]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/ioctl.c
btrfs: fall back to global reservation when removing subvolumes
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include "compat.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59
60 /* Mask out flags that are inappropriate for the given type of inode. */
61 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
62 {
63 if (S_ISDIR(mode))
64 return flags;
65 else if (S_ISREG(mode))
66 return flags & ~FS_DIRSYNC_FL;
67 else
68 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
69 }
70
71 /*
72 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
73 */
74 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
75 {
76 unsigned int iflags = 0;
77
78 if (flags & BTRFS_INODE_SYNC)
79 iflags |= FS_SYNC_FL;
80 if (flags & BTRFS_INODE_IMMUTABLE)
81 iflags |= FS_IMMUTABLE_FL;
82 if (flags & BTRFS_INODE_APPEND)
83 iflags |= FS_APPEND_FL;
84 if (flags & BTRFS_INODE_NODUMP)
85 iflags |= FS_NODUMP_FL;
86 if (flags & BTRFS_INODE_NOATIME)
87 iflags |= FS_NOATIME_FL;
88 if (flags & BTRFS_INODE_DIRSYNC)
89 iflags |= FS_DIRSYNC_FL;
90 if (flags & BTRFS_INODE_NODATACOW)
91 iflags |= FS_NOCOW_FL;
92
93 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
94 iflags |= FS_COMPR_FL;
95 else if (flags & BTRFS_INODE_NOCOMPRESS)
96 iflags |= FS_NOCOMP_FL;
97
98 return iflags;
99 }
100
101 /*
102 * Update inode->i_flags based on the btrfs internal flags.
103 */
104 void btrfs_update_iflags(struct inode *inode)
105 {
106 struct btrfs_inode *ip = BTRFS_I(inode);
107
108 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
109
110 if (ip->flags & BTRFS_INODE_SYNC)
111 inode->i_flags |= S_SYNC;
112 if (ip->flags & BTRFS_INODE_IMMUTABLE)
113 inode->i_flags |= S_IMMUTABLE;
114 if (ip->flags & BTRFS_INODE_APPEND)
115 inode->i_flags |= S_APPEND;
116 if (ip->flags & BTRFS_INODE_NOATIME)
117 inode->i_flags |= S_NOATIME;
118 if (ip->flags & BTRFS_INODE_DIRSYNC)
119 inode->i_flags |= S_DIRSYNC;
120 }
121
122 /*
123 * Inherit flags from the parent inode.
124 *
125 * Currently only the compression flags and the cow flags are inherited.
126 */
127 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
128 {
129 unsigned int flags;
130
131 if (!dir)
132 return;
133
134 flags = BTRFS_I(dir)->flags;
135
136 if (flags & BTRFS_INODE_NOCOMPRESS) {
137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
138 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
139 } else if (flags & BTRFS_INODE_COMPRESS) {
140 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
141 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
142 }
143
144 if (flags & BTRFS_INODE_NODATACOW) {
145 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
146 if (S_ISREG(inode->i_mode))
147 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
148 }
149
150 btrfs_update_iflags(inode);
151 }
152
153 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
154 {
155 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
156 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
157
158 if (copy_to_user(arg, &flags, sizeof(flags)))
159 return -EFAULT;
160 return 0;
161 }
162
163 static int check_flags(unsigned int flags)
164 {
165 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
166 FS_NOATIME_FL | FS_NODUMP_FL | \
167 FS_SYNC_FL | FS_DIRSYNC_FL | \
168 FS_NOCOMP_FL | FS_COMPR_FL |
169 FS_NOCOW_FL))
170 return -EOPNOTSUPP;
171
172 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
173 return -EINVAL;
174
175 return 0;
176 }
177
178 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
179 {
180 struct inode *inode = file_inode(file);
181 struct btrfs_inode *ip = BTRFS_I(inode);
182 struct btrfs_root *root = ip->root;
183 struct btrfs_trans_handle *trans;
184 unsigned int flags, oldflags;
185 int ret;
186 u64 ip_oldflags;
187 unsigned int i_oldflags;
188 umode_t mode;
189
190 if (btrfs_root_readonly(root))
191 return -EROFS;
192
193 if (copy_from_user(&flags, arg, sizeof(flags)))
194 return -EFAULT;
195
196 ret = check_flags(flags);
197 if (ret)
198 return ret;
199
200 if (!inode_owner_or_capable(inode))
201 return -EACCES;
202
203 ret = mnt_want_write_file(file);
204 if (ret)
205 return ret;
206
207 mutex_lock(&inode->i_mutex);
208
209 ip_oldflags = ip->flags;
210 i_oldflags = inode->i_flags;
211 mode = inode->i_mode;
212
213 flags = btrfs_mask_flags(inode->i_mode, flags);
214 oldflags = btrfs_flags_to_ioctl(ip->flags);
215 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
216 if (!capable(CAP_LINUX_IMMUTABLE)) {
217 ret = -EPERM;
218 goto out_unlock;
219 }
220 }
221
222 if (flags & FS_SYNC_FL)
223 ip->flags |= BTRFS_INODE_SYNC;
224 else
225 ip->flags &= ~BTRFS_INODE_SYNC;
226 if (flags & FS_IMMUTABLE_FL)
227 ip->flags |= BTRFS_INODE_IMMUTABLE;
228 else
229 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
230 if (flags & FS_APPEND_FL)
231 ip->flags |= BTRFS_INODE_APPEND;
232 else
233 ip->flags &= ~BTRFS_INODE_APPEND;
234 if (flags & FS_NODUMP_FL)
235 ip->flags |= BTRFS_INODE_NODUMP;
236 else
237 ip->flags &= ~BTRFS_INODE_NODUMP;
238 if (flags & FS_NOATIME_FL)
239 ip->flags |= BTRFS_INODE_NOATIME;
240 else
241 ip->flags &= ~BTRFS_INODE_NOATIME;
242 if (flags & FS_DIRSYNC_FL)
243 ip->flags |= BTRFS_INODE_DIRSYNC;
244 else
245 ip->flags &= ~BTRFS_INODE_DIRSYNC;
246 if (flags & FS_NOCOW_FL) {
247 if (S_ISREG(mode)) {
248 /*
249 * It's safe to turn csums off here, no extents exist.
250 * Otherwise we want the flag to reflect the real COW
251 * status of the file and will not set it.
252 */
253 if (inode->i_size == 0)
254 ip->flags |= BTRFS_INODE_NODATACOW
255 | BTRFS_INODE_NODATASUM;
256 } else {
257 ip->flags |= BTRFS_INODE_NODATACOW;
258 }
259 } else {
260 /*
261 * Revert back under same assuptions as above
262 */
263 if (S_ISREG(mode)) {
264 if (inode->i_size == 0)
265 ip->flags &= ~(BTRFS_INODE_NODATACOW
266 | BTRFS_INODE_NODATASUM);
267 } else {
268 ip->flags &= ~BTRFS_INODE_NODATACOW;
269 }
270 }
271
272 /*
273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
274 * flag may be changed automatically if compression code won't make
275 * things smaller.
276 */
277 if (flags & FS_NOCOMP_FL) {
278 ip->flags &= ~BTRFS_INODE_COMPRESS;
279 ip->flags |= BTRFS_INODE_NOCOMPRESS;
280 } else if (flags & FS_COMPR_FL) {
281 ip->flags |= BTRFS_INODE_COMPRESS;
282 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
283 } else {
284 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
285 }
286
287 trans = btrfs_start_transaction(root, 1);
288 if (IS_ERR(trans)) {
289 ret = PTR_ERR(trans);
290 goto out_drop;
291 }
292
293 btrfs_update_iflags(inode);
294 inode_inc_iversion(inode);
295 inode->i_ctime = CURRENT_TIME;
296 ret = btrfs_update_inode(trans, root, inode);
297
298 btrfs_end_transaction(trans, root);
299 out_drop:
300 if (ret) {
301 ip->flags = ip_oldflags;
302 inode->i_flags = i_oldflags;
303 }
304
305 out_unlock:
306 mutex_unlock(&inode->i_mutex);
307 mnt_drop_write_file(file);
308 return ret;
309 }
310
311 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
312 {
313 struct inode *inode = file_inode(file);
314
315 return put_user(inode->i_generation, arg);
316 }
317
318 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
319 {
320 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
321 struct btrfs_device *device;
322 struct request_queue *q;
323 struct fstrim_range range;
324 u64 minlen = ULLONG_MAX;
325 u64 num_devices = 0;
326 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
327 int ret;
328
329 if (!capable(CAP_SYS_ADMIN))
330 return -EPERM;
331
332 rcu_read_lock();
333 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
334 dev_list) {
335 if (!device->bdev)
336 continue;
337 q = bdev_get_queue(device->bdev);
338 if (blk_queue_discard(q)) {
339 num_devices++;
340 minlen = min((u64)q->limits.discard_granularity,
341 minlen);
342 }
343 }
344 rcu_read_unlock();
345
346 if (!num_devices)
347 return -EOPNOTSUPP;
348 if (copy_from_user(&range, arg, sizeof(range)))
349 return -EFAULT;
350 if (range.start > total_bytes ||
351 range.len < fs_info->sb->s_blocksize)
352 return -EINVAL;
353
354 range.len = min(range.len, total_bytes - range.start);
355 range.minlen = max(range.minlen, minlen);
356 ret = btrfs_trim_fs(fs_info->tree_root, &range);
357 if (ret < 0)
358 return ret;
359
360 if (copy_to_user(arg, &range, sizeof(range)))
361 return -EFAULT;
362
363 return 0;
364 }
365
366 static noinline int create_subvol(struct inode *dir,
367 struct dentry *dentry,
368 char *name, int namelen,
369 u64 *async_transid,
370 struct btrfs_qgroup_inherit *inherit)
371 {
372 struct btrfs_trans_handle *trans;
373 struct btrfs_key key;
374 struct btrfs_root_item root_item;
375 struct btrfs_inode_item *inode_item;
376 struct extent_buffer *leaf;
377 struct btrfs_root *root = BTRFS_I(dir)->root;
378 struct btrfs_root *new_root;
379 struct btrfs_block_rsv block_rsv;
380 struct timespec cur_time = CURRENT_TIME;
381 int ret;
382 int err;
383 u64 objectid;
384 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
385 u64 index = 0;
386 u64 qgroup_reserved;
387 uuid_le new_uuid;
388
389 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
390 if (ret)
391 return ret;
392
393 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
394 /*
395 * The same as the snapshot creation, please see the comment
396 * of create_snapshot().
397 */
398 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
399 7, &qgroup_reserved, false);
400 if (ret)
401 return ret;
402
403 trans = btrfs_start_transaction(root, 0);
404 if (IS_ERR(trans)) {
405 ret = PTR_ERR(trans);
406 goto out;
407 }
408 trans->block_rsv = &block_rsv;
409 trans->bytes_reserved = block_rsv.size;
410
411 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
412 if (ret)
413 goto fail;
414
415 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
416 0, objectid, NULL, 0, 0, 0);
417 if (IS_ERR(leaf)) {
418 ret = PTR_ERR(leaf);
419 goto fail;
420 }
421
422 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
423 btrfs_set_header_bytenr(leaf, leaf->start);
424 btrfs_set_header_generation(leaf, trans->transid);
425 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
426 btrfs_set_header_owner(leaf, objectid);
427
428 write_extent_buffer(leaf, root->fs_info->fsid,
429 (unsigned long)btrfs_header_fsid(leaf),
430 BTRFS_FSID_SIZE);
431 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
432 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
433 BTRFS_UUID_SIZE);
434 btrfs_mark_buffer_dirty(leaf);
435
436 memset(&root_item, 0, sizeof(root_item));
437
438 inode_item = &root_item.inode;
439 inode_item->generation = cpu_to_le64(1);
440 inode_item->size = cpu_to_le64(3);
441 inode_item->nlink = cpu_to_le32(1);
442 inode_item->nbytes = cpu_to_le64(root->leafsize);
443 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
444
445 root_item.flags = 0;
446 root_item.byte_limit = 0;
447 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
448
449 btrfs_set_root_bytenr(&root_item, leaf->start);
450 btrfs_set_root_generation(&root_item, trans->transid);
451 btrfs_set_root_level(&root_item, 0);
452 btrfs_set_root_refs(&root_item, 1);
453 btrfs_set_root_used(&root_item, leaf->len);
454 btrfs_set_root_last_snapshot(&root_item, 0);
455
456 btrfs_set_root_generation_v2(&root_item,
457 btrfs_root_generation(&root_item));
458 uuid_le_gen(&new_uuid);
459 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
460 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec);
461 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec);
462 root_item.ctime = root_item.otime;
463 btrfs_set_root_ctransid(&root_item, trans->transid);
464 btrfs_set_root_otransid(&root_item, trans->transid);
465
466 btrfs_tree_unlock(leaf);
467 free_extent_buffer(leaf);
468 leaf = NULL;
469
470 btrfs_set_root_dirid(&root_item, new_dirid);
471
472 key.objectid = objectid;
473 key.offset = 0;
474 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
475 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
476 &root_item);
477 if (ret)
478 goto fail;
479
480 key.offset = (u64)-1;
481 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
482 if (IS_ERR(new_root)) {
483 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
484 ret = PTR_ERR(new_root);
485 goto fail;
486 }
487
488 btrfs_record_root_in_trans(trans, new_root);
489
490 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
491 if (ret) {
492 /* We potentially lose an unused inode item here */
493 btrfs_abort_transaction(trans, root, ret);
494 goto fail;
495 }
496
497 /*
498 * insert the directory item
499 */
500 ret = btrfs_set_inode_index(dir, &index);
501 if (ret) {
502 btrfs_abort_transaction(trans, root, ret);
503 goto fail;
504 }
505
506 ret = btrfs_insert_dir_item(trans, root,
507 name, namelen, dir, &key,
508 BTRFS_FT_DIR, index);
509 if (ret) {
510 btrfs_abort_transaction(trans, root, ret);
511 goto fail;
512 }
513
514 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
515 ret = btrfs_update_inode(trans, root, dir);
516 BUG_ON(ret);
517
518 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
519 objectid, root->root_key.objectid,
520 btrfs_ino(dir), index, name, namelen);
521
522 BUG_ON(ret);
523
524 fail:
525 trans->block_rsv = NULL;
526 trans->bytes_reserved = 0;
527 if (async_transid) {
528 *async_transid = trans->transid;
529 err = btrfs_commit_transaction_async(trans, root, 1);
530 if (err)
531 err = btrfs_commit_transaction(trans, root);
532 } else {
533 err = btrfs_commit_transaction(trans, root);
534 }
535 if (err && !ret)
536 ret = err;
537
538 if (!ret)
539 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
540 out:
541 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
542 return ret;
543 }
544
545 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
546 struct dentry *dentry, char *name, int namelen,
547 u64 *async_transid, bool readonly,
548 struct btrfs_qgroup_inherit *inherit)
549 {
550 struct inode *inode;
551 struct btrfs_pending_snapshot *pending_snapshot;
552 struct btrfs_trans_handle *trans;
553 int ret;
554
555 if (!root->ref_cows)
556 return -EINVAL;
557
558 ret = btrfs_start_delalloc_inodes(root, 0);
559 if (ret)
560 return ret;
561
562 btrfs_wait_ordered_extents(root, 0);
563
564 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
565 if (!pending_snapshot)
566 return -ENOMEM;
567
568 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
569 BTRFS_BLOCK_RSV_TEMP);
570 /*
571 * 1 - parent dir inode
572 * 2 - dir entries
573 * 1 - root item
574 * 2 - root ref/backref
575 * 1 - root of snapshot
576 */
577 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
578 &pending_snapshot->block_rsv, 7,
579 &pending_snapshot->qgroup_reserved,
580 false);
581 if (ret)
582 goto out;
583
584 pending_snapshot->dentry = dentry;
585 pending_snapshot->root = root;
586 pending_snapshot->readonly = readonly;
587 pending_snapshot->dir = dir;
588 pending_snapshot->inherit = inherit;
589
590 trans = btrfs_start_transaction(root, 0);
591 if (IS_ERR(trans)) {
592 ret = PTR_ERR(trans);
593 goto fail;
594 }
595
596 spin_lock(&root->fs_info->trans_lock);
597 list_add(&pending_snapshot->list,
598 &trans->transaction->pending_snapshots);
599 spin_unlock(&root->fs_info->trans_lock);
600 if (async_transid) {
601 *async_transid = trans->transid;
602 ret = btrfs_commit_transaction_async(trans,
603 root->fs_info->extent_root, 1);
604 if (ret)
605 ret = btrfs_commit_transaction(trans, root);
606 } else {
607 ret = btrfs_commit_transaction(trans,
608 root->fs_info->extent_root);
609 }
610 if (ret)
611 goto fail;
612
613 ret = pending_snapshot->error;
614 if (ret)
615 goto fail;
616
617 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
618 if (ret)
619 goto fail;
620
621 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
622 if (IS_ERR(inode)) {
623 ret = PTR_ERR(inode);
624 goto fail;
625 }
626 BUG_ON(!inode);
627 d_instantiate(dentry, inode);
628 ret = 0;
629 fail:
630 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
631 &pending_snapshot->block_rsv,
632 pending_snapshot->qgroup_reserved);
633 out:
634 kfree(pending_snapshot);
635 return ret;
636 }
637
638 /* copy of check_sticky in fs/namei.c()
639 * It's inline, so penalty for filesystems that don't use sticky bit is
640 * minimal.
