother */
3113 transid = root->fs_info->last_trans_committed;
3114 goto out;
3115 }
3116 transid = trans->transid;
3117 ret = btrfs_commit_transaction_async(trans, root, 0);
3118 if (ret) {
3119 btrfs_end_transaction(trans, root);
3120 return ret;
3121 }
3122 out:
3123 if (argp)
3124 if (copy_to_user(argp, &transid, sizeof(transid)))
3125 return -EFAULT;
3126 return 0;
3127 }
3128
3129 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3130 void __user *argp)
3131 {
3132 u64 transid;
3133
3134 if (argp) {
3135 if (copy_from_user(&transid, argp, sizeof(transid)))
3136 return -EFAULT;
3137 } else {
3138 transid = 0; /* current trans */
3139 }
3140 return btrfs_wait_for_commit(root, transid);
3141 }
3142
3143 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3144 {
3145 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3146 struct btrfs_ioctl_scrub_args *sa;
3147 int ret;
3148
3149 if (!capable(CAP_SYS_ADMIN))
3150 return -EPERM;
3151
3152 sa = memdup_user(arg, sizeof(*sa));
3153 if (IS_ERR(sa))
3154 return PTR_ERR(sa);
3155
3156 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3157 ret = mnt_want_write_file(file);
3158 if (ret)
3159 goto out;
3160 }
3161
3162 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3163 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3164 0);
3165
3166 if (copy_to_user(arg, sa, sizeof(*sa)))
3167 ret = -EFAULT;
3168
3169 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3170 mnt_drop_write_file(file);
3171 out:
3172 kfree(sa);
3173 return ret;
3174 }
3175
3176 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3177 {
3178 if (!capable(CAP_SYS_ADMIN))
3179 return -EPERM;
3180
3181 return btrfs_scrub_cancel(root->fs_info);
3182 }
3183
3184 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3185 void __user *arg)
3186 {
3187 struct btrfs_ioctl_scrub_args *sa;
3188 int ret;
3189
3190 if (!capable(CAP_SYS_ADMIN))
3191 return -EPERM;
3192
3193 sa = memdup_user(arg, sizeof(*sa));
3194 if (IS_ERR(sa))
3195 return PTR_ERR(sa);
3196
3197 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3198
3199 if (copy_to_user(arg, sa, sizeof(*sa)))
3200 ret = -EFAULT;
3201
3202 kfree(sa);
3203 return ret;
3204 }
3205
3206 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3207 void __user *arg)
3208 {
3209 struct btrfs_ioctl_get_dev_stats *sa;
3210 int ret;
3211
3212 sa = memdup_user(arg, sizeof(*sa));
3213 if (IS_ERR(sa))
3214 return PTR_ERR(sa);
3215
3216 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3217 kfree(sa);
3218 return -EPERM;
3219 }
3220
3221 ret = btrfs_get_dev_stats(root, sa);
3222
3223 if (copy_to_user(arg, sa, sizeof(*sa)))
3224 ret = -EFAULT;
3225
3226 kfree(sa);
3227 return ret;
3228 }
3229
3230 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3231 {
3232 struct btrfs_ioctl_dev_replace_args *p;
3233 int ret;
3234
3235 if (!capable(CAP_SYS_ADMIN))
3236 return -EPERM;
3237
3238 p = memdup_user(arg, sizeof(*p));
3239 if (IS_ERR(p))
3240 return PTR_ERR(p);
3241
3242 switch (p->cmd) {
3243 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3244 if (atomic_xchg(
3245 &root->fs_info->mutually_exclusive_operation_running,
3246 1)) {
3247 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3248 ret = -EINPROGRESS;
3249 } else {
3250 ret = btrfs_dev_replace_start(root, p);
3251 atomic_set(
3252 &root->fs_info->mutually_exclusive_operation_running,
3253 0);
3254 }
3255 break;
3256 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3257 btrfs_dev_replace_status(root->fs_info, p);
3258 ret = 0;
3259 break;
3260 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3261 ret = btrfs_dev_replace_cancel(root->fs_info, p);
3262 break;
3263 default:
