]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/ioctl.c
Merge tag 'char-misc-4.13-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55 #include "rcu-string.h"
56 #include "send.h"
57 #include "dev-replace.h"
58 #include "props.h"
59 #include "sysfs.h"
60 #include "qgroup.h"
61 #include "tree-log.h"
62 #include "compression.h"
63
64 #ifdef CONFIG_64BIT
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
69 */
70 struct btrfs_ioctl_timespec_32 {
71 __u64 sec;
72 __u32 nsec;
73 } __attribute__ ((__packed__));
74
75 struct btrfs_ioctl_received_subvol_args_32 {
76 char uuid[BTRFS_UUID_SIZE]; /* in */
77 __u64 stransid; /* in */
78 __u64 rtransid; /* out */
79 struct btrfs_ioctl_timespec_32 stime; /* in */
80 struct btrfs_ioctl_timespec_32 rtime; /* out */
81 __u64 flags; /* in */
82 __u64 reserved[16]; /* in */
83 } __attribute__ ((__packed__));
84
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
87 #endif
88
89
90 static int btrfs_clone(struct inode *src, struct inode *inode,
91 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
92 int no_time_update);
93
94 /* Mask out flags that are inappropriate for the given type of inode. */
95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
96 {
97 if (S_ISDIR(mode))
98 return flags;
99 else if (S_ISREG(mode))
100 return flags & ~FS_DIRSYNC_FL;
101 else
102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104
105 /*
106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107 */
108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
109 {
110 unsigned int iflags = 0;
111
112 if (flags & BTRFS_INODE_SYNC)
113 iflags |= FS_SYNC_FL;
114 if (flags & BTRFS_INODE_IMMUTABLE)
115 iflags |= FS_IMMUTABLE_FL;
116 if (flags & BTRFS_INODE_APPEND)
117 iflags |= FS_APPEND_FL;
118 if (flags & BTRFS_INODE_NODUMP)
119 iflags |= FS_NODUMP_FL;
120 if (flags & BTRFS_INODE_NOATIME)
121 iflags |= FS_NOATIME_FL;
122 if (flags & BTRFS_INODE_DIRSYNC)
123 iflags |= FS_DIRSYNC_FL;
124 if (flags & BTRFS_INODE_NODATACOW)
125 iflags |= FS_NOCOW_FL;
126
127 if (flags & BTRFS_INODE_NOCOMPRESS)
128 iflags |= FS_NOCOMP_FL;
129 else if (flags & BTRFS_INODE_COMPRESS)
130 iflags |= FS_COMPR_FL;
131
132 return iflags;
133 }
134
135 /*
136 * Update inode->i_flags based on the btrfs internal flags.
137 */
138 void btrfs_update_iflags(struct inode *inode)
139 {
140 struct btrfs_inode *ip = BTRFS_I(inode);
141 unsigned int new_fl = 0;
142
143 if (ip->flags & BTRFS_INODE_SYNC)
144 new_fl |= S_SYNC;
145 if (ip->flags & BTRFS_INODE_IMMUTABLE)
146 new_fl |= S_IMMUTABLE;
147 if (ip->flags & BTRFS_INODE_APPEND)
148 new_fl |= S_APPEND;
149 if (ip->flags & BTRFS_INODE_NOATIME)
150 new_fl |= S_NOATIME;
151 if (ip->flags & BTRFS_INODE_DIRSYNC)
152 new_fl |= S_DIRSYNC;
153
154 set_mask_bits(&inode->i_flags,
155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
156 new_fl);
157 }
158
159 /*
160 * Inherit flags from the parent inode.
161 *
162 * Currently only the compression flags and the cow flags are inherited.
163 */
164 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
165 {
166 unsigned int flags;
167
168 if (!dir)
169 return;
170
171 flags = BTRFS_I(dir)->flags;
172
173 if (flags & BTRFS_INODE_NOCOMPRESS) {
174 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
175 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
176 } else if (flags & BTRFS_INODE_COMPRESS) {
177 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
178 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
179 }
180
181 if (flags & BTRFS_INODE_NODATACOW) {
182 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
183 if (S_ISREG(inode->i_mode))
184 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
185 }
186
187 btrfs_update_iflags(inode);
188 }
189
190 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
191 {
192 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
193 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
194
195 if (copy_to_user(arg, &flags, sizeof(flags)))
196 return -EFAULT;
197 return 0;
198 }
199
200 static int check_flags(unsigned int flags)
201 {
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
206 FS_NOCOW_FL))
207 return -EOPNOTSUPP;
208
209 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
210 return -EINVAL;
211
212 return 0;
213 }
214
215 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
216 {
217 struct inode *inode = file_inode(file);
218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
219 struct btrfs_inode *ip = BTRFS_I(inode);
220 struct btrfs_root *root = ip->root;
221 struct btrfs_trans_handle *trans;
222 unsigned int flags, oldflags;
223 int ret;
224 u64 ip_oldflags;
225 unsigned int i_oldflags;
226 umode_t mode;
227
228 if (!inode_owner_or_capable(inode))
229 return -EPERM;
230
231 if (btrfs_root_readonly(root))
232 return -EROFS;
233
234 if (copy_from_user(&flags, arg, sizeof(flags)))
235 return -EFAULT;
236
237 ret = check_flags(flags);
238 if (ret)
239 return ret;
240
241 ret = mnt_want_write_file(file);
242 if (ret)
243 return ret;
244
245 inode_lock(inode);
246
247 ip_oldflags = ip->flags;
248 i_oldflags = inode->i_flags;
249 mode = inode->i_mode;
250
251 flags = btrfs_mask_flags(inode->i_mode, flags);
252 oldflags = btrfs_flags_to_ioctl(ip->flags);
253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 if (!capable(CAP_LINUX_IMMUTABLE)) {
255 ret = -EPERM;
256 goto out_unlock;
257 }
258 }
259
260 if (flags & FS_SYNC_FL)
261 ip->flags |= BTRFS_INODE_SYNC;
262 else
263 ip->flags &= ~BTRFS_INODE_SYNC;
264 if (flags & FS_IMMUTABLE_FL)
265 ip->flags |= BTRFS_INODE_IMMUTABLE;
266 else
267 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 if (flags & FS_APPEND_FL)
269 ip->flags |= BTRFS_INODE_APPEND;
270 else
271 ip->flags &= ~BTRFS_INODE_APPEND;
272 if (flags & FS_NODUMP_FL)
273 ip->flags |= BTRFS_INODE_NODUMP;
274 else
275 ip->flags &= ~BTRFS_INODE_NODUMP;
276 if (flags & FS_NOATIME_FL)
277 ip->flags |= BTRFS_INODE_NOATIME;
278 else
279 ip->flags &= ~BTRFS_INODE_NOATIME;
280 if (flags & FS_DIRSYNC_FL)
281 ip->flags |= BTRFS_INODE_DIRSYNC;
282 else
283 ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 if (flags & FS_NOCOW_FL) {
285 if (S_ISREG(mode)) {
286 /*
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
290 */
291 if (inode->i_size == 0)
292 ip->flags |= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM;
294 } else {
295 ip->flags |= BTRFS_INODE_NODATACOW;
296 }
297 } else {
298 /*
299 * Revert back under same assumptions as above
300 */
301 if (S_ISREG(mode)) {
302 if (inode->i_size == 0)
303 ip->flags &= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM);
305 } else {
306 ip->flags &= ~BTRFS_INODE_NODATACOW;
307 }
308 }
309
310 /*
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
313 * things smaller.
314 */
315 if (flags & FS_NOCOMP_FL) {
316 ip->flags &= ~BTRFS_INODE_COMPRESS;
317 ip->flags |= BTRFS_INODE_NOCOMPRESS;
318
319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 if (ret && ret != -ENODATA)
321 goto out_drop;
322 } else if (flags & FS_COMPR_FL) {
323 const char *comp;
324
325 ip->flags |= BTRFS_INODE_COMPRESS;
326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327
328 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
329 comp = "lzo";
330 else
331 comp = "zlib";
332 ret = btrfs_set_prop(inode, "btrfs.compression",
333 comp, strlen(comp), 0);
334 if (ret)
335 goto out_drop;
336
337 } else {
338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 if (ret && ret != -ENODATA)
340 goto out_drop;
341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 }
343
344 trans = btrfs_start_transaction(root, 1);
345 if (IS_ERR(trans)) {
346 ret = PTR_ERR(trans);
347 goto out_drop;
348 }
349
350 btrfs_update_iflags(inode);
351 inode_inc_iversion(inode);
352 inode->i_ctime = current_time(inode);
353 ret = btrfs_update_inode(trans, root, inode);
354
355 btrfs_end_transaction(trans);
356 out_drop:
357 if (ret) {
358 ip->flags = ip_oldflags;
359 inode->i_flags = i_oldflags;
360 }
361
362 out_unlock:
363 inode_unlock(inode);
364 mnt_drop_write_file(file);
365 return ret;
366 }
367
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369 {
370 struct inode *inode = file_inode(file);
371
372 return put_user(inode->i_generation, arg);
373 }
374
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376 {
377 struct inode *inode = file_inode(file);
378 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
379 struct btrfs_device *device;
380 struct request_queue *q;
381 struct fstrim_range range;
382 u64 minlen = ULLONG_MAX;
383 u64 num_devices = 0;
384 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
385 int ret;
386
387 if (!capable(CAP_SYS_ADMIN))
388 return -EPERM;
389
390 rcu_read_lock();
391 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
392 dev_list) {
393 if (!device->bdev)
394 continue;
395 q = bdev_get_queue(device->bdev);
396 if (blk_queue_discard(q)) {
397 num_devices++;
398 minlen = min_t(u64, q->limits.discard_granularity,
399 minlen);
400 }
401 }
402 rcu_read_unlock();
403
404 if (!num_devices)
405 return -EOPNOTSUPP;
406 if (copy_from_user(&range, arg, sizeof(range)))
407 return -EFAULT;
408 if (range.start > total_bytes ||
409 range.len < fs_info->sb->s_blocksize)
410 return -EINVAL;
411
412 range.len = min(range.len, total_bytes - range.start);
413 range.minlen = max(range.minlen, minlen);
414 ret = btrfs_trim_fs(fs_info, &range);
415 if (ret < 0)
416 return ret;
417
418 if (copy_to_user(arg, &range, sizeof(range)))
419 return -EFAULT;
420
421 return 0;
422 }
423
424 int btrfs_is_empty_uuid(u8 *uuid)
425 {
426 int i;
427
428 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
429 if (uuid[i])
430 return 0;
431 }
432 return 1;
433 }
434
435 static noinline int create_subvol(struct inode *dir,
436 struct dentry *dentry,
437 const char *name, int namelen,
438 u64 *async_transid,
439 struct btrfs_qgroup_inherit *inherit)
440 {
441 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
442 struct btrfs_trans_handle *trans;
443 struct btrfs_key key;
444 struct btrfs_root_item *root_item;
445 struct btrfs_inode_item *inode_item;
446 struct extent_buffer *leaf;
447 struct btrfs_root *root = BTRFS_I(dir)->root;
448 struct btrfs_root *new_root;
449 struct btrfs_block_rsv block_rsv;
450 struct timespec cur_time = current_time(dir);
451 struct inode *inode;
452 int ret;
453 int err;
454 u64 objectid;
455 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
456 u64 index = 0;
457 u64 qgroup_reserved;
458 uuid_le new_uuid;
459
460 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
461 if (!root_item)
462 return -ENOMEM;
463
464 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
465 if (ret)
466 goto fail_free;
467
468 /*
469 * Don't create subvolume whose level is not zero. Or qgroup will be
470 * screwed up since it assumes subvolume qgroup's level to be 0.
471 */
472 if (btrfs_qgroup_level(objectid)) {
473 ret = -ENOSPC;
474 goto fail_free;
475 }
476
477 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
478 /*
479 * The same as the snapshot creation, please see the comment
480 * of create_snapshot().
481 */
482 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
483 8, &qgroup_reserved, false);
484 if (ret)
485 goto fail_free;
486
487 trans = btrfs_start_transaction(root, 0);
488 if (IS_ERR(trans)) {
489 ret = PTR_ERR(trans);
490 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
491 goto fail_free;
492 }
493 trans->block_rsv = &block_rsv;
494 trans->bytes_reserved = block_rsv.size;
495
496 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
497 if (ret)
498 goto fail;
499
500 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
501 if (IS_ERR(leaf)) {
502 ret = PTR_ERR(leaf);
503 goto fail;
504 }
505
506 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
507 btrfs_set_header_bytenr(leaf, leaf->start);
508 btrfs_set_header_generation(leaf, trans->transid);
509 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
510 btrfs_set_header_owner(leaf, objectid);
511
512 write_extent_buffer_fsid(leaf, fs_info->fsid);
513 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
514 btrfs_mark_buffer_dirty(leaf);
515
516 inode_item = &root_item->inode;
517 btrfs_set_stack_inode_generation(inode_item, 1);
518 btrfs_set_stack_inode_size(inode_item, 3);
519 btrfs_set_stack_inode_nlink(inode_item, 1);
520 btrfs_set_stack_inode_nbytes(inode_item,
521 fs_info->nodesize);
522 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
523
524 btrfs_set_root_flags(root_item, 0);
525 btrfs_set_root_limit(root_item, 0);
526 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
527
528 btrfs_set_root_bytenr(root_item, leaf->start);
529 btrfs_set_root_generation(root_item, trans->transid);
530 btrfs_set_root_level(root_item, 0);
531 btrfs_set_root_refs(root_item, 1);
532 btrfs_set_root_used(root_item, leaf->len);
533 btrfs_set_root_last_snapshot(root_item, 0);
534
535 btrfs_set_root_generation_v2(root_item,
536 btrfs_root_generation(root_item));
537 uuid_le_gen(&new_uuid);
538 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
539 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
540 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
541 root_item->ctime = root_item->otime;
542 btrfs_set_root_ctransid(root_item, trans->transid);
543 btrfs_set_root_otransid(root_item, trans->transid);
544
545 btrfs_tree_unlock(leaf);
546 free_extent_buffer(leaf);
547 leaf = NULL;
548
549 btrfs_set_root_dirid(root_item, new_dirid);
550
551 key.objectid = objectid;
552 key.offset = 0;
553 key.type = BTRFS_ROOT_ITEM_KEY;
554 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
555 root_item);
556 if (ret)
557 goto fail;
558
559 key.offset = (u64)-1;
560 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
561 if (IS_ERR(new_root)) {
562 ret = PTR_ERR(new_root);
563 btrfs_abort_transaction(trans, ret);
564 goto fail;
565 }
566
567 btrfs_record_root_in_trans(trans, new_root);
568
569 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
570 if (ret) {
571 /* We potentially lose an unused inode item here */
572 btrfs_abort_transaction(trans, ret);
573 goto fail;
574 }
575
576 mutex_lock(&new_root->objectid_mutex);
577 new_root->highest_objectid = new_dirid;
578 mutex_unlock(&new_root->objectid_mutex);
579
580 /*
581 * insert the directory item
582 */
583 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
584 if (ret) {
585 btrfs_abort_transaction(trans, ret);
586 goto fail;
587 }
588
589 ret = btrfs_insert_dir_item(trans, root,
590 name, namelen, BTRFS_I(dir), &key,
591 BTRFS_FT_DIR, index);
592 if (ret) {
593 btrfs_abort_transaction(trans, ret);
594 goto fail;
595 }
596
597 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
598 ret = btrfs_update_inode(trans, root, dir);
599 BUG_ON(ret);
600
601 ret = btrfs_add_root_ref(trans, fs_info,
602 objectid, root->root_key.objectid,
603 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
604 BUG_ON(ret);
605
606 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
607 BTRFS_UUID_KEY_SUBVOL, objectid);
608 if (ret)
609 btrfs_abort_transaction(trans, ret);
610
611 fail:
612 kfree(root_item);
613 trans->block_rsv = NULL;
614 trans->bytes_reserved = 0;
615 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
616
617 if (async_transid) {
618 *async_transid = trans->transid;
619 err = btrfs_commit_transaction_async(trans, 1);
620 if (err)
621 err = btrfs_commit_transaction(trans);
622 } else {
623 err = btrfs_commit_transaction(trans);
624 }
625 if (err && !ret)
626 ret = err;
627
628 if (!ret) {
629 inode = btrfs_lookup_dentry(dir, dentry);
630 if (IS_ERR(inode))
631 return PTR_ERR(inode);
632 d_instantiate(dentry, inode);
633 }
634 return ret;
635
636 fail_free:
637 kfree(root_item);
638 return ret;
639 }
640
641 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
642 {
643 s64 writers;
644 DEFINE_WAIT(wait);
645
646 do {
647 prepare_to_wait(&root->subv_writers->wait, &wait,
648 TASK_UNINTERRUPTIBLE);
649
650 writers = percpu_counter_sum(&root->subv_writers->counter);
651 if (writers)
652 schedule();
653
654 finish_wait(&root->subv_writers->wait, &wait);
655 } while (writers);
656 }
657
658 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
659 struct dentry *dentry,
660 u64 *async_transid, bool readonly,
661 struct btrfs_qgroup_inherit *inherit)
662 {
663 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
664 struct inode *inode;
665 struct btrfs_pending_snapshot *pending_snapshot;
666 struct btrfs_trans_handle *trans;
667 int ret;
668
669 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
670 return -EINVAL;
671
672 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
673 if (!pending_snapshot)
674 return -ENOMEM;
675
676 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
677 GFP_KERNEL);
678 pending_snapshot->path = btrfs_alloc_path();
679 if (!pending_snapshot->root_item || !pending_snapshot->path) {
680 ret = -ENOMEM;
681 goto free_pending;
682 }
683
684 atomic_inc(&root->will_be_snapshoted);
685 smp_mb__after_atomic();
686 btrfs_wait_for_no_snapshoting_writes(root);
687
688 ret = btrfs_start_delalloc_inodes(root, 0);
689 if (ret)
690 goto dec_and_free;
691
692 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
693
694 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
695 BTRFS_BLOCK_RSV_TEMP);
696 /*
697 * 1 - parent dir inode
698 * 2 - dir entries
699 * 1 - root item
700 * 2 - root ref/backref
701 * 1 - root of snapshot
702 * 1 - UUID item
703 */
704 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
705 &pending_snapshot->block_rsv, 8,
706 &pending_snapshot->qgroup_reserved,
707 false);
708 if (ret)
709 goto dec_and_free;
710
711 pending_snapshot->dentry = dentry;
712 pending_snapshot->root = root;
713 pending_snapshot->readonly = readonly;
714 pending_snapshot->dir = dir;
715 pending_snapshot->inherit = inherit;
716
717 trans = btrfs_start_transaction(root, 0);
718 if (IS_ERR(trans)) {
719 ret = PTR_ERR(trans);
720 goto fail;
721 }
722
723 spin_lock(&fs_info->trans_lock);
724 list_add(&pending_snapshot->list,
725 &trans->transaction->pending_snapshots);
726 spin_unlock(&fs_info->trans_lock);
727 if (async_transid) {
728 *async_transid = trans->transid;
729 ret = btrfs_commit_transaction_async(trans, 1);
730 if (ret)
731 ret = btrfs_commit_transaction(trans);
732 } else {
733 ret = btrfs_commit_transaction(trans);
734 }
735 if (ret)
736 goto fail;
737
738 ret = pending_snapshot->error;
739 if (ret)
740 goto fail;
741
742 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
743 if (ret)
744 goto fail;
745
746 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
747 if (IS_ERR(inode)) {
748 ret = PTR_ERR(inode);
749 goto fail;
750 }
751
752 d_instantiate(dentry, inode);
753 ret = 0;
754 fail:
755 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
756 dec_and_free:
757 if (atomic_dec_and_test(&root->will_be_snapshoted))
758 wake_up_atomic_t(&root->will_be_snapshoted);
759 free_pending:
760 kfree(pending_snapshot->root_item);
761 btrfs_free_path(pending_snapshot->path);
762 kfree(pending_snapshot);
763
764 return ret;
765 }
766
767 /* copy of may_delete in fs/namei.c()
768 * Check whether we can remove a link victim from directory dir, check
769 * whether the type of victim is right.
770 * 1. We can't do it if dir is read-only (done in permission())
771 * 2. We should have write and exec permissions on dir
772 * 3. We can't remove anything from append-only dir
773 * 4. We can't do anything with immutable dir (done in permission())
774 * 5. If the sticky bit on dir is set we should either
775 * a. be owner of dir, or
776 * b. be owner of victim, or
777 * c. have CAP_FOWNER capability
778 * 6. If the victim is append-only or immutable we can't do anything with
779 * links pointing to it.
