]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/btrfs/ioctl.c
btrfs: rename variable holding per-inode compression type
[mirror_ubuntu-focal-kernel.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55 #include "rcu-string.h"
56 #include "send.h"
57 #include "dev-replace.h"
58 #include "props.h"
59 #include "sysfs.h"
60 #include "qgroup.h"
61 #include "tree-log.h"
62 #include "compression.h"
63
64 #ifdef CONFIG_64BIT
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
69 */
70 struct btrfs_ioctl_timespec_32 {
71 __u64 sec;
72 __u32 nsec;
73 } __attribute__ ((__packed__));
74
75 struct btrfs_ioctl_received_subvol_args_32 {
76 char uuid[BTRFS_UUID_SIZE]; /* in */
77 __u64 stransid; /* in */
78 __u64 rtransid; /* out */
79 struct btrfs_ioctl_timespec_32 stime; /* in */
80 struct btrfs_ioctl_timespec_32 rtime; /* out */
81 __u64 flags; /* in */
82 __u64 reserved[16]; /* in */
83 } __attribute__ ((__packed__));
84
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
87 #endif
88
89
90 static int btrfs_clone(struct inode *src, struct inode *inode,
91 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
92 int no_time_update);
93
94 /* Mask out flags that are inappropriate for the given type of inode. */
95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
96 {
97 if (S_ISDIR(mode))
98 return flags;
99 else if (S_ISREG(mode))
100 return flags & ~FS_DIRSYNC_FL;
101 else
102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104
105 /*
106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107 */
108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
109 {
110 unsigned int iflags = 0;
111
112 if (flags & BTRFS_INODE_SYNC)
113 iflags |= FS_SYNC_FL;
114 if (flags & BTRFS_INODE_IMMUTABLE)
115 iflags |= FS_IMMUTABLE_FL;
116 if (flags & BTRFS_INODE_APPEND)
117 iflags |= FS_APPEND_FL;
118 if (flags & BTRFS_INODE_NODUMP)
119 iflags |= FS_NODUMP_FL;
120 if (flags & BTRFS_INODE_NOATIME)
121 iflags |= FS_NOATIME_FL;
122 if (flags & BTRFS_INODE_DIRSYNC)
123 iflags |= FS_DIRSYNC_FL;
124 if (flags & BTRFS_INODE_NODATACOW)
125 iflags |= FS_NOCOW_FL;
126
127 if (flags & BTRFS_INODE_NOCOMPRESS)
128 iflags |= FS_NOCOMP_FL;
129 else if (flags & BTRFS_INODE_COMPRESS)
130 iflags |= FS_COMPR_FL;
131
132 return iflags;
133 }
134
135 /*
136 * Update inode->i_flags based on the btrfs internal flags.
137 */
138 void btrfs_update_iflags(struct inode *inode)
139 {
140 struct btrfs_inode *ip = BTRFS_I(inode);
141 unsigned int new_fl = 0;
142
143 if (ip->flags & BTRFS_INODE_SYNC)
144 new_fl |= S_SYNC;
145 if (ip->flags & BTRFS_INODE_IMMUTABLE)
146 new_fl |= S_IMMUTABLE;
147 if (ip->flags & BTRFS_INODE_APPEND)
148 new_fl |= S_APPEND;
149 if (ip->flags & BTRFS_INODE_NOATIME)
150 new_fl |= S_NOATIME;
151 if (ip->flags & BTRFS_INODE_DIRSYNC)
152 new_fl |= S_DIRSYNC;
153
154 set_mask_bits(&inode->i_flags,
155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
156 new_fl);
157 }
158
159 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
160 {
161 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
162 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
163
164 if (copy_to_user(arg, &flags, sizeof(flags)))
165 return -EFAULT;
166 return 0;
167 }
168
169 static int check_flags(unsigned int flags)
170 {
171 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
172 FS_NOATIME_FL | FS_NODUMP_FL | \
173 FS_SYNC_FL | FS_DIRSYNC_FL | \
174 FS_NOCOMP_FL | FS_COMPR_FL |
175 FS_NOCOW_FL))
176 return -EOPNOTSUPP;
177
178 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
179 return -EINVAL;
180
181 return 0;
182 }
183
184 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
185 {
186 struct inode *inode = file_inode(file);
187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
188 struct btrfs_inode *ip = BTRFS_I(inode);
189 struct btrfs_root *root = ip->root;
190 struct btrfs_trans_handle *trans;
191 unsigned int flags, oldflags;
192 int ret;
193 u64 ip_oldflags;
194 unsigned int i_oldflags;
195 umode_t mode;
196
197 if (!inode_owner_or_capable(inode))
198 return -EPERM;
199
200 if (btrfs_root_readonly(root))
201 return -EROFS;
202
203 if (copy_from_user(&flags, arg, sizeof(flags)))
204 return -EFAULT;
205
206 ret = check_flags(flags);
207 if (ret)
208 return ret;
209
210 ret = mnt_want_write_file(file);
211 if (ret)
212 return ret;
213
214 inode_lock(inode);
215
216 ip_oldflags = ip->flags;
217 i_oldflags = inode->i_flags;
218 mode = inode->i_mode;
219
220 flags = btrfs_mask_flags(inode->i_mode, flags);
221 oldflags = btrfs_flags_to_ioctl(ip->flags);
222 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
223 if (!capable(CAP_LINUX_IMMUTABLE)) {
224 ret = -EPERM;
225 goto out_unlock;
226 }
227 }
228
229 if (flags & FS_SYNC_FL)
230 ip->flags |= BTRFS_INODE_SYNC;
231 else
232 ip->flags &= ~BTRFS_INODE_SYNC;
233 if (flags & FS_IMMUTABLE_FL)
234 ip->flags |= BTRFS_INODE_IMMUTABLE;
235 else
236 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
237 if (flags & FS_APPEND_FL)
238 ip->flags |= BTRFS_INODE_APPEND;
239 else
240 ip->flags &= ~BTRFS_INODE_APPEND;
241 if (flags & FS_NODUMP_FL)
242 ip->flags |= BTRFS_INODE_NODUMP;
243 else
244 ip->flags &= ~BTRFS_INODE_NODUMP;
245 if (flags & FS_NOATIME_FL)
246 ip->flags |= BTRFS_INODE_NOATIME;
247 else
248 ip->flags &= ~BTRFS_INODE_NOATIME;
249 if (flags & FS_DIRSYNC_FL)
250 ip->flags |= BTRFS_INODE_DIRSYNC;
251 else
252 ip->flags &= ~BTRFS_INODE_DIRSYNC;
253 if (flags & FS_NOCOW_FL) {
254 if (S_ISREG(mode)) {
255 /*
256 * It's safe to turn csums off here, no extents exist.
257 * Otherwise we want the flag to reflect the real COW
258 * status of the file and will not set it.
