]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/ioctl.c
Merge branch 'fixes-wakeupgen' into fixes
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include "compat.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58
59 /* Mask out flags that are inappropriate for the given type of inode. */
60 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
61 {
62 if (S_ISDIR(mode))
63 return flags;
64 else if (S_ISREG(mode))
65 return flags & ~FS_DIRSYNC_FL;
66 else
67 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
68 }
69
70 /*
71 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
72 */
73 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
74 {
75 unsigned int iflags = 0;
76
77 if (flags & BTRFS_INODE_SYNC)
78 iflags |= FS_SYNC_FL;
79 if (flags & BTRFS_INODE_IMMUTABLE)
80 iflags |= FS_IMMUTABLE_FL;
81 if (flags & BTRFS_INODE_APPEND)
82 iflags |= FS_APPEND_FL;
83 if (flags & BTRFS_INODE_NODUMP)
84 iflags |= FS_NODUMP_FL;
85 if (flags & BTRFS_INODE_NOATIME)
86 iflags |= FS_NOATIME_FL;
87 if (flags & BTRFS_INODE_DIRSYNC)
88 iflags |= FS_DIRSYNC_FL;
89 if (flags & BTRFS_INODE_NODATACOW)
90 iflags |= FS_NOCOW_FL;
91
92 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
93 iflags |= FS_COMPR_FL;
94 else if (flags & BTRFS_INODE_NOCOMPRESS)
95 iflags |= FS_NOCOMP_FL;
96
97 return iflags;
98 }
99
100 /*
101 * Update inode->i_flags based on the btrfs internal flags.
102 */
103 void btrfs_update_iflags(struct inode *inode)
104 {
105 struct btrfs_inode *ip = BTRFS_I(inode);
106
107 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
108
109 if (ip->flags & BTRFS_INODE_SYNC)
110 inode->i_flags |= S_SYNC;
111 if (ip->flags & BTRFS_INODE_IMMUTABLE)
112 inode->i_flags |= S_IMMUTABLE;
113 if (ip->flags & BTRFS_INODE_APPEND)
114 inode->i_flags |= S_APPEND;
115 if (ip->flags & BTRFS_INODE_NOATIME)
116 inode->i_flags |= S_NOATIME;
117 if (ip->flags & BTRFS_INODE_DIRSYNC)
118 inode->i_flags |= S_DIRSYNC;
119 }
120
121 /*
122 * Inherit flags from the parent inode.
123 *
124 * Currently only the compression flags and the cow flags are inherited.
125 */
126 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
127 {
128 unsigned int flags;
129
130 if (!dir)
131 return;
132
133 flags = BTRFS_I(dir)->flags;
134
135 if (flags & BTRFS_INODE_NOCOMPRESS) {
136 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
137 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
138 } else if (flags & BTRFS_INODE_COMPRESS) {
139 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
140 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
141 }
142
143 if (flags & BTRFS_INODE_NODATACOW)
144 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
145
146 btrfs_update_iflags(inode);
147 }
148
149 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
150 {
151 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
152 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
153
154 if (copy_to_user(arg, &flags, sizeof(flags)))
155 return -EFAULT;
156 return 0;
157 }
158
159 static int check_flags(unsigned int flags)
160 {
161 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
162 FS_NOATIME_FL | FS_NODUMP_FL | \
163 FS_SYNC_FL | FS_DIRSYNC_FL | \
164 FS_NOCOMP_FL | FS_COMPR_FL |
165 FS_NOCOW_FL))
166 return -EOPNOTSUPP;
167
168 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
169 return -EINVAL;
170
171 return 0;
172 }
173
174 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
175 {
176 struct inode *inode = file->f_path.dentry->d_inode;
177 struct btrfs_inode *ip = BTRFS_I(inode);
178 struct btrfs_root *root = ip->root;
179 struct btrfs_trans_handle *trans;
180 unsigned int flags, oldflags;
181 int ret;
182 u64 ip_oldflags;
183 unsigned int i_oldflags;
184
185 if (btrfs_root_readonly(root))
186 return -EROFS;
187
188 if (copy_from_user(&flags, arg, sizeof(flags)))
189 return -EFAULT;
190
191 ret = check_flags(flags);
192 if (ret)
193 return ret;
194
195 if (!inode_owner_or_capable(inode))
196 return -EACCES;
197
198 ret = mnt_want_write_file(file);
199 if (ret)
200 return ret;
201
202 mutex_lock(&inode->i_mutex);
203
204 ip_oldflags = ip->flags;
205 i_oldflags = inode->i_flags;
206
207 flags = btrfs_mask_flags(inode->i_mode, flags);
208 oldflags = btrfs_flags_to_ioctl(ip->flags);
209 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
210 if (!capable(CAP_LINUX_IMMUTABLE)) {
211 ret = -EPERM;
212 goto out_unlock;
213 }
214 }
215
216 if (flags & FS_SYNC_FL)
217 ip->flags |= BTRFS_INODE_SYNC;
218 else
219 ip->flags &= ~BTRFS_INODE_SYNC;
220 if (flags & FS_IMMUTABLE_FL)
221 ip->flags |= BTRFS_INODE_IMMUTABLE;
222 else
223 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
224 if (flags & FS_APPEND_FL)
225 ip->flags |= BTRFS_INODE_APPEND;
226 else
227 ip->flags &= ~BTRFS_INODE_APPEND;
228 if (flags & FS_NODUMP_FL)
229 ip->flags |= BTRFS_INODE_NODUMP;
230 else
231 ip->flags &= ~BTRFS_INODE_NODUMP;
232 if (flags & FS_NOATIME_FL)
233 ip->flags |= BTRFS_INODE_NOATIME;
234 else
235 ip->flags &= ~BTRFS_INODE_NOATIME;
236 if (flags & FS_DIRSYNC_FL)
237 ip->flags |= BTRFS_INODE_DIRSYNC;
238 else
239 ip->flags &= ~BTRFS_INODE_DIRSYNC;
240 if (flags & FS_NOCOW_FL)
241 ip->flags |= BTRFS_INODE_NODATACOW;
242 else
243 ip->flags &= ~BTRFS_INODE_NODATACOW;
244
245 /*
246 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
247 * flag may be changed automatically if compression code won't make
248 * things smaller.
249 */
250 if (flags & FS_NOCOMP_FL) {
251 ip->flags &= ~BTRFS_INODE_COMPRESS;
252 ip->flags |= BTRFS_INODE_NOCOMPRESS;
253 } else if (flags & FS_COMPR_FL) {
254 ip->flags |= BTRFS_INODE_COMPRESS;
255 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
256 } else {
257 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
258 }
259
260 trans = btrfs_start_transaction(root, 1);
261 if (IS_ERR(trans)) {
262 ret = PTR_ERR(trans);
263 goto out_drop;
264 }
265
266 btrfs_update_iflags(inode);
267 inode_inc_iversion(inode);
268 inode->i_ctime = CURRENT_TIME;
269 ret = btrfs_update_inode(trans, root, inode);
270
271 btrfs_end_transaction(trans, root);
272 out_drop:
273 if (ret) {
274 ip->flags = ip_oldflags;
275 inode->i_flags = i_oldflags;
276 }
277
278 out_unlock:
279 mutex_unlock(&inode->i_mutex);
280 mnt_drop_write_file(file);
281 return ret;
282 }
283
284 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
285 {
286 struct inode *inode = file->f_path.dentry->d_inode;
287
288 return put_user(inode->i_generation, arg);
289 }
290
291 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
292 {
293 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
294 struct btrfs_device *device;
295 struct request_queue *q;
296 struct fstrim_range range;
297 u64 minlen = ULLONG_MAX;
298 u64 num_devices = 0;
299 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
300 int ret;
301
302 if (!capable(CAP_SYS_ADMIN))
303 return -EPERM;
304
305 rcu_read_lock();
306 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
307 dev_list) {
308 if (!device->bdev)
309 continue;
310 q = bdev_get_queue(device->bdev);
311 if (blk_queue_discard(q)) {
312 num_devices++;
313 minlen = min((u64)q->limits.discard_granularity,
314 minlen);
315 }
316 }
317 rcu_read_unlock();
318
319 if (!num_devices)
320 return -EOPNOTSUPP;
321 if (copy_from_user(&range, arg, sizeof(range)))
322 return -EFAULT;
323 if (range.start > total_bytes)
324 return -EINVAL;
325
326 range.len = min(range.len, total_bytes - range.start);
327 range.minlen = max(range.minlen, minlen);
328 ret = btrfs_trim_fs(fs_info->tree_root, &range);
329 if (ret < 0)
330 return ret;
331
332 if (copy_to_user(arg, &range, sizeof(range)))
333 return -EFAULT;
334
335 return 0;
336 }
337
338 static noinline int create_subvol(struct btrfs_root *root,
339 struct dentry *dentry,
340 char *name, int namelen,
341 u64 *async_transid,
342 struct btrfs_qgroup_inherit **inherit)
343 {
344 struct btrfs_trans_handle *trans;
345 struct btrfs_key key;
346 struct btrfs_root_item root_item;
347 struct btrfs_inode_item *inode_item;
348 struct extent_buffer *leaf;
349 struct btrfs_root *new_root;
350 struct dentry *parent = dentry->d_parent;
351 struct inode *dir;
352 struct timespec cur_time = CURRENT_TIME;
353 int ret;
354 int err;
355 u64 objectid;
356 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
357 u64 index = 0;
358 uuid_le new_uuid;
359
360 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
361 if (ret)
362 return ret;
363
364 dir = parent->d_inode;
365
366 /*
367 * 1 - inode item
368 * 2 - refs
369 * 1 - root item
370 * 2 - dir items
371 */
372 trans = btrfs_start_transaction(root, 6);
373 if (IS_ERR(trans))
374 return PTR_ERR(trans);
375
376 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid,
377 inherit ? *inherit : NULL);
378 if (ret)
379 goto fail;
380
381 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
382 0, objectid, NULL, 0, 0, 0);
383 if (IS_ERR(leaf)) {
384 ret = PTR_ERR(leaf);
385 goto fail;
386 }
387
388 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
389 btrfs_set_header_bytenr(leaf, leaf->start);
390 btrfs_set_header_generation(leaf, trans->transid);
391 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
392 btrfs_set_header_owner(leaf, objectid);
393
394 write_extent_buffer(leaf, root->fs_info->fsid,
395 (unsigned long)btrfs_header_fsid(leaf),
396 BTRFS_FSID_SIZE);
397 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
398 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
399 BTRFS_UUID_SIZE);
400 btrfs_mark_buffer_dirty(leaf);
401
402 memset(&root_item, 0, sizeof(root_item));
403
404 inode_item = &root_item.inode;
405 inode_item->generation = cpu_to_le64(1);
406 inode_item->size = cpu_to_le64(3);
407 inode_item->nlink = cpu_to_le32(1);
408 inode_item->nbytes = cpu_to_le64(root->leafsize);
409 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
410
411 root_item.flags = 0;
412 root_item.byte_limit = 0;
413 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
414
415 btrfs_set_root_bytenr(&root_item, leaf->start);
416 btrfs_set_root_generation(&root_item, trans->transid);
417 btrfs_set_root_level(&root_item, 0);
418 btrfs_set_root_refs(&root_item, 1);
419 btrfs_set_root_used(&root_item, leaf->len);
420 btrfs_set_root_last_snapshot(&root_item, 0);
421
422 btrfs_set_root_generation_v2(&root_item,
423 btrfs_root_generation(&root_item));
424 uuid_le_gen(&new_uuid);
425 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
426 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec);
427 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec);
428 root_item.ctime = root_item.otime;
429 btrfs_set_root_ctransid(&root_item, trans->transid);
430 btrfs_set_root_otransid(&root_item, trans->transid);
431
432 btrfs_tree_unlock(leaf);
433 free_extent_buffer(leaf);
434 leaf = NULL;
435
436 btrfs_set_root_dirid(&root_item, new_dirid);
437
438 key.objectid = objectid;
439 key.offset = 0;
440 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
441 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
442 &root_item);
443 if (ret)
444 goto fail;
445
446 key.offset = (u64)-1;
447 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
448 if (IS_ERR(new_root)) {
449 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
450 ret = PTR_ERR(new_root);
451 goto fail;
452 }
453
454 btrfs_record_root_in_trans(trans, new_root);
455
456 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
457 if (ret) {
458 /* We potentially lose an unused inode item here */
459 btrfs_abort_transaction(trans, root, ret);
460 goto fail;
461 }
462
463 /*
464 * insert the directory item
465 */
466 ret = btrfs_set_inode_index(dir, &index);
467 if (ret) {
468 btrfs_abort_transaction(trans, root, ret);
469 goto fail;
470 }
471
472 ret = btrfs_insert_dir_item(trans, root,
473 name, namelen, dir, &key,
474 BTRFS_FT_DIR, index);
475 if (ret) {
476 btrfs_abort_transaction(trans, root, ret);
477 goto fail;
478 }
479
480 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
481 ret = btrfs_update_inode(trans, root, dir);
482 BUG_ON(ret);
483
484 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
485 objectid, root->root_key.objectid,
486 btrfs_ino(dir), index, name, namelen);
487
488 BUG_ON(ret);
489
490 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
491 fail:
492 if (async_transid) {
493 *async_transid = trans->transid;
494 err = btrfs_commit_transaction_async(trans, root, 1);
495 } else {
496 err = btrfs_commit_transaction(trans, root);
497 }
498 if (err && !ret)
499 ret = err;
500 return ret;
501 }
502
503 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
504 char *name, int namelen, u64 *async_transid,
505 bool readonly, struct btrfs_qgroup_inherit **inherit)
506 {
507 struct inode *inode;
508 struct btrfs_pending_snapshot *pending_snapshot;
509 struct btrfs_trans_handle *trans;
510 int ret;
511
512 if (!root->ref_cows)
513 return -EINVAL;
514
515 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
516 if (!pending_snapshot)
517 return -ENOMEM;
518
519 btrfs_init_block_rsv(&pending_snapshot->block_rsv);
520 pending_snapshot->dentry = dentry;
521 pending_snapshot->root = root;
522 pending_snapshot->readonly = readonly;
523 if (inherit) {
524 pending_snapshot->inherit = *inherit;
525 *inherit = NULL; /* take responsibility to free it */
526 }
527
528 trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
529 if (IS_ERR(trans)) {
530 ret = PTR_ERR(trans);
531 goto fail;
532 }
533
534 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
535 BUG_ON(ret);
536
537 spin_lock(&root->fs_info->trans_lock);
538 list_add(&pending_snapshot->list,
539 &trans->transaction->pending_snapshots);
540 spin_unlock(&root->fs_info->trans_lock);
541 if (async_transid) {
542 *async_transid = trans->transid;
543 ret = btrfs_commit_transaction_async(trans,
544 root->fs_info->extent_root, 1);
545 } else {
546 ret = btrfs_commit_transaction(trans,
547 root->fs_info->extent_root);
548 }
549 BUG_ON(ret);
550
551 ret = pending_snapshot->error;
552 if (ret)
553 goto fail;
554
555 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
556 if (ret)
557 goto fail;
558
559 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
560 if (IS_ERR(inode)) {
561 ret = PTR_ERR(inode);
562 goto fail;
563 }
564 BUG_ON(!inode);
565 d_instantiate(dentry, inode);
566 ret = 0;
567 fail:
568 kfree(pending_snapshot);
569 return ret;
570 }
571
572 /* copy of check_sticky in fs/namei.c()
573 * It's inline, so penalty for filesystems that don't use sticky bit is
574 * minimal.