780 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
781 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
782 * 9. We can't remove a root or mountpoint.
783 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
784 * nfs_async_unlink().
785 */
786
787 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
788 {
789 int error;
790
791 if (d_really_is_negative(victim))
792 return -ENOENT;
793
794 BUG_ON(d_inode(victim->d_parent) != dir);
795 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
796
797 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
798 if (error)
799 return error;
800 if (IS_APPEND(dir))
801 return -EPERM;
802 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
803 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
804 return -EPERM;
805 if (isdir) {
806 if (!d_is_dir(victim))
807 return -ENOTDIR;
808 if (IS_ROOT(victim))
809 return -EBUSY;
810 } else if (d_is_dir(victim))
811 return -EISDIR;
812 if (IS_DEADDIR(dir))
813 return -ENOENT;
814 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
815 return -EBUSY;
816 return 0;
817 }
818
819 /* copy of may_create in fs/namei.c() */
820 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
821 {
822 if (d_really_is_positive(child))
823 return -EEXIST;
824 if (IS_DEADDIR(dir))
825 return -ENOENT;
826 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
827 }
828
829 /*
830 * Create a new subvolume below @parent. This is largely modeled after
831 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
832 * inside this filesystem so it's quite a bit simpler.
833 */
834 static noinline int btrfs_mksubvol(const struct path *parent,
835 const char *name, int namelen,
836 struct btrfs_root *snap_src,
837 u64 *async_transid, bool readonly,
838 struct btrfs_qgroup_inherit *inherit)
839 {
840 struct inode *dir = d_inode(parent->dentry);
841 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
842 struct dentry *dentry;
843 int error;
844
845 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
846 if (error == -EINTR)
847 return error;
848
849 dentry = lookup_one_len(name, parent->dentry, namelen);
850 error = PTR_ERR(dentry);
851 if (IS_ERR(dentry))
852 goto out_unlock;
853
854 error = btrfs_may_create(dir, dentry);
855 if (error)
856 goto out_dput;
857
858 /*
859 * even if this name doesn't exist, we may get hash collisions.
860 * check for them now when we can safely fail
861 */
862 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
863 dir->i_ino, name,
864 namelen);
865 if (error)
866 goto out_dput;
867
868 down_read(&fs_info->subvol_sem);
869
870 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
871 goto out_up_read;
872
873 if (snap_src) {
874 error = create_snapshot(snap_src, dir, dentry,
875 async_transid, readonly, inherit);
876 } else {
877 error = create_subvol(dir, dentry, name, namelen,
878 async_transid, inherit);
879 }
880 if (!error)
881 fsnotify_mkdir(dir, dentry);
882 out_up_read:
883 up_read(&fs_info->subvol_sem);
884 out_dput:
885 dput(dentry);
886 out_unlock:
887 inode_unlock(dir);
888 return error;
889 }
890
891 /*
892 * When we're defragging a range, we don't want to kick it off again
893 * if it is really just waiting for delalloc to send it down.
894 * If we find a nice big extent or delalloc range for the bytes in the
895 * file you want to defrag, we return 0 to let you know to skip this
896 * part of the file
897 */
898 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
899 {
900 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
901 struct extent_map *em = NULL;
902 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
903 u64 end;
904
905 read_lock(&em_tree->lock);
906 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
907 read_unlock(&em_tree->lock);
908
909 if (em) {
910 end = extent_map_end(em);
911 free_extent_map(em);
912 if (end - offset > thresh)
913 return 0;
914 }
915 /* if we already have a nice delalloc here, just stop */
916 thresh /= 2;
917 end = count_range_bits(io_tree, &offset, offset + thresh,
918 thresh, EXTENT_DELALLOC, 1);
919 if (end >= thresh)
920 return 0;
921 return 1;
922 }
923
924 /*
925 * helper function to walk through a file and find extents
926 * newer than a specific transid, and smaller than thresh.
927 *
928 * This is used by the defragging code to find new and small
929 * extents
930 */
931 static int find_new_extents(struct btrfs_root *root,
932 struct inode *inode, u64 newer_than,
933 u64 *off, u32 thresh)
934 {
935 struct btrfs_path *path;
936 struct btrfs_key min_key;
937 struct extent_buffer *leaf;
938 struct btrfs_file_extent_item *extent;
939 int type;
940 int ret;
941 u64 ino = btrfs_ino(BTRFS_I(inode));
942
943 path = btrfs_alloc_path();
944 if (!path)
945 return -ENOMEM;
946
947 min_key.objectid = ino;
948 min_key.type = BTRFS_EXTENT_DATA_KEY;
949 min_key.offset = *off;
950
951 while (1) {
952 ret = btrfs_search_forward(root, &min_key, path, newer_than);
953 if (ret != 0)
954 goto none;
955 process_slot:
956 if (min_key.objectid != ino)
957 goto none;
958 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
959 goto none;
960
961 leaf = path->nodes[0];
962 extent = btrfs_item_ptr(leaf, path->slots[0],
963 struct btrfs_file_extent_item);
964
965 type = btrfs_file_extent_type(leaf, extent);
966 if (type == BTRFS_FILE_EXTENT_REG &&
967 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
968 check_defrag_in_cache(inode, min_key.offset, thresh)) {
969 *off = min_key.offset;
970 btrfs_free_path(path);
971 return 0;
972 }
973
974 path->slots[0]++;
975 if (path->slots[0] < btrfs_header_nritems(leaf)) {
976 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
977 goto process_slot;
978 }
979
980 if (min_key.offset == (u64)-1)
981 goto none;
982
983 min_key.offset++;
984 btrfs_release_path(path);
985 }
986 none:
987 btrfs_free_path(path);
988 return -ENOENT;
989 }
990
991 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
992 {
993 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
994 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
995 struct extent_map *em;
996 u64 len = PAGE_SIZE;
997
998 /*
999 * hopefully we have this extent in the tree already, try without
1000 * the full extent lock
1001 */
1002 read_lock(&em_tree->lock);
1003 em = lookup_extent_mapping(em_tree, start, len);
1004 read_unlock(&em_tree->lock);
1005
1006 if (!em) {
1007 struct extent_state *cached = NULL;
1008 u64 end = start + len - 1;
1009
1010 /* get the big lock and read metadata off disk */
1011 lock_extent_bits(io_tree, start, end, &cached);
1012 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1013 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1014
1015 if (IS_ERR(em))
1016 return NULL;
1017 }
1018
1019 return em;
1020 }
1021
1022 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1023 {
1024 struct extent_map *next;
1025 bool ret = true;
1026
1027 /* this is the last extent */
1028 if (em->start + em->len >= i_size_read(inode))
1029 return false;
1030
1031 next = defrag_lookup_extent(inode, em->start + em->len);
1032 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1033 ret = false;
1034 else if ((em->block_start + em->block_len == next->block_start) &&
1035 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1036 ret = false;
1037
1038 free_extent_map(next);
1039 return ret;
1040 }
1041
1042 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1043 u64 *last_len, u64 *skip, u64 *defrag_end,
1044 int compress)
1045 {
1046 struct extent_map *em;
1047 int ret = 1;
1048 bool next_mergeable = true;
1049 bool prev_mergeable = true;
1050
1051 /*
1052 * make sure that once we start defragging an extent, we keep on
1053 * defragging it
1054 */
1055 if (start < *defrag_end)
1056 return 1;
1057
1058 *skip = 0;
1059
1060 em = defrag_lookup_extent(inode, start);
1061 if (!em)
1062 return 0;
1063
1064 /* this will cover holes, and inline extents */
1065 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1066 ret = 0;
1067 goto out;
1068 }
1069
1070 if (!*defrag_end)
1071 prev_mergeable = false;
1072
1073 next_mergeable = defrag_check_next_extent(inode, em);
1074 /*
1075 * we hit a real extent, if it is big or the next extent is not a
1076 * real extent, don't bother defragging it
1077 */
1078 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1079 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1080 ret = 0;
1081 out:
1082 /*
1083 * last_len ends up being a counter of how many bytes we've defragged.
1084 * every time we choose not to defrag an extent, we reset *last_len
1085 * so that the next tiny extent will force a defrag.
1086 *
1087 * The end result of this is that tiny extents before a single big
1088 * extent will force at least part of that big extent to be defragged.
1089 */
1090 if (ret) {
1091 *defrag_end = extent_map_end(em);
1092 } else {
1093 *last_len = 0;
1094 *skip = extent_map_end(em);
1095 *defrag_end = 0;
1096 }
1097
1098 free_extent_map(em);
1099 return ret;
1100 }
1101
1102 /*
1103 * it doesn't do much good to defrag one or two pages
1104 * at a time. This pulls in a nice chunk of pages
1105 * to COW and defrag.
1106 *
1107 * It also makes sure the delalloc code has enough
1108 * dirty data to avoid making new small extents as part
1109 * of the defrag
1110 *
1111 * It's a good idea to start RA on this range
1112 * before calling this.
1113 */
1114 static int cluster_pages_for_defrag(struct inode *inode,
1115 struct page **pages,
1116 unsigned long start_index,
1117 unsigned long num_pages)
1118 {
1119 unsigned long file_end;
1120 u64 isize = i_size_read(inode);
1121 u64 page_start;
1122 u64 page_end;
1123 u64 page_cnt;
1124 int ret;
1125 int i;
1126 int i_done;
1127 struct btrfs_ordered_extent *ordered;
1128 struct extent_state *cached_state = NULL;
1129 struct extent_io_tree *tree;
1130 struct extent_changeset *data_reserved = NULL;
1131 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1132
1133 file_end = (isize - 1) >> PAGE_SHIFT;
1134 if (!isize || start_index > file_end)
1135 return 0;
1136
1137 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1138
1139 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1140 start_index << PAGE_SHIFT,
1141 page_cnt << PAGE_SHIFT);
1142 if (ret)
1143 return ret;
1144 i_done = 0;
1145 tree = &BTRFS_I(inode)->io_tree;
1146
1147 /* step one, lock all the pages */
1148 for (i = 0; i < page_cnt; i++) {
1149 struct page *page;
1150 again:
1151 page = find_or_create_page(inode->i_mapping,
1152 start_index + i, mask);
1153 if (!page)
1154 break;
1155
1156 page_start = page_offset(page);
1157 page_end = page_start + PAGE_SIZE - 1;
1158 while (1) {
1159 lock_extent_bits(tree, page_start, page_end,
1160 &cached_state);
1161 ordered = btrfs_lookup_ordered_extent(inode,
1162 page_start);
1163 unlock_extent_cached(tree, page_start, page_end,
1164 &cached_state, GFP_NOFS);
1165 if (!ordered)
1166 break;
1167
1168 unlock_page(page);
1169 btrfs_start_ordered_extent(inode, ordered, 1);
1170 btrfs_put_ordered_extent(ordered);
1171 lock_page(page);
1172 /*
1173 * we unlocked the page above, so we need check if
1174 * it was released or not.
1175 */
1176 if (page->mapping != inode->i_mapping) {
1177 unlock_page(page);
1178 put_page(page);
1179 goto again;
1180 }
1181 }
1182
1183 if (!PageUptodate(page)) {
1184 btrfs_readpage(NULL, page);
1185 lock_page(page);
1186 if (!PageUptodate(page)) {
1187 unlock_page(page);
1188 put_page(page);
1189 ret = -EIO;
1190 break;
1191 }
1192 }
1193
1194 if (page->mapping != inode->i_mapping) {
1195 unlock_page(page);
1196 put_page(page);
1197 goto again;
1198 }
1199
1200 pages[i] = page;
1201 i_done++;
1202 }
1203 if (!i_done || ret)
1204 goto out;
1205
1206 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1207 goto out;
1208
1209 /*
1210 * so now we have a nice long stream of locked
1211 * and up to date pages, lets wait on them
1212 */
1213 for (i = 0; i < i_done; i++)
1214 wait_on_page_writeback(pages[i]);
1215
1216 page_start = page_offset(pages[0]);
1217 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1218
1219 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1220 page_start, page_end - 1, &cached_state);
1221 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1222 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1223 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1224 &cached_state, GFP_NOFS);
1225
1226 if (i_done != page_cnt) {
1227 spin_lock(&BTRFS_I(inode)->lock);
1228 BTRFS_I(inode)->outstanding_extents++;
1229 spin_unlock(&BTRFS_I(inode)->lock);
1230 btrfs_delalloc_release_space(inode, data_reserved,
1231 start_index << PAGE_SHIFT,
1232 (page_cnt - i_done) << PAGE_SHIFT);
1233 }
1234
1235
1236 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1237 &cached_state);
1238
1239 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1240 page_start, page_end - 1, &cached_state,
1241 GFP_NOFS);
1242
1243 for (i = 0; i < i_done; i++) {
1244 clear_page_dirty_for_io(pages[i]);
1245 ClearPageChecked(pages[i]);
1246 set_page_extent_mapped(pages[i]);
1247 set_page_dirty(pages[i]);
1248 unlock_page(pages[i]);
1249 put_page(pages[i]);
1250 }
1251 extent_changeset_free(data_reserved);
1252 return i_done;
1253 out:
1254 for (i = 0; i < i_done; i++) {
1255 unlock_page(pages[i]);
1256 put_page(pages[i]);
1257 }
1258 btrfs_delalloc_release_space(inode, data_reserved,
1259 start_index << PAGE_SHIFT,
1260 page_cnt << PAGE_SHIFT);
1261 extent_changeset_free(data_reserved);
1262 return ret;
1263
1264 }
1265
1266 int btrfs_defrag_file(struct inode *inode, struct file *file,
1267 struct btrfs_ioctl_defrag_range_args *range,
1268 u64 newer_than, unsigned long max_to_defrag)
1269 {
1270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1271 struct btrfs_root *root = BTRFS_I(inode)->root;
1272 struct file_ra_state *ra = NULL;
1273 unsigned long last_index;
1274 u64 isize = i_size_read(inode);
1275 u64 last_len = 0;
1276 u64 skip = 0;
1277 u64 defrag_end = 0;
1278 u64 newer_off = range->start;
1279 unsigned long i;
1280 unsigned long ra_index = 0;
1281 int ret;
1282 int defrag_count = 0;
1283 int compress_type = BTRFS_COMPRESS_ZLIB;
1284 u32 extent_thresh = range->extent_thresh;
1285 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1286 unsigned long cluster = max_cluster;
1287 u64 new_align = ~((u64)SZ_128K - 1);
1288 struct page **pages = NULL;
1289
1290 if (isize == 0)
1291 return 0;
1292
1293 if (range->start >= isize)
1294 return -EINVAL;
1295
1296 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1297 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1298 return -EINVAL;
1299 if (range->compress_type)
1300 compress_type = range->compress_type;
1301 }
1302
1303 if (extent_thresh == 0)
1304 extent_thresh = SZ_256K;
1305
1306 /*
1307 * if we were not given a file, allocate a readahead
1308 * context
1309 */
1310 if (!file) {
1311 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1312 if (!ra)
1313 return -ENOMEM;
1314 file_ra_state_init(ra, inode->i_mapping);
1315 } else {
1316 ra = &file->f_ra;
1317 }
1318
1319 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1320 GFP_NOFS);
1321 if (!pages) {
1322 ret = -ENOMEM;
1323 goto out_ra;
1324 }
1325
1326 /* find the last page to defrag */
1327 if (range->start + range->len > range->start) {
1328 last_index = min_t(u64, isize - 1,
1329 range->start + range->len - 1) >> PAGE_SHIFT;
1330 } else {
1331 last_index = (isize - 1) >> PAGE_SHIFT;
1332 }
1333
1334 if (newer_than) {
1335 ret = find_new_extents(root, inode, newer_than,
1336 &newer_off, SZ_64K);
1337 if (!ret) {
1338 range->start = newer_off;
1339 /*
1340 * we always align our defrag to help keep
1341 * the extents in the file evenly spaced
1342 */
1343 i = (newer_off & new_align) >> PAGE_SHIFT;
1344 } else
1345 goto out_ra;
1346 } else {
1347 i = range->start >> PAGE_SHIFT;
1348 }
1349 if (!max_to_defrag)
1350 max_to_defrag = last_index - i + 1;
1351
1352 /*
1353 * make writeback starts from i, so the defrag range can be
1354 * written sequentially.