259 */
260 if (inode->i_size == 0)
261 ip->flags |= BTRFS_INODE_NODATACOW
262 | BTRFS_INODE_NODATASUM;
263 } else {
264 ip->flags |= BTRFS_INODE_NODATACOW;
265 }
266 } else {
267 /*
268 * Revert back under same assumptions as above
269 */
270 if (S_ISREG(mode)) {
271 if (inode->i_size == 0)
272 ip->flags &= ~(BTRFS_INODE_NODATACOW
273 | BTRFS_INODE_NODATASUM);
274 } else {
275 ip->flags &= ~BTRFS_INODE_NODATACOW;
276 }
277 }
278
279 /*
280 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
281 * flag may be changed automatically if compression code won't make
282 * things smaller.
283 */
284 if (flags & FS_NOCOMP_FL) {
285 ip->flags &= ~BTRFS_INODE_COMPRESS;
286 ip->flags |= BTRFS_INODE_NOCOMPRESS;
287
288 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
289 if (ret && ret != -ENODATA)
290 goto out_drop;
291 } else if (flags & FS_COMPR_FL) {
292 const char *comp;
293
294 ip->flags |= BTRFS_INODE_COMPRESS;
295 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
296
297 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
298 comp = "lzo";
299 else
300 comp = "zlib";
301 ret = btrfs_set_prop(inode, "btrfs.compression",
302 comp, strlen(comp), 0);
303 if (ret)
304 goto out_drop;
305
306 } else {
307 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
308 if (ret && ret != -ENODATA)
309 goto out_drop;
310 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
311 }
312
313 trans = btrfs_start_transaction(root, 1);
314 if (IS_ERR(trans)) {
315 ret = PTR_ERR(trans);
316 goto out_drop;
317 }
318
319 btrfs_update_iflags(inode);
320 inode_inc_iversion(inode);
321 inode->i_ctime = current_time(inode);
322 ret = btrfs_update_inode(trans, root, inode);
323
324 btrfs_end_transaction(trans);
325 out_drop:
326 if (ret) {
327 ip->flags = ip_oldflags;
328 inode->i_flags = i_oldflags;
329 }
330
331 out_unlock:
332 inode_unlock(inode);
333 mnt_drop_write_file(file);
334 return ret;
335 }
336
337 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
338 {
339 struct inode *inode = file_inode(file);
340
341 return put_user(inode->i_generation, arg);
342 }
343
344 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
345 {
346 struct inode *inode = file_inode(file);
347 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
348 struct btrfs_device *device;
349 struct request_queue *q;
350 struct fstrim_range range;
351 u64 minlen = ULLONG_MAX;
352 u64 num_devices = 0;
353 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
354 int ret;
355
356 if (!capable(CAP_SYS_ADMIN))
357 return -EPERM;
358
359 rcu_read_lock();
360 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
361 dev_list) {
362 if (!device->bdev)
363 continue;
364 q = bdev_get_queue(device->bdev);
365 if (blk_queue_discard(q)) {
366 num_devices++;
367 minlen = min_t(u64, q->limits.discard_granularity,
368 minlen);
369 }
370 }
371 rcu_read_unlock();
372
373 if (!num_devices)
374 return -EOPNOTSUPP;
375 if (copy_from_user(&range, arg, sizeof(range)))
376 return -EFAULT;
377 if (range.start > total_bytes ||
378 range.len < fs_info->sb->s_blocksize)
379 return -EINVAL;
380
381 range.len = min(range.len, total_bytes - range.start);
382 range.minlen = max(range.minlen, minlen);
383 ret = btrfs_trim_fs(fs_info, &range);
384 if (ret < 0)
385 return ret;
386
387 if (copy_to_user(arg, &range, sizeof(range)))
388 return -EFAULT;
389
390 return 0;
391 }
392
393 int btrfs_is_empty_uuid(u8 *uuid)
394 {
395 int i;
396
397 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
398 if (uuid[i])
399 return 0;
400 }
401 return 1;
402 }
403
404 static noinline int create_subvol(struct inode *dir,
405 struct dentry *dentry,
406 const char *name, int namelen,
407 u64 *async_transid,
408 struct btrfs_qgroup_inherit *inherit)
409 {
410 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
411 struct btrfs_trans_handle *trans;
412 struct btrfs_key key;
413 struct btrfs_root_item *root_item;
414 struct btrfs_inode_item *inode_item;
415 struct extent_buffer *leaf;
416 struct btrfs_root *root = BTRFS_I(dir)->root;
417 struct btrfs_root *new_root;
418 struct btrfs_block_rsv block_rsv;
419 struct timespec cur_time = current_time(dir);
420 struct inode *inode;
421 int ret;
422 int err;
423 u64 objectid;
424 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
425 u64 index = 0;
426 u64 qgroup_reserved;
427 uuid_le new_uuid;
428
429 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
430 if (!root_item)
431 return -ENOMEM;
432
433 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
434 if (ret)
435 goto fail_free;
436
437 /*
438 * Don't create subvolume whose level is not zero. Or qgroup will be
439 * screwed up since it assumes subvolume qgroup's level to be 0.
440 */
441 if (btrfs_qgroup_level(objectid)) {
442 ret = -ENOSPC;
443 goto fail_free;
444 }
445
446 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
447 /*
448 * The same as the snapshot creation, please see the comment
449 * of create_snapshot().