575 */
576 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
577 {
578 uid_t fsuid = current_fsuid();
579
580 if (!(dir->i_mode & S_ISVTX))
581 return 0;
582 if (inode->i_uid == fsuid)
583 return 0;
584 if (dir->i_uid == fsuid)
585 return 0;
586 return !capable(CAP_FOWNER);
587 }
588
589 /* copy of may_delete in fs/namei.c()
590 * Check whether we can remove a link victim from directory dir, check
591 * whether the type of victim is right.
592 * 1. We can't do it if dir is read-only (done in permission())
593 * 2. We should have write and exec permissions on dir
594 * 3. We can't remove anything from append-only dir
595 * 4. We can't do anything with immutable dir (done in permission())
596 * 5. If the sticky bit on dir is set we should either
597 * a. be owner of dir, or
598 * b. be owner of victim, or
599 * c. have CAP_FOWNER capability
600 * 6. If the victim is append-only or immutable we can't do antyhing with
601 * links pointing to it.
602 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
603 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
604 * 9. We can't remove a root or mountpoint.
605 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
606 * nfs_async_unlink().
607 */
608
609 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
610 {
611 int error;
612
613 if (!victim->d_inode)
614 return -ENOENT;
615
616 BUG_ON(victim->d_parent->d_inode != dir);
617 audit_inode_child(victim, dir);
618
619 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
620 if (error)
621 return error;
622 if (IS_APPEND(dir))
623 return -EPERM;
624 if (btrfs_check_sticky(dir, victim->d_inode)||
625 IS_APPEND(victim->d_inode)||
626 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
627 return -EPERM;
628 if (isdir) {
629 if (!S_ISDIR(victim->d_inode->i_mode))
630 return -ENOTDIR;
631 if (IS_ROOT(victim))
632 return -EBUSY;
633 } else if (S_ISDIR(victim->d_inode->i_mode))
634 return -EISDIR;
635 if (IS_DEADDIR(dir))
636 return -ENOENT;
637 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
638 return -EBUSY;
639 return 0;
640 }
641
642 /* copy of may_create in fs/namei.c() */
643 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
644 {
645 if (child->d_inode)
646 return -EEXIST;
647 if (IS_DEADDIR(dir))
648 return -ENOENT;
649 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
650 }
651
652 /*
653 * Create a new subvolume below @parent. This is largely modeled after
654 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
655 * inside this filesystem so it's quite a bit simpler.
656 */
657 static noinline int btrfs_mksubvol(struct path *parent,
658 char *name, int namelen,
659 struct btrfs_root *snap_src,
660 u64 *async_transid, bool readonly,
661 struct btrfs_qgroup_inherit **inherit)
662 {
663 struct inode *dir = parent->dentry->d_inode;
664 struct dentry *dentry;
665 int error;
666
667 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
668
669 dentry = lookup_one_len(name, parent->dentry, namelen);
670 error = PTR_ERR(dentry);
671 if (IS_ERR(dentry))
672 goto out_unlock;
673
674 error = -EEXIST;
675 if (dentry->d_inode)
676 goto out_dput;
677
678 error = btrfs_may_create(dir, dentry);
679 if (error)
680 goto out_dput;
681
682 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
683
684 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
685 goto out_up_read;
686
687 if (snap_src) {
688 error = create_snapshot(snap_src, dentry, name, namelen,
689 async_transid, readonly, inherit);
690 } else {
691 error = create_subvol(BTRFS_I(dir)->root, dentry,
692 name, namelen, async_transid, inherit);
693 }
694 if (!error)
695 fsnotify_mkdir(dir, dentry);
696 out_up_read:
697 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
698 out_dput:
699 dput(dentry);
700 out_unlock:
701 mutex_unlock(&dir->i_mutex);
702 return error;
703 }
704
705 /*
706 * When we're defragging a range, we don't want to kick it off again
707 * if it is really just waiting for delalloc to send it down.
708 * If we find a nice big extent or delalloc range for the bytes in the
709 * file you want to defrag, we return 0 to let you know to skip this
710 * part of the file
711 */
712 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
713 {
714 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
715 struct extent_map *em = NULL;
716 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
717 u64 end;
718
719 read_lock(&em_tree->lock);
720 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
721 read_unlock(&em_tree->lock);
722
723 if (em) {
724 end = extent_map_end(em);
725 free_extent_map(em);
726 if (end - offset > thresh)
727 return 0;
728 }
729 /* if we already have a nice delalloc here, just stop */
730 thresh /= 2;
731 end = count_range_bits(io_tree, &offset, offset + thresh,
732 thresh, EXTENT_DELALLOC, 1);
733 if (end >= thresh)
734 return 0;
735 return 1;
736 }
737
738 /*
739 * helper function to walk through a file and find extents
740 * newer than a specific transid, and smaller than thresh.
741 *
742 * This is used by the defragging code to find new and small
743 * extents
744 */
745 static int find_new_extents(struct btrfs_root *root,
746 struct inode *inode, u64 newer_than,
747 u64 *off, int thresh)
748 {
749 struct btrfs_path *path;
750 struct btrfs_key min_key;
751 struct btrfs_key max_key;
752 struct extent_buffer *leaf;
753 struct btrfs_file_extent_item *extent;
754 int type;
755 int ret;
756 u64 ino = btrfs_ino(inode);
757
758 path = btrfs_alloc_path();
759 if (!path)
760 return -ENOMEM;
761
762 min_key.objectid = ino;
763 min_key.type = BTRFS_EXTENT_DATA_KEY;
764 min_key.offset = *off;
765
766 max_key.objectid = ino;
767 max_key.type = (u8)-1;
768 max_key.offset = (u64)-1;
769
770 path->keep_locks = 1;
771
772 while(1) {
773 ret = btrfs_search_forward(root, &min_key, &max_key,
774 path, 0, newer_than);
775 if (ret != 0)
776 goto none;
777 if (min_key.objectid != ino)
778 goto none;
779 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
780 goto none;
781
782 leaf = path->nodes[0];
783 extent = btrfs_item_ptr(leaf, path->slots[0],
784 struct btrfs_file_extent_item);
785
786 type = btrfs_file_extent_type(leaf, extent);
787 if (type == BTRFS_FILE_EXTENT_REG &&
788 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
789 check_defrag_in_cache(inode, min_key.offset, thresh)) {
790 *off = min_key.offset;
791 btrfs_free_path(path);
792 return 0;
793 }
794
795 if (min_key.offset == (u64)-1)
796 goto none;
797
798 min_key.offset++;
799 btrfs_release_path(path);
800 }
801 none:
802 btrfs_free_path(path);
803 return -ENOENT;
804 }
805
806 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
807 {
808 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
809 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
810 struct extent_map *em;
811 u64 len = PAGE_CACHE_SIZE;
812
813 /*
814 * hopefully we have this extent in the tree already, try without
815 * the full extent lock
816 */
817 read_lock(&em_tree->lock);
818 em = lookup_extent_mapping(em_tree, start, len);
819 read_unlock(&em_tree->lock);
820
821 if (!em) {
822 /* get the big lock and read metadata off disk */
823 lock_extent(io_tree, start, start + len - 1);
824 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
825 unlock_extent(io_tree, start, start + len - 1);
826
827 if (IS_ERR(em))
828 return NULL;
829 }
830
831 return em;
832 }
833
834 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
835 {
836 struct extent_map *next;
837 bool ret = true;
838
839 /* this is the last extent */
840 if (em->start + em->len >= i_size_read(inode))
841 return false;
842
843 next = defrag_lookup_extent(inode, em->start + em->len);
844 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
845 ret = false;
846
847 free_extent_map(next);
848 return ret;
849 }
850
851 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
852 u64 *last_len, u64 *skip, u64 *defrag_end,
853 int compress)
854 {
855 struct extent_map *em;
856 int ret = 1;
857 bool next_mergeable = true;
858
859 /*
860 * make sure that once we start defragging an extent, we keep on
861 * defragging it
862 */
863 if (start < *defrag_end)
864 return 1;
865
866 *skip = 0;
867
868 em = defrag_lookup_extent(inode, start);
869 if (!em)
870 return 0;
871
872 /* this will cover holes, and inline extents */
873 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
874 ret = 0;
875 goto out;
876 }
877
878 next_mergeable = defrag_check_next_extent(inode, em);
879
880 /*
881 * we hit a real extent, if it is big or the next extent is not a
882 * real extent, don't bother defragging it
883 */
884 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
885 (em->len >= thresh || !next_mergeable))
886 ret = 0;
887 out:
888 /*
889 * last_len ends up being a counter of how many bytes we've defragged.
890 * every time we choose not to defrag an extent, we reset *last_len
891 * so that the next tiny extent will force a defrag.
892 *
893 * The end result of this is that tiny extents before a single big
894 * extent will force at least part of that big extent to be defragged.
895 */
896 if (ret) {
897 *defrag_end = extent_map_end(em);
898 } else {
899 *last_len = 0;
900 *skip = extent_map_end(em);
901 *defrag_end = 0;
902 }
903
904 free_extent_map(em);
905 return ret;
906 }
907
908 /*
909 * it doesn't do much good to defrag one or two pages
910 * at a time. This pulls in a nice chunk of pages
911 * to COW and defrag.
912 *
913 * It also makes sure the delalloc code has enough
914 * dirty data to avoid making new small extents as part
915 * of the defrag
916 *
917 * It's a good idea to start RA on this range
918 * before calling this.
919 */
920 static int cluster_pages_for_defrag(struct inode *inode,
921 struct page **pages,
922 unsigned long start_index,
923 int num_pages)
924 {
925 unsigned long file_end;
926 u64 isize = i_size_read(inode);
927 u64 page_start;
928 u64 page_end;
929 u64 page_cnt;
930 int ret;
931 int i;
932 int i_done;
933 struct btrfs_ordered_extent *ordered;
934 struct extent_state *cached_state = NULL;
935 struct extent_io_tree *tree;
936 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
937
938 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
939 if (!isize || start_index > file_end)
940 return 0;
941
942 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
943
944 ret = btrfs_delalloc_reserve_space(inode,
945 page_cnt << PAGE_CACHE_SHIFT);
946 if (ret)
947 return ret;
948 i_done = 0;
949 tree = &BTRFS_I(inode)->io_tree;
950
951 /* step one, lock all the pages */
952 for (i = 0; i < page_cnt; i++) {
953 struct page *page;
954 again:
955 page = find_or_create_page(inode->i_mapping,
956 start_index + i, mask);
957 if (!page)
958 break;
959
960 page_start = page_offset(page);
961 page_end = page_start + PAGE_CACHE_SIZE - 1;
962 while (1) {
963 lock_extent(tree, page_start, page_end);
964 ordered = btrfs_lookup_ordered_extent(inode,
965 page_start);
966 unlock_extent(tree, page_start, page_end);
967 if (!ordered)
968 break;
969
970 unlock_page(page);
971 btrfs_start_ordered_extent(inode, ordered, 1);
972 btrfs_put_ordered_extent(ordered);
973 lock_page(page);
974 /*
975 * we unlocked the page above, so we need check if
976 * it was released or not.
