]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/ioctl.c
Merge branch 'misc-4.6' into for-chris-4.6
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65 * structures are incorrect, as the timespec structure from userspace
66 * is 4 bytes too small. We define these alternatives here to teach
67 * the kernel about the 32-bit struct packing.
68 */
69 struct btrfs_ioctl_timespec_32 {
70 __u64 sec;
71 __u32 nsec;
72 } __attribute__ ((__packed__));
73
74 struct btrfs_ioctl_received_subvol_args_32 {
75 char uuid[BTRFS_UUID_SIZE]; /* in */
76 __u64 stransid; /* in */
77 __u64 rtransid; /* out */
78 struct btrfs_ioctl_timespec_32 stime; /* in */
79 struct btrfs_ioctl_timespec_32 rtime; /* out */
80 __u64 flags; /* in */
81 __u64 reserved[16]; /* in */
82 } __attribute__ ((__packed__));
83
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 struct btrfs_ioctl_received_subvol_args_32)
86 #endif
87
88
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
91 int no_time_update);
92
93 /* Mask out flags that are inappropriate for the given type of inode. */
94 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
95 {
96 if (S_ISDIR(mode))
97 return flags;
98 else if (S_ISREG(mode))
99 return flags & ~FS_DIRSYNC_FL;
100 else
101 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
102 }
103
104 /*
105 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
106 */
107 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
108 {
109 unsigned int iflags = 0;
110
111 if (flags & BTRFS_INODE_SYNC)
112 iflags |= FS_SYNC_FL;
113 if (flags & BTRFS_INODE_IMMUTABLE)
114 iflags |= FS_IMMUTABLE_FL;
115 if (flags & BTRFS_INODE_APPEND)
116 iflags |= FS_APPEND_FL;
117 if (flags & BTRFS_INODE_NODUMP)
118 iflags |= FS_NODUMP_FL;
119 if (flags & BTRFS_INODE_NOATIME)
120 iflags |= FS_NOATIME_FL;
121 if (flags & BTRFS_INODE_DIRSYNC)
122 iflags |= FS_DIRSYNC_FL;
123 if (flags & BTRFS_INODE_NODATACOW)
124 iflags |= FS_NOCOW_FL;
125
126 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
127 iflags |= FS_COMPR_FL;
128 else if (flags & BTRFS_INODE_NOCOMPRESS)
129 iflags |= FS_NOCOMP_FL;
130
131 return iflags;
132 }
133
134 /*
135 * Update inode->i_flags based on the btrfs internal flags.
136 */
137 void btrfs_update_iflags(struct inode *inode)
138 {
139 struct btrfs_inode *ip = BTRFS_I(inode);
140 unsigned int new_fl = 0;
141
142 if (ip->flags & BTRFS_INODE_SYNC)
143 new_fl |= S_SYNC;
144 if (ip->flags & BTRFS_INODE_IMMUTABLE)
145 new_fl |= S_IMMUTABLE;
146 if (ip->flags & BTRFS_INODE_APPEND)
147 new_fl |= S_APPEND;
148 if (ip->flags & BTRFS_INODE_NOATIME)
149 new_fl |= S_NOATIME;
150 if (ip->flags & BTRFS_INODE_DIRSYNC)
151 new_fl |= S_DIRSYNC;
152
153 set_mask_bits(&inode->i_flags,
154 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
155 new_fl);
156 }
157
158 /*
159 * Inherit flags from the parent inode.
160 *
161 * Currently only the compression flags and the cow flags are inherited.
162 */
163 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
164 {
165 unsigned int flags;
166
167 if (!dir)
168 return;
169
170 flags = BTRFS_I(dir)->flags;
171
172 if (flags & BTRFS_INODE_NOCOMPRESS) {
173 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
174 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
175 } else if (flags & BTRFS_INODE_COMPRESS) {
176 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
177 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
178 }
179
180 if (flags & BTRFS_INODE_NODATACOW) {
181 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
182 if (S_ISREG(inode->i_mode))
183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
184 }
185
186 btrfs_update_iflags(inode);
187 }
188
189 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
190 {
191 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
192 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
193
194 if (copy_to_user(arg, &flags, sizeof(flags)))
195 return -EFAULT;
196 return 0;
197 }
198
199 static int check_flags(unsigned int flags)
200 {
201 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
202 FS_NOATIME_FL | FS_NODUMP_FL | \
203 FS_SYNC_FL | FS_DIRSYNC_FL | \
204 FS_NOCOMP_FL | FS_COMPR_FL |
205 FS_NOCOW_FL))
206 return -EOPNOTSUPP;
207
208 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
209 return -EINVAL;
210
211 return 0;
212 }
213
214 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
215 {
216 struct inode *inode = file_inode(file);
217 struct btrfs_inode *ip = BTRFS_I(inode);
218 struct btrfs_root *root = ip->root;
219 struct btrfs_trans_handle *trans;
220 unsigned int flags, oldflags;
221 int ret;
222 u64 ip_oldflags;
223 unsigned int i_oldflags;
224 umode_t mode;
225
226 if (!inode_owner_or_capable(inode))
227 return -EPERM;
228
229 if (btrfs_root_readonly(root))
230 return -EROFS;
231
232 if (copy_from_user(&flags, arg, sizeof(flags)))
233 return -EFAULT;
234
235 ret = check_flags(flags);
236 if (ret)
237 return ret;
238
239 ret = mnt_want_write_file(file);
240 if (ret)
241 return ret;
242
243 inode_lock(inode);
244
245 ip_oldflags = ip->flags;
246 i_oldflags = inode->i_flags;
247 mode = inode->i_mode;
248
249 flags = btrfs_mask_flags(inode->i_mode, flags);
250 oldflags = btrfs_flags_to_ioctl(ip->flags);
251 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
252 if (!capable(CAP_LINUX_IMMUTABLE)) {
253 ret = -EPERM;
254 goto out_unlock;
255 }
256 }
257
258 if (flags & FS_SYNC_FL)
259 ip->flags |= BTRFS_INODE_SYNC;
260 else
261 ip->flags &= ~BTRFS_INODE_SYNC;
262 if (flags & FS_IMMUTABLE_FL)
263 ip->flags |= BTRFS_INODE_IMMUTABLE;
264 else
265 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
266 if (flags & FS_APPEND_FL)
267 ip->flags |= BTRFS_INODE_APPEND;
268 else
269 ip->flags &= ~BTRFS_INODE_APPEND;
270 if (flags & FS_NODUMP_FL)
271 ip->flags |= BTRFS_INODE_NODUMP;
272 else
273 ip->flags &= ~BTRFS_INODE_NODUMP;
274 if (flags & FS_NOATIME_FL)
275 ip->flags |= BTRFS_INODE_NOATIME;
276 else
277 ip->flags &= ~BTRFS_INODE_NOATIME;
278 if (flags & FS_DIRSYNC_FL)
279 ip->flags |= BTRFS_INODE_DIRSYNC;
280 else
281 ip->flags &= ~BTRFS_INODE_DIRSYNC;
282 if (flags & FS_NOCOW_FL) {
283 if (S_ISREG(mode)) {
284 /*
285 * It's safe to turn csums off here, no extents exist.
286 * Otherwise we want the flag to reflect the real COW
287 * status of the file and will not set it.
288 */
289 if (inode->i_size == 0)
290 ip->flags |= BTRFS_INODE_NODATACOW
291 | BTRFS_INODE_NODATASUM;
292 } else {
293 ip->flags |= BTRFS_INODE_NODATACOW;
294 }
295 } else {
296 /*
297 * Revert back under same assuptions as above
298 */
299 if (S_ISREG(mode)) {
300 if (inode->i_size == 0)
301 ip->flags &= ~(BTRFS_INODE_NODATACOW
302 | BTRFS_INODE_NODATASUM);
303 } else {
304 ip->flags &= ~BTRFS_INODE_NODATACOW;
305 }
306 }
307
308 /*
309 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
310 * flag may be changed automatically if compression code won't make
311 * things smaller.
312 */
313 if (flags & FS_NOCOMP_FL) {
314 ip->flags &= ~BTRFS_INODE_COMPRESS;
315 ip->flags |= BTRFS_INODE_NOCOMPRESS;
316
317 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
318 if (ret && ret != -ENODATA)
319 goto out_drop;
320 } else if (flags & FS_COMPR_FL) {
321 const char *comp;
322
323 ip->flags |= BTRFS_INODE_COMPRESS;
324 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
325
326 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
327 comp = "lzo";
328 else
329 comp = "zlib";
330 ret = btrfs_set_prop(inode, "btrfs.compression",
331 comp, strlen(comp), 0);
332 if (ret)
333 goto out_drop;
334
335 } else {
336 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
337 if (ret && ret != -ENODATA)
338 goto out_drop;
339 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
340 }
341
342 trans = btrfs_start_transaction(root, 1);
343 if (IS_ERR(trans)) {
344 ret = PTR_ERR(trans);
345 goto out_drop;
346 }
347
348 btrfs_update_iflags(inode);
349 inode_inc_iversion(inode);
350 inode->i_ctime = current_fs_time(inode->i_sb);
351 ret = btrfs_update_inode(trans, root, inode);
352
353 btrfs_end_transaction(trans, root);
354 out_drop:
355 if (ret) {
356 ip->flags = ip_oldflags;
357 inode->i_flags = i_oldflags;
358 }
359
360 out_unlock:
361 inode_unlock(inode);
362 mnt_drop_write_file(file);
363 return ret;
364 }
365
366 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
367 {
368 struct inode *inode = file_inode(file);
369
370 return put_user(inode->i_generation, arg);
371 }
372
373 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
374 {
375 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
376 struct btrfs_device *device;
377 struct request_queue *q;
378 struct fstrim_range range;
379 u64 minlen = ULLONG_MAX;
380 u64 num_devices = 0;
381 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
382 int ret;
383
384 if (!capable(CAP_SYS_ADMIN))
385 return -EPERM;
386
387 rcu_read_lock();
388 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
389 dev_list) {
390 if (!device->bdev)
391 continue;
392 q = bdev_get_queue(device->bdev);
393 if (blk_queue_discard(q)) {
394 num_devices++;
395 minlen = min((u64)q->limits.discard_granularity,
396 minlen);
397 }
398 }
399 rcu_read_unlock();
400
401 if (!num_devices)
402 return -EOPNOTSUPP;
403 if (copy_from_user(&range, arg, sizeof(range)))
404 return -EFAULT;
405 if (range.start > total_bytes ||
406 range.len < fs_info->sb->s_blocksize)
407 return -EINVAL;
408
409 range.len = min(range.len, total_bytes - range.start);
410 range.minlen = max(range.minlen, minlen);
411 ret = btrfs_trim_fs(fs_info->tree_root, &range);
412 if (ret < 0)
413 return ret;
414
415 if (copy_to_user(arg, &range, sizeof(range)))
416 return -EFAULT;
417
418 return 0;
419 }
420
421 int btrfs_is_empty_uuid(u8 *uuid)
422 {
423 int i;
424
425 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
426 if (uuid[i])
427 return 0;
428 }
429 return 1;
430 }
431
432 static noinline int create_subvol(struct inode *dir,
433 struct dentry *dentry,
434 char *name, int namelen,
435 u64 *async_transid,
436 struct btrfs_qgroup_inherit *inherit)
437 {
438 struct btrfs_trans_handle *trans;
439 struct btrfs_key key;
440 struct btrfs_root_item root_item;
441 struct btrfs_inode_item *inode_item;
442 struct extent_buffer *leaf;
443 struct btrfs_root *root = BTRFS_I(dir)->root;
444 struct btrfs_root *new_root;
445 struct btrfs_block_rsv block_rsv;
446 struct timespec cur_time = current_fs_time(dir->i_sb);
447 struct inode *inode;
448 int ret;
449 int err;
450 u64 objectid;
451 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
452 u64 index = 0;
453 u64 qgroup_reserved;
454 uuid_le new_uuid;
455
456 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
457 if (ret)
458 return ret;
459
460 /*
461 * Don't create subvolume whose level is not zero. Or qgroup will be
462 * screwed up since it assume subvolme qgroup's level to be 0.
463 */
464 if (btrfs_qgroup_level(objectid))
465 return -ENOSPC;
466
467 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
468 /*
469 * The same as the snapshot creation, please see the comment
470 * of create_snapshot().
471 */
472 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
473 8, &qgroup_reserved, false);
474 if (ret)
475 return ret;
476
477 trans = btrfs_start_transaction(root, 0);
478 if (IS_ERR(trans)) {
479 ret = PTR_ERR(trans);
480 btrfs_subvolume_release_metadata(root, &block_rsv,
481 qgroup_reserved);
482 return ret;
483 }
484 trans->block_rsv = &block_rsv;
485 trans->bytes_reserved = block_rsv.size;
486
487 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
488 if (ret)
489 goto fail;
490
491 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
492 if (IS_ERR(leaf)) {
493 ret = PTR_ERR(leaf);
494 goto fail;
495 }
496
497 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
498 btrfs_set_header_bytenr(leaf, leaf->start);
499 btrfs_set_header_generation(leaf, trans->transid);
500 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
501 btrfs_set_header_owner(leaf, objectid);
502
503 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
504 BTRFS_FSID_SIZE);
505 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
506 btrfs_header_chunk_tree_uuid(leaf),
507 BTRFS_UUID_SIZE);
508 btrfs_mark_buffer_dirty(leaf);
509
510 memset(&root_item, 0, sizeof(root_item));
511
512 inode_item = &root_item.inode;
513 btrfs_set_stack_inode_generation(inode_item, 1);
514 btrfs_set_stack_inode_size(inode_item, 3);
515 btrfs_set_stack_inode_nlink(inode_item, 1);
516 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
517 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
518
519 btrfs_set_root_flags(&root_item, 0);
520 btrfs_set_root_limit(&root_item, 0);
521 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
522
523 btrfs_set_root_bytenr(&root_item, leaf->start);
524 btrfs_set_root_generation(&root_item, trans->transid);
525 btrfs_set_root_level(&root_item, 0);
526 btrfs_set_root_refs(&root_item, 1);
527 btrfs_set_root_used(&root_item, leaf->len);
528 btrfs_set_root_last_snapshot(&root_item, 0);
529
530 btrfs_set_root_generation_v2(&root_item,
531 btrfs_root_generation(&root_item));
532 uuid_le_gen(&new_uuid);
533 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
534 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
535 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
536 root_item.ctime = root_item.otime;
537 btrfs_set_root_ctransid(&root_item, trans->transid);
538 btrfs_set_root_otransid(&root_item, trans->transid);
539
540 btrfs_tree_unlock(leaf);
541 free_extent_buffer(leaf);
542 leaf = NULL;
543
544 btrfs_set_root_dirid(&root_item, new_dirid);
545
546 key.objectid = objectid;
547 key.offset = 0;
548 key.type = BTRFS_ROOT_ITEM_KEY;
549 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
550 &root_item);
551 if (ret)
552 goto fail;
553
554 key.offset = (u64)-1;
555 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
556 if (IS_ERR(new_root)) {
557 ret = PTR_ERR(new_root);
558 btrfs_abort_transaction(trans, root, ret);
559 goto fail;
560 }
561
562 btrfs_record_root_in_trans(trans, new_root);
563
564 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
565 if (ret) {
566 /* We potentially lose an unused inode item here */
567 btrfs_abort_transaction(trans, root, ret);
568 goto fail;
569 }
570
571 mutex_lock(&new_root->objectid_mutex);
572 new_root->highest_objectid = new_dirid;
573 mutex_unlock(&new_root->objectid_mutex);
574
575 /*
576 * insert the directory item
577 */
578 ret = btrfs_set_inode_index(dir, &index);
579 if (ret) {
580 btrfs_abort_transaction(trans, root, ret);
581 goto fail;
582 }
583
584 ret = btrfs_insert_dir_item(trans, root,
585 name, namelen, dir, &key,
586 BTRFS_FT_DIR, index);
587 if (ret) {
588 btrfs_abort_transaction(trans, root, ret);
589 goto fail;
590 }
591
592 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
593 ret = btrfs_update_inode(trans, root, dir);
594 BUG_ON(ret);
595
596 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
597 objectid, root->root_key.objectid,
598 btrfs_ino(dir), index, name, namelen);
599 BUG_ON(ret);
600
601 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
602 root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
603 objectid);
604 if (ret)
605 btrfs_abort_transaction(trans, root, ret);
606
607 fail:
608 trans->block_rsv = NULL;
609 trans->bytes_reserved = 0;
610 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
611
612 if (async_transid) {
613 *async_transid = trans->transid;
614 err = btrfs_commit_transaction_async(trans, root, 1);
615 if (err)
616 err = btrfs_commit_transaction(trans, root);
617 } else {
618 err = btrfs_commit_transaction(trans, root);
619 }
620 if (err && !ret)
621 ret = err;
622
623 if (!ret) {
624 inode = btrfs_lookup_dentry(dir, dentry);
625 if (IS_ERR(inode))
626 return PTR_ERR(inode);
627 d_instantiate(dentry, inode);
628 }
629 return ret;
630 }
631
632 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
633 {
634 s64 writers;
635 DEFINE_WAIT(wait);
636
637 do {
638 prepare_to_wait(&root->subv_writers->wait, &wait,
639 TASK_UNINTERRUPTIBLE);
640
641 writers = percpu_counter_sum(&root->subv_writers->counter);
642 if (writers)
643 schedule();
644
645 finish_wait(&root->subv_writers->wait, &wait);
646 } while (writers);
647 }
648
649 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
650 struct dentry *dentry, char *name, int namelen,
651 u64 *async_transid, bool readonly,
652 struct btrfs_qgroup_inherit *inherit)
653 {
654 struct inode *inode;
655 struct btrfs_pending_snapshot *pending_snapshot;
656 struct btrfs_trans_handle *trans;
657 int ret;
658
659 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
660 return -EINVAL;
661
662 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
663 if (!pending_snapshot)
664 return -ENOMEM;
665
666 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
667 GFP_NOFS);
668 pending_snapshot->path = btrfs_alloc_path();
669 if (!pending_snapshot->root_item || !pending_snapshot->path) {
670 ret = -ENOMEM;
671 goto free_pending;
672 }
673
674 atomic_inc(&root->will_be_snapshoted);
675 smp_mb__after_atomic();
676 btrfs_wait_for_no_snapshoting_writes(root);
677
678 ret = btrfs_start_delalloc_inodes(root, 0);
679 if (ret)
680 goto dec_and_free;
681
682 btrfs_wait_ordered_extents(root, -1);
683
684 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
685 BTRFS_BLOCK_RSV_TEMP);
686 /*
687 * 1 - parent dir inode
688 * 2 - dir entries
689 * 1 - root item
690 * 2 - root ref/backref
691 * 1 - root of snapshot
692 * 1 - UUID item
693 */
694 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
695 &pending_snapshot->block_rsv, 8,
696 &pending_snapshot->qgroup_reserved,
697 false);
698 if (ret)
699 goto dec_and_free;
700
701 pending_snapshot->dentry = dentry;
702 pending_snapshot->root = root;
703 pending_snapshot->readonly = readonly;
704 pending_snapshot->dir = dir;
705 pending_snapshot->inherit = inherit;
706
707 trans = btrfs_start_transaction(root, 0);
708 if (IS_ERR(trans)) {
709 ret = PTR_ERR(trans);
710 goto fail;
711 }
712
713 spin_lock(&root->fs_info->trans_lock);
714 list_add(&pending_snapshot->list,
715 &trans->transaction->pending_snapshots);
716 spin_unlock(&root->fs_info->trans_lock);
717 if (async_transid) {
718 *async_transid = trans->transid;
719 ret = btrfs_commit_transaction_async(trans,
720 root->fs_info->extent_root, 1);
721 if (ret)
722 ret = btrfs_commit_transaction(trans, root);
723 } else {
724 ret = btrfs_commit_transaction(trans,
725 root->fs_info->extent_root);
726 }
727 if (ret)
728 goto fail;
729
730 ret = pending_snapshot->error;
731 if (ret)
732 goto fail;
733
734 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
735 if (ret)
736 goto fail;
737
738 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
739 if (IS_ERR(inode)) {
740 ret = PTR_ERR(inode);
741 goto fail;
742 }
743
744 d_instantiate(dentry, inode);
745 ret = 0;
746 fail:
747 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
748 &pending_snapshot->block_rsv,
749 pending_snapshot->qgroup_reserved);
750 dec_and_free:
751 if (atomic_dec_and_test(&root->will_be_snapshoted))
752 wake_up_atomic_t(&root->will_be_snapshoted);
753 free_pending:
754 kfree(pending_snapshot->root_item);
755 btrfs_free_path(pending_snapshot->path);
756 kfree(pending_snapshot);
757
758 return ret;
759 }
760
761 /* copy of may_delete in fs/namei.c()
762 * Check whether we can remove a link victim from directory dir, check
763 * whether the type of victim is right.