450 */
451 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
452 8, &qgroup_reserved, false);
453 if (ret)
454 goto fail_free;
455
456 trans = btrfs_start_transaction(root, 0);
457 if (IS_ERR(trans)) {
458 ret = PTR_ERR(trans);
459 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
460 goto fail_free;
461 }
462 trans->block_rsv = &block_rsv;
463 trans->bytes_reserved = block_rsv.size;
464
465 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
466 if (ret)
467 goto fail;
468
469 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
470 if (IS_ERR(leaf)) {
471 ret = PTR_ERR(leaf);
472 goto fail;
473 }
474
475 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
476 btrfs_set_header_bytenr(leaf, leaf->start);
477 btrfs_set_header_generation(leaf, trans->transid);
478 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
479 btrfs_set_header_owner(leaf, objectid);
480
481 write_extent_buffer_fsid(leaf, fs_info->fsid);
482 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
483 btrfs_mark_buffer_dirty(leaf);
484
485 inode_item = &root_item->inode;
486 btrfs_set_stack_inode_generation(inode_item, 1);
487 btrfs_set_stack_inode_size(inode_item, 3);
488 btrfs_set_stack_inode_nlink(inode_item, 1);
489 btrfs_set_stack_inode_nbytes(inode_item,
490 fs_info->nodesize);
491 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
492
493 btrfs_set_root_flags(root_item, 0);
494 btrfs_set_root_limit(root_item, 0);
495 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
496
497 btrfs_set_root_bytenr(root_item, leaf->start);
498 btrfs_set_root_generation(root_item, trans->transid);
499 btrfs_set_root_level(root_item, 0);
500 btrfs_set_root_refs(root_item, 1);
501 btrfs_set_root_used(root_item, leaf->len);
502 btrfs_set_root_last_snapshot(root_item, 0);
503
504 btrfs_set_root_generation_v2(root_item,
505 btrfs_root_generation(root_item));
506 uuid_le_gen(&new_uuid);
507 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
508 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
509 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
510 root_item->ctime = root_item->otime;
511 btrfs_set_root_ctransid(root_item, trans->transid);
512 btrfs_set_root_otransid(root_item, trans->transid);
513
514 btrfs_tree_unlock(leaf);
515 free_extent_buffer(leaf);
516 leaf = NULL;
517
518 btrfs_set_root_dirid(root_item, new_dirid);
519
520 key.objectid = objectid;
521 key.offset = 0;
522 key.type = BTRFS_ROOT_ITEM_KEY;
523 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
524 root_item);
525 if (ret)
526 goto fail;
527
528 key.offset = (u64)-1;
529 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
530 if (IS_ERR(new_root)) {
531 ret = PTR_ERR(new_root);
532 btrfs_abort_transaction(trans, ret);
533 goto fail;
534 }
535
536 btrfs_record_root_in_trans(trans, new_root);
537
538 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
539 if (ret) {
540 /* We potentially lose an unused inode item here */
541 btrfs_abort_transaction(trans, ret);
542 goto fail;
543 }
544
545 mutex_lock(&new_root->objectid_mutex);
546 new_root->highest_objectid = new_dirid;
547 mutex_unlock(&new_root->objectid_mutex);
548
549 /*
550 * insert the directory item
551 */
552 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
553 if (ret) {
554 btrfs_abort_transaction(trans, ret);
555 goto fail;
556 }
557
558 ret = btrfs_insert_dir_item(trans, root,
559 name, namelen, BTRFS_I(dir), &key,
560 BTRFS_FT_DIR, index);
561 if (ret) {
562 btrfs_abort_transaction(trans, ret);
563 goto fail;
564 }
565
566 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
567 ret = btrfs_update_inode(trans, root, dir);
568 BUG_ON(ret);
569
570 ret = btrfs_add_root_ref(trans, fs_info,
571 objectid, root->root_key.objectid,
572 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
573 BUG_ON(ret);
574
575 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
576 BTRFS_UUID_KEY_SUBVOL, objectid);
577 if (ret)
578 btrfs_abort_transaction(trans, ret);
579
580 fail:
581 kfree(root_item);
582 trans->block_rsv = NULL;
583 trans->bytes_reserved = 0;
584 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
585
586 if (async_transid) {
587 *async_transid = trans->transid;
588 err = btrfs_commit_transaction_async(trans, 1);
589 if (err)
590 err = btrfs_commit_transaction(trans);
591 } else {
592 err = btrfs_commit_transaction(trans);
593 }
594 if (err && !ret)
595 ret = err;
596
597 if (!ret) {
598 inode = btrfs_lookup_dentry(dir, dentry);
599 if (IS_ERR(inode))
600 return PTR_ERR(inode);
601 d_instantiate(dentry, inode);
602 }
603 return ret;
604
605 fail_free:
606 kfree(root_item);
607 return ret;
608 }
609
610 static void btrfs_wait_for_no_snapshotting_writes(struct btrfs_root *root)
611 {
612 s64 writers;
613 DEFINE_WAIT(wait);
614
615 do {
616 prepare_to_wait(&root->subv_writers->wait, &wait,
617 TASK_UNINTERRUPTIBLE);
618
619 writers = percpu_counter_sum(&root->subv_writers->counter);
620 if (writers)
621 schedule();
622
623 finish_wait(&root->subv_writers->wait, &wait);
624 } while (writers);
625 }
626
627 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
628 struct dentry *dentry,
629 u64 *async_transid, bool readonly,
630 struct btrfs_qgroup_inherit *inherit)
631 {
632 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
633 struct inode *inode;
634 struct btrfs_pending_snapshot *pending_snapshot;
635 struct btrfs_trans_handle *trans;
636 int ret;
637
638 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
639 return -EINVAL;
640
641 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
642 if (!pending_snapshot)
643 return -ENOMEM;
644
645 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
646 GFP_KERNEL);
647 pending_snapshot->path = btrfs_alloc_path();
648 if (!pending_snapshot->root_item || !pending_snapshot->path) {
649 ret = -ENOMEM;
650 goto free_pending;
651 }
652
653 atomic_inc(&root->will_be_snapshotted);
654 smp_mb__after_atomic();
655 btrfs_wait_for_no_snapshotting_writes(root);
656
657 ret = btrfs_start_delalloc_inodes(root, 0);
658 if (ret)
659 goto dec_and_free;
660
661 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
662
663 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
664 BTRFS_BLOCK_RSV_TEMP);
665 /*
666 * 1 - parent dir inode
667 * 2 - dir entries
668 * 1 - root item
669 * 2 - root ref/backref
670 * 1 - root of snapshot
671 * 1 - UUID item
672 */
673 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
674 &pending_snapshot->block_rsv, 8,
675 &pending_snapshot->qgroup_reserved,
676 false);
677 if (ret)
678 goto dec_and_free;
679
680 pending_snapshot->dentry = dentry;
681 pending_snapshot->root = root;
682 pending_snapshot->readonly = readonly;
683 pending_snapshot->dir = dir;
684 pending_snapshot->inherit = inherit;
685
686 trans = btrfs_start_transaction(root, 0);
687 if (IS_ERR(trans)) {
688 ret = PTR_ERR(trans);
689 goto fail;
690 }
691
692 spin_lock(&fs_info->trans_lock);
693 list_add(&pending_snapshot->list,
694 &trans->transaction->pending_snapshots);
695 spin_unlock(&fs_info->trans_lock);
696 if (async_transid) {
697 *async_transid = trans->transid;
698 ret = btrfs_commit_transaction_async(trans, 1);
699 if (ret)
700 ret = btrfs_commit_transaction(trans);
701 } else {
702 ret = btrfs_commit_transaction(trans);
703 }
704 if (ret)
705 goto fail;
706
707 ret = pending_snapshot->error;
708 if (ret)
709 goto fail;
710
711 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
712 if (ret)
713 goto fail;
714
715 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
716 if (IS_ERR(inode)) {
717 ret = PTR_ERR(inode);
718 goto fail;
719 }
720
721 d_instantiate(dentry, inode);
722 ret = 0;
723 fail:
724 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
725 dec_and_free:
726 if (atomic_dec_and_test(&root->will_be_snapshotted))
727 wake_up_atomic_t(&root->will_be_snapshotted);
728 free_pending:
729 kfree(pending_snapshot->root_item);
730 btrfs_free_path(pending_snapshot->path);
731 kfree(pending_snapshot);
732
733 return ret;
734 }
735
736 /* copy of may_delete in fs/namei.c()
737 * Check whether we can remove a link victim from directory dir, check
738 * whether the type of victim is right.