641 */
642 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
643 {
644 kuid_t fsuid = current_fsuid();
645
646 if (!(dir->i_mode & S_ISVTX))
647 return 0;
648 if (uid_eq(inode->i_uid, fsuid))
649 return 0;
650 if (uid_eq(dir->i_uid, fsuid))
651 return 0;
652 return !capable(CAP_FOWNER);
653 }
654
655 /* copy of may_delete in fs/namei.c()
656 * Check whether we can remove a link victim from directory dir, check
657 * whether the type of victim is right.
658 * 1. We can't do it if dir is read-only (done in permission())
659 * 2. We should have write and exec permissions on dir
660 * 3. We can't remove anything from append-only dir
661 * 4. We can't do anything with immutable dir (done in permission())
662 * 5. If the sticky bit on dir is set we should either
663 * a. be owner of dir, or
664 * b. be owner of victim, or
665 * c. have CAP_FOWNER capability
666 * 6. If the victim is append-only or immutable we can't do antyhing with
667 * links pointing to it.
668 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
669 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
670 * 9. We can't remove a root or mountpoint.
671 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
672 * nfs_async_unlink().
673 */
674
675 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
676 {
677 int error;
678
679 if (!victim->d_inode)
680 return -ENOENT;
681
682 BUG_ON(victim->d_parent->d_inode != dir);
683 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
684
685 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
686 if (error)
687 return error;
688 if (IS_APPEND(dir))
689 return -EPERM;
690 if (btrfs_check_sticky(dir, victim->d_inode)||
691 IS_APPEND(victim->d_inode)||
692 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
693 return -EPERM;
694 if (isdir) {
695 if (!S_ISDIR(victim->d_inode->i_mode))
696 return -ENOTDIR;
697 if (IS_ROOT(victim))
698 return -EBUSY;
699 } else if (S_ISDIR(victim->d_inode->i_mode))
700 return -EISDIR;
701 if (IS_DEADDIR(dir))
702 return -ENOENT;
703 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
704 return -EBUSY;
705 return 0;
706 }
707
708 /* copy of may_create in fs/namei.c() */
709 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
710 {
711 if (child->d_inode)
712 return -EEXIST;
713 if (IS_DEADDIR(dir))
714 return -ENOENT;
715 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
716 }
717
718 /*
719 * Create a new subvolume below @parent. This is largely modeled after
720 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
721 * inside this filesystem so it's quite a bit simpler.
722 */
723 static noinline int btrfs_mksubvol(struct path *parent,
724 char *name, int namelen,
725 struct btrfs_root *snap_src,
726 u64 *async_transid, bool readonly,
727 struct btrfs_qgroup_inherit *inherit)
728 {
729 struct inode *dir = parent->dentry->d_inode;
730 struct dentry *dentry;
731 int error;
732
733 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
734 if (error == -EINTR)
735 return error;
736
737 dentry = lookup_one_len(name, parent->dentry, namelen);
738 error = PTR_ERR(dentry);
739 if (IS_ERR(dentry))
740 goto out_unlock;
741
742 error = -EEXIST;
743 if (dentry->d_inode)
744 goto out_dput;
745
746 error = btrfs_may_create(dir, dentry);
747 if (error)
748 goto out_dput;
749
750 /*
751 * even if this name doesn't exist, we may get hash collisions.
752 * check for them now when we can safely fail
753 */
754 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
755 dir->i_ino, name,
756 namelen);
757 if (error)
758 goto out_dput;
759
760 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
761
762 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
763 goto out_up_read;
764
765 if (snap_src) {
766 error = create_snapshot(snap_src, dir, dentry, name, namelen,
767 async_transid, readonly, inherit);
768 } else {
769 error = create_subvol(dir, dentry, name, namelen,
770 async_transid, inherit);
771 }
772 if (!error)
773 fsnotify_mkdir(dir, dentry);
774 out_up_read:
775 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
776 out_dput:
777 dput(dentry);
778 out_unlock:
779 mutex_unlock(&dir->i_mutex);
780 return error;
781 }
782
783 /*
784 * When we're defragging a range, we don't want to kick it off again
785 * if it is really just waiting for delalloc to send it down.
786 * If we find a nice big extent or delalloc range for the bytes in the
787 * file you want to defrag, we return 0 to let you know to skip this
788 * part of the file
789 */
790 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
791 {
792 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
793 struct extent_map *em = NULL;
794 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
795 u64 end;
796
797 read_lock(&em_tree->lock);
798 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
799 read_unlock(&em_tree->lock);
800
801 if (em) {
802 end = extent_map_end(em);
803 free_extent_map(em);
804 if (end - offset > thresh)
805 return 0;
806 }
807 /* if we already have a nice delalloc here, just stop */
808 thresh /= 2;
809 end = count_range_bits(io_tree, &offset, offset + thresh,
810 thresh, EXTENT_DELALLOC, 1);
811 if (end >= thresh)
812 return 0;
813 return 1;
814 }
815
816 /*
817 * helper function to walk through a file and find extents
818 * newer than a specific transid, and smaller than thresh.
819 *
820 * This is used by the defragging code to find new and small
821 * extents
822 */
823 static int find_new_extents(struct btrfs_root *root,
824 struct inode *inode, u64 newer_than,
825 u64 *off, int thresh)
826 {
827 struct btrfs_path *path;
828 struct btrfs_key min_key;
829 struct btrfs_key max_key;
830 struct extent_buffer *leaf;
831 struct btrfs_file_extent_item *extent;
832 int type;
833 int ret;
834 u64 ino = btrfs_ino(inode);
835
836 path = btrfs_alloc_path();
837 if (!path)
838 return -ENOMEM;
839
840 min_key.objectid = ino;
841 min_key.type = BTRFS_EXTENT_DATA_KEY;
842 min_key.offset = *off;
843
844 max_key.objectid = ino;
845 max_key.type = (u8)-1;
846 max_key.offset = (u64)-1;
847
848 path->keep_locks = 1;
849
850 while(1) {
851 ret = btrfs_search_forward(root, &min_key, &max_key,
852 path, newer_than);
853 if (ret != 0)
854 goto none;
855 if (min_key.objectid != ino)
856 goto none;
857 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
858 goto none;
859
860 leaf = path->nodes[0];
861 extent = btrfs_item_ptr(leaf, path->slots[0],
862 struct btrfs_file_extent_item);
863
864 type = btrfs_file_extent_type(leaf, extent);
865 if (type == BTRFS_FILE_EXTENT_REG &&
866 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
867 check_defrag_in_cache(inode, min_key.offset, thresh)) {
868 *off = min_key.offset;
869 btrfs_free_path(path);
870 return 0;
871 }
872
873 if (min_key.offset == (u64)-1)
874 goto none;
875
876 min_key.offset++;
877 btrfs_release_path(path);
878 }
879 none:
880 btrfs_free_path(path);
881 return -ENOENT;
882 }
883
884 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
885 {
886 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
887 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
888 struct extent_map *em;
889 u64 len = PAGE_CACHE_SIZE;
890
891 /*
892 * hopefully we have this extent in the tree already, try without
893 * the full extent lock
894 */
895 read_lock(&em_tree->lock);
896 em = lookup_extent_mapping(em_tree, start, len);
897 read_unlock(&em_tree->lock);
898
899 if (!em) {
900 /* get the big lock and read metadata off disk */
901 lock_extent(io_tree, start, start + len - 1);
902 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
903 unlock_extent(io_tree, start, start + len - 1);
904
905 if (IS_ERR(em))
906 return NULL;
907 }
908
909 return em;
910 }
911
912 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
913 {
914 struct extent_map *next;
915 bool ret = true;
916
917 /* this is the last extent */
918 if (em->start + em->len >= i_size_read(inode))
919 return false;
920
921 next = defrag_lookup_extent(inode, em->start + em->len);
922 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
923 ret = false;
924
925 free_extent_map(next);
926 return ret;
927 }
928
929 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
930 u64 *last_len, u64 *skip, u64 *defrag_end,
931 int compress)
932 {
933 struct extent_map *em;
934 int ret = 1;
935 bool next_mergeable = true;
936
937 /*
938 * make sure that once we start defragging an extent, we keep on
939 * defragging it
940 */
941 if (start < *defrag_end)
942 return 1;
943
944 *skip = 0;
945
946 em = defrag_lookup_extent(inode, start);
947 if (!em)
948 return 0;
949
950 /* this will cover holes, and inline extents */
951 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
952 ret = 0;
953 goto out;
954 }
955
956 next_mergeable = defrag_check_next_extent(inode, em);
957
958 /*
959 * we hit a real extent, if it is big or the next extent is not a
960 * real extent, don't bother defragging it
961 */
962 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
963 (em->len >= thresh || !next_mergeable))
964 ret = 0;
965 out:
966 /*
967 * last_len ends up being a counter of how many bytes we've defragged.
968 * every time we choose not to defrag an extent, we reset *last_len
969 * so that the next tiny extent will force a defrag.
970 *
971 * The end result of this is that tiny extents before a single big
972 * extent will force at least part of that big extent to be defragged.
973 */
974 if (ret) {
975 *defrag_end = extent_map_end(em);
976 } else {
977 *last_len = 0;
978 *skip = extent_map_end(em);
979 *defrag_end = 0;
980 }
981
982 free_extent_map(em);
983 return ret;
984 }
985
986 /*
987 * it doesn't do much good to defrag one or two pages
988 * at a time. This pulls in a nice chunk of pages
989 * to COW and defrag.
990 *
991 * It also makes sure the delalloc code has enough
992 * dirty data to avoid making new small extents as part
993 * of the defrag
994 *
995 * It's a good idea to start RA on this range
996 * before calling this.
997 */
998 static int cluster_pages_for_defrag(struct inode *inode,
999 struct page **pages,
1000 unsigned long start_index,
1001 int num_pages)
1002 {
1003 unsigned long file_end;
1004 u64 isize = i_size_read(inode);
1005 u64 page_start;
1006 u64 page_end;
1007 u64 page_cnt;
1008 int ret;
1009 int i;
1010 int i_done;
1011 struct btrfs_ordered_extent *ordered;
1012 struct extent_state *cached_state = NULL;
1013 struct extent_io_tree *tree;
1014 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1015
1016 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1017 if (!isize || start_index > file_end)
1018 return 0;
1019
1020 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1021
1022 ret = btrfs_delalloc_reserve_space(inode,
1023 page_cnt << PAGE_CACHE_SHIFT);
1024 if (ret)
1025 return ret;
1026 i_done = 0;
1027 tree = &BTRFS_I(inode)->io_tree;
1028
1029 /* step one, lock all the pages */
1030 for (i = 0; i < page_cnt; i++) {
1031 struct page *page;
1032 again:
1033 page = find_or_create_page(inode->i_mapping,
1034 start_index + i, mask);
1035 if (!page)
1036 break;
1037
1038 page_start = page_offset(page);
1039 page_end = page_start + PAGE_CACHE_SIZE - 1;
1040 while (1) {
1041 lock_extent(tree, page_start, page_end);
1042 ordered = btrfs_lookup_ordered_extent(inode,
1043 page_start);
1044 unlock_extent(tree, page_start, page_end);
1045 if (!ordered)
1046 break;
1047
1048 unlock_page(page);
1049 btrfs_start_ordered_extent(inode, ordered, 1);
1050 btrfs_put_ordered_extent(ordered);
1051 lock_page(page);
1052 /*
1053 * we unlocked the page above, so we need check if
1054 * it was released or not.