764 * 1. We can't do it if dir is read-only (done in permission())
765 * 2. We should have write and exec permissions on dir
766 * 3. We can't remove anything from append-only dir
767 * 4. We can't do anything with immutable dir (done in permission())
768 * 5. If the sticky bit on dir is set we should either
769 * a. be owner of dir, or
770 * b. be owner of victim, or
771 * c. have CAP_FOWNER capability
772 * 6. If the victim is append-only or immutable we can't do antyhing with
773 * links pointing to it.
774 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
775 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
776 * 9. We can't remove a root or mountpoint.
777 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
778 * nfs_async_unlink().
779 */
780
781 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
782 {
783 int error;
784
785 if (d_really_is_negative(victim))
786 return -ENOENT;
787
788 BUG_ON(d_inode(victim->d_parent) != dir);
789 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
790
791 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
792 if (error)
793 return error;
794 if (IS_APPEND(dir))
795 return -EPERM;
796 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
797 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
798 return -EPERM;
799 if (isdir) {
800 if (!d_is_dir(victim))
801 return -ENOTDIR;
802 if (IS_ROOT(victim))
803 return -EBUSY;
804 } else if (d_is_dir(victim))
805 return -EISDIR;
806 if (IS_DEADDIR(dir))
807 return -ENOENT;
808 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
809 return -EBUSY;
810 return 0;
811 }
812
813 /* copy of may_create in fs/namei.c() */
814 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
815 {
816 if (d_really_is_positive(child))
817 return -EEXIST;
818 if (IS_DEADDIR(dir))
819 return -ENOENT;
820 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
821 }
822
823 /*
824 * Create a new subvolume below @parent. This is largely modeled after
825 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
826 * inside this filesystem so it's quite a bit simpler.
827 */
828 static noinline int btrfs_mksubvol(struct path *parent,
829 char *name, int namelen,
830 struct btrfs_root *snap_src,
831 u64 *async_transid, bool readonly,
832 struct btrfs_qgroup_inherit *inherit)
833 {
834 struct inode *dir = d_inode(parent->dentry);
835 struct dentry *dentry;
836 int error;
837
838 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
839 if (error == -EINTR)
840 return error;
841
842 dentry = lookup_one_len(name, parent->dentry, namelen);
843 error = PTR_ERR(dentry);
844 if (IS_ERR(dentry))
845 goto out_unlock;
846
847 error = btrfs_may_create(dir, dentry);
848 if (error)
849 goto out_dput;
850
851 /*
852 * even if this name doesn't exist, we may get hash collisions.
853 * check for them now when we can safely fail
854 */
855 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
856 dir->i_ino, name,
857 namelen);
858 if (error)
859 goto out_dput;
860
861 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
862
863 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
864 goto out_up_read;
865
866 if (snap_src) {
867 error = create_snapshot(snap_src, dir, dentry, name, namelen,
868 async_transid, readonly, inherit);
869 } else {
870 error = create_subvol(dir, dentry, name, namelen,
871 async_transid, inherit);
872 }
873 if (!error)
874 fsnotify_mkdir(dir, dentry);
875 out_up_read:
876 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
877 out_dput:
878 dput(dentry);
879 out_unlock:
880 inode_unlock(dir);
881 return error;
882 }
883
884 /*
885 * When we're defragging a range, we don't want to kick it off again
886 * if it is really just waiting for delalloc to send it down.
887 * If we find a nice big extent or delalloc range for the bytes in the
888 * file you want to defrag, we return 0 to let you know to skip this
889 * part of the file
890 */
891 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
892 {
893 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
894 struct extent_map *em = NULL;
895 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
896 u64 end;
897
898 read_lock(&em_tree->lock);
899 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
900 read_unlock(&em_tree->lock);
901
902 if (em) {
903 end = extent_map_end(em);
904 free_extent_map(em);
905 if (end - offset > thresh)
906 return 0;
907 }
908 /* if we already have a nice delalloc here, just stop */
909 thresh /= 2;
910 end = count_range_bits(io_tree, &offset, offset + thresh,
911 thresh, EXTENT_DELALLOC, 1);
912 if (end >= thresh)
913 return 0;
914 return 1;
915 }
916
917 /*
918 * helper function to walk through a file and find extents
919 * newer than a specific transid, and smaller than thresh.
920 *
921 * This is used by the defragging code to find new and small
922 * extents
923 */
924 static int find_new_extents(struct btrfs_root *root,
925 struct inode *inode, u64 newer_than,
926 u64 *off, u32 thresh)
927 {
928 struct btrfs_path *path;
929 struct btrfs_key min_key;
930 struct extent_buffer *leaf;
931 struct btrfs_file_extent_item *extent;
932 int type;
933 int ret;
934 u64 ino = btrfs_ino(inode);
935
936 path = btrfs_alloc_path();
937 if (!path)
938 return -ENOMEM;
939
940 min_key.objectid = ino;
941 min_key.type = BTRFS_EXTENT_DATA_KEY;
942 min_key.offset = *off;
943
944 while (1) {
945 ret = btrfs_search_forward(root, &min_key, path, newer_than);
946 if (ret != 0)
947 goto none;
948 process_slot:
949 if (min_key.objectid != ino)
950 goto none;
951 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
952 goto none;
953
954 leaf = path->nodes[0];
955 extent = btrfs_item_ptr(leaf, path->slots[0],
956 struct btrfs_file_extent_item);
957
958 type = btrfs_file_extent_type(leaf, extent);
959 if (type == BTRFS_FILE_EXTENT_REG &&
960 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
961 check_defrag_in_cache(inode, min_key.offset, thresh)) {
962 *off = min_key.offset;
963 btrfs_free_path(path);
964 return 0;
965 }
966
967 path->slots[0]++;
968 if (path->slots[0] < btrfs_header_nritems(leaf)) {
969 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
970 goto process_slot;
971 }
972
973 if (min_key.offset == (u64)-1)
974 goto none;
975
976 min_key.offset++;
977 btrfs_release_path(path);
978 }
979 none:
980 btrfs_free_path(path);
981 return -ENOENT;
982 }
983
984 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
985 {
986 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
987 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
988 struct extent_map *em;
989 u64 len = PAGE_CACHE_SIZE;
990
991 /*
992 * hopefully we have this extent in the tree already, try without
993 * the full extent lock
994 */
995 read_lock(&em_tree->lock);
996 em = lookup_extent_mapping(em_tree, start, len);
997 read_unlock(&em_tree->lock);
998
999 if (!em) {
1000 struct extent_state *cached = NULL;
1001 u64 end = start + len - 1;
1002
1003 /* get the big lock and read metadata off disk */
1004 lock_extent_bits(io_tree, start, end, &cached);
1005 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1006 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1007
1008 if (IS_ERR(em))
1009 return NULL;
1010 }
1011
1012 return em;
1013 }
1014
1015 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1016 {
1017 struct extent_map *next;
1018 bool ret = true;
1019
1020 /* this is the last extent */
1021 if (em->start + em->len >= i_size_read(inode))
1022 return false;
1023
1024 next = defrag_lookup_extent(inode, em->start + em->len);
1025 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1026 ret = false;
1027 else if ((em->block_start + em->block_len == next->block_start) &&
1028 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1029 ret = false;
1030
1031 free_extent_map(next);
1032 return ret;
1033 }
1034
1035 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1036 u64 *last_len, u64 *skip, u64 *defrag_end,
1037 int compress)
1038 {
1039 struct extent_map *em;
1040 int ret = 1;
1041 bool next_mergeable = true;
1042 bool prev_mergeable = true;
1043
1044 /*
1045 * make sure that once we start defragging an extent, we keep on
1046 * defragging it
1047 */
1048 if (start < *defrag_end)
1049 return 1;
1050
1051 *skip = 0;
1052
1053 em = defrag_lookup_extent(inode, start);
1054 if (!em)
1055 return 0;
1056
1057 /* this will cover holes, and inline extents */
1058 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1059 ret = 0;
1060 goto out;
1061 }
1062
1063 if (!*defrag_end)
1064 prev_mergeable = false;
1065
1066 next_mergeable = defrag_check_next_extent(inode, em);
1067 /*
1068 * we hit a real extent, if it is big or the next extent is not a
1069 * real extent, don't bother defragging it
1070 */
1071 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1072 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1073 ret = 0;
1074 out:
1075 /*
1076 * last_len ends up being a counter of how many bytes we've defragged.
1077 * every time we choose not to defrag an extent, we reset *last_len
1078 * so that the next tiny extent will force a defrag.
1079 *
1080 * The end result of this is that tiny extents before a single big
1081 * extent will force at least part of that big extent to be defragged.
1082 */
1083 if (ret) {
1084 *defrag_end = extent_map_end(em);
1085 } else {
1086 *last_len = 0;
1087 *skip = extent_map_end(em);
1088 *defrag_end = 0;
1089 }
1090
1091 free_extent_map(em);
1092 return ret;
1093 }
1094
1095 /*
1096 * it doesn't do much good to defrag one or two pages
1097 * at a time. This pulls in a nice chunk of pages
1098 * to COW and defrag.
1099 *
1100 * It also makes sure the delalloc code has enough
1101 * dirty data to avoid making new small extents as part
1102 * of the defrag
1103 *
1104 * It's a good idea to start RA on this range
1105 * before calling this.
1106 */
1107 static int cluster_pages_for_defrag(struct inode *inode,
1108 struct page **pages,
1109 unsigned long start_index,
1110 unsigned long num_pages)
1111 {
1112 unsigned long file_end;
1113 u64 isize = i_size_read(inode);
1114 u64 page_start;
1115 u64 page_end;
1116 u64 page_cnt;
1117 int ret;
1118 int i;
1119 int i_done;
1120 struct btrfs_ordered_extent *ordered;
1121 struct extent_state *cached_state = NULL;
1122 struct extent_io_tree *tree;
1123 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1124
1125 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1126 if (!isize || start_index > file_end)
1127 return 0;
1128
1129 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1130
1131 ret = btrfs_delalloc_reserve_space(inode,
1132 start_index << PAGE_CACHE_SHIFT,
1133 page_cnt << PAGE_CACHE_SHIFT);
1134 if (ret)
1135 return ret;
1136 i_done = 0;
1137 tree = &BTRFS_I(inode)->io_tree;
1138
1139 /* step one, lock all the pages */
1140 for (i = 0; i < page_cnt; i++) {
1141 struct page *page;
1142 again:
1143 page = find_or_create_page(inode->i_mapping,
1144 start_index + i, mask);
1145 if (!page)
1146 break;
1147
1148 page_start = page_offset(page);
1149 page_end = page_start + PAGE_CACHE_SIZE - 1;
1150 while (1) {
1151 lock_extent_bits(tree, page_start, page_end,
1152 &cached_state);
1153 ordered = btrfs_lookup_ordered_extent(inode,
1154 page_start);
1155 unlock_extent_cached(tree, page_start, page_end,
1156 &cached_state, GFP_NOFS);
1157 if (!ordered)
1158 break;
1159
1160 unlock_page(page);
1161 btrfs_start_ordered_extent(inode, ordered, 1);
1162 btrfs_put_ordered_extent(ordered);
1163 lock_page(page);
1164 /*
1165 * we unlocked the page above, so we need check if
1166 * it was released or not.
1167 */
1168 if (page->mapping != inode->i_mapping) {
1169 unlock_page(page);
1170 page_cache_release(page);
1171 goto again;
1172 }
1173 }
1174
1175 if (!PageUptodate(page)) {
1176 btrfs_readpage(NULL, page);
1177 lock_page(page);
1178 if (!PageUptodate(page)) {
1179 unlock_page(page);
1180 page_cache_release(page);
1181 ret = -EIO;
1182 break;
1183 }
1184 }
1185
1186 if (page->mapping != inode->i_mapping) {
1187 unlock_page(page);
1188 page_cache_release(page);
1189 goto again;
1190 }
1191
1192 pages[i] = page;
1193 i_done++;
1194 }
1195 if (!i_done || ret)
1196 goto out;
1197
1198 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1199 goto out;
1200
1201 /*
1202 * so now we have a nice long stream of locked
1203 * and up to date pages, lets wait on them
1204 */
1205 for (i = 0; i < i_done; i++)
1206 wait_on_page_writeback(pages[i]);
1207
1208 page_start = page_offset(pages[0]);
1209 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1210
1211 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1212 page_start, page_end - 1, &cached_state);
1213 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1214 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1215 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1216 &cached_state, GFP_NOFS);
1217
1218 if (i_done != page_cnt) {
1219 spin_lock(&BTRFS_I(inode)->lock);
1220 BTRFS_I(inode)->outstanding_extents++;
1221 spin_unlock(&BTRFS_I(inode)->lock);
1222 btrfs_delalloc_release_space(inode,
1223 start_index << PAGE_CACHE_SHIFT,
1224 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1225 }
1226
1227
1228 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1229 &cached_state, GFP_NOFS);
1230
1231 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1232 page_start, page_end - 1, &cached_state,
1233 GFP_NOFS);
1234
1235 for (i = 0; i < i_done; i++) {
1236 clear_page_dirty_for_io(pages[i]);
1237 ClearPageChecked(pages[i]);
1238 set_page_extent_mapped(pages[i]);
1239 set_page_dirty(pages[i]);
1240 unlock_page(pages[i]);
1241 page_cache_release(pages[i]);
1242 }
1243 return i_done;
1244 out:
1245 for (i = 0; i < i_done; i++) {
1246 unlock_page(pages[i]);
1247 page_cache_release(pages[i]);
1248 }
1249 btrfs_delalloc_release_space(inode,
1250 start_index << PAGE_CACHE_SHIFT,
1251 page_cnt << PAGE_CACHE_SHIFT);
1252 return ret;
1253
1254 }
1255
1256 int btrfs_defrag_file(struct inode *inode, struct file *file,
1257 struct btrfs_ioctl_defrag_range_args *range,
1258 u64 newer_than, unsigned long max_to_defrag)
1259 {
1260 struct btrfs_root *root = BTRFS_I(inode)->root;
1261 struct file_ra_state *ra = NULL;
1262 unsigned long last_index;
1263 u64 isize = i_size_read(inode);
1264 u64 last_len = 0;
1265 u64 skip = 0;
1266 u64 defrag_end = 0;
1267 u64 newer_off = range->start;
1268 unsigned long i;
1269 unsigned long ra_index = 0;
1270 int ret;
1271 int defrag_count = 0;
1272 int compress_type = BTRFS_COMPRESS_ZLIB;
1273 u32 extent_thresh = range->extent_thresh;
1274 unsigned long max_cluster = SZ_256K >> PAGE_CACHE_SHIFT;
1275 unsigned long cluster = max_cluster;
1276 u64 new_align = ~((u64)SZ_128K - 1);
1277 struct page **pages = NULL;
1278
1279 if (isize == 0)
1280 return 0;
1281
1282 if (range->start >= isize)
1283 return -EINVAL;
1284
1285 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1286 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1287 return -EINVAL;
1288 if (range->compress_type)
1289 compress_type = range->compress_type;
1290 }
1291
1292 if (extent_thresh == 0)
1293 extent_thresh = SZ_256K;
1294
1295 /*
1296 * if we were not given a file, allocate a readahead
1297 * context
1298 */
1299 if (!file) {
1300 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1301 if (!ra)
1302 return -ENOMEM;
1303 file_ra_state_init(ra, inode->i_mapping);
1304 } else {
1305 ra = &file->f_ra;
1306 }
1307
1308 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1309 GFP_NOFS);
1310 if (!pages) {
1311 ret = -ENOMEM;
1312 goto out_ra;
1313 }
1314
1315 /* find the last page to defrag */
1316 if (range->start + range->len > range->start) {
1317 last_index = min_t(u64, isize - 1,
1318 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1319 } else {
1320 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1321 }
1322
1323 if (newer_than) {
1324 ret = find_new_extents(root, inode, newer_than,
1325 &newer_off, SZ_64K);
1326 if (!ret) {
1327 range->start = newer_off;
1328 /*
1329 * we always align our defrag to help keep
1330 * the extents in the file evenly spaced
1331 */
1332 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1333 } else
1334 goto out_ra;
1335 } else {
1336 i = range->start >> PAGE_CACHE_SHIFT;
1337 }
1338 if (!max_to_defrag)
1339 max_to_defrag = last_index - i + 1;
1340
1341 /*
1342 * make writeback starts from i, so the defrag range can be
1343 * written sequentially.