977 */
978 if (page->mapping != inode->i_mapping) {
979 unlock_page(page);
980 page_cache_release(page);
981 goto again;
982 }
983 }
984
985 if (!PageUptodate(page)) {
986 btrfs_readpage(NULL, page);
987 lock_page(page);
988 if (!PageUptodate(page)) {
989 unlock_page(page);
990 page_cache_release(page);
991 ret = -EIO;
992 break;
993 }
994 }
995
996 if (page->mapping != inode->i_mapping) {
997 unlock_page(page);
998 page_cache_release(page);
999 goto again;
1000 }
1001
1002 pages[i] = page;
1003 i_done++;
1004 }
1005 if (!i_done || ret)
1006 goto out;
1007
1008 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1009 goto out;
1010
1011 /*
1012 * so now we have a nice long stream of locked
1013 * and up to date pages, lets wait on them
1014 */
1015 for (i = 0; i < i_done; i++)
1016 wait_on_page_writeback(pages[i]);
1017
1018 page_start = page_offset(pages[0]);
1019 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1020
1021 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1022 page_start, page_end - 1, 0, &cached_state);
1023 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1024 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1025 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1026 GFP_NOFS);
1027
1028 if (i_done != page_cnt) {
1029 spin_lock(&BTRFS_I(inode)->lock);
1030 BTRFS_I(inode)->outstanding_extents++;
1031 spin_unlock(&BTRFS_I(inode)->lock);
1032 btrfs_delalloc_release_space(inode,
1033 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1034 }
1035
1036
1037 btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
1038 &cached_state);
1039
1040 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1041 page_start, page_end - 1, &cached_state,
1042 GFP_NOFS);
1043
1044 for (i = 0; i < i_done; i++) {
1045 clear_page_dirty_for_io(pages[i]);
1046 ClearPageChecked(pages[i]);
1047 set_page_extent_mapped(pages[i]);
1048 set_page_dirty(pages[i]);
1049 unlock_page(pages[i]);
1050 page_cache_release(pages[i]);
1051 }
1052 return i_done;
1053 out:
1054 for (i = 0; i < i_done; i++) {
1055 unlock_page(pages[i]);
1056 page_cache_release(pages[i]);
1057 }
1058 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1059 return ret;
1060
1061 }
1062
1063 int btrfs_defrag_file(struct inode *inode, struct file *file,
1064 struct btrfs_ioctl_defrag_range_args *range,
1065 u64 newer_than, unsigned long max_to_defrag)
1066 {
1067 struct btrfs_root *root = BTRFS_I(inode)->root;
1068 struct file_ra_state *ra = NULL;
1069 unsigned long last_index;
1070 u64 isize = i_size_read(inode);
1071 u64 last_len = 0;
1072 u64 skip = 0;
1073 u64 defrag_end = 0;
1074 u64 newer_off = range->start;
1075 unsigned long i;
1076 unsigned long ra_index = 0;
1077 int ret;
1078 int defrag_count = 0;
1079 int compress_type = BTRFS_COMPRESS_ZLIB;
1080 int extent_thresh = range->extent_thresh;
1081 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1082 int cluster = max_cluster;
1083 u64 new_align = ~((u64)128 * 1024 - 1);
1084 struct page **pages = NULL;
1085
1086 if (extent_thresh == 0)
1087 extent_thresh = 256 * 1024;
1088
1089 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1090 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1091 return -EINVAL;
1092 if (range->compress_type)
1093 compress_type = range->compress_type;
1094 }
1095
1096 if (isize == 0)
1097 return 0;
1098
1099 /*
1100 * if we were not given a file, allocate a readahead
1101 * context
1102 */
1103 if (!file) {
1104 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1105 if (!ra)
1106 return -ENOMEM;
1107 file_ra_state_init(ra, inode->i_mapping);
1108 } else {
1109 ra = &file->f_ra;
1110 }
1111
1112 pages = kmalloc(sizeof(struct page *) * max_cluster,
1113 GFP_NOFS);
1114 if (!pages) {
1115 ret = -ENOMEM;
1116 goto out_ra;
1117 }
1118
1119 /* find the last page to defrag */
1120 if (range->start + range->len > range->start) {
1121 last_index = min_t(u64, isize - 1,
1122 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1123 } else {
1124 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1125 }
1126
1127 if (newer_than) {
1128 ret = find_new_extents(root, inode, newer_than,
1129 &newer_off, 64 * 1024);
1130 if (!ret) {
1131 range->start = newer_off;
1132 /*
1133 * we always align our defrag to help keep
1134 * the extents in the file evenly spaced
1135 */
1136 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1137 } else
1138 goto out_ra;
1139 } else {
1140 i = range->start >> PAGE_CACHE_SHIFT;
1141 }
1142 if (!max_to_defrag)
1143 max_to_defrag = last_index + 1;
1144
1145 /*
1146 * make writeback starts from i, so the defrag range can be
1147 * written sequentially.
1148 */
1149 if (i < inode->i_mapping->writeback_index)
1150 inode->i_mapping->writeback_index = i;
1151
1152 while (i <= last_index && defrag_count < max_to_defrag &&
1153 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1154 PAGE_CACHE_SHIFT)) {
1155 /*
1156 * make sure we stop running if someone unmounts
1157 * the FS
1158 */
1159 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1160 break;
1161
1162 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1163 extent_thresh, &last_len, &skip,
1164 &defrag_end, range->flags &
1165 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1166 unsigned long next;
1167 /*
1168 * the should_defrag function tells us how much to skip
1169 * bump our counter by the suggested amount
1170 */
1171 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1172 i = max(i + 1, next);
1173 continue;
1174 }
1175
1176 if (!newer_than) {
1177 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1178 PAGE_CACHE_SHIFT) - i;
1179 cluster = min(cluster, max_cluster);
1180 } else {
1181 cluster = max_cluster;
1182 }
1183
1184 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1185 BTRFS_I(inode)->force_compress = compress_type;
1186
1187 if (i + cluster > ra_index) {
1188 ra_index = max(i, ra_index);
1189 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1190 cluster);
1191 ra_index += max_cluster;
1192 }
1193
1194 mutex_lock(&inode->i_mutex);
1195 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1196 if (ret < 0) {
1197 mutex_unlock(&inode->i_mutex);
1198 goto out_ra;
1199 }
1200
1201 defrag_count += ret;
1202 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1203 mutex_unlock(&inode->i_mutex);
1204
1205 if (newer_than) {
1206 if (newer_off == (u64)-1)
1207 break;
1208
1209 if (ret > 0)
1210 i += ret;
1211
1212 newer_off = max(newer_off + 1,
1213 (u64)i << PAGE_CACHE_SHIFT);
1214
1215 ret = find_new_extents(root, inode,
1216 newer_than, &newer_off,
1217 64 * 1024);
1218 if (!ret) {
1219 range->start = newer_off;
1220 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1221 } else {
1222 break;
1223 }
1224 } else {
1225 if (ret > 0) {
1226 i += ret;
1227 last_len += ret << PAGE_CACHE_SHIFT;
1228 } else {
1229 i++;
1230 last_len = 0;
1231 }
1232 }
1233 }
1234
1235 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1236 filemap_flush(inode->i_mapping);
1237
1238 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1239 /* the filemap_flush will queue IO into the worker threads, but
1240 * we have to make sure the IO is actually started and that
1241 * ordered extents get created before we return
1242 */
1243 atomic_inc(&root->fs_info->async_submit_draining);
1244 while (atomic_read(&root->fs_info->nr_async_submits) ||
1245 atomic_read(&root->fs_info->async_delalloc_pages)) {
1246 wait_event(root->fs_info->async_submit_wait,
1247 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1248 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1249 }
1250 atomic_dec(&root->fs_info->async_submit_draining);
1251
1252 mutex_lock(&inode->i_mutex);
1253 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1254 mutex_unlock(&inode->i_mutex);
1255 }
1256
1257 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1258 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1259 }
1260
1261 ret = defrag_count;
1262
1263 out_ra:
1264 if (!file)
1265 kfree(ra);
1266 kfree(pages);
1267 return ret;
1268 }
1269
1270 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1271 void __user *arg)
1272 {
1273 u64 new_size;
1274 u64 old_size;
1275 u64 devid = 1;
1276 struct btrfs_ioctl_vol_args *vol_args;
1277 struct btrfs_trans_handle *trans;
1278 struct btrfs_device *device = NULL;
1279 char *sizestr;
1280 char *devstr = NULL;
1281 int ret = 0;
1282 int mod = 0;
1283
1284 if (root->fs_info->sb->s_flags & MS_RDONLY)
1285 return -EROFS;
1286
1287 if (!capable(CAP_SYS_ADMIN))
1288 return -EPERM;
1289
1290 mutex_lock(&root->fs_info->volume_mutex);
1291 if (root->fs_info->balance_ctl) {
1292 printk(KERN_INFO "btrfs: balance in progress\n");
1293 ret = -EINVAL;
1294 goto out;
1295 }
1296
1297 vol_args = memdup_user(arg, sizeof(*vol_args));
1298 if (IS_ERR(vol_args)) {
1299 ret = PTR_ERR(vol_args);
1300 goto out;
1301 }
1302
1303 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1304
1305 sizestr = vol_args->name;
1306 devstr = strchr(sizestr, ':');
1307 if (devstr) {
1308 char *end;
1309 sizestr = devstr + 1;
1310 *devstr = '\0';
1311 devstr = vol_args->name;
1312 devid = simple_strtoull(devstr, &end, 10);
1313 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1314 (unsigned long long)devid);
1315 }
1316 device = btrfs_find_device(root, devid, NULL, NULL);
1317 if (!device) {
1318 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1319 (unsigned long long)devid);
1320 ret = -EINVAL;
1321 goto out_free;
1322 }
1323 if (device->fs_devices && device->fs_devices->seeding) {
1324 printk(KERN_INFO "btrfs: resizer unable to apply on "
1325 "seeding device %llu\n",
1326 (unsigned long long)devid);
1327 ret = -EINVAL;
1328 goto out_free;
1329 }
1330
1331 if (!strcmp(sizestr, "max"))
1332 new_size = device->bdev->bd_inode->i_size;
1333 else {
1334 if (sizestr[0] == '-') {
1335 mod = -1;
1336 sizestr++;
1337 } else if (sizestr[0] == '+') {
1338 mod = 1;
1339 sizestr++;
1340 }
1341 new_size = memparse(sizestr, NULL);
1342 if (new_size == 0) {
1343 ret = -EINVAL;
1344 goto out_free;
1345 }
1346 }
1347
1348 old_size = device->total_bytes;
1349
1350 if (mod < 0) {
1351 if (new_size > old_size) {
1352 ret = -EINVAL;
1353 goto out_free;
1354 }
1355 new_size = old_size - new_size;
1356 } else if (mod > 0) {
1357 new_size = old_size + new_size;
1358 }
1359
1360 if (new_size < 256 * 1024 * 1024) {
1361 ret = -EINVAL;
1362 goto out_free;
1363 }
1364 if (new_size > device->bdev->bd_inode->i_size) {
1365 ret = -EFBIG;
1366 goto out_free;
1367 }
1368
1369 do_div(new_size, root->sectorsize);
1370 new_size *= root->sectorsize;
1371
1372 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1373 rcu_str_deref(device->name),
1374 (unsigned long long)new_size);
1375
1376 if (new_size > old_size) {
1377 trans = btrfs_start_transaction(root, 0);
1378 if (IS_ERR(trans)) {
1379 ret = PTR_ERR(trans);
1380 goto out_free;
1381 }
1382 ret = btrfs_grow_device(trans, device, new_size);
1383 btrfs_commit_transaction(trans, root);
1384 } else if (new_size < old_size) {
1385 ret = btrfs_shrink_device(device, new_size);
1386 }
1387
1388 out_free:
1389 kfree(vol_args);
1390 out:
1391 mutex_unlock(&root->fs_info->volume_mutex);
1392 return ret;
1393 }
1394
1395 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1396 char *name, unsigned long fd, int subvol,
1397 u64 *transid, bool readonly,
1398 struct btrfs_qgroup_inherit **inherit)
1399 {
1400 struct file *src_file;
1401 int namelen;
1402 int ret = 0;
1403
1404 ret = mnt_want_write_file(file);
1405 if (ret)
1406 goto out;
1407
1408 namelen = strlen(name);
1409 if (strchr(name, '/')) {
1410 ret = -EINVAL;
1411 goto out_drop_write;
1412 }
1413
1414 if (name[0] == '.' &&
1415 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1416 ret = -EEXIST;
1417 goto out_drop_write;
1418 }
1419
1420 if (subvol) {
1421 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1422 NULL, transid, readonly, inherit);
1423 } else {
1424 struct inode *src_inode;
1425 src_file = fget(fd);
1426 if (!src_file) {
1427 ret = -EINVAL;
1428 goto out_drop_write;
1429 }
1430
1431 src_inode = src_file->f_path.dentry->d_inode;
1432 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1433 printk(KERN_INFO "btrfs: Snapshot src from "
1434 "another FS\n");
1435 ret = -EINVAL;
1436 fput(src_file);
1437 goto out_drop_write;
1438 }
1439 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1440 BTRFS_I(src_inode)->root,
1441 transid, readonly, inherit);
1442 fput(src_file);
1443 }
1444 out_drop_write:
1445 mnt_drop_write_file(file);
1446 out:
1447 return ret;
1448 }
1449
1450 static noinline int btrfs_ioctl_snap_create(struct file *file,
1451 void __user *arg, int subvol)
1452 {
1453 struct btrfs_ioctl_vol_args *vol_args;
1454 int ret;
1455
1456 vol_args = memdup_user(arg, sizeof(*vol_args));
1457 if (IS_ERR(vol_args))
1458 return PTR_ERR(vol_args);
1459 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1460
1461 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1462 vol_args->fd, subvol,
1463 NULL, false, NULL);
1464
1465 kfree(vol_args);
1466 return ret;
1467 }
1468
1469 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1470 void __user *arg, int subvol)
1471 {
1472 struct btrfs_ioctl_vol_args_v2 *vol_args;
1473 int ret;
1474 u64 transid = 0;
1475 u64 *ptr = NULL;
1476 bool readonly = false;
1477 struct btrfs_qgroup_inherit *inherit = NULL;
1478
1479 vol_args = memdup_user(arg, sizeof(*vol_args));
1480 if (IS_ERR(vol_args))
1481 return PTR_ERR(vol_args);
1482 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1483
1484 if (vol_args->flags &