1055 */
1056 if (page->mapping != inode->i_mapping) {
1057 unlock_page(page);
1058 page_cache_release(page);
1059 goto again;
1060 }
1061 }
1062
1063 if (!PageUptodate(page)) {
1064 btrfs_readpage(NULL, page);
1065 lock_page(page);
1066 if (!PageUptodate(page)) {
1067 unlock_page(page);
1068 page_cache_release(page);
1069 ret = -EIO;
1070 break;
1071 }
1072 }
1073
1074 if (page->mapping != inode->i_mapping) {
1075 unlock_page(page);
1076 page_cache_release(page);
1077 goto again;
1078 }
1079
1080 pages[i] = page;
1081 i_done++;
1082 }
1083 if (!i_done || ret)
1084 goto out;
1085
1086 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1087 goto out;
1088
1089 /*
1090 * so now we have a nice long stream of locked
1091 * and up to date pages, lets wait on them
1092 */
1093 for (i = 0; i < i_done; i++)
1094 wait_on_page_writeback(pages[i]);
1095
1096 page_start = page_offset(pages[0]);
1097 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1098
1099 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1100 page_start, page_end - 1, 0, &cached_state);
1101 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1102 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1103 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1104 &cached_state, GFP_NOFS);
1105
1106 if (i_done != page_cnt) {
1107 spin_lock(&BTRFS_I(inode)->lock);
1108 BTRFS_I(inode)->outstanding_extents++;
1109 spin_unlock(&BTRFS_I(inode)->lock);
1110 btrfs_delalloc_release_space(inode,
1111 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1112 }
1113
1114
1115 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1116 &cached_state, GFP_NOFS);
1117
1118 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1119 page_start, page_end - 1, &cached_state,
1120 GFP_NOFS);
1121
1122 for (i = 0; i < i_done; i++) {
1123 clear_page_dirty_for_io(pages[i]);
1124 ClearPageChecked(pages[i]);
1125 set_page_extent_mapped(pages[i]);
1126 set_page_dirty(pages[i]);
1127 unlock_page(pages[i]);
1128 page_cache_release(pages[i]);
1129 }
1130 return i_done;
1131 out:
1132 for (i = 0; i < i_done; i++) {
1133 unlock_page(pages[i]);
1134 page_cache_release(pages[i]);
1135 }
1136 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1137 return ret;
1138
1139 }
1140
1141 int btrfs_defrag_file(struct inode *inode, struct file *file,
1142 struct btrfs_ioctl_defrag_range_args *range,
1143 u64 newer_than, unsigned long max_to_defrag)
1144 {
1145 struct btrfs_root *root = BTRFS_I(inode)->root;
1146 struct file_ra_state *ra = NULL;
1147 unsigned long last_index;
1148 u64 isize = i_size_read(inode);
1149 u64 last_len = 0;
1150 u64 skip = 0;
1151 u64 defrag_end = 0;
1152 u64 newer_off = range->start;
1153 unsigned long i;
1154 unsigned long ra_index = 0;
1155 int ret;
1156 int defrag_count = 0;
1157 int compress_type = BTRFS_COMPRESS_ZLIB;
1158 int extent_thresh = range->extent_thresh;
1159 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1160 int cluster = max_cluster;
1161 u64 new_align = ~((u64)128 * 1024 - 1);
1162 struct page **pages = NULL;
1163
1164 if (isize == 0)
1165 return 0;
1166
1167 if (range->start >= isize)
1168 return -EINVAL;
1169
1170 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1171 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1172 return -EINVAL;
1173 if (range->compress_type)
1174 compress_type = range->compress_type;
1175 }
1176
1177 if (extent_thresh == 0)
1178 extent_thresh = 256 * 1024;
1179
1180 /*
1181 * if we were not given a file, allocate a readahead
1182 * context
1183 */
1184 if (!file) {
1185 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1186 if (!ra)
1187 return -ENOMEM;
1188 file_ra_state_init(ra, inode->i_mapping);
1189 } else {
1190 ra = &file->f_ra;
1191 }
1192
1193 pages = kmalloc(sizeof(struct page *) * max_cluster,
1194 GFP_NOFS);
1195 if (!pages) {
1196 ret = -ENOMEM;
1197 goto out_ra;
1198 }
1199
1200 /* find the last page to defrag */
1201 if (range->start + range->len > range->start) {
1202 last_index = min_t(u64, isize - 1,
1203 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1204 } else {
1205 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1206 }
1207
1208 if (newer_than) {
1209 ret = find_new_extents(root, inode, newer_than,
1210 &newer_off, 64 * 1024);
1211 if (!ret) {
1212 range->start = newer_off;
1213 /*
1214 * we always align our defrag to help keep
1215 * the extents in the file evenly spaced
1216 */
1217 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1218 } else
1219 goto out_ra;
1220 } else {
1221 i = range->start >> PAGE_CACHE_SHIFT;
1222 }
1223 if (!max_to_defrag)
1224 max_to_defrag = last_index + 1;
1225
1226 /*
1227 * make writeback starts from i, so the defrag range can be
1228 * written sequentially.
1229 */
1230 if (i < inode->i_mapping->writeback_index)
1231 inode->i_mapping->writeback_index = i;
1232
1233 while (i <= last_index && defrag_count < max_to_defrag &&
1234 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1235 PAGE_CACHE_SHIFT)) {
1236 /*
1237 * make sure we stop running if someone unmounts
1238 * the FS
1239 */
1240 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1241 break;
1242
1243 if (btrfs_defrag_cancelled(root->fs_info)) {
1244 printk(KERN_DEBUG "btrfs: defrag_file cancelled\n");
1245 ret = -EAGAIN;
1246 break;
1247 }
1248
1249 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1250 extent_thresh, &last_len, &skip,
1251 &defrag_end, range->flags &
1252 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1253 unsigned long next;
1254 /*
1255 * the should_defrag function tells us how much to skip
1256 * bump our counter by the suggested amount
1257 */
1258 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1259 i = max(i + 1, next);
1260 continue;
1261 }
1262
1263 if (!newer_than) {
1264 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1265 PAGE_CACHE_SHIFT) - i;
1266 cluster = min(cluster, max_cluster);
1267 } else {
1268 cluster = max_cluster;
1269 }
1270
1271 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1272 BTRFS_I(inode)->force_compress = compress_type;
1273
1274 if (i + cluster > ra_index) {
1275 ra_index = max(i, ra_index);
1276 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1277 cluster);
1278 ra_index += max_cluster;
1279 }
1280
1281 mutex_lock(&inode->i_mutex);
1282 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1283 if (ret < 0) {
1284 mutex_unlock(&inode->i_mutex);
1285 goto out_ra;
1286 }
1287
1288 defrag_count += ret;
1289 balance_dirty_pages_ratelimited(inode->i_mapping);
1290 mutex_unlock(&inode->i_mutex);
1291
1292 if (newer_than) {
1293 if (newer_off == (u64)-1)
1294 break;
1295
1296 if (ret > 0)
1297 i += ret;
1298
1299 newer_off = max(newer_off + 1,
1300 (u64)i << PAGE_CACHE_SHIFT);
1301
1302 ret = find_new_extents(root, inode,
1303 newer_than, &newer_off,
1304 64 * 1024);
1305 if (!ret) {
1306 range->start = newer_off;
1307 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1308 } else {
1309 break;
1310 }
1311 } else {
1312 if (ret > 0) {
1313 i += ret;
1314 last_len += ret << PAGE_CACHE_SHIFT;
1315 } else {
1316 i++;
1317 last_len = 0;
1318 }
1319 }
1320 }
1321
1322 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1323 filemap_flush(inode->i_mapping);
1324
1325 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1326 /* the filemap_flush will queue IO into the worker threads, but
1327 * we have to make sure the IO is actually started and that
1328 * ordered extents get created before we return
1329 */
1330 atomic_inc(&root->fs_info->async_submit_draining);
1331 while (atomic_read(&root->fs_info->nr_async_submits) ||
1332 atomic_read(&root->fs_info->async_delalloc_pages)) {
1333 wait_event(root->fs_info->async_submit_wait,
1334 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1335 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1336 }
1337 atomic_dec(&root->fs_info->async_submit_draining);
1338
1339 mutex_lock(&inode->i_mutex);
1340 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1341 mutex_unlock(&inode->i_mutex);
1342 }
1343
1344 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1345 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1346 }
1347
1348 ret = defrag_count;
1349
1350 out_ra:
1351 if (!file)
1352 kfree(ra);
1353 kfree(pages);
1354 return ret;
1355 }
1356
1357 static noinline int btrfs_ioctl_resize(struct file *file,
1358 void __user *arg)
1359 {
1360 u64 new_size;
1361 u64 old_size;
1362 u64 devid = 1;
1363 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1364 struct btrfs_ioctl_vol_args *vol_args;
1365 struct btrfs_trans_handle *trans;
1366 struct btrfs_device *device = NULL;
1367 char *sizestr;
1368 char *devstr = NULL;
1369 int ret = 0;
1370 int mod = 0;
1371
1372 if (!capable(CAP_SYS_ADMIN))
1373 return -EPERM;
1374
1375 ret = mnt_want_write_file(file);
1376 if (ret)
1377 return ret;
1378
1379 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1380 1)) {
1381 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
1382 mnt_drop_write_file(file);
1383 return -EINVAL;
1384 }
1385
1386 mutex_lock(&root->fs_info->volume_mutex);
1387 vol_args = memdup_user(arg, sizeof(*vol_args));
1388 if (IS_ERR(vol_args)) {
1389 ret = PTR_ERR(vol_args);
1390 goto out;
1391 }
1392
1393 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1394
1395 sizestr = vol_args->name;
1396 devstr = strchr(sizestr, ':');
1397 if (devstr) {
1398 char *end;
1399 sizestr = devstr + 1;
1400 *devstr = '\0';
1401 devstr = vol_args->name;
1402 devid = simple_strtoull(devstr, &end, 10);
1403 if (!devid) {
1404 ret = -EINVAL;
1405 goto out_free;
1406 }
1407 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1408 (unsigned long long)devid);
1409 }
1410
1411 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1412 if (!device) {
1413 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1414 (unsigned long long)devid);
1415 ret = -ENODEV;
1416 goto out_free;
1417 }
1418
1419 if (!device->writeable) {
1420 printk(KERN_INFO "btrfs: resizer unable to apply on "
1421 "readonly device %llu\n",
1422 (unsigned long long)devid);
1423 ret = -EPERM;
1424 goto out_free;
1425 }
1426
1427 if (!strcmp(sizestr, "max"))
1428 new_size = device->bdev->bd_inode->i_size;
1429 else {
1430 if (sizestr[0] == '-') {
1431 mod = -1;
1432 sizestr++;
1433 } else if (sizestr[0] == '+') {
1434 mod = 1;
1435 sizestr++;
1436 }
1437 new_size = memparse(sizestr, NULL);
1438 if (new_size == 0) {
1439 ret = -EINVAL;
1440 goto out_free;
1441 }
1442 }
1443
1444 if (device->is_tgtdev_for_dev_replace) {
1445 ret = -EPERM;
1446 goto out_free;
1447 }
1448
1449 old_size = device->total_bytes;
1450
1451 if (mod < 0) {
1452 if (new_size > old_size) {
1453 ret = -EINVAL;
1454 goto out_free;
1455 }
1456 new_size = old_size - new_size;
1457 } else if (mod > 0) {
1458 new_size = old_size + new_size;
1459 }
1460
1461 if (new_size < 256 * 1024 * 1024) {
1462 ret = -EINVAL;
1463 goto out_free;
1464 }
1465 if (new_size > device->bdev->bd_inode->i_size) {
1466 ret = -EFBIG;
1467 goto out_free;
1468 }
1469
1470 do_div(new_size, root->sectorsize);
1471 new_size *= root->sectorsize;
1472
1473 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1474 rcu_str_deref(device->name),
1475 (unsigned long long)new_size);
1476
1477 if (new_size > old_size) {
1478 trans = btrfs_start_transaction(root, 0);
1479 if (IS_ERR(trans)) {
1480 ret = PTR_ERR(trans);
1481 goto out_free;
1482 }
1483 ret = btrfs_grow_device(trans, device, new_size);
1484 btrfs_commit_transaction(trans, root);
1485 } else if (new_size < old_size) {
1486 ret = btrfs_shrink_device(device, new_size);
1487 } /* equal, nothing need to do */
1488
1489 out_free:
1490 kfree(vol_args);
1491 out:
1492 mutex_unlock(&root->fs_info->volume_mutex);
1493 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1494 mnt_drop_write_file(file);
1495 return ret;
1496 }
1497
1498 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1499 char *name, unsigned long fd, int subvol,
1500 u64 *transid, bool readonly,
1501 struct btrfs_qgroup_inherit *inherit)
1502 {
1503 int namelen;
1504 int ret = 0;
1505
1506 ret = mnt_want_write_file(file);
1507 if (ret)
1508 goto out;
1509
1510 namelen = strlen(name);
1511 if (strchr(name, '/')) {
1512 ret = -EINVAL;
1513 goto out_drop_write;
1514 }
1515
1516 if (name[0] == '.' &&
1517 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1518 ret = -EEXIST;
1519 goto out_drop_write;
1520 }
1521
1522 if (subvol) {
1523 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1524 NULL, transid, readonly, inherit);
1525 } else {
1526 struct fd src = fdget(fd);
1527 struct inode *src_inode;
1528 if (!src.file) {
1529 ret = -EINVAL;
1530 goto out_drop_write;
1531 }
1532
1533 src_inode = file_inode(src.file);
1534 if (src_inode->i_sb != file_inode(file)->i_sb) {
1535 printk(KERN_INFO "btrfs: Snapshot src from "
1536 "another FS\n");
1537 ret = -EINVAL;
1538 } else {
1539 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1540 BTRFS_I(src_inode)->root,
1541 transid, readonly, inherit);
1542 }
1543 fdput(src);
1544 }
1545 out_drop_write:
1546 mnt_drop_write_file(file);
1547 out:
1548 return ret;
1549 }
1550
1551 static noinline int btrfs_ioctl_snap_create(struct file *file,
1552 void __user *arg, int subvol)
1553 {
1554 struct btrfs_ioctl_vol_args *vol_args;
1555 int ret;
1556
1557 vol_args = memdup_user(arg, sizeof(*vol_args));
1558 if (IS_ERR(vol_args))
1559 return PTR_ERR(vol_args);
1560 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1561
1562 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1563 vol_args->fd, subvol,
1564 NULL, false, NULL);
1565
1566 kfree(vol_args);
1567 return ret;
1568 }
1569
1570 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1571 void __user *arg, int subvol)
1572 {
1573 struct btrfs_ioctl_vol_args_v2 *vol_args;
1574 int ret;
1575 u64 transid = 0;
1576 u64 *ptr = NULL;
1577 bool readonly = false;
1578 struct btrfs_qgroup_inherit *inherit = NULL;
1579
1580 vol_args = memdup_user(arg, sizeof(*vol_args));
1581 if (IS_ERR(vol_args))
1582 return PTR_ERR(vol_args);
1583 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1584
1585 if (vol_args->flags &
1586 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1587 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1588 ret = -EOPNOTSUPP;
1589 goto out;
1590 }
1591
1592 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1593 ptr = &transid;
1594 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1595 readonly = true;
1596 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1597 if (vol_args->size > PAGE_CACHE_SIZE) {
1598 ret = -EINVAL;
1599 goto out;
1600 }