1355 */
1356 if (i < inode->i_mapping->writeback_index)
1357 inode->i_mapping->writeback_index = i;
1358
1359 while (i <= last_index && defrag_count < max_to_defrag &&
1360 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1361 /*
1362 * make sure we stop running if someone unmounts
1363 * the FS
1364 */
1365 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1366 break;
1367
1368 if (btrfs_defrag_cancelled(fs_info)) {
1369 btrfs_debug(fs_info, "defrag_file cancelled");
1370 ret = -EAGAIN;
1371 break;
1372 }
1373
1374 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1375 extent_thresh, &last_len, &skip,
1376 &defrag_end, range->flags &
1377 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1378 unsigned long next;
1379 /*
1380 * the should_defrag function tells us how much to skip
1381 * bump our counter by the suggested amount
1382 */
1383 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1384 i = max(i + 1, next);
1385 continue;
1386 }
1387
1388 if (!newer_than) {
1389 cluster = (PAGE_ALIGN(defrag_end) >>
1390 PAGE_SHIFT) - i;
1391 cluster = min(cluster, max_cluster);
1392 } else {
1393 cluster = max_cluster;
1394 }
1395
1396 if (i + cluster > ra_index) {
1397 ra_index = max(i, ra_index);
1398 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1399 cluster);
1400 ra_index += cluster;
1401 }
1402
1403 inode_lock(inode);
1404 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1405 BTRFS_I(inode)->force_compress = compress_type;
1406 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1407 if (ret < 0) {
1408 inode_unlock(inode);
1409 goto out_ra;
1410 }
1411
1412 defrag_count += ret;
1413 balance_dirty_pages_ratelimited(inode->i_mapping);
1414 inode_unlock(inode);
1415
1416 if (newer_than) {
1417 if (newer_off == (u64)-1)
1418 break;
1419
1420 if (ret > 0)
1421 i += ret;
1422
1423 newer_off = max(newer_off + 1,
1424 (u64)i << PAGE_SHIFT);
1425
1426 ret = find_new_extents(root, inode, newer_than,
1427 &newer_off, SZ_64K);
1428 if (!ret) {
1429 range->start = newer_off;
1430 i = (newer_off & new_align) >> PAGE_SHIFT;
1431 } else {
1432 break;
1433 }
1434 } else {
1435 if (ret > 0) {
1436 i += ret;
1437 last_len += ret << PAGE_SHIFT;
1438 } else {
1439 i++;
1440 last_len = 0;
1441 }
1442 }
1443 }
1444
1445 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1446 filemap_flush(inode->i_mapping);
1447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1448 &BTRFS_I(inode)->runtime_flags))
1449 filemap_flush(inode->i_mapping);
1450 }
1451
1452 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1453 /* the filemap_flush will queue IO into the worker threads, but
1454 * we have to make sure the IO is actually started and that
1455 * ordered extents get created before we return
1456 */
1457 atomic_inc(&fs_info->async_submit_draining);
1458 while (atomic_read(&fs_info->nr_async_submits) ||
1459 atomic_read(&fs_info->async_delalloc_pages)) {
1460 wait_event(fs_info->async_submit_wait,
1461 (atomic_read(&fs_info->nr_async_submits) == 0 &&
1462 atomic_read(&fs_info->async_delalloc_pages) == 0));
1463 }
1464 atomic_dec(&fs_info->async_submit_draining);
1465 }
1466
1467 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1468 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1469 }
1470
1471 ret = defrag_count;
1472
1473 out_ra:
1474 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1475 inode_lock(inode);
1476 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1477 inode_unlock(inode);
1478 }
1479 if (!file)
1480 kfree(ra);
1481 kfree(pages);
1482 return ret;
1483 }
1484
1485 static noinline int btrfs_ioctl_resize(struct file *file,
1486 void __user *arg)
1487 {
1488 struct inode *inode = file_inode(file);
1489 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1490 u64 new_size;
1491 u64 old_size;
1492 u64 devid = 1;
1493 struct btrfs_root *root = BTRFS_I(inode)->root;
1494 struct btrfs_ioctl_vol_args *vol_args;
1495 struct btrfs_trans_handle *trans;
1496 struct btrfs_device *device = NULL;
1497 char *sizestr;
1498 char *retptr;
1499 char *devstr = NULL;
1500 int ret = 0;
1501 int mod = 0;
1502
1503 if (!capable(CAP_SYS_ADMIN))
1504 return -EPERM;
1505
1506 ret = mnt_want_write_file(file);
1507 if (ret)
1508 return ret;
1509
1510 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1511 mnt_drop_write_file(file);
1512 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1513 }
1514
1515 mutex_lock(&fs_info->volume_mutex);
1516 vol_args = memdup_user(arg, sizeof(*vol_args));
1517 if (IS_ERR(vol_args)) {
1518 ret = PTR_ERR(vol_args);
1519 goto out;
1520 }
1521
1522 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1523
1524 sizestr = vol_args->name;
1525 devstr = strchr(sizestr, ':');
1526 if (devstr) {
1527 sizestr = devstr + 1;
1528 *devstr = '\0';
1529 devstr = vol_args->name;
1530 ret = kstrtoull(devstr, 10, &devid);
1531 if (ret)
1532 goto out_free;
1533 if (!devid) {
1534 ret = -EINVAL;
1535 goto out_free;
1536 }
1537 btrfs_info(fs_info, "resizing devid %llu", devid);
1538 }
1539
1540 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1541 if (!device) {
1542 btrfs_info(fs_info, "resizer unable to find device %llu",
1543 devid);
1544 ret = -ENODEV;
1545 goto out_free;
1546 }
1547
1548 if (!device->writeable) {
1549 btrfs_info(fs_info,
1550 "resizer unable to apply on readonly device %llu",
1551 devid);
1552 ret = -EPERM;
1553 goto out_free;
1554 }
1555
1556 if (!strcmp(sizestr, "max"))
1557 new_size = device->bdev->bd_inode->i_size;
1558 else {
1559 if (sizestr[0] == '-') {
1560 mod = -1;
1561 sizestr++;
1562 } else if (sizestr[0] == '+') {
1563 mod = 1;
1564 sizestr++;
1565 }
1566 new_size = memparse(sizestr, &retptr);
1567 if (*retptr != '\0' || new_size == 0) {
1568 ret = -EINVAL;
1569 goto out_free;
1570 }
1571 }
1572
1573 if (device->is_tgtdev_for_dev_replace) {
1574 ret = -EPERM;
1575 goto out_free;
1576 }
1577
1578 old_size = btrfs_device_get_total_bytes(device);
1579
1580 if (mod < 0) {
1581 if (new_size > old_size) {
1582 ret = -EINVAL;
1583 goto out_free;
1584 }
1585 new_size = old_size - new_size;
1586 } else if (mod > 0) {
1587 if (new_size > ULLONG_MAX - old_size) {
1588 ret = -ERANGE;
1589 goto out_free;
1590 }
1591 new_size = old_size + new_size;
1592 }
1593
1594 if (new_size < SZ_256M) {
1595 ret = -EINVAL;
1596 goto out_free;
1597 }
1598 if (new_size > device->bdev->bd_inode->i_size) {
1599 ret = -EFBIG;
1600 goto out_free;
1601 }
1602
1603 new_size = div_u64(new_size, fs_info->sectorsize);
1604 new_size *= fs_info->sectorsize;
1605
1606 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1607 rcu_str_deref(device->name), new_size);
1608
1609 if (new_size > old_size) {
1610 trans = btrfs_start_transaction(root, 0);
1611 if (IS_ERR(trans)) {
1612 ret = PTR_ERR(trans);
1613 goto out_free;
1614 }
1615 ret = btrfs_grow_device(trans, device, new_size);
1616 btrfs_commit_transaction(trans);
1617 } else if (new_size < old_size) {
1618 ret = btrfs_shrink_device(device, new_size);
1619 } /* equal, nothing need to do */
1620
1621 out_free:
1622 kfree(vol_args);
1623 out:
1624 mutex_unlock(&fs_info->volume_mutex);
1625 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1626 mnt_drop_write_file(file);
1627 return ret;
1628 }
1629
1630 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1631 const char *name, unsigned long fd, int subvol,
1632 u64 *transid, bool readonly,
1633 struct btrfs_qgroup_inherit *inherit)
1634 {
1635 int namelen;
1636 int ret = 0;
1637
1638 if (!S_ISDIR(file_inode(file)->i_mode))
1639 return -ENOTDIR;
1640
1641 ret = mnt_want_write_file(file);
1642 if (ret)
1643 goto out;
1644
1645 namelen = strlen(name);
1646 if (strchr(name, '/')) {
1647 ret = -EINVAL;
1648 goto out_drop_write;
1649 }
1650
1651 if (name[0] == '.' &&
1652 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1653 ret = -EEXIST;
1654 goto out_drop_write;
1655 }
1656
1657 if (subvol) {
1658 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1659 NULL, transid, readonly, inherit);
1660 } else {
1661 struct fd src = fdget(fd);
1662 struct inode *src_inode;
1663 if (!src.file) {
1664 ret = -EINVAL;
1665 goto out_drop_write;
1666 }
1667
1668 src_inode = file_inode(src.file);
1669 if (src_inode->i_sb != file_inode(file)->i_sb) {
1670 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1671 "Snapshot src from another FS");
1672 ret = -EXDEV;
1673 } else if (!inode_owner_or_capable(src_inode)) {
1674 /*
1675 * Subvolume creation is not restricted, but snapshots
1676 * are limited to own subvolumes only
1677 */
1678 ret = -EPERM;
1679 } else {
1680 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1681 BTRFS_I(src_inode)->root,
1682 transid, readonly, inherit);
1683 }
1684 fdput(src);
1685 }
1686 out_drop_write:
1687 mnt_drop_write_file(file);
1688 out:
1689 return ret;
1690 }
1691
1692 static noinline int btrfs_ioctl_snap_create(struct file *file,
1693 void __user *arg, int subvol)
1694 {
1695 struct btrfs_ioctl_vol_args *vol_args;
1696 int ret;
1697
1698 if (!S_ISDIR(file_inode(file)->i_mode))
1699 return -ENOTDIR;
1700
1701 vol_args = memdup_user(arg, sizeof(*vol_args));
1702 if (IS_ERR(vol_args))
1703 return PTR_ERR(vol_args);
1704 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1705
1706 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1707 vol_args->fd, subvol,
1708 NULL, false, NULL);
1709
1710 kfree(vol_args);
1711 return ret;
1712 }
1713
1714 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1715 void __user *arg, int subvol)
1716 {
1717 struct btrfs_ioctl_vol_args_v2 *vol_args;
1718 int ret;
1719 u64 transid = 0;
1720 u64 *ptr = NULL;
1721 bool readonly = false;
1722 struct btrfs_qgroup_inherit *inherit = NULL;
1723
1724 if (!S_ISDIR(file_inode(file)->i_mode))
1725 return -ENOTDIR;
1726
1727 vol_args = memdup_user(arg, sizeof(*vol_args));
1728 if (IS_ERR(vol_args))
1729 return PTR_ERR(vol_args);
1730 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1731
1732 if (vol_args->flags &
1733 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1734 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1735 ret = -EOPNOTSUPP;
1736 goto free_args;
1737 }
1738
1739 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1740 ptr = &transid;
1741 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1742 readonly = true;
1743 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1744 if (vol_args->size > PAGE_SIZE) {
1745 ret = -EINVAL;
1746 goto free_args;
1747 }
1748 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1749 if (IS_ERR(inherit)) {
1750 ret = PTR_ERR(inherit);
1751 goto free_args;
1752 }
1753 }
1754
1755 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1756 vol_args->fd, subvol, ptr,
1757 readonly, inherit);
1758 if (ret)
1759 goto free_inherit;
1760
1761 if (ptr && copy_to_user(arg +
1762 offsetof(struct btrfs_ioctl_vol_args_v2,
1763 transid),
1764 ptr, sizeof(*ptr)))
1765 ret = -EFAULT;
1766
1767 free_inherit:
1768 kfree(inherit);
1769 free_args:
1770 kfree(vol_args);
1771 return ret;
1772 }
1773
1774 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1775 void __user *arg)
1776 {
1777 struct inode *inode = file_inode(file);
1778 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1779 struct btrfs_root *root = BTRFS_I(inode)->root;
1780 int ret = 0;
1781 u64 flags = 0;
1782
1783 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1784 return -EINVAL;
1785
1786 down_read(&fs_info->subvol_sem);
1787 if (btrfs_root_readonly(root))
1788 flags |= BTRFS_SUBVOL_RDONLY;
1789 up_read(&fs_info->subvol_sem);
1790
1791 if (copy_to_user(arg, &flags, sizeof(flags)))
1792 ret = -EFAULT;
1793
1794 return ret;
1795 }
1796
1797 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1798 void __user *arg)
1799 {
1800 struct inode *inode = file_inode(file);
1801 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1802 struct btrfs_root *root = BTRFS_I(inode)->root;
1803 struct btrfs_trans_handle *trans;
1804 u64 root_flags;
1805 u64 flags;
1806 int ret = 0;
1807
1808 if (!inode_owner_or_capable(inode))
1809 return -EPERM;
1810
1811 ret = mnt_want_write_file(file);
1812 if (ret)
1813 goto out;
1814
1815 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1816 ret = -EINVAL;
1817 goto out_drop_write;
1818 }
1819
1820 if (copy_from_user(&flags, arg, sizeof(flags))) {
1821 ret = -EFAULT;
1822 goto out_drop_write;
1823 }
1824
1825 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1826 ret = -EINVAL;
1827 goto out_drop_write;
1828 }
1829
1830 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1831 ret = -EOPNOTSUPP;
1832 goto out_drop_write;
1833 }
1834
1835 down_write(&fs_info->subvol_sem);
1836
1837 /* nothing to do */
1838 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1839 goto out_drop_sem;
1840
1841 root_flags = btrfs_root_flags(&root->root_item);
1842 if (flags & BTRFS_SUBVOL_RDONLY) {
1843 btrfs_set_root_flags(&root->root_item,
1844 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1845 } else {
1846 /*
1847 * Block RO -> RW transition if this subvolume is involved in
1848 * send
1849 */
1850 spin_lock(&root->root_item_lock);
1851 if (root->send_in_progress == 0) {
1852 btrfs_set_root_flags(&root->root_item,
1853 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1854 spin_unlock(&root->root_item_lock);
1855 } else {
1856 spin_unlock(&root->root_item_lock);
1857 btrfs_warn(fs_info,
1858 "Attempt to set subvolume %llu read-write during send",
1859 root->root_key.objectid);
1860 ret = -EPERM;
1861 goto out_drop_sem;
1862 }
1863 }
1864
1865 trans = btrfs_start_transaction(root, 1);
1866 if (IS_ERR(trans)) {
1867 ret = PTR_ERR(trans);
1868 goto out_reset;
1869 }
1870
1871 ret = btrfs_update_root(trans, fs_info->tree_root,
1872 &root->root_key, &root->root_item);
1873
1874 btrfs_commit_transaction(trans);
1875 out_reset:
1876 if (ret)
1877 btrfs_set_root_flags(&root->root_item, root_flags);
1878 out_drop_sem:
1879 up_write(&fs_info->subvol_sem);
1880 out_drop_write:
1881 mnt_drop_write_file(file);
1882 out:
1883 return ret;
1884 }
1885
1886 /*
1887 * helper to check if the subvolume references other subvolumes
1888 */
1889 static noinline int may_destroy_subvol(struct btrfs_root *root)
1890 {
1891 struct btrfs_fs_info *fs_info = root->fs_info;
1892 struct btrfs_path *path;
1893 struct btrfs_dir_item *di;
1894 struct btrfs_key key;
1895 u64 dir_id;
1896 int ret;
1897
1898 path = btrfs_alloc_path();
1899 if (!path)
1900 return -ENOMEM;
1901
1902 /* Make sure this root isn't set as the default subvol */
1903 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1904 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1905 dir_id, "default", 7, 0);
1906 if (di && !IS_ERR(di)) {
1907 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1908 if (key.objectid == root->root_key.objectid) {
1909 ret = -EPERM;
1910 btrfs_err(fs_info,
1911 "deleting default subvolume %llu is not allowed",
1912 key.objectid);
1913 goto out;
1914 }
1915 btrfs_release_path(path);
1916 }
1917
1918 key.objectid = root->root_key.objectid;
1919 key.type = BTRFS_ROOT_REF_KEY;
1920 key.offset = (u64)-1;
1921
1922 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1923 if (ret < 0)
1924 goto out;
1925 BUG_ON(ret == 0);
1926
1927 ret = 0;
1928 if (path->slots[0] > 0) {
1929 path->slots[0]--;
1930 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1931 if (key.objectid == root->root_key.objectid &&
1932 key.type == BTRFS_ROOT_REF_KEY)
1933 ret = -ENOTEMPTY;
1934 }
1935 out:
1936 btrfs_free_path(path);
1937 return ret;
1938 }
1939
1940 static noinline int key_in_sk(struct btrfs_key *key,
1941 struct btrfs_ioctl_search_key *sk)
1942 {
1943 struct btrfs_key test;
1944 int ret;
1945
1946 test.objectid = sk->min_objectid;
1947 test.type = sk->min_type;
1948 test.offset = sk->min_offset;
1949
1950 ret = btrfs_comp_cpu_keys(key, &test);
1951 if (ret < 0)
1952 return 0;
1953
1954 test.objectid = sk->max_objectid;
1955 test.type = sk->max_type;
1956 test.offset = sk->max_offset;
1957
1958 ret = btrfs_comp_cpu_keys(key, &test);
1959 if (ret > 0)
1960 return 0;
1961 return 1;
1962 }
1963
1964 static noinline int copy_to_sk(struct btrfs_path *path,
1965 struct btrfs_key *key,
1966 struct btrfs_ioctl_search_key *sk,
1967 size_t *buf_size,
1968 char __user *ubuf,
1969 unsigned long *sk_offset,
1970 int *num_found)
1971 {
1972 u64 found_transid;
1973 struct extent_buffer *leaf;
1974 struct btrfs_ioctl_search_header sh;
1975 struct btrfs_key test;
1976 unsigned long item_off;
1977 unsigned long item_len;
1978 int nritems;
1979 int i;
1980 int slot;
1981 int ret = 0;
1982
1983 leaf = path->nodes[0];
1984 slot = path->slots[0];
1985 nritems = btrfs_header_nritems(leaf);
1986
1987 if (btrfs_header_generation(leaf) > sk->max_transid) {
1988 i = nritems;
1989 goto advance_key;
1990 }
1991 found_transid = btrfs_header_generation(leaf);
1992
1993 for (i = slot; i < nritems; i++) {
1994 item_off = btrfs_item_ptr_offset(leaf, i);
1995 item_len = btrfs_item_size_nr(leaf, i);
1996
1997 btrfs_item_key_to_cpu(leaf, key, i);
1998 if (!key_in_sk(key, sk))
1999 continue;
2000
2001 if (sizeof(sh) + item_len > *buf_size) {
2002 if (*num_found) {
2003 ret = 1;
2004 goto out;
2005 }
2006
2007 /*
2008 * return one empty item back for v1, which does not
2009 * handle -EOVERFLOW
2010 */
2011
2012 *buf_size = sizeof(sh) + item_len;
2013 item_len = 0;
2014 ret = -EOVERFLOW;
2015 }
2016
2017 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2018 ret = 1;
2019 goto out;
2020 }
2021
2022 sh.objectid = key->objectid;
2023 sh.offset = key->offset;
2024 sh.type = key->type;
2025 sh.len = item_len;
2026 sh.transid = found_transid;
2027
2028 /* copy search result header */
2029 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2030 ret = -EFAULT;
2031 goto out;
2032 }
2033
2034 *sk_offset += sizeof(sh);
2035
2036 if (item_len) {
2037 char __user *up = ubuf + *sk_offset;
2038 /* copy the item */
2039 if (read_extent_buffer_to_user(leaf, up,
2040 item_off, item_len)) {
2041 ret = -EFAULT;
2042 goto out;
2043 }
2044
2045 *sk_offset += item_len;
2046 }
2047 (*num_found)++;
2048
2049 if (ret) /* -EOVERFLOW from above */
2050 goto out;
2051
2052 if (*num_found >= sk->nr_items) {
2053 ret = 1;
2054 goto out;
2055 }
2056 }
2057 advance_key:
2058 ret = 0;
2059 test.objectid = sk->max_objectid;
2060 test.type = sk->max_type;
2061 test.offset = sk->max_offset;
2062 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2063 ret = 1;
2064 else if (key->offset < (u64)-1)
2065 key->offset++;
2066 else if (key->type < (u8)-1) {
2067 key->offset = 0;
2068 key->type++;
2069 } else if (key->objectid < (u64)-1) {
2070 key->offset = 0;
2071 key->type = 0;
2072 key->objectid++;
2073 } else
2074 ret = 1;
2075 out:
2076 /*
2077 * 0: all items from this leaf copied, continue with next
2078 * 1: * more items can be copied, but unused buffer is too small
2079 * * all items were found
2080 * Either way, it will stops the loop which iterates to the next
2081 * leaf
2082 * -EOVERFLOW: item was to large for buffer
2083 * -EFAULT: could not copy extent buffer back to userspace
2084 */
2085 return ret;
2086 }
2087
2088 static noinline int search_ioctl(struct inode *inode,
2089 struct btrfs_ioctl_search_key *sk,
2090 size_t *buf_size,
2091 char __user *ubuf)
2092 {
2093 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2094 struct btrfs_root *root;
2095 struct btrfs_key key;
2096 struct btrfs_path *path;
2097 int ret;
2098 int num_found = 0;
2099 unsigned long sk_offset = 0;
2100
2101 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2102 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2103 return -EOVERFLOW;
2104 }
2105
2106 path = btrfs_alloc_path();
2107 if (!path)
2108 return -ENOMEM;
2109
2110 if (sk->tree_id == 0) {
2111 /* search the root of the inode that was passed */
2112 root = BTRFS_I(inode)->root;
2113 } else {
2114 key.objectid = sk->tree_id;
2115 key.type = BTRFS_ROOT_ITEM_KEY;
2116 key.offset = (u64)-1;
2117 root = btrfs_read_fs_root_no_name(info, &key);
2118 if (IS_ERR(root)) {
2119 btrfs_free_path(path);
2120 return -ENOENT;
2121 }
2122 }
2123
2124 key.objectid = sk->min_objectid;
2125 key.type = sk->min_type;
2126 key.offset = sk->min_offset;
2127
2128 while (1) {
2129 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2130 if (ret != 0) {
2131 if (ret > 0)
2132 ret = 0;
2133 goto err;
2134 }
2135 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2136 &sk_offset, &num_found);
2137 btrfs_release_path(path);
2138 if (ret)
2139 break;
2140
2141 }
2142 if (ret > 0)
2143 ret = 0;
2144 err:
2145 sk->nr_items = num_found;
2146 btrfs_free_path(path);
2147 return ret;
2148 }
2149
2150 static noinline int btrfs_ioctl_tree_search(struct file *file,
2151 void __user *argp)
2152 {
2153 struct btrfs_ioctl_search_args __user *uargs;
2154 struct btrfs_ioctl_search_key sk;
2155 struct inode *inode;
2156 int ret;
2157 size_t buf_size;
2158
2159 if (!capable(CAP_SYS_ADMIN))
2160 return -EPERM;
2161
2162 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2163
2164 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2165 return -EFAULT;
2166
2167 buf_size = sizeof(uargs->buf);
2168
2169 inode = file_inode(file);
2170 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2171
2172 /*
2173 * In the origin implementation an overflow is handled by returning a
2174 * search header with a len of zero, so reset ret.
2175 */
2176 if (ret == -EOVERFLOW)
2177 ret = 0;
2178
2179 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2180 ret = -EFAULT;
2181 return ret;
2182 }
2183
2184 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2185 void __user *argp)
2186 {
2187 struct btrfs_ioctl_search_args_v2 __user *uarg;
2188 struct btrfs_ioctl_search_args_v2 args;
2189 struct inode *inode;
2190 int ret;
2191 size_t buf_size;
2192 const size_t buf_limit = SZ_16M;
2193
2194 if (!capable(CAP_SYS_ADMIN))
2195 return -EPERM;
2196
2197 /* copy search header and buffer size */
2198 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2199 if (copy_from_user(&args, uarg, sizeof(args)))
2200 return -EFAULT;
2201
2202 buf_size = args.buf_size;
2203
2204 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2205 return -EOVERFLOW;
2206
2207 /* limit result size to 16MB */
2208 if (buf_size > buf_limit)
2209 buf_size = buf_limit;
2210
2211 inode = file_inode(file);
2212 ret = search_ioctl(inode, &args.key, &buf_size,
2213 (char *)(&uarg->buf[0]));
2214 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2215 ret = -EFAULT;
2216 else if (ret == -EOVERFLOW &&
2217 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2218 ret = -EFAULT;
2219
2220 return ret;
2221 }
2222
2223 /*
2224 * Search INODE_REFs to identify path name of 'dirid' directory
2225 * in a 'tree_id' tree. and sets path name to 'name'.