1485 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1486 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1487 ret = -EOPNOTSUPP;
1488 goto out;
1489 }
1490
1491 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1492 ptr = &transid;
1493 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1494 readonly = true;
1495 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1496 if (vol_args->size > PAGE_CACHE_SIZE) {
1497 ret = -EINVAL;
1498 goto out;
1499 }
1500 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1501 if (IS_ERR(inherit)) {
1502 ret = PTR_ERR(inherit);
1503 goto out;
1504 }
1505 }
1506
1507 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1508 vol_args->fd, subvol, ptr,
1509 readonly, &inherit);
1510
1511 if (ret == 0 && ptr &&
1512 copy_to_user(arg +
1513 offsetof(struct btrfs_ioctl_vol_args_v2,
1514 transid), ptr, sizeof(*ptr)))
1515 ret = -EFAULT;
1516 out:
1517 kfree(vol_args);
1518 kfree(inherit);
1519 return ret;
1520 }
1521
1522 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1523 void __user *arg)
1524 {
1525 struct inode *inode = fdentry(file)->d_inode;
1526 struct btrfs_root *root = BTRFS_I(inode)->root;
1527 int ret = 0;
1528 u64 flags = 0;
1529
1530 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1531 return -EINVAL;
1532
1533 down_read(&root->fs_info->subvol_sem);
1534 if (btrfs_root_readonly(root))
1535 flags |= BTRFS_SUBVOL_RDONLY;
1536 up_read(&root->fs_info->subvol_sem);
1537
1538 if (copy_to_user(arg, &flags, sizeof(flags)))
1539 ret = -EFAULT;
1540
1541 return ret;
1542 }
1543
1544 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1545 void __user *arg)
1546 {
1547 struct inode *inode = fdentry(file)->d_inode;
1548 struct btrfs_root *root = BTRFS_I(inode)->root;
1549 struct btrfs_trans_handle *trans;
1550 u64 root_flags;
1551 u64 flags;
1552 int ret = 0;
1553
1554 ret = mnt_want_write_file(file);
1555 if (ret)
1556 goto out;
1557
1558 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1559 ret = -EINVAL;
1560 goto out_drop_write;
1561 }
1562
1563 if (copy_from_user(&flags, arg, sizeof(flags))) {
1564 ret = -EFAULT;
1565 goto out_drop_write;
1566 }
1567
1568 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1569 ret = -EINVAL;
1570 goto out_drop_write;
1571 }
1572
1573 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1574 ret = -EOPNOTSUPP;
1575 goto out_drop_write;
1576 }
1577
1578 if (!inode_owner_or_capable(inode)) {
1579 ret = -EACCES;
1580 goto out_drop_write;
1581 }
1582
1583 down_write(&root->fs_info->subvol_sem);
1584
1585 /* nothing to do */
1586 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1587 goto out_drop_sem;
1588
1589 root_flags = btrfs_root_flags(&root->root_item);
1590 if (flags & BTRFS_SUBVOL_RDONLY)
1591 btrfs_set_root_flags(&root->root_item,
1592 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1593 else
1594 btrfs_set_root_flags(&root->root_item,
1595 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1596
1597 trans = btrfs_start_transaction(root, 1);
1598 if (IS_ERR(trans)) {
1599 ret = PTR_ERR(trans);
1600 goto out_reset;
1601 }
1602
1603 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1604 &root->root_key, &root->root_item);
1605
1606 btrfs_commit_transaction(trans, root);
1607 out_reset:
1608 if (ret)
1609 btrfs_set_root_flags(&root->root_item, root_flags);
1610 out_drop_sem:
1611 up_write(&root->fs_info->subvol_sem);
1612 out_drop_write:
1613 mnt_drop_write_file(file);
1614 out:
1615 return ret;
1616 }
1617
1618 /*
1619 * helper to check if the subvolume references other subvolumes
1620 */
1621 static noinline int may_destroy_subvol(struct btrfs_root *root)
1622 {
1623 struct btrfs_path *path;
1624 struct btrfs_key key;
1625 int ret;
1626
1627 path = btrfs_alloc_path();
1628 if (!path)
1629 return -ENOMEM;
1630
1631 key.objectid = root->root_key.objectid;
1632 key.type = BTRFS_ROOT_REF_KEY;
1633 key.offset = (u64)-1;
1634
1635 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1636 &key, path, 0, 0);
1637 if (ret < 0)
1638 goto out;
1639 BUG_ON(ret == 0);
1640
1641 ret = 0;
1642 if (path->slots[0] > 0) {
1643 path->slots[0]--;
1644 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1645 if (key.objectid == root->root_key.objectid &&
1646 key.type == BTRFS_ROOT_REF_KEY)
1647 ret = -ENOTEMPTY;
1648 }
1649 out:
1650 btrfs_free_path(path);
1651 return ret;
1652 }
1653
1654 static noinline int key_in_sk(struct btrfs_key *key,
1655 struct btrfs_ioctl_search_key *sk)
1656 {
1657 struct btrfs_key test;
1658 int ret;
1659
1660 test.objectid = sk->min_objectid;
1661 test.type = sk->min_type;
1662 test.offset = sk->min_offset;
1663
1664 ret = btrfs_comp_cpu_keys(key, &test);
1665 if (ret < 0)
1666 return 0;
1667
1668 test.objectid = sk->max_objectid;
1669 test.type = sk->max_type;
1670 test.offset = sk->max_offset;
1671
1672 ret = btrfs_comp_cpu_keys(key, &test);
1673 if (ret > 0)
1674 return 0;
1675 return 1;
1676 }
1677
1678 static noinline int copy_to_sk(struct btrfs_root *root,
1679 struct btrfs_path *path,
1680 struct btrfs_key *key,
1681 struct btrfs_ioctl_search_key *sk,
1682 char *buf,
1683 unsigned long *sk_offset,
1684 int *num_found)
1685 {
1686 u64 found_transid;
1687 struct extent_buffer *leaf;
1688 struct btrfs_ioctl_search_header sh;
1689 unsigned long item_off;
1690 unsigned long item_len;
1691 int nritems;
1692 int i;
1693 int slot;
1694 int ret = 0;
1695
1696 leaf = path->nodes[0];
1697 slot = path->slots[0];
1698 nritems = btrfs_header_nritems(leaf);
1699
1700 if (btrfs_header_generation(leaf) > sk->max_transid) {
1701 i = nritems;
1702 goto advance_key;
1703 }
1704 found_transid = btrfs_header_generation(leaf);
1705
1706 for (i = slot; i < nritems; i++) {
1707 item_off = btrfs_item_ptr_offset(leaf, i);
1708 item_len = btrfs_item_size_nr(leaf, i);
1709
1710 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1711 item_len = 0;
1712
1713 if (sizeof(sh) + item_len + *sk_offset >
1714 BTRFS_SEARCH_ARGS_BUFSIZE) {
1715 ret = 1;
1716 goto overflow;
1717 }
1718
1719 btrfs_item_key_to_cpu(leaf, key, i);
1720 if (!key_in_sk(key, sk))
1721 continue;
1722
1723 sh.objectid = key->objectid;
1724 sh.offset = key->offset;
1725 sh.type = key->type;
1726 sh.len = item_len;
1727 sh.transid = found_transid;
1728
1729 /* copy search result header */
1730 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1731 *sk_offset += sizeof(sh);
1732
1733 if (item_len) {
1734 char *p = buf + *sk_offset;
1735 /* copy the item */
1736 read_extent_buffer(leaf, p,
1737 item_off, item_len);
1738 *sk_offset += item_len;
1739 }
1740 (*num_found)++;
1741
1742 if (*num_found >= sk->nr_items)
1743 break;
1744 }
1745 advance_key:
1746 ret = 0;
1747 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1748 key->offset++;
1749 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1750 key->offset = 0;
1751 key->type++;
1752 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1753 key->offset = 0;
1754 key->type = 0;
1755 key->objectid++;
1756 } else
1757 ret = 1;
1758 overflow:
1759 return ret;
1760 }
1761
1762 static noinline int search_ioctl(struct inode *inode,
1763 struct btrfs_ioctl_search_args *args)
1764 {
1765 struct btrfs_root *root;
1766 struct btrfs_key key;
1767 struct btrfs_key max_key;
1768 struct btrfs_path *path;
1769 struct btrfs_ioctl_search_key *sk = &args->key;
1770 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1771 int ret;
1772 int num_found = 0;
1773 unsigned long sk_offset = 0;
1774
1775 path = btrfs_alloc_path();
1776 if (!path)
1777 return -ENOMEM;
1778
1779 if (sk->tree_id == 0) {
1780 /* search the root of the inode that was passed */
1781 root = BTRFS_I(inode)->root;
1782 } else {
1783 key.objectid = sk->tree_id;
1784 key.type = BTRFS_ROOT_ITEM_KEY;
1785 key.offset = (u64)-1;
1786 root = btrfs_read_fs_root_no_name(info, &key);
1787 if (IS_ERR(root)) {
1788 printk(KERN_ERR "could not find root %llu\n",
1789 sk->tree_id);
1790 btrfs_free_path(path);
1791 return -ENOENT;
1792 }
1793 }
1794
1795 key.objectid = sk->min_objectid;
1796 key.type = sk->min_type;
1797 key.offset = sk->min_offset;
1798
1799 max_key.objectid = sk->max_objectid;
1800 max_key.type = sk->max_type;
1801 max_key.offset = sk->max_offset;
1802
1803 path->keep_locks = 1;
1804
1805 while(1) {
1806 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1807 sk->min_transid);
1808 if (ret != 0) {
1809 if (ret > 0)
1810 ret = 0;
1811 goto err;
1812 }
1813 ret = copy_to_sk(root, path, &key, sk, args->buf,
1814 &sk_offset, &num_found);
1815 btrfs_release_path(path);
1816 if (ret || num_found >= sk->nr_items)
1817 break;
1818
1819 }
1820 ret = 0;
1821 err:
1822 sk->nr_items = num_found;
1823 btrfs_free_path(path);
1824 return ret;
1825 }
1826
1827 static noinline int btrfs_ioctl_tree_search(struct file *file,
1828 void __user *argp)
1829 {
1830 struct btrfs_ioctl_search_args *args;
1831 struct inode *inode;
1832 int ret;
1833
1834 if (!capable(CAP_SYS_ADMIN))
1835 return -EPERM;
1836
1837 args = memdup_user(argp, sizeof(*args));
1838 if (IS_ERR(args))
1839 return PTR_ERR(args);
1840
1841 inode = fdentry(file)->d_inode;
1842 ret = search_ioctl(inode, args);
1843 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1844 ret = -EFAULT;
1845 kfree(args);
1846 return ret;
1847 }
1848
1849 /*
1850 * Search INODE_REFs to identify path name of 'dirid' directory
1851 * in a 'tree_id' tree. and sets path name to 'name'.
1852 */
1853 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1854 u64 tree_id, u64 dirid, char *name)
1855 {
1856 struct btrfs_root *root;
1857 struct btrfs_key key;
1858 char *ptr;
1859 int ret = -1;
1860 int slot;
1861 int len;
1862 int total_len = 0;
1863 struct btrfs_inode_ref *iref;
1864 struct extent_buffer *l;
1865 struct btrfs_path *path;
1866
1867 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1868 name[0]='\0';
1869 return 0;
1870 }
1871
1872 path = btrfs_alloc_path();
1873 if (!path)
1874 return -ENOMEM;
1875
1876 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1877
1878 key.objectid = tree_id;
1879 key.type = BTRFS_ROOT_ITEM_KEY;
1880 key.offset = (u64)-1;
1881 root = btrfs_read_fs_root_no_name(info, &key);
1882 if (IS_ERR(root)) {
1883 printk(KERN_ERR "could not find root %llu\n", tree_id);
1884 ret = -ENOENT;
1885 goto out;
1886 }
1887
1888 key.objectid = dirid;
1889 key.type = BTRFS_INODE_REF_KEY;
1890 key.offset = (u64)-1;
1891
1892 while(1) {
1893 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1894 if (ret < 0)
1895 goto out;
1896
1897 l = path->nodes[0];
1898 slot = path->slots[0];
1899 if (ret > 0 && slot > 0)
1900 slot--;
1901 btrfs_item_key_to_cpu(l, &key, slot);
1902
1903 if (ret > 0 && (key.objectid != dirid ||
1904 key.type != BTRFS_INODE_REF_KEY)) {
1905 ret = -ENOENT;
1906 goto out;
1907 }
1908
1909 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1910 len = btrfs_inode_ref_name_len(l, iref);
1911 ptr -= len + 1;
1912 total_len += len + 1;
1913 if (ptr < name)
1914 goto out;
1915
1916 *(ptr + len) = '/';
1917 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1918
1919 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1920 break;
1921
1922 btrfs_release_path(path);
1923 key.objectid = key.offset;
1924 key.offset = (u64)-1;
1925 dirid = key.objectid;
1926 }
1927 if (ptr < name)
1928 goto out;
1929 memmove(name, ptr, total_len);
1930 name[total_len]='\0';
1931 ret = 0;
1932 out:
1933 btrfs_free_path(path);
1934 return ret;
1935 }
1936
1937 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1938 void __user *argp)
1939 {
1940 struct btrfs_ioctl_ino_lookup_args *args;
1941 struct inode *inode;
1942 int ret;
1943
1944 if (!capable(CAP_SYS_ADMIN))
1945 return -EPERM;
1946
1947 args = memdup_user(argp, sizeof(*args));
1948 if (IS_ERR(args))
1949 return PTR_ERR(args);
1950
1951 inode = fdentry(file)->d_inode;
1952
1953 if (args->treeid == 0)
1954 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1955
1956 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1957 args->treeid, args->objectid,
1958 args->name);
1959
1960 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1961 ret = -EFAULT;
1962
1963 kfree(args);
1964 return ret;
1965 }
1966
1967 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1968 void __user *arg)
1969 {
1970 struct dentry *parent = fdentry(file);
1971 struct dentry *dentry;
1972 struct inode *dir = parent->d_inode;
1973 struct inode *inode;
1974 struct btrfs_root *root = BTRFS_I(dir)->root;
1975 struct btrfs_root *dest = NULL;
1976 struct btrfs_ioctl_vol_args *vol_args;
1977 struct btrfs_trans_handle *trans;
1978 int namelen;
1979 int ret;
1980 int err = 0;
1981
1982 vol_args = memdup_user(arg, sizeof(*vol_args));
1983 if (IS_ERR(vol_args))
1984 return PTR_ERR(vol_args);
1985
1986 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1987 namelen = strlen(vol_args->name);
1988 if (strchr(vol_args->name, '/') ||
1989 strncmp(vol_args->name, "..", namelen) == 0) {
1990 err = -EINVAL;
1991 goto out;
1992 }
1993
1994 err = mnt_want_write_file(file);
1995 if (err)
1996 goto out;
1997
1998 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1999 dentry = lookup_one_len(vol_args->name, parent, namelen);
2000 if (IS_ERR(dentry)) {
2001 err = PTR_ERR(dentry);
2002 goto out_unlock_dir;
2003 }
2004
2005 if (!dentry->d_inode) {
2006 err = -ENOENT;
2007 goto out_dput;
2008 }
2009
2010 inode = dentry->d_inode;
2011 dest = BTRFS_I(inode)->root;
2012 if (!capable(CAP_SYS_ADMIN)){
2013 /*
2014 * Regular user. Only allow this with a special mount
2015 * option, when the user has write+exec access to the
2016 * subvol root, and when rmdir(2) would have been
2017 * allowed.