1601 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1602 if (IS_ERR(inherit)) {
1603 ret = PTR_ERR(inherit);
1604 goto out;
1605 }
1606 }
1607
1608 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1609 vol_args->fd, subvol, ptr,
1610 readonly, inherit);
1611
1612 if (ret == 0 && ptr &&
1613 copy_to_user(arg +
1614 offsetof(struct btrfs_ioctl_vol_args_v2,
1615 transid), ptr, sizeof(*ptr)))
1616 ret = -EFAULT;
1617 out:
1618 kfree(vol_args);
1619 kfree(inherit);
1620 return ret;
1621 }
1622
1623 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1624 void __user *arg)
1625 {
1626 struct inode *inode = file_inode(file);
1627 struct btrfs_root *root = BTRFS_I(inode)->root;
1628 int ret = 0;
1629 u64 flags = 0;
1630
1631 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1632 return -EINVAL;
1633
1634 down_read(&root->fs_info->subvol_sem);
1635 if (btrfs_root_readonly(root))
1636 flags |= BTRFS_SUBVOL_RDONLY;
1637 up_read(&root->fs_info->subvol_sem);
1638
1639 if (copy_to_user(arg, &flags, sizeof(flags)))
1640 ret = -EFAULT;
1641
1642 return ret;
1643 }
1644
1645 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1646 void __user *arg)
1647 {
1648 struct inode *inode = file_inode(file);
1649 struct btrfs_root *root = BTRFS_I(inode)->root;
1650 struct btrfs_trans_handle *trans;
1651 u64 root_flags;
1652 u64 flags;
1653 int ret = 0;
1654
1655 ret = mnt_want_write_file(file);
1656 if (ret)
1657 goto out;
1658
1659 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1660 ret = -EINVAL;
1661 goto out_drop_write;
1662 }
1663
1664 if (copy_from_user(&flags, arg, sizeof(flags))) {
1665 ret = -EFAULT;
1666 goto out_drop_write;
1667 }
1668
1669 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1670 ret = -EINVAL;
1671 goto out_drop_write;
1672 }
1673
1674 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1675 ret = -EOPNOTSUPP;
1676 goto out_drop_write;
1677 }
1678
1679 if (!inode_owner_or_capable(inode)) {
1680 ret = -EACCES;
1681 goto out_drop_write;
1682 }
1683
1684 down_write(&root->fs_info->subvol_sem);
1685
1686 /* nothing to do */
1687 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1688 goto out_drop_sem;
1689
1690 root_flags = btrfs_root_flags(&root->root_item);
1691 if (flags & BTRFS_SUBVOL_RDONLY)
1692 btrfs_set_root_flags(&root->root_item,
1693 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1694 else
1695 btrfs_set_root_flags(&root->root_item,
1696 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1697
1698 trans = btrfs_start_transaction(root, 1);
1699 if (IS_ERR(trans)) {
1700 ret = PTR_ERR(trans);
1701 goto out_reset;
1702 }
1703
1704 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1705 &root->root_key, &root->root_item);
1706
1707 btrfs_commit_transaction(trans, root);
1708 out_reset:
1709 if (ret)
1710 btrfs_set_root_flags(&root->root_item, root_flags);
1711 out_drop_sem:
1712 up_write(&root->fs_info->subvol_sem);
1713 out_drop_write:
1714 mnt_drop_write_file(file);
1715 out:
1716 return ret;
1717 }
1718
1719 /*
1720 * helper to check if the subvolume references other subvolumes
1721 */
1722 static noinline int may_destroy_subvol(struct btrfs_root *root)
1723 {
1724 struct btrfs_path *path;
1725 struct btrfs_key key;
1726 int ret;
1727
1728 path = btrfs_alloc_path();
1729 if (!path)
1730 return -ENOMEM;
1731
1732 key.objectid = root->root_key.objectid;
1733 key.type = BTRFS_ROOT_REF_KEY;
1734 key.offset = (u64)-1;
1735
1736 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1737 &key, path, 0, 0);
1738 if (ret < 0)
1739 goto out;
1740 BUG_ON(ret == 0);
1741
1742 ret = 0;
1743 if (path->slots[0] > 0) {
1744 path->slots[0]--;
1745 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1746 if (key.objectid == root->root_key.objectid &&
1747 key.type == BTRFS_ROOT_REF_KEY)
1748 ret = -ENOTEMPTY;
1749 }
1750 out:
1751 btrfs_free_path(path);
1752 return ret;
1753 }
1754
1755 static noinline int key_in_sk(struct btrfs_key *key,
1756 struct btrfs_ioctl_search_key *sk)
1757 {
1758 struct btrfs_key test;
1759 int ret;
1760
1761 test.objectid = sk->min_objectid;
1762 test.type = sk->min_type;
1763 test.offset = sk->min_offset;
1764
1765 ret = btrfs_comp_cpu_keys(key, &test);
1766 if (ret < 0)
1767 return 0;
1768
1769 test.objectid = sk->max_objectid;
1770 test.type = sk->max_type;
1771 test.offset = sk->max_offset;
1772
1773 ret = btrfs_comp_cpu_keys(key, &test);
1774 if (ret > 0)
1775 return 0;
1776 return 1;
1777 }
1778
1779 static noinline int copy_to_sk(struct btrfs_root *root,
1780 struct btrfs_path *path,
1781 struct btrfs_key *key,
1782 struct btrfs_ioctl_search_key *sk,
1783 char *buf,
1784 unsigned long *sk_offset,
1785 int *num_found)
1786 {
1787 u64 found_transid;
1788 struct extent_buffer *leaf;
1789 struct btrfs_ioctl_search_header sh;
1790 unsigned long item_off;
1791 unsigned long item_len;
1792 int nritems;
1793 int i;
1794 int slot;
1795 int ret = 0;
1796
1797 leaf = path->nodes[0];
1798 slot = path->slots[0];
1799 nritems = btrfs_header_nritems(leaf);
1800
1801 if (btrfs_header_generation(leaf) > sk->max_transid) {
1802 i = nritems;
1803 goto advance_key;
1804 }
1805 found_transid = btrfs_header_generation(leaf);
1806
1807 for (i = slot; i < nritems; i++) {
1808 item_off = btrfs_item_ptr_offset(leaf, i);
1809 item_len = btrfs_item_size_nr(leaf, i);
1810
1811 btrfs_item_key_to_cpu(leaf, key, i);
1812 if (!key_in_sk(key, sk))
1813 continue;
1814
1815 if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1816 item_len = 0;
1817
1818 if (sizeof(sh) + item_len + *sk_offset >
1819 BTRFS_SEARCH_ARGS_BUFSIZE) {
1820 ret = 1;
1821 goto overflow;
1822 }
1823
1824 sh.objectid = key->objectid;
1825 sh.offset = key->offset;
1826 sh.type = key->type;
1827 sh.len = item_len;
1828 sh.transid = found_transid;
1829
1830 /* copy search result header */
1831 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1832 *sk_offset += sizeof(sh);
1833
1834 if (item_len) {
1835 char *p = buf + *sk_offset;
1836 /* copy the item */
1837 read_extent_buffer(leaf, p,
1838 item_off, item_len);
1839 *sk_offset += item_len;
1840 }
1841 (*num_found)++;
1842
1843 if (*num_found >= sk->nr_items)
1844 break;
1845 }
1846 advance_key:
1847 ret = 0;
1848 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1849 key->offset++;
1850 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1851 key->offset = 0;
1852 key->type++;
1853 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1854 key->offset = 0;
1855 key->type = 0;
1856 key->objectid++;
1857 } else
1858 ret = 1;
1859 overflow:
1860 return ret;
1861 }
1862
1863 static noinline int search_ioctl(struct inode *inode,
1864 struct btrfs_ioctl_search_args *args)
1865 {
1866 struct btrfs_root *root;
1867 struct btrfs_key key;
1868 struct btrfs_key max_key;
1869 struct btrfs_path *path;
1870 struct btrfs_ioctl_search_key *sk = &args->key;
1871 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1872 int ret;
1873 int num_found = 0;
1874 unsigned long sk_offset = 0;
1875
1876 path = btrfs_alloc_path();
1877 if (!path)
1878 return -ENOMEM;
1879
1880 if (sk->tree_id == 0) {
1881 /* search the root of the inode that was passed */
1882 root = BTRFS_I(inode)->root;
1883 } else {
1884 key.objectid = sk->tree_id;
1885 key.type = BTRFS_ROOT_ITEM_KEY;
1886 key.offset = (u64)-1;
1887 root = btrfs_read_fs_root_no_name(info, &key);
1888 if (IS_ERR(root)) {
1889 printk(KERN_ERR "could not find root %llu\n",
1890 sk->tree_id);
1891 btrfs_free_path(path);
1892 return -ENOENT;
1893 }
1894 }
1895
1896 key.objectid = sk->min_objectid;
1897 key.type = sk->min_type;
1898 key.offset = sk->min_offset;
1899
1900 max_key.objectid = sk->max_objectid;
1901 max_key.type = sk->max_type;
1902 max_key.offset = sk->max_offset;
1903
1904 path->keep_locks = 1;
1905
1906 while(1) {
1907 ret = btrfs_search_forward(root, &key, &max_key, path,
1908 sk->min_transid);
1909 if (ret != 0) {
1910 if (ret > 0)
1911 ret = 0;
1912 goto err;
1913 }
1914 ret = copy_to_sk(root, path, &key, sk, args->buf,
1915 &sk_offset, &num_found);
1916 btrfs_release_path(path);
1917 if (ret || num_found >= sk->nr_items)
1918 break;
1919
1920 }
1921 ret = 0;
1922 err:
1923 sk->nr_items = num_found;
1924 btrfs_free_path(path);
1925 return ret;
1926 }
1927
1928 static noinline int btrfs_ioctl_tree_search(struct file *file,
1929 void __user *argp)
1930 {
1931 struct btrfs_ioctl_search_args *args;
1932 struct inode *inode;
1933 int ret;
1934
1935 if (!capable(CAP_SYS_ADMIN))
1936 return -EPERM;
1937
1938 args = memdup_user(argp, sizeof(*args));
1939 if (IS_ERR(args))
1940 return PTR_ERR(args);
1941
1942 inode = file_inode(file);
1943 ret = search_ioctl(inode, args);
1944 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1945 ret = -EFAULT;
1946 kfree(args);
1947 return ret;
1948 }
1949
1950 /*
1951 * Search INODE_REFs to identify path name of 'dirid' directory
1952 * in a 'tree_id' tree. and sets path name to 'name'.
1953 */
1954 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1955 u64 tree_id, u64 dirid, char *name)
1956 {
1957 struct btrfs_root *root;
1958 struct btrfs_key key;
1959 char *ptr;
1960 int ret = -1;
1961 int slot;
1962 int len;
1963 int total_len = 0;
1964 struct btrfs_inode_ref *iref;
1965 struct extent_buffer *l;
1966 struct btrfs_path *path;
1967
1968 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1969 name[0]='\0';
1970 return 0;
1971 }
1972
1973 path = btrfs_alloc_path();
1974 if (!path)
1975 return -ENOMEM;
1976
1977 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1978
1979 key.objectid = tree_id;
1980 key.type = BTRFS_ROOT_ITEM_KEY;
1981 key.offset = (u64)-1;
1982 root = btrfs_read_fs_root_no_name(info, &key);
1983 if (IS_ERR(root)) {
1984 printk(KERN_ERR "could not find root %llu\n", tree_id);
1985 ret = -ENOENT;
1986 goto out;
1987 }
1988
1989 key.objectid = dirid;
1990 key.type = BTRFS_INODE_REF_KEY;
1991 key.offset = (u64)-1;
1992
1993 while(1) {
1994 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1995 if (ret < 0)
1996 goto out;
1997
1998 l = path->nodes[0];
1999 slot = path->slots[0];
2000 if (ret > 0 && slot > 0)
2001 slot--;
2002 btrfs_item_key_to_cpu(l, &key, slot);
2003
2004 if (ret > 0 && (key.objectid != dirid ||
2005 key.type != BTRFS_INODE_REF_KEY)) {
2006 ret = -ENOENT;
2007 goto out;
2008 }
2009
2010 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2011 len = btrfs_inode_ref_name_len(l, iref);
2012 ptr -= len + 1;
2013 total_len += len + 1;
2014 if (ptr < name)
2015 goto out;
2016
2017 *(ptr + len) = '/';
2018 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
2019
2020 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2021 break;
2022
2023 btrfs_release_path(path);
2024 key.objectid = key.offset;
2025 key.offset = (u64)-1;
2026 dirid = key.objectid;
2027 }
2028 if (ptr < name)
2029 goto out;
2030 memmove(name, ptr, total_len);
2031 name[total_len]='\0';
2032 ret = 0;
2033 out:
2034 btrfs_free_path(path);
2035 return ret;
2036 }
2037
2038 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2039 void __user *argp)
2040 {
2041 struct btrfs_ioctl_ino_lookup_args *args;
2042 struct inode *inode;
2043 int ret;
2044
2045 if (!capable(CAP_SYS_ADMIN))
2046 return -EPERM;
2047
2048 args = memdup_user(argp, sizeof(*args));
2049 if (IS_ERR(args))
2050 return PTR_ERR(args);
2051
2052 inode = file_inode(file);
2053
2054 if (args->treeid == 0)
2055 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2056
2057 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2058 args->treeid, args->objectid,
2059 args->name);
2060
2061 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2062 ret = -EFAULT;
2063
2064 kfree(args);
2065 return ret;
2066 }
2067
2068 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2069 void __user *arg)
2070 {
2071 struct dentry *parent = fdentry(file);
2072 struct dentry *dentry;
2073 struct inode *dir = parent->d_inode;
2074 struct inode *inode;
2075 struct btrfs_root *root = BTRFS_I(dir)->root;
2076 struct btrfs_root *dest = NULL;
2077 struct btrfs_ioctl_vol_args *vol_args;
2078 struct btrfs_trans_handle *trans;
2079 struct btrfs_block_rsv block_rsv;
2080 u64 qgroup_reserved;
2081 int namelen;
2082 int ret;
2083 int err = 0;
2084
2085 vol_args = memdup_user(arg, sizeof(*vol_args));
2086 if (IS_ERR(vol_args))
2087 return PTR_ERR(vol_args);
2088
2089 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2090 namelen = strlen(vol_args->name);
2091 if (strchr(vol_args->name, '/') ||
2092 strncmp(vol_args->name, "..", namelen) == 0) {
2093 err = -EINVAL;
2094 goto out;
2095 }
2096
2097 err = mnt_want_write_file(file);
2098 if (err)
2099 goto out;
2100
2101 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2102 if (err == -EINTR)
2103 goto out;
2104 dentry = lookup_one_len(vol_args->name, parent, namelen);
2105 if (IS_ERR(dentry)) {
2106 err = PTR_ERR(dentry);
2107 goto out_unlock_dir;
2108 }
2109
2110 if (!dentry->d_inode) {
2111 err = -ENOENT;
2112 goto out_dput;
2113 }
2114
2115 inode = dentry->d_inode;
2116 dest = BTRFS_I(inode)->root;
2117 if (!capable(CAP_SYS_ADMIN)){
2118 /*
2119 * Regular user. Only allow this with a special mount
2120 * option, when the user has write+exec access to the
2121 * subvol root, and when rmdir(2) would have been
2122 * allowed.
2123 *
2124 * Note that this is _not_ check that the subvol is
2125 * empty or doesn't contain data that we wouldn't
2126 * otherwise be able to delete.
2127 *
2128 * Users who want to delete empty subvols should try
2129 * rmdir(2).
2130 */
2131 err = -EPERM;
2132 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2133 goto out_dput;
2134
2135 /*
2136 * Do not allow deletion if the parent dir is the same
2137 * as the dir to be deleted. That means the ioctl
2138 * must be called on the dentry referencing the root
2139 * of the subvol, not a random directory contained
2140 * within it.
2141 */
2142 err = -EINVAL;
2143 if (root == dest)
2144 goto out_dput;
2145
2146 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2147 if (err)
2148 goto out_dput;
2149 }
2150
2151 /* check if subvolume may be deleted by a user */
2152 err = btrfs_may_delete(dir, dentry, 1);
2153 if (err)
2154 goto out_dput;
2155
2156 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2157 err = -EINVAL;
2158 goto out_dput;
2159 }
2160
2161 mutex_lock(&inode->i_mutex);
2162 err = d_invalidate(dentry);
2163 if (err)
2164 goto out_unlock;
2165
2166 down_write(&root->fs_info->subvol_sem);
2167
2168 err = may_destroy_subvol(dest);
2169 if (err)
2170 goto out_up_write;
2171
2172 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2173 /*
2174 * One for dir inode, two for dir entries, two for root
2175 * ref/backref.