739 * 1. We can't do it if dir is read-only (done in permission())
740 * 2. We should have write and exec permissions on dir
741 * 3. We can't remove anything from append-only dir
742 * 4. We can't do anything with immutable dir (done in permission())
743 * 5. If the sticky bit on dir is set we should either
744 * a. be owner of dir, or
745 * b. be owner of victim, or
746 * c. have CAP_FOWNER capability
747 * 6. If the victim is append-only or immutable we can't do anything with
748 * links pointing to it.
749 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
750 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
751 * 9. We can't remove a root or mountpoint.
752 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
753 * nfs_async_unlink().
754 */
755
756 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
757 {
758 int error;
759
760 if (d_really_is_negative(victim))
761 return -ENOENT;
762
763 BUG_ON(d_inode(victim->d_parent) != dir);
764 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
765
766 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
767 if (error)
768 return error;
769 if (IS_APPEND(dir))
770 return -EPERM;
771 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
772 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
773 return -EPERM;
774 if (isdir) {
775 if (!d_is_dir(victim))
776 return -ENOTDIR;
777 if (IS_ROOT(victim))
778 return -EBUSY;
779 } else if (d_is_dir(victim))
780 return -EISDIR;
781 if (IS_DEADDIR(dir))
782 return -ENOENT;
783 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
784 return -EBUSY;
785 return 0;
786 }
787
788 /* copy of may_create in fs/namei.c() */
789 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
790 {
791 if (d_really_is_positive(child))
792 return -EEXIST;
793 if (IS_DEADDIR(dir))
794 return -ENOENT;
795 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
796 }
797
798 /*
799 * Create a new subvolume below @parent. This is largely modeled after
800 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
801 * inside this filesystem so it's quite a bit simpler.
802 */
803 static noinline int btrfs_mksubvol(const struct path *parent,
804 const char *name, int namelen,
805 struct btrfs_root *snap_src,
806 u64 *async_transid, bool readonly,
807 struct btrfs_qgroup_inherit *inherit)
808 {
809 struct inode *dir = d_inode(parent->dentry);
810 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
811 struct dentry *dentry;
812 int error;
813
814 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
815 if (error == -EINTR)
816 return error;
817
818 dentry = lookup_one_len(name, parent->dentry, namelen);
819 error = PTR_ERR(dentry);
820 if (IS_ERR(dentry))
821 goto out_unlock;
822
823 error = btrfs_may_create(dir, dentry);
824 if (error)
825 goto out_dput;
826
827 /*
828 * even if this name doesn't exist, we may get hash collisions.
829 * check for them now when we can safely fail
830 */
831 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
832 dir->i_ino, name,
833 namelen);
834 if (error)
835 goto out_dput;
836
837 down_read(&fs_info->subvol_sem);
838
839 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
840 goto out_up_read;
841
842 if (snap_src) {
843 error = create_snapshot(snap_src, dir, dentry,
844 async_transid, readonly, inherit);
845 } else {
846 error = create_subvol(dir, dentry, name, namelen,
847 async_transid, inherit);
848 }
849 if (!error)
850 fsnotify_mkdir(dir, dentry);
851 out_up_read:
852 up_read(&fs_info->subvol_sem);
853 out_dput:
854 dput(dentry);
855 out_unlock:
856 inode_unlock(dir);
857 return error;
858 }
859
860 /*
861 * When we're defragging a range, we don't want to kick it off again
862 * if it is really just waiting for delalloc to send it down.
863 * If we find a nice big extent or delalloc range for the bytes in the
864 * file you want to defrag, we return 0 to let you know to skip this
865 * part of the file
866 */
867 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
868 {
869 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
870 struct extent_map *em = NULL;
871 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
872 u64 end;
873
874 read_lock(&em_tree->lock);
875 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
876 read_unlock(&em_tree->lock);
877
878 if (em) {
879 end = extent_map_end(em);
880 free_extent_map(em);
881 if (end - offset > thresh)
882 return 0;
883 }
884 /* if we already have a nice delalloc here, just stop */
885 thresh /= 2;
886 end = count_range_bits(io_tree, &offset, offset + thresh,
887 thresh, EXTENT_DELALLOC, 1);
888 if (end >= thresh)
889 return 0;
890 return 1;
891 }
892
893 /*
894 * helper function to walk through a file and find extents
895 * newer than a specific transid, and smaller than thresh.
896 *
897 * This is used by the defragging code to find new and small
898 * extents
899 */
900 static int find_new_extents(struct btrfs_root *root,
901 struct inode *inode, u64 newer_than,
902 u64 *off, u32 thresh)
903 {
904 struct btrfs_path *path;
905 struct btrfs_key min_key;
906 struct extent_buffer *leaf;
907 struct btrfs_file_extent_item *extent;
908 int type;
909 int ret;
910 u64 ino = btrfs_ino(BTRFS_I(inode));
911
912 path = btrfs_alloc_path();
913 if (!path)
914 return -ENOMEM;
915
916 min_key.objectid = ino;
917 min_key.type = BTRFS_EXTENT_DATA_KEY;
918 min_key.offset = *off;
919
920 while (1) {
921 ret = btrfs_search_forward(root, &min_key, path, newer_than);
922 if (ret != 0)
923 goto none;
924 process_slot:
925 if (min_key.objectid != ino)
926 goto none;
927 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
928 goto none;
929
930 leaf = path->nodes[0];
931 extent = btrfs_item_ptr(leaf, path->slots[0],
932 struct btrfs_file_extent_item);
933
934 type = btrfs_file_extent_type(leaf, extent);
935 if (type == BTRFS_FILE_EXTENT_REG &&
936 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
937 check_defrag_in_cache(inode, min_key.offset, thresh)) {
938 *off = min_key.offset;
939 btrfs_free_path(path);
940 return 0;
941 }
942
943 path->slots[0]++;
944 if (path->slots[0] < btrfs_header_nritems(leaf)) {
945 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
946 goto process_slot;
947 }
948
949 if (min_key.offset == (u64)-1)
950 goto none;
951
952 min_key.offset++;
953 btrfs_release_path(path);
954 }
955 none:
956 btrfs_free_path(path);
957 return -ENOENT;
958 }
959
960 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
961 {
962 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
963 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
964 struct extent_map *em;
965 u64 len = PAGE_SIZE;
966
967 /*
968 * hopefully we have this extent in the tree already, try without
969 * the full extent lock
970 */
971 read_lock(&em_tree->lock);
972 em = lookup_extent_mapping(em_tree, start, len);
973 read_unlock(&em_tree->lock);
974
975 if (!em) {
976 struct extent_state *cached = NULL;
977 u64 end = start + len - 1;
978
979 /* get the big lock and read metadata off disk */
980 lock_extent_bits(io_tree, start, end, &cached);
981 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
982 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
983
984 if (IS_ERR(em))
985 return NULL;
986 }
987
988 return em;
989 }
990
991 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
992 {
993 struct extent_map *next;
994 bool ret = true;
995
996 /* this is the last extent */
997 if (em->start + em->len >= i_size_read(inode))
998 return false;
999
1000 next = defrag_lookup_extent(inode, em->start + em->len);
1001 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1002 ret = false;
1003 else if ((em->block_start + em->block_len == next->block_start) &&
1004 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1005 ret = false;
1006
1007 free_extent_map(next);
1008 return ret;
1009 }
1010
1011 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1012 u64 *last_len, u64 *skip, u64 *defrag_end,
1013 int compress)
1014 {
1015 struct extent_map *em;
1016 int ret = 1;
1017 bool next_mergeable = true;
1018 bool prev_mergeable = true;
1019
1020 /*
1021 * make sure that once we start defragging an extent, we keep on
1022 * defragging it
1023 */
1024 if (start < *defrag_end)
1025 return 1;
1026
1027 *skip = 0;
1028
1029 em = defrag_lookup_extent(inode, start);
1030 if (!em)
1031 return 0;
1032
1033 /* this will cover holes, and inline extents */
1034 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1035 ret = 0;
1036 goto out;
1037 }
1038
1039 if (!*defrag_end)
1040 prev_mergeable = false;
1041
1042 next_mergeable = defrag_check_next_extent(inode, em);
1043 /*
1044 * we hit a real extent, if it is big or the next extent is not a
1045 * real extent, don't bother defragging it
1046 */
1047 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1048 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1049 ret = 0;
1050 out:
1051 /*
1052 * last_len ends up being a counter of how many bytes we've defragged.