2018 *
2019 * Note that this is _not_ check that the subvol is
2020 * empty or doesn't contain data that we wouldn't
2021 * otherwise be able to delete.
2022 *
2023 * Users who want to delete empty subvols should try
2024 * rmdir(2).
2025 */
2026 err = -EPERM;
2027 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2028 goto out_dput;
2029
2030 /*
2031 * Do not allow deletion if the parent dir is the same
2032 * as the dir to be deleted. That means the ioctl
2033 * must be called on the dentry referencing the root
2034 * of the subvol, not a random directory contained
2035 * within it.
2036 */
2037 err = -EINVAL;
2038 if (root == dest)
2039 goto out_dput;
2040
2041 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2042 if (err)
2043 goto out_dput;
2044
2045 /* check if subvolume may be deleted by a non-root user */
2046 err = btrfs_may_delete(dir, dentry, 1);
2047 if (err)
2048 goto out_dput;
2049 }
2050
2051 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2052 err = -EINVAL;
2053 goto out_dput;
2054 }
2055
2056 mutex_lock(&inode->i_mutex);
2057 err = d_invalidate(dentry);
2058 if (err)
2059 goto out_unlock;
2060
2061 down_write(&root->fs_info->subvol_sem);
2062
2063 err = may_destroy_subvol(dest);
2064 if (err)
2065 goto out_up_write;
2066
2067 trans = btrfs_start_transaction(root, 0);
2068 if (IS_ERR(trans)) {
2069 err = PTR_ERR(trans);
2070 goto out_up_write;
2071 }
2072 trans->block_rsv = &root->fs_info->global_block_rsv;
2073
2074 ret = btrfs_unlink_subvol(trans, root, dir,
2075 dest->root_key.objectid,
2076 dentry->d_name.name,
2077 dentry->d_name.len);
2078 if (ret) {
2079 err = ret;
2080 btrfs_abort_transaction(trans, root, ret);
2081 goto out_end_trans;
2082 }
2083
2084 btrfs_record_root_in_trans(trans, dest);
2085
2086 memset(&dest->root_item.drop_progress, 0,
2087 sizeof(dest->root_item.drop_progress));
2088 dest->root_item.drop_level = 0;
2089 btrfs_set_root_refs(&dest->root_item, 0);
2090
2091 if (!xchg(&dest->orphan_item_inserted, 1)) {
2092 ret = btrfs_insert_orphan_item(trans,
2093 root->fs_info->tree_root,
2094 dest->root_key.objectid);
2095 if (ret) {
2096 btrfs_abort_transaction(trans, root, ret);
2097 err = ret;
2098 goto out_end_trans;
2099 }
2100 }
2101 out_end_trans:
2102 ret = btrfs_end_transaction(trans, root);
2103 if (ret && !err)
2104 err = ret;
2105 inode->i_flags |= S_DEAD;
2106 out_up_write:
2107 up_write(&root->fs_info->subvol_sem);
2108 out_unlock:
2109 mutex_unlock(&inode->i_mutex);
2110 if (!err) {
2111 shrink_dcache_sb(root->fs_info->sb);
2112 btrfs_invalidate_inodes(dest);
2113 d_delete(dentry);
2114 }
2115 out_dput:
2116 dput(dentry);
2117 out_unlock_dir:
2118 mutex_unlock(&dir->i_mutex);
2119 mnt_drop_write_file(file);
2120 out:
2121 kfree(vol_args);
2122 return err;
2123 }
2124
2125 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2126 {
2127 struct inode *inode = fdentry(file)->d_inode;
2128 struct btrfs_root *root = BTRFS_I(inode)->root;
2129 struct btrfs_ioctl_defrag_range_args *range;
2130 int ret;
2131
2132 if (btrfs_root_readonly(root))
2133 return -EROFS;
2134
2135 ret = mnt_want_write_file(file);
2136 if (ret)
2137 return ret;
2138
2139 switch (inode->i_mode & S_IFMT) {
2140 case S_IFDIR:
2141 if (!capable(CAP_SYS_ADMIN)) {
2142 ret = -EPERM;
2143 goto out;
2144 }
2145 ret = btrfs_defrag_root(root, 0);
2146 if (ret)
2147 goto out;
2148 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2149 break;
2150 case S_IFREG:
2151 if (!(file->f_mode & FMODE_WRITE)) {
2152 ret = -EINVAL;
2153 goto out;
2154 }
2155
2156 range = kzalloc(sizeof(*range), GFP_KERNEL);
2157 if (!range) {
2158 ret = -ENOMEM;
2159 goto out;
2160 }
2161
2162 if (argp) {
2163 if (copy_from_user(range, argp,
2164 sizeof(*range))) {
2165 ret = -EFAULT;
2166 kfree(range);
2167 goto out;
2168 }
2169 /* compression requires us to start the IO */
2170 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2171 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2172 range->extent_thresh = (u32)-1;
2173 }
2174 } else {
2175 /* the rest are all set to zero by kzalloc */
2176 range->len = (u64)-1;
2177 }
2178 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2179 range, 0, 0);
2180 if (ret > 0)
2181 ret = 0;
2182 kfree(range);
2183 break;
2184 default:
2185 ret = -EINVAL;
2186 }
2187 out:
2188 mnt_drop_write_file(file);
2189 return ret;
2190 }
2191
2192 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2193 {
2194 struct btrfs_ioctl_vol_args *vol_args;
2195 int ret;
2196
2197 if (!capable(CAP_SYS_ADMIN))
2198 return -EPERM;
2199
2200 mutex_lock(&root->fs_info->volume_mutex);
2201 if (root->fs_info->balance_ctl) {
2202 printk(KERN_INFO "btrfs: balance in progress\n");
2203 ret = -EINVAL;
2204 goto out;
2205 }
2206
2207 vol_args = memdup_user(arg, sizeof(*vol_args));
2208 if (IS_ERR(vol_args)) {
2209 ret = PTR_ERR(vol_args);
2210 goto out;
2211 }
2212
2213 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2214 ret = btrfs_init_new_device(root, vol_args->name);
2215
2216 kfree(vol_args);
2217 out:
2218 mutex_unlock(&root->fs_info->volume_mutex);
2219 return ret;
2220 }
2221
2222 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2223 {
2224 struct btrfs_ioctl_vol_args *vol_args;
2225 int ret;
2226
2227 if (!capable(CAP_SYS_ADMIN))
2228 return -EPERM;
2229
2230 if (root->fs_info->sb->s_flags & MS_RDONLY)
2231 return -EROFS;
2232
2233 mutex_lock(&root->fs_info->volume_mutex);
2234 if (root->fs_info->balance_ctl) {
2235 printk(KERN_INFO "btrfs: balance in progress\n");
2236 ret = -EINVAL;
2237 goto out;
2238 }
2239
2240 vol_args = memdup_user(arg, sizeof(*vol_args));
2241 if (IS_ERR(vol_args)) {
2242 ret = PTR_ERR(vol_args);
2243 goto out;
2244 }
2245
2246 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2247 ret = btrfs_rm_device(root, vol_args->name);
2248
2249 kfree(vol_args);
2250 out:
2251 mutex_unlock(&root->fs_info->volume_mutex);
2252 return ret;
2253 }
2254
2255 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2256 {
2257 struct btrfs_ioctl_fs_info_args *fi_args;
2258 struct btrfs_device *device;
2259 struct btrfs_device *next;
2260 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2261 int ret = 0;
2262
2263 if (!capable(CAP_SYS_ADMIN))
2264 return -EPERM;
2265
2266 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2267 if (!fi_args)
2268 return -ENOMEM;
2269
2270 fi_args->num_devices = fs_devices->num_devices;
2271 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2272
2273 mutex_lock(&fs_devices->device_list_mutex);
2274 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2275 if (device->devid > fi_args->max_id)
2276 fi_args->max_id = device->devid;
2277 }
2278 mutex_unlock(&fs_devices->device_list_mutex);
2279
2280 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2281 ret = -EFAULT;
2282
2283 kfree(fi_args);
2284 return ret;
2285 }
2286
2287 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2288 {
2289 struct btrfs_ioctl_dev_info_args *di_args;
2290 struct btrfs_device *dev;
2291 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2292 int ret = 0;
2293 char *s_uuid = NULL;
2294 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2295
2296 if (!capable(CAP_SYS_ADMIN))
2297 return -EPERM;
2298
2299 di_args = memdup_user(arg, sizeof(*di_args));
2300 if (IS_ERR(di_args))
2301 return PTR_ERR(di_args);
2302
2303 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2304 s_uuid = di_args->uuid;
2305
2306 mutex_lock(&fs_devices->device_list_mutex);
2307 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2308 mutex_unlock(&fs_devices->device_list_mutex);
2309
2310 if (!dev) {
2311 ret = -ENODEV;
2312 goto out;
2313 }
2314
2315 di_args->devid = dev->devid;
2316 di_args->bytes_used = dev->bytes_used;
2317 di_args->total_bytes = dev->total_bytes;
2318 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2319 if (dev->name) {
2320 struct rcu_string *name;
2321
2322 rcu_read_lock();
2323 name = rcu_dereference(dev->name);
2324 strncpy(di_args->path, name->str, sizeof(di_args->path));
2325 rcu_read_unlock();
2326 di_args->path[sizeof(di_args->path) - 1] = 0;
2327 } else {
2328 di_args->path[0] = '\0';
2329 }
2330
2331 out:
2332 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2333 ret = -EFAULT;
2334
2335 kfree(di_args);
2336 return ret;
2337 }
2338
2339 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2340 u64 off, u64 olen, u64 destoff)
2341 {
2342 struct inode *inode = fdentry(file)->d_inode;
2343 struct btrfs_root *root = BTRFS_I(inode)->root;
2344 struct file *src_file;
2345 struct inode *src;
2346 struct btrfs_trans_handle *trans;
2347 struct btrfs_path *path;
2348 struct extent_buffer *leaf;
2349 char *buf;
2350 struct btrfs_key key;
2351 u32 nritems;
2352 int slot;
2353 int ret;
2354 u64 len = olen;
2355 u64 bs = root->fs_info->sb->s_blocksize;
2356 u64 hint_byte;
2357
2358 /*
2359 * TODO:
2360 * - split compressed inline extents. annoying: we need to
2361 * decompress into destination's address_space (the file offset
2362 * may change, so source mapping won't do), then recompress (or
2363 * otherwise reinsert) a subrange.
2364 * - allow ranges within the same file to be cloned (provided
2365 * they don't overlap)?
2366 */
2367
2368 /* the destination must be opened for writing */
2369 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2370 return -EINVAL;
2371
2372 if (btrfs_root_readonly(root))
2373 return -EROFS;
2374
2375 ret = mnt_want_write_file(file);
2376 if (ret)
2377 return ret;
2378
2379 src_file = fget(srcfd);
2380 if (!src_file) {
2381 ret = -EBADF;
2382 goto out_drop_write;
2383 }
2384
2385 ret = -EXDEV;
2386 if (src_file->f_path.mnt != file->f_path.mnt)
2387 goto out_fput;
2388
2389 src = src_file->f_dentry->d_inode;
2390
2391 ret = -EINVAL;
2392 if (src == inode)
2393 goto out_fput;
2394
2395 /* the src must be open for reading */
2396 if (!(src_file->f_mode & FMODE_READ))
2397 goto out_fput;
2398
2399 /* don't make the dst file partly checksummed */
2400 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2401 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2402 goto out_fput;
2403
2404 ret = -EISDIR;
2405 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2406 goto out_fput;
2407
2408 ret = -EXDEV;
2409 if (src->i_sb != inode->i_sb)
2410 goto out_fput;
2411
2412 ret = -ENOMEM;
2413 buf = vmalloc(btrfs_level_size(root, 0));
2414 if (!buf)
2415 goto out_fput;
2416
2417 path = btrfs_alloc_path();
2418 if (!path) {
2419 vfree(buf);
2420 goto out_fput;
2421 }
2422 path->reada = 2;
2423
2424 if (inode < src) {
2425 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2426 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2427 } else {
2428 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2429 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2430 }
2431
2432 /* determine range to clone */
2433 ret = -EINVAL;
2434 if (off + len > src->i_size || off + len < off)
2435 goto out_unlock;
2436 if (len == 0)
2437 olen = len = src->i_size - off;
2438 /* if we extend to eof, continue to block boundary */
2439 if (off + len == src->i_size)
2440 len = ALIGN(src->i_size, bs) - off;
2441
2442 /* verify the end result is block aligned */
2443 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2444 !IS_ALIGNED(destoff, bs))
2445 goto out_unlock;
2446
2447 if (destoff > inode->i_size) {
2448 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2449 if (ret)
2450 goto out_unlock;
2451 }
2452
2453 /* truncate page cache pages from target inode range */
2454 truncate_inode_pages_range(&inode->i_data, destoff,
2455 PAGE_CACHE_ALIGN(destoff + len) - 1);
2456
2457 /* do any pending delalloc/csum calc on src, one way or
2458 another, and lock file content */
2459 while (1) {
2460 struct btrfs_ordered_extent *ordered;
2461 lock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2462 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2463 if (!ordered &&
2464 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2465 EXTENT_DELALLOC, 0, NULL))
2466 break;
2467 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2468 if (ordered)
2469 btrfs_put_ordered_extent(ordered);
2470 btrfs_wait_ordered_range(src, off, len);
2471 }
2472
2473 /* clone data */
2474 key.objectid = btrfs_ino(src);
2475 key.type = BTRFS_EXTENT_DATA_KEY;
2476 key.offset = 0;
2477
2478 while (1) {
2479 /*
2480 * note the key will change type as we walk through the
2481 * tree.