1344 */
1345 if (i < inode->i_mapping->writeback_index)
1346 inode->i_mapping->writeback_index = i;
1347
1348 while (i <= last_index && defrag_count < max_to_defrag &&
1349 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1350 /*
1351 * make sure we stop running if someone unmounts
1352 * the FS
1353 */
1354 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1355 break;
1356
1357 if (btrfs_defrag_cancelled(root->fs_info)) {
1358 btrfs_debug(root->fs_info, "defrag_file cancelled");
1359 ret = -EAGAIN;
1360 break;
1361 }
1362
1363 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1364 extent_thresh, &last_len, &skip,
1365 &defrag_end, range->flags &
1366 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1367 unsigned long next;
1368 /*
1369 * the should_defrag function tells us how much to skip
1370 * bump our counter by the suggested amount
1371 */
1372 next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1373 i = max(i + 1, next);
1374 continue;
1375 }
1376
1377 if (!newer_than) {
1378 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1379 PAGE_CACHE_SHIFT) - i;
1380 cluster = min(cluster, max_cluster);
1381 } else {
1382 cluster = max_cluster;
1383 }
1384
1385 if (i + cluster > ra_index) {
1386 ra_index = max(i, ra_index);
1387 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1388 cluster);
1389 ra_index += cluster;
1390 }
1391
1392 inode_lock(inode);
1393 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1394 BTRFS_I(inode)->force_compress = compress_type;
1395 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1396 if (ret < 0) {
1397 inode_unlock(inode);
1398 goto out_ra;
1399 }
1400
1401 defrag_count += ret;
1402 balance_dirty_pages_ratelimited(inode->i_mapping);
1403 inode_unlock(inode);
1404
1405 if (newer_than) {
1406 if (newer_off == (u64)-1)
1407 break;
1408
1409 if (ret > 0)
1410 i += ret;
1411
1412 newer_off = max(newer_off + 1,
1413 (u64)i << PAGE_CACHE_SHIFT);
1414
1415 ret = find_new_extents(root, inode, newer_than,
1416 &newer_off, SZ_64K);
1417 if (!ret) {
1418 range->start = newer_off;
1419 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1420 } else {
1421 break;
1422 }
1423 } else {
1424 if (ret > 0) {
1425 i += ret;
1426 last_len += ret << PAGE_CACHE_SHIFT;
1427 } else {
1428 i++;
1429 last_len = 0;
1430 }
1431 }
1432 }
1433
1434 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1435 filemap_flush(inode->i_mapping);
1436 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1437 &BTRFS_I(inode)->runtime_flags))
1438 filemap_flush(inode->i_mapping);
1439 }
1440
1441 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1442 /* the filemap_flush will queue IO into the worker threads, but
1443 * we have to make sure the IO is actually started and that
1444 * ordered extents get created before we return
1445 */
1446 atomic_inc(&root->fs_info->async_submit_draining);
1447 while (atomic_read(&root->fs_info->nr_async_submits) ||
1448 atomic_read(&root->fs_info->async_delalloc_pages)) {
1449 wait_event(root->fs_info->async_submit_wait,
1450 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1451 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1452 }
1453 atomic_dec(&root->fs_info->async_submit_draining);
1454 }
1455
1456 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1457 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1458 }
1459
1460 ret = defrag_count;
1461
1462 out_ra:
1463 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1464 inode_lock(inode);
1465 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1466 inode_unlock(inode);
1467 }
1468 if (!file)
1469 kfree(ra);
1470 kfree(pages);
1471 return ret;
1472 }
1473
1474 static noinline int btrfs_ioctl_resize(struct file *file,
1475 void __user *arg)
1476 {
1477 u64 new_size;
1478 u64 old_size;
1479 u64 devid = 1;
1480 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1481 struct btrfs_ioctl_vol_args *vol_args;
1482 struct btrfs_trans_handle *trans;
1483 struct btrfs_device *device = NULL;
1484 char *sizestr;
1485 char *retptr;
1486 char *devstr = NULL;
1487 int ret = 0;
1488 int mod = 0;
1489
1490 if (!capable(CAP_SYS_ADMIN))
1491 return -EPERM;
1492
1493 ret = mnt_want_write_file(file);
1494 if (ret)
1495 return ret;
1496
1497 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1498 1)) {
1499 mnt_drop_write_file(file);
1500 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1501 }
1502
1503 mutex_lock(&root->fs_info->volume_mutex);
1504 vol_args = memdup_user(arg, sizeof(*vol_args));
1505 if (IS_ERR(vol_args)) {
1506 ret = PTR_ERR(vol_args);
1507 goto out;
1508 }
1509
1510 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1511
1512 sizestr = vol_args->name;
1513 devstr = strchr(sizestr, ':');
1514 if (devstr) {
1515 sizestr = devstr + 1;
1516 *devstr = '\0';
1517 devstr = vol_args->name;
1518 ret = kstrtoull(devstr, 10, &devid);
1519 if (ret)
1520 goto out_free;
1521 if (!devid) {
1522 ret = -EINVAL;
1523 goto out_free;
1524 }
1525 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1526 }
1527
1528 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1529 if (!device) {
1530 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1531 devid);
1532 ret = -ENODEV;
1533 goto out_free;
1534 }
1535
1536 if (!device->writeable) {
1537 btrfs_info(root->fs_info,
1538 "resizer unable to apply on readonly device %llu",
1539 devid);
1540 ret = -EPERM;
1541 goto out_free;
1542 }
1543
1544 if (!strcmp(sizestr, "max"))
1545 new_size = device->bdev->bd_inode->i_size;
1546 else {
1547 if (sizestr[0] == '-') {
1548 mod = -1;
1549 sizestr++;
1550 } else if (sizestr[0] == '+') {
1551 mod = 1;
1552 sizestr++;
1553 }
1554 new_size = memparse(sizestr, &retptr);
1555 if (*retptr != '\0' || new_size == 0) {
1556 ret = -EINVAL;
1557 goto out_free;
1558 }
1559 }
1560
1561 if (device->is_tgtdev_for_dev_replace) {
1562 ret = -EPERM;
1563 goto out_free;
1564 }
1565
1566 old_size = btrfs_device_get_total_bytes(device);
1567
1568 if (mod < 0) {
1569 if (new_size > old_size) {
1570 ret = -EINVAL;
1571 goto out_free;
1572 }
1573 new_size = old_size - new_size;
1574 } else if (mod > 0) {
1575 if (new_size > ULLONG_MAX - old_size) {
1576 ret = -ERANGE;
1577 goto out_free;
1578 }
1579 new_size = old_size + new_size;
1580 }
1581
1582 if (new_size < SZ_256M) {
1583 ret = -EINVAL;
1584 goto out_free;
1585 }
1586 if (new_size > device->bdev->bd_inode->i_size) {
1587 ret = -EFBIG;
1588 goto out_free;
1589 }
1590
1591 new_size = div_u64(new_size, root->sectorsize);
1592 new_size *= root->sectorsize;
1593
1594 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1595 rcu_str_deref(device->name), new_size);
1596
1597 if (new_size > old_size) {
1598 trans = btrfs_start_transaction(root, 0);
1599 if (IS_ERR(trans)) {
1600 ret = PTR_ERR(trans);
1601 goto out_free;
1602 }
1603 ret = btrfs_grow_device(trans, device, new_size);
1604 btrfs_commit_transaction(trans, root);
1605 } else if (new_size < old_size) {
1606 ret = btrfs_shrink_device(device, new_size);
1607 } /* equal, nothing need to do */
1608
1609 out_free:
1610 kfree(vol_args);
1611 out:
1612 mutex_unlock(&root->fs_info->volume_mutex);
1613 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1614 mnt_drop_write_file(file);
1615 return ret;
1616 }
1617
1618 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1619 char *name, unsigned long fd, int subvol,
1620 u64 *transid, bool readonly,
1621 struct btrfs_qgroup_inherit *inherit)
1622 {
1623 int namelen;
1624 int ret = 0;
1625
1626 ret = mnt_want_write_file(file);
1627 if (ret)
1628 goto out;
1629
1630 namelen = strlen(name);
1631 if (strchr(name, '/')) {
1632 ret = -EINVAL;
1633 goto out_drop_write;
1634 }
1635
1636 if (name[0] == '.' &&
1637 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1638 ret = -EEXIST;
1639 goto out_drop_write;
1640 }
1641
1642 if (subvol) {
1643 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1644 NULL, transid, readonly, inherit);
1645 } else {
1646 struct fd src = fdget(fd);
1647 struct inode *src_inode;
1648 if (!src.file) {
1649 ret = -EINVAL;
1650 goto out_drop_write;
1651 }
1652
1653 src_inode = file_inode(src.file);
1654 if (src_inode->i_sb != file_inode(file)->i_sb) {
1655 btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1656 "Snapshot src from another FS");
1657 ret = -EXDEV;
1658 } else if (!inode_owner_or_capable(src_inode)) {
1659 /*
1660 * Subvolume creation is not restricted, but snapshots
1661 * are limited to own subvolumes only
1662 */
1663 ret = -EPERM;
1664 } else {
1665 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1666 BTRFS_I(src_inode)->root,
1667 transid, readonly, inherit);
1668 }
1669 fdput(src);
1670 }
1671 out_drop_write:
1672 mnt_drop_write_file(file);
1673 out:
1674 return ret;
1675 }
1676
1677 static noinline int btrfs_ioctl_snap_create(struct file *file,
1678 void __user *arg, int subvol)
1679 {
1680 struct btrfs_ioctl_vol_args *vol_args;
1681 int ret;
1682
1683 vol_args = memdup_user(arg, sizeof(*vol_args));
1684 if (IS_ERR(vol_args))
1685 return PTR_ERR(vol_args);
1686 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1687
1688 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1689 vol_args->fd, subvol,
1690 NULL, false, NULL);
1691
1692 kfree(vol_args);
1693 return ret;
1694 }
1695
1696 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1697 void __user *arg, int subvol)
1698 {
1699 struct btrfs_ioctl_vol_args_v2 *vol_args;
1700 int ret;
1701 u64 transid = 0;
1702 u64 *ptr = NULL;
1703 bool readonly = false;
1704 struct btrfs_qgroup_inherit *inherit = NULL;
1705
1706 vol_args = memdup_user(arg, sizeof(*vol_args));
1707 if (IS_ERR(vol_args))
1708 return PTR_ERR(vol_args);
1709 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1710
1711 if (vol_args->flags &
1712 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1713 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1714 ret = -EOPNOTSUPP;
1715 goto free_args;
1716 }
1717
1718 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1719 ptr = &transid;
1720 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1721 readonly = true;
1722 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1723 if (vol_args->size > PAGE_CACHE_SIZE) {
1724 ret = -EINVAL;
1725 goto free_args;
1726 }
1727 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1728 if (IS_ERR(inherit)) {
1729 ret = PTR_ERR(inherit);
1730 goto free_args;
1731 }
1732 }
1733
1734 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1735 vol_args->fd, subvol, ptr,
1736 readonly, inherit);
1737 if (ret)
1738 goto free_inherit;
1739
1740 if (ptr && copy_to_user(arg +
1741 offsetof(struct btrfs_ioctl_vol_args_v2,
1742 transid),
1743 ptr, sizeof(*ptr)))
1744 ret = -EFAULT;
1745
1746 free_inherit:
1747 kfree(inherit);
1748 free_args:
1749 kfree(vol_args);
1750 return ret;
1751 }
1752
1753 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1754 void __user *arg)
1755 {
1756 struct inode *inode = file_inode(file);
1757 struct btrfs_root *root = BTRFS_I(inode)->root;
1758 int ret = 0;
1759 u64 flags = 0;
1760
1761 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1762 return -EINVAL;
1763
1764 down_read(&root->fs_info->subvol_sem);
1765 if (btrfs_root_readonly(root))
1766 flags |= BTRFS_SUBVOL_RDONLY;
1767 up_read(&root->fs_info->subvol_sem);
1768
1769 if (copy_to_user(arg, &flags, sizeof(flags)))
1770 ret = -EFAULT;
1771
1772 return ret;
1773 }
1774
1775 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1776 void __user *arg)
1777 {
1778 struct inode *inode = file_inode(file);
1779 struct btrfs_root *root = BTRFS_I(inode)->root;
1780 struct btrfs_trans_handle *trans;
1781 u64 root_flags;
1782 u64 flags;
1783 int ret = 0;
1784
1785 if (!inode_owner_or_capable(inode))
1786 return -EPERM;
1787
1788 ret = mnt_want_write_file(file);
1789 if (ret)
1790 goto out;
1791
1792 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1793 ret = -EINVAL;
1794 goto out_drop_write;
1795 }
1796
1797 if (copy_from_user(&flags, arg, sizeof(flags))) {
1798 ret = -EFAULT;
1799 goto out_drop_write;
1800 }
1801
1802 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1803 ret = -EINVAL;
1804 goto out_drop_write;
1805 }
1806
1807 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1808 ret = -EOPNOTSUPP;
1809 goto out_drop_write;
1810 }
1811
1812 down_write(&root->fs_info->subvol_sem);
1813
1814 /* nothing to do */
1815 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1816 goto out_drop_sem;
1817
1818 root_flags = btrfs_root_flags(&root->root_item);
1819 if (flags & BTRFS_SUBVOL_RDONLY) {
1820 btrfs_set_root_flags(&root->root_item,
1821 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1822 } else {
1823 /*
1824 * Block RO -> RW transition if this subvolume is involved in
1825 * send
1826 */
1827 spin_lock(&root->root_item_lock);
1828 if (root->send_in_progress == 0) {
1829 btrfs_set_root_flags(&root->root_item,
1830 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1831 spin_unlock(&root->root_item_lock);
1832 } else {
1833 spin_unlock(&root->root_item_lock);
1834 btrfs_warn(root->fs_info,
1835 "Attempt to set subvolume %llu read-write during send",
1836 root->root_key.objectid);
1837 ret = -EPERM;
1838 goto out_drop_sem;
1839 }
1840 }
1841
1842 trans = btrfs_start_transaction(root, 1);
1843 if (IS_ERR(trans)) {
1844 ret = PTR_ERR(trans);
1845 goto out_reset;
1846 }
1847
1848 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1849 &root->root_key, &root->root_item);
1850
1851 btrfs_commit_transaction(trans, root);
1852 out_reset:
1853 if (ret)
1854 btrfs_set_root_flags(&root->root_item, root_flags);
1855 out_drop_sem:
1856 up_write(&root->fs_info->subvol_sem);
1857 out_drop_write:
1858 mnt_drop_write_file(file);
1859 out:
1860 return ret;
1861 }
1862
1863 /*
1864 * helper to check if the subvolume references other subvolumes
1865 */
1866 static noinline int may_destroy_subvol(struct btrfs_root *root)
1867 {
1868 struct btrfs_path *path;
1869 struct btrfs_dir_item *di;
1870 struct btrfs_key key;
1871 u64 dir_id;
1872 int ret;
1873
1874 path = btrfs_alloc_path();
1875 if (!path)
1876 return -ENOMEM;
1877
1878 /* Make sure this root isn't set as the default subvol */
1879 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1880 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1881 dir_id, "default", 7, 0);
1882 if (di && !IS_ERR(di)) {
1883 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1884 if (key.objectid == root->root_key.objectid) {
1885 ret = -EPERM;
1886 btrfs_err(root->fs_info, "deleting default subvolume "
1887 "%llu is not allowed", key.objectid);
1888 goto out;
1889 }
1890 btrfs_release_path(path);
1891 }
1892
1893 key.objectid = root->root_key.objectid;
1894 key.type = BTRFS_ROOT_REF_KEY;
1895 key.offset = (u64)-1;
1896
1897 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1898 &key, path, 0, 0);
1899 if (ret < 0)
1900 goto out;
1901 BUG_ON(ret == 0);
1902
1903 ret = 0;
1904 if (path->slots[0] > 0) {
1905 path->slots[0]--;
1906 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1907 if (key.objectid == root->root_key.objectid &&
1908 key.type == BTRFS_ROOT_REF_KEY)
1909 ret = -ENOTEMPTY;
1910 }
1911 out:
1912 btrfs_free_path(path);
1913 return ret;
1914 }
1915
1916 static noinline int key_in_sk(struct btrfs_key *key,
1917 struct btrfs_ioctl_search_key *sk)
1918 {
1919 struct btrfs_key test;
1920 int ret;
1921
1922 test.objectid = sk->min_objectid;
1923 test.type = sk->min_type;
1924 test.offset = sk->min_offset;
1925
1926 ret = btrfs_comp_cpu_keys(key, &test);
1927 if (ret < 0)
1928 return 0;
1929
1930 test.objectid = sk->max_objectid;
1931 test.type = sk->max_type;
1932 test.offset = sk->max_offset;
1933
1934 ret = btrfs_comp_cpu_keys(key, &test);
1935 if (ret > 0)
1936 return 0;
1937 return 1;
1938 }
1939
1940 static noinline int copy_to_sk(struct btrfs_root *root,
1941 struct btrfs_path *path,
1942 struct btrfs_key *key,
1943 struct btrfs_ioctl_search_key *sk,
1944 size_t *buf_size,
1945 char __user *ubuf,
1946 unsigned long *sk_offset,
1947 int *num_found)
1948 {
1949 u64 found_transid;
1950 struct extent_buffer *leaf;
1951 struct btrfs_ioctl_search_header sh;
1952 struct btrfs_key test;
1953 unsigned long item_off;
1954 unsigned long item_len;
1955 int nritems;
1956 int i;
1957 int slot;
1958 int ret = 0;
1959
1960 leaf = path->nodes[0];
1961 slot = path->slots[0];
1962 nritems = btrfs_header_nritems(leaf);
1963
1964 if (btrfs_header_generation(leaf) > sk->max_transid) {
1965 i = nritems;
1966 goto advance_key;
1967 }
1968 found_transid = btrfs_header_generation(leaf);
1969
1970 for (i = slot; i < nritems; i++) {
1971 item_off = btrfs_item_ptr_offset(leaf, i);
1972 item_len = btrfs_item_size_nr(leaf, i);
1973
1974 btrfs_item_key_to_cpu(leaf, key, i);
1975 if (!key_in_sk(key, sk))
1976 continue;
1977
1978 if (sizeof(sh) + item_len > *buf_size) {
1979 if (*num_found) {
1980 ret = 1;
1981 goto out;
1982 }
1983
1984 /*
1985 * return one empty item back for v1, which does not
1986 * handle -EOVERFLOW
1987 */
1988
1989 *buf_size = sizeof(sh) + item_len;
1990 item_len = 0;
1991 ret = -EOVERFLOW;
1992 }
1993
1994 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1995 ret = 1;
1996 goto out;
1997 }
1998
1999 sh.objectid = key->objectid;
2000 sh.offset = key->offset;
2001 sh.type = key->type;
2002 sh.len = item_len;
2003 sh.transid = found_transid;
2004
2005 /* copy search result header */
2006 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2007 ret = -EFAULT;
2008 goto out;
2009 }
2010
2011 *sk_offset += sizeof(sh);
2012
2013 if (item_len) {
2014 char __user *up = ubuf + *sk_offset;
2015 /* copy the item */
2016 if (read_extent_buffer_to_user(leaf, up,
2017 item_off, item_len)) {
2018 ret = -EFAULT;
2019 goto out;
2020 }
2021
2022 *sk_offset += item_len;
2023 }
2024 (*num_found)++;
2025
2026 if (ret) /* -EOVERFLOW from above */
2027 goto out;
2028
2029 if (*num_found >= sk->nr_items) {
2030 ret = 1;
2031 goto out;
2032 }
2033 }
2034 advance_key:
2035 ret = 0;
2036 test.objectid = sk->max_objectid;
2037 test.type = sk->max_type;
2038 test.offset = sk->max_offset;
2039 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2040 ret = 1;
2041 else if (key->offset < (u64)-1)
2042 key->offset++;
2043 else if (key->type < (u8)-1) {
2044 key->offset = 0;
2045 key->type++;
2046 } else if (key->objectid < (u64)-1) {
2047 key->offset = 0;
2048 key->type = 0;
2049 key->objectid++;
2050 } else
2051 ret = 1;
2052 out:
2053 /*
2054 * 0: all items from this leaf copied, continue with next
2055 * 1: * more items can be copied, but unused buffer is too small
2056 * * all items were found
2057 * Either way, it will stops the loop which iterates to the next
2058 * leaf
2059 * -EOVERFLOW: item was to large for buffer
2060 * -EFAULT: could not copy extent buffer back to userspace
2061 */
2062 return ret;
2063 }
2064
2065 static noinline int search_ioctl(struct inode *inode,
2066 struct btrfs_ioctl_search_key *sk,
2067 size_t *buf_size,
2068 char __user *ubuf)
2069 {
2070 struct btrfs_root *root;
2071 struct btrfs_key key;
2072 struct btrfs_path *path;
2073 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2074 int ret;
2075 int num_found = 0;
2076 unsigned long sk_offset = 0;
2077
2078 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2079 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2080 return -EOVERFLOW;
2081 }
2082
2083 path = btrfs_alloc_path();
2084 if (!path)
2085 return -ENOMEM;
2086
2087 if (sk->tree_id == 0) {
2088 /* search the root of the inode that was passed */
2089 root = BTRFS_I(inode)->root;
2090 } else {
2091 key.objectid = sk->tree_id;
2092 key.type = BTRFS_ROOT_ITEM_KEY;
2093 key.offset = (u64)-1;
2094 root = btrfs_read_fs_root_no_name(info, &key);
2095 if (IS_ERR(root)) {
2096 btrfs_free_path(path);
2097 return -ENOENT;
2098 }
2099 }
2100
2101 key.objectid = sk->min_objectid;
2102 key.type = sk->min_type;
2103 key.offset = sk->min_offset;
2104
2105 while (1) {
2106 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2107 if (ret != 0) {
2108 if (ret > 0)
2109 ret = 0;
2110 goto err;
2111 }
2112 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2113 &sk_offset, &num_found);
2114 btrfs_release_path(path);
2115 if (ret)
2116 break;
2117
2118 }
2119 if (ret > 0)
2120 ret = 0;
2121 err:
2122 sk->nr_items = num_found;
2123 btrfs_free_path(path);
2124 return ret;
2125 }
2126
2127 static noinline int btrfs_ioctl_tree_search(struct file *file,
2128 void __user *argp)
2129 {
2130 struct btrfs_ioctl_search_args __user *uargs;
2131 struct btrfs_ioctl_search_key sk;
2132 struct inode *inode;
2133 int ret;
2134 size_t buf_size;
2135
2136 if (!capable(CAP_SYS_ADMIN))
2137 return -EPERM;
2138
2139 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2140
2141 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2142 return -EFAULT;
2143
2144 buf_size = sizeof(uargs->buf);
2145
2146 inode = file_inode(file);
2147 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2148
2149 /*
2150 * In the origin implementation an overflow is handled by returning a
2151 * search header with a len of zero, so reset ret.