3264 ret = -EINVAL;
3265 break;
3266 }
3267
3268 if (copy_to_user(arg, p, sizeof(*p)))
3269 ret = -EFAULT;
3270
3271 kfree(p);
3272 return ret;
3273 }
3274
3275 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3276 {
3277 int ret = 0;
3278 int i;
3279 u64 rel_ptr;
3280 int size;
3281 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3282 struct inode_fs_paths *ipath = NULL;
3283 struct btrfs_path *path;
3284
3285 if (!capable(CAP_SYS_ADMIN))
3286 return -EPERM;
3287
3288 path = btrfs_alloc_path();
3289 if (!path) {
3290 ret = -ENOMEM;
3291 goto out;
3292 }
3293
3294 ipa = memdup_user(arg, sizeof(*ipa));
3295 if (IS_ERR(ipa)) {
3296 ret = PTR_ERR(ipa);
3297 ipa = NULL;
3298 goto out;
3299 }
3300
3301 size = min_t(u32, ipa->size, 4096);
3302 ipath = init_ipath(size, root, path);
3303 if (IS_ERR(ipath)) {
3304 ret = PTR_ERR(ipath);
3305 ipath = NULL;
3306 goto out;
3307 }
3308
3309 ret = paths_from_inode(ipa->inum, ipath);
3310 if (ret < 0)
3311 goto out;
3312
3313 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3314 rel_ptr = ipath->fspath->val[i] -
3315 (u64)(unsigned long)ipath->fspath->val;
3316 ipath->fspath->val[i] = rel_ptr;
3317 }
3318
3319 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3320 (void *)(unsigned long)ipath->fspath, size);
3321 if (ret) {
3322 ret = -EFAULT;
3323 goto out;
3324 }
3325
3326 out:
3327 btrfs_free_path(path);
3328 free_ipath(ipath);
3329 kfree(ipa);
3330
3331 return ret;
3332 }
3333
3334 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3335 {
3336 struct btrfs_data_container *inodes = ctx;
3337 const size_t c = 3 * sizeof(u64);
3338
3339 if (inodes->bytes_left >= c) {
3340 inodes->bytes_left -= c;
3341 inodes->val[inodes->elem_cnt] = inum;
3342 inodes->val[inodes->elem_cnt + 1] = offset;
3343 inodes->val[inodes->elem_cnt + 2] = root;
3344 inodes->elem_cnt += 3;
3345 } else {
3346 inodes->bytes_missing += c - inodes->bytes_left;
3347 inodes->bytes_left = 0;
3348 inodes->elem_missed += 3;
3349 }
3350
3351 return 0;
3352 }
3353
3354 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3355 void __user *arg)
3356 {
3357 int ret = 0;
3358 int size;
3359 struct btrfs_ioctl_logical_ino_args *loi;
3360 struct btrfs_data_container *inodes = NULL;
3361 struct btrfs_path *path = NULL;
3362
3363 if (!capable(CAP_SYS_ADMIN))
3364 return -EPERM;
3365
3366 loi = memdup_user(arg, sizeof(*loi));
3367 if (IS_ERR(loi)) {
3368 ret = PTR_ERR(loi);
3369 loi = NULL;
3370 goto out;
3371 }
3372
3373 path = btrfs_alloc_path();
3374 if (!path) {
3375 ret = -ENOMEM;
3376 goto out;
3377 }
3378
3379 size = min_t(u32, loi->size, 64 * 1024);
3380 inodes = init_data_container(size);
3381 if (IS_ERR(inodes)) {
3382 ret = PTR_ERR(inodes);
3383 inodes = NULL;
3384 goto out;
3385 }
3386
3387 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3388 build_ino_list, inodes);
3389 if (ret == -EINVAL)
3390 ret = -ENOENT;
3391 if (ret < 0)
3392 goto out;
3393
3394 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3395 (void *)(unsigned long)inodes, size);
3396 if (ret)
3397 ret = -EFAULT;
3398
3399 out:
3400 btrfs_free_path(path);
3401 vfree(inodes);
3402 kfree(loi);
3403
3404 return ret;
3405 }
3406
3407 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3408 struct btrfs_ioctl_balance_args *bargs)
3409 {
3410 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3411
3412 bargs->flags = bctl->flags;
3413
3414 if (atomic_read(&fs_info->balance_running))
3415 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3416 if (atomic_read(&fs_info->balance_pause_req))
3417 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3418 if (atomic_read(&fs_info->balance_cancel_req))