2482 */
2483 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2484 0, 0);
2485 if (ret < 0)
2486 goto out;
2487
2488 nritems = btrfs_header_nritems(path->nodes[0]);
2489 if (path->slots[0] >= nritems) {
2490 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2491 if (ret < 0)
2492 goto out;
2493 if (ret > 0)
2494 break;
2495 nritems = btrfs_header_nritems(path->nodes[0]);
2496 }
2497 leaf = path->nodes[0];
2498 slot = path->slots[0];
2499
2500 btrfs_item_key_to_cpu(leaf, &key, slot);
2501 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2502 key.objectid != btrfs_ino(src))
2503 break;
2504
2505 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2506 struct btrfs_file_extent_item *extent;
2507 int type;
2508 u32 size;
2509 struct btrfs_key new_key;
2510 u64 disko = 0, diskl = 0;
2511 u64 datao = 0, datal = 0;
2512 u8 comp;
2513 u64 endoff;
2514
2515 size = btrfs_item_size_nr(leaf, slot);
2516 read_extent_buffer(leaf, buf,
2517 btrfs_item_ptr_offset(leaf, slot),
2518 size);
2519
2520 extent = btrfs_item_ptr(leaf, slot,
2521 struct btrfs_file_extent_item);
2522 comp = btrfs_file_extent_compression(leaf, extent);
2523 type = btrfs_file_extent_type(leaf, extent);
2524 if (type == BTRFS_FILE_EXTENT_REG ||
2525 type == BTRFS_FILE_EXTENT_PREALLOC) {
2526 disko = btrfs_file_extent_disk_bytenr(leaf,
2527 extent);
2528 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2529 extent);
2530 datao = btrfs_file_extent_offset(leaf, extent);
2531 datal = btrfs_file_extent_num_bytes(leaf,
2532 extent);
2533 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2534 /* take upper bound, may be compressed */
2535 datal = btrfs_file_extent_ram_bytes(leaf,
2536 extent);
2537 }
2538 btrfs_release_path(path);
2539
2540 if (key.offset + datal <= off ||
2541 key.offset >= off+len)
2542 goto next;
2543
2544 memcpy(&new_key, &key, sizeof(new_key));
2545 new_key.objectid = btrfs_ino(inode);
2546 if (off <= key.offset)
2547 new_key.offset = key.offset + destoff - off;
2548 else
2549 new_key.offset = destoff;
2550
2551 /*
2552 * 1 - adjusting old extent (we may have to split it)
2553 * 1 - add new extent
2554 * 1 - inode update
2555 */
2556 trans = btrfs_start_transaction(root, 3);
2557 if (IS_ERR(trans)) {
2558 ret = PTR_ERR(trans);
2559 goto out;
2560 }
2561
2562 if (type == BTRFS_FILE_EXTENT_REG ||
2563 type == BTRFS_FILE_EXTENT_PREALLOC) {
2564 /*
2565 * a | --- range to clone ---| b
2566 * | ------------- extent ------------- |
2567 */
2568
2569 /* substract range b */
2570 if (key.offset + datal > off + len)
2571 datal = off + len - key.offset;
2572
2573 /* substract range a */
2574 if (off > key.offset) {
2575 datao += off - key.offset;
2576 datal -= off - key.offset;
2577 }
2578
2579 ret = btrfs_drop_extents(trans, inode,
2580 new_key.offset,
2581 new_key.offset + datal,
2582 &hint_byte, 1);
2583 if (ret) {
2584 btrfs_abort_transaction(trans, root,
2585 ret);
2586 btrfs_end_transaction(trans, root);
2587 goto out;
2588 }
2589
2590 ret = btrfs_insert_empty_item(trans, root, path,
2591 &new_key, size);
2592 if (ret) {
2593 btrfs_abort_transaction(trans, root,
2594 ret);
2595 btrfs_end_transaction(trans, root);
2596 goto out;
2597 }
2598
2599 leaf = path->nodes[0];
2600 slot = path->slots[0];
2601 write_extent_buffer(leaf, buf,
2602 btrfs_item_ptr_offset(leaf, slot),
2603 size);
2604
2605 extent = btrfs_item_ptr(leaf, slot,
2606 struct btrfs_file_extent_item);
2607
2608 /* disko == 0 means it's a hole */
2609 if (!disko)
2610 datao = 0;
2611
2612 btrfs_set_file_extent_offset(leaf, extent,
2613 datao);
2614 btrfs_set_file_extent_num_bytes(leaf, extent,
2615 datal);
2616 if (disko) {
2617 inode_add_bytes(inode, datal);
2618 ret = btrfs_inc_extent_ref(trans, root,
2619 disko, diskl, 0,
2620 root->root_key.objectid,
2621 btrfs_ino(inode),
2622 new_key.offset - datao,
2623 0);
2624 if (ret) {
2625 btrfs_abort_transaction(trans,
2626 root,
2627 ret);
2628 btrfs_end_transaction(trans,
2629 root);
2630 goto out;
2631
2632 }
2633 }
2634 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2635 u64 skip = 0;
2636 u64 trim = 0;
2637 if (off > key.offset) {
2638 skip = off - key.offset;
2639 new_key.offset += skip;
2640 }
2641
2642 if (key.offset + datal > off+len)
2643 trim = key.offset + datal - (off+len);
2644
2645 if (comp && (skip || trim)) {
2646 ret = -EINVAL;
2647 btrfs_end_transaction(trans, root);
2648 goto out;
2649 }
2650 size -= skip + trim;
2651 datal -= skip + trim;
2652
2653 ret = btrfs_drop_extents(trans, inode,
2654 new_key.offset,
2655 new_key.offset + datal,
2656 &hint_byte, 1);
2657 if (ret) {
2658 btrfs_abort_transaction(trans, root,
2659 ret);
2660 btrfs_end_transaction(trans, root);
2661 goto out;
2662 }
2663
2664 ret = btrfs_insert_empty_item(trans, root, path,
2665 &new_key, size);
2666 if (ret) {
2667 btrfs_abort_transaction(trans, root,
2668 ret);
2669 btrfs_end_transaction(trans, root);
2670 goto out;
2671 }
2672
2673 if (skip) {
2674 u32 start =
2675 btrfs_file_extent_calc_inline_size(0);
2676 memmove(buf+start, buf+start+skip,
2677 datal);
2678 }
2679
2680 leaf = path->nodes[0];
2681 slot = path->slots[0];
2682 write_extent_buffer(leaf, buf,
2683 btrfs_item_ptr_offset(leaf, slot),
2684 size);
2685 inode_add_bytes(inode, datal);
2686 }
2687
2688 btrfs_mark_buffer_dirty(leaf);
2689 btrfs_release_path(path);
2690
2691 inode_inc_iversion(inode);
2692 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2693
2694 /*
2695 * we round up to the block size at eof when
2696 * determining which extents to clone above,
2697 * but shouldn't round up the file size
2698 */
2699 endoff = new_key.offset + datal;
2700 if (endoff > destoff+olen)
2701 endoff = destoff+olen;
2702 if (endoff > inode->i_size)
2703 btrfs_i_size_write(inode, endoff);
2704
2705 ret = btrfs_update_inode(trans, root, inode);
2706 if (ret) {
2707 btrfs_abort_transaction(trans, root, ret);
2708 btrfs_end_transaction(trans, root);
2709 goto out;
2710 }
2711 ret = btrfs_end_transaction(trans, root);
2712 }
2713 next:
2714 btrfs_release_path(path);
2715 key.offset++;
2716 }
2717 ret = 0;
2718 out:
2719 btrfs_release_path(path);
2720 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2721 out_unlock:
2722 mutex_unlock(&src->i_mutex);
2723 mutex_unlock(&inode->i_mutex);
2724 vfree(buf);
2725 btrfs_free_path(path);
2726 out_fput:
2727 fput(src_file);
2728 out_drop_write:
2729 mnt_drop_write_file(file);
2730 return ret;
2731 }
2732
2733 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2734 {
2735 struct btrfs_ioctl_clone_range_args args;
2736
2737 if (copy_from_user(&args, argp, sizeof(args)))
2738 return -EFAULT;
2739 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2740 args.src_length, args.dest_offset);
2741 }
2742
2743 /*
2744 * there are many ways the trans_start and trans_end ioctls can lead
2745 * to deadlocks. They should only be used by applications that
2746 * basically own the machine, and have a very in depth understanding
2747 * of all the possible deadlocks and enospc problems.
2748 */
2749 static long btrfs_ioctl_trans_start(struct file *file)
2750 {
2751 struct inode *inode = fdentry(file)->d_inode;
2752 struct btrfs_root *root = BTRFS_I(inode)->root;
2753 struct btrfs_trans_handle *trans;
2754 int ret;
2755
2756 ret = -EPERM;
2757 if (!capable(CAP_SYS_ADMIN))
2758 goto out;
2759
2760 ret = -EINPROGRESS;
2761 if (file->private_data)
2762 goto out;
2763
2764 ret = -EROFS;
2765 if (btrfs_root_readonly(root))
2766 goto out;
2767
2768 ret = mnt_want_write_file(file);
2769 if (ret)
2770 goto out;
2771
2772 atomic_inc(&root->fs_info->open_ioctl_trans);
2773
2774 ret = -ENOMEM;
2775 trans = btrfs_start_ioctl_transaction(root);
2776 if (IS_ERR(trans))
2777 goto out_drop;
2778
2779 file->private_data = trans;
2780 return 0;
2781
2782 out_drop:
2783 atomic_dec(&root->fs_info->open_ioctl_trans);
2784 mnt_drop_write_file(file);
2785 out:
2786 return ret;
2787 }
2788
2789 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2790 {
2791 struct inode *inode = fdentry(file)->d_inode;
2792 struct btrfs_root *root = BTRFS_I(inode)->root;
2793 struct btrfs_root *new_root;
2794 struct btrfs_dir_item *di;
2795 struct btrfs_trans_handle *trans;
2796 struct btrfs_path *path;
2797 struct btrfs_key location;
2798 struct btrfs_disk_key disk_key;
2799 u64 objectid = 0;
2800 u64 dir_id;
2801
2802 if (!capable(CAP_SYS_ADMIN))
2803 return -EPERM;
2804
2805 if (copy_from_user(&objectid, argp, sizeof(objectid)))
2806 return -EFAULT;
2807
2808 if (!objectid)
2809 objectid = root->root_key.objectid;
2810
2811 location.objectid = objectid;
2812 location.type = BTRFS_ROOT_ITEM_KEY;
2813 location.offset = (u64)-1;
2814
2815 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2816 if (IS_ERR(new_root))
2817 return PTR_ERR(new_root);
2818
2819 if (btrfs_root_refs(&new_root->root_item) == 0)
2820 return -ENOENT;
2821
2822 path = btrfs_alloc_path();
2823 if (!path)
2824 return -ENOMEM;
2825 path->leave_spinning = 1;
2826
2827 trans = btrfs_start_transaction(root, 1);
2828 if (IS_ERR(trans)) {
2829 btrfs_free_path(path);
2830 return PTR_ERR(trans);
2831 }
2832
2833 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2834 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2835 dir_id, "default", 7, 1);
2836 if (IS_ERR_OR_NULL(di)) {
2837 btrfs_free_path(path);
2838 btrfs_end_transaction(trans, root);
2839 printk(KERN_ERR "Umm, you don't have the default dir item, "
2840 "this isn't going to work\n");
2841 return -ENOENT;
2842 }
2843
2844 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2845 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2846 btrfs_mark_buffer_dirty(path->nodes[0]);
2847 btrfs_free_path(path);
2848
2849 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
2850 btrfs_end_transaction(trans, root);
2851
2852 return 0;
2853 }
2854
2855 static void get_block_group_info(struct list_head *groups_list,
2856 struct btrfs_ioctl_space_info *space)
2857 {
2858 struct btrfs_block_group_cache *block_group;
2859
2860 space->total_bytes = 0;
2861 space->used_bytes = 0;
2862 space->flags = 0;
2863 list_for_each_entry(block_group, groups_list, list) {
2864 space->flags = block_group->flags;
2865 space->total_bytes += block_group->key.offset;
2866 space->used_bytes +=
2867 btrfs_block_group_used(&block_group->item);
2868 }
2869 }
2870
2871 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2872 {
2873 struct btrfs_ioctl_space_args space_args;
2874 struct btrfs_ioctl_space_info space;
2875 struct btrfs_ioctl_space_info *dest;
2876 struct btrfs_ioctl_space_info *dest_orig;
2877 struct btrfs_ioctl_space_info __user *user_dest;
2878 struct btrfs_space_info *info;
2879 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2880 BTRFS_BLOCK_GROUP_SYSTEM,
2881 BTRFS_BLOCK_GROUP_METADATA,
2882 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2883 int num_types = 4;
2884 int alloc_size;
2885 int ret = 0;
2886 u64 slot_count = 0;
2887 int i, c;
2888
2889 if (copy_from_user(&space_args,
2890 (struct btrfs_ioctl_space_args __user *)arg,
2891 sizeof(space_args)))
2892 return -EFAULT;
2893
2894 for (i = 0; i < num_types; i++) {
2895 struct btrfs_space_info *tmp;
2896
2897 info = NULL;
2898 rcu_read_lock();
2899 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2900 list) {
2901 if (tmp->flags == types[i]) {
2902 info = tmp;
2903 break;
2904 }
2905 }
2906 rcu_read_unlock();
2907
2908 if (!info)
2909 continue;
2910
2911 down_read(&info->groups_sem);
2912 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2913 if (!list_empty(&info->block_groups[c]))
2914 slot_count++;
2915 }
2916 up_read(&info->groups_sem);
2917 }
2918
2919 /* space_slots == 0 means they are asking for a count */
2920 if (space_args.space_slots == 0) {
2921 space_args.total_spaces = slot_count;
2922 goto out;
2923 }
2924
2925 slot_count = min_t(u64, space_args.space_slots, slot_count);
2926
2927 alloc_size = sizeof(*dest) * slot_count;
2928
2929 /* we generally have at most 6 or so space infos, one for each raid
2930 * level. So, a whole page should be more than enough for everyone
2931 */
2932 if (alloc_size > PAGE_CACHE_SIZE)
2933 return -ENOMEM;
2934
2935 space_args.total_spaces = 0;
2936 dest = kmalloc(alloc_size, GFP_NOFS);
2937 if (!dest)
2938 return -ENOMEM;
2939 dest_orig = dest;
2940
2941 /* now we have a buffer to copy into */
2942 for (i = 0; i < num_types; i++) {
2943 struct btrfs_space_info *tmp;
2944
2945 if (!slot_count)
2946 break;
2947
2948 info = NULL;
2949 rcu_read_lock();
2950 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2951 list) {
2952 if (tmp->flags == types[i]) {
2953 info = tmp;
2954 break;
2955 }
2956 }
2957 rcu_read_unlock();
2958
2959 if (!info)
2960 continue;
2961 down_read(&info->groups_sem);
2962 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2963 if (!list_empty(&info->block_groups[c])) {
2964 get_block_group_info(&info->block_groups[c],
2965 &space);
2966 memcpy(dest, &space, sizeof(space));
2967 dest++;
2968 space_args.total_spaces++;
2969 slot_count--;
2970 }
2971 if (!slot_count)
2972 break;
2973 }
2974 up_read(&info->groups_sem);
2975 }
2976
2977 user_dest = (struct btrfs_ioctl_space_info __user *)
2978 (arg + sizeof(struct btrfs_ioctl_space_args));
2979
2980 if (copy_to_user(user_dest, dest_orig, alloc_size))
2981 ret = -EFAULT;
2982
2983 kfree(dest_orig);
2984 out:
2985 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2986 ret = -EFAULT;
2987
2988 return ret;
2989 }
2990
2991 /*
2992 * there are many ways the trans_start and trans_end ioctls can lead
2993 * to deadlocks. They should only be used by applications that
2994 * basically own the machine, and have a very in depth understanding
2995 * of all the possible deadlocks and enospc problems.