2176 */
2177 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2178 5, &qgroup_reserved, true);
2179 if (err)
2180 goto out_up_write;
2181
2182 trans = btrfs_start_transaction(root, 0);
2183 if (IS_ERR(trans)) {
2184 err = PTR_ERR(trans);
2185 goto out_release;
2186 }
2187 trans->block_rsv = &block_rsv;
2188 trans->bytes_reserved = block_rsv.size;
2189
2190 ret = btrfs_unlink_subvol(trans, root, dir,
2191 dest->root_key.objectid,
2192 dentry->d_name.name,
2193 dentry->d_name.len);
2194 if (ret) {
2195 err = ret;
2196 btrfs_abort_transaction(trans, root, ret);
2197 goto out_end_trans;
2198 }
2199
2200 btrfs_record_root_in_trans(trans, dest);
2201
2202 memset(&dest->root_item.drop_progress, 0,
2203 sizeof(dest->root_item.drop_progress));
2204 dest->root_item.drop_level = 0;
2205 btrfs_set_root_refs(&dest->root_item, 0);
2206
2207 if (!xchg(&dest->orphan_item_inserted, 1)) {
2208 ret = btrfs_insert_orphan_item(trans,
2209 root->fs_info->tree_root,
2210 dest->root_key.objectid);
2211 if (ret) {
2212 btrfs_abort_transaction(trans, root, ret);
2213 err = ret;
2214 goto out_end_trans;
2215 }
2216 }
2217 out_end_trans:
2218 trans->block_rsv = NULL;
2219 trans->bytes_reserved = 0;
2220 ret = btrfs_end_transaction(trans, root);
2221 if (ret && !err)
2222 err = ret;
2223 inode->i_flags |= S_DEAD;
2224 out_release:
2225 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2226 out_up_write:
2227 up_write(&root->fs_info->subvol_sem);
2228 out_unlock:
2229 mutex_unlock(&inode->i_mutex);
2230 if (!err) {
2231 shrink_dcache_sb(root->fs_info->sb);
2232 btrfs_invalidate_inodes(dest);
2233 d_delete(dentry);
2234
2235 /* the last ref */
2236 if (dest->cache_inode) {
2237 iput(dest->cache_inode);
2238 dest->cache_inode = NULL;
2239 }
2240 }
2241 out_dput:
2242 dput(dentry);
2243 out_unlock_dir:
2244 mutex_unlock(&dir->i_mutex);
2245 mnt_drop_write_file(file);
2246 out:
2247 kfree(vol_args);
2248 return err;
2249 }
2250
2251 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2252 {
2253 struct inode *inode = file_inode(file);
2254 struct btrfs_root *root = BTRFS_I(inode)->root;
2255 struct btrfs_ioctl_defrag_range_args *range;
2256 int ret;
2257
2258 ret = mnt_want_write_file(file);
2259 if (ret)
2260 return ret;
2261
2262 if (btrfs_root_readonly(root)) {
2263 ret = -EROFS;
2264 goto out;
2265 }
2266
2267 switch (inode->i_mode & S_IFMT) {
2268 case S_IFDIR:
2269 if (!capable(CAP_SYS_ADMIN)) {
2270 ret = -EPERM;
2271 goto out;
2272 }
2273 ret = btrfs_defrag_root(root);
2274 if (ret)
2275 goto out;
2276 ret = btrfs_defrag_root(root->fs_info->extent_root);
2277 break;
2278 case S_IFREG:
2279 if (!(file->f_mode & FMODE_WRITE)) {
2280 ret = -EINVAL;
2281 goto out;
2282 }
2283
2284 range = kzalloc(sizeof(*range), GFP_KERNEL);
2285 if (!range) {
2286 ret = -ENOMEM;
2287 goto out;
2288 }
2289
2290 if (argp) {
2291 if (copy_from_user(range, argp,
2292 sizeof(*range))) {
2293 ret = -EFAULT;
2294 kfree(range);
2295 goto out;
2296 }
2297 /* compression requires us to start the IO */
2298 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2299 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2300 range->extent_thresh = (u32)-1;
2301 }
2302 } else {
2303 /* the rest are all set to zero by kzalloc */
2304 range->len = (u64)-1;
2305 }
2306 ret = btrfs_defrag_file(file_inode(file), file,
2307 range, 0, 0);
2308 if (ret > 0)
2309 ret = 0;
2310 kfree(range);
2311 break;
2312 default:
2313 ret = -EINVAL;
2314 }
2315 out:
2316 mnt_drop_write_file(file);
2317 return ret;
2318 }
2319
2320 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2321 {
2322 struct btrfs_ioctl_vol_args *vol_args;
2323 int ret;
2324
2325 if (!capable(CAP_SYS_ADMIN))
2326 return -EPERM;
2327
2328 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2329 1)) {
2330 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2331 return -EINVAL;
2332 }
2333
2334 mutex_lock(&root->fs_info->volume_mutex);
2335 vol_args = memdup_user(arg, sizeof(*vol_args));
2336 if (IS_ERR(vol_args)) {
2337 ret = PTR_ERR(vol_args);
2338 goto out;
2339 }
2340
2341 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2342 ret = btrfs_init_new_device(root, vol_args->name);
2343
2344 kfree(vol_args);
2345 out:
2346 mutex_unlock(&root->fs_info->volume_mutex);
2347 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2348 return ret;
2349 }
2350
2351 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2352 {
2353 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2354 struct btrfs_ioctl_vol_args *vol_args;
2355 int ret;
2356
2357 if (!capable(CAP_SYS_ADMIN))
2358 return -EPERM;
2359
2360 ret = mnt_want_write_file(file);
2361 if (ret)
2362 return ret;
2363
2364 vol_args = memdup_user(arg, sizeof(*vol_args));
2365 if (IS_ERR(vol_args)) {
2366 ret = PTR_ERR(vol_args);
2367 goto out;
2368 }
2369
2370 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2371
2372 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2373 1)) {
2374 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2375 goto out;
2376 }
2377
2378 mutex_lock(&root->fs_info->volume_mutex);
2379 ret = btrfs_rm_device(root, vol_args->name);
2380 mutex_unlock(&root->fs_info->volume_mutex);
2381 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2382
2383 out:
2384 kfree(vol_args);
2385 mnt_drop_write_file(file);
2386 return ret;
2387 }
2388
2389 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2390 {
2391 struct btrfs_ioctl_fs_info_args *fi_args;
2392 struct btrfs_device *device;
2393 struct btrfs_device *next;
2394 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2395 int ret = 0;
2396
2397 if (!capable(CAP_SYS_ADMIN))
2398 return -EPERM;
2399
2400 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2401 if (!fi_args)
2402 return -ENOMEM;
2403
2404 fi_args->num_devices = fs_devices->num_devices;
2405 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2406
2407 mutex_lock(&fs_devices->device_list_mutex);
2408 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2409 if (device->devid > fi_args->max_id)
2410 fi_args->max_id = device->devid;
2411 }
2412 mutex_unlock(&fs_devices->device_list_mutex);
2413
2414 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2415 ret = -EFAULT;
2416
2417 kfree(fi_args);
2418 return ret;
2419 }
2420
2421 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2422 {
2423 struct btrfs_ioctl_dev_info_args *di_args;
2424 struct btrfs_device *dev;
2425 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2426 int ret = 0;
2427 char *s_uuid = NULL;
2428 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2429
2430 if (!capable(CAP_SYS_ADMIN))
2431 return -EPERM;
2432
2433 di_args = memdup_user(arg, sizeof(*di_args));
2434 if (IS_ERR(di_args))
2435 return PTR_ERR(di_args);
2436
2437 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2438 s_uuid = di_args->uuid;
2439
2440 mutex_lock(&fs_devices->device_list_mutex);
2441 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2442
2443 if (!dev) {
2444 ret = -ENODEV;
2445 goto out;
2446 }
2447
2448 di_args->devid = dev->devid;
2449 di_args->bytes_used = dev->bytes_used;
2450 di_args->total_bytes = dev->total_bytes;
2451 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2452 if (dev->name) {
2453 struct rcu_string *name;
2454
2455 rcu_read_lock();
2456 name = rcu_dereference(dev->name);
2457 strncpy(di_args->path, name->str, sizeof(di_args->path));
2458 rcu_read_unlock();
2459 di_args->path[sizeof(di_args->path) - 1] = 0;
2460 } else {
2461 di_args->path[0] = '\0';
2462 }
2463
2464 out:
2465 mutex_unlock(&fs_devices->device_list_mutex);
2466 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2467 ret = -EFAULT;
2468
2469 kfree(di_args);
2470 return ret;
2471 }
2472
2473 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2474 u64 off, u64 olen, u64 destoff)
2475 {
2476 struct inode *inode = file_inode(file);
2477 struct btrfs_root *root = BTRFS_I(inode)->root;
2478 struct fd src_file;
2479 struct inode *src;
2480 struct btrfs_trans_handle *trans;
2481 struct btrfs_path *path;
2482 struct extent_buffer *leaf;
2483 char *buf;
2484 struct btrfs_key key;
2485 u32 nritems;
2486 int slot;
2487 int ret;
2488 u64 len = olen;
2489 u64 bs = root->fs_info->sb->s_blocksize;
2490 int same_inode = 0;
2491
2492 /*
2493 * TODO:
2494 * - split compressed inline extents. annoying: we need to
2495 * decompress into destination's address_space (the file offset
2496 * may change, so source mapping won't do), then recompress (or
2497 * otherwise reinsert) a subrange.
2498 * - allow ranges within the same file to be cloned (provided
2499 * they don't overlap)?
2500 */
2501
2502 /* the destination must be opened for writing */
2503 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2504 return -EINVAL;
2505
2506 if (btrfs_root_readonly(root))
2507 return -EROFS;
2508
2509 ret = mnt_want_write_file(file);
2510 if (ret)
2511 return ret;
2512
2513 src_file = fdget(srcfd);
2514 if (!src_file.file) {
2515 ret = -EBADF;
2516 goto out_drop_write;
2517 }
2518
2519 ret = -EXDEV;
2520 if (src_file.file->f_path.mnt != file->f_path.mnt)
2521 goto out_fput;
2522
2523 src = file_inode(src_file.file);
2524
2525 ret = -EINVAL;
2526 if (src == inode)
2527 same_inode = 1;
2528
2529 /* the src must be open for reading */
2530 if (!(src_file.file->f_mode & FMODE_READ))
2531 goto out_fput;
2532
2533 /* don't make the dst file partly checksummed */
2534 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2535 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2536 goto out_fput;
2537
2538 ret = -EISDIR;
2539 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2540 goto out_fput;
2541
2542 ret = -EXDEV;
2543 if (src->i_sb != inode->i_sb)
2544 goto out_fput;
2545
2546 ret = -ENOMEM;
2547 buf = vmalloc(btrfs_level_size(root, 0));
2548 if (!buf)
2549 goto out_fput;
2550
2551 path = btrfs_alloc_path();
2552 if (!path) {
2553 vfree(buf);
2554 goto out_fput;
2555 }
2556 path->reada = 2;
2557
2558 if (!same_inode) {
2559 if (inode < src) {
2560 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2561 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2562 } else {
2563 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2564 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2565 }
2566 } else {
2567 mutex_lock(&src->i_mutex);
2568 }
2569
2570 /* determine range to clone */
2571 ret = -EINVAL;
2572 if (off + len > src->i_size || off + len < off)
2573 goto out_unlock;
2574 if (len == 0)
2575 olen = len = src->i_size - off;
2576 /* if we extend to eof, continue to block boundary */
2577 if (off + len == src->i_size)
2578 len = ALIGN(src->i_size, bs) - off;
2579
2580 /* verify the end result is block aligned */
2581 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2582 !IS_ALIGNED(destoff, bs))
2583 goto out_unlock;
2584
2585 /* verify if ranges are overlapped within the same file */
2586 if (same_inode) {
2587 if (destoff + len > off && destoff < off + len)
2588 goto out_unlock;
2589 }
2590
2591 if (destoff > inode->i_size) {
2592 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2593 if (ret)
2594 goto out_unlock;
2595 }
2596
2597 /* truncate page cache pages from target inode range */
2598 truncate_inode_pages_range(&inode->i_data, destoff,
2599 PAGE_CACHE_ALIGN(destoff + len) - 1);
2600
2601 /* do any pending delalloc/csum calc on src, one way or
2602 another, and lock file content */
2603 while (1) {
2604 struct btrfs_ordered_extent *ordered;
2605 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2606 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1);
2607 if (!ordered &&
2608 !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1,
2609 EXTENT_DELALLOC, 0, NULL))
2610 break;
2611 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2612 if (ordered)
2613 btrfs_put_ordered_extent(ordered);
2614 btrfs_wait_ordered_range(src, off, len);
2615 }
2616
2617 /* clone data */
2618 key.objectid = btrfs_ino(src);
2619 key.type = BTRFS_EXTENT_DATA_KEY;
2620 key.offset = 0;
2621
2622 while (1) {
2623 /*
2624 * note the key will change type as we walk through the
2625 * tree.