1053 * every time we choose not to defrag an extent, we reset *last_len
1054 * so that the next tiny extent will force a defrag.
1055 *
1056 * The end result of this is that tiny extents before a single big
1057 * extent will force at least part of that big extent to be defragged.
1058 */
1059 if (ret) {
1060 *defrag_end = extent_map_end(em);
1061 } else {
1062 *last_len = 0;
1063 *skip = extent_map_end(em);
1064 *defrag_end = 0;
1065 }
1066
1067 free_extent_map(em);
1068 return ret;
1069 }
1070
1071 /*
1072 * it doesn't do much good to defrag one or two pages
1073 * at a time. This pulls in a nice chunk of pages
1074 * to COW and defrag.
1075 *
1076 * It also makes sure the delalloc code has enough
1077 * dirty data to avoid making new small extents as part
1078 * of the defrag
1079 *
1080 * It's a good idea to start RA on this range
1081 * before calling this.
1082 */
1083 static int cluster_pages_for_defrag(struct inode *inode,
1084 struct page **pages,
1085 unsigned long start_index,
1086 unsigned long num_pages)
1087 {
1088 unsigned long file_end;
1089 u64 isize = i_size_read(inode);
1090 u64 page_start;
1091 u64 page_end;
1092 u64 page_cnt;
1093 int ret;
1094 int i;
1095 int i_done;
1096 struct btrfs_ordered_extent *ordered;
1097 struct extent_state *cached_state = NULL;
1098 struct extent_io_tree *tree;
1099 struct extent_changeset *data_reserved = NULL;
1100 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1101
1102 file_end = (isize - 1) >> PAGE_SHIFT;
1103 if (!isize || start_index > file_end)
1104 return 0;
1105
1106 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1107
1108 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1109 start_index << PAGE_SHIFT,
1110 page_cnt << PAGE_SHIFT);
1111 if (ret)
1112 return ret;
1113 i_done = 0;
1114 tree = &BTRFS_I(inode)->io_tree;
1115
1116 /* step one, lock all the pages */
1117 for (i = 0; i < page_cnt; i++) {
1118 struct page *page;
1119 again:
1120 page = find_or_create_page(inode->i_mapping,
1121 start_index + i, mask);
1122 if (!page)
1123 break;
1124
1125 page_start = page_offset(page);
1126 page_end = page_start + PAGE_SIZE - 1;
1127 while (1) {
1128 lock_extent_bits(tree, page_start, page_end,
1129 &cached_state);
1130 ordered = btrfs_lookup_ordered_extent(inode,
1131 page_start);
1132 unlock_extent_cached(tree, page_start, page_end,
1133 &cached_state, GFP_NOFS);
1134 if (!ordered)
1135 break;
1136
1137 unlock_page(page);
1138 btrfs_start_ordered_extent(inode, ordered, 1);
1139 btrfs_put_ordered_extent(ordered);
1140 lock_page(page);
1141 /*
1142 * we unlocked the page above, so we need check if
1143 * it was released or not.