2996 */
2997 long btrfs_ioctl_trans_end(struct file *file)
2998 {
2999 struct inode *inode = fdentry(file)->d_inode;
3000 struct btrfs_root *root = BTRFS_I(inode)->root;
3001 struct btrfs_trans_handle *trans;
3002
3003 trans = file->private_data;
3004 if (!trans)
3005 return -EINVAL;
3006 file->private_data = NULL;
3007
3008 btrfs_end_transaction(trans, root);
3009
3010 atomic_dec(&root->fs_info->open_ioctl_trans);
3011
3012 mnt_drop_write_file(file);
3013 return 0;
3014 }
3015
3016 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
3017 {
3018 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
3019 struct btrfs_trans_handle *trans;
3020 u64 transid;
3021 int ret;
3022
3023 trans = btrfs_start_transaction(root, 0);
3024 if (IS_ERR(trans))
3025 return PTR_ERR(trans);
3026 transid = trans->transid;
3027 ret = btrfs_commit_transaction_async(trans, root, 0);
3028 if (ret) {
3029 btrfs_end_transaction(trans, root);
3030 return ret;
3031 }
3032
3033 if (argp)
3034 if (copy_to_user(argp, &transid, sizeof(transid)))
3035 return -EFAULT;
3036 return 0;
3037 }
3038
3039 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
3040 {
3041 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
3042 u64 transid;
3043
3044 if (argp) {
3045 if (copy_from_user(&transid, argp, sizeof(transid)))
3046 return -EFAULT;
3047 } else {
3048 transid = 0; /* current trans */
3049 }
3050 return btrfs_wait_for_commit(root, transid);
3051 }
3052
3053 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
3054 {
3055 int ret;
3056 struct btrfs_ioctl_scrub_args *sa;
3057
3058 if (!capable(CAP_SYS_ADMIN))
3059 return -EPERM;
3060
3061 sa = memdup_user(arg, sizeof(*sa));
3062 if (IS_ERR(sa))
3063 return PTR_ERR(sa);
3064
3065 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
3066 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
3067
3068 if (copy_to_user(arg, sa, sizeof(*sa)))
3069 ret = -EFAULT;
3070
3071 kfree(sa);
3072 return ret;
3073 }
3074
3075 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3076 {
3077 if (!capable(CAP_SYS_ADMIN))
3078 return -EPERM;
3079
3080 return btrfs_scrub_cancel(root);
3081 }
3082
3083 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3084 void __user *arg)
3085 {
3086 struct btrfs_ioctl_scrub_args *sa;
3087 int ret;
3088
3089 if (!capable(CAP_SYS_ADMIN))
3090 return -EPERM;
3091
3092 sa = memdup_user(arg, sizeof(*sa));
3093 if (IS_ERR(sa))
3094 return PTR_ERR(sa);
3095
3096 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3097
3098 if (copy_to_user(arg, sa, sizeof(*sa)))
3099 ret = -EFAULT;
3100
3101 kfree(sa);
3102 return ret;
3103 }
3104
3105 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3106 void __user *arg)
3107 {
3108 struct btrfs_ioctl_get_dev_stats *sa;
3109 int ret;
3110
3111 sa = memdup_user(arg, sizeof(*sa));
3112 if (IS_ERR(sa))
3113 return PTR_ERR(sa);
3114
3115 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3116 kfree(sa);
3117 return -EPERM;
3118 }
3119
3120 ret = btrfs_get_dev_stats(root, sa);
3121
3122 if (copy_to_user(arg, sa, sizeof(*sa)))
3123 ret = -EFAULT;
3124
3125 kfree(sa);
3126 return ret;
3127 }
3128
3129 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3130 {
3131 int ret = 0;
3132 int i;
3133 u64 rel_ptr;
3134 int size;
3135 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3136 struct inode_fs_paths *ipath = NULL;
3137 struct btrfs_path *path;
3138
3139 if (!capable(CAP_SYS_ADMIN))
3140 return -EPERM;
3141
3142 path = btrfs_alloc_path();
3143 if (!path) {
3144 ret = -ENOMEM;
3145 goto out;
3146 }
3147
3148 ipa = memdup_user(arg, sizeof(*ipa));
3149 if (IS_ERR(ipa)) {
3150 ret = PTR_ERR(ipa);
3151 ipa = NULL;
3152 goto out;
3153 }
3154
3155 size = min_t(u32, ipa->size, 4096);
3156 ipath = init_ipath(size, root, path);
3157 if (IS_ERR(ipath)) {
3158 ret = PTR_ERR(ipath);
3159 ipath = NULL;
3160 goto out;
3161 }
3162
3163 ret = paths_from_inode(ipa->inum, ipath);
3164 if (ret < 0)
3165 goto out;
3166
3167 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3168 rel_ptr = ipath->fspath->val[i] -
3169 (u64)(unsigned long)ipath->fspath->val;
3170 ipath->fspath->val[i] = rel_ptr;
3171 }
3172
3173 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3174 (void *)(unsigned long)ipath->fspath, size);
3175 if (ret) {
3176 ret = -EFAULT;
3177 goto out;
3178 }
3179
3180 out:
3181 btrfs_free_path(path);
3182 free_ipath(ipath);
3183 kfree(ipa);
3184
3185 return ret;
3186 }
3187
3188 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3189 {
3190 struct btrfs_data_container *inodes = ctx;
3191 const size_t c = 3 * sizeof(u64);
3192
3193 if (inodes->bytes_left >= c) {
3194 inodes->bytes_left -= c;
3195 inodes->val[inodes->elem_cnt] = inum;
3196 inodes->val[inodes->elem_cnt + 1] = offset;
3197 inodes->val[inodes->elem_cnt + 2] = root;
3198 inodes->elem_cnt += 3;
3199 } else {
3200 inodes->bytes_missing += c - inodes->bytes_left;
3201 inodes->bytes_left = 0;
3202 inodes->elem_missed += 3;
3203 }
3204
3205 return 0;
3206 }
3207
3208 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3209 void __user *arg)
3210 {
3211 int ret = 0;
3212 int size;
3213 u64 extent_item_pos;
3214 struct btrfs_ioctl_logical_ino_args *loi;
3215 struct btrfs_data_container *inodes = NULL;
3216 struct btrfs_path *path = NULL;
3217 struct btrfs_key key;
3218
3219 if (!capable(CAP_SYS_ADMIN))
3220 return -EPERM;
3221
3222 loi = memdup_user(arg, sizeof(*loi));
3223 if (IS_ERR(loi)) {
3224 ret = PTR_ERR(loi);
3225 loi = NULL;
3226 goto out;
3227 }
3228
3229 path = btrfs_alloc_path();
3230 if (!path) {
3231 ret = -ENOMEM;
3232 goto out;
3233 }
3234
3235 size = min_t(u32, loi->size, 4096);
3236 inodes = init_data_container(size);
3237 if (IS_ERR(inodes)) {
3238 ret = PTR_ERR(inodes);
3239 inodes = NULL;
3240 goto out;
3241 }
3242
3243 ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
3244 btrfs_release_path(path);
3245
3246 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3247 ret = -ENOENT;
3248 if (ret < 0)
3249 goto out;
3250
3251 extent_item_pos = loi->logical - key.objectid;
3252 ret = iterate_extent_inodes(root->fs_info, key.objectid,
3253 extent_item_pos, 0, build_ino_list,
3254 inodes);
3255
3256 if (ret < 0)
3257 goto out;
3258
3259 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3260 (void *)(unsigned long)inodes, size);
3261 if (ret)
3262 ret = -EFAULT;
3263
3264 out:
3265 btrfs_free_path(path);
3266 kfree(inodes);
3267 kfree(loi);
3268
3269 return ret;
3270 }
3271
3272 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3273 struct btrfs_ioctl_balance_args *bargs)
3274 {
3275 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3276
3277 bargs->flags = bctl->flags;
3278
3279 if (atomic_read(&fs_info->balance_running))
3280 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3281 if (atomic_read(&fs_info->balance_pause_req))
3282 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3283 if (atomic_read(&fs_info->balance_cancel_req))
3284 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3285
3286 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3287 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3288 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3289
3290 if (lock) {
3291 spin_lock(&fs_info->balance_lock);
3292 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3293 spin_unlock(&fs_info->balance_lock);
3294 } else {
3295 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3296 }
3297 }
3298
3299 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3300 {
3301 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3302 struct btrfs_fs_info *fs_info = root->fs_info;
3303 struct btrfs_ioctl_balance_args *bargs;
3304 struct btrfs_balance_control *bctl;
3305 int ret;
3306
3307 if (!capable(CAP_SYS_ADMIN))
3308 return -EPERM;
3309
3310 ret = mnt_want_write_file(file);
3311 if (ret)
3312 return ret;
3313
3314 mutex_lock(&fs_info->volume_mutex);
3315 mutex_lock(&fs_info->balance_mutex);
3316
3317 if (arg) {
3318 bargs = memdup_user(arg, sizeof(*bargs));
3319 if (IS_ERR(bargs)) {
3320 ret = PTR_ERR(bargs);
3321 goto out;
3322 }
3323
3324 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3325 if (!fs_info->balance_ctl) {
3326 ret = -ENOTCONN;
3327 goto out_bargs;
3328 }
3329
3330 bctl = fs_info->balance_ctl;
3331 spin_lock(&fs_info->balance_lock);
3332 bctl->flags |= BTRFS_BALANCE_RESUME;
3333 spin_unlock(&fs_info->balance_lock);
3334
3335 goto do_balance;
3336 }
3337 } else {
3338 bargs = NULL;
3339 }
3340
3341 if (fs_info->balance_ctl) {
3342 ret = -EINPROGRESS;
3343 goto out_bargs;
3344 }
3345
3346 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3347 if (!bctl) {
3348 ret = -ENOMEM;
3349 goto out_bargs;
3350 }
3351
3352 bctl->fs_info = fs_info;
3353 if (arg) {
3354 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3355 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3356 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3357
3358 bctl->flags = bargs->flags;
3359 } else {
3360 /* balance everything - no filters */
3361 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3362 }
3363
3364 do_balance:
3365 ret = btrfs_balance(bctl, bargs);
3366 /*
3367 * bctl is freed in __cancel_balance or in free_fs_info if
3368 * restriper was paused all the way until unmount
3369 */
3370 if (arg) {
3371 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3372 ret = -EFAULT;
3373 }
3374
3375 out_bargs:
3376 kfree(bargs);
3377 out:
3378 mutex_unlock(&fs_info->balance_mutex);
3379 mutex_unlock(&fs_info->volume_mutex);
3380 mnt_drop_write_file(file);
3381 return ret;
3382 }
3383
3384 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3385 {
3386 if (!capable(CAP_SYS_ADMIN))
3387 return -EPERM;
3388
3389 switch (cmd) {
3390 case BTRFS_BALANCE_CTL_PAUSE:
3391 return btrfs_pause_balance(root->fs_info);
3392 case BTRFS_BALANCE_CTL_CANCEL:
3393 return btrfs_cancel_balance(root->fs_info);
3394 }
3395
3396 return -EINVAL;
3397 }
3398
3399 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3400 void __user *arg)
3401 {
3402 struct btrfs_fs_info *fs_info = root->fs_info;
3403 struct btrfs_ioctl_balance_args *bargs;
3404 int ret = 0;
3405
3406 if (!capable(CAP_SYS_ADMIN))
3407 return -EPERM;
3408
3409 mutex_lock(&fs_info->balance_mutex);
3410 if (!fs_info->balance_ctl) {
3411 ret = -ENOTCONN;
3412 goto out;
3413 }
3414
3415 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3416 if (!bargs) {
3417 ret = -ENOMEM;
3418 goto out;
3419 }
3420