3419 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3420
3421 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3422 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3423 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3424
3425 if (lock) {
3426 spin_lock(&fs_info->balance_lock);
3427 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3428 spin_unlock(&fs_info->balance_lock);
3429 } else {
3430 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3431 }
3432 }
3433
3434 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3435 {
3436 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3437 struct btrfs_fs_info *fs_info = root->fs_info;
3438 struct btrfs_ioctl_balance_args *bargs;
3439 struct btrfs_balance_control *bctl;
3440 int ret;
3441 int need_to_clear_lock = 0;
3442
3443 if (!capable(CAP_SYS_ADMIN))
3444 return -EPERM;
3445
3446 ret = mnt_want_write_file(file);
3447 if (ret)
3448 return ret;
3449
3450 mutex_lock(&fs_info->volume_mutex);
3451 mutex_lock(&fs_info->balance_mutex);
3452
3453 if (arg) {
3454 bargs = memdup_user(arg, sizeof(*bargs));
3455 if (IS_ERR(bargs)) {
3456 ret = PTR_ERR(bargs);
3457 goto out;
3458 }
3459
3460 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3461 if (!fs_info->balance_ctl) {
3462 ret = -ENOTCONN;
3463 goto out_bargs;
3464 }
3465
3466 bctl = fs_info->balance_ctl;
3467 spin_lock(&fs_info->balance_lock);
3468 bctl->flags |= BTRFS_BALANCE_RESUME;
3469 spin_unlock(&fs_info->balance_lock);
3470
3471 goto do_balance;
3472 }
3473 } else {
3474 bargs = NULL;
3475 }
3476
3477 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
3478 1)) {
3479 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3480 ret = -EINPROGRESS;
3481 goto out_bargs;
3482 }
3483 need_to_clear_lock = 1;
3484
3485 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3486 if (!bctl) {
3487 ret = -ENOMEM;
3488 goto out_bargs;
3489 }
3490
3491 bctl->fs_info = fs_info;
3492 if (arg) {
3493 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3494 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3495 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3496
3497 bctl->flags = bargs->flags;
3498 } else {
3499 /* balance everything - no filters */
3500 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3501 }
3502
3503 do_balance:
3504 ret = btrfs_balance(bctl, bargs);
3505 /*
3506 * bctl is freed in __cancel_balance or in free_fs_info if
3507 * restriper was paused all the way until unmount
3508 */
3509 if (arg) {
3510 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3511 ret = -EFAULT;
3512 }
3513
3514 out_bargs:
3515 kfree(bargs);
3516 out:
3517 if (need_to_clear_lock)
3518 atomic_set(&root->fs_info->mutually_exclusive_operation_running,
3519 0);
3520 mutex_unlock(&fs_info->balance_mutex);
3521 mutex_unlock(&fs_info->volume_mutex);
3522 mnt_drop_write_file(file);
3523 return ret;
3524 }
3525
3526 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3527 {
3528 if (!capable(CAP_SYS_ADMIN))
3529 return -EPERM;
3530
3531 switch (cmd) {
3532 case BTRFS_BALANCE_CTL_PAUSE:
3533 return btrfs_pause_balance(root->fs_info);
3534 case BTRFS_BALANCE_CTL_CANCEL:
3535 return btrfs_cancel_balance(root->fs_info);
3536 }
3537
3538 return -EINVAL;
3539 }
3540
3541 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3542 void __user *arg)
3543 {
3544 struct btrfs_fs_info *fs_info = root->fs_info;
3545 struct btrfs_ioctl_balance_args *bargs;
3546 int ret = 0;
3547
3548 if (!capable(CAP_SYS_ADMIN))
3549 return -EPERM;
3550
3551 mutex_lock(&fs_info->balance_mutex);
3552 if (!fs_info->balance_ctl) {
3553 ret = -ENOTCONN;
3554 goto out;
3555 }
3556
3557 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3558 if (!bargs) {