2226 */
2227 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2228 u64 tree_id, u64 dirid, char *name)
2229 {
2230 struct btrfs_root *root;
2231 struct btrfs_key key;
2232 char *ptr;
2233 int ret = -1;
2234 int slot;
2235 int len;
2236 int total_len = 0;
2237 struct btrfs_inode_ref *iref;
2238 struct extent_buffer *l;
2239 struct btrfs_path *path;
2240
2241 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2242 name[0]='\0';
2243 return 0;
2244 }
2245
2246 path = btrfs_alloc_path();
2247 if (!path)
2248 return -ENOMEM;
2249
2250 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2251
2252 key.objectid = tree_id;
2253 key.type = BTRFS_ROOT_ITEM_KEY;
2254 key.offset = (u64)-1;
2255 root = btrfs_read_fs_root_no_name(info, &key);
2256 if (IS_ERR(root)) {
2257 btrfs_err(info, "could not find root %llu", tree_id);
2258 ret = -ENOENT;
2259 goto out;
2260 }
2261
2262 key.objectid = dirid;
2263 key.type = BTRFS_INODE_REF_KEY;
2264 key.offset = (u64)-1;
2265
2266 while (1) {
2267 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2268 if (ret < 0)
2269 goto out;
2270 else if (ret > 0) {
2271 ret = btrfs_previous_item(root, path, dirid,
2272 BTRFS_INODE_REF_KEY);
2273 if (ret < 0)
2274 goto out;
2275 else if (ret > 0) {
2276 ret = -ENOENT;
2277 goto out;
2278 }
2279 }
2280
2281 l = path->nodes[0];
2282 slot = path->slots[0];
2283 btrfs_item_key_to_cpu(l, &key, slot);
2284
2285 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2286 len = btrfs_inode_ref_name_len(l, iref);
2287 ptr -= len + 1;
2288 total_len += len + 1;
2289 if (ptr < name) {
2290 ret = -ENAMETOOLONG;
2291 goto out;
2292 }
2293
2294 *(ptr + len) = '/';
2295 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2296
2297 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2298 break;
2299
2300 btrfs_release_path(path);
2301 key.objectid = key.offset;
2302 key.offset = (u64)-1;
2303 dirid = key.objectid;
2304 }
2305 memmove(name, ptr, total_len);
2306 name[total_len] = '\0';
2307 ret = 0;
2308 out:
2309 btrfs_free_path(path);
2310 return ret;
2311 }
2312
2313 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2314 void __user *argp)
2315 {
2316 struct btrfs_ioctl_ino_lookup_args *args;
2317 struct inode *inode;
2318 int ret = 0;
2319
2320 args = memdup_user(argp, sizeof(*args));
2321 if (IS_ERR(args))
2322 return PTR_ERR(args);
2323
2324 inode = file_inode(file);
2325
2326 /*
2327 * Unprivileged query to obtain the containing subvolume root id. The
2328 * path is reset so it's consistent with btrfs_search_path_in_tree.
2329 */
2330 if (args->treeid == 0)
2331 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2332
2333 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2334 args->name[0] = 0;
2335 goto out;
2336 }
2337
2338 if (!capable(CAP_SYS_ADMIN)) {
2339 ret = -EPERM;
2340 goto out;
2341 }
2342
2343 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2344 args->treeid, args->objectid,
2345 args->name);
2346
2347 out:
2348 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2349 ret = -EFAULT;
2350
2351 kfree(args);
2352 return ret;
2353 }
2354
2355 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2356 void __user *arg)
2357 {
2358 struct dentry *parent = file->f_path.dentry;
2359 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2360 struct dentry *dentry;
2361 struct inode *dir = d_inode(parent);
2362 struct inode *inode;
2363 struct btrfs_root *root = BTRFS_I(dir)->root;
2364 struct btrfs_root *dest = NULL;
2365 struct btrfs_ioctl_vol_args *vol_args;
2366 struct btrfs_trans_handle *trans;
2367 struct btrfs_block_rsv block_rsv;
2368 u64 root_flags;
2369 u64 qgroup_reserved;
2370 int namelen;
2371 int ret;
2372 int err = 0;
2373
2374 if (!S_ISDIR(dir->i_mode))
2375 return -ENOTDIR;
2376
2377 vol_args = memdup_user(arg, sizeof(*vol_args));
2378 if (IS_ERR(vol_args))
2379 return PTR_ERR(vol_args);
2380
2381 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2382 namelen = strlen(vol_args->name);
2383 if (strchr(vol_args->name, '/') ||
2384 strncmp(vol_args->name, "..", namelen) == 0) {
2385 err = -EINVAL;
2386 goto out;
2387 }
2388
2389 err = mnt_want_write_file(file);
2390 if (err)
2391 goto out;
2392
2393
2394 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2395 if (err == -EINTR)
2396 goto out_drop_write;
2397 dentry = lookup_one_len(vol_args->name, parent, namelen);
2398 if (IS_ERR(dentry)) {
2399 err = PTR_ERR(dentry);
2400 goto out_unlock_dir;
2401 }
2402
2403 if (d_really_is_negative(dentry)) {
2404 err = -ENOENT;
2405 goto out_dput;
2406 }
2407
2408 inode = d_inode(dentry);
2409 dest = BTRFS_I(inode)->root;
2410 if (!capable(CAP_SYS_ADMIN)) {
2411 /*
2412 * Regular user. Only allow this with a special mount
2413 * option, when the user has write+exec access to the
2414 * subvol root, and when rmdir(2) would have been
2415 * allowed.
2416 *
2417 * Note that this is _not_ check that the subvol is
2418 * empty or doesn't contain data that we wouldn't
2419 * otherwise be able to delete.
2420 *
2421 * Users who want to delete empty subvols should try
2422 * rmdir(2).
2423 */
2424 err = -EPERM;
2425 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2426 goto out_dput;
2427
2428 /*
2429 * Do not allow deletion if the parent dir is the same
2430 * as the dir to be deleted. That means the ioctl
2431 * must be called on the dentry referencing the root
2432 * of the subvol, not a random directory contained
2433 * within it.
2434 */
2435 err = -EINVAL;
2436 if (root == dest)
2437 goto out_dput;
2438
2439 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2440 if (err)
2441 goto out_dput;
2442 }
2443
2444 /* check if subvolume may be deleted by a user */
2445 err = btrfs_may_delete(dir, dentry, 1);
2446 if (err)
2447 goto out_dput;
2448
2449 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2450 err = -EINVAL;
2451 goto out_dput;
2452 }
2453
2454 inode_lock(inode);
2455
2456 /*
2457 * Don't allow to delete a subvolume with send in progress. This is
2458 * inside the i_mutex so the error handling that has to drop the bit
2459 * again is not run concurrently.
2460 */
2461 spin_lock(&dest->root_item_lock);
2462 root_flags = btrfs_root_flags(&dest->root_item);
2463 if (dest->send_in_progress == 0) {
2464 btrfs_set_root_flags(&dest->root_item,
2465 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2466 spin_unlock(&dest->root_item_lock);
2467 } else {
2468 spin_unlock(&dest->root_item_lock);
2469 btrfs_warn(fs_info,
2470 "Attempt to delete subvolume %llu during send",
2471 dest->root_key.objectid);
2472 err = -EPERM;
2473 goto out_unlock_inode;
2474 }
2475
2476 down_write(&fs_info->subvol_sem);
2477
2478 err = may_destroy_subvol(dest);
2479 if (err)
2480 goto out_up_write;
2481
2482 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2483 /*
2484 * One for dir inode, two for dir entries, two for root
2485 * ref/backref.
2486 */
2487 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2488 5, &qgroup_reserved, true);
2489 if (err)
2490 goto out_up_write;
2491
2492 trans = btrfs_start_transaction(root, 0);
2493 if (IS_ERR(trans)) {
2494 err = PTR_ERR(trans);
2495 goto out_release;
2496 }
2497 trans->block_rsv = &block_rsv;
2498 trans->bytes_reserved = block_rsv.size;
2499
2500 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2501
2502 ret = btrfs_unlink_subvol(trans, root, dir,
2503 dest->root_key.objectid,
2504 dentry->d_name.name,
2505 dentry->d_name.len);
2506 if (ret) {
2507 err = ret;
2508 btrfs_abort_transaction(trans, ret);
2509 goto out_end_trans;
2510 }
2511
2512 btrfs_record_root_in_trans(trans, dest);
2513
2514 memset(&dest->root_item.drop_progress, 0,
2515 sizeof(dest->root_item.drop_progress));
2516 dest->root_item.drop_level = 0;
2517 btrfs_set_root_refs(&dest->root_item, 0);
2518
2519 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2520 ret = btrfs_insert_orphan_item(trans,
2521 fs_info->tree_root,
2522 dest->root_key.objectid);
2523 if (ret) {
2524 btrfs_abort_transaction(trans, ret);
2525 err = ret;
2526 goto out_end_trans;
2527 }
2528 }
2529
2530 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2531 BTRFS_UUID_KEY_SUBVOL,
2532 dest->root_key.objectid);
2533 if (ret && ret != -ENOENT) {
2534 btrfs_abort_transaction(trans, ret);
2535 err = ret;
2536 goto out_end_trans;
2537 }
2538 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2539 ret = btrfs_uuid_tree_rem(trans, fs_info,
2540 dest->root_item.received_uuid,
2541 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2542 dest->root_key.objectid);
2543 if (ret && ret != -ENOENT) {
2544 btrfs_abort_transaction(trans, ret);
2545 err = ret;
2546 goto out_end_trans;
2547 }
2548 }
2549
2550 out_end_trans:
2551 trans->block_rsv = NULL;
2552 trans->bytes_reserved = 0;
2553 ret = btrfs_end_transaction(trans);
2554 if (ret && !err)
2555 err = ret;
2556 inode->i_flags |= S_DEAD;
2557 out_release:
2558 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2559 out_up_write:
2560 up_write(&fs_info->subvol_sem);
2561 if (err) {
2562 spin_lock(&dest->root_item_lock);
2563 root_flags = btrfs_root_flags(&dest->root_item);
2564 btrfs_set_root_flags(&dest->root_item,
2565 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2566 spin_unlock(&dest->root_item_lock);
2567 }
2568 out_unlock_inode:
2569 inode_unlock(inode);
2570 if (!err) {
2571 d_invalidate(dentry);
2572 btrfs_invalidate_inodes(dest);
2573 d_delete(dentry);
2574 ASSERT(dest->send_in_progress == 0);
2575
2576 /* the last ref */
2577 if (dest->ino_cache_inode) {
2578 iput(dest->ino_cache_inode);
2579 dest->ino_cache_inode = NULL;
2580 }
2581 }
2582 out_dput:
2583 dput(dentry);
2584 out_unlock_dir:
2585 inode_unlock(dir);
2586 out_drop_write:
2587 mnt_drop_write_file(file);
2588 out:
2589 kfree(vol_args);
2590 return err;
2591 }
2592
2593 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2594 {
2595 struct inode *inode = file_inode(file);
2596 struct btrfs_root *root = BTRFS_I(inode)->root;
2597 struct btrfs_ioctl_defrag_range_args *range;
2598 int ret;
2599
2600 ret = mnt_want_write_file(file);
2601 if (ret)
2602 return ret;
2603
2604 if (btrfs_root_readonly(root)) {
2605 ret = -EROFS;
2606 goto out;
2607 }
2608
2609 switch (inode->i_mode & S_IFMT) {
2610 case S_IFDIR:
2611 if (!capable(CAP_SYS_ADMIN)) {
2612 ret = -EPERM;
2613 goto out;
2614 }
2615 ret = btrfs_defrag_root(root);
2616 break;
2617 case S_IFREG:
2618 if (!(file->f_mode & FMODE_WRITE)) {
2619 ret = -EINVAL;
2620 goto out;
2621 }
2622
2623 range = kzalloc(sizeof(*range), GFP_KERNEL);
2624 if (!range) {
2625 ret = -ENOMEM;
2626 goto out;
2627 }
2628
2629 if (argp) {
2630 if (copy_from_user(range, argp,
2631 sizeof(*range))) {
2632 ret = -EFAULT;
2633 kfree(range);
2634 goto out;
2635 }
2636 /* compression requires us to start the IO */
2637 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2638 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2639 range->extent_thresh = (u32)-1;
2640 }
2641 } else {
2642 /* the rest are all set to zero by kzalloc */
2643 range->len = (u64)-1;
2644 }
2645 ret = btrfs_defrag_file(file_inode(file), file,
2646 range, 0, 0);
2647 if (ret > 0)
2648 ret = 0;
2649 kfree(range);
2650 break;
2651 default:
2652 ret = -EINVAL;
2653 }
2654 out:
2655 mnt_drop_write_file(file);
2656 return ret;
2657 }
2658
2659 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2660 {
2661 struct btrfs_ioctl_vol_args *vol_args;
2662 int ret;
2663
2664 if (!capable(CAP_SYS_ADMIN))
2665 return -EPERM;
2666
2667 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2668 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2669
2670 mutex_lock(&fs_info->volume_mutex);
2671 vol_args = memdup_user(arg, sizeof(*vol_args));
2672 if (IS_ERR(vol_args)) {
2673 ret = PTR_ERR(vol_args);
2674 goto out;
2675 }
2676
2677 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2678 ret = btrfs_init_new_device(fs_info, vol_args->name);
2679
2680 if (!ret)
2681 btrfs_info(fs_info, "disk added %s", vol_args->name);
2682
2683 kfree(vol_args);
2684 out:
2685 mutex_unlock(&fs_info->volume_mutex);
2686 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2687 return ret;
2688 }
2689
2690 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2691 {
2692 struct inode *inode = file_inode(file);
2693 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2694 struct btrfs_ioctl_vol_args_v2 *vol_args;
2695 int ret;
2696
2697 if (!capable(CAP_SYS_ADMIN))
2698 return -EPERM;
2699
2700 ret = mnt_want_write_file(file);
2701 if (ret)
2702 return ret;
2703
2704 vol_args = memdup_user(arg, sizeof(*vol_args));
2705 if (IS_ERR(vol_args)) {
2706 ret = PTR_ERR(vol_args);
2707 goto err_drop;
2708 }
2709
2710 /* Check for compatibility reject unknown flags */
2711 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2712 return -EOPNOTSUPP;
2713
2714 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2715 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2716 goto out;
2717 }
2718
2719 mutex_lock(&fs_info->volume_mutex);
2720 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2721 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2722 } else {
2723 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2724 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2725 }
2726 mutex_unlock(&fs_info->volume_mutex);
2727 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2728
2729 if (!ret) {
2730 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2731 btrfs_info(fs_info, "device deleted: id %llu",
2732 vol_args->devid);
2733 else
2734 btrfs_info(fs_info, "device deleted: %s",
2735 vol_args->name);
2736 }
2737 out:
2738 kfree(vol_args);
2739 err_drop:
2740 mnt_drop_write_file(file);
2741 return ret;
2742 }
2743
2744 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2745 {
2746 struct inode *inode = file_inode(file);
2747 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2748 struct btrfs_ioctl_vol_args *vol_args;
2749 int ret;
2750
2751 if (!capable(CAP_SYS_ADMIN))
2752 return -EPERM;
2753
2754 ret = mnt_want_write_file(file);
2755 if (ret)
2756 return ret;
2757
2758 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2759 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2760 goto out_drop_write;
2761 }
2762
2763 vol_args = memdup_user(arg, sizeof(*vol_args));
2764 if (IS_ERR(vol_args)) {
2765 ret = PTR_ERR(vol_args);
2766 goto out;
2767 }
2768
2769 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2770 mutex_lock(&fs_info->volume_mutex);
2771 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2772 mutex_unlock(&fs_info->volume_mutex);
2773
2774 if (!ret)
2775 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2776 kfree(vol_args);
2777 out:
2778 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2779 out_drop_write:
2780 mnt_drop_write_file(file);
2781
2782 return ret;
2783 }
2784
2785 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2786 void __user *arg)
2787 {
2788 struct btrfs_ioctl_fs_info_args *fi_args;
2789 struct btrfs_device *device;
2790 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2791 int ret = 0;
2792
2793 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2794 if (!fi_args)
2795 return -ENOMEM;
2796
2797 mutex_lock(&fs_devices->device_list_mutex);
2798 fi_args->num_devices = fs_devices->num_devices;
2799 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2800
2801 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2802 if (device->devid > fi_args->max_id)
2803 fi_args->max_id = device->devid;
2804 }
2805 mutex_unlock(&fs_devices->device_list_mutex);
2806
2807 fi_args->nodesize = fs_info->super_copy->nodesize;
2808 fi_args->sectorsize = fs_info->super_copy->sectorsize;
2809 fi_args->clone_alignment = fs_info->super_copy->sectorsize;
2810
2811 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2812 ret = -EFAULT;
2813
2814 kfree(fi_args);
2815 return ret;
2816 }
2817
2818 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2819 void __user *arg)
2820 {
2821 struct btrfs_ioctl_dev_info_args *di_args;
2822 struct btrfs_device *dev;
2823 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2824 int ret = 0;
2825 char *s_uuid = NULL;
2826
2827 di_args = memdup_user(arg, sizeof(*di_args));
2828 if (IS_ERR(di_args))
2829 return PTR_ERR(di_args);
2830
2831 if (!btrfs_is_empty_uuid(di_args->uuid))
2832 s_uuid = di_args->uuid;
2833
2834 mutex_lock(&fs_devices->device_list_mutex);
2835 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2836
2837 if (!dev) {
2838 ret = -ENODEV;
2839 goto out;
2840 }
2841
2842 di_args->devid = dev->devid;
2843 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2844 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2845 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2846 if (dev->name) {
2847 struct rcu_string *name;
2848
2849 rcu_read_lock();
2850 name = rcu_dereference(dev->name);
2851 strncpy(di_args->path, name->str, sizeof(di_args->path));
2852 rcu_read_unlock();
2853 di_args->path[sizeof(di_args->path) - 1] = 0;
2854 } else {
2855 di_args->path[0] = '\0';
2856 }
2857
2858 out:
2859 mutex_unlock(&fs_devices->device_list_mutex);
2860 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2861 ret = -EFAULT;
2862
2863 kfree(di_args);
2864 return ret;
2865 }
2866
2867 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2868 {
2869 struct page *page;
2870
2871 page = grab_cache_page(inode->i_mapping, index);
2872 if (!page)
2873 return ERR_PTR(-ENOMEM);
2874
2875 if (!PageUptodate(page)) {
2876 int ret;
2877
2878 ret = btrfs_readpage(NULL, page);
2879 if (ret)
2880 return ERR_PTR(ret);
2881 lock_page(page);
2882 if (!PageUptodate(page)) {
2883 unlock_page(page);
2884 put_page(page);
2885 return ERR_PTR(-EIO);
2886 }
2887 if (page->mapping != inode->i_mapping) {
2888 unlock_page(page);
2889 put_page(page);
2890 return ERR_PTR(-EAGAIN);
2891 }
2892 }
2893
2894 return page;
2895 }
2896
2897 static int gather_extent_pages(struct inode *inode, struct page **pages,
2898 int num_pages, u64 off)
2899 {
2900 int i;
2901 pgoff_t index = off >> PAGE_SHIFT;
2902
2903 for (i = 0; i < num_pages; i++) {
2904 again:
2905 pages[i] = extent_same_get_page(inode, index + i);
2906 if (IS_ERR(pages[i])) {
2907 int err = PTR_ERR(pages[i]);
2908
2909 if (err == -EAGAIN)
2910 goto again;
2911 pages[i] = NULL;
2912 return err;
2913 }
2914 }
2915 return 0;
2916 }
2917
2918 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2919 bool retry_range_locking)
2920 {
2921 /*
2922 * Do any pending delalloc/csum calculations on inode, one way or
2923 * another, and lock file content.