2152 */
2153 if (ret == -EOVERFLOW)
2154 ret = 0;
2155
2156 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2157 ret = -EFAULT;
2158 return ret;
2159 }
2160
2161 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2162 void __user *argp)
2163 {
2164 struct btrfs_ioctl_search_args_v2 __user *uarg;
2165 struct btrfs_ioctl_search_args_v2 args;
2166 struct inode *inode;
2167 int ret;
2168 size_t buf_size;
2169 const size_t buf_limit = SZ_16M;
2170
2171 if (!capable(CAP_SYS_ADMIN))
2172 return -EPERM;
2173
2174 /* copy search header and buffer size */
2175 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2176 if (copy_from_user(&args, uarg, sizeof(args)))
2177 return -EFAULT;
2178
2179 buf_size = args.buf_size;
2180
2181 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2182 return -EOVERFLOW;
2183
2184 /* limit result size to 16MB */
2185 if (buf_size > buf_limit)
2186 buf_size = buf_limit;
2187
2188 inode = file_inode(file);
2189 ret = search_ioctl(inode, &args.key, &buf_size,
2190 (char *)(&uarg->buf[0]));
2191 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2192 ret = -EFAULT;
2193 else if (ret == -EOVERFLOW &&
2194 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2195 ret = -EFAULT;
2196
2197 return ret;
2198 }
2199
2200 /*
2201 * Search INODE_REFs to identify path name of 'dirid' directory
2202 * in a 'tree_id' tree. and sets path name to 'name'.
2203 */
2204 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2205 u64 tree_id, u64 dirid, char *name)
2206 {
2207 struct btrfs_root *root;
2208 struct btrfs_key key;
2209 char *ptr;
2210 int ret = -1;
2211 int slot;
2212 int len;
2213 int total_len = 0;
2214 struct btrfs_inode_ref *iref;
2215 struct extent_buffer *l;
2216 struct btrfs_path *path;
2217
2218 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2219 name[0]='\0';
2220 return 0;
2221 }
2222
2223 path = btrfs_alloc_path();
2224 if (!path)
2225 return -ENOMEM;
2226
2227 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2228
2229 key.objectid = tree_id;
2230 key.type = BTRFS_ROOT_ITEM_KEY;
2231 key.offset = (u64)-1;
2232 root = btrfs_read_fs_root_no_name(info, &key);
2233 if (IS_ERR(root)) {
2234 btrfs_err(info, "could not find root %llu", tree_id);
2235 ret = -ENOENT;
2236 goto out;
2237 }
2238
2239 key.objectid = dirid;
2240 key.type = BTRFS_INODE_REF_KEY;
2241 key.offset = (u64)-1;
2242
2243 while (1) {
2244 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2245 if (ret < 0)
2246 goto out;
2247 else if (ret > 0) {
2248 ret = btrfs_previous_item(root, path, dirid,
2249 BTRFS_INODE_REF_KEY);
2250 if (ret < 0)
2251 goto out;
2252 else if (ret > 0) {
2253 ret = -ENOENT;
2254 goto out;
2255 }
2256 }
2257
2258 l = path->nodes[0];
2259 slot = path->slots[0];
2260 btrfs_item_key_to_cpu(l, &key, slot);
2261
2262 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2263 len = btrfs_inode_ref_name_len(l, iref);
2264 ptr -= len + 1;
2265 total_len += len + 1;
2266 if (ptr < name) {
2267 ret = -ENAMETOOLONG;
2268 goto out;
2269 }
2270
2271 *(ptr + len) = '/';
2272 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2273
2274 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2275 break;
2276
2277 btrfs_release_path(path);
2278 key.objectid = key.offset;
2279 key.offset = (u64)-1;
2280 dirid = key.objectid;
2281 }
2282 memmove(name, ptr, total_len);
2283 name[total_len] = '\0';
2284 ret = 0;
2285 out:
2286 btrfs_free_path(path);
2287 return ret;
2288 }
2289
2290 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2291 void __user *argp)
2292 {
2293 struct btrfs_ioctl_ino_lookup_args *args;
2294 struct inode *inode;
2295 int ret = 0;
2296
2297 args = memdup_user(argp, sizeof(*args));
2298 if (IS_ERR(args))
2299 return PTR_ERR(args);
2300
2301 inode = file_inode(file);
2302
2303 /*
2304 * Unprivileged query to obtain the containing subvolume root id. The
2305 * path is reset so it's consistent with btrfs_search_path_in_tree.
2306 */
2307 if (args->treeid == 0)
2308 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2309
2310 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2311 args->name[0] = 0;
2312 goto out;
2313 }
2314
2315 if (!capable(CAP_SYS_ADMIN)) {
2316 ret = -EPERM;
2317 goto out;
2318 }
2319
2320 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2321 args->treeid, args->objectid,
2322 args->name);
2323
2324 out:
2325 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2326 ret = -EFAULT;
2327
2328 kfree(args);
2329 return ret;
2330 }
2331
2332 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2333 void __user *arg)
2334 {
2335 struct dentry *parent = file->f_path.dentry;
2336 struct dentry *dentry;
2337 struct inode *dir = d_inode(parent);
2338 struct inode *inode;
2339 struct btrfs_root *root = BTRFS_I(dir)->root;
2340 struct btrfs_root *dest = NULL;
2341 struct btrfs_ioctl_vol_args *vol_args;
2342 struct btrfs_trans_handle *trans;
2343 struct btrfs_block_rsv block_rsv;
2344 u64 root_flags;
2345 u64 qgroup_reserved;
2346 int namelen;
2347 int ret;
2348 int err = 0;
2349
2350 vol_args = memdup_user(arg, sizeof(*vol_args));
2351 if (IS_ERR(vol_args))
2352 return PTR_ERR(vol_args);
2353
2354 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2355 namelen = strlen(vol_args->name);
2356 if (strchr(vol_args->name, '/') ||
2357 strncmp(vol_args->name, "..", namelen) == 0) {
2358 err = -EINVAL;
2359 goto out;
2360 }
2361
2362 err = mnt_want_write_file(file);
2363 if (err)
2364 goto out;
2365
2366
2367 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2368 if (err == -EINTR)
2369 goto out_drop_write;
2370 dentry = lookup_one_len(vol_args->name, parent, namelen);
2371 if (IS_ERR(dentry)) {
2372 err = PTR_ERR(dentry);
2373 goto out_unlock_dir;
2374 }
2375
2376 if (d_really_is_negative(dentry)) {
2377 err = -ENOENT;
2378 goto out_dput;
2379 }
2380
2381 inode = d_inode(dentry);
2382 dest = BTRFS_I(inode)->root;
2383 if (!capable(CAP_SYS_ADMIN)) {
2384 /*
2385 * Regular user. Only allow this with a special mount
2386 * option, when the user has write+exec access to the
2387 * subvol root, and when rmdir(2) would have been
2388 * allowed.
2389 *
2390 * Note that this is _not_ check that the subvol is
2391 * empty or doesn't contain data that we wouldn't
2392 * otherwise be able to delete.
2393 *
2394 * Users who want to delete empty subvols should try
2395 * rmdir(2).
2396 */
2397 err = -EPERM;
2398 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2399 goto out_dput;
2400
2401 /*
2402 * Do not allow deletion if the parent dir is the same
2403 * as the dir to be deleted. That means the ioctl
2404 * must be called on the dentry referencing the root
2405 * of the subvol, not a random directory contained
2406 * within it.
2407 */
2408 err = -EINVAL;
2409 if (root == dest)
2410 goto out_dput;
2411
2412 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2413 if (err)
2414 goto out_dput;
2415 }
2416
2417 /* check if subvolume may be deleted by a user */
2418 err = btrfs_may_delete(dir, dentry, 1);
2419 if (err)
2420 goto out_dput;
2421
2422 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2423 err = -EINVAL;
2424 goto out_dput;
2425 }
2426
2427 inode_lock(inode);
2428
2429 /*
2430 * Don't allow to delete a subvolume with send in progress. This is
2431 * inside the i_mutex so the error handling that has to drop the bit
2432 * again is not run concurrently.
2433 */
2434 spin_lock(&dest->root_item_lock);
2435 root_flags = btrfs_root_flags(&dest->root_item);
2436 if (dest->send_in_progress == 0) {
2437 btrfs_set_root_flags(&dest->root_item,
2438 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2439 spin_unlock(&dest->root_item_lock);
2440 } else {
2441 spin_unlock(&dest->root_item_lock);
2442 btrfs_warn(root->fs_info,
2443 "Attempt to delete subvolume %llu during send",
2444 dest->root_key.objectid);
2445 err = -EPERM;
2446 goto out_unlock_inode;
2447 }
2448
2449 down_write(&root->fs_info->subvol_sem);
2450
2451 err = may_destroy_subvol(dest);
2452 if (err)
2453 goto out_up_write;
2454
2455 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2456 /*
2457 * One for dir inode, two for dir entries, two for root
2458 * ref/backref.
2459 */
2460 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2461 5, &qgroup_reserved, true);
2462 if (err)
2463 goto out_up_write;
2464
2465 trans = btrfs_start_transaction(root, 0);
2466 if (IS_ERR(trans)) {
2467 err = PTR_ERR(trans);
2468 goto out_release;
2469 }
2470 trans->block_rsv = &block_rsv;
2471 trans->bytes_reserved = block_rsv.size;
2472
2473 ret = btrfs_unlink_subvol(trans, root, dir,
2474 dest->root_key.objectid,
2475 dentry->d_name.name,
2476 dentry->d_name.len);
2477 if (ret) {
2478 err = ret;
2479 btrfs_abort_transaction(trans, root, ret);
2480 goto out_end_trans;
2481 }
2482
2483 btrfs_record_root_in_trans(trans, dest);
2484
2485 memset(&dest->root_item.drop_progress, 0,
2486 sizeof(dest->root_item.drop_progress));
2487 dest->root_item.drop_level = 0;
2488 btrfs_set_root_refs(&dest->root_item, 0);
2489
2490 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2491 ret = btrfs_insert_orphan_item(trans,
2492 root->fs_info->tree_root,
2493 dest->root_key.objectid);
2494 if (ret) {
2495 btrfs_abort_transaction(trans, root, ret);
2496 err = ret;
2497 goto out_end_trans;
2498 }
2499 }
2500
2501 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2502 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2503 dest->root_key.objectid);
2504 if (ret && ret != -ENOENT) {
2505 btrfs_abort_transaction(trans, root, ret);
2506 err = ret;
2507 goto out_end_trans;
2508 }
2509 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2510 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2511 dest->root_item.received_uuid,
2512 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2513 dest->root_key.objectid);
2514 if (ret && ret != -ENOENT) {
2515 btrfs_abort_transaction(trans, root, ret);
2516 err = ret;
2517 goto out_end_trans;
2518 }
2519 }
2520
2521 out_end_trans:
2522 trans->block_rsv = NULL;
2523 trans->bytes_reserved = 0;
2524 ret = btrfs_end_transaction(trans, root);
2525 if (ret && !err)
2526 err = ret;
2527 inode->i_flags |= S_DEAD;
2528 out_release:
2529 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2530 out_up_write:
2531 up_write(&root->fs_info->subvol_sem);
2532 if (err) {
2533 spin_lock(&dest->root_item_lock);
2534 root_flags = btrfs_root_flags(&dest->root_item);
2535 btrfs_set_root_flags(&dest->root_item,
2536 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2537 spin_unlock(&dest->root_item_lock);
2538 }
2539 out_unlock_inode:
2540 inode_unlock(inode);
2541 if (!err) {
2542 d_invalidate(dentry);
2543 btrfs_invalidate_inodes(dest);
2544 d_delete(dentry);
2545 ASSERT(dest->send_in_progress == 0);
2546
2547 /* the last ref */
2548 if (dest->ino_cache_inode) {
2549 iput(dest->ino_cache_inode);
2550 dest->ino_cache_inode = NULL;
2551 }
2552 }
2553 out_dput:
2554 dput(dentry);
2555 out_unlock_dir:
2556 inode_unlock(dir);
2557 out_drop_write:
2558 mnt_drop_write_file(file);
2559 out:
2560 kfree(vol_args);
2561 return err;
2562 }
2563
2564 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2565 {
2566 struct inode *inode = file_inode(file);
2567 struct btrfs_root *root = BTRFS_I(inode)->root;
2568 struct btrfs_ioctl_defrag_range_args *range;
2569 int ret;
2570
2571 ret = mnt_want_write_file(file);
2572 if (ret)
2573 return ret;
2574
2575 if (btrfs_root_readonly(root)) {
2576 ret = -EROFS;
2577 goto out;
2578 }
2579
2580 switch (inode->i_mode & S_IFMT) {
2581 case S_IFDIR:
2582 if (!capable(CAP_SYS_ADMIN)) {
2583 ret = -EPERM;
2584 goto out;
2585 }
2586 ret = btrfs_defrag_root(root);
2587 if (ret)
2588 goto out;
2589 ret = btrfs_defrag_root(root->fs_info->extent_root);
2590 break;
2591 case S_IFREG:
2592 if (!(file->f_mode & FMODE_WRITE)) {
2593 ret = -EINVAL;
2594 goto out;
2595 }
2596
2597 range = kzalloc(sizeof(*range), GFP_KERNEL);
2598 if (!range) {
2599 ret = -ENOMEM;
2600 goto out;
2601 }
2602
2603 if (argp) {
2604 if (copy_from_user(range, argp,
2605 sizeof(*range))) {
2606 ret = -EFAULT;
2607 kfree(range);
2608 goto out;
2609 }
2610 /* compression requires us to start the IO */
2611 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2612 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2613 range->extent_thresh = (u32)-1;
2614 }
2615 } else {
2616 /* the rest are all set to zero by kzalloc */
2617 range->len = (u64)-1;
2618 }
2619 ret = btrfs_defrag_file(file_inode(file), file,
2620 range, 0, 0);
2621 if (ret > 0)
2622 ret = 0;
2623 kfree(range);
2624 break;
2625 default:
2626 ret = -EINVAL;
2627 }
2628 out:
2629 mnt_drop_write_file(file);
2630 return ret;
2631 }
2632
2633 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2634 {
2635 struct btrfs_ioctl_vol_args *vol_args;
2636 int ret;
2637
2638 if (!capable(CAP_SYS_ADMIN))
2639 return -EPERM;
2640
2641 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2642 1)) {
2643 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2644 }
2645
2646 mutex_lock(&root->fs_info->volume_mutex);
2647 vol_args = memdup_user(arg, sizeof(*vol_args));
2648 if (IS_ERR(vol_args)) {
2649 ret = PTR_ERR(vol_args);
2650 goto out;
2651 }
2652
2653 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2654 ret = btrfs_init_new_device(root, vol_args->name);
2655
2656 if (!ret)
2657 btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2658
2659 kfree(vol_args);
2660 out:
2661 mutex_unlock(&root->fs_info->volume_mutex);
2662 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2663 return ret;
2664 }
2665
2666 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2667 {
2668 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2669 struct btrfs_ioctl_vol_args *vol_args;
2670 int ret;
2671
2672 if (!capable(CAP_SYS_ADMIN))
2673 return -EPERM;
2674
2675 ret = mnt_want_write_file(file);
2676 if (ret)
2677 return ret;
2678
2679 vol_args = memdup_user(arg, sizeof(*vol_args));
2680 if (IS_ERR(vol_args)) {
2681 ret = PTR_ERR(vol_args);
2682 goto err_drop;
2683 }
2684
2685 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2686
2687 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2688 1)) {
2689 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2690 goto out;
2691 }
2692
2693 mutex_lock(&root->fs_info->volume_mutex);
2694 ret = btrfs_rm_device(root, vol_args->name);
2695 mutex_unlock(&root->fs_info->volume_mutex);
2696 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2697
2698 if (!ret)
2699 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2700
2701 out:
2702 kfree(vol_args);
2703 err_drop:
2704 mnt_drop_write_file(file);
2705 return ret;
2706 }
2707
2708 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2709 {
2710 struct btrfs_ioctl_fs_info_args *fi_args;
2711 struct btrfs_device *device;
2712 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2713 int ret = 0;
2714
2715 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2716 if (!fi_args)
2717 return -ENOMEM;
2718
2719 mutex_lock(&fs_devices->device_list_mutex);
2720 fi_args->num_devices = fs_devices->num_devices;
2721 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2722
2723 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2724 if (device->devid > fi_args->max_id)
2725 fi_args->max_id = device->devid;
2726 }
2727 mutex_unlock(&fs_devices->device_list_mutex);
2728
2729 fi_args->nodesize = root->fs_info->super_copy->nodesize;
2730 fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2731 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2732
2733 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2734 ret = -EFAULT;
2735
2736 kfree(fi_args);
2737 return ret;
2738 }
2739
2740 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2741 {
2742 struct btrfs_ioctl_dev_info_args *di_args;
2743 struct btrfs_device *dev;
2744 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2745 int ret = 0;
2746 char *s_uuid = NULL;
2747
2748 di_args = memdup_user(arg, sizeof(*di_args));
2749 if (IS_ERR(di_args))
2750 return PTR_ERR(di_args);
2751
2752 if (!btrfs_is_empty_uuid(di_args->uuid))
2753 s_uuid = di_args->uuid;
2754
2755 mutex_lock(&fs_devices->device_list_mutex);
2756 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2757
2758 if (!dev) {
2759 ret = -ENODEV;
2760 goto out;
2761 }
2762
2763 di_args->devid = dev->devid;
2764 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2765 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2766 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2767 if (dev->name) {
2768 struct rcu_string *name;
2769
2770 rcu_read_lock();
2771 name = rcu_dereference(dev->name);
2772 strncpy(di_args->path, name->str, sizeof(di_args->path));
2773 rcu_read_unlock();
2774 di_args->path[sizeof(di_args->path) - 1] = 0;
2775 } else {
2776 di_args->path[0] = '\0';
2777 }
2778
2779 out:
2780 mutex_unlock(&fs_devices->device_list_mutex);
2781 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2782 ret = -EFAULT;
2783
2784 kfree(di_args);
2785 return ret;
2786 }
2787
2788 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2789 {
2790 struct page *page;
2791
2792 page = grab_cache_page(inode->i_mapping, index);
2793 if (!page)
2794 return ERR_PTR(-ENOMEM);
2795
2796 if (!PageUptodate(page)) {
2797 int ret;
2798
2799 ret = btrfs_readpage(NULL, page);
2800 if (ret)
2801 return ERR_PTR(ret);
2802 lock_page(page);
2803 if (!PageUptodate(page)) {
2804 unlock_page(page);
2805 page_cache_release(page);
2806 return ERR_PTR(-EIO);
2807 }
2808 if (page->mapping != inode->i_mapping) {
2809 unlock_page(page);
2810 page_cache_release(page);
2811 return ERR_PTR(-EAGAIN);
2812 }
2813 }
2814
2815 return page;
2816 }
2817
2818 static int gather_extent_pages(struct inode *inode, struct page **pages,
2819 int num_pages, u64 off)
2820 {
2821 int i;
2822 pgoff_t index = off >> PAGE_CACHE_SHIFT;
2823
2824 for (i = 0; i < num_pages; i++) {
2825 again:
2826 pages[i] = extent_same_get_page(inode, index + i);
2827 if (IS_ERR(pages[i])) {
2828 int err = PTR_ERR(pages[i]);
2829
2830 if (err == -EAGAIN)
2831 goto again;
2832 pages[i] = NULL;
2833 return err;
2834 }
2835 }
2836 return 0;
2837 }
2838
2839 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2840 bool retry_range_locking)
2841 {
2842 /*
2843 * Do any pending delalloc/csum calculations on inode, one way or
2844 * another, and lock file content.