2626 */
2627 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2628 0, 0);
2629 if (ret < 0)
2630 goto out;
2631
2632 nritems = btrfs_header_nritems(path->nodes[0]);
2633 if (path->slots[0] >= nritems) {
2634 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2635 if (ret < 0)
2636 goto out;
2637 if (ret > 0)
2638 break;
2639 nritems = btrfs_header_nritems(path->nodes[0]);
2640 }
2641 leaf = path->nodes[0];
2642 slot = path->slots[0];
2643
2644 btrfs_item_key_to_cpu(leaf, &key, slot);
2645 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2646 key.objectid != btrfs_ino(src))
2647 break;
2648
2649 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2650 struct btrfs_file_extent_item *extent;
2651 int type;
2652 u32 size;
2653 struct btrfs_key new_key;
2654 u64 disko = 0, diskl = 0;
2655 u64 datao = 0, datal = 0;
2656 u8 comp;
2657 u64 endoff;
2658
2659 size = btrfs_item_size_nr(leaf, slot);
2660 read_extent_buffer(leaf, buf,
2661 btrfs_item_ptr_offset(leaf, slot),
2662 size);
2663
2664 extent = btrfs_item_ptr(leaf, slot,
2665 struct btrfs_file_extent_item);
2666 comp = btrfs_file_extent_compression(leaf, extent);
2667 type = btrfs_file_extent_type(leaf, extent);
2668 if (type == BTRFS_FILE_EXTENT_REG ||
2669 type == BTRFS_FILE_EXTENT_PREALLOC) {
2670 disko = btrfs_file_extent_disk_bytenr(leaf,
2671 extent);
2672 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2673 extent);
2674 datao = btrfs_file_extent_offset(leaf, extent);
2675 datal = btrfs_file_extent_num_bytes(leaf,
2676 extent);
2677 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2678 /* take upper bound, may be compressed */
2679 datal = btrfs_file_extent_ram_bytes(leaf,
2680 extent);
2681 }
2682 btrfs_release_path(path);
2683
2684 if (key.offset + datal <= off ||
2685 key.offset >= off + len - 1)
2686 goto next;
2687
2688 memcpy(&new_key, &key, sizeof(new_key));
2689 new_key.objectid = btrfs_ino(inode);
2690 if (off <= key.offset)
2691 new_key.offset = key.offset + destoff - off;
2692 else
2693 new_key.offset = destoff;
2694
2695 /*
2696 * 1 - adjusting old extent (we may have to split it)
2697 * 1 - add new extent
2698 * 1 - inode update
2699 */
2700 trans = btrfs_start_transaction(root, 3);
2701 if (IS_ERR(trans)) {
2702 ret = PTR_ERR(trans);
2703 goto out;
2704 }
2705
2706 if (type == BTRFS_FILE_EXTENT_REG ||
2707 type == BTRFS_FILE_EXTENT_PREALLOC) {
2708 /*
2709 * a | --- range to clone ---| b
2710 * | ------------- extent ------------- |
2711 */
2712
2713 /* substract range b */
2714 if (key.offset + datal > off + len)
2715 datal = off + len - key.offset;
2716
2717 /* substract range a */
2718 if (off > key.offset) {
2719 datao += off - key.offset;
2720 datal -= off - key.offset;
2721 }
2722
2723 ret = btrfs_drop_extents(trans, root, inode,
2724 new_key.offset,
2725 new_key.offset + datal,
2726 1);
2727 if (ret) {
2728 btrfs_abort_transaction(trans, root,
2729 ret);
2730 btrfs_end_transaction(trans, root);
2731 goto out;
2732 }
2733
2734 ret = btrfs_insert_empty_item(trans, root, path,
2735 &new_key, size);
2736 if (ret) {
2737 btrfs_abort_transaction(trans, root,
2738 ret);
2739 btrfs_end_transaction(trans, root);
2740 goto out;
2741 }
2742
2743 leaf = path->nodes[0];
2744 slot = path->slots[0];
2745 write_extent_buffer(leaf, buf,
2746 btrfs_item_ptr_offset(leaf, slot),
2747 size);
2748
2749 extent = btrfs_item_ptr(leaf, slot,
2750 struct btrfs_file_extent_item);
2751
2752 /* disko == 0 means it's a hole */
2753 if (!disko)
2754 datao = 0;
2755
2756 btrfs_set_file_extent_offset(leaf, extent,
2757 datao);
2758 btrfs_set_file_extent_num_bytes(leaf, extent,
2759 datal);
2760 if (disko) {
2761 inode_add_bytes(inode, datal);
2762 ret = btrfs_inc_extent_ref(trans, root,
2763 disko, diskl, 0,
2764 root->root_key.objectid,
2765 btrfs_ino(inode),
2766 new_key.offset - datao,
2767 0);
2768 if (ret) {
2769 btrfs_abort_transaction(trans,
2770 root,
2771 ret);
2772 btrfs_end_transaction(trans,
2773 root);
2774 goto out;
2775
2776 }
2777 }
2778 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2779 u64 skip = 0;
2780 u64 trim = 0;
2781 if (off > key.offset) {
2782 skip = off - key.offset;
2783 new_key.offset += skip;
2784 }
2785
2786 if (key.offset + datal > off + len)
2787 trim = key.offset + datal - (off + len);
2788
2789 if (comp && (skip || trim)) {
2790 ret = -EINVAL;
2791 btrfs_end_transaction(trans, root);
2792 goto out;
2793 }
2794 size -= skip + trim;
2795 datal -= skip + trim;
2796
2797 ret = btrfs_drop_extents(trans, root, inode,
2798 new_key.offset,
2799 new_key.offset + datal,
2800 1);
2801 if (ret) {
2802 btrfs_abort_transaction(trans, root,
2803 ret);
2804 btrfs_end_transaction(trans, root);
2805 goto out;
2806 }
2807
2808 ret = btrfs_insert_empty_item(trans, root, path,
2809 &new_key, size);
2810 if (ret) {
2811 btrfs_abort_transaction(trans, root,
2812 ret);
2813 btrfs_end_transaction(trans, root);
2814 goto out;
2815 }
2816
2817 if (skip) {
2818 u32 start =
2819 btrfs_file_extent_calc_inline_size(0);
2820 memmove(buf+start, buf+start+skip,
2821 datal);
2822 }
2823
2824 leaf = path->nodes[0];
2825 slot = path->slots[0];
2826 write_extent_buffer(leaf, buf,
2827 btrfs_item_ptr_offset(leaf, slot),
2828 size);
2829 inode_add_bytes(inode, datal);
2830 }
2831
2832 btrfs_mark_buffer_dirty(leaf);
2833 btrfs_release_path(path);
2834
2835 inode_inc_iversion(inode);
2836 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2837
2838 /*
2839 * we round up to the block size at eof when
2840 * determining which extents to clone above,
2841 * but shouldn't round up the file size
2842 */
2843 endoff = new_key.offset + datal;
2844 if (endoff > destoff+olen)
2845 endoff = destoff+olen;
2846 if (endoff > inode->i_size)
2847 btrfs_i_size_write(inode, endoff);
2848
2849 ret = btrfs_update_inode(trans, root, inode);
2850 if (ret) {
2851 btrfs_abort_transaction(trans, root, ret);
2852 btrfs_end_transaction(trans, root);
2853 goto out;
2854 }
2855 ret = btrfs_end_transaction(trans, root);
2856 }
2857 next:
2858 btrfs_release_path(path);
2859 key.offset++;
2860 }
2861 ret = 0;
2862 out:
2863 btrfs_release_path(path);
2864 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2865 out_unlock:
2866 mutex_unlock(&src->i_mutex);
2867 if (!same_inode)
2868 mutex_unlock(&inode->i_mutex);
2869 vfree(buf);
2870 btrfs_free_path(path);
2871 out_fput:
2872 fdput(src_file);
2873 out_drop_write:
2874 mnt_drop_write_file(file);
2875 return ret;
2876 }
2877
2878 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2879 {
2880 struct btrfs_ioctl_clone_range_args args;
2881
2882 if (copy_from_user(&args, argp, sizeof(args)))
2883 return -EFAULT;
2884 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2885 args.src_length, args.dest_offset);
2886 }
2887
2888 /*
2889 * there are many ways the trans_start and trans_end ioctls can lead
2890 * to deadlocks. They should only be used by applications that
2891 * basically own the machine, and have a very in depth understanding
2892 * of all the possible deadlocks and enospc problems.
2893 */
2894 static long btrfs_ioctl_trans_start(struct file *file)
2895 {
2896 struct inode *inode = file_inode(file);
2897 struct btrfs_root *root = BTRFS_I(inode)->root;
2898 struct btrfs_trans_handle *trans;
2899 int ret;
2900
2901 ret = -EPERM;
2902 if (!capable(CAP_SYS_ADMIN))
2903 goto out;
2904
2905 ret = -EINPROGRESS;
2906 if (file->private_data)
2907 goto out;
2908
2909 ret = -EROFS;
2910 if (btrfs_root_readonly(root))
2911 goto out;
2912
2913 ret = mnt_want_write_file(file);
2914 if (ret)
2915 goto out;
2916
2917 atomic_inc(&root->fs_info->open_ioctl_trans);
2918
2919 ret = -ENOMEM;
2920 trans = btrfs_start_ioctl_transaction(root);
2921 if (IS_ERR(trans))
2922 goto out_drop;
2923
2924 file->private_data = trans;
2925 return 0;
2926
2927 out_drop:
2928 atomic_dec(&root->fs_info->open_ioctl_trans);
2929 mnt_drop_write_file(file);
2930 out:
2931 return ret;
2932 }
2933
2934 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2935 {
2936 struct inode *inode = file_inode(file);
2937 struct btrfs_root *root = BTRFS_I(inode)->root;
2938 struct btrfs_root *new_root;
2939 struct btrfs_dir_item *di;
2940 struct btrfs_trans_handle *trans;
2941 struct btrfs_path *path;
2942 struct btrfs_key location;
2943 struct btrfs_disk_key disk_key;
2944 u64 objectid = 0;
2945 u64 dir_id;
2946 int ret;
2947
2948 if (!capable(CAP_SYS_ADMIN))
2949 return -EPERM;
2950
2951 ret = mnt_want_write_file(file);
2952 if (ret)
2953 return ret;
2954
2955 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2956 ret = -EFAULT;
2957 goto out;
2958 }
2959
2960 if (!objectid)
2961 objectid = root->root_key.objectid;
2962
2963 location.objectid = objectid;
2964 location.type = BTRFS_ROOT_ITEM_KEY;
2965 location.offset = (u64)-1;
2966
2967 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2968 if (IS_ERR(new_root)) {
2969 ret = PTR_ERR(new_root);
2970 goto out;
2971 }
2972
2973 path = btrfs_alloc_path();
2974 if (!path) {
2975 ret = -ENOMEM;
2976 goto out;
2977 }
2978 path->leave_spinning = 1;
2979
2980 trans = btrfs_start_transaction(root, 1);
2981 if (IS_ERR(trans)) {
2982 btrfs_free_path(path);
2983 ret = PTR_ERR(trans);
2984 goto out;
2985 }
2986
2987 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2988 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2989 dir_id, "default", 7, 1);
2990 if (IS_ERR_OR_NULL(di)) {
2991 btrfs_free_path(path);
2992 btrfs_end_transaction(trans, root);
2993 printk(KERN_ERR "Umm, you don't have the default dir item, "
2994 "this isn't going to work\n");
2995 ret = -ENOENT;
2996 goto out;
2997 }
2998
2999 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3000 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3001 btrfs_mark_buffer_dirty(path->nodes[0]);
3002 btrfs_free_path(path);
3003
3004 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3005 btrfs_end_transaction(trans, root);
3006 out:
3007 mnt_drop_write_file(file);
3008 return ret;
3009 }
3010
3011 void btrfs_get_block_group_info(struct list_head *groups_list,
3012 struct btrfs_ioctl_space_info *space)
3013 {
3014 struct btrfs_block_group_cache *block_group;
3015
3016 space->total_bytes = 0;
3017 space->used_bytes = 0;
3018 space->flags = 0;
3019 list_for_each_entry(block_group, groups_list, list) {
3020 space->flags = block_group->flags;
3021 space->total_bytes += block_group->key.offset;
3022 space->used_bytes +=
3023 btrfs_block_group_used(&block_group->item);
3024 }
3025 }
3026
3027 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3028 {
3029 struct btrfs_ioctl_space_args space_args;
3030 struct btrfs_ioctl_space_info space;
3031 struct btrfs_ioctl_space_info *dest;
3032 struct btrfs_ioctl_space_info *dest_orig;
3033 struct btrfs_ioctl_space_info __user *user_dest;
3034 struct btrfs_space_info *info;
3035 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3036 BTRFS_BLOCK_GROUP_SYSTEM,
3037 BTRFS_BLOCK_GROUP_METADATA,
3038 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3039 int num_types = 4;
3040 int alloc_size;
3041 int ret = 0;
3042 u64 slot_count = 0;
3043 int i, c;
3044
3045 if (copy_from_user(&space_args,
3046 (struct btrfs_ioctl_space_args __user *)arg,
3047 sizeof(space_args)))
3048 return -EFAULT;
3049
3050 for (i = 0; i < num_types; i++) {
3051 struct btrfs_space_info *tmp;
3052
3053 info = NULL;
3054 rcu_read_lock();
3055 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3056 list) {
3057 if (tmp->flags == types[i]) {
3058 info = tmp;
3059 break;
3060 }
3061 }
3062 rcu_read_unlock();
3063
3064 if (!info)
3065 continue;
3066
3067 down_read(&info->groups_sem);
3068 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3069 if (!list_empty(&info->block_groups[c]))
3070 slot_count++;
3071 }
3072 up_read(&info->groups_sem);
3073 }
3074
3075 /* space_slots == 0 means they are asking for a count */
3076 if (space_args.space_slots == 0) {
3077 space_args.total_spaces = slot_count;
3078 goto out;
3079 }
3080
3081 slot_count = min_t(u64, space_args.space_slots, slot_count);
3082
3083 alloc_size = sizeof(*dest) * slot_count;
3084
3085 /* we generally have at most 6 or so space infos, one for each raid
3086 * level. So, a whole page should be more than enough for everyone
3087 */
3088 if (alloc_size > PAGE_CACHE_SIZE)
3089 return -ENOMEM;
3090
3091 space_args.total_spaces = 0;
3092 dest = kmalloc(alloc_size, GFP_NOFS);
3093 if (!dest)
3094 return -ENOMEM;
3095 dest_orig = dest;
3096
3097 /* now we have a buffer to copy into */
3098 for (i = 0; i < num_types; i++) {
3099 struct btrfs_space_info *tmp;
3100
3101 if (!slot_count)
3102 break;
3103
3104 info = NULL;
3105 rcu_read_lock();
3106 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3107 list) {
3108 if (tmp->flags == types[i]) {
3109 info = tmp;
3110 break;
3111 }
3112 }
3113 rcu_read_unlock();
3114
3115 if (!info)
3116 continue;
3117 down_read(&info->groups_sem);
3118 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3119 if (!list_empty(&info->block_groups[c])) {
3120 btrfs_get_block_group_info(
3121 &info->block_groups[c], &space);
3122 memcpy(dest, &space, sizeof(space));
3123 dest++;
3124 space_args.total_spaces++;
3125 slot_count--;
3126 }
3127 if (!slot_count)
3128 break;
3129 }
3130 up_read(&info->groups_sem);
3131 }
3132
3133 user_dest = (struct btrfs_ioctl_space_info __user *)
3134 (arg + sizeof(struct btrfs_ioctl_space_args));
3135
3136 if (copy_to_user(user_dest, dest_orig, alloc_size))
3137 ret = -EFAULT;
3138
3139 kfree(dest_orig);
3140 out:
3141 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3142 ret = -EFAULT;
3143
3144 return ret;
3145 }
3146
3147 /*
3148 * there are many ways the trans_start and trans_end ioctls can lead
3149 * to deadlocks. They should only be used by applications that
3150 * basically own the machine, and have a very in depth understanding
3151 * of all the possible deadlocks and enospc problems.