1144 */
1145 if (page->mapping != inode->i_mapping) {
1146 unlock_page(page);
1147 put_page(page);
1148 goto again;
1149 }
1150 }
1151
1152 if (!PageUptodate(page)) {
1153 btrfs_readpage(NULL, page);
1154 lock_page(page);
1155 if (!PageUptodate(page)) {
1156 unlock_page(page);
1157 put_page(page);
1158 ret = -EIO;
1159 break;
1160 }
1161 }
1162
1163 if (page->mapping != inode->i_mapping) {
1164 unlock_page(page);
1165 put_page(page);
1166 goto again;
1167 }
1168
1169 pages[i] = page;
1170 i_done++;
1171 }
1172 if (!i_done || ret)
1173 goto out;
1174
1175 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1176 goto out;
1177
1178 /*
1179 * so now we have a nice long stream of locked
1180 * and up to date pages, lets wait on them
1181 */
1182 for (i = 0; i < i_done; i++)
1183 wait_on_page_writeback(pages[i]);
1184
1185 page_start = page_offset(pages[0]);
1186 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1187
1188 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1189 page_start, page_end - 1, &cached_state);
1190 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1191 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1192 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1193 &cached_state, GFP_NOFS);
1194
1195 if (i_done != page_cnt) {
1196 spin_lock(&BTRFS_I(inode)->lock);
1197 BTRFS_I(inode)->outstanding_extents++;
1198 spin_unlock(&BTRFS_I(inode)->lock);
1199 btrfs_delalloc_release_space(inode, data_reserved,
1200 start_index << PAGE_SHIFT,
1201 (page_cnt - i_done) << PAGE_SHIFT);
1202 }
1203
1204
1205 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1206 &cached_state);
1207
1208 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1209 page_start, page_end - 1, &cached_state,
1210 GFP_NOFS);
1211
1212 for (i = 0; i < i_done; i++) {
1213 clear_page_dirty_for_io(pages[i]);
1214 ClearPageChecked(pages[i]);
1215 set_page_extent_mapped(pages[i]);
1216 set_page_dirty(pages[i]);
1217 unlock_page(pages[i]);
1218 put_page(pages[i]);
1219 }
1220 extent_changeset_free(data_reserved);
1221 return i_done;
1222 out:
1223 for (i = 0; i < i_done; i++) {
1224 unlock_page(pages[i]);
1225 put_page(pages[i]);
1226 }
1227 btrfs_delalloc_release_space(inode, data_reserved,
1228 start_index << PAGE_SHIFT,
1229 page_cnt << PAGE_SHIFT);
1230 extent_changeset_free(data_reserved);
1231 return ret;
1232
1233 }
1234
1235 int btrfs_defrag_file(struct inode *inode, struct file *file,
1236 struct btrfs_ioctl_defrag_range_args *range,
1237 u64 newer_than, unsigned long max_to_defrag)
1238 {
1239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1240 struct btrfs_root *root = BTRFS_I(inode)->root;
1241 struct file_ra_state *ra = NULL;
1242 unsigned long last_index;
1243 u64 isize = i_size_read(inode);
1244 u64 last_len = 0;
1245 u64 skip = 0;
1246 u64 defrag_end = 0;
1247 u64 newer_off = range->start;
1248 unsigned long i;
1249 unsigned long ra_index = 0;
1250 int ret;
1251 int defrag_count = 0;
1252 int compress_type = BTRFS_COMPRESS_ZLIB;
1253 u32 extent_thresh = range->extent_thresh;
1254 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1255 unsigned long cluster = max_cluster;
1256 u64 new_align = ~((u64)SZ_128K - 1);
1257 struct page **pages = NULL;
1258
1259 if (isize == 0)
1260 return 0;
1261
1262 if (range->start >= isize)
1263 return -EINVAL;
1264
1265 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1266 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1267 return -EINVAL;
1268 if (range->compress_type)
1269 compress_type = range->compress_type;
1270 }
1271
1272 if (extent_thresh == 0)
1273 extent_thresh = SZ_256K;
1274
1275 /*
1276 * If we were not given a file, allocate a readahead context. As
1277 * readahead is just an optimization, defrag will work without it so
1278 * we don't error out.
1279 */
1280 if (!file) {
1281 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1282 if (ra)
1283 file_ra_state_init(ra, inode->i_mapping);
1284 } else {
1285 ra = &file->f_ra;
1286 }
1287
1288 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1289 if (!pages) {
1290 ret = -ENOMEM;
1291 goto out_ra;
1292 }
1293
1294 /* find the last page to defrag */
1295 if (range->start + range->len > range->start) {
1296 last_index = min_t(u64, isize - 1,
1297 range->start + range->len - 1) >> PAGE_SHIFT;
1298 } else {
1299 last_index = (isize - 1) >> PAGE_SHIFT;
1300 }
1301
1302 if (newer_than) {
1303 ret = find_new_extents(root, inode, newer_than,
1304 &newer_off, SZ_64K);
1305 if (!ret) {
1306 range->start = newer_off;
1307 /*
1308 * we always align our defrag to help keep
1309 * the extents in the file evenly spaced
1310 */
1311 i = (newer_off & new_align) >> PAGE_SHIFT;
1312 } else
1313 goto out_ra;
1314 } else {
1315 i = range->start >> PAGE_SHIFT;
1316 }
1317 if (!max_to_defrag)
1318 max_to_defrag = last_index - i + 1;
1319
1320 /*
1321 * make writeback starts from i, so the defrag range can be
1322 * written sequentially.
1323 */
1324 if (i < inode->i_mapping->writeback_index)
1325 inode->i_mapping->writeback_index = i;
1326
1327 while (i <= last_index && defrag_count < max_to_defrag &&
1328 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1329 /*
1330 * make sure we stop running if someone unmounts
1331 * the FS
1332 */
1333 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1334 break;
1335
1336 if (btrfs_defrag_cancelled(fs_info)) {
1337 btrfs_debug(fs_info, "defrag_file cancelled");
1338 ret = -EAGAIN;
1339 break;
1340 }
1341
1342 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1343 extent_thresh, &last_len, &skip,
1344 &defrag_end, range->flags &
1345 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1346 unsigned long next;
1347 /*
1348 * the should_defrag function tells us how much to skip
1349 * bump our counter by the suggested amount
1350 */
1351 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1352 i = max(i + 1, next);
1353 continue;
1354 }
1355
1356 if (!newer_than) {
1357 cluster = (PAGE_ALIGN(defrag_end) >>
1358 PAGE_SHIFT) - i;
1359 cluster = min(cluster, max_cluster);
1360 } else {
1361 cluster = max_cluster;
1362 }
1363
1364 if (i + cluster > ra_index) {
1365 ra_index = max(i, ra_index);
1366 if (ra)
1367 page_cache_sync_readahead(inode->i_mapping, ra,
1368 file, ra_index, cluster);
1369 ra_index += cluster;
1370 }
1371
1372 inode_lock(inode);
1373 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1374 BTRFS_I(inode)->prop_compress = compress_type;
1375 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1376 if (ret < 0) {
1377 inode_unlock(inode);
1378 goto out_ra;
1379 }
1380
1381 defrag_count += ret;
1382 balance_dirty_pages_ratelimited(inode->i_mapping);
1383 inode_unlock(inode);
1384
1385 if (newer_than) {