2845 * The locking order is:
2846 *
2847 * 1) pages
2848 * 2) range in the inode's io tree
2849 */
2850 while (1) {
2851 struct btrfs_ordered_extent *ordered;
2852 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2853 ordered = btrfs_lookup_first_ordered_extent(inode,
2854 off + len - 1);
2855 if ((!ordered ||
2856 ordered->file_offset + ordered->len <= off ||
2857 ordered->file_offset >= off + len) &&
2858 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2859 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2860 if (ordered)
2861 btrfs_put_ordered_extent(ordered);
2862 break;
2863 }
2864 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2865 if (ordered)
2866 btrfs_put_ordered_extent(ordered);
2867 if (!retry_range_locking)
2868 return -EAGAIN;
2869 btrfs_wait_ordered_range(inode, off, len);
2870 }
2871 return 0;
2872 }
2873
2874 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2875 {
2876 inode_unlock(inode1);
2877 inode_unlock(inode2);
2878 }
2879
2880 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2881 {
2882 if (inode1 < inode2)
2883 swap(inode1, inode2);
2884
2885 inode_lock_nested(inode1, I_MUTEX_PARENT);
2886 inode_lock_nested(inode2, I_MUTEX_CHILD);
2887 }
2888
2889 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2890 struct inode *inode2, u64 loff2, u64 len)
2891 {
2892 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2893 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2894 }
2895
2896 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2897 struct inode *inode2, u64 loff2, u64 len,
2898 bool retry_range_locking)
2899 {
2900 int ret;
2901
2902 if (inode1 < inode2) {
2903 swap(inode1, inode2);
2904 swap(loff1, loff2);
2905 }
2906 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2907 if (ret)
2908 return ret;
2909 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2910 if (ret)
2911 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2912 loff1 + len - 1);
2913 return ret;
2914 }
2915
2916 struct cmp_pages {
2917 int num_pages;
2918 struct page **src_pages;
2919 struct page **dst_pages;
2920 };
2921
2922 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2923 {
2924 int i;
2925 struct page *pg;
2926
2927 for (i = 0; i < cmp->num_pages; i++) {
2928 pg = cmp->src_pages[i];
2929 if (pg) {
2930 unlock_page(pg);
2931 page_cache_release(pg);
2932 }
2933 pg = cmp->dst_pages[i];
2934 if (pg) {
2935 unlock_page(pg);
2936 page_cache_release(pg);
2937 }
2938 }
2939 kfree(cmp->src_pages);
2940 kfree(cmp->dst_pages);
2941 }
2942
2943 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2944 struct inode *dst, u64 dst_loff,
2945 u64 len, struct cmp_pages *cmp)
2946 {
2947 int ret;
2948 int num_pages = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
2949 struct page **src_pgarr, **dst_pgarr;
2950
2951 /*
2952 * We must gather up all the pages before we initiate our
2953 * extent locking. We use an array for the page pointers. Size
2954 * of the array is bounded by len, which is in turn bounded by
2955 * BTRFS_MAX_DEDUPE_LEN.
2956 */
2957 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2958 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2959 if (!src_pgarr || !dst_pgarr) {
2960 kfree(src_pgarr);
2961 kfree(dst_pgarr);
2962 return -ENOMEM;
2963 }
2964 cmp->num_pages = num_pages;
2965 cmp->src_pages = src_pgarr;
2966 cmp->dst_pages = dst_pgarr;
2967
2968 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
2969 if (ret)
2970 goto out;
2971
2972 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
2973
2974 out:
2975 if (ret)
2976 btrfs_cmp_data_free(cmp);
2977 return 0;
2978 }
2979
2980 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2981 u64 dst_loff, u64 len, struct cmp_pages *cmp)
2982 {
2983 int ret = 0;
2984 int i;
2985 struct page *src_page, *dst_page;
2986 unsigned int cmp_len = PAGE_CACHE_SIZE;
2987 void *addr, *dst_addr;
2988
2989 i = 0;
2990 while (len) {
2991 if (len < PAGE_CACHE_SIZE)
2992 cmp_len = len;
2993
2994 BUG_ON(i >= cmp->num_pages);
2995
2996 src_page = cmp->src_pages[i];
2997 dst_page = cmp->dst_pages[i];
2998 ASSERT(PageLocked(src_page));
2999 ASSERT(PageLocked(dst_page));
3000
3001 addr = kmap_atomic(src_page);
3002 dst_addr = kmap_atomic(dst_page);
3003
3004 flush_dcache_page(src_page);
3005 flush_dcache_page(dst_page);
3006
3007 if (memcmp(addr, dst_addr, cmp_len))
3008 ret = -EBADE;
3009
3010 kunmap_atomic(addr);
3011 kunmap_atomic(dst_addr);
3012
3013 if (ret)
3014 break;
3015
3016 len -= cmp_len;
3017 i++;
3018 }
3019
3020 return ret;
3021 }
3022
3023 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3024 u64 olen)
3025 {
3026 u64 len = *plen;
3027 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3028
3029 if (off + olen > inode->i_size || off + olen < off)
3030 return -EINVAL;
3031
3032 /* if we extend to eof, continue to block boundary */
3033 if (off + len == inode->i_size)
3034 *plen = len = ALIGN(inode->i_size, bs) - off;
3035
3036 /* Check that we are block aligned - btrfs_clone() requires this */
3037 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3038 return -EINVAL;
3039
3040 return 0;
3041 }
3042
3043 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3044 struct inode *dst, u64 dst_loff)
3045 {
3046 int ret;
3047 u64 len = olen;
3048 struct cmp_pages cmp;
3049 int same_inode = 0;
3050 u64 same_lock_start = 0;
3051 u64 same_lock_len = 0;
3052
3053 if (src == dst)
3054 same_inode = 1;
3055
3056 if (len == 0)
3057 return 0;
3058
3059 if (same_inode) {
3060 inode_lock(src);
3061
3062 ret = extent_same_check_offsets(src, loff, &len, olen);
3063 if (ret)
3064 goto out_unlock;
3065
3066 /*
3067 * Single inode case wants the same checks, except we
3068 * don't want our length pushed out past i_size as
3069 * comparing that data range makes no sense.
3070 *
3071 * extent_same_check_offsets() will do this for an
3072 * unaligned length at i_size, so catch it here and
3073 * reject the request.
3074 *
3075 * This effectively means we require aligned extents
3076 * for the single-inode case, whereas the other cases
3077 * allow an unaligned length so long as it ends at
3078 * i_size.
3079 */
3080 if (len != olen) {
3081 ret = -EINVAL;
3082 goto out_unlock;
3083 }
3084
3085 /* Check for overlapping ranges */
3086 if (dst_loff + len > loff && dst_loff < loff + len) {
3087 ret = -EINVAL;
3088 goto out_unlock;
3089 }
3090
3091 same_lock_start = min_t(u64, loff, dst_loff);
3092 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3093 } else {
3094 btrfs_double_inode_lock(src, dst);
3095
3096 ret = extent_same_check_offsets(src, loff, &len, olen);
3097 if (ret)
3098 goto out_unlock;
3099
3100 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3101 if (ret)
3102 goto out_unlock;
3103 }
3104
3105 /* don't make the dst file partly checksummed */
3106 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3107 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3108 ret = -EINVAL;
3109 goto out_unlock;
3110 }
3111
3112 again:
3113 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3114 if (ret)
3115 goto out_unlock;
3116
3117 if (same_inode)
3118 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3119 false);
3120 else
3121 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3122 false);
3123 /*
3124 * If one of the inodes has dirty pages in the respective range or
3125 * ordered extents, we need to flush dellaloc and wait for all ordered
3126 * extents in the range. We must unlock the pages and the ranges in the
3127 * io trees to avoid deadlocks when flushing delalloc (requires locking
3128 * pages) and when waiting for ordered extents to complete (they require
3129 * range locking).
3130 */
3131 if (ret == -EAGAIN) {
3132 /*
3133 * Ranges in the io trees already unlocked. Now unlock all
3134 * pages before waiting for all IO to complete.
3135 */
3136 btrfs_cmp_data_free(&cmp);
3137 if (same_inode) {
3138 btrfs_wait_ordered_range(src, same_lock_start,
3139 same_lock_len);
3140 } else {
3141 btrfs_wait_ordered_range(src, loff, len);
3142 btrfs_wait_ordered_range(dst, dst_loff, len);
3143 }
3144 goto again;
3145 }
3146 ASSERT(ret == 0);
3147 if (WARN_ON(ret)) {
3148 /* ranges in the io trees already unlocked */
3149 btrfs_cmp_data_free(&cmp);
3150 return ret;
3151 }
3152
3153 /* pass original length for comparison so we stay within i_size */
3154 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3155 if (ret == 0)
3156 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3157
3158 if (same_inode)
3159 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3160 same_lock_start + same_lock_len - 1);
3161 else
3162 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3163
3164 btrfs_cmp_data_free(&cmp);
3165 out_unlock:
3166 if (same_inode)
3167 inode_unlock(src);
3168 else
3169 btrfs_double_inode_unlock(src, dst);
3170
3171 return ret;
3172 }
3173
3174 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3175
3176 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3177 struct file *dst_file, u64 dst_loff)
3178 {
3179 struct inode *src = file_inode(src_file);
3180 struct inode *dst = file_inode(dst_file);
3181 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3182 ssize_t res;
3183
3184 if (olen > BTRFS_MAX_DEDUPE_LEN)
3185 olen = BTRFS_MAX_DEDUPE_LEN;
3186
3187 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
3188 /*
3189 * Btrfs does not support blocksize < page_size. As a
3190 * result, btrfs_cmp_data() won't correctly handle
3191 * this situation without an update.
3192 */
3193 return -EINVAL;
3194 }
3195
3196 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3197 if (res)
3198 return res;
3199 return olen;
3200 }
3201
3202 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3203 struct inode *inode,
3204 u64 endoff,
3205 const u64 destoff,
3206 const u64 olen,
3207 int no_time_update)
3208 {
3209 struct btrfs_root *root = BTRFS_I(inode)->root;
3210 int ret;
3211
3212 inode_inc_iversion(inode);
3213 if (!no_time_update)
3214 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
3215 /*
3216 * We round up to the block size at eof when determining which
3217 * extents to clone above, but shouldn't round up the file size.
3218 */
3219 if (endoff > destoff + olen)
3220 endoff = destoff + olen;
3221 if (endoff > inode->i_size)
3222 btrfs_i_size_write(inode, endoff);
3223
3224 ret = btrfs_update_inode(trans, root, inode);
3225 if (ret) {
3226 btrfs_abort_transaction(trans, root, ret);
3227 btrfs_end_transaction(trans, root);
3228 goto out;
3229 }
3230 ret = btrfs_end_transaction(trans, root);
3231 out:
3232 return ret;
3233 }
3234
3235 static void clone_update_extent_map(struct inode *inode,
3236 const struct btrfs_trans_handle *trans,
3237 const struct btrfs_path *path,
3238 const u64 hole_offset,
3239 const u64 hole_len)
3240 {
3241 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3242 struct extent_map *em;
3243 int ret;
3244
3245 em = alloc_extent_map();
3246 if (!em) {
3247 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3248 &BTRFS_I(inode)->runtime_flags);
3249 return;
3250 }
3251
3252 if (path) {
3253 struct btrfs_file_extent_item *fi;
3254
3255 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3256 struct btrfs_file_extent_item);
3257 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3258 em->generation = -1;
3259 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3260 BTRFS_FILE_EXTENT_INLINE)
3261 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3262 &BTRFS_I(inode)->runtime_flags);
3263 } else {
3264 em->start = hole_offset;
3265 em->len = hole_len;
3266 em->ram_bytes = em->len;
3267 em->orig_start = hole_offset;
3268 em->block_start = EXTENT_MAP_HOLE;
3269 em->block_len = 0;
3270 em->orig_block_len = 0;
3271 em->compress_type = BTRFS_COMPRESS_NONE;
3272 em->generation = trans->transid;
3273 }
3274
3275 while (1) {
3276 write_lock(&em_tree->lock);
3277 ret = add_extent_mapping(em_tree, em, 1);
3278 write_unlock(&em_tree->lock);
3279 if (ret != -EEXIST) {
3280 free_extent_map(em);
3281 break;
3282 }
3283 btrfs_drop_extent_cache(inode, em->start,
3284 em->start + em->len - 1, 0);
3285 }
3286
3287 if (ret)
3288 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3289 &BTRFS_I(inode)->runtime_flags);
3290 }
3291
3292 /*
3293 * Make sure we do not end up inserting an inline extent into a file that has
3294 * already other (non-inline) extents. If a file has an inline extent it can
3295 * not have any other extents and the (single) inline extent must start at the
3296 * file offset 0. Failing to respect these rules will lead to file corruption,
3297 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3298 *
3299 * We can have extents that have been already written to disk or we can have
3300 * dirty ranges still in delalloc, in which case the extent maps and items are
3301 * created only when we run delalloc, and the delalloc ranges might fall outside
3302 * the range we are currently locking in the inode's io tree. So we check the
3303 * inode's i_size because of that (i_size updates are done while holding the
3304 * i_mutex, which we are holding here).
3305 * We also check to see if the inode has a size not greater than "datal" but has
3306 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3307 * protected against such concurrent fallocate calls by the i_mutex).
3308 *
3309 * If the file has no extents but a size greater than datal, do not allow the
3310 * copy because we would need turn the inline extent into a non-inline one (even
3311 * with NO_HOLES enabled). If we find our destination inode only has one inline
3312 * extent, just overwrite it with the source inline extent if its size is less
3313 * than the source extent's size, or we could copy the source inline extent's
3314 * data into the destination inode's inline extent if the later is greater then
3315 * the former.
3316 */
3317 static int clone_copy_inline_extent(struct inode *src,
3318 struct inode *dst,
3319 struct btrfs_trans_handle *trans,
3320 struct btrfs_path *path,
3321 struct btrfs_key *new_key,
3322 const u64 drop_start,
3323 const u64 datal,
3324 const u64 skip,
3325 const u64 size,
3326 char *inline_data)
3327 {
3328 struct btrfs_root *root = BTRFS_I(dst)->root;
3329 const u64 aligned_end = ALIGN(new_key->offset + datal,
3330 root->sectorsize);
3331 int ret;
3332 struct btrfs_key key;
3333
3334 if (new_key->offset > 0)
3335 return -EOPNOTSUPP;
3336
3337 key.objectid = btrfs_ino(dst);
3338 key.type = BTRFS_EXTENT_DATA_KEY;
3339 key.offset = 0;
3340 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3341 if (ret < 0) {
3342 return ret;
3343 } else if (ret > 0) {
3344 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3345 ret = btrfs_next_leaf(root, path);
3346 if (ret < 0)
3347 return ret;
3348 else if (ret > 0)
3349 goto copy_inline_extent;
3350 }
3351 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3352 if (key.objectid == btrfs_ino(dst) &&
3353 key.type == BTRFS_EXTENT_DATA_KEY) {
3354 ASSERT(key.offset > 0);
3355 return -EOPNOTSUPP;
3356 }
3357 } else if (i_size_read(dst) <= datal) {
3358 struct btrfs_file_extent_item *ei;
3359 u64 ext_len;
3360
3361 /*
3362 * If the file size is <= datal, make sure there are no other
3363 * extents following (can happen do to an fallocate call with
3364 * the flag FALLOC_FL_KEEP_SIZE).
3365 */
3366 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3367 struct btrfs_file_extent_item);
3368 /*
3369 * If it's an inline extent, it can not have other extents
3370 * following it.
3371 */
3372 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3373 BTRFS_FILE_EXTENT_INLINE)
3374 goto copy_inline_extent;
3375
3376 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3377 if (ext_len > aligned_end)
3378 return -EOPNOTSUPP;
3379
3380 ret = btrfs_next_item(root, path);
3381 if (ret < 0) {
3382 return ret;
3383 } else if (ret == 0) {
3384 btrfs_item_key_to_cpu(path->nodes[0], &key,
3385 path->slots[0]);
3386 if (key.objectid == btrfs_ino(dst) &&
3387 key.type == BTRFS_EXTENT_DATA_KEY)
3388 return -EOPNOTSUPP;
3389 }
3390 }
3391
3392 copy_inline_extent:
3393 /*
3394 * We have no extent items, or we have an extent at offset 0 which may
3395 * or may not be inlined. All these cases are dealt the same way.
3396 */
3397 if (i_size_read(dst) > datal) {
3398 /*
3399 * If the destination inode has an inline extent...
3400 * This would require copying the data from the source inline
3401 * extent into the beginning of the destination's inline extent.
3402 * But this is really complex, both extents can be compressed
3403 * or just one of them, which would require decompressing and
3404 * re-compressing data (which could increase the new compressed
3405 * size, not allowing the compressed data to fit anymore in an
3406 * inline extent).
3407 * So just don't support this case for now (it should be rare,
3408 * we are not really saving space when cloning inline extents).
3409 */
3410 return -EOPNOTSUPP;
3411 }
3412
3413 btrfs_release_path(path);
3414 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3415 if (ret)
3416 return ret;
3417 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3418 if (ret)
3419 return ret;
3420
3421 if (skip) {
3422 const u32 start = btrfs_file_extent_calc_inline_size(0);
3423
3424 memmove(inline_data + start, inline_data + start + skip, datal);
3425 }
3426
3427 write_extent_buffer(path->nodes[0], inline_data,
3428 btrfs_item_ptr_offset(path->nodes[0],
3429 path->slots[0]),
3430 size);
3431 inode_add_bytes(dst, datal);
3432
3433 return 0;
3434 }
3435
3436 /**
3437 * btrfs_clone() - clone a range from inode file to another
3438 *
3439 * @src: Inode to clone from
3440 * @inode: Inode to clone to
3441 * @off: Offset within source to start clone from
3442 * @olen: Original length, passed by user, of range to clone
3443 * @olen_aligned: Block-aligned value of olen
3444 * @destoff: Offset within @inode to start clone
3445 * @no_time_update: Whether to update mtime/ctime on the target inode
3446 */
3447 static int btrfs_clone(struct inode *src, struct inode *inode,
3448 const u64 off, const u64 olen, const u64 olen_aligned,
3449 const u64 destoff, int no_time_update)
3450 {
3451 struct btrfs_root *root = BTRFS_I(inode)->root;
3452 struct btrfs_path *path = NULL;
3453 struct extent_buffer *leaf;
3454 struct btrfs_trans_handle *trans;
3455 char *buf = NULL;
3456 struct btrfs_key key;
3457 u32 nritems;
3458 int slot;
3459 int ret;
3460 const u64 len = olen_aligned;
3461 u64 last_dest_end = destoff;
3462
3463 ret = -ENOMEM;
3464 buf = vmalloc(root->nodesize);
3465 if (!buf)
3466 return ret;
3467
3468 path = btrfs_alloc_path();
3469 if (!path) {
3470 vfree(buf);
3471 return ret;
3472 }
3473
3474 path->reada = READA_FORWARD;
3475 /* clone data */
3476 key.objectid = btrfs_ino(src);
3477 key.type = BTRFS_EXTENT_DATA_KEY;
3478 key.offset = off;
3479
3480 while (1) {
3481 u64 next_key_min_offset = key.offset + 1;
3482
3483 /*
3484 * note the key will change type as we walk through the
3485 * tree.
3486 */
3487 path->leave_spinning = 1;
3488 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3489 0, 0);
3490 if (ret < 0)
3491 goto out;
3492 /*
3493 * First search, if no extent item that starts at offset off was
3494 * found but the previous item is an extent item, it's possible
3495 * it might overlap our target range, therefore process it.
3496 */
3497 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3498 btrfs_item_key_to_cpu(path->nodes[0], &key,
3499 path->slots[0] - 1);
3500 if (key.type == BTRFS_EXTENT_DATA_KEY)
3501 path->slots[0]--;
3502 }
3503
3504 nritems = btrfs_header_nritems(path->nodes[0]);
3505 process_slot:
3506 if (path->slots[0] >= nritems) {
3507 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3508 if (ret < 0)
3509 goto out;
3510 if (ret > 0)
3511 break;
3512 nritems = btrfs_header_nritems(path->nodes[0]);
3513 }
3514 leaf = path->nodes[0];
3515 slot = path->slots[0];
3516
3517 btrfs_item_key_to_cpu(leaf, &key, slot);
3518 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3519 key.objectid != btrfs_ino(src))
3520 break;
3521
3522 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3523 struct btrfs_file_extent_item *extent;
3524 int type;
3525 u32 size;
3526 struct btrfs_key new_key;
3527 u64 disko = 0, diskl = 0;
3528 u64 datao = 0, datal = 0;
3529 u8 comp;
3530 u64 drop_start;
3531
3532 extent = btrfs_item_ptr(leaf, slot,
3533 struct btrfs_file_extent_item);
3534 comp = btrfs_file_extent_compression(leaf, extent);
3535 type = btrfs_file_extent_type(leaf, extent);
3536 if (type == BTRFS_FILE_EXTENT_REG ||
3537 type == BTRFS_FILE_EXTENT_PREALLOC) {
3538 disko = btrfs_file_extent_disk_bytenr(leaf,
3539 extent);
3540 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3541 extent);
3542 datao = btrfs_file_extent_offset(leaf, extent);
3543 datal = btrfs_file_extent_num_bytes(leaf,
3544 extent);
3545 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3546 /* take upper bound, may be compressed */
3547 datal = btrfs_file_extent_ram_bytes(leaf,
3548 extent);
3549 }
3550
3551 /*
3552 * The first search might have left us at an extent
3553 * item that ends before our target range's start, can
3554 * happen if we have holes and NO_HOLES feature enabled.