3152 */
3153 long btrfs_ioctl_trans_end(struct file *file)
3154 {
3155 struct inode *inode = file_inode(file);
3156 struct btrfs_root *root = BTRFS_I(inode)->root;
3157 struct btrfs_trans_handle *trans;
3158
3159 trans = file->private_data;
3160 if (!trans)
3161 return -EINVAL;
3162 file->private_data = NULL;
3163
3164 btrfs_end_transaction(trans, root);
3165
3166 atomic_dec(&root->fs_info->open_ioctl_trans);
3167
3168 mnt_drop_write_file(file);
3169 return 0;
3170 }
3171
3172 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3173 void __user *argp)
3174 {
3175 struct btrfs_trans_handle *trans;
3176 u64 transid;
3177 int ret;
3178
3179 trans = btrfs_attach_transaction_barrier(root);
3180 if (IS_ERR(trans)) {
3181 if (PTR_ERR(trans) != -ENOENT)
3182 return PTR_ERR(trans);
3183
3184 /* No running transaction, don't bother */
3185 transid = root->fs_info->last_trans_committed;
3186 goto out;
3187 }
3188 transid = trans->transid;
3189 ret = btrfs_commit_transaction_async(trans, root, 0);
3190 if (ret) {
3191 btrfs_end_transaction(trans, root);
3192 return ret;
3193 }
3194 out:
3195 if (argp)
3196 if (copy_to_user(argp, &transid, sizeof(transid)))
3197 return -EFAULT;
3198 return 0;
3199 }
3200
3201 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3202 void __user *argp)
3203 {
3204 u64 transid;
3205
3206 if (argp) {
3207 if (copy_from_user(&transid, argp, sizeof(transid)))
3208 return -EFAULT;
3209 } else {
3210 transid = 0; /* current trans */
3211 }
3212 return btrfs_wait_for_commit(root, transid);
3213 }
3214
3215 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3216 {
3217 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3218 struct btrfs_ioctl_scrub_args *sa;
3219 int ret;
3220
3221 if (!capable(CAP_SYS_ADMIN))
3222 return -EPERM;
3223
3224 sa = memdup_user(arg, sizeof(*sa));
3225 if (IS_ERR(sa))
3226 return PTR_ERR(sa);
3227
3228 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3229 ret = mnt_want_write_file(file);
3230 if (ret)
3231 goto out;
3232 }
3233
3234 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3235 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3236 0);
3237
3238 if (copy_to_user(arg, sa, sizeof(*sa)))
3239 ret = -EFAULT;
3240
3241 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3242 mnt_drop_write_file(file);
3243 out:
3244 kfree(sa);
3245 return ret;
3246 }
3247
3248 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3249 {
3250 if (!capable(CAP_SYS_ADMIN))
3251 return -EPERM;
3252
3253 return btrfs_scrub_cancel(root->fs_info);
3254 }
3255
3256 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3257 void __user *arg)
3258 {
3259 struct btrfs_ioctl_scrub_args *sa;
3260 int ret;
3261
3262 if (!capable(CAP_SYS_ADMIN))
3263 return -EPERM;
3264
3265 sa = memdup_user(arg, sizeof(*sa));
3266 if (IS_ERR(sa))
3267 return PTR_ERR(sa);
3268
3269 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3270
3271 if (copy_to_user(arg, sa, sizeof(*sa)))
3272 ret = -EFAULT;
3273
3274 kfree(sa);
3275 return ret;
3276 }
3277
3278 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3279 void __user *arg)
3280 {
3281 struct btrfs_ioctl_get_dev_stats *sa;
3282 int ret;
3283
3284 sa = memdup_user(arg, sizeof(*sa));
3285 if (IS_ERR(sa))
3286 return PTR_ERR(sa);
3287
3288 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3289 kfree(sa);
3290 return -EPERM;
3291 }
3292
3293 ret = btrfs_get_dev_stats(root, sa);
3294
3295 if (copy_to_user(arg, sa, sizeof(*sa)))
3296 ret = -EFAULT;
3297
3298 kfree(sa);
3299 return ret;
3300 }
3301
3302 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3303 {
3304 struct btrfs_ioctl_dev_replace_args *p;
3305 int ret;
3306
3307 if (!capable(CAP_SYS_ADMIN))
3308 return -EPERM;
3309
3310 p = memdup_user(arg, sizeof(*p));
3311 if (IS_ERR(p))
3312 return PTR_ERR(p);
3313
3314 switch (p->cmd) {
3315 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3316 if (atomic_xchg(
3317 &root->fs_info->mutually_exclusive_operation_running,
3318 1)) {
3319 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3320 ret = -EINPROGRESS;
3321 } else {
3322 ret = btrfs_dev_replace_start(root, p);
3323 atomic_set(
3324 &root->fs_info->mutually_exclusive_operation_running,
3325 0);
3326 }
3327 break;
3328 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3329 btrfs_dev_replace_status(root->fs_info, p);
3330 ret = 0;
3331 break;
3332 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3333 ret = btrfs_dev_replace_cancel(root->fs_info, p);
3334 break;
3335 default:
3336 ret = -EINVAL;
3337 break;
3338 }
3339
3340 if (copy_to_user(arg, p, sizeof(*p)))
3341 ret = -EFAULT;
3342
3343 kfree(p);
3344 return ret;
3345 }
3346
3347 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3348 {
3349 int ret = 0;
3350 int i;
3351 u64 rel_ptr;
3352 int size;
3353 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3354 struct inode_fs_paths *ipath = NULL;
3355 struct btrfs_path *path;
3356
3357 if (!capable(CAP_DAC_READ_SEARCH))
3358 return -EPERM;
3359
3360 path = btrfs_alloc_path();
3361 if (!path) {
3362 ret = -ENOMEM;
3363 goto out;
3364 }
3365
3366 ipa = memdup_user(arg, sizeof(*ipa));
3367 if (IS_ERR(ipa)) {
3368 ret = PTR_ERR(ipa);
3369 ipa = NULL;
3370 goto out;
3371 }
3372
3373 size = min_t(u32, ipa->size, 4096);
3374 ipath = init_ipath(size, root, path);
3375 if (IS_ERR(ipath)) {
3376 ret = PTR_ERR(ipath);
3377 ipath = NULL;
3378 goto out;
3379 }
3380
3381 ret = paths_from_inode(ipa->inum, ipath);
3382 if (ret < 0)
3383 goto out;
3384
3385 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3386 rel_ptr = ipath->fspath->val[i] -
3387 (u64)(unsigned long)ipath->fspath->val;
3388 ipath->fspath->val[i] = rel_ptr;
3389 }
3390
3391 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3392 (void *)(unsigned long)ipath->fspath, size);
3393 if (ret) {
3394 ret = -EFAULT;
3395 goto out;
3396 }
3397
3398 out:
3399 btrfs_free_path(path);
3400 free_ipath(ipath);
3401 kfree(ipa);
3402
3403 return ret;
3404 }
3405
3406 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3407 {
3408 struct btrfs_data_container *inodes = ctx;
3409 const size_t c = 3 * sizeof(u64);
3410
3411 if (inodes->bytes_left >= c) {
3412 inodes->bytes_left -= c;
3413 inodes->val[inodes->elem_cnt] = inum;
3414 inodes->val[inodes->elem_cnt + 1] = offset;
3415 inodes->val[inodes->elem_cnt + 2] = root;
3416 inodes->elem_cnt += 3;
3417 } else {
3418 inodes->bytes_missing += c - inodes->bytes_left;
3419 inodes->bytes_left = 0;
3420 inodes->elem_missed += 3;
3421 }
3422
3423 return 0;
3424 }
3425
3426 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3427 void __user *arg)
3428 {
3429 int ret = 0;
3430 int size;
3431 struct btrfs_ioctl_logical_ino_args *loi;
3432 struct btrfs_data_container *inodes = NULL;
3433 struct btrfs_path *path = NULL;
3434
3435 if (!capable(CAP_SYS_ADMIN))
3436 return -EPERM;
3437
3438 loi = memdup_user(arg, sizeof(*loi));
3439 if (IS_ERR(loi)) {
3440 ret = PTR_ERR(loi);
3441 loi = NULL;
3442 goto out;
3443 }
3444
3445 path = btrfs_alloc_path();
3446 if (!path) {
3447 ret = -ENOMEM;
3448 goto out;
3449 }
3450
3451 size = min_t(u32, loi->size, 64 * 1024);
3452 inodes = init_data_container(size);
3453 if (IS_ERR(inodes)) {
3454 ret = PTR_ERR(inodes);
3455 inodes = NULL;
3456 goto out;
3457 }
3458
3459 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3460 build_ino_list, inodes);
3461 if (ret == -EINVAL)
3462 ret = -ENOENT;
3463 if (ret < 0)
3464 goto out;
3465
3466 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3467 (void *)(unsigned long)inodes, size);
3468 if (ret)
3469 ret = -EFAULT;
3470
3471 out:
3472 btrfs_free_path(path);
3473 vfree(inodes);
3474 kfree(loi);
3475
3476 return ret;
3477 }
3478
3479 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3480 struct btrfs_ioctl_balance_args *bargs)
3481 {
3482 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3483
3484 bargs->flags = bctl->flags;
3485
3486 if (atomic_read(&fs_info->balance_running))
3487 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3488 if (atomic_read(&fs_info->balance_pause_req))
3489 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3490 if (atomic_read(&fs_info->balance_cancel_req))
3491 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3492
3493 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3494 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3495 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3496
3497 if (lock) {
3498 spin_lock(&fs_info->balance_lock);
3499 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3500 spin_unlock(&fs_info->balance_lock);
3501 } else {
3502 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3503 }
3504 }
3505
3506 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3507 {
3508 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3509 struct btrfs_fs_info *fs_info = root->fs_info;
3510 struct btrfs_ioctl_balance_args *bargs;
3511 struct btrfs_balance_control *bctl;
3512 bool need_unlock; /* for mut. excl. ops lock */
3513 int ret;
3514
3515 if (!capable(CAP_SYS_ADMIN))
3516 return -EPERM;
3517
3518 ret = mnt_want_write_file(file);
3519 if (ret)
3520 return ret;
3521
3522 again:
3523 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
3524 mutex_lock(&fs_info->volume_mutex);
3525 mutex_lock(&fs_info->balance_mutex);
3526 need_unlock = true;
3527 goto locked;
3528 }
3529
3530 /*
3531 * mut. excl. ops lock is locked. Three possibilites:
3532 * (1) some other op is running
3533 * (2) balance is running
3534 * (3) balance is paused -- special case (think resume)
3535 */
3536 mutex_lock(&fs_info->balance_mutex);
3537 if (fs_info->balance_ctl) {
3538 /* this is either (2) or (3) */
3539 if (!atomic_read(&fs_info->balance_running)) {
3540 mutex_unlock(&fs_info->balance_mutex);
3541 if (!mutex_trylock(&fs_info->volume_mutex))
3542 goto again;
3543 mutex_lock(&fs_info->balance_mutex);
3544
3545 if (fs_info->balance_ctl &&
3546 !atomic_read(&fs_info->balance_running)) {
3547 /* this is (3) */
3548 need_unlock = false;
3549 goto locked;
3550 }
3551
3552 mutex_unlock(&fs_info->balance_mutex);
3553 mutex_unlock(&fs_info->volume_mutex);
3554 goto again;
3555 } else {
3556 /* this is (2) */
3557 mutex_unlock(&fs_info->balance_mutex);
3558 ret = -EINPROGRESS;
3559 goto out;
3560 }
3561 } else {
3562 /* this is (1) */
3563 mutex_unlock(&fs_info->balance_mutex);
3564 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3565 ret = -EINVAL;
3566 goto out;
3567 }
3568
3569 locked:
3570 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
3571
3572 if (arg) {
3573 bargs = memdup_user(arg, sizeof(*bargs));
3574 if (IS_ERR(bargs)) {
3575 ret = PTR_ERR(bargs);
3576 goto out_unlock;
3577 }
3578
3579 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3580 if (!fs_info->balance_ctl) {
3581 ret = -ENOTCONN;
3582 goto out_bargs;
3583 }
3584
3585 bctl = fs_info->balance_ctl;
3586 spin_lock(&fs_info->balance_lock);
3587 bctl->flags |= BTRFS_BALANCE_RESUME;
3588 spin_unlock(&fs_info->balance_lock);
3589
3590 goto do_balance;
3591 }
3592 } else {
3593 bargs = NULL;
3594 }
3595
3596 if (fs_info->balance_ctl) {
3597 ret = -EINPROGRESS;
3598 goto out_bargs;
3599 }
3600
3601 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3602 if (!bctl) {
3603 ret = -ENOMEM;
3604 goto out_bargs;
3605 }
3606
3607 bctl->fs_info = fs_info;
3608 if (arg) {
3609 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3610 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3611 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3612
3613 bctl->flags = bargs->flags;
3614 } else {
3615 /* balance everything - no filters */
3616 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3617 }
3618
3619 do_balance:
3620 /*
3621 * Ownership of bctl and mutually_exclusive_operation_running
3622 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
3623 * or, if restriper was paused all the way until unmount, in
3624 * free_fs_info. mutually_exclusive_operation_running is
3625 * cleared in __cancel_balance.