1386 if (newer_off == (u64)-1)
1387 break;
1388
1389 if (ret > 0)
1390 i += ret;
1391
1392 newer_off = max(newer_off + 1,
1393 (u64)i << PAGE_SHIFT);
1394
1395 ret = find_new_extents(root, inode, newer_than,
1396 &newer_off, SZ_64K);
1397 if (!ret) {
1398 range->start = newer_off;
1399 i = (newer_off & new_align) >> PAGE_SHIFT;
1400 } else {
1401 break;
1402 }
1403 } else {
1404 if (ret > 0) {
1405 i += ret;
1406 last_len += ret << PAGE_SHIFT;
1407 } else {
1408 i++;
1409 last_len = 0;
1410 }
1411 }
1412 }
1413
1414 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1415 filemap_flush(inode->i_mapping);
1416 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1417 &BTRFS_I(inode)->runtime_flags))
1418 filemap_flush(inode->i_mapping);
1419 }
1420
1421 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1422 /* the filemap_flush will queue IO into the worker threads, but
1423 * we have to make sure the IO is actually started and that
1424 * ordered extents get created before we return
1425 */
1426 atomic_inc(&fs_info->async_submit_draining);
1427 while (atomic_read(&fs_info->nr_async_submits) ||
1428 atomic_read(&fs_info->async_delalloc_pages)) {
1429 wait_event(fs_info->async_submit_wait,
1430 (atomic_read(&fs_info->nr_async_submits) == 0 &&
1431 atomic_read(&fs_info->async_delalloc_pages) == 0));
1432 }
1433 atomic_dec(&fs_info->async_submit_draining);
1434 }
1435
1436 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1437 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1438 }
1439
1440 ret = defrag_count;
1441
1442 out_ra:
1443 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1444 inode_lock(inode);
1445 BTRFS_I(inode)->prop_compress = BTRFS_COMPRESS_NONE;
1446 inode_unlock(inode);
1447 }
1448 if (!file)
1449 kfree(ra);
1450 kfree(pages);
1451 return ret;
1452 }
1453
1454 static noinline int btrfs_ioctl_resize(struct file *file,
1455 void __user *arg)
1456 {
1457 struct inode *inode = file_inode(file);
1458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1459 u64 new_size;
1460 u64 old_size;
1461 u64 devid = 1;
1462 struct btrfs_root *root = BTRFS_I(inode)->root;
1463 struct btrfs_ioctl_vol_args *vol_args;
1464 struct btrfs_trans_handle *trans;
1465 struct btrfs_device *device = NULL;
1466 char *sizestr;
1467 char *retptr;
1468 char *devstr = NULL;
1469 int ret = 0;
1470 int mod = 0;
1471
1472 if (!capable(CAP_SYS_ADMIN))
1473 return -EPERM;
1474
1475 ret = mnt_want_write_file(file);
1476 if (ret)
1477 return ret;
1478
1479 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1480 mnt_drop_write_file(file);
1481 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1482 }
1483
1484 mutex_lock(&fs_info->volume_mutex);
1485 vol_args = memdup_user(arg, sizeof(*vol_args));
1486 if (IS_ERR(vol_args)) {
1487 ret = PTR_ERR(vol_args);
1488 goto out;
1489 }
1490
1491 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1492
1493 sizestr = vol_args->name;
1494 devstr = strchr(sizestr, ':');
1495 if (devstr) {
1496 sizestr = devstr + 1;
1497 *devstr = '\0';
1498 devstr = vol_args->name;
1499 ret = kstrtoull(devstr, 10, &devid);
1500 if (ret)
1501 goto out_free;
1502 if (!devid) {
1503 ret = -EINVAL;
1504 goto out_free;
1505 }
1506 btrfs_info(fs_info, "resizing devid %llu", devid);
1507 }
1508
1509 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1510 if (!device) {
1511 btrfs_info(fs_info, "resizer unable to find device %llu",
1512 devid);
1513 ret = -ENODEV;
1514 goto out_free;
1515 }
1516
1517 if (!device->writeable) {
1518 btrfs_info(fs_info,
1519 "resizer unable to apply on readonly device %llu",
1520 devid);
1521 ret = -EPERM;
1522 goto out_free;
1523 }
1524
1525 if (!strcmp(sizestr, "max"))
1526 new_size = device->bdev->bd_inode->i_size;
1527 else {
1528 if (sizestr[0] == '-') {
1529 mod = -1;
1530 sizestr++;
1531 } else if (sizestr[0] == '+') {
1532 mod = 1;
1533 sizestr++;
1534 }
1535 new_size = memparse(sizestr, &retptr);
1536 if (*retptr != '\0' || new_size == 0) {
1537 ret = -EINVAL;
1538 goto out_free;
1539 }
1540 }
1541
1542 if (device->is_tgtdev_for_dev_replace) {
1543 ret = -EPERM;
1544 goto out_free;
1545 }
1546
1547 old_size = btrfs_device_get_total_bytes(device);
1548
1549 if (mod < 0) {
1550 if (new_size > old_size) {
1551 ret = -EINVAL;
1552 goto out_free;
1553 }
1554 new_size = old_size - new_size;
1555 } else if (mod > 0) {
1556 if (new_size > ULLONG_MAX - old_size) {
1557 ret = -ERANGE;
1558 goto out_free;
1559 }
1560 new_size = old_size + new_size;
1561 }
1562
1563 if (new_size < SZ_256M) {
1564 ret = -EINVAL;
1565 goto out_free;
1566 }
1567 if (new_size > device->bdev->bd_inode->i_size) {
1568 ret = -EFBIG;
1569 goto out_free;
1570 }
1571
1572 new_size = round_down(new_size, fs_info->sectorsize);
1573
1574 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1575 rcu_str_deref(device->name), new_size);
1576
1577 if (new_size > old_size) {
1578 trans = btrfs_start_transaction(root, 0);
1579 if (IS_ERR(trans)) {
1580 ret = PTR_ERR(trans);
1581 goto out_free;
1582 }
1583 ret = btrfs_grow_device(trans, device, new_size);
1584 btrfs_commit_transaction(trans);
1585 } else if (new_size < old_size) {
1586 ret = btrfs_shrink_device(device, new_size);
1587 } /* equal, nothing need to do */
1588
1589 out_free:
1590 kfree(vol_args);
1591 out:
1592 mutex_unlock(&fs_info->volume_mutex);
1593 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1594 mnt_drop_write_file(file);
1595 return ret;
1596 }
1597
1598 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1599 const char *name, unsigned long fd, int subvol,
1600 u64 *transid, bool readonly,
1601 struct btrfs_qgroup_inherit *inherit)
1602 {
1603 int namelen;
1604 int ret = 0;
1605
1606 if (!S_ISDIR(file_inode(file)->i_mode))
1607 return -ENOTDIR;
1608
1609 ret = mnt_want_write_file(file);
1610 if (ret)
1611 goto out;
1612
1613 namelen = strlen(name);
1614 if (strchr(name, '/')) {
1615 ret = -EINVAL;
1616 goto out_drop_write;
1617 }
1618
1619 if (name[0] == '.' &&
1620 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1621 ret = -EEXIST;
1622 goto out_drop_write;
1623 }
1624
1625 if (subvol) {
1626 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1627 NULL, transid, readonly, inherit);
1628 } else {
1629 struct fd src = fdget(fd);
1630 struct inode *src_inode;
1631 if (!src.file) {
1632 ret = -EINVAL;
1633 goto out_drop_write;
1634 }
1635
1636 src_inode = file_inode(src.file);
1637 if (src_inode->i_sb != file_inode(file)->i_sb) {
1638 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1639 "Snapshot src from another FS");
1640 ret = -EXDEV;
1641 } else if (!inode_owner_or_capable(src_inode)) {
1642 /*
1643 * Subvolume creation is not restricted, but snapshots