3555 */
3556 if (key.offset + datal <= off) {
3557 path->slots[0]++;
3558 goto process_slot;
3559 } else if (key.offset >= off + len) {
3560 break;
3561 }
3562 next_key_min_offset = key.offset + datal;
3563 size = btrfs_item_size_nr(leaf, slot);
3564 read_extent_buffer(leaf, buf,
3565 btrfs_item_ptr_offset(leaf, slot),
3566 size);
3567
3568 btrfs_release_path(path);
3569 path->leave_spinning = 0;
3570
3571 memcpy(&new_key, &key, sizeof(new_key));
3572 new_key.objectid = btrfs_ino(inode);
3573 if (off <= key.offset)
3574 new_key.offset = key.offset + destoff - off;
3575 else
3576 new_key.offset = destoff;
3577
3578 /*
3579 * Deal with a hole that doesn't have an extent item
3580 * that represents it (NO_HOLES feature enabled).
3581 * This hole is either in the middle of the cloning
3582 * range or at the beginning (fully overlaps it or
3583 * partially overlaps it).
3584 */
3585 if (new_key.offset != last_dest_end)
3586 drop_start = last_dest_end;
3587 else
3588 drop_start = new_key.offset;
3589
3590 /*
3591 * 1 - adjusting old extent (we may have to split it)
3592 * 1 - add new extent
3593 * 1 - inode update
3594 */
3595 trans = btrfs_start_transaction(root, 3);
3596 if (IS_ERR(trans)) {
3597 ret = PTR_ERR(trans);
3598 goto out;
3599 }
3600
3601 if (type == BTRFS_FILE_EXTENT_REG ||
3602 type == BTRFS_FILE_EXTENT_PREALLOC) {
3603 /*
3604 * a | --- range to clone ---| b
3605 * | ------------- extent ------------- |
3606 */
3607
3608 /* subtract range b */
3609 if (key.offset + datal > off + len)
3610 datal = off + len - key.offset;
3611
3612 /* subtract range a */
3613 if (off > key.offset) {
3614 datao += off - key.offset;
3615 datal -= off - key.offset;
3616 }
3617
3618 ret = btrfs_drop_extents(trans, root, inode,
3619 drop_start,
3620 new_key.offset + datal,
3621 1);
3622 if (ret) {
3623 if (ret != -EOPNOTSUPP)
3624 btrfs_abort_transaction(trans,
3625 root, ret);
3626 btrfs_end_transaction(trans, root);
3627 goto out;
3628 }
3629
3630 ret = btrfs_insert_empty_item(trans, root, path,
3631 &new_key, size);
3632 if (ret) {
3633 btrfs_abort_transaction(trans, root,
3634 ret);
3635 btrfs_end_transaction(trans, root);
3636 goto out;
3637 }
3638
3639 leaf = path->nodes[0];
3640 slot = path->slots[0];
3641 write_extent_buffer(leaf, buf,
3642 btrfs_item_ptr_offset(leaf, slot),
3643 size);
3644
3645 extent = btrfs_item_ptr(leaf, slot,
3646 struct btrfs_file_extent_item);
3647
3648 /* disko == 0 means it's a hole */
3649 if (!disko)
3650 datao = 0;
3651
3652 btrfs_set_file_extent_offset(leaf, extent,
3653 datao);
3654 btrfs_set_file_extent_num_bytes(leaf, extent,
3655 datal);
3656
3657 if (disko) {
3658 inode_add_bytes(inode, datal);
3659 ret = btrfs_inc_extent_ref(trans, root,
3660 disko, diskl, 0,
3661 root->root_key.objectid,
3662 btrfs_ino(inode),
3663 new_key.offset - datao);
3664 if (ret) {
3665 btrfs_abort_transaction(trans,
3666 root,
3667 ret);
3668 btrfs_end_transaction(trans,
3669 root);
3670 goto out;
3671
3672 }
3673 }
3674 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3675 u64 skip = 0;
3676 u64 trim = 0;
3677
3678 if (off > key.offset) {
3679 skip = off - key.offset;
3680 new_key.offset += skip;
3681 }
3682
3683 if (key.offset + datal > off + len)
3684 trim = key.offset + datal - (off + len);
3685
3686 if (comp && (skip || trim)) {
3687 ret = -EINVAL;
3688 btrfs_end_transaction(trans, root);
3689 goto out;
3690 }
3691 size -= skip + trim;
3692 datal -= skip + trim;
3693
3694 ret = clone_copy_inline_extent(src, inode,
3695 trans, path,
3696 &new_key,
3697 drop_start,
3698 datal,
3699 skip, size, buf);
3700 if (ret) {
3701 if (ret != -EOPNOTSUPP)
3702 btrfs_abort_transaction(trans,
3703 root,
3704 ret);
3705 btrfs_end_transaction(trans, root);
3706 goto out;
3707 }
3708 leaf = path->nodes[0];
3709 slot = path->slots[0];
3710 }
3711
3712 /* If we have an implicit hole (NO_HOLES feature). */
3713 if (drop_start < new_key.offset)
3714 clone_update_extent_map(inode, trans,
3715 NULL, drop_start,
3716 new_key.offset - drop_start);
3717
3718 clone_update_extent_map(inode, trans, path, 0, 0);
3719
3720 btrfs_mark_buffer_dirty(leaf);
3721 btrfs_release_path(path);
3722
3723 last_dest_end = ALIGN(new_key.offset + datal,
3724 root->sectorsize);
3725 ret = clone_finish_inode_update(trans, inode,
3726 last_dest_end,
3727 destoff, olen,
3728 no_time_update);
3729 if (ret)
3730 goto out;
3731 if (new_key.offset + datal >= destoff + len)
3732 break;
3733 }
3734 btrfs_release_path(path);
3735 key.offset = next_key_min_offset;
3736 }
3737 ret = 0;
3738
3739 if (last_dest_end < destoff + len) {
3740 /*
3741 * We have an implicit hole (NO_HOLES feature is enabled) that
3742 * fully or partially overlaps our cloning range at its end.
3743 */
3744 btrfs_release_path(path);
3745
3746 /*
3747 * 1 - remove extent(s)
3748 * 1 - inode update
3749 */
3750 trans = btrfs_start_transaction(root, 2);
3751 if (IS_ERR(trans)) {
3752 ret = PTR_ERR(trans);
3753 goto out;
3754 }
3755 ret = btrfs_drop_extents(trans, root, inode,
3756 last_dest_end, destoff + len, 1);
3757 if (ret) {
3758 if (ret != -EOPNOTSUPP)
3759 btrfs_abort_transaction(trans, root, ret);
3760 btrfs_end_transaction(trans, root);
3761 goto out;
3762 }
3763 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3764 destoff + len - last_dest_end);
3765 ret = clone_finish_inode_update(trans, inode, destoff + len,
3766 destoff, olen, no_time_update);
3767 }
3768
3769 out:
3770 btrfs_free_path(path);
3771 vfree(buf);
3772 return ret;
3773 }
3774
3775 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3776 u64 off, u64 olen, u64 destoff)
3777 {
3778 struct inode *inode = file_inode(file);
3779 struct inode *src = file_inode(file_src);
3780 struct btrfs_root *root = BTRFS_I(inode)->root;
3781 int ret;
3782 u64 len = olen;
3783 u64 bs = root->fs_info->sb->s_blocksize;
3784 int same_inode = src == inode;
3785
3786 /*
3787 * TODO:
3788 * - split compressed inline extents. annoying: we need to
3789 * decompress into destination's address_space (the file offset
3790 * may change, so source mapping won't do), then recompress (or
3791 * otherwise reinsert) a subrange.
3792 *
3793 * - split destination inode's inline extents. The inline extents can
3794 * be either compressed or non-compressed.
3795 */
3796
3797 if (btrfs_root_readonly(root))
3798 return -EROFS;
3799
3800 if (file_src->f_path.mnt != file->f_path.mnt ||
3801 src->i_sb != inode->i_sb)
3802 return -EXDEV;
3803
3804 /* don't make the dst file partly checksummed */
3805 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3806 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3807 return -EINVAL;
3808
3809 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3810 return -EISDIR;
3811
3812 if (!same_inode) {
3813 btrfs_double_inode_lock(src, inode);
3814 } else {
3815 inode_lock(src);
3816 }
3817
3818 /* determine range to clone */
3819 ret = -EINVAL;
3820 if (off + len > src->i_size || off + len < off)
3821 goto out_unlock;
3822 if (len == 0)
3823 olen = len = src->i_size - off;
3824 /* if we extend to eof, continue to block boundary */
3825 if (off + len == src->i_size)
3826 len = ALIGN(src->i_size, bs) - off;
3827
3828 if (len == 0) {
3829 ret = 0;
3830 goto out_unlock;
3831 }
3832
3833 /* verify the end result is block aligned */
3834 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3835 !IS_ALIGNED(destoff, bs))
3836 goto out_unlock;
3837
3838 /* verify if ranges are overlapped within the same file */
3839 if (same_inode) {
3840 if (destoff + len > off && destoff < off + len)
3841 goto out_unlock;
3842 }
3843
3844 if (destoff > inode->i_size) {
3845 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3846 if (ret)
3847 goto out_unlock;
3848 }
3849
3850 /*
3851 * Lock the target range too. Right after we replace the file extent
3852 * items in the fs tree (which now point to the cloned data), we might
3853 * have a worker replace them with extent items relative to a write
3854 * operation that was issued before this clone operation (i.e. confront
3855 * with inode.c:btrfs_finish_ordered_io).
3856 */
3857 if (same_inode) {
3858 u64 lock_start = min_t(u64, off, destoff);
3859 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3860
3861 ret = lock_extent_range(src, lock_start, lock_len, true);
3862 } else {
3863 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3864 true);
3865 }
3866 ASSERT(ret == 0);
3867 if (WARN_ON(ret)) {
3868 /* ranges in the io trees already unlocked */
3869 goto out_unlock;
3870 }
3871
3872 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3873
3874 if (same_inode) {
3875 u64 lock_start = min_t(u64, off, destoff);
3876 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3877
3878 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3879 } else {
3880 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3881 }
3882 /*
3883 * Truncate page cache pages so that future reads will see the cloned
3884 * data immediately and not the previous data.
3885 */
3886 truncate_inode_pages_range(&inode->i_data,
3887 round_down(destoff, PAGE_CACHE_SIZE),
3888 round_up(destoff + len, PAGE_CACHE_SIZE) - 1);
3889 out_unlock:
3890 if (!same_inode)
3891 btrfs_double_inode_unlock(src, inode);
3892 else
3893 inode_unlock(src);
3894 return ret;
3895 }
3896
3897 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3898 struct file *file_out, loff_t pos_out,
3899 size_t len, unsigned int flags)
3900 {
3901 ssize_t ret;
3902
3903 ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3904 if (ret == 0)
3905 ret = len;
3906 return ret;
3907 }
3908
3909 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3910 struct file *dst_file, loff_t destoff, u64 len)
3911 {
3912 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3913 }
3914
3915 /*
3916 * there are many ways the trans_start and trans_end ioctls can lead
3917 * to deadlocks. They should only be used by applications that
3918 * basically own the machine, and have a very in depth understanding
3919 * of all the possible deadlocks and enospc problems.
3920 */
3921 static long btrfs_ioctl_trans_start(struct file *file)
3922 {
3923 struct inode *inode = file_inode(file);
3924 struct btrfs_root *root = BTRFS_I(inode)->root;
3925 struct btrfs_trans_handle *trans;
3926 int ret;
3927
3928 ret = -EPERM;
3929 if (!capable(CAP_SYS_ADMIN))
3930 goto out;
3931
3932 ret = -EINPROGRESS;
3933 if (file->private_data)
3934 goto out;
3935
3936 ret = -EROFS;
3937 if (btrfs_root_readonly(root))
3938 goto out;
3939
3940 ret = mnt_want_write_file(file);
3941 if (ret)
3942 goto out;
3943
3944 atomic_inc(&root->fs_info->open_ioctl_trans);
3945
3946 ret = -ENOMEM;
3947 trans = btrfs_start_ioctl_transaction(root);
3948 if (IS_ERR(trans))
3949 goto out_drop;
3950
3951 file->private_data = trans;
3952 return 0;
3953
3954 out_drop:
3955 atomic_dec(&root->fs_info->open_ioctl_trans);
3956 mnt_drop_write_file(file);
3957 out:
3958 return ret;
3959 }
3960
3961 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3962 {
3963 struct inode *inode = file_inode(file);
3964 struct btrfs_root *root = BTRFS_I(inode)->root;
3965 struct btrfs_root *new_root;
3966 struct btrfs_dir_item *di;
3967 struct btrfs_trans_handle *trans;
3968 struct btrfs_path *path;
3969 struct btrfs_key location;
3970 struct btrfs_disk_key disk_key;
3971 u64 objectid = 0;
3972 u64 dir_id;
3973 int ret;
3974
3975 if (!capable(CAP_SYS_ADMIN))
3976 return -EPERM;
3977
3978 ret = mnt_want_write_file(file);
3979 if (ret)
3980 return ret;
3981
3982 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3983 ret = -EFAULT;
3984 goto out;
3985 }
3986
3987 if (!objectid)
3988 objectid = BTRFS_FS_TREE_OBJECTID;
3989
3990 location.objectid = objectid;
3991 location.type = BTRFS_ROOT_ITEM_KEY;
3992 location.offset = (u64)-1;
3993
3994 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3995 if (IS_ERR(new_root)) {
3996 ret = PTR_ERR(new_root);
3997 goto out;
3998 }
3999
4000 path = btrfs_alloc_path();
4001 if (!path) {
4002 ret = -ENOMEM;
4003 goto out;
4004 }
4005 path->leave_spinning = 1;
4006
4007 trans = btrfs_start_transaction(root, 1);
4008 if (IS_ERR(trans)) {
4009 btrfs_free_path(path);
4010 ret = PTR_ERR(trans);
4011 goto out;
4012 }
4013
4014 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4015 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4016 dir_id, "default", 7, 1);
4017 if (IS_ERR_OR_NULL(di)) {
4018 btrfs_free_path(path);
4019 btrfs_end_transaction(trans, root);
4020 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4021 "item, this isn't going to work");
4022 ret = -ENOENT;
4023 goto out;
4024 }
4025
4026 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4027 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4028 btrfs_mark_buffer_dirty(path->nodes[0]);
4029 btrfs_free_path(path);
4030
4031 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4032 btrfs_end_transaction(trans, root);
4033 out:
4034 mnt_drop_write_file(file);
4035 return ret;
4036 }
4037
4038 void btrfs_get_block_group_info(struct list_head *groups_list,
4039 struct btrfs_ioctl_space_info *space)
4040 {
4041 struct btrfs_block_group_cache *block_group;
4042
4043 space->total_bytes = 0;
4044 space->used_bytes = 0;
4045 space->flags = 0;
4046 list_for_each_entry(block_group, groups_list, list) {
4047 space->flags = block_group->flags;
4048 space->total_bytes += block_group->key.offset;
4049 space->used_bytes +=
4050 btrfs_block_group_used(&block_group->item);
4051 }
4052 }
4053
4054 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4055 {
4056 struct btrfs_ioctl_space_args space_args;
4057 struct btrfs_ioctl_space_info space;
4058 struct btrfs_ioctl_space_info *dest;
4059 struct btrfs_ioctl_space_info *dest_orig;
4060 struct btrfs_ioctl_space_info __user *user_dest;
4061 struct btrfs_space_info *info;
4062 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4063 BTRFS_BLOCK_GROUP_SYSTEM,
4064 BTRFS_BLOCK_GROUP_METADATA,
4065 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4066 int num_types = 4;
4067 int alloc_size;
4068 int ret = 0;
4069 u64 slot_count = 0;
4070 int i, c;
4071
4072 if (copy_from_user(&space_args,
4073 (struct btrfs_ioctl_space_args __user *)arg,
4074 sizeof(space_args)))
4075 return -EFAULT;
4076
4077 for (i = 0; i < num_types; i++) {
4078 struct btrfs_space_info *tmp;
4079
4080 info = NULL;
4081 rcu_read_lock();
4082 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4083 list) {
4084 if (tmp->flags == types[i]) {
4085 info = tmp;
4086 break;
4087 }
4088 }
4089 rcu_read_unlock();
4090
4091 if (!info)
4092 continue;
4093
4094 down_read(&info->groups_sem);
4095 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4096 if (!list_empty(&info->block_groups[c]))
4097 slot_count++;
4098 }
4099 up_read(&info->groups_sem);
4100 }
4101
4102 /*
4103 * Global block reserve, exported as a space_info
4104 */
4105 slot_count++;
4106
4107 /* space_slots == 0 means they are asking for a count */
4108 if (space_args.space_slots == 0) {
4109 space_args.total_spaces = slot_count;
4110 goto out;
4111 }
4112
4113 slot_count = min_t(u64, space_args.space_slots, slot_count);
4114
4115 alloc_size = sizeof(*dest) * slot_count;
4116
4117 /* we generally have at most 6 or so space infos, one for each raid
4118 * level. So, a whole page should be more than enough for everyone
4119 */
4120 if (alloc_size > PAGE_CACHE_SIZE)
4121 return -ENOMEM;
4122
4123 space_args.total_spaces = 0;
4124 dest = kmalloc(alloc_size, GFP_KERNEL);
4125 if (!dest)
4126 return -ENOMEM;
4127 dest_orig = dest;
4128
4129 /* now we have a buffer to copy into */
4130 for (i = 0; i < num_types; i++) {
4131 struct btrfs_space_info *tmp;
4132
4133 if (!slot_count)
4134 break;
4135
4136 info = NULL;
4137 rcu_read_lock();
4138 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4139 list) {
4140 if (tmp->flags == types[i]) {
4141 info = tmp;
4142 break;
4143 }
4144 }
4145 rcu_read_unlock();
4146
4147 if (!info)
4148 continue;
4149 down_read(&info->groups_sem);
4150 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4151 if (!list_empty(&info->block_groups[c])) {
4152 btrfs_get_block_group_info(
4153 &info->block_groups[c], &space);
4154 memcpy(dest, &space, sizeof(space));
4155 dest++;
4156 space_args.total_spaces++;
4157 slot_count--;
4158 }
4159 if (!slot_count)
4160 break;
4161 }
4162 up_read(&info->groups_sem);
4163 }
4164
4165 /*
4166 * Add global block reserve
4167 */
4168 if (slot_count) {
4169 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4170
4171 spin_lock(&block_rsv->lock);
4172 space.total_bytes = block_rsv->size;
4173 space.used_bytes = block_rsv->size - block_rsv->reserved;
4174 spin_unlock(&block_rsv->lock);
4175 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4176 memcpy(dest, &space, sizeof(space));
4177 space_args.total_spaces++;
4178 }
4179
4180 user_dest = (struct btrfs_ioctl_space_info __user *)
4181 (arg + sizeof(struct btrfs_ioctl_space_args));
4182
4183 if (copy_to_user(user_dest, dest_orig, alloc_size))
4184 ret = -EFAULT;
4185
4186 kfree(dest_orig);
4187 out:
4188 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4189 ret = -EFAULT;
4190
4191 return ret;
4192 }
4193
4194 /*
4195 * there are many ways the trans_start and trans_end ioctls can lead
4196 * to deadlocks. They should only be used by applications that
4197 * basically own the machine, and have a very in depth understanding
4198 * of all the possible deadlocks and enospc problems.