2924 * The locking order is:
2925 *
2926 * 1) pages
2927 * 2) range in the inode's io tree
2928 */
2929 while (1) {
2930 struct btrfs_ordered_extent *ordered;
2931 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2932 ordered = btrfs_lookup_first_ordered_extent(inode,
2933 off + len - 1);
2934 if ((!ordered ||
2935 ordered->file_offset + ordered->len <= off ||
2936 ordered->file_offset >= off + len) &&
2937 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2938 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2939 if (ordered)
2940 btrfs_put_ordered_extent(ordered);
2941 break;
2942 }
2943 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2944 if (ordered)
2945 btrfs_put_ordered_extent(ordered);
2946 if (!retry_range_locking)
2947 return -EAGAIN;
2948 btrfs_wait_ordered_range(inode, off, len);
2949 }
2950 return 0;
2951 }
2952
2953 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2954 {
2955 inode_unlock(inode1);
2956 inode_unlock(inode2);
2957 }
2958
2959 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2960 {
2961 if (inode1 < inode2)
2962 swap(inode1, inode2);
2963
2964 inode_lock_nested(inode1, I_MUTEX_PARENT);
2965 inode_lock_nested(inode2, I_MUTEX_CHILD);
2966 }
2967
2968 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2969 struct inode *inode2, u64 loff2, u64 len)
2970 {
2971 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2972 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2973 }
2974
2975 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2976 struct inode *inode2, u64 loff2, u64 len,
2977 bool retry_range_locking)
2978 {
2979 int ret;
2980
2981 if (inode1 < inode2) {
2982 swap(inode1, inode2);
2983 swap(loff1, loff2);
2984 }
2985 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2986 if (ret)
2987 return ret;
2988 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2989 if (ret)
2990 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2991 loff1 + len - 1);
2992 return ret;
2993 }
2994
2995 struct cmp_pages {
2996 int num_pages;
2997 struct page **src_pages;
2998 struct page **dst_pages;
2999 };
3000
3001 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3002 {
3003 int i;
3004 struct page *pg;
3005
3006 for (i = 0; i < cmp->num_pages; i++) {
3007 pg = cmp->src_pages[i];
3008 if (pg) {
3009 unlock_page(pg);
3010 put_page(pg);
3011 }
3012 pg = cmp->dst_pages[i];
3013 if (pg) {
3014 unlock_page(pg);
3015 put_page(pg);
3016 }
3017 }
3018 kfree(cmp->src_pages);
3019 kfree(cmp->dst_pages);
3020 }
3021
3022 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3023 struct inode *dst, u64 dst_loff,
3024 u64 len, struct cmp_pages *cmp)
3025 {
3026 int ret;
3027 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3028 struct page **src_pgarr, **dst_pgarr;
3029
3030 /*
3031 * We must gather up all the pages before we initiate our
3032 * extent locking. We use an array for the page pointers. Size
3033 * of the array is bounded by len, which is in turn bounded by
3034 * BTRFS_MAX_DEDUPE_LEN.
3035 */
3036 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3037 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3038 if (!src_pgarr || !dst_pgarr) {
3039 kfree(src_pgarr);
3040 kfree(dst_pgarr);
3041 return -ENOMEM;
3042 }
3043 cmp->num_pages = num_pages;
3044 cmp->src_pages = src_pgarr;
3045 cmp->dst_pages = dst_pgarr;
3046
3047 /*
3048 * If deduping ranges in the same inode, locking rules make it mandatory
3049 * to always lock pages in ascending order to avoid deadlocks with
3050 * concurrent tasks (such as starting writeback/delalloc).
3051 */
3052 if (src == dst && dst_loff < loff) {
3053 swap(src_pgarr, dst_pgarr);
3054 swap(loff, dst_loff);
3055 }
3056
3057 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3058 if (ret)
3059 goto out;
3060
3061 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3062
3063 out:
3064 if (ret)
3065 btrfs_cmp_data_free(cmp);
3066 return 0;
3067 }
3068
3069 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3070 {
3071 int ret = 0;
3072 int i;
3073 struct page *src_page, *dst_page;
3074 unsigned int cmp_len = PAGE_SIZE;
3075 void *addr, *dst_addr;
3076
3077 i = 0;
3078 while (len) {
3079 if (len < PAGE_SIZE)
3080 cmp_len = len;
3081
3082 BUG_ON(i >= cmp->num_pages);
3083
3084 src_page = cmp->src_pages[i];
3085 dst_page = cmp->dst_pages[i];
3086 ASSERT(PageLocked(src_page));
3087 ASSERT(PageLocked(dst_page));
3088
3089 addr = kmap_atomic(src_page);
3090 dst_addr = kmap_atomic(dst_page);
3091
3092 flush_dcache_page(src_page);
3093 flush_dcache_page(dst_page);
3094
3095 if (memcmp(addr, dst_addr, cmp_len))
3096 ret = -EBADE;
3097
3098 kunmap_atomic(addr);
3099 kunmap_atomic(dst_addr);
3100
3101 if (ret)
3102 break;
3103
3104 len -= cmp_len;
3105 i++;
3106 }
3107
3108 return ret;
3109 }
3110
3111 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3112 u64 olen)
3113 {
3114 u64 len = *plen;
3115 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3116
3117 if (off + olen > inode->i_size || off + olen < off)
3118 return -EINVAL;
3119
3120 /* if we extend to eof, continue to block boundary */
3121 if (off + len == inode->i_size)
3122 *plen = len = ALIGN(inode->i_size, bs) - off;
3123
3124 /* Check that we are block aligned - btrfs_clone() requires this */
3125 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3126 return -EINVAL;
3127
3128 return 0;
3129 }
3130
3131 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3132 struct inode *dst, u64 dst_loff)
3133 {
3134 int ret;
3135 u64 len = olen;
3136 struct cmp_pages cmp;
3137 bool same_inode = (src == dst);
3138 u64 same_lock_start = 0;
3139 u64 same_lock_len = 0;
3140
3141 if (len == 0)
3142 return 0;
3143
3144 if (same_inode)
3145 inode_lock(src);
3146 else
3147 btrfs_double_inode_lock(src, dst);
3148
3149 ret = extent_same_check_offsets(src, loff, &len, olen);
3150 if (ret)
3151 goto out_unlock;
3152
3153 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3154 if (ret)
3155 goto out_unlock;
3156
3157 if (same_inode) {
3158 /*
3159 * Single inode case wants the same checks, except we
3160 * don't want our length pushed out past i_size as
3161 * comparing that data range makes no sense.
3162 *
3163 * extent_same_check_offsets() will do this for an
3164 * unaligned length at i_size, so catch it here and
3165 * reject the request.
3166 *
3167 * This effectively means we require aligned extents
3168 * for the single-inode case, whereas the other cases
3169 * allow an unaligned length so long as it ends at
3170 * i_size.
3171 */
3172 if (len != olen) {
3173 ret = -EINVAL;
3174 goto out_unlock;
3175 }
3176
3177 /* Check for overlapping ranges */
3178 if (dst_loff + len > loff && dst_loff < loff + len) {
3179 ret = -EINVAL;
3180 goto out_unlock;
3181 }
3182
3183 same_lock_start = min_t(u64, loff, dst_loff);
3184 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3185 }
3186
3187 /* don't make the dst file partly checksummed */
3188 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3189 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3190 ret = -EINVAL;
3191 goto out_unlock;
3192 }
3193
3194 again:
3195 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3196 if (ret)
3197 goto out_unlock;
3198
3199 if (same_inode)
3200 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3201 false);
3202 else
3203 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3204 false);
3205 /*
3206 * If one of the inodes has dirty pages in the respective range or
3207 * ordered extents, we need to flush dellaloc and wait for all ordered
3208 * extents in the range. We must unlock the pages and the ranges in the
3209 * io trees to avoid deadlocks when flushing delalloc (requires locking
3210 * pages) and when waiting for ordered extents to complete (they require
3211 * range locking).
3212 */
3213 if (ret == -EAGAIN) {
3214 /*
3215 * Ranges in the io trees already unlocked. Now unlock all
3216 * pages before waiting for all IO to complete.
3217 */
3218 btrfs_cmp_data_free(&cmp);
3219 if (same_inode) {
3220 btrfs_wait_ordered_range(src, same_lock_start,
3221 same_lock_len);
3222 } else {
3223 btrfs_wait_ordered_range(src, loff, len);
3224 btrfs_wait_ordered_range(dst, dst_loff, len);
3225 }
3226 goto again;
3227 }
3228 ASSERT(ret == 0);
3229 if (WARN_ON(ret)) {
3230 /* ranges in the io trees already unlocked */
3231 btrfs_cmp_data_free(&cmp);
3232 return ret;
3233 }
3234
3235 /* pass original length for comparison so we stay within i_size */
3236 ret = btrfs_cmp_data(olen, &cmp);
3237 if (ret == 0)
3238 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3239
3240 if (same_inode)
3241 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3242 same_lock_start + same_lock_len - 1);
3243 else
3244 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3245
3246 btrfs_cmp_data_free(&cmp);
3247 out_unlock:
3248 if (same_inode)
3249 inode_unlock(src);
3250 else
3251 btrfs_double_inode_unlock(src, dst);
3252
3253 return ret;
3254 }
3255
3256 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3257
3258 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3259 struct file *dst_file, u64 dst_loff)
3260 {
3261 struct inode *src = file_inode(src_file);
3262 struct inode *dst = file_inode(dst_file);
3263 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3264 ssize_t res;
3265
3266 if (olen > BTRFS_MAX_DEDUPE_LEN)
3267 olen = BTRFS_MAX_DEDUPE_LEN;
3268
3269 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3270 /*
3271 * Btrfs does not support blocksize < page_size. As a
3272 * result, btrfs_cmp_data() won't correctly handle
3273 * this situation without an update.
3274 */
3275 return -EINVAL;
3276 }
3277
3278 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3279 if (res)
3280 return res;
3281 return olen;
3282 }
3283
3284 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3285 struct inode *inode,
3286 u64 endoff,
3287 const u64 destoff,
3288 const u64 olen,
3289 int no_time_update)
3290 {
3291 struct btrfs_root *root = BTRFS_I(inode)->root;
3292 int ret;
3293
3294 inode_inc_iversion(inode);
3295 if (!no_time_update)
3296 inode->i_mtime = inode->i_ctime = current_time(inode);
3297 /*
3298 * We round up to the block size at eof when determining which
3299 * extents to clone above, but shouldn't round up the file size.
3300 */
3301 if (endoff > destoff + olen)
3302 endoff = destoff + olen;
3303 if (endoff > inode->i_size)
3304 btrfs_i_size_write(BTRFS_I(inode), endoff);
3305
3306 ret = btrfs_update_inode(trans, root, inode);
3307 if (ret) {
3308 btrfs_abort_transaction(trans, ret);
3309 btrfs_end_transaction(trans);
3310 goto out;
3311 }
3312 ret = btrfs_end_transaction(trans);
3313 out:
3314 return ret;
3315 }
3316
3317 static void clone_update_extent_map(struct btrfs_inode *inode,
3318 const struct btrfs_trans_handle *trans,
3319 const struct btrfs_path *path,
3320 const u64 hole_offset,
3321 const u64 hole_len)
3322 {
3323 struct extent_map_tree *em_tree = &inode->extent_tree;
3324 struct extent_map *em;
3325 int ret;
3326
3327 em = alloc_extent_map();
3328 if (!em) {
3329 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3330 return;
3331 }
3332
3333 if (path) {
3334 struct btrfs_file_extent_item *fi;
3335
3336 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3337 struct btrfs_file_extent_item);
3338 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3339 em->generation = -1;
3340 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3341 BTRFS_FILE_EXTENT_INLINE)
3342 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3343 &inode->runtime_flags);
3344 } else {
3345 em->start = hole_offset;
3346 em->len = hole_len;
3347 em->ram_bytes = em->len;
3348 em->orig_start = hole_offset;
3349 em->block_start = EXTENT_MAP_HOLE;
3350 em->block_len = 0;
3351 em->orig_block_len = 0;
3352 em->compress_type = BTRFS_COMPRESS_NONE;
3353 em->generation = trans->transid;
3354 }
3355
3356 while (1) {
3357 write_lock(&em_tree->lock);
3358 ret = add_extent_mapping(em_tree, em, 1);
3359 write_unlock(&em_tree->lock);
3360 if (ret != -EEXIST) {
3361 free_extent_map(em);
3362 break;
3363 }
3364 btrfs_drop_extent_cache(inode, em->start,
3365 em->start + em->len - 1, 0);
3366 }
3367
3368 if (ret)
3369 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3370 }
3371
3372 /*
3373 * Make sure we do not end up inserting an inline extent into a file that has
3374 * already other (non-inline) extents. If a file has an inline extent it can
3375 * not have any other extents and the (single) inline extent must start at the
3376 * file offset 0. Failing to respect these rules will lead to file corruption,
3377 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3378 *
3379 * We can have extents that have been already written to disk or we can have
3380 * dirty ranges still in delalloc, in which case the extent maps and items are
3381 * created only when we run delalloc, and the delalloc ranges might fall outside
3382 * the range we are currently locking in the inode's io tree. So we check the
3383 * inode's i_size because of that (i_size updates are done while holding the
3384 * i_mutex, which we are holding here).
3385 * We also check to see if the inode has a size not greater than "datal" but has
3386 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3387 * protected against such concurrent fallocate calls by the i_mutex).
3388 *
3389 * If the file has no extents but a size greater than datal, do not allow the
3390 * copy because we would need turn the inline extent into a non-inline one (even
3391 * with NO_HOLES enabled). If we find our destination inode only has one inline
3392 * extent, just overwrite it with the source inline extent if its size is less
3393 * than the source extent's size, or we could copy the source inline extent's
3394 * data into the destination inode's inline extent if the later is greater then
3395 * the former.
3396 */
3397 static int clone_copy_inline_extent(struct inode *dst,
3398 struct btrfs_trans_handle *trans,
3399 struct btrfs_path *path,
3400 struct btrfs_key *new_key,
3401 const u64 drop_start,
3402 const u64 datal,
3403 const u64 skip,
3404 const u64 size,
3405 char *inline_data)
3406 {
3407 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3408 struct btrfs_root *root = BTRFS_I(dst)->root;
3409 const u64 aligned_end = ALIGN(new_key->offset + datal,
3410 fs_info->sectorsize);
3411 int ret;
3412 struct btrfs_key key;
3413
3414 if (new_key->offset > 0)
3415 return -EOPNOTSUPP;
3416
3417 key.objectid = btrfs_ino(BTRFS_I(dst));
3418 key.type = BTRFS_EXTENT_DATA_KEY;
3419 key.offset = 0;
3420 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3421 if (ret < 0) {
3422 return ret;
3423 } else if (ret > 0) {
3424 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3425 ret = btrfs_next_leaf(root, path);
3426 if (ret < 0)
3427 return ret;
3428 else if (ret > 0)
3429 goto copy_inline_extent;
3430 }
3431 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3432 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3433 key.type == BTRFS_EXTENT_DATA_KEY) {
3434 ASSERT(key.offset > 0);
3435 return -EOPNOTSUPP;
3436 }
3437 } else if (i_size_read(dst) <= datal) {
3438 struct btrfs_file_extent_item *ei;
3439 u64 ext_len;
3440
3441 /*
3442 * If the file size is <= datal, make sure there are no other
3443 * extents following (can happen do to an fallocate call with
3444 * the flag FALLOC_FL_KEEP_SIZE).
3445 */
3446 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3447 struct btrfs_file_extent_item);
3448 /*
3449 * If it's an inline extent, it can not have other extents
3450 * following it.
3451 */
3452 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3453 BTRFS_FILE_EXTENT_INLINE)
3454 goto copy_inline_extent;
3455
3456 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3457 if (ext_len > aligned_end)
3458 return -EOPNOTSUPP;
3459
3460 ret = btrfs_next_item(root, path);
3461 if (ret < 0) {
3462 return ret;
3463 } else if (ret == 0) {
3464 btrfs_item_key_to_cpu(path->nodes[0], &key,
3465 path->slots[0]);
3466 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3467 key.type == BTRFS_EXTENT_DATA_KEY)
3468 return -EOPNOTSUPP;
3469 }
3470 }
3471
3472 copy_inline_extent:
3473 /*
3474 * We have no extent items, or we have an extent at offset 0 which may
3475 * or may not be inlined. All these cases are dealt the same way.
3476 */
3477 if (i_size_read(dst) > datal) {
3478 /*
3479 * If the destination inode has an inline extent...
3480 * This would require copying the data from the source inline
3481 * extent into the beginning of the destination's inline extent.
3482 * But this is really complex, both extents can be compressed
3483 * or just one of them, which would require decompressing and
3484 * re-compressing data (which could increase the new compressed
3485 * size, not allowing the compressed data to fit anymore in an
3486 * inline extent).
3487 * So just don't support this case for now (it should be rare,
3488 * we are not really saving space when cloning inline extents).
3489 */
3490 return -EOPNOTSUPP;
3491 }
3492
3493 btrfs_release_path(path);
3494 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3495 if (ret)
3496 return ret;
3497 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3498 if (ret)
3499 return ret;
3500
3501 if (skip) {
3502 const u32 start = btrfs_file_extent_calc_inline_size(0);
3503
3504 memmove(inline_data + start, inline_data + start + skip, datal);
3505 }
3506
3507 write_extent_buffer(path->nodes[0], inline_data,
3508 btrfs_item_ptr_offset(path->nodes[0],
3509 path->slots[0]),
3510 size);
3511 inode_add_bytes(dst, datal);
3512
3513 return 0;
3514 }
3515
3516 /**
3517 * btrfs_clone() - clone a range from inode file to another
3518 *
3519 * @src: Inode to clone from
3520 * @inode: Inode to clone to
3521 * @off: Offset within source to start clone from
3522 * @olen: Original length, passed by user, of range to clone
3523 * @olen_aligned: Block-aligned value of olen
3524 * @destoff: Offset within @inode to start clone
3525 * @no_time_update: Whether to update mtime/ctime on the target inode
3526 */
3527 static int btrfs_clone(struct inode *src, struct inode *inode,
3528 const u64 off, const u64 olen, const u64 olen_aligned,
3529 const u64 destoff, int no_time_update)
3530 {
3531 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3532 struct btrfs_root *root = BTRFS_I(inode)->root;
3533 struct btrfs_path *path = NULL;
3534 struct extent_buffer *leaf;
3535 struct btrfs_trans_handle *trans;
3536 char *buf = NULL;
3537 struct btrfs_key key;
3538 u32 nritems;
3539 int slot;
3540 int ret;
3541 const u64 len = olen_aligned;
3542 u64 last_dest_end = destoff;
3543
3544 ret = -ENOMEM;
3545 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3546 if (!buf)
3547 return ret;
3548
3549 path = btrfs_alloc_path();
3550 if (!path) {
3551 kvfree(buf);
3552 return ret;
3553 }
3554
3555 path->reada = READA_FORWARD;
3556 /* clone data */
3557 key.objectid = btrfs_ino(BTRFS_I(src));
3558 key.type = BTRFS_EXTENT_DATA_KEY;
3559 key.offset = off;
3560
3561 while (1) {
3562 u64 next_key_min_offset = key.offset + 1;
3563
3564 /*
3565 * note the key will change type as we walk through the
3566 * tree.
3567 */
3568 path->leave_spinning = 1;
3569 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3570 0, 0);
3571 if (ret < 0)
3572 goto out;
3573 /*
3574 * First search, if no extent item that starts at offset off was
3575 * found but the previous item is an extent item, it's possible
3576 * it might overlap our target range, therefore process it.
3577 */
3578 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3579 btrfs_item_key_to_cpu(path->nodes[0], &key,
3580 path->slots[0] - 1);
3581 if (key.type == BTRFS_EXTENT_DATA_KEY)
3582 path->slots[0]--;
3583 }
3584
3585 nritems = btrfs_header_nritems(path->nodes[0]);
3586 process_slot:
3587 if (path->slots[0] >= nritems) {
3588 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3589 if (ret < 0)
3590 goto out;
3591 if (ret > 0)
3592 break;
3593 nritems = btrfs_header_nritems(path->nodes[0]);
3594 }
3595 leaf = path->nodes[0];
3596 slot = path->slots[0];
3597
3598 btrfs_item_key_to_cpu(leaf, &key, slot);
3599 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3600 key.objectid != btrfs_ino(BTRFS_I(src)))
3601 break;
3602
3603 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3604 struct btrfs_file_extent_item *extent;
3605 int type;
3606 u32 size;
3607 struct btrfs_key new_key;
3608 u64 disko = 0, diskl = 0;
3609 u64 datao = 0, datal = 0;
3610 u8 comp;
3611 u64 drop_start;
3612
3613 extent = btrfs_item_ptr(leaf, slot,
3614 struct btrfs_file_extent_item);
3615 comp = btrfs_file_extent_compression(leaf, extent);
3616 type = btrfs_file_extent_type(leaf, extent);
3617 if (type == BTRFS_FILE_EXTENT_REG ||
3618 type == BTRFS_FILE_EXTENT_PREALLOC) {
3619 disko = btrfs_file_extent_disk_bytenr(leaf,
3620 extent);
3621 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3622 extent);
3623 datao = btrfs_file_extent_offset(leaf, extent);
3624 datal = btrfs_file_extent_num_bytes(leaf,
3625 extent);
3626 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3627 /* take upper bound, may be compressed */
3628 datal = btrfs_file_extent_ram_bytes(leaf,
3629 extent);
3630 }
3631
3632 /*
3633 * The first search might have left us at an extent
3634 * item that ends before our target range's start, can
3635 * happen if we have holes and NO_HOLES feature enabled.