3626 */
3627 need_unlock = false;
3628
3629 ret = btrfs_balance(bctl, bargs);
3630
3631 if (arg) {
3632 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3633 ret = -EFAULT;
3634 }
3635
3636 out_bargs:
3637 kfree(bargs);
3638 out_unlock:
3639 mutex_unlock(&fs_info->balance_mutex);
3640 mutex_unlock(&fs_info->volume_mutex);
3641 if (need_unlock)
3642 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3643 out:
3644 mnt_drop_write_file(file);
3645 return ret;
3646 }
3647
3648 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3649 {
3650 if (!capable(CAP_SYS_ADMIN))
3651 return -EPERM;
3652
3653 switch (cmd) {
3654 case BTRFS_BALANCE_CTL_PAUSE:
3655 return btrfs_pause_balance(root->fs_info);
3656 case BTRFS_BALANCE_CTL_CANCEL:
3657 return btrfs_cancel_balance(root->fs_info);
3658 }
3659
3660 return -EINVAL;
3661 }
3662
3663 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3664 void __user *arg)
3665 {
3666 struct btrfs_fs_info *fs_info = root->fs_info;
3667 struct btrfs_ioctl_balance_args *bargs;
3668 int ret = 0;
3669
3670 if (!capable(CAP_SYS_ADMIN))
3671 return -EPERM;
3672
3673 mutex_lock(&fs_info->balance_mutex);
3674 if (!fs_info->balance_ctl) {
3675 ret = -ENOTCONN;
3676 goto out;
3677 }
3678
3679 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3680 if (!bargs) {
3681 ret = -ENOMEM;
3682 goto out;
3683 }
3684
3685 update_ioctl_balance_args(fs_info, 1, bargs);
3686
3687 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3688 ret = -EFAULT;
3689
3690 kfree(bargs);
3691 out:
3692 mutex_unlock(&fs_info->balance_mutex);
3693 return ret;
3694 }
3695
3696 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3697 {
3698 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3699 struct btrfs_ioctl_quota_ctl_args *sa;
3700 struct btrfs_trans_handle *trans = NULL;
3701 int ret;
3702 int err;
3703
3704 if (!capable(CAP_SYS_ADMIN))
3705 return -EPERM;
3706
3707 ret = mnt_want_write_file(file);
3708 if (ret)
3709 return ret;
3710
3711 sa = memdup_user(arg, sizeof(*sa));
3712 if (IS_ERR(sa)) {
3713 ret = PTR_ERR(sa);
3714 goto drop_write;
3715 }
3716
3717 down_write(&root->fs_info->subvol_sem);
3718 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
3719 if (IS_ERR(trans)) {
3720 ret = PTR_ERR(trans);
3721 goto out;
3722 }
3723
3724 switch (sa->cmd) {
3725 case BTRFS_QUOTA_CTL_ENABLE:
3726 ret = btrfs_quota_enable(trans, root->fs_info);
3727 break;
3728 case BTRFS_QUOTA_CTL_DISABLE:
3729 ret = btrfs_quota_disable(trans, root->fs_info);
3730 break;
3731 default:
3732 ret = -EINVAL;
3733 break;
3734 }
3735
3736 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
3737 if (err && !ret)
3738 ret = err;
3739 out:
3740 kfree(sa);
3741 up_write(&root->fs_info->subvol_sem);
3742 drop_write:
3743 mnt_drop_write_file(file);
3744 return ret;
3745 }
3746
3747 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3748 {
3749 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3750 struct btrfs_ioctl_qgroup_assign_args *sa;
3751 struct btrfs_trans_handle *trans;
3752 int ret;
3753 int err;
3754
3755 if (!capable(CAP_SYS_ADMIN))
3756 return -EPERM;
3757
3758 ret = mnt_want_write_file(file);
3759 if (ret)
3760 return ret;
3761
3762 sa = memdup_user(arg, sizeof(*sa));
3763 if (IS_ERR(sa)) {
3764 ret = PTR_ERR(sa);
3765 goto drop_write;
3766 }
3767
3768 trans = btrfs_join_transaction(root);
3769 if (IS_ERR(trans)) {
3770 ret = PTR_ERR(trans);
3771 goto out;
3772 }
3773
3774 /* FIXME: check if the IDs really exist */
3775 if (sa->assign) {
3776 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
3777 sa->src, sa->dst);
3778 } else {
3779 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
3780 sa->src, sa->dst);
3781 }
3782
3783 err = btrfs_end_transaction(trans, root);
3784 if (err && !ret)
3785 ret = err;
3786
3787 out:
3788 kfree(sa);
3789 drop_write:
3790 mnt_drop_write_file(file);
3791 return ret;
3792 }
3793
3794 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3795 {
3796 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3797 struct btrfs_ioctl_qgroup_create_args *sa;
3798 struct btrfs_trans_handle *trans;
3799 int ret;
3800 int err;
3801
3802 if (!capable(CAP_SYS_ADMIN))
3803 return -EPERM;
3804
3805 ret = mnt_want_write_file(file);
3806 if (ret)
3807 return ret;
3808
3809 sa = memdup_user(arg, sizeof(*sa));
3810 if (IS_ERR(sa)) {
3811 ret = PTR_ERR(sa);
3812 goto drop_write;
3813 }
3814
3815 if (!sa->qgroupid) {
3816 ret = -EINVAL;
3817 goto out;
3818 }
3819
3820 trans = btrfs_join_transaction(root);
3821 if (IS_ERR(trans)) {
3822 ret = PTR_ERR(trans);
3823 goto out;
3824 }
3825
3826 /* FIXME: check if the IDs really exist */
3827 if (sa->create) {
3828 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
3829 NULL);
3830 } else {
3831 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
3832 }
3833
3834 err = btrfs_end_transaction(trans, root);
3835 if (err && !ret)
3836 ret = err;
3837
3838 out:
3839 kfree(sa);
3840 drop_write:
3841 mnt_drop_write_file(file);
3842 return ret;
3843 }
3844
3845 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3846 {
3847 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3848 struct btrfs_ioctl_qgroup_limit_args *sa;
3849 struct btrfs_trans_handle *trans;
3850 int ret;
3851 int err;
3852 u64 qgroupid;
3853
3854 if (!capable(CAP_SYS_ADMIN))
3855 return -EPERM;
3856
3857 ret = mnt_want_write_file(file);
3858 if (ret)
3859 return ret;
3860
3861 sa = memdup_user(arg, sizeof(*sa));
3862 if (IS_ERR(sa)) {
3863 ret = PTR_ERR(sa);
3864 goto drop_write;
3865 }
3866
3867 trans = btrfs_join_transaction(root);
3868 if (IS_ERR(trans)) {
3869 ret = PTR_ERR(trans);
3870 goto out;
3871 }
3872
3873 qgroupid = sa->qgroupid;
3874 if (!qgroupid) {
3875 /* take the current subvol as qgroup */
3876 qgroupid = root->root_key.objectid;
3877 }
3878
3879 /* FIXME: check if the IDs really exist */
3880 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
3881
3882 err = btrfs_end_transaction(trans, root);
3883 if (err && !ret)
3884 ret = err;
3885
3886 out:
3887 kfree(sa);
3888 drop_write:
3889 mnt_drop_write_file(file);
3890 return ret;
3891 }
3892
3893 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3894 {
3895 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3896 struct btrfs_ioctl_quota_rescan_args *qsa;
3897 int ret;
3898
3899 if (!capable(CAP_SYS_ADMIN))
3900 return -EPERM;
3901
3902 ret = mnt_want_write_file(file);
3903 if (ret)
3904 return ret;
3905
3906 qsa = memdup_user(arg, sizeof(*qsa));
3907 if (IS_ERR(qsa)) {
3908 ret = PTR_ERR(qsa);
3909 goto drop_write;
3910 }
3911
3912 if (qsa->flags) {
3913 ret = -EINVAL;
3914 goto out;
3915 }
3916
3917 ret = btrfs_qgroup_rescan(root->fs_info);
3918
3919 out:
3920 kfree(qsa);
3921 drop_write:
3922 mnt_drop_write_file(file);
3923 return ret;
3924 }
3925
3926 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
3927 {
3928 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3929 struct btrfs_ioctl_quota_rescan_args *qsa;
3930 int ret = 0;
3931
3932 if (!capable(CAP_SYS_ADMIN))
3933 return -EPERM;
3934
3935 qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
3936 if (!qsa)
3937 return -ENOMEM;
3938
3939 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3940 qsa->flags = 1;
3941 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
3942 }
3943
3944 if (copy_to_user(arg, qsa, sizeof(*qsa)))
3945 ret = -EFAULT;
3946
3947 kfree(qsa);
3948 return ret;
3949 }
3950
3951 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
3952 {
3953 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3954
3955 if (!capable(CAP_SYS_ADMIN))
3956 return -EPERM;
3957
3958 return btrfs_qgroup_wait_for_completion(root->fs_info);
3959 }
3960
3961 static long btrfs_ioctl_set_received_subvol(struct file *file,
3962 void __user *arg)
3963 {
3964 struct btrfs_ioctl_received_subvol_args *sa = NULL;
3965 struct inode *inode = file_inode(file);
3966 struct btrfs_root *root = BTRFS_I(inode)->root;
3967 struct btrfs_root_item *root_item = &root->root_item;
3968 struct btrfs_trans_handle *trans;
3969 struct timespec ct = CURRENT_TIME;
3970 int ret = 0;
3971
3972 ret = mnt_want_write_file(file);
3973 if (ret < 0)
3974 return ret;
3975
3976 down_write(&root->fs_info->subvol_sem);
3977
3978 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
3979 ret = -EINVAL;
3980 goto out;
3981 }
3982
3983 if (btrfs_root_readonly(root)) {
3984 ret = -EROFS;
3985 goto out;
3986 }
3987
3988 if (!inode_owner_or_capable(inode)) {
3989 ret = -EACCES;
3990 goto out;
3991 }
3992
3993 sa = memdup_user(arg, sizeof(*sa));
3994 if (IS_ERR(sa)) {
3995 ret = PTR_ERR(sa);
3996 sa = NULL;
3997 goto out;
3998 }
3999
4000 trans = btrfs_start_transaction(root, 1);
4001 if (IS_ERR(trans)) {
4002 ret = PTR_ERR(trans);
4003 trans = NULL;
4004 goto out;
4005 }
4006
4007 sa->rtransid = trans->transid;
4008 sa->rtime.sec = ct.tv_sec;
4009 sa->rtime.nsec = ct.tv_nsec;
4010
4011 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4012 btrfs_set_root_stransid(root_item, sa->stransid);
4013 btrfs_set_root_rtransid(root_item, sa->rtransid);
4014 root_item->stime.sec = cpu_to_le64(sa->stime.sec);
4015 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec);
4016 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec);
4017 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec);
4018
4019 ret = btrfs_update_root(trans, root->fs_info->tree_root,
4020 &root->root_key, &root->root_item);
4021 if (ret < 0) {
4022 btrfs_end_transaction(trans, root);
4023 trans = NULL;
4024 goto out;
4025 } else {
4026 ret = btrfs_commit_transaction(trans, root);
4027 if (ret < 0)
4028 goto out;
4029 }
4030
4031 ret = copy_to_user(arg, sa, sizeof(*sa));
4032 if (ret)
4033 ret = -EFAULT;
4034
4035 out:
4036 kfree(sa);
4037 up_write(&root->fs_info->subvol_sem);
4038 mnt_drop_write_file(file);
4039 return ret;
4040 }
4041
4042 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4043 {
4044 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4045 const char *label = root->fs_info->super_copy->label;
4046 size_t len = strnlen(label, BTRFS_LABEL_SIZE);
4047 int ret;
4048
4049 if (len == BTRFS_LABEL_SIZE) {
4050 pr_warn("btrfs: label is too long, return the first %zu bytes\n",
4051 --len);
4052 }
4053
4054 mutex_lock(&root->fs_info->volume_mutex);
4055 ret = copy_to_user(arg, label, len);
4056 mutex_unlock(&root->fs_info->volume_mutex);
4057
4058 return ret ? -EFAULT : 0;
4059 }
4060
4061 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4062 {
4063 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4064 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4065 struct btrfs_trans_handle *trans;
4066 char label[BTRFS_LABEL_SIZE];
4067 int ret;
4068
4069 if (!capable(CAP_SYS_ADMIN))
4070 return -EPERM;
4071
4072 if (copy_from_user(label, arg, sizeof(label)))
4073 return -EFAULT;
4074
4075 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4076 pr_err("btrfs: unable to set label with more than %d bytes\n",
4077 BTRFS_LABEL_SIZE - 1);
4078 return -EINVAL;
4079 }
4080
4081 ret = mnt_want_write_file(file);
4082 if (ret)
4083 return ret;
4084
4085 mutex_lock(&root->fs_info->volume_mutex);
4086 trans = btrfs_start_transaction(root, 0);
4087 if (IS_ERR(trans)) {
4088 ret = PTR_ERR(trans);
4089 goto out_unlock;
4090 }
4091
4092 strcpy(super_block->label, label);
4093 ret = btrfs_end_transaction(trans, root);
4094
4095 out_unlock:
4096 mutex_unlock(&root->fs_info->volume_mutex);
4097 mnt_drop_write_file(file);
4098 return ret;
4099 }
4100
4101 long btrfs_ioctl(struct file *file, unsigned int
4102 cmd, unsigned long arg)
4103 {
4104 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4105 void __user *argp = (void __user *)arg;
4106
4107 switch (cmd) {
4108 case FS_IOC_GETFLAGS:
4109 return btrfs_ioctl_getflags(file, argp);
4110 case FS_IOC_SETFLAGS:
4111 return btrfs_ioctl_setflags(file, argp);
4112 case FS_IOC_GETVERSION:
4113 return btrfs_ioctl_getversion(file, argp);
4114 case FITRIM:
4115 return btrfs_ioctl_fitrim(file, argp);
4116 case BTRFS_IOC_SNAP_CREATE:
4117 return btrfs_ioctl_snap_create(file, argp, 0);
4118 case BTRFS_IOC_SNAP_CREATE_V2:
4119 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4120 case BTRFS_IOC_SUBVOL_CREATE:
4121 return btrfs_ioctl_snap_create(file, argp, 1);
4122 case BTRFS_IOC_SUBVOL_CREATE_V2:
4123 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4124 case BTRFS_IOC_SNAP_DESTROY:
4125 return btrfs_ioctl_snap_destroy(file, argp);
4126 case BTRFS_IOC_SUBVOL_GETFLAGS:
4127 return btrfs_ioctl_subvol_getflags(file, argp);
4128 case BTRFS_IOC_SUBVOL_SETFLAGS:
4129 return btrfs_ioctl_subvol_setflags(file, argp);
4130 case BTRFS_IOC_DEFAULT_SUBVOL:
4131 return btrfs_ioctl_default_subvol(file, argp);
4132 case BTRFS_IOC_DEFRAG:
4133 return btrfs_ioctl_defrag(file, NULL);
4134 case BTRFS_IOC_DEFRAG_RANGE:
4135 return btrfs_ioctl_defrag(file, argp);
4136 case BTRFS_IOC_RESIZE:
4137 return btrfs_ioctl_resize(file, argp);
4138 case BTRFS_IOC_ADD_DEV:
4139 return btrfs_ioctl_add_dev(root, argp);
4140 case BTRFS_IOC_RM_DEV:
4141 return btrfs_ioctl_rm_dev(file, argp);
4142 case BTRFS_IOC_FS_INFO:
4143 return btrfs_ioctl_fs_info(root, argp);
4144 case BTRFS_IOC_DEV_INFO:
4145 return btrfs_ioctl_dev_info(root, argp);
4146 case BTRFS_IOC_BALANCE:
4147 return btrfs_ioctl_balance(file, NULL);
4148 case BTRFS_IOC_CLONE:
4149 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4150 case BTRFS_IOC_CLONE_RANGE:
4151 return btrfs_ioctl_clone_range(file, argp);
4152 case BTRFS_IOC_TRANS_START:
4153 return btrfs_ioctl_trans_start(file);
4154 case BTRFS_IOC_TRANS_END:
4155 return btrfs_ioctl_trans_end(file);
4156 case BTRFS_IOC_TREE_SEARCH:
4157 return btrfs_ioctl_tree_search(file, argp);
4158 case BTRFS_IOC_INO_LOOKUP:
4159 return btrfs_ioctl_ino_lookup(file, argp);
4160 case BTRFS_IOC_INO_PATHS:
4161 return btrfs_ioctl_ino_to_path(root, argp);
4162 case BTRFS_IOC_LOGICAL_INO:
4163 return btrfs_ioctl_logical_to_ino(root, argp);
4164 case BTRFS_IOC_SPACE_INFO:
4165 return btrfs_ioctl_space_info(root, argp);
4166 case BTRFS_IOC_SYNC:
4167 btrfs_sync_fs(file->f_dentry->d_sb, 1);
4168 return 0;
4169 case BTRFS_IOC_START_SYNC:
4170 return btrfs_ioctl_start_sync(root, argp);
4171 case BTRFS_IOC_WAIT_SYNC:
4172 return btrfs_ioctl_wait_sync(root, argp);
4173 case BTRFS_IOC_SCRUB:
4174 return btrfs_ioctl_scrub(file, argp);
4175 case BTRFS_IOC_SCRUB_CANCEL:
4176 return btrfs_ioctl_scrub_cancel(root, argp);
4177 case BTRFS_IOC_SCRUB_PROGRESS:
4178 return btrfs_ioctl_scrub_progress(root, argp);
4179 case BTRFS_IOC_BALANCE_V2:
4180 return btrfs_ioctl_balance(file, argp);
4181 case BTRFS_IOC_BALANCE_CTL:
4182 return btrfs_ioctl_balance_ctl(root, arg);
4183 case BTRFS_IOC_BALANCE_PROGRESS:
4184 return btrfs_ioctl_balance_progress(root, argp);
4185 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4186 return btrfs_ioctl_set_received_subvol(file, argp);
4187 case BTRFS_IOC_SEND:
4188 return btrfs_ioctl_send(file, argp);
4189 case BTRFS_IOC_GET_DEV_STATS:
4190 return btrfs_ioctl_get_dev_stats(root, argp);
4191 case BTRFS_IOC_QUOTA_CTL:
4192 return btrfs_ioctl_quota_ctl(file, argp);
4193 case BTRFS_IOC_QGROUP_ASSIGN:
4194 return btrfs_ioctl_qgroup_assign(file, argp);
4195 case BTRFS_IOC_QGROUP_CREATE:
4196 return btrfs_ioctl_qgroup_create(file, argp);
4197 case BTRFS_IOC_QGROUP_LIMIT:
4198 return btrfs_ioctl_qgroup_limit(file, argp);
4199 case BTRFS_IOC_QUOTA_RESCAN:
4200 return btrfs_ioctl_quota_rescan(file, argp);
4201 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4202 return btrfs_ioctl_quota_rescan_status(file, argp);
4203 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4204 return btrfs_ioctl_quota_rescan_wait(file, argp);
4205 case BTRFS_IOC_DEV_REPLACE:
4206 return btrfs_ioctl_dev_replace(root, argp);
4207 case BTRFS_IOC_GET_FSLABEL:
4208 return btrfs_ioctl_get_fslabel(file, argp);
4209 case BTRFS_IOC_SET_FSLABEL:
4210 return btrfs_ioctl_set_fslabel(file, argp);
4211 }
4212
4213 return -ENOTTY;
4214 }