4199 */
4200 long btrfs_ioctl_trans_end(struct file *file)
4201 {
4202 struct inode *inode = file_inode(file);
4203 struct btrfs_root *root = BTRFS_I(inode)->root;
4204 struct btrfs_trans_handle *trans;
4205
4206 trans = file->private_data;
4207 if (!trans)
4208 return -EINVAL;
4209 file->private_data = NULL;
4210
4211 btrfs_end_transaction(trans, root);
4212
4213 atomic_dec(&root->fs_info->open_ioctl_trans);
4214
4215 mnt_drop_write_file(file);
4216 return 0;
4217 }
4218
4219 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4220 void __user *argp)
4221 {
4222 struct btrfs_trans_handle *trans;
4223 u64 transid;
4224 int ret;
4225
4226 trans = btrfs_attach_transaction_barrier(root);
4227 if (IS_ERR(trans)) {
4228 if (PTR_ERR(trans) != -ENOENT)
4229 return PTR_ERR(trans);
4230
4231 /* No running transaction, don't bother */
4232 transid = root->fs_info->last_trans_committed;
4233 goto out;
4234 }
4235 transid = trans->transid;
4236 ret = btrfs_commit_transaction_async(trans, root, 0);
4237 if (ret) {
4238 btrfs_end_transaction(trans, root);
4239 return ret;
4240 }
4241 out:
4242 if (argp)
4243 if (copy_to_user(argp, &transid, sizeof(transid)))
4244 return -EFAULT;
4245 return 0;
4246 }
4247
4248 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4249 void __user *argp)
4250 {
4251 u64 transid;
4252
4253 if (argp) {
4254 if (copy_from_user(&transid, argp, sizeof(transid)))
4255 return -EFAULT;
4256 } else {
4257 transid = 0; /* current trans */
4258 }
4259 return btrfs_wait_for_commit(root, transid);
4260 }
4261
4262 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4263 {
4264 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4265 struct btrfs_ioctl_scrub_args *sa;
4266 int ret;
4267
4268 if (!capable(CAP_SYS_ADMIN))
4269 return -EPERM;
4270
4271 sa = memdup_user(arg, sizeof(*sa));
4272 if (IS_ERR(sa))
4273 return PTR_ERR(sa);
4274
4275 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4276 ret = mnt_want_write_file(file);
4277 if (ret)
4278 goto out;
4279 }
4280
4281 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4282 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4283 0);
4284
4285 if (copy_to_user(arg, sa, sizeof(*sa)))
4286 ret = -EFAULT;
4287
4288 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4289 mnt_drop_write_file(file);
4290 out:
4291 kfree(sa);
4292 return ret;
4293 }
4294
4295 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4296 {
4297 if (!capable(CAP_SYS_ADMIN))
4298 return -EPERM;
4299
4300 return btrfs_scrub_cancel(root->fs_info);
4301 }
4302
4303 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4304 void __user *arg)
4305 {
4306 struct btrfs_ioctl_scrub_args *sa;
4307 int ret;
4308
4309 if (!capable(CAP_SYS_ADMIN))
4310 return -EPERM;
4311
4312 sa = memdup_user(arg, sizeof(*sa));
4313 if (IS_ERR(sa))
4314 return PTR_ERR(sa);
4315
4316 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4317
4318 if (copy_to_user(arg, sa, sizeof(*sa)))
4319 ret = -EFAULT;
4320
4321 kfree(sa);
4322 return ret;
4323 }
4324
4325 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4326 void __user *arg)
4327 {
4328 struct btrfs_ioctl_get_dev_stats *sa;
4329 int ret;
4330
4331 sa = memdup_user(arg, sizeof(*sa));
4332 if (IS_ERR(sa))
4333 return PTR_ERR(sa);
4334
4335 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4336 kfree(sa);
4337 return -EPERM;
4338 }
4339
4340 ret = btrfs_get_dev_stats(root, sa);
4341
4342 if (copy_to_user(arg, sa, sizeof(*sa)))
4343 ret = -EFAULT;
4344
4345 kfree(sa);
4346 return ret;
4347 }
4348
4349 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4350 {
4351 struct btrfs_ioctl_dev_replace_args *p;
4352 int ret;
4353
4354 if (!capable(CAP_SYS_ADMIN))
4355 return -EPERM;
4356
4357 p = memdup_user(arg, sizeof(*p));
4358 if (IS_ERR(p))
4359 return PTR_ERR(p);
4360
4361 switch (p->cmd) {
4362 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4363 if (root->fs_info->sb->s_flags & MS_RDONLY) {
4364 ret = -EROFS;
4365 goto out;
4366 }
4367 if (atomic_xchg(
4368 &root->fs_info->mutually_exclusive_operation_running,
4369 1)) {
4370 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4371 } else {
4372 ret = btrfs_dev_replace_start(root, p);
4373 atomic_set(
4374 &root->fs_info->mutually_exclusive_operation_running,
4375 0);
4376 }
4377 break;
4378 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4379 btrfs_dev_replace_status(root->fs_info, p);
4380 ret = 0;
4381 break;
4382 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4383 ret = btrfs_dev_replace_cancel(root->fs_info, p);
4384 break;
4385 default:
4386 ret = -EINVAL;
4387 break;
4388 }
4389
4390 if (copy_to_user(arg, p, sizeof(*p)))
4391 ret = -EFAULT;
4392 out:
4393 kfree(p);
4394 return ret;
4395 }
4396
4397 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4398 {
4399 int ret = 0;
4400 int i;
4401 u64 rel_ptr;
4402 int size;
4403 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4404 struct inode_fs_paths *ipath = NULL;
4405 struct btrfs_path *path;
4406
4407 if (!capable(CAP_DAC_READ_SEARCH))
4408 return -EPERM;
4409
4410 path = btrfs_alloc_path();
4411 if (!path) {
4412 ret = -ENOMEM;
4413 goto out;
4414 }
4415
4416 ipa = memdup_user(arg, sizeof(*ipa));
4417 if (IS_ERR(ipa)) {
4418 ret = PTR_ERR(ipa);
4419 ipa = NULL;
4420 goto out;
4421 }
4422
4423 size = min_t(u32, ipa->size, 4096);
4424 ipath = init_ipath(size, root, path);
4425 if (IS_ERR(ipath)) {
4426 ret = PTR_ERR(ipath);
4427 ipath = NULL;
4428 goto out;
4429 }
4430
4431 ret = paths_from_inode(ipa->inum, ipath);
4432 if (ret < 0)
4433 goto out;
4434
4435 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4436 rel_ptr = ipath->fspath->val[i] -
4437 (u64)(unsigned long)ipath->fspath->val;
4438 ipath->fspath->val[i] = rel_ptr;
4439 }
4440
4441 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4442 (void *)(unsigned long)ipath->fspath, size);
4443 if (ret) {
4444 ret = -EFAULT;
4445 goto out;
4446 }
4447
4448 out:
4449 btrfs_free_path(path);
4450 free_ipath(ipath);
4451 kfree(ipa);
4452
4453 return ret;
4454 }
4455
4456 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4457 {
4458 struct btrfs_data_container *inodes = ctx;
4459 const size_t c = 3 * sizeof(u64);
4460
4461 if (inodes->bytes_left >= c) {
4462 inodes->bytes_left -= c;
4463 inodes->val[inodes->elem_cnt] = inum;
4464 inodes->val[inodes->elem_cnt + 1] = offset;
4465 inodes->val[inodes->elem_cnt + 2] = root;
4466 inodes->elem_cnt += 3;
4467 } else {
4468 inodes->bytes_missing += c - inodes->bytes_left;
4469 inodes->bytes_left = 0;
4470 inodes->elem_missed += 3;
4471 }
4472
4473 return 0;
4474 }
4475
4476 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4477 void __user *arg)
4478 {
4479 int ret = 0;
4480 int size;
4481 struct btrfs_ioctl_logical_ino_args *loi;
4482 struct btrfs_data_container *inodes = NULL;
4483 struct btrfs_path *path = NULL;
4484
4485 if (!capable(CAP_SYS_ADMIN))
4486 return -EPERM;
4487
4488 loi = memdup_user(arg, sizeof(*loi));
4489 if (IS_ERR(loi)) {
4490 ret = PTR_ERR(loi);
4491 loi = NULL;
4492 goto out;
4493 }
4494
4495 path = btrfs_alloc_path();
4496 if (!path) {
4497 ret = -ENOMEM;
4498 goto out;
4499 }
4500
4501 size = min_t(u32, loi->size, SZ_64K);
4502 inodes = init_data_container(size);
4503 if (IS_ERR(inodes)) {
4504 ret = PTR_ERR(inodes);
4505 inodes = NULL;
4506 goto out;
4507 }
4508
4509 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4510 build_ino_list, inodes);
4511 if (ret == -EINVAL)
4512 ret = -ENOENT;
4513 if (ret < 0)
4514 goto out;
4515
4516 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4517 (void *)(unsigned long)inodes, size);
4518 if (ret)
4519 ret = -EFAULT;
4520
4521 out:
4522 btrfs_free_path(path);
4523 vfree(inodes);
4524 kfree(loi);
4525
4526 return ret;
4527 }
4528
4529 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4530 struct btrfs_ioctl_balance_args *bargs)
4531 {
4532 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4533
4534 bargs->flags = bctl->flags;
4535
4536 if (atomic_read(&fs_info->balance_running))
4537 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4538 if (atomic_read(&fs_info->balance_pause_req))
4539 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4540 if (atomic_read(&fs_info->balance_cancel_req))
4541 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4542
4543 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4544 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4545 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4546
4547 if (lock) {
4548 spin_lock(&fs_info->balance_lock);
4549 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4550 spin_unlock(&fs_info->balance_lock);
4551 } else {
4552 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4553 }
4554 }
4555
4556 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4557 {
4558 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4559 struct btrfs_fs_info *fs_info = root->fs_info;
4560 struct btrfs_ioctl_balance_args *bargs;
4561 struct btrfs_balance_control *bctl;
4562 bool need_unlock; /* for mut. excl. ops lock */
4563 int ret;
4564
4565 if (!capable(CAP_SYS_ADMIN))
4566 return -EPERM;
4567
4568 ret = mnt_want_write_file(file);
4569 if (ret)
4570 return ret;
4571
4572 again:
4573 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4574 mutex_lock(&fs_info->volume_mutex);
4575 mutex_lock(&fs_info->balance_mutex);
4576 need_unlock = true;
4577 goto locked;
4578 }
4579
4580 /*
4581 * mut. excl. ops lock is locked. Three possibilites:
4582 * (1) some other op is running
4583 * (2) balance is running
4584 * (3) balance is paused -- special case (think resume)
4585 */
4586 mutex_lock(&fs_info->balance_mutex);
4587 if (fs_info->balance_ctl) {
4588 /* this is either (2) or (3) */
4589 if (!atomic_read(&fs_info->balance_running)) {
4590 mutex_unlock(&fs_info->balance_mutex);
4591 if (!mutex_trylock(&fs_info->volume_mutex))
4592 goto again;
4593 mutex_lock(&fs_info->balance_mutex);
4594
4595 if (fs_info->balance_ctl &&
4596 !atomic_read(&fs_info->balance_running)) {
4597 /* this is (3) */
4598 need_unlock = false;
4599 goto locked;
4600 }
4601
4602 mutex_unlock(&fs_info->balance_mutex);
4603 mutex_unlock(&fs_info->volume_mutex);
4604 goto again;
4605 } else {
4606 /* this is (2) */
4607 mutex_unlock(&fs_info->balance_mutex);
4608 ret = -EINPROGRESS;
4609 goto out;
4610 }
4611 } else {
4612 /* this is (1) */
4613 mutex_unlock(&fs_info->balance_mutex);
4614 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4615 goto out;
4616 }
4617
4618 locked:
4619 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4620
4621 if (arg) {
4622 bargs = memdup_user(arg, sizeof(*bargs));
4623 if (IS_ERR(bargs)) {
4624 ret = PTR_ERR(bargs);
4625 goto out_unlock;
4626 }
4627
4628 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4629 if (!fs_info->balance_ctl) {
4630 ret = -ENOTCONN;
4631 goto out_bargs;
4632 }
4633
4634 bctl = fs_info->balance_ctl;
4635 spin_lock(&fs_info->balance_lock);
4636 bctl->flags |= BTRFS_BALANCE_RESUME;
4637 spin_unlock(&fs_info->balance_lock);
4638
4639 goto do_balance;
4640 }
4641 } else {
4642 bargs = NULL;
4643 }
4644
4645 if (fs_info->balance_ctl) {
4646 ret = -EINPROGRESS;
4647 goto out_bargs;
4648 }
4649
4650 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4651 if (!bctl) {
4652 ret = -ENOMEM;
4653 goto out_bargs;
4654 }
4655
4656 bctl->fs_info = fs_info;
4657 if (arg) {
4658 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4659 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4660 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4661
4662 bctl->flags = bargs->flags;
4663 } else {
4664 /* balance everything - no filters */
4665 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4666 }
4667
4668 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4669 ret = -EINVAL;
4670 goto out_bctl;
4671 }
4672
4673 do_balance:
4674 /*
4675 * Ownership of bctl and mutually_exclusive_operation_running
4676 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4677 * or, if restriper was paused all the way until unmount, in
4678 * free_fs_info. mutually_exclusive_operation_running is
4679 * cleared in __cancel_balance.
4680 */
4681 need_unlock = false;
4682
4683 ret = btrfs_balance(bctl, bargs);
4684 bctl = NULL;
4685
4686 if (arg) {
4687 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4688 ret = -EFAULT;
4689 }
4690
4691 out_bctl:
4692 kfree(bctl);
4693 out_bargs:
4694 kfree(bargs);
4695 out_unlock:
4696 mutex_unlock(&fs_info->balance_mutex);
4697 mutex_unlock(&fs_info->volume_mutex);
4698 if (need_unlock)
4699 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4700 out:
4701 mnt_drop_write_file(file);
4702 return ret;
4703 }
4704
4705 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4706 {
4707 if (!capable(CAP_SYS_ADMIN))
4708 return -EPERM;
4709
4710 switch (cmd) {
4711 case BTRFS_BALANCE_CTL_PAUSE:
4712 return btrfs_pause_balance(root->fs_info);
4713 case BTRFS_BALANCE_CTL_CANCEL:
4714 return btrfs_cancel_balance(root->fs_info);
4715 }
4716
4717 return -EINVAL;
4718 }
4719
4720 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4721 void __user *arg)
4722 {
4723 struct btrfs_fs_info *fs_info = root->fs_info;
4724 struct btrfs_ioctl_balance_args *bargs;
4725 int ret = 0;
4726
4727 if (!capable(CAP_SYS_ADMIN))
4728 return -EPERM;
4729
4730 mutex_lock(&fs_info->balance_mutex);
4731 if (!fs_info->balance_ctl) {
4732 ret = -ENOTCONN;
4733 goto out;
4734 }
4735
4736 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4737 if (!bargs) {
4738 ret = -ENOMEM;
4739 goto out;
4740 }
4741
4742 update_ioctl_balance_args(fs_info, 1, bargs);
4743
4744 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4745 ret = -EFAULT;
4746
4747 kfree(bargs);
4748 out:
4749 mutex_unlock(&fs_info->balance_mutex);
4750 return ret;
4751 }
4752
4753 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4754 {
4755 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4756 struct btrfs_ioctl_quota_ctl_args *sa;
4757 struct btrfs_trans_handle *trans = NULL;
4758 int ret;
4759 int err;
4760
4761 if (!capable(CAP_SYS_ADMIN))
4762 return -EPERM;
4763
4764 ret = mnt_want_write_file(file);
4765 if (ret)
4766 return ret;
4767
4768 sa = memdup_user(arg, sizeof(*sa));
4769 if (IS_ERR(sa)) {
4770 ret = PTR_ERR(sa);
4771 goto drop_write;
4772 }
4773
4774 down_write(&root->fs_info->subvol_sem);
4775 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4776 if (IS_ERR(trans)) {
4777 ret = PTR_ERR(trans);
4778 goto out;
4779 }
4780
4781 switch (sa->cmd) {
4782 case BTRFS_QUOTA_CTL_ENABLE:
4783 ret = btrfs_quota_enable(trans, root->fs_info);
4784 break;
4785 case BTRFS_QUOTA_CTL_DISABLE:
4786 ret = btrfs_quota_disable(trans, root->fs_info);
4787 break;
4788 default:
4789 ret = -EINVAL;
4790 break;
4791 }
4792
4793 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4794 if (err && !ret)
4795 ret = err;
4796 out:
4797 kfree(sa);
4798 up_write(&root->fs_info->subvol_sem);
4799 drop_write:
4800 mnt_drop_write_file(file);
4801 return ret;
4802 }
4803
4804 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4805 {
4806 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4807 struct btrfs_ioctl_qgroup_assign_args *sa;
4808 struct btrfs_trans_handle *trans;
4809 int ret;
4810 int err;
4811
4812 if (!capable(CAP_SYS_ADMIN))
4813 return -EPERM;
4814
4815 ret = mnt_want_write_file(file);
4816 if (ret)
4817 return ret;
4818
4819 sa = memdup_user(arg, sizeof(*sa));
4820 if (IS_ERR(sa)) {
4821 ret = PTR_ERR(sa);
4822 goto drop_write;
4823 }
4824
4825 trans = btrfs_join_transaction(root);
4826 if (IS_ERR(trans)) {
4827 ret = PTR_ERR(trans);
4828 goto out;
4829 }
4830
4831 /* FIXME: check if the IDs really exist */
4832 if (sa->assign) {
4833 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4834 sa->src, sa->dst);
4835 } else {
4836 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4837 sa->src, sa->dst);
4838 }
4839
4840 /* update qgroup status and info */
4841 err = btrfs_run_qgroups(trans, root->fs_info);
4842 if (err < 0)
4843 btrfs_std_error(root->fs_info, ret,
4844 "failed to update qgroup status and info\n");
4845 err = btrfs_end_transaction(trans, root);
4846 if (err && !ret)
4847 ret = err;
4848
4849 out:
4850 kfree(sa);
4851 drop_write:
4852 mnt_drop_write_file(file);
4853 return ret;
4854 }
4855
4856 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4857 {
4858 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4859 struct btrfs_ioctl_qgroup_create_args *sa;
4860 struct btrfs_trans_handle *trans;
4861 int ret;
4862 int err;
4863
4864 if (!capable(CAP_SYS_ADMIN))
4865 return -EPERM;
4866
4867 ret = mnt_want_write_file(file);
4868 if (ret)
4869 return ret;
4870
4871 sa = memdup_user(arg, sizeof(*sa));
4872 if (IS_ERR(sa)) {
4873 ret = PTR_ERR(sa);
4874 goto drop_write;
4875 }
4876
4877 if (!sa->qgroupid) {
4878 ret = -EINVAL;
4879 goto out;
4880 }
4881
4882 trans = btrfs_join_transaction(root);
4883 if (IS_ERR(trans)) {
4884 ret = PTR_ERR(trans);
4885 goto out;
4886 }
4887
4888 /* FIXME: check if the IDs really exist */
4889 if (sa->create) {
4890 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4891 } else {
4892 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4893 }
4894
4895 err = btrfs_end_transaction(trans, root);
4896 if (err && !ret)
4897 ret = err;
4898
4899 out:
4900 kfree(sa);
4901 drop_write:
4902 mnt_drop_write_file(file);
4903 return ret;
4904 }
4905
4906 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4907 {
4908 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4909 struct btrfs_ioctl_qgroup_limit_args *sa;
4910 struct btrfs_trans_handle *trans;
4911 int ret;
4912 int err;
4913 u64 qgroupid;
4914
4915 if (!capable(CAP_SYS_ADMIN))
4916 return -EPERM;
4917
4918 ret = mnt_want_write_file(file);
4919 if (ret)
4920 return ret;
4921
4922 sa = memdup_user(arg, sizeof(*sa));
4923 if (IS_ERR(sa)) {
4924 ret = PTR_ERR(sa);
4925 goto drop_write;
4926 }
4927
4928 trans = btrfs_join_transaction(root);
4929 if (IS_ERR(trans)) {
4930 ret = PTR_ERR(trans);
4931 goto out;
4932 }
4933
4934 qgroupid = sa->qgroupid;
4935 if (!qgroupid) {
4936 /* take the current subvol as qgroup */
4937 qgroupid = root->root_key.objectid;
4938 }
4939
4940 /* FIXME: check if the IDs really exist */
4941 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4942
4943 err = btrfs_end_transaction(trans, root);
4944 if (err && !ret)
4945 ret = err;
4946
4947 out:
4948 kfree(sa);
4949 drop_write:
4950 mnt_drop_write_file(file);