3636 */
3637 if (key.offset + datal <= off) {
3638 path->slots[0]++;
3639 goto process_slot;
3640 } else if (key.offset >= off + len) {
3641 break;
3642 }
3643 next_key_min_offset = key.offset + datal;
3644 size = btrfs_item_size_nr(leaf, slot);
3645 read_extent_buffer(leaf, buf,
3646 btrfs_item_ptr_offset(leaf, slot),
3647 size);
3648
3649 btrfs_release_path(path);
3650 path->leave_spinning = 0;
3651
3652 memcpy(&new_key, &key, sizeof(new_key));
3653 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3654 if (off <= key.offset)
3655 new_key.offset = key.offset + destoff - off;
3656 else
3657 new_key.offset = destoff;
3658
3659 /*
3660 * Deal with a hole that doesn't have an extent item
3661 * that represents it (NO_HOLES feature enabled).
3662 * This hole is either in the middle of the cloning
3663 * range or at the beginning (fully overlaps it or
3664 * partially overlaps it).
3665 */
3666 if (new_key.offset != last_dest_end)
3667 drop_start = last_dest_end;
3668 else
3669 drop_start = new_key.offset;
3670
3671 /*
3672 * 1 - adjusting old extent (we may have to split it)
3673 * 1 - add new extent
3674 * 1 - inode update
3675 */
3676 trans = btrfs_start_transaction(root, 3);
3677 if (IS_ERR(trans)) {
3678 ret = PTR_ERR(trans);
3679 goto out;
3680 }
3681
3682 if (type == BTRFS_FILE_EXTENT_REG ||
3683 type == BTRFS_FILE_EXTENT_PREALLOC) {
3684 /*
3685 * a | --- range to clone ---| b
3686 * | ------------- extent ------------- |
3687 */
3688
3689 /* subtract range b */
3690 if (key.offset + datal > off + len)
3691 datal = off + len - key.offset;
3692
3693 /* subtract range a */
3694 if (off > key.offset) {
3695 datao += off - key.offset;
3696 datal -= off - key.offset;
3697 }
3698
3699 ret = btrfs_drop_extents(trans, root, inode,
3700 drop_start,
3701 new_key.offset + datal,
3702 1);
3703 if (ret) {
3704 if (ret != -EOPNOTSUPP)
3705 btrfs_abort_transaction(trans,
3706 ret);
3707 btrfs_end_transaction(trans);
3708 goto out;
3709 }
3710
3711 ret = btrfs_insert_empty_item(trans, root, path,
3712 &new_key, size);
3713 if (ret) {
3714 btrfs_abort_transaction(trans, ret);
3715 btrfs_end_transaction(trans);
3716 goto out;
3717 }
3718
3719 leaf = path->nodes[0];
3720 slot = path->slots[0];
3721 write_extent_buffer(leaf, buf,
3722 btrfs_item_ptr_offset(leaf, slot),
3723 size);
3724
3725 extent = btrfs_item_ptr(leaf, slot,
3726 struct btrfs_file_extent_item);
3727
3728 /* disko == 0 means it's a hole */
3729 if (!disko)
3730 datao = 0;
3731
3732 btrfs_set_file_extent_offset(leaf, extent,
3733 datao);
3734 btrfs_set_file_extent_num_bytes(leaf, extent,
3735 datal);
3736
3737 if (disko) {
3738 inode_add_bytes(inode, datal);
3739 ret = btrfs_inc_extent_ref(trans,
3740 fs_info,
3741 disko, diskl, 0,
3742 root->root_key.objectid,
3743 btrfs_ino(BTRFS_I(inode)),
3744 new_key.offset - datao);
3745 if (ret) {
3746 btrfs_abort_transaction(trans,
3747 ret);
3748 btrfs_end_transaction(trans);
3749 goto out;
3750
3751 }
3752 }
3753 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3754 u64 skip = 0;
3755 u64 trim = 0;
3756
3757 if (off > key.offset) {
3758 skip = off - key.offset;
3759 new_key.offset += skip;
3760 }
3761
3762 if (key.offset + datal > off + len)
3763 trim = key.offset + datal - (off + len);
3764
3765 if (comp && (skip || trim)) {
3766 ret = -EINVAL;
3767 btrfs_end_transaction(trans);
3768 goto out;
3769 }
3770 size -= skip + trim;
3771 datal -= skip + trim;
3772
3773 ret = clone_copy_inline_extent(inode,
3774 trans, path,
3775 &new_key,
3776 drop_start,
3777 datal,
3778 skip, size, buf);
3779 if (ret) {
3780 if (ret != -EOPNOTSUPP)
3781 btrfs_abort_transaction(trans,
3782 ret);
3783 btrfs_end_transaction(trans);
3784 goto out;
3785 }
3786 leaf = path->nodes[0];
3787 slot = path->slots[0];
3788 }
3789
3790 /* If we have an implicit hole (NO_HOLES feature). */
3791 if (drop_start < new_key.offset)
3792 clone_update_extent_map(BTRFS_I(inode), trans,
3793 NULL, drop_start,
3794 new_key.offset - drop_start);
3795
3796 clone_update_extent_map(BTRFS_I(inode), trans,
3797 path, 0, 0);
3798
3799 btrfs_mark_buffer_dirty(leaf);
3800 btrfs_release_path(path);
3801
3802 last_dest_end = ALIGN(new_key.offset + datal,
3803 fs_info->sectorsize);
3804 ret = clone_finish_inode_update(trans, inode,
3805 last_dest_end,
3806 destoff, olen,
3807 no_time_update);
3808 if (ret)
3809 goto out;
3810 if (new_key.offset + datal >= destoff + len)
3811 break;
3812 }
3813 btrfs_release_path(path);
3814 key.offset = next_key_min_offset;
3815
3816 if (fatal_signal_pending(current)) {
3817 ret = -EINTR;
3818 goto out;
3819 }
3820 }
3821 ret = 0;
3822
3823 if (last_dest_end < destoff + len) {
3824 /*
3825 * We have an implicit hole (NO_HOLES feature is enabled) that
3826 * fully or partially overlaps our cloning range at its end.
3827 */
3828 btrfs_release_path(path);
3829
3830 /*
3831 * 1 - remove extent(s)
3832 * 1 - inode update
3833 */
3834 trans = btrfs_start_transaction(root, 2);
3835 if (IS_ERR(trans)) {
3836 ret = PTR_ERR(trans);
3837 goto out;
3838 }
3839 ret = btrfs_drop_extents(trans, root, inode,
3840 last_dest_end, destoff + len, 1);
3841 if (ret) {
3842 if (ret != -EOPNOTSUPP)
3843 btrfs_abort_transaction(trans, ret);
3844 btrfs_end_transaction(trans);
3845 goto out;
3846 }
3847 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3848 last_dest_end,
3849 destoff + len - last_dest_end);
3850 ret = clone_finish_inode_update(trans, inode, destoff + len,
3851 destoff, olen, no_time_update);
3852 }
3853
3854 out:
3855 btrfs_free_path(path);
3856 kvfree(buf);
3857 return ret;
3858 }
3859
3860 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3861 u64 off, u64 olen, u64 destoff)
3862 {
3863 struct inode *inode = file_inode(file);
3864 struct inode *src = file_inode(file_src);
3865 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3866 struct btrfs_root *root = BTRFS_I(inode)->root;
3867 int ret;
3868 u64 len = olen;
3869 u64 bs = fs_info->sb->s_blocksize;
3870 int same_inode = src == inode;
3871
3872 /*
3873 * TODO:
3874 * - split compressed inline extents. annoying: we need to
3875 * decompress into destination's address_space (the file offset
3876 * may change, so source mapping won't do), then recompress (or
3877 * otherwise reinsert) a subrange.
3878 *
3879 * - split destination inode's inline extents. The inline extents can
3880 * be either compressed or non-compressed.
3881 */
3882
3883 if (btrfs_root_readonly(root))
3884 return -EROFS;
3885
3886 if (file_src->f_path.mnt != file->f_path.mnt ||
3887 src->i_sb != inode->i_sb)
3888 return -EXDEV;
3889
3890 /* don't make the dst file partly checksummed */
3891 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3892 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3893 return -EINVAL;
3894
3895 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3896 return -EISDIR;
3897
3898 if (!same_inode) {
3899 btrfs_double_inode_lock(src, inode);
3900 } else {
3901 inode_lock(src);
3902 }
3903
3904 /* determine range to clone */
3905 ret = -EINVAL;
3906 if (off + len > src->i_size || off + len < off)
3907 goto out_unlock;
3908 if (len == 0)
3909 olen = len = src->i_size - off;
3910 /* if we extend to eof, continue to block boundary */
3911 if (off + len == src->i_size)
3912 len = ALIGN(src->i_size, bs) - off;
3913
3914 if (len == 0) {
3915 ret = 0;
3916 goto out_unlock;
3917 }
3918
3919 /* verify the end result is block aligned */
3920 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3921 !IS_ALIGNED(destoff, bs))
3922 goto out_unlock;
3923
3924 /* verify if ranges are overlapped within the same file */
3925 if (same_inode) {
3926 if (destoff + len > off && destoff < off + len)
3927 goto out_unlock;
3928 }
3929
3930 if (destoff > inode->i_size) {
3931 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3932 if (ret)
3933 goto out_unlock;
3934 }
3935
3936 /*
3937 * Lock the target range too. Right after we replace the file extent
3938 * items in the fs tree (which now point to the cloned data), we might
3939 * have a worker replace them with extent items relative to a write
3940 * operation that was issued before this clone operation (i.e. confront
3941 * with inode.c:btrfs_finish_ordered_io).
3942 */
3943 if (same_inode) {
3944 u64 lock_start = min_t(u64, off, destoff);
3945 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3946
3947 ret = lock_extent_range(src, lock_start, lock_len, true);
3948 } else {
3949 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3950 true);
3951 }
3952 ASSERT(ret == 0);
3953 if (WARN_ON(ret)) {
3954 /* ranges in the io trees already unlocked */
3955 goto out_unlock;
3956 }
3957
3958 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3959
3960 if (same_inode) {
3961 u64 lock_start = min_t(u64, off, destoff);
3962 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3963
3964 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3965 } else {
3966 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3967 }
3968 /*
3969 * Truncate page cache pages so that future reads will see the cloned
3970 * data immediately and not the previous data.
3971 */
3972 truncate_inode_pages_range(&inode->i_data,
3973 round_down(destoff, PAGE_SIZE),
3974 round_up(destoff + len, PAGE_SIZE) - 1);
3975 out_unlock:
3976 if (!same_inode)
3977 btrfs_double_inode_unlock(src, inode);
3978 else
3979 inode_unlock(src);
3980 return ret;
3981 }
3982
3983 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3984 struct file *dst_file, loff_t destoff, u64 len)
3985 {
3986 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3987 }
3988
3989 /*
3990 * there are many ways the trans_start and trans_end ioctls can lead
3991 * to deadlocks. They should only be used by applications that
3992 * basically own the machine, and have a very in depth understanding
3993 * of all the possible deadlocks and enospc problems.
3994 */
3995 static long btrfs_ioctl_trans_start(struct file *file)
3996 {
3997 struct inode *inode = file_inode(file);
3998 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3999 struct btrfs_root *root = BTRFS_I(inode)->root;
4000 struct btrfs_trans_handle *trans;
4001 int ret;
4002
4003 ret = -EPERM;
4004 if (!capable(CAP_SYS_ADMIN))
4005 goto out;
4006
4007 ret = -EINPROGRESS;
4008 if (file->private_data)
4009 goto out;
4010
4011 ret = -EROFS;
4012 if (btrfs_root_readonly(root))
4013 goto out;
4014
4015 ret = mnt_want_write_file(file);
4016 if (ret)
4017 goto out;
4018
4019 atomic_inc(&fs_info->open_ioctl_trans);
4020
4021 ret = -ENOMEM;
4022 trans = btrfs_start_ioctl_transaction(root);
4023 if (IS_ERR(trans))
4024 goto out_drop;
4025
4026 file->private_data = trans;
4027 return 0;
4028
4029 out_drop:
4030 atomic_dec(&fs_info->open_ioctl_trans);
4031 mnt_drop_write_file(file);
4032 out:
4033 return ret;
4034 }
4035
4036 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4037 {
4038 struct inode *inode = file_inode(file);
4039 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4040 struct btrfs_root *root = BTRFS_I(inode)->root;
4041 struct btrfs_root *new_root;
4042 struct btrfs_dir_item *di;
4043 struct btrfs_trans_handle *trans;
4044 struct btrfs_path *path;
4045 struct btrfs_key location;
4046 struct btrfs_disk_key disk_key;
4047 u64 objectid = 0;
4048 u64 dir_id;
4049 int ret;
4050
4051 if (!capable(CAP_SYS_ADMIN))
4052 return -EPERM;
4053
4054 ret = mnt_want_write_file(file);
4055 if (ret)
4056 return ret;
4057
4058 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4059 ret = -EFAULT;
4060 goto out;
4061 }
4062
4063 if (!objectid)
4064 objectid = BTRFS_FS_TREE_OBJECTID;
4065
4066 location.objectid = objectid;
4067 location.type = BTRFS_ROOT_ITEM_KEY;
4068 location.offset = (u64)-1;
4069
4070 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4071 if (IS_ERR(new_root)) {
4072 ret = PTR_ERR(new_root);
4073 goto out;
4074 }
4075
4076 path = btrfs_alloc_path();
4077 if (!path) {
4078 ret = -ENOMEM;
4079 goto out;
4080 }
4081 path->leave_spinning = 1;
4082
4083 trans = btrfs_start_transaction(root, 1);
4084 if (IS_ERR(trans)) {
4085 btrfs_free_path(path);
4086 ret = PTR_ERR(trans);
4087 goto out;
4088 }
4089
4090 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4091 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4092 dir_id, "default", 7, 1);
4093 if (IS_ERR_OR_NULL(di)) {
4094 btrfs_free_path(path);
4095 btrfs_end_transaction(trans);
4096 btrfs_err(fs_info,
4097 "Umm, you don't have the default diritem, this isn't going to work");
4098 ret = -ENOENT;
4099 goto out;
4100 }
4101
4102 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4103 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4104 btrfs_mark_buffer_dirty(path->nodes[0]);
4105 btrfs_free_path(path);
4106
4107 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4108 btrfs_end_transaction(trans);
4109 out:
4110 mnt_drop_write_file(file);
4111 return ret;
4112 }
4113
4114 void btrfs_get_block_group_info(struct list_head *groups_list,
4115 struct btrfs_ioctl_space_info *space)
4116 {
4117 struct btrfs_block_group_cache *block_group;
4118
4119 space->total_bytes = 0;
4120 space->used_bytes = 0;
4121 space->flags = 0;
4122 list_for_each_entry(block_group, groups_list, list) {
4123 space->flags = block_group->flags;
4124 space->total_bytes += block_group->key.offset;
4125 space->used_bytes +=
4126 btrfs_block_group_used(&block_group->item);
4127 }
4128 }
4129
4130 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4131 void __user *arg)
4132 {
4133 struct btrfs_ioctl_space_args space_args;
4134 struct btrfs_ioctl_space_info space;
4135 struct btrfs_ioctl_space_info *dest;
4136 struct btrfs_ioctl_space_info *dest_orig;
4137 struct btrfs_ioctl_space_info __user *user_dest;
4138 struct btrfs_space_info *info;
4139 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4140 BTRFS_BLOCK_GROUP_SYSTEM,
4141 BTRFS_BLOCK_GROUP_METADATA,
4142 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4143 int num_types = 4;
4144 int alloc_size;
4145 int ret = 0;
4146 u64 slot_count = 0;
4147 int i, c;
4148
4149 if (copy_from_user(&space_args,
4150 (struct btrfs_ioctl_space_args __user *)arg,
4151 sizeof(space_args)))
4152 return -EFAULT;
4153
4154 for (i = 0; i < num_types; i++) {
4155 struct btrfs_space_info *tmp;
4156
4157 info = NULL;
4158 rcu_read_lock();
4159 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4160 list) {
4161 if (tmp->flags == types[i]) {
4162 info = tmp;
4163 break;
4164 }
4165 }
4166 rcu_read_unlock();
4167
4168 if (!info)
4169 continue;
4170
4171 down_read(&info->groups_sem);
4172 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4173 if (!list_empty(&info->block_groups[c]))
4174 slot_count++;
4175 }
4176 up_read(&info->groups_sem);
4177 }
4178
4179 /*
4180 * Global block reserve, exported as a space_info
4181 */
4182 slot_count++;
4183
4184 /* space_slots == 0 means they are asking for a count */
4185 if (space_args.space_slots == 0) {
4186 space_args.total_spaces = slot_count;
4187 goto out;
4188 }
4189
4190 slot_count = min_t(u64, space_args.space_slots, slot_count);
4191
4192 alloc_size = sizeof(*dest) * slot_count;
4193
4194 /* we generally have at most 6 or so space infos, one for each raid
4195 * level. So, a whole page should be more than enough for everyone
4196 */
4197 if (alloc_size > PAGE_SIZE)
4198 return -ENOMEM;
4199
4200 space_args.total_spaces = 0;
4201 dest = kmalloc(alloc_size, GFP_KERNEL);
4202 if (!dest)
4203 return -ENOMEM;
4204 dest_orig = dest;
4205
4206 /* now we have a buffer to copy into */
4207 for (i = 0; i < num_types; i++) {
4208 struct btrfs_space_info *tmp;
4209
4210 if (!slot_count)
4211 break;
4212
4213 info = NULL;
4214 rcu_read_lock();
4215 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4216 list) {
4217 if (tmp->flags == types[i]) {
4218 info = tmp;
4219 break;
4220 }
4221 }
4222 rcu_read_unlock();
4223
4224 if (!info)
4225 continue;
4226 down_read(&info->groups_sem);
4227 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4228 if (!list_empty(&info->block_groups[c])) {
4229 btrfs_get_block_group_info(
4230 &info->block_groups[c], &space);
4231 memcpy(dest, &space, sizeof(space));
4232 dest++;
4233 space_args.total_spaces++;
4234 slot_count--;
4235 }
4236 if (!slot_count)
4237 break;
4238 }
4239 up_read(&info->groups_sem);
4240 }
4241
4242 /*
4243 * Add global block reserve
4244 */
4245 if (slot_count) {
4246 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4247
4248 spin_lock(&block_rsv->lock);
4249 space.total_bytes = block_rsv->size;
4250 space.used_bytes = block_rsv->size - block_rsv->reserved;
4251 spin_unlock(&block_rsv->lock);
4252 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4253 memcpy(dest, &space, sizeof(space));
4254 space_args.total_spaces++;
4255 }
4256
4257 user_dest = (struct btrfs_ioctl_space_info __user *)
4258 (arg + sizeof(struct btrfs_ioctl_space_args));
4259
4260 if (copy_to_user(user_dest, dest_orig, alloc_size))
4261 ret = -EFAULT;
4262
4263 kfree(dest_orig);
4264 out:
4265 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4266 ret = -EFAULT;
4267
4268 return ret;
4269 }
4270
4271 /*
4272 * there are many ways the trans_start and trans_end ioctls can lead
4273 * to deadlocks. They should only be used by applications that
4274 * basically own the machine, and have a very in depth understanding
4275 * of all the possible deadlocks and enospc problems.