3559 ret = -ENOMEM;
3560 goto out;
3561 }
3562
3563 update_ioctl_balance_args(fs_info, 1, bargs);
3564
3565 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3566 ret = -EFAULT;
3567
3568 kfree(bargs);
3569 out:
3570 mutex_unlock(&fs_info->balance_mutex);
3571 return ret;
3572 }
3573
3574 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3575 {
3576 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3577 struct btrfs_ioctl_quota_ctl_args *sa;
3578 struct btrfs_trans_handle *trans = NULL;
3579 int ret;
3580 int err;
3581
3582 if (!capable(CAP_SYS_ADMIN))
3583 return -EPERM;
3584
3585 ret = mnt_want_write_file(file);
3586 if (ret)
3587 return ret;
3588
3589 sa = memdup_user(arg, sizeof(*sa));
3590 if (IS_ERR(sa)) {
3591 ret = PTR_ERR(sa);
3592 goto drop_write;
3593 }
3594
3595 if (sa->cmd != BTRFS_QUOTA_CTL_RESCAN) {
3596 trans = btrfs_start_transaction(root, 2);
3597 if (IS_ERR(trans)) {
3598 ret = PTR_ERR(trans);
3599 goto out;
3600 }
3601 }
3602
3603 switch (sa->cmd) {
3604 case BTRFS_QUOTA_CTL_ENABLE:
3605 ret = btrfs_quota_enable(trans, root->fs_info);
3606 break;
3607 case BTRFS_QUOTA_CTL_DISABLE:
3608 ret = btrfs_quota_disable(trans, root->fs_info);
3609 break;
3610 case BTRFS_QUOTA_CTL_RESCAN:
3611 ret = btrfs_quota_rescan(root->fs_info);
3612 break;
3613 default:
3614 ret = -EINVAL;
3615 break;
3616 }
3617
3618 if (copy_to_user(arg, sa, sizeof(*sa)))
3619 ret = -EFAULT;
3620
3621 if (trans) {
3622 err = btrfs_commit_transaction(trans, root);
3623 if (err && !ret)
3624 ret = err;
3625 }
3626 out:
3627 kfree(sa);
3628 drop_write:
3629 mnt_drop_write_file(file);
3630 return ret;
3631 }
3632
3633 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3634 {
3635 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3636 struct btrfs_ioctl_qgroup_assign_args *sa;
3637 struct btrfs_trans_handle *trans;
3638 int ret;
3639 int err;
3640
3641 if (!capable(CAP_SYS_ADMIN))
3642 return -EPERM;
3643
3644 ret = mnt_want_write_file(file);
3645 if (ret)
3646 return ret;
3647
3648 sa = memdup_user(arg, sizeof(*sa));
3649 if (IS_ERR(sa)) {
3650 ret = PTR_ERR(sa);
3651 goto drop_write;
3652 }
3653
3654 trans = btrfs_join_transaction(root);
3655 if (IS_ERR(trans)) {
3656 ret = PTR_ERR(trans);
3657 goto out;
3658 }
3659
3660 /* FIXME: check if the IDs really exist */
3661 if (sa->assign) {
3662 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
3663 sa->src, sa->dst);
3664 } else {
3665 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
3666 sa->src, sa->dst);
3667 }
3668
3669 err = btrfs_end_transaction(trans, root);
3670 if (err && !ret)
3671 ret = err;
3672
3673 out:
3674 kfree(sa);
3675 drop_write:
3676 mnt_drop_write_file(file);
3677 return ret;
3678 }
3679
3680 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3681 {
3682 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3683 struct btrfs_ioctl_qgroup_create_args *sa;
3684 struct btrfs_trans_handle *trans;
3685 int ret;
3686 int err;
3687
3688 if (!capable(CAP_SYS_ADMIN))
3689 return -EPERM;
3690
3691 ret = mnt_want_write_file(file);
3692 if (ret)
3693 return ret;
3694
3695 sa = memdup_user(arg, sizeof(*sa));
3696 if (IS_ERR(sa)) {
3697 ret = PTR_ERR(sa);
3698 goto drop_write;
3699 }
3700
3701 trans = btrfs_join_transaction(root);
3702 if (IS_ERR(trans)) {
3703 ret = PTR_ERR(trans);
3704 goto out;
3705 }
3706
3707 /* FIXME: check if the IDs really exist */
3708 if (sa->create) {
3709 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
3710 NULL);
3711 } else {
3712 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
3713 }
3714
3715 err = btrfs_end_transaction(trans, root);
3716 if (err && !ret)
3717 ret = err;
3718
3719 out:
3720 kfree(sa);
3721 drop_write:
3722 mnt_drop_write_file(file);
3723 return ret;
3724 }
3725
3726 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3727 {
3728 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3729 struct btrfs_ioctl_qgroup_limit_args *sa;
3730 struct btrfs_trans_handle *trans;
3731 int ret;
3732 int err;
3733 u64 qgroupid;
3734
3735 if (!capable(CAP_SYS_ADMIN))
3736 return -EPERM;
3737
3738 ret = mnt_want_write_file(file);
3739 if (ret)
3740 return ret;
3741
3742 sa = memdup_user(arg, sizeof(*sa));
3743 if (IS_ERR(sa)) {
3744 ret = PTR_ERR(sa);
3745 goto drop_write;
3746 }
3747
3748 trans = btrfs_join_transaction(root);
3749 if (IS_ERR(trans)) {
3750 ret = PTR_ERR(trans);
3751 goto out;
3752 }
3753
3754 qgroupid = sa->qgroupid;
3755 if (!qgroupid) {
3756 /* take the current subvol as qgroup */
3757 qgroupid = root->root_key.objectid;
3758 }
3759
3760 /* FIXME: check if the IDs really exist */
3761 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
3762
3763 err = btrfs_end_transaction(trans, root);
3764 if (err && !ret)
3765 ret = err;
3766
3767 out:
3768 kfree(sa);
3769 drop_write:
3770 mnt_drop_write_file(file);
3771 return ret;
3772 }
3773
3774 static long btrfs_ioctl_set_received_subvol(struct file *file,
3775 void __user *arg)
3776 {
3777 struct btrfs_ioctl_received_subvol_args *sa = NULL;
3778 struct inode *inode = file_inode(file);
3779 struct btrfs_root *root = BTRFS_I(inode)->root;
3780 struct btrfs_root_item *root_item = &root->root_item;
3781 struct btrfs_trans_handle *trans;
3782 struct timespec ct = CURRENT_TIME;
3783 int ret = 0;
3784
3785 ret = mnt_want_write_file(file);
3786 if (ret < 0)
3787 return ret;
3788
3789 down_write(&root->fs_info->subvol_sem);
3790
3791 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
3792 ret = -EINVAL;
3793 goto out;
3794 }
3795
3796 if (btrfs_root_readonly(root)) {
3797 ret = -EROFS;
3798 goto out;
3799 }
3800
3801 if (!inode_owner_or_capable(inode)) {
3802 ret = -EACCES;
3803 goto out;
3804 }
3805
3806 sa = memdup_user(arg, sizeof(*sa));
3807 if (IS_ERR(sa)) {
3808 ret = PTR_ERR(sa);
3809 sa = NULL;
3810 goto out;
3811 }
3812
3813 trans = btrfs_start_transaction(root, 1);
3814 if (IS_ERR(trans)) {
3815 ret = PTR_ERR(trans);
3816 trans = NULL;
3817 goto out;
3818 }
3819
3820 sa->rtransid = trans->transid;
3821 sa->rtime.sec = ct.tv_sec;
3822 sa->rtime.nsec = ct.tv_nsec;
3823
3824 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3825 btrfs_set_root_stransid(root_item, sa->stransid);
3826 btrfs_set_root_rtransid(root_item, sa->rtransid);
3827 root_item->stime.sec = cpu_to_le64(sa->stime.sec);
3828 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec);
3829 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec);
3830 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec);
3831
3832 ret = btrfs_update_root(trans, root->fs_info->tree_root,
3833 &root->root_key, &root->root_item);
3834 if (ret < 0) {
3835 btrfs_end_transaction(trans, root);
3836 trans = NULL;
3837 goto out;
3838 } else {
3839 ret = btrfs_commit_transaction(trans, root);
3840 if (ret < 0)
3841 goto out;
3842 }
3843
3844 ret = copy_to_user(arg, sa, sizeof(*sa));
3845 if (ret)
3846 ret = -EFAULT;
3847
3848 out:
3849 kfree(sa);
3850 up_write(&root->fs_info->subvol_sem);
3851 mnt_drop_write_file(file);
3852 return ret;
3853 }
3854
3855 long btrfs_ioctl(struct file *file, unsigned int
3856 cmd, unsigned long arg)
3857 {
3858 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3859 void __user *argp = (void __user *)arg;
3860
3861 switch (cmd) {
3862 case FS_IOC_GETFLAGS:
3863 return btrfs_ioctl_getflags(file, argp);
3864 case FS_IOC_SETFLAGS:
3865 return btrfs_ioctl_setflags(file, argp);
3866 case FS_IOC_GETVERSION:
3867 return btrfs_ioctl_getversion(file, argp);
3868 case FITRIM:
3869 return btrfs_ioctl_fitrim(file, argp);
3870 case BTRFS_IOC_SNAP_CREATE:
3871 return btrfs_ioctl_snap_create(file, argp, 0);
3872 case BTRFS_IOC_SNAP_CREATE_V2:
3873 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3874 case BTRFS_IOC_SUBVOL_CREATE:
3875 return btrfs_ioctl_snap_create(file, argp, 1);
3876 case BTRFS_IOC_SUBVOL_CREATE_V2:
3877 return btrfs_ioctl_snap_create_v2(file, argp, 1);
3878 case BTRFS_IOC_SNAP_DESTROY:
3879 return btrfs_ioctl_snap_destroy(file, argp);
3880 case BTRFS_IOC_SUBVOL_GETFLAGS:
3881 return btrfs_ioctl_subvol_getflags(file, argp);
3882 case BTRFS_IOC_SUBVOL_SETFLAGS:
3883 return btrfs_ioctl_subvol_setflags(file, argp);
3884 case BTRFS_IOC_DEFAULT_SUBVOL:
3885 return btrfs_ioctl_default_subvol(file, argp);
3886 case BTRFS_IOC_DEFRAG:
3887 return btrfs_ioctl_defrag(file, NULL);
3888 case BTRFS_IOC_DEFRAG_RANGE:
3889 return btrfs_ioctl_defrag(file, argp);
3890 case BTRFS_IOC_RESIZE:
3891 return btrfs_ioctl_resize(file, argp);
3892 case BTRFS_IOC_ADD_DEV:
3893 return btrfs_ioctl_add_dev(root, argp);
3894 case BTRFS_IOC_RM_DEV:
3895 return btrfs_ioctl_rm_dev(file, argp);
3896 case BTRFS_IOC_FS_INFO:
3897 return btrfs_ioctl_fs_info(root, argp);
3898 case BTRFS_IOC_DEV_INFO:
3899 return btrfs_ioctl_dev_info(root, argp);
3900 case BTRFS_IOC_BALANCE:
3901 return btrfs_ioctl_balance(file, NULL);
3902 case BTRFS_IOC_CLONE:
3903 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3904 case BTRFS_IOC_CLONE_RANGE:
3905 return btrfs_ioctl_clone_range(file, argp);
3906 case BTRFS_IOC_TRANS_START:
3907 return btrfs_ioctl_trans_start(file);
3908 case BTRFS_IOC_TRANS_END:
3909 return btrfs_ioctl_trans_end(file);
3910 case BTRFS_IOC_TREE_SEARCH:
3911 return btrfs_ioctl_tree_search(file, argp);
3912 case BTRFS_IOC_INO_LOOKUP:
3913 return btrfs_ioctl_ino_lookup(file, argp);
3914 case BTRFS_IOC_INO_PATHS:
3915 return btrfs_ioctl_ino_to_path(root, argp);
3916 case BTRFS_IOC_LOGICAL_INO:
3917 return btrfs_ioctl_logical_to_ino(root, argp);
3918 case BTRFS_IOC_SPACE_INFO:
3919 return btrfs_ioctl_space_info(root, argp);
3920 case BTRFS_IOC_SYNC:
3921 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3922 return 0;
3923 case BTRFS_IOC_START_SYNC:
3924 return btrfs_ioctl_start_sync(root, argp);
3925 case BTRFS_IOC_WAIT_SYNC:
3926 return btrfs_ioctl_wait_sync(root, argp);
3927 case BTRFS_IOC_SCRUB:
3928 return btrfs_ioctl_scrub(file, argp);
3929 case BTRFS_IOC_SCRUB_CANCEL:
3930 return btrfs_ioctl_scrub_cancel(root, argp);
3931 case BTRFS_IOC_SCRUB_PROGRESS:
3932 return btrfs_ioctl_scrub_progress(root, argp);
3933 case BTRFS_IOC_BALANCE_V2:
3934 return btrfs_ioctl_balance(file, argp);
3935 case BTRFS_IOC_BALANCE_CTL:
3936 return btrfs_ioctl_balance_ctl(root, arg);
3937 case BTRFS_IOC_BALANCE_PROGRESS:
3938 return btrfs_ioctl_balance_progress(root, argp);
3939 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
3940 return btrfs_ioctl_set_received_subvol(file, argp);
3941 case BTRFS_IOC_SEND:
3942 return btrfs_ioctl_send(file, argp);
3943 case BTRFS_IOC_GET_DEV_STATS:
3944 return btrfs_ioctl_get_dev_stats(root, argp);
3945 case BTRFS_IOC_QUOTA_CTL:
3946 return btrfs_ioctl_quota_ctl(file, argp);
3947 case BTRFS_IOC_QGROUP_ASSIGN:
3948 return btrfs_ioctl_qgroup_assign(file, argp);
3949 case BTRFS_IOC_QGROUP_CREATE:
3950 return btrfs_ioctl_qgroup_create(file, argp);
3951 case BTRFS_IOC_QGROUP_LIMIT:
3952 return btrfs_ioctl_qgroup_limit(file, argp);
3953 case BTRFS_IOC_DEV_REPLACE:
3954 return btrfs_ioctl_dev_replace(root, argp);
3955 }
3956
3957 return -ENOTTY;
3958 }