4951 return ret;
4952 }
4953
4954 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4955 {
4956 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4957 struct btrfs_ioctl_quota_rescan_args *qsa;
4958 int ret;
4959
4960 if (!capable(CAP_SYS_ADMIN))
4961 return -EPERM;
4962
4963 ret = mnt_want_write_file(file);
4964 if (ret)
4965 return ret;
4966
4967 qsa = memdup_user(arg, sizeof(*qsa));
4968 if (IS_ERR(qsa)) {
4969 ret = PTR_ERR(qsa);
4970 goto drop_write;
4971 }
4972
4973 if (qsa->flags) {
4974 ret = -EINVAL;
4975 goto out;
4976 }
4977
4978 ret = btrfs_qgroup_rescan(root->fs_info);
4979
4980 out:
4981 kfree(qsa);
4982 drop_write:
4983 mnt_drop_write_file(file);
4984 return ret;
4985 }
4986
4987 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4988 {
4989 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4990 struct btrfs_ioctl_quota_rescan_args *qsa;
4991 int ret = 0;
4992
4993 if (!capable(CAP_SYS_ADMIN))
4994 return -EPERM;
4995
4996 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4997 if (!qsa)
4998 return -ENOMEM;
4999
5000 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5001 qsa->flags = 1;
5002 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5003 }
5004
5005 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5006 ret = -EFAULT;
5007
5008 kfree(qsa);
5009 return ret;
5010 }
5011
5012 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5013 {
5014 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5015
5016 if (!capable(CAP_SYS_ADMIN))
5017 return -EPERM;
5018
5019 return btrfs_qgroup_wait_for_completion(root->fs_info);
5020 }
5021
5022 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5023 struct btrfs_ioctl_received_subvol_args *sa)
5024 {
5025 struct inode *inode = file_inode(file);
5026 struct btrfs_root *root = BTRFS_I(inode)->root;
5027 struct btrfs_root_item *root_item = &root->root_item;
5028 struct btrfs_trans_handle *trans;
5029 struct timespec ct = current_fs_time(inode->i_sb);
5030 int ret = 0;
5031 int received_uuid_changed;
5032
5033 if (!inode_owner_or_capable(inode))
5034 return -EPERM;
5035
5036 ret = mnt_want_write_file(file);
5037 if (ret < 0)
5038 return ret;
5039
5040 down_write(&root->fs_info->subvol_sem);
5041
5042 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5043 ret = -EINVAL;
5044 goto out;
5045 }
5046
5047 if (btrfs_root_readonly(root)) {
5048 ret = -EROFS;
5049 goto out;
5050 }
5051
5052 /*
5053 * 1 - root item
5054 * 2 - uuid items (received uuid + subvol uuid)
5055 */
5056 trans = btrfs_start_transaction(root, 3);
5057 if (IS_ERR(trans)) {
5058 ret = PTR_ERR(trans);
5059 trans = NULL;
5060 goto out;
5061 }
5062
5063 sa->rtransid = trans->transid;
5064 sa->rtime.sec = ct.tv_sec;
5065 sa->rtime.nsec = ct.tv_nsec;
5066
5067 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5068 BTRFS_UUID_SIZE);
5069 if (received_uuid_changed &&
5070 !btrfs_is_empty_uuid(root_item->received_uuid))
5071 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5072 root_item->received_uuid,
5073 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5074 root->root_key.objectid);
5075 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5076 btrfs_set_root_stransid(root_item, sa->stransid);
5077 btrfs_set_root_rtransid(root_item, sa->rtransid);
5078 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5079 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5080 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5081 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5082
5083 ret = btrfs_update_root(trans, root->fs_info->tree_root,
5084 &root->root_key, &root->root_item);
5085 if (ret < 0) {
5086 btrfs_end_transaction(trans, root);
5087 goto out;
5088 }
5089 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5090 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5091 sa->uuid,
5092 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5093 root->root_key.objectid);
5094 if (ret < 0 && ret != -EEXIST) {
5095 btrfs_abort_transaction(trans, root, ret);
5096 goto out;
5097 }
5098 }
5099 ret = btrfs_commit_transaction(trans, root);
5100 if (ret < 0) {
5101 btrfs_abort_transaction(trans, root, ret);
5102 goto out;
5103 }
5104
5105 out:
5106 up_write(&root->fs_info->subvol_sem);
5107 mnt_drop_write_file(file);
5108 return ret;
5109 }
5110
5111 #ifdef CONFIG_64BIT
5112 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5113 void __user *arg)
5114 {
5115 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5116 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5117 int ret = 0;
5118
5119 args32 = memdup_user(arg, sizeof(*args32));
5120 if (IS_ERR(args32)) {
5121 ret = PTR_ERR(args32);
5122 args32 = NULL;
5123 goto out;
5124 }
5125
5126 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5127 if (!args64) {
5128 ret = -ENOMEM;
5129 goto out;
5130 }
5131
5132 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5133 args64->stransid = args32->stransid;
5134 args64->rtransid = args32->rtransid;
5135 args64->stime.sec = args32->stime.sec;
5136 args64->stime.nsec = args32->stime.nsec;
5137 args64->rtime.sec = args32->rtime.sec;
5138 args64->rtime.nsec = args32->rtime.nsec;
5139 args64->flags = args32->flags;
5140
5141 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5142 if (ret)
5143 goto out;
5144
5145 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5146 args32->stransid = args64->stransid;
5147 args32->rtransid = args64->rtransid;
5148 args32->stime.sec = args64->stime.sec;
5149 args32->stime.nsec = args64->stime.nsec;
5150 args32->rtime.sec = args64->rtime.sec;
5151 args32->rtime.nsec = args64->rtime.nsec;
5152 args32->flags = args64->flags;
5153
5154 ret = copy_to_user(arg, args32, sizeof(*args32));
5155 if (ret)
5156 ret = -EFAULT;
5157
5158 out:
5159 kfree(args32);
5160 kfree(args64);
5161 return ret;
5162 }
5163 #endif
5164
5165 static long btrfs_ioctl_set_received_subvol(struct file *file,
5166 void __user *arg)
5167 {
5168 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5169 int ret = 0;
5170
5171 sa = memdup_user(arg, sizeof(*sa));
5172 if (IS_ERR(sa)) {
5173 ret = PTR_ERR(sa);
5174 sa = NULL;
5175 goto out;
5176 }
5177
5178 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5179
5180 if (ret)
5181 goto out;
5182
5183 ret = copy_to_user(arg, sa, sizeof(*sa));
5184 if (ret)
5185 ret = -EFAULT;
5186
5187 out:
5188 kfree(sa);
5189 return ret;
5190 }
5191
5192 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5193 {
5194 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5195 size_t len;
5196 int ret;
5197 char label[BTRFS_LABEL_SIZE];
5198
5199 spin_lock(&root->fs_info->super_lock);
5200 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5201 spin_unlock(&root->fs_info->super_lock);
5202
5203 len = strnlen(label, BTRFS_LABEL_SIZE);
5204
5205 if (len == BTRFS_LABEL_SIZE) {
5206 btrfs_warn(root->fs_info,
5207 "label is too long, return the first %zu bytes", --len);
5208 }
5209
5210 ret = copy_to_user(arg, label, len);
5211
5212 return ret ? -EFAULT : 0;
5213 }
5214
5215 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5216 {
5217 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5218 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5219 struct btrfs_trans_handle *trans;
5220 char label[BTRFS_LABEL_SIZE];
5221 int ret;
5222
5223 if (!capable(CAP_SYS_ADMIN))
5224 return -EPERM;
5225
5226 if (copy_from_user(label, arg, sizeof(label)))
5227 return -EFAULT;
5228
5229 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5230 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5231 BTRFS_LABEL_SIZE - 1);
5232 return -EINVAL;
5233 }
5234
5235 ret = mnt_want_write_file(file);
5236 if (ret)
5237 return ret;
5238
5239 trans = btrfs_start_transaction(root, 0);
5240 if (IS_ERR(trans)) {
5241 ret = PTR_ERR(trans);
5242 goto out_unlock;
5243 }
5244
5245 spin_lock(&root->fs_info->super_lock);
5246 strcpy(super_block->label, label);
5247 spin_unlock(&root->fs_info->super_lock);
5248 ret = btrfs_commit_transaction(trans, root);
5249
5250 out_unlock:
5251 mnt_drop_write_file(file);
5252 return ret;
5253 }
5254
5255 #define INIT_FEATURE_FLAGS(suffix) \
5256 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5257 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5258 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5259
5260 static int btrfs_ioctl_get_supported_features(struct file *file,
5261 void __user *arg)
5262 {
5263 static const struct btrfs_ioctl_feature_flags features[3] = {
5264 INIT_FEATURE_FLAGS(SUPP),
5265 INIT_FEATURE_FLAGS(SAFE_SET),
5266 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5267 };
5268
5269 if (copy_to_user(arg, &features, sizeof(features)))
5270 return -EFAULT;
5271
5272 return 0;
5273 }
5274
5275 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5276 {
5277 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5278 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5279 struct btrfs_ioctl_feature_flags features;
5280
5281 features.compat_flags = btrfs_super_compat_flags(super_block);
5282 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5283 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5284
5285 if (copy_to_user(arg, &features, sizeof(features)))
5286 return -EFAULT;
5287
5288 return 0;
5289 }
5290
5291 static int check_feature_bits(struct btrfs_root *root,
5292 enum btrfs_feature_set set,
5293 u64 change_mask, u64 flags, u64 supported_flags,
5294 u64 safe_set, u64 safe_clear)
5295 {
5296 const char *type = btrfs_feature_set_names[set];
5297 char *names;
5298 u64 disallowed, unsupported;
5299 u64 set_mask = flags & change_mask;
5300 u64 clear_mask = ~flags & change_mask;
5301
5302 unsupported = set_mask & ~supported_flags;
5303 if (unsupported) {
5304 names = btrfs_printable_features(set, unsupported);
5305 if (names) {
5306 btrfs_warn(root->fs_info,
5307 "this kernel does not support the %s feature bit%s",
5308 names, strchr(names, ',') ? "s" : "");
5309 kfree(names);
5310 } else
5311 btrfs_warn(root->fs_info,
5312 "this kernel does not support %s bits 0x%llx",
5313 type, unsupported);
5314 return -EOPNOTSUPP;
5315 }
5316
5317 disallowed = set_mask & ~safe_set;
5318 if (disallowed) {
5319 names = btrfs_printable_features(set, disallowed);
5320 if (names) {
5321 btrfs_warn(root->fs_info,
5322 "can't set the %s feature bit%s while mounted",
5323 names, strchr(names, ',') ? "s" : "");
5324 kfree(names);
5325 } else
5326 btrfs_warn(root->fs_info,
5327 "can't set %s bits 0x%llx while mounted",
5328 type, disallowed);
5329 return -EPERM;
5330 }
5331
5332 disallowed = clear_mask & ~safe_clear;
5333 if (disallowed) {
5334 names = btrfs_printable_features(set, disallowed);
5335 if (names) {
5336 btrfs_warn(root->fs_info,
5337 "can't clear the %s feature bit%s while mounted",
5338 names, strchr(names, ',') ? "s" : "");
5339 kfree(names);
5340 } else
5341 btrfs_warn(root->fs_info,
5342 "can't clear %s bits 0x%llx while mounted",
5343 type, disallowed);
5344 return -EPERM;
5345 }
5346
5347 return 0;
5348 }
5349
5350 #define check_feature(root, change_mask, flags, mask_base) \
5351 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5352 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5353 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5354 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5355
5356 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5357 {
5358 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5359 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5360 struct btrfs_ioctl_feature_flags flags[2];
5361 struct btrfs_trans_handle *trans;
5362 u64 newflags;
5363 int ret;
5364
5365 if (!capable(CAP_SYS_ADMIN))
5366 return -EPERM;
5367
5368 if (copy_from_user(flags, arg, sizeof(flags)))
5369 return -EFAULT;
5370
5371 /* Nothing to do */
5372 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5373 !flags[0].incompat_flags)
5374 return 0;
5375
5376 ret = check_feature(root, flags[0].compat_flags,
5377 flags[1].compat_flags, COMPAT);
5378 if (ret)
5379 return ret;
5380
5381 ret = check_feature(root, flags[0].compat_ro_flags,
5382 flags[1].compat_ro_flags, COMPAT_RO);
5383 if (ret)
5384 return ret;
5385
5386 ret = check_feature(root, flags[0].incompat_flags,
5387 flags[1].incompat_flags, INCOMPAT);
5388 if (ret)
5389 return ret;
5390
5391 trans = btrfs_start_transaction(root, 0);
5392 if (IS_ERR(trans))
5393 return PTR_ERR(trans);
5394
5395 spin_lock(&root->fs_info->super_lock);
5396 newflags = btrfs_super_compat_flags(super_block);
5397 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5398 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5399 btrfs_set_super_compat_flags(super_block, newflags);
5400
5401 newflags = btrfs_super_compat_ro_flags(super_block);
5402 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5403 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5404 btrfs_set_super_compat_ro_flags(super_block, newflags);
5405
5406 newflags = btrfs_super_incompat_flags(super_block);
5407 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5408 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5409 btrfs_set_super_incompat_flags(super_block, newflags);
5410 spin_unlock(&root->fs_info->super_lock);
5411
5412 return btrfs_commit_transaction(trans, root);
5413 }
5414
5415 long btrfs_ioctl(struct file *file, unsigned int
5416 cmd, unsigned long arg)
5417 {
5418 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5419 void __user *argp = (void __user *)arg;
5420
5421 switch (cmd) {
5422 case FS_IOC_GETFLAGS:
5423 return btrfs_ioctl_getflags(file, argp);
5424 case FS_IOC_SETFLAGS:
5425 return btrfs_ioctl_setflags(file, argp);
5426 case FS_IOC_GETVERSION:
5427 return btrfs_ioctl_getversion(file, argp);
5428 case FITRIM:
5429 return btrfs_ioctl_fitrim(file, argp);
5430 case BTRFS_IOC_SNAP_CREATE:
5431 return btrfs_ioctl_snap_create(file, argp, 0);
5432 case BTRFS_IOC_SNAP_CREATE_V2:
5433 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5434 case BTRFS_IOC_SUBVOL_CREATE:
5435 return btrfs_ioctl_snap_create(file, argp, 1);
5436 case BTRFS_IOC_SUBVOL_CREATE_V2:
5437 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5438 case BTRFS_IOC_SNAP_DESTROY:
5439 return btrfs_ioctl_snap_destroy(file, argp);
5440 case BTRFS_IOC_SUBVOL_GETFLAGS:
5441 return btrfs_ioctl_subvol_getflags(file, argp);
5442 case BTRFS_IOC_SUBVOL_SETFLAGS:
5443 return btrfs_ioctl_subvol_setflags(file, argp);
5444 case BTRFS_IOC_DEFAULT_SUBVOL:
5445 return btrfs_ioctl_default_subvol(file, argp);
5446 case BTRFS_IOC_DEFRAG:
5447 return btrfs_ioctl_defrag(file, NULL);
5448 case BTRFS_IOC_DEFRAG_RANGE:
5449 return btrfs_ioctl_defrag(file, argp);
5450 case BTRFS_IOC_RESIZE:
5451 return btrfs_ioctl_resize(file, argp);
5452 case BTRFS_IOC_ADD_DEV:
5453 return btrfs_ioctl_add_dev(root, argp);
5454 case BTRFS_IOC_RM_DEV:
5455 return btrfs_ioctl_rm_dev(file, argp);
5456 case BTRFS_IOC_FS_INFO:
5457 return btrfs_ioctl_fs_info(root, argp);
5458 case BTRFS_IOC_DEV_INFO:
5459 return btrfs_ioctl_dev_info(root, argp);
5460 case BTRFS_IOC_BALANCE:
5461 return btrfs_ioctl_balance(file, NULL);
5462 case BTRFS_IOC_TRANS_START:
5463 return btrfs_ioctl_trans_start(file);
5464 case BTRFS_IOC_TRANS_END:
5465 return btrfs_ioctl_trans_end(file);
5466 case BTRFS_IOC_TREE_SEARCH:
5467 return btrfs_ioctl_tree_search(file, argp);
5468 case BTRFS_IOC_TREE_SEARCH_V2:
5469 return btrfs_ioctl_tree_search_v2(file, argp);
5470 case BTRFS_IOC_INO_LOOKUP:
5471 return btrfs_ioctl_ino_lookup(file, argp);
5472 case BTRFS_IOC_INO_PATHS:
5473 return btrfs_ioctl_ino_to_path(root, argp);
5474 case BTRFS_IOC_LOGICAL_INO:
5475 return btrfs_ioctl_logical_to_ino(root, argp);
5476 case BTRFS_IOC_SPACE_INFO:
5477 return btrfs_ioctl_space_info(root, argp);
5478 case BTRFS_IOC_SYNC: {
5479 int ret;
5480
5481 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5482 if (ret)
5483 return ret;
5484 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5485 /*
5486 * The transaction thread may want to do more work,
5487 * namely it pokes the cleaner ktread that will start
5488 * processing uncleaned subvols.
5489 */
5490 wake_up_process(root->fs_info->transaction_kthread);
5491 return ret;
5492 }
5493 case BTRFS_IOC_START_SYNC:
5494 return btrfs_ioctl_start_sync(root, argp);
5495 case BTRFS_IOC_WAIT_SYNC:
5496 return btrfs_ioctl_wait_sync(root, argp);
5497 case BTRFS_IOC_SCRUB:
5498 return btrfs_ioctl_scrub(file, argp);
5499 case BTRFS_IOC_SCRUB_CANCEL:
5500 return btrfs_ioctl_scrub_cancel(root, argp);
5501 case BTRFS_IOC_SCRUB_PROGRESS:
5502 return btrfs_ioctl_scrub_progress(root, argp);
5503 case BTRFS_IOC_BALANCE_V2:
5504 return btrfs_ioctl_balance(file, argp);
5505 case BTRFS_IOC_BALANCE_CTL:
5506 return btrfs_ioctl_balance_ctl(root, arg);
5507 case BTRFS_IOC_BALANCE_PROGRESS:
5508 return btrfs_ioctl_balance_progress(root, argp);
5509 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5510 return btrfs_ioctl_set_received_subvol(file, argp);
5511 #ifdef CONFIG_64BIT
5512 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5513 return btrfs_ioctl_set_received_subvol_32(file, argp);
5514 #endif
5515 case BTRFS_IOC_SEND:
5516 return btrfs_ioctl_send(file, argp);
5517 case BTRFS_IOC_GET_DEV_STATS:
5518 return btrfs_ioctl_get_dev_stats(root, argp);
5519 case BTRFS_IOC_QUOTA_CTL:
5520 return btrfs_ioctl_quota_ctl(file, argp);
5521 case BTRFS_IOC_QGROUP_ASSIGN:
5522 return btrfs_ioctl_qgroup_assign(file, argp);
5523 case BTRFS_IOC_QGROUP_CREATE:
5524 return btrfs_ioctl_qgroup_create(file, argp);
5525 case BTRFS_IOC_QGROUP_LIMIT:
5526 return btrfs_ioctl_qgroup_limit(file, argp);
5527 case BTRFS_IOC_QUOTA_RESCAN:
5528 return btrfs_ioctl_quota_rescan(file, argp);
5529 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5530 return btrfs_ioctl_quota_rescan_status(file, argp);
5531 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5532 return btrfs_ioctl_quota_rescan_wait(file, argp);
5533 case BTRFS_IOC_DEV_REPLACE:
5534 return btrfs_ioctl_dev_replace(root, argp);
5535 case BTRFS_IOC_GET_FSLABEL:
5536 return btrfs_ioctl_get_fslabel(file, argp);
5537 case BTRFS_IOC_SET_FSLABEL:
5538 return btrfs_ioctl_set_fslabel(file, argp);
5539 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5540 return btrfs_ioctl_get_supported_features(file, argp);
5541 case BTRFS_IOC_GET_FEATURES:
5542 return btrfs_ioctl_get_features(file, argp);
5543 case BTRFS_IOC_SET_FEATURES:
5544 return btrfs_ioctl_set_features(file, argp);
5545 }
5546
5547 return -ENOTTY;
5548 }