4276 */
4277 long btrfs_ioctl_trans_end(struct file *file)
4278 {
4279 struct inode *inode = file_inode(file);
4280 struct btrfs_root *root = BTRFS_I(inode)->root;
4281 struct btrfs_trans_handle *trans;
4282
4283 trans = file->private_data;
4284 if (!trans)
4285 return -EINVAL;
4286 file->private_data = NULL;
4287
4288 btrfs_end_transaction(trans);
4289
4290 atomic_dec(&root->fs_info->open_ioctl_trans);
4291
4292 mnt_drop_write_file(file);
4293 return 0;
4294 }
4295
4296 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4297 void __user *argp)
4298 {
4299 struct btrfs_trans_handle *trans;
4300 u64 transid;
4301 int ret;
4302
4303 trans = btrfs_attach_transaction_barrier(root);
4304 if (IS_ERR(trans)) {
4305 if (PTR_ERR(trans) != -ENOENT)
4306 return PTR_ERR(trans);
4307
4308 /* No running transaction, don't bother */
4309 transid = root->fs_info->last_trans_committed;
4310 goto out;
4311 }
4312 transid = trans->transid;
4313 ret = btrfs_commit_transaction_async(trans, 0);
4314 if (ret) {
4315 btrfs_end_transaction(trans);
4316 return ret;
4317 }
4318 out:
4319 if (argp)
4320 if (copy_to_user(argp, &transid, sizeof(transid)))
4321 return -EFAULT;
4322 return 0;
4323 }
4324
4325 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4326 void __user *argp)
4327 {
4328 u64 transid;
4329
4330 if (argp) {
4331 if (copy_from_user(&transid, argp, sizeof(transid)))
4332 return -EFAULT;
4333 } else {
4334 transid = 0; /* current trans */
4335 }
4336 return btrfs_wait_for_commit(fs_info, transid);
4337 }
4338
4339 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4340 {
4341 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4342 struct btrfs_ioctl_scrub_args *sa;
4343 int ret;
4344
4345 if (!capable(CAP_SYS_ADMIN))
4346 return -EPERM;
4347
4348 sa = memdup_user(arg, sizeof(*sa));
4349 if (IS_ERR(sa))
4350 return PTR_ERR(sa);
4351
4352 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4353 ret = mnt_want_write_file(file);
4354 if (ret)
4355 goto out;
4356 }
4357
4358 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4359 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4360 0);
4361
4362 if (copy_to_user(arg, sa, sizeof(*sa)))
4363 ret = -EFAULT;
4364
4365 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4366 mnt_drop_write_file(file);
4367 out:
4368 kfree(sa);
4369 return ret;
4370 }
4371
4372 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4373 {
4374 if (!capable(CAP_SYS_ADMIN))
4375 return -EPERM;
4376
4377 return btrfs_scrub_cancel(fs_info);
4378 }
4379
4380 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4381 void __user *arg)
4382 {
4383 struct btrfs_ioctl_scrub_args *sa;
4384 int ret;
4385
4386 if (!capable(CAP_SYS_ADMIN))
4387 return -EPERM;
4388
4389 sa = memdup_user(arg, sizeof(*sa));
4390 if (IS_ERR(sa))
4391 return PTR_ERR(sa);
4392
4393 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4394
4395 if (copy_to_user(arg, sa, sizeof(*sa)))
4396 ret = -EFAULT;
4397
4398 kfree(sa);
4399 return ret;
4400 }
4401
4402 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4403 void __user *arg)
4404 {
4405 struct btrfs_ioctl_get_dev_stats *sa;
4406 int ret;
4407
4408 sa = memdup_user(arg, sizeof(*sa));
4409 if (IS_ERR(sa))
4410 return PTR_ERR(sa);
4411
4412 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4413 kfree(sa);
4414 return -EPERM;
4415 }
4416
4417 ret = btrfs_get_dev_stats(fs_info, sa);
4418
4419 if (copy_to_user(arg, sa, sizeof(*sa)))
4420 ret = -EFAULT;
4421
4422 kfree(sa);
4423 return ret;
4424 }
4425
4426 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4427 void __user *arg)
4428 {
4429 struct btrfs_ioctl_dev_replace_args *p;
4430 int ret;
4431
4432 if (!capable(CAP_SYS_ADMIN))
4433 return -EPERM;
4434
4435 p = memdup_user(arg, sizeof(*p));
4436 if (IS_ERR(p))
4437 return PTR_ERR(p);
4438
4439 switch (p->cmd) {
4440 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4441 if (fs_info->sb->s_flags & MS_RDONLY) {
4442 ret = -EROFS;
4443 goto out;
4444 }
4445 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4446 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4447 } else {
4448 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4449 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4450 }
4451 break;
4452 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4453 btrfs_dev_replace_status(fs_info, p);
4454 ret = 0;
4455 break;
4456 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4457 ret = btrfs_dev_replace_cancel(fs_info, p);
4458 break;
4459 default:
4460 ret = -EINVAL;
4461 break;
4462 }
4463
4464 if (copy_to_user(arg, p, sizeof(*p)))
4465 ret = -EFAULT;
4466 out:
4467 kfree(p);
4468 return ret;
4469 }
4470
4471 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4472 {
4473 int ret = 0;
4474 int i;
4475 u64 rel_ptr;
4476 int size;
4477 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4478 struct inode_fs_paths *ipath = NULL;
4479 struct btrfs_path *path;
4480
4481 if (!capable(CAP_DAC_READ_SEARCH))
4482 return -EPERM;
4483
4484 path = btrfs_alloc_path();
4485 if (!path) {
4486 ret = -ENOMEM;
4487 goto out;
4488 }
4489
4490 ipa = memdup_user(arg, sizeof(*ipa));
4491 if (IS_ERR(ipa)) {
4492 ret = PTR_ERR(ipa);
4493 ipa = NULL;
4494 goto out;
4495 }
4496
4497 size = min_t(u32, ipa->size, 4096);
4498 ipath = init_ipath(size, root, path);
4499 if (IS_ERR(ipath)) {
4500 ret = PTR_ERR(ipath);
4501 ipath = NULL;
4502 goto out;
4503 }
4504
4505 ret = paths_from_inode(ipa->inum, ipath);
4506 if (ret < 0)
4507 goto out;
4508
4509 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4510 rel_ptr = ipath->fspath->val[i] -
4511 (u64)(unsigned long)ipath->fspath->val;
4512 ipath->fspath->val[i] = rel_ptr;
4513 }
4514
4515 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4516 (void *)(unsigned long)ipath->fspath, size);
4517 if (ret) {
4518 ret = -EFAULT;
4519 goto out;
4520 }
4521
4522 out:
4523 btrfs_free_path(path);
4524 free_ipath(ipath);
4525 kfree(ipa);
4526
4527 return ret;
4528 }
4529
4530 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4531 {
4532 struct btrfs_data_container *inodes = ctx;
4533 const size_t c = 3 * sizeof(u64);
4534
4535 if (inodes->bytes_left >= c) {
4536 inodes->bytes_left -= c;
4537 inodes->val[inodes->elem_cnt] = inum;
4538 inodes->val[inodes->elem_cnt + 1] = offset;
4539 inodes->val[inodes->elem_cnt + 2] = root;
4540 inodes->elem_cnt += 3;
4541 } else {
4542 inodes->bytes_missing += c - inodes->bytes_left;
4543 inodes->bytes_left = 0;
4544 inodes->elem_missed += 3;
4545 }
4546
4547 return 0;
4548 }
4549
4550 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4551 void __user *arg)
4552 {
4553 int ret = 0;
4554 int size;
4555 struct btrfs_ioctl_logical_ino_args *loi;
4556 struct btrfs_data_container *inodes = NULL;
4557 struct btrfs_path *path = NULL;
4558
4559 if (!capable(CAP_SYS_ADMIN))
4560 return -EPERM;
4561
4562 loi = memdup_user(arg, sizeof(*loi));
4563 if (IS_ERR(loi))
4564 return PTR_ERR(loi);
4565
4566 path = btrfs_alloc_path();
4567 if (!path) {
4568 ret = -ENOMEM;
4569 goto out;
4570 }
4571
4572 size = min_t(u32, loi->size, SZ_64K);
4573 inodes = init_data_container(size);
4574 if (IS_ERR(inodes)) {
4575 ret = PTR_ERR(inodes);
4576 inodes = NULL;
4577 goto out;
4578 }
4579
4580 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4581 build_ino_list, inodes);
4582 if (ret == -EINVAL)
4583 ret = -ENOENT;
4584 if (ret < 0)
4585 goto out;
4586
4587 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4588 (void *)(unsigned long)inodes, size);
4589 if (ret)
4590 ret = -EFAULT;
4591
4592 out:
4593 btrfs_free_path(path);
4594 kvfree(inodes);
4595 kfree(loi);
4596
4597 return ret;
4598 }
4599
4600 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4601 struct btrfs_ioctl_balance_args *bargs)
4602 {
4603 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4604
4605 bargs->flags = bctl->flags;
4606
4607 if (atomic_read(&fs_info->balance_running))
4608 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4609 if (atomic_read(&fs_info->balance_pause_req))
4610 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4611 if (atomic_read(&fs_info->balance_cancel_req))
4612 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4613
4614 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4615 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4616 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4617
4618 if (lock) {
4619 spin_lock(&fs_info->balance_lock);
4620 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4621 spin_unlock(&fs_info->balance_lock);
4622 } else {
4623 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4624 }
4625 }
4626
4627 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4628 {
4629 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4630 struct btrfs_fs_info *fs_info = root->fs_info;
4631 struct btrfs_ioctl_balance_args *bargs;
4632 struct btrfs_balance_control *bctl;
4633 bool need_unlock; /* for mut. excl. ops lock */
4634 int ret;
4635
4636 if (!capable(CAP_SYS_ADMIN))
4637 return -EPERM;
4638
4639 ret = mnt_want_write_file(file);
4640 if (ret)
4641 return ret;
4642
4643 again:
4644 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4645 mutex_lock(&fs_info->volume_mutex);
4646 mutex_lock(&fs_info->balance_mutex);
4647 need_unlock = true;
4648 goto locked;
4649 }
4650
4651 /*
4652 * mut. excl. ops lock is locked. Three possibilities:
4653 * (1) some other op is running
4654 * (2) balance is running
4655 * (3) balance is paused -- special case (think resume)
4656 */
4657 mutex_lock(&fs_info->balance_mutex);
4658 if (fs_info->balance_ctl) {
4659 /* this is either (2) or (3) */
4660 if (!atomic_read(&fs_info->balance_running)) {
4661 mutex_unlock(&fs_info->balance_mutex);
4662 if (!mutex_trylock(&fs_info->volume_mutex))
4663 goto again;
4664 mutex_lock(&fs_info->balance_mutex);
4665
4666 if (fs_info->balance_ctl &&
4667 !atomic_read(&fs_info->balance_running)) {
4668 /* this is (3) */
4669 need_unlock = false;
4670 goto locked;
4671 }
4672
4673 mutex_unlock(&fs_info->balance_mutex);
4674 mutex_unlock(&fs_info->volume_mutex);
4675 goto again;
4676 } else {
4677 /* this is (2) */
4678 mutex_unlock(&fs_info->balance_mutex);
4679 ret = -EINPROGRESS;
4680 goto out;
4681 }
4682 } else {
4683 /* this is (1) */
4684 mutex_unlock(&fs_info->balance_mutex);
4685 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4686 goto out;
4687 }
4688
4689 locked:
4690 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4691
4692 if (arg) {
4693 bargs = memdup_user(arg, sizeof(*bargs));
4694 if (IS_ERR(bargs)) {
4695 ret = PTR_ERR(bargs);
4696 goto out_unlock;
4697 }
4698
4699 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4700 if (!fs_info->balance_ctl) {
4701 ret = -ENOTCONN;
4702 goto out_bargs;
4703 }
4704
4705 bctl = fs_info->balance_ctl;
4706 spin_lock(&fs_info->balance_lock);
4707 bctl->flags |= BTRFS_BALANCE_RESUME;
4708 spin_unlock(&fs_info->balance_lock);
4709
4710 goto do_balance;
4711 }
4712 } else {
4713 bargs = NULL;
4714 }
4715
4716 if (fs_info->balance_ctl) {
4717 ret = -EINPROGRESS;
4718 goto out_bargs;
4719 }
4720
4721 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4722 if (!bctl) {
4723 ret = -ENOMEM;
4724 goto out_bargs;
4725 }
4726
4727 bctl->fs_info = fs_info;
4728 if (arg) {
4729 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4730 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4731 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4732
4733 bctl->flags = bargs->flags;
4734 } else {
4735 /* balance everything - no filters */
4736 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4737 }
4738
4739 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4740 ret = -EINVAL;
4741 goto out_bctl;
4742 }
4743
4744 do_balance:
4745 /*
4746 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4747 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4748 * or, if restriper was paused all the way until unmount, in
4749 * free_fs_info. The flag is cleared in __cancel_balance.
4750 */
4751 need_unlock = false;
4752
4753 ret = btrfs_balance(bctl, bargs);
4754 bctl = NULL;
4755
4756 if (arg) {
4757 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4758 ret = -EFAULT;
4759 }
4760
4761 out_bctl:
4762 kfree(bctl);
4763 out_bargs:
4764 kfree(bargs);
4765 out_unlock:
4766 mutex_unlock(&fs_info->balance_mutex);
4767 mutex_unlock(&fs_info->volume_mutex);
4768 if (need_unlock)
4769 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4770 out:
4771 mnt_drop_write_file(file);
4772 return ret;
4773 }
4774
4775 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4776 {
4777 if (!capable(CAP_SYS_ADMIN))
4778 return -EPERM;
4779
4780 switch (cmd) {
4781 case BTRFS_BALANCE_CTL_PAUSE:
4782 return btrfs_pause_balance(fs_info);
4783 case BTRFS_BALANCE_CTL_CANCEL:
4784 return btrfs_cancel_balance(fs_info);
4785 }
4786
4787 return -EINVAL;
4788 }
4789
4790 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4791 void __user *arg)
4792 {
4793 struct btrfs_ioctl_balance_args *bargs;
4794 int ret = 0;
4795
4796 if (!capable(CAP_SYS_ADMIN))
4797 return -EPERM;
4798
4799 mutex_lock(&fs_info->balance_mutex);
4800 if (!fs_info->balance_ctl) {
4801 ret = -ENOTCONN;
4802 goto out;
4803 }
4804
4805 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4806 if (!bargs) {
4807 ret = -ENOMEM;
4808 goto out;
4809 }
4810
4811 update_ioctl_balance_args(fs_info, 1, bargs);
4812
4813 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4814 ret = -EFAULT;
4815
4816 kfree(bargs);
4817 out:
4818 mutex_unlock(&fs_info->balance_mutex);
4819 return ret;
4820 }
4821
4822 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4823 {
4824 struct inode *inode = file_inode(file);
4825 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4826 struct btrfs_ioctl_quota_ctl_args *sa;
4827 struct btrfs_trans_handle *trans = NULL;
4828 int ret;
4829 int err;
4830
4831 if (!capable(CAP_SYS_ADMIN))
4832 return -EPERM;
4833
4834 ret = mnt_want_write_file(file);
4835 if (ret)
4836 return ret;
4837
4838 sa = memdup_user(arg, sizeof(*sa));
4839 if (IS_ERR(sa)) {
4840 ret = PTR_ERR(sa);
4841 goto drop_write;
4842 }
4843
4844 down_write(&fs_info->subvol_sem);
4845 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4846 if (IS_ERR(trans)) {
4847 ret = PTR_ERR(trans);
4848 goto out;
4849 }
4850
4851 switch (sa->cmd) {
4852 case BTRFS_QUOTA_CTL_ENABLE:
4853 ret = btrfs_quota_enable(trans, fs_info);
4854 break;
4855 case BTRFS_QUOTA_CTL_DISABLE:
4856 ret = btrfs_quota_disable(trans, fs_info);
4857 break;
4858 default:
4859 ret = -EINVAL;
4860 break;
4861 }
4862
4863 err = btrfs_commit_transaction(trans);
4864 if (err && !ret)
4865 ret = err;
4866 out:
4867 kfree(sa);
4868 up_write(&fs_info->subvol_sem);
4869 drop_write:
4870 mnt_drop_write_file(file);
4871 return ret;
4872 }
4873
4874 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4875 {
4876 struct inode *inode = file_inode(file);
4877 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4878 struct btrfs_root *root = BTRFS_I(inode)->root;
4879 struct btrfs_ioctl_qgroup_assign_args *sa;
4880 struct btrfs_trans_handle *trans;
4881 int ret;
4882 int err;
4883
4884 if (!capable(CAP_SYS_ADMIN))
4885 return -EPERM;
4886
4887 ret = mnt_want_write_file(file);
4888 if (ret)
4889 return ret;
4890
4891 sa = memdup_user(arg, sizeof(*sa));
4892 if (IS_ERR(sa)) {
4893 ret = PTR_ERR(sa);
4894 goto drop_write;
4895 }
4896
4897 trans = btrfs_join_transaction(root);
4898 if (IS_ERR(trans)) {
4899 ret = PTR_ERR(trans);
4900 goto out;
4901 }
4902
4903 if (sa->assign) {
4904 ret = btrfs_add_qgroup_relation(trans, fs_info,
4905 sa->src, sa->dst);
4906 } else {
4907 ret = btrfs_del_qgroup_relation(trans, fs_info,
4908 sa->src, sa->dst);
4909 }
4910
4911 /* update qgroup status and info */
4912 err = btrfs_run_qgroups(trans, fs_info);
4913 if (err < 0)
4914 btrfs_handle_fs_error(fs_info, err,
4915 "failed to update qgroup status and info");
4916 err = btrfs_end_transaction(trans);
4917 if (err && !ret)
4918 ret = err;
4919
4920 out:
4921 kfree(sa);
4922 drop_write:
4923 mnt_drop_write_file(file);
4924 return ret;
4925 }
4926
4927 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4928 {
4929 struct inode *inode = file_inode(file);
4930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4931 struct btrfs_root *root = BTRFS_I(inode)->root;
4932 struct btrfs_ioctl_qgroup_create_args *sa;
4933 struct btrfs_trans_handle *trans;
4934 int ret;
4935 int err;
4936
4937 if (!capable(CAP_SYS_ADMIN))
4938 return -EPERM;
4939
4940 ret = mnt_want_write_file(file);
4941 if (ret)
4942 return ret;
4943
4944 sa = memdup_user(arg, sizeof(*sa));
4945 if (IS_ERR(sa)) {
4946 ret = PTR_ERR(sa);
4947 goto drop_write;
4948 }
4949
4950 if (!sa->qgroupid) {
4951 ret = -EINVAL;
4952 goto out;
4953 }
4954
4955 trans = btrfs_join_transaction(root);
4956 if (IS_ERR(trans)) {
4957 ret = PTR_ERR(trans);
4958 goto out;
4959 }
4960
4961 if (sa->create) {
4962 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4963 } else {
4964 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4965 }
4966
4967 err = btrfs_end_transaction(trans);
4968 if (err && !ret)
4969 ret = err;
4970
4971 out:
4972 kfree(sa);
4973 drop_write:
4974 mnt_drop_write_file(file);
4975 return ret;
4976 }
4977
4978 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4979 {
4980 struct inode *inode = file_inode(file);
4981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4982 struct btrfs_root *root = BTRFS_I(inode)->root;
4983 struct btrfs_ioctl_qgroup_limit_args *sa;
4984 struct btrfs_trans_handle *trans;
4985 int ret;
4986 int err;
4987 u64 qgroupid;
4988
4989 if (!capable(CAP_SYS_ADMIN))
4990 return -EPERM;
4991
4992 ret = mnt_want_write_file(file);
4993 if (ret)
4994 return ret;
4995
4996 sa = memdup_user(arg, sizeof(*sa));
4997 if (IS_ERR(sa)) {
4998 ret = PTR_ERR(sa);
4999 goto drop_write;
5000 }
5001
5002 trans = btrfs_join_transaction(root);
5003 if (IS_ERR(trans)) {
5004 ret = PTR_ERR(trans);
5005 goto out;
5006 }
5007
5008 qgroupid = sa->qgroupid;
5009 if (!qgroupid) {
5010 /* take the current subvol as qgroup */
5011 qgroupid = root->root_key.objectid;
5012 }
5013
5014 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5015
5016 err = btrfs_end_transaction(trans);
5017 if (err && !ret)
5018 ret = err;
5019
5020 out:
5021 kfree(sa);
5022 drop_write:
5023 mnt_drop_write_file(file);
5024 return ret;
5025 }
5026
5027 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5028 {
5029 struct inode *inode = file_inode(file);
5030 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5031 struct btrfs_ioctl_quota_rescan_args *qsa;
5032 int ret;
5033
5034 if (!capable(CAP_SYS_ADMIN))
5035 return -EPERM;
5036
5037 ret = mnt_want_write_file(file);
5038 if (ret)
5039 return ret;
5040
5041 qsa = memdup_user(arg, sizeof(*qsa));
5042 if (IS_ERR(qsa)) {
5043 ret = PTR_ERR(qsa);
5044 goto drop_write;
5045 }
5046
5047 if (qsa->flags) {
5048 ret = -EINVAL;
5049 goto out;
5050 }