3421 update_ioctl_balance_args(fs_info, 1, bargs);
3422
3423 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3424 ret = -EFAULT;
3425
3426 kfree(bargs);
3427 out:
3428 mutex_unlock(&fs_info->balance_mutex);
3429 return ret;
3430 }
3431
3432 static long btrfs_ioctl_quota_ctl(struct btrfs_root *root, void __user *arg)
3433 {
3434 struct btrfs_ioctl_quota_ctl_args *sa;
3435 struct btrfs_trans_handle *trans = NULL;
3436 int ret;
3437 int err;
3438
3439 if (!capable(CAP_SYS_ADMIN))
3440 return -EPERM;
3441
3442 if (root->fs_info->sb->s_flags & MS_RDONLY)
3443 return -EROFS;
3444
3445 sa = memdup_user(arg, sizeof(*sa));
3446 if (IS_ERR(sa))
3447 return PTR_ERR(sa);
3448
3449 if (sa->cmd != BTRFS_QUOTA_CTL_RESCAN) {
3450 trans = btrfs_start_transaction(root, 2);
3451 if (IS_ERR(trans)) {
3452 ret = PTR_ERR(trans);
3453 goto out;
3454 }
3455 }
3456
3457 switch (sa->cmd) {
3458 case BTRFS_QUOTA_CTL_ENABLE:
3459 ret = btrfs_quota_enable(trans, root->fs_info);
3460 break;
3461 case BTRFS_QUOTA_CTL_DISABLE:
3462 ret = btrfs_quota_disable(trans, root->fs_info);
3463 break;
3464 case BTRFS_QUOTA_CTL_RESCAN:
3465 ret = btrfs_quota_rescan(root->fs_info);
3466 break;
3467 default:
3468 ret = -EINVAL;
3469 break;
3470 }
3471
3472 if (copy_to_user(arg, sa, sizeof(*sa)))
3473 ret = -EFAULT;
3474
3475 if (trans) {
3476 err = btrfs_commit_transaction(trans, root);
3477 if (err && !ret)
3478 ret = err;
3479 }
3480
3481 out:
3482 kfree(sa);
3483 return ret;
3484 }
3485
3486 static long btrfs_ioctl_qgroup_assign(struct btrfs_root *root, void __user *arg)
3487 {
3488 struct btrfs_ioctl_qgroup_assign_args *sa;
3489 struct btrfs_trans_handle *trans;
3490 int ret;
3491 int err;
3492
3493 if (!capable(CAP_SYS_ADMIN))
3494 return -EPERM;
3495
3496 if (root->fs_info->sb->s_flags & MS_RDONLY)
3497 return -EROFS;
3498
3499 sa = memdup_user(arg, sizeof(*sa));
3500 if (IS_ERR(sa))
3501 return PTR_ERR(sa);
3502
3503 trans = btrfs_join_transaction(root);
3504 if (IS_ERR(trans)) {
3505 ret = PTR_ERR(trans);
3506 goto out;
3507 }
3508
3509 /* FIXME: check if the IDs really exist */
3510 if (sa->assign) {
3511 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
3512 sa->src, sa->dst);
3513 } else {
3514 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
3515 sa->src, sa->dst);
3516 }
3517
3518 err = btrfs_end_transaction(trans, root);
3519 if (err && !ret)
3520 ret = err;
3521
3522 out:
3523 kfree(sa);
3524 return ret;
3525 }
3526
3527 static long btrfs_ioctl_qgroup_create(struct btrfs_root *root, void __user *arg)
3528 {
3529 struct btrfs_ioctl_qgroup_create_args *sa;
3530 struct btrfs_trans_handle *trans;
3531 int ret;
3532 int err;
3533
3534 if (!capable(CAP_SYS_ADMIN))
3535 return -EPERM;
3536
3537 if (root->fs_info->sb->s_flags & MS_RDONLY)
3538 return -EROFS;
3539
3540 sa = memdup_user(arg, sizeof(*sa));
3541 if (IS_ERR(sa))
3542 return PTR_ERR(sa);
3543
3544 trans = btrfs_join_transaction(root);
3545 if (IS_ERR(trans)) {
3546 ret = PTR_ERR(trans);
3547 goto out;
3548 }
3549
3550 /* FIXME: check if the IDs really exist */
3551 if (sa->create) {
3552 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
3553 NULL);
3554 } else {
3555 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
3556 }
3557
3558 err = btrfs_end_transaction(trans, root);
3559 if (err && !ret)
3560 ret = err;
3561
3562 out:
3563 kfree(sa);
3564 return ret;
3565 }
3566
3567 static long btrfs_ioctl_qgroup_limit(struct btrfs_root *root, void __user *arg)
3568 {
3569 struct btrfs_ioctl_qgroup_limit_args *sa;
3570 struct btrfs_trans_handle *trans;
3571 int ret;
3572 int err;
3573 u64 qgroupid;
3574
3575 if (!capable(CAP_SYS_ADMIN))
3576 return -EPERM;
3577
3578 if (root->fs_info->sb->s_flags & MS_RDONLY)
3579 return -EROFS;
3580
3581 sa = memdup_user(arg, sizeof(*sa));
3582 if (IS_ERR(sa))
3583 return PTR_ERR(sa);
3584
3585 trans = btrfs_join_transaction(root);
3586 if (IS_ERR(trans)) {
3587 ret = PTR_ERR(trans);
3588 goto out;
3589 }
3590
3591 qgroupid = sa->qgroupid;
3592 if (!qgroupid) {
3593 /* take the current subvol as qgroup */
3594 qgroupid = root->root_key.objectid;
3595 }
3596
3597 /* FIXME: check if the IDs really exist */
3598 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
3599
3600 err = btrfs_end_transaction(trans, root);
3601 if (err && !ret)
3602 ret = err;
3603
3604 out:
3605 kfree(sa);
3606 return ret;
3607 }
3608
3609 static long btrfs_ioctl_set_received_subvol(struct file *file,
3610 void __user *arg)
3611 {
3612 struct btrfs_ioctl_received_subvol_args *sa = NULL;
3613 struct inode *inode = fdentry(file)->d_inode;
3614 struct btrfs_root *root = BTRFS_I(inode)->root;
3615 struct btrfs_root_item *root_item = &root->root_item;
3616 struct btrfs_trans_handle *trans;
3617 struct timespec ct = CURRENT_TIME;
3618 int ret = 0;
3619
3620 ret = mnt_want_write_file(file);
3621 if (ret < 0)
3622 return ret;
3623
3624 down_write(&root->fs_info->subvol_sem);
3625
3626 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
3627 ret = -EINVAL;
3628 goto out;
3629 }
3630
3631 if (btrfs_root_readonly(root)) {
3632 ret = -EROFS;
3633 goto out;
3634 }
3635
3636 if (!inode_owner_or_capable(inode)) {
3637 ret = -EACCES;
3638 goto out;
3639 }
3640
3641 sa = memdup_user(arg, sizeof(*sa));
3642 if (IS_ERR(sa)) {
3643 ret = PTR_ERR(sa);
3644 sa = NULL;
3645 goto out;
3646 }
3647
3648 trans = btrfs_start_transaction(root, 1);
3649 if (IS_ERR(trans)) {
3650 ret = PTR_ERR(trans);
3651 trans = NULL;
3652 goto out;
3653 }
3654
3655 sa->rtransid = trans->transid;
3656 sa->rtime.sec = ct.tv_sec;
3657 sa->rtime.nsec = ct.tv_nsec;
3658
3659 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3660 btrfs_set_root_stransid(root_item, sa->stransid);
3661 btrfs_set_root_rtransid(root_item, sa->rtransid);
3662 root_item->stime.sec = cpu_to_le64(sa->stime.sec);
3663 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec);
3664 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec);
3665 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec);
3666
3667 ret = btrfs_update_root(trans, root->fs_info->tree_root,
3668 &root->root_key, &root->root_item);
3669 if (ret < 0) {
3670 btrfs_end_transaction(trans, root);
3671 trans = NULL;
3672 goto out;
3673 } else {
3674 ret = btrfs_commit_transaction(trans, root);
3675 if (ret < 0)
3676 goto out;
3677 }
3678
3679 ret = copy_to_user(arg, sa, sizeof(*sa));
3680 if (ret)
3681 ret = -EFAULT;
3682
3683 out:
3684 kfree(sa);
3685 up_write(&root->fs_info->subvol_sem);
3686 mnt_drop_write_file(file);
3687 return ret;
3688 }
3689
3690 long btrfs_ioctl(struct file *file, unsigned int
3691 cmd, unsigned long arg)
3692 {
3693 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3694 void __user *argp = (void __user *)arg;
3695
3696 switch (cmd) {
3697 case FS_IOC_GETFLAGS:
3698 return btrfs_ioctl_getflags(file, argp);
3699 case FS_IOC_SETFLAGS:
3700 return btrfs_ioctl_setflags(file, argp);
3701 case FS_IOC_GETVERSION:
3702 return btrfs_ioctl_getversion(file, argp);
3703 case FITRIM:
3704 return btrfs_ioctl_fitrim(file, argp);
3705 case BTRFS_IOC_SNAP_CREATE:
3706 return btrfs_ioctl_snap_create(file, argp, 0);
3707 case BTRFS_IOC_SNAP_CREATE_V2:
3708 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3709 case BTRFS_IOC_SUBVOL_CREATE:
3710 return btrfs_ioctl_snap_create(file, argp, 1);
3711 case BTRFS_IOC_SUBVOL_CREATE_V2:
3712 return btrfs_ioctl_snap_create_v2(file, argp, 1);
3713 case BTRFS_IOC_SNAP_DESTROY:
3714 return btrfs_ioctl_snap_destroy(file, argp);
3715 case BTRFS_IOC_SUBVOL_GETFLAGS:
3716 return btrfs_ioctl_subvol_getflags(file, argp);
3717 case BTRFS_IOC_SUBVOL_SETFLAGS:
3718 return btrfs_ioctl_subvol_setflags(file, argp);
3719 case BTRFS_IOC_DEFAULT_SUBVOL:
3720 return btrfs_ioctl_default_subvol(file, argp);
3721 case BTRFS_IOC_DEFRAG:
3722 return btrfs_ioctl_defrag(file, NULL);
3723 case BTRFS_IOC_DEFRAG_RANGE:
3724 return btrfs_ioctl_defrag(file, argp);
3725 case BTRFS_IOC_RESIZE:
3726 return btrfs_ioctl_resize(root, argp);
3727 case BTRFS_IOC_ADD_DEV:
3728 return btrfs_ioctl_add_dev(root, argp);
3729 case BTRFS_IOC_RM_DEV:
3730 return btrfs_ioctl_rm_dev(root, argp);
3731 case BTRFS_IOC_FS_INFO:
3732 return btrfs_ioctl_fs_info(root, argp);
3733 case BTRFS_IOC_DEV_INFO:
3734 return btrfs_ioctl_dev_info(root, argp);
3735 case BTRFS_IOC_BALANCE:
3736 return btrfs_ioctl_balance(file, NULL);
3737 case BTRFS_IOC_CLONE:
3738 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3739 case BTRFS_IOC_CLONE_RANGE:
3740 return btrfs_ioctl_clone_range(file, argp);
3741 case BTRFS_IOC_TRANS_START:
3742 return btrfs_ioctl_trans_start(file);
3743 case BTRFS_IOC_TRANS_END:
3744 return btrfs_ioctl_trans_end(file);
3745 case BTRFS_IOC_TREE_SEARCH:
3746 return btrfs_ioctl_tree_search(file, argp);
3747 case BTRFS_IOC_INO_LOOKUP:
3748 return btrfs_ioctl_ino_lookup(file, argp);
3749 case BTRFS_IOC_INO_PATHS:
3750 return btrfs_ioctl_ino_to_path(root, argp);
3751 case BTRFS_IOC_LOGICAL_INO:
3752 return btrfs_ioctl_logical_to_ino(root, argp);
3753 case BTRFS_IOC_SPACE_INFO:
3754 return btrfs_ioctl_space_info(root, argp);
3755 case BTRFS_IOC_SYNC:
3756 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3757 return 0;
3758 case BTRFS_IOC_START_SYNC:
3759 return btrfs_ioctl_start_sync(file, argp);
3760 case BTRFS_IOC_WAIT_SYNC:
3761 return btrfs_ioctl_wait_sync(file, argp);
3762 case BTRFS_IOC_SCRUB:
3763 return btrfs_ioctl_scrub(root, argp);
3764 case BTRFS_IOC_SCRUB_CANCEL:
3765 return btrfs_ioctl_scrub_cancel(root, argp);
3766 case BTRFS_IOC_SCRUB_PROGRESS:
3767 return btrfs_ioctl_scrub_progress(root, argp);
3768 case BTRFS_IOC_BALANCE_V2:
3769 return btrfs_ioctl_balance(file, argp);
3770 case BTRFS_IOC_BALANCE_CTL:
3771 return btrfs_ioctl_balance_ctl(root, arg);
3772 case BTRFS_IOC_BALANCE_PROGRESS:
3773 return btrfs_ioctl_balance_progress(root, argp);
3774 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
3775 return btrfs_ioctl_set_received_subvol(file, argp);
3776 case BTRFS_IOC_SEND:
3777 return btrfs_ioctl_send(file, argp);
3778 case BTRFS_IOC_GET_DEV_STATS:
3779 return btrfs_ioctl_get_dev_stats(root, argp);
3780 case BTRFS_IOC_QUOTA_CTL:
3781 return btrfs_ioctl_quota_ctl(root, argp);
3782 case BTRFS_IOC_QGROUP_ASSIGN:
3783 return btrfs_ioctl_qgroup_assign(root, argp);
3784 case BTRFS_IOC_QGROUP_CREATE:
3785 return btrfs_ioctl_qgroup_create(root, argp);
3786 case BTRFS_IOC_QGROUP_LIMIT:
3787 return btrfs_ioctl_qgroup_limit(root, argp);
3788 }
3789
3790 return -ENOTTY;
3791 }