5051
5052 ret = btrfs_qgroup_rescan(fs_info);
5053
5054 out:
5055 kfree(qsa);
5056 drop_write:
5057 mnt_drop_write_file(file);
5058 return ret;
5059 }
5060
5061 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5062 {
5063 struct inode *inode = file_inode(file);
5064 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5065 struct btrfs_ioctl_quota_rescan_args *qsa;
5066 int ret = 0;
5067
5068 if (!capable(CAP_SYS_ADMIN))
5069 return -EPERM;
5070
5071 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5072 if (!qsa)
5073 return -ENOMEM;
5074
5075 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5076 qsa->flags = 1;
5077 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5078 }
5079
5080 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5081 ret = -EFAULT;
5082
5083 kfree(qsa);
5084 return ret;
5085 }
5086
5087 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5088 {
5089 struct inode *inode = file_inode(file);
5090 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5091
5092 if (!capable(CAP_SYS_ADMIN))
5093 return -EPERM;
5094
5095 return btrfs_qgroup_wait_for_completion(fs_info, true);
5096 }
5097
5098 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5099 struct btrfs_ioctl_received_subvol_args *sa)
5100 {
5101 struct inode *inode = file_inode(file);
5102 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5103 struct btrfs_root *root = BTRFS_I(inode)->root;
5104 struct btrfs_root_item *root_item = &root->root_item;
5105 struct btrfs_trans_handle *trans;
5106 struct timespec ct = current_time(inode);
5107 int ret = 0;
5108 int received_uuid_changed;
5109
5110 if (!inode_owner_or_capable(inode))
5111 return -EPERM;
5112
5113 ret = mnt_want_write_file(file);
5114 if (ret < 0)
5115 return ret;
5116
5117 down_write(&fs_info->subvol_sem);
5118
5119 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5120 ret = -EINVAL;
5121 goto out;
5122 }
5123
5124 if (btrfs_root_readonly(root)) {
5125 ret = -EROFS;
5126 goto out;
5127 }
5128
5129 /*
5130 * 1 - root item
5131 * 2 - uuid items (received uuid + subvol uuid)
5132 */
5133 trans = btrfs_start_transaction(root, 3);
5134 if (IS_ERR(trans)) {
5135 ret = PTR_ERR(trans);
5136 trans = NULL;
5137 goto out;
5138 }
5139
5140 sa->rtransid = trans->transid;
5141 sa->rtime.sec = ct.tv_sec;
5142 sa->rtime.nsec = ct.tv_nsec;
5143
5144 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5145 BTRFS_UUID_SIZE);
5146 if (received_uuid_changed &&
5147 !btrfs_is_empty_uuid(root_item->received_uuid))
5148 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5149 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5150 root->root_key.objectid);
5151 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5152 btrfs_set_root_stransid(root_item, sa->stransid);
5153 btrfs_set_root_rtransid(root_item, sa->rtransid);
5154 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5155 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5156 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5157 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5158
5159 ret = btrfs_update_root(trans, fs_info->tree_root,
5160 &root->root_key, &root->root_item);
5161 if (ret < 0) {
5162 btrfs_end_transaction(trans);
5163 goto out;
5164 }
5165 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5166 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5167 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5168 root->root_key.objectid);
5169 if (ret < 0 && ret != -EEXIST) {
5170 btrfs_abort_transaction(trans, ret);
5171 goto out;
5172 }
5173 }
5174 ret = btrfs_commit_transaction(trans);
5175 if (ret < 0) {
5176 btrfs_abort_transaction(trans, ret);
5177 goto out;
5178 }
5179
5180 out:
5181 up_write(&fs_info->subvol_sem);
5182 mnt_drop_write_file(file);
5183 return ret;
5184 }
5185
5186 #ifdef CONFIG_64BIT
5187 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5188 void __user *arg)
5189 {
5190 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5191 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5192 int ret = 0;
5193
5194 args32 = memdup_user(arg, sizeof(*args32));
5195 if (IS_ERR(args32))
5196 return PTR_ERR(args32);
5197
5198 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5199 if (!args64) {
5200 ret = -ENOMEM;
5201 goto out;
5202 }
5203
5204 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5205 args64->stransid = args32->stransid;
5206 args64->rtransid = args32->rtransid;
5207 args64->stime.sec = args32->stime.sec;
5208 args64->stime.nsec = args32->stime.nsec;
5209 args64->rtime.sec = args32->rtime.sec;
5210 args64->rtime.nsec = args32->rtime.nsec;
5211 args64->flags = args32->flags;
5212
5213 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5214 if (ret)
5215 goto out;
5216
5217 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5218 args32->stransid = args64->stransid;
5219 args32->rtransid = args64->rtransid;
5220 args32->stime.sec = args64->stime.sec;
5221 args32->stime.nsec = args64->stime.nsec;
5222 args32->rtime.sec = args64->rtime.sec;
5223 args32->rtime.nsec = args64->rtime.nsec;
5224 args32->flags = args64->flags;
5225
5226 ret = copy_to_user(arg, args32, sizeof(*args32));
5227 if (ret)
5228 ret = -EFAULT;
5229
5230 out:
5231 kfree(args32);
5232 kfree(args64);
5233 return ret;
5234 }
5235 #endif
5236
5237 static long btrfs_ioctl_set_received_subvol(struct file *file,
5238 void __user *arg)
5239 {
5240 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5241 int ret = 0;
5242
5243 sa = memdup_user(arg, sizeof(*sa));
5244 if (IS_ERR(sa))
5245 return PTR_ERR(sa);
5246
5247 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5248
5249 if (ret)
5250 goto out;
5251
5252 ret = copy_to_user(arg, sa, sizeof(*sa));
5253 if (ret)
5254 ret = -EFAULT;
5255
5256 out:
5257 kfree(sa);
5258 return ret;
5259 }
5260
5261 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5262 {
5263 struct inode *inode = file_inode(file);
5264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5265 size_t len;
5266 int ret;
5267 char label[BTRFS_LABEL_SIZE];
5268
5269 spin_lock(&fs_info->super_lock);
5270 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5271 spin_unlock(&fs_info->super_lock);
5272
5273 len = strnlen(label, BTRFS_LABEL_SIZE);
5274
5275 if (len == BTRFS_LABEL_SIZE) {
5276 btrfs_warn(fs_info,
5277 "label is too long, return the first %zu bytes",
5278 --len);
5279 }
5280
5281 ret = copy_to_user(arg, label, len);
5282
5283 return ret ? -EFAULT : 0;
5284 }
5285
5286 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5287 {
5288 struct inode *inode = file_inode(file);
5289 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5290 struct btrfs_root *root = BTRFS_I(inode)->root;
5291 struct btrfs_super_block *super_block = fs_info->super_copy;
5292 struct btrfs_trans_handle *trans;
5293 char label[BTRFS_LABEL_SIZE];
5294 int ret;
5295
5296 if (!capable(CAP_SYS_ADMIN))
5297 return -EPERM;
5298
5299 if (copy_from_user(label, arg, sizeof(label)))
5300 return -EFAULT;
5301
5302 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5303 btrfs_err(fs_info,
5304 "unable to set label with more than %d bytes",
5305 BTRFS_LABEL_SIZE - 1);
5306 return -EINVAL;
5307 }
5308
5309 ret = mnt_want_write_file(file);
5310 if (ret)
5311 return ret;
5312
5313 trans = btrfs_start_transaction(root, 0);
5314 if (IS_ERR(trans)) {
5315 ret = PTR_ERR(trans);
5316 goto out_unlock;
5317 }
5318
5319 spin_lock(&fs_info->super_lock);
5320 strcpy(super_block->label, label);
5321 spin_unlock(&fs_info->super_lock);
5322 ret = btrfs_commit_transaction(trans);
5323
5324 out_unlock:
5325 mnt_drop_write_file(file);
5326 return ret;
5327 }
5328
5329 #define INIT_FEATURE_FLAGS(suffix) \
5330 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5331 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5332 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5333
5334 int btrfs_ioctl_get_supported_features(void __user *arg)
5335 {
5336 static const struct btrfs_ioctl_feature_flags features[3] = {
5337 INIT_FEATURE_FLAGS(SUPP),
5338 INIT_FEATURE_FLAGS(SAFE_SET),
5339 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5340 };
5341
5342 if (copy_to_user(arg, &features, sizeof(features)))
5343 return -EFAULT;
5344
5345 return 0;
5346 }
5347
5348 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5349 {
5350 struct inode *inode = file_inode(file);
5351 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5352 struct btrfs_super_block *super_block = fs_info->super_copy;
5353 struct btrfs_ioctl_feature_flags features;
5354
5355 features.compat_flags = btrfs_super_compat_flags(super_block);
5356 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5357 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5358
5359 if (copy_to_user(arg, &features, sizeof(features)))
5360 return -EFAULT;
5361
5362 return 0;
5363 }
5364
5365 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5366 enum btrfs_feature_set set,
5367 u64 change_mask, u64 flags, u64 supported_flags,
5368 u64 safe_set, u64 safe_clear)
5369 {
5370 const char *type = btrfs_feature_set_names[set];
5371 char *names;
5372 u64 disallowed, unsupported;
5373 u64 set_mask = flags & change_mask;
5374 u64 clear_mask = ~flags & change_mask;
5375
5376 unsupported = set_mask & ~supported_flags;
5377 if (unsupported) {
5378 names = btrfs_printable_features(set, unsupported);
5379 if (names) {
5380 btrfs_warn(fs_info,
5381 "this kernel does not support the %s feature bit%s",
5382 names, strchr(names, ',') ? "s" : "");
5383 kfree(names);
5384 } else
5385 btrfs_warn(fs_info,
5386 "this kernel does not support %s bits 0x%llx",
5387 type, unsupported);
5388 return -EOPNOTSUPP;
5389 }
5390
5391 disallowed = set_mask & ~safe_set;
5392 if (disallowed) {
5393 names = btrfs_printable_features(set, disallowed);
5394 if (names) {
5395 btrfs_warn(fs_info,
5396 "can't set the %s feature bit%s while mounted",
5397 names, strchr(names, ',') ? "s" : "");
5398 kfree(names);
5399 } else
5400 btrfs_warn(fs_info,
5401 "can't set %s bits 0x%llx while mounted",
5402 type, disallowed);
5403 return -EPERM;
5404 }
5405
5406 disallowed = clear_mask & ~safe_clear;
5407 if (disallowed) {
5408 names = btrfs_printable_features(set, disallowed);
5409 if (names) {
5410 btrfs_warn(fs_info,
5411 "can't clear the %s feature bit%s while mounted",
5412 names, strchr(names, ',') ? "s" : "");
5413 kfree(names);
5414 } else
5415 btrfs_warn(fs_info,
5416 "can't clear %s bits 0x%llx while mounted",
5417 type, disallowed);
5418 return -EPERM;
5419 }
5420
5421 return 0;
5422 }
5423
5424 #define check_feature(fs_info, change_mask, flags, mask_base) \
5425 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5426 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5427 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5428 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5429
5430 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5431 {
5432 struct inode *inode = file_inode(file);
5433 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5434 struct btrfs_root *root = BTRFS_I(inode)->root;
5435 struct btrfs_super_block *super_block = fs_info->super_copy;
5436 struct btrfs_ioctl_feature_flags flags[2];
5437 struct btrfs_trans_handle *trans;
5438 u64 newflags;
5439 int ret;
5440
5441 if (!capable(CAP_SYS_ADMIN))
5442 return -EPERM;
5443
5444 if (copy_from_user(flags, arg, sizeof(flags)))
5445 return -EFAULT;
5446
5447 /* Nothing to do */
5448 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5449 !flags[0].incompat_flags)
5450 return 0;
5451
5452 ret = check_feature(fs_info, flags[0].compat_flags,
5453 flags[1].compat_flags, COMPAT);
5454 if (ret)
5455 return ret;
5456
5457 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5458 flags[1].compat_ro_flags, COMPAT_RO);
5459 if (ret)
5460 return ret;
5461
5462 ret = check_feature(fs_info, flags[0].incompat_flags,
5463 flags[1].incompat_flags, INCOMPAT);
5464 if (ret)
5465 return ret;
5466
5467 ret = mnt_want_write_file(file);
5468 if (ret)
5469 return ret;
5470
5471 trans = btrfs_start_transaction(root, 0);
5472 if (IS_ERR(trans)) {
5473 ret = PTR_ERR(trans);
5474 goto out_drop_write;
5475 }
5476
5477 spin_lock(&fs_info->super_lock);
5478 newflags = btrfs_super_compat_flags(super_block);
5479 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5480 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5481 btrfs_set_super_compat_flags(super_block, newflags);
5482
5483 newflags = btrfs_super_compat_ro_flags(super_block);
5484 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5485 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5486 btrfs_set_super_compat_ro_flags(super_block, newflags);
5487
5488 newflags = btrfs_super_incompat_flags(super_block);
5489 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5490 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5491 btrfs_set_super_incompat_flags(super_block, newflags);
5492 spin_unlock(&fs_info->super_lock);
5493
5494 ret = btrfs_commit_transaction(trans);
5495 out_drop_write:
5496 mnt_drop_write_file(file);
5497
5498 return ret;
5499 }
5500
5501 long btrfs_ioctl(struct file *file, unsigned int
5502 cmd, unsigned long arg)
5503 {
5504 struct inode *inode = file_inode(file);
5505 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5506 struct btrfs_root *root = BTRFS_I(inode)->root;
5507 void __user *argp = (void __user *)arg;
5508
5509 switch (cmd) {
5510 case FS_IOC_GETFLAGS:
5511 return btrfs_ioctl_getflags(file, argp);
5512 case FS_IOC_SETFLAGS:
5513 return btrfs_ioctl_setflags(file, argp);
5514 case FS_IOC_GETVERSION:
5515 return btrfs_ioctl_getversion(file, argp);
5516 case FITRIM:
5517 return btrfs_ioctl_fitrim(file, argp);
5518 case BTRFS_IOC_SNAP_CREATE:
5519 return btrfs_ioctl_snap_create(file, argp, 0);
5520 case BTRFS_IOC_SNAP_CREATE_V2:
5521 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5522 case BTRFS_IOC_SUBVOL_CREATE:
5523 return btrfs_ioctl_snap_create(file, argp, 1);
5524 case BTRFS_IOC_SUBVOL_CREATE_V2:
5525 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5526 case BTRFS_IOC_SNAP_DESTROY:
5527 return btrfs_ioctl_snap_destroy(file, argp);
5528 case BTRFS_IOC_SUBVOL_GETFLAGS:
5529 return btrfs_ioctl_subvol_getflags(file, argp);
5530 case BTRFS_IOC_SUBVOL_SETFLAGS:
5531 return btrfs_ioctl_subvol_setflags(file, argp);
5532 case BTRFS_IOC_DEFAULT_SUBVOL:
5533 return btrfs_ioctl_default_subvol(file, argp);
5534 case BTRFS_IOC_DEFRAG:
5535 return btrfs_ioctl_defrag(file, NULL);
5536 case BTRFS_IOC_DEFRAG_RANGE:
5537 return btrfs_ioctl_defrag(file, argp);
5538 case BTRFS_IOC_RESIZE:
5539 return btrfs_ioctl_resize(file, argp);
5540 case BTRFS_IOC_ADD_DEV:
5541 return btrfs_ioctl_add_dev(fs_info, argp);
5542 case BTRFS_IOC_RM_DEV:
5543 return btrfs_ioctl_rm_dev(file, argp);
5544 case BTRFS_IOC_RM_DEV_V2:
5545 return btrfs_ioctl_rm_dev_v2(file, argp);
5546 case BTRFS_IOC_FS_INFO:
5547 return btrfs_ioctl_fs_info(fs_info, argp);
5548 case BTRFS_IOC_DEV_INFO:
5549 return btrfs_ioctl_dev_info(fs_info, argp);
5550 case BTRFS_IOC_BALANCE:
5551 return btrfs_ioctl_balance(file, NULL);
5552 case BTRFS_IOC_TRANS_START:
5553 return btrfs_ioctl_trans_start(file);
5554 case BTRFS_IOC_TRANS_END:
5555 return btrfs_ioctl_trans_end(file);
5556 case BTRFS_IOC_TREE_SEARCH:
5557 return btrfs_ioctl_tree_search(file, argp);
5558 case BTRFS_IOC_TREE_SEARCH_V2:
5559 return btrfs_ioctl_tree_search_v2(file, argp);
5560 case BTRFS_IOC_INO_LOOKUP:
5561 return btrfs_ioctl_ino_lookup(file, argp);
5562 case BTRFS_IOC_INO_PATHS:
5563 return btrfs_ioctl_ino_to_path(root, argp);
5564 case BTRFS_IOC_LOGICAL_INO:
5565 return btrfs_ioctl_logical_to_ino(fs_info, argp);
5566 case BTRFS_IOC_SPACE_INFO:
5567 return btrfs_ioctl_space_info(fs_info, argp);
5568 case BTRFS_IOC_SYNC: {
5569 int ret;
5570
5571 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5572 if (ret)
5573 return ret;
5574 ret = btrfs_sync_fs(inode->i_sb, 1);
5575 /*
5576 * The transaction thread may want to do more work,
5577 * namely it pokes the cleaner kthread that will start
5578 * processing uncleaned subvols.
5579 */
5580 wake_up_process(fs_info->transaction_kthread);
5581 return ret;
5582 }
5583 case BTRFS_IOC_START_SYNC:
5584 return btrfs_ioctl_start_sync(root, argp);
5585 case BTRFS_IOC_WAIT_SYNC:
5586 return btrfs_ioctl_wait_sync(fs_info, argp);
5587 case BTRFS_IOC_SCRUB:
5588 return btrfs_ioctl_scrub(file, argp);
5589 case BTRFS_IOC_SCRUB_CANCEL:
5590 return btrfs_ioctl_scrub_cancel(fs_info);
5591 case BTRFS_IOC_SCRUB_PROGRESS:
5592 return btrfs_ioctl_scrub_progress(fs_info, argp);
5593 case BTRFS_IOC_BALANCE_V2:
5594 return btrfs_ioctl_balance(file, argp);
5595 case BTRFS_IOC_BALANCE_CTL:
5596 return btrfs_ioctl_balance_ctl(fs_info, arg);
5597 case BTRFS_IOC_BALANCE_PROGRESS:
5598 return btrfs_ioctl_balance_progress(fs_info, argp);
5599 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5600 return btrfs_ioctl_set_received_subvol(file, argp);
5601 #ifdef CONFIG_64BIT
5602 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5603 return btrfs_ioctl_set_received_subvol_32(file, argp);
5604 #endif
5605 case BTRFS_IOC_SEND:
5606 return btrfs_ioctl_send(file, argp);
5607 case BTRFS_IOC_GET_DEV_STATS:
5608 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5609 case BTRFS_IOC_QUOTA_CTL:
5610 return btrfs_ioctl_quota_ctl(file, argp);
5611 case BTRFS_IOC_QGROUP_ASSIGN:
5612 return btrfs_ioctl_qgroup_assign(file, argp);
5613 case BTRFS_IOC_QGROUP_CREATE:
5614 return btrfs_ioctl_qgroup_create(file, argp);
5615 case BTRFS_IOC_QGROUP_LIMIT:
5616 return btrfs_ioctl_qgroup_limit(file, argp);
5617 case BTRFS_IOC_QUOTA_RESCAN:
5618 return btrfs_ioctl_quota_rescan(file, argp);
5619 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5620 return btrfs_ioctl_quota_rescan_status(file, argp);
5621 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5622 return btrfs_ioctl_quota_rescan_wait(file, argp);
5623 case BTRFS_IOC_DEV_REPLACE:
5624 return btrfs_ioctl_dev_replace(fs_info, argp);
5625 case BTRFS_IOC_GET_FSLABEL:
5626 return btrfs_ioctl_get_fslabel(file, argp);
5627 case BTRFS_IOC_SET_FSLABEL:
5628 return btrfs_ioctl_set_fslabel(file, argp);
5629 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5630 return btrfs_ioctl_get_supported_features(argp);
5631 case BTRFS_IOC_GET_FEATURES:
5632 return btrfs_ioctl_get_features(file, argp);
5633 case BTRFS_IOC_SET_FEATURES:
5634 return btrfs_ioctl_set_features(file, argp);
5635 }
5636
5637 return -ENOTTY;
5638 }
5639
5640 #ifdef CONFIG_COMPAT
5641 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5642 {
5643 /*
5644 * These all access 32-bit values anyway so no further
5645 * handling is necessary.
5646 */
5647 switch (cmd) {
5648 case FS_IOC32_GETFLAGS:
5649 cmd = FS_IOC_GETFLAGS;
5650 break;
5651 case FS_IOC32_SETFLAGS:
5652 cmd = FS_IOC_SETFLAGS;
5653 break;
5654 case FS_IOC32_GETVERSION:
5655 cmd = FS_IOC_GETVERSION;
5656 break;
5657 }
5658
5659 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5660 }
5661 #endif