1644 * are limited to own subvolumes only
1645 */
1646 ret = -EPERM;
1647 } else {
1648 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1649 BTRFS_I(src_inode)->root,
1650 transid, readonly, inherit);
1651 }
1652 fdput(src);
1653 }
1654 out_drop_write:
1655 mnt_drop_write_file(file);
1656 out:
1657 return ret;
1658 }
1659
1660 static noinline int btrfs_ioctl_snap_create(struct file *file,
1661 void __user *arg, int subvol)
1662 {
1663 struct btrfs_ioctl_vol_args *vol_args;
1664 int ret;
1665
1666 if (!S_ISDIR(file_inode(file)->i_mode))
1667 return -ENOTDIR;
1668
1669 vol_args = memdup_user(arg, sizeof(*vol_args));
1670 if (IS_ERR(vol_args))
1671 return PTR_ERR(vol_args);
1672 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1673
1674 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1675 vol_args->fd, subvol,
1676 NULL, false, NULL);
1677
1678 kfree(vol_args);
1679 return ret;
1680 }
1681
1682 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1683 void __user *arg, int subvol)
1684 {
1685 struct btrfs_ioctl_vol_args_v2 *vol_args;
1686 int ret;
1687 u64 transid = 0;
1688 u64 *ptr = NULL;
1689 bool readonly = false;
1690 struct btrfs_qgroup_inherit *inherit = NULL;
1691
1692 if (!S_ISDIR(file_inode(file)->i_mode))
1693 return -ENOTDIR;
1694
1695 vol_args = memdup_user(arg, sizeof(*vol_args));
1696 if (IS_ERR(vol_args))
1697 return PTR_ERR(vol_args);
1698 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1699
1700 if (vol_args->flags &
1701 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1702 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1703 ret = -EOPNOTSUPP;
1704 goto free_args;
1705 }
1706
1707 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1708 ptr = &transid;
1709 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1710 readonly = true;
1711 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1712 if (vol_args->size > PAGE_SIZE) {
1713 ret = -EINVAL;
1714 goto free_args;
1715 }
1716 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1717 if (IS_ERR(inherit)) {
1718 ret = PTR_ERR(inherit);
1719 goto free_args;
1720 }
1721 }
1722
1723 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1724 vol_args->fd, subvol, ptr,
1725 readonly, inherit);
1726 if (ret)
1727 goto free_inherit;
1728
1729 if (ptr && copy_to_user(arg +
1730 offsetof(struct btrfs_ioctl_vol_args_v2,
1731 transid),
1732 ptr, sizeof(*ptr)))
1733 ret = -EFAULT;
1734
1735 free_inherit:
1736 kfree(inherit);
1737 free_args:
1738 kfree(vol_args);
1739 return ret;
1740 }
1741
1742 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1743 void __user *arg)
1744 {
1745 struct inode *inode = file_inode(file);
1746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1747 struct btrfs_root *root = BTRFS_I(inode)->root;
1748 int ret = 0;
1749 u64 flags = 0;
1750
1751 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1752 return -EINVAL;
1753
1754 down_read(&fs_info->subvol_sem);
1755 if (btrfs_root_readonly(root))
1756 flags |= BTRFS_SUBVOL_RDONLY;
1757 up_read(&fs_info->subvol_sem);
1758
1759 if (copy_to_user(arg, &flags, sizeof(flags)))
1760 ret = -EFAULT;
1761
1762 return ret;
1763 }
1764
1765 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1766 void __user *arg)
1767 {
1768 struct inode *inode = file_inode(file);
1769 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1770 struct btrfs_root *root = BTRFS_I(inode)->root;
1771 struct btrfs_trans_handle *trans;
1772 u64 root_flags;
1773 u64 flags;
1774 int ret = 0;
1775
1776 if (!inode_owner_or_capable(inode))
1777 return -EPERM;
1778
1779 ret = mnt_want_write_file(file);
1780 if (ret)
1781 goto out;
1782
1783 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1784 ret = -EINVAL;
1785 goto out_drop_write;
1786 }
1787
1788 if (copy_from_user(&flags, arg, sizeof(flags))) {
1789 ret = -EFAULT;
1790 goto out_drop_write;
1791 }
1792
1793 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1794 ret = -EINVAL;
1795 goto out_drop_write;
1796 }
1797
1798 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1799 ret = -EOPNOTSUPP;
1800 goto out_drop_write;
1801 }
1802
1803 down_write(&fs_info->subvol_sem);
1804
1805 /* nothing to do */
1806 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1807 goto out_drop_sem;
1808
1809 root_flags = btrfs_root_flags(&root->root_item);
1810 if (flags & BTRFS_SUBVOL_RDONLY) {
1811 btrfs_set_root_flags(&root->root_item,
1812 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1813 } else {
1814 /*
1815 * Block RO -> RW transition if this subvolume is involved in
1816 * send
1817 */
1818 spin_lock(&root->root_item_lock);
1819 if (root->send_in_progress == 0) {
1820 btrfs_set_root_flags(&root->root_item,
1821 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1822 spin_unlock(&root->root_item_lock);
1823 } else {
1824 spin_unlock(&root->root_item_lock);
1825 btrfs_warn(fs_info,
1826 "Attempt to set subvolume %llu read-write during send",
1827 root->root_key.objectid);
1828 ret = -EPERM;
1829 goto out_drop_sem;
1830 }
1831 }
1832
1833 trans = btrfs_start_transaction(root, 1);
1834 if (IS_ERR(trans)) {
1835 ret = PTR_ERR(trans);
1836 goto out_reset;
1837 }
1838
1839 ret = btrfs_update_root(trans, fs_info->tree_root,
1840 &root->root_key, &root->root_item);
1841
1842 btrfs_commit_transaction(trans);
1843 out_reset:
1844 if (ret)
1845 btrfs_set_root_flags(&root->root_item, root_flags);
1846 out_drop_sem:
1847 up_write(&fs_info->subvol_sem);
1848 out_drop_write:
1849 mnt_drop_write_file(file);
1850 out:
1851 return ret;
1852 }
1853
1854 /*
1855 * helper to check if the subvolume references other subvolumes
1856 */
1857 static noinline int may_destroy_subvol(struct btrfs_root *root)
1858 {
1859 struct btrfs_fs_info *fs_info = root->fs_info;
1860 struct btrfs_path *path;
1861 struct btrfs_dir_item *di;
1862 struct btrfs_key key;
1863 u64 dir_id;
1864 int ret;
1865
1866 path = btrfs_alloc_path();
1867 if (!path)
1868 return -ENOMEM;
1869
1870 /* Make sure this root isn't set as the default subvol */
1871 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1872 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1873 dir_id, "default", 7, 0);
1874 if (di && !IS_ERR(di)) {
1875 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1876 if (key.objectid == root->root_key.objectid) {
1877 ret = -EPERM;
1878 btrfs_err(fs_info,
1879 "deleting default subvolume %llu is not allowed",
1880 key.objectid);
1881 goto out;
1882 }
1883 btrfs_release_path(path);
1884 }
1885
1886 key.objectid = root->root_key.objectid;
1887 key.type = BTRFS_ROOT_REF_KEY;
1888 key.offset = (u64)-1;
1889
1890 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1891 if (ret < 0)
1892 goto out;
1893 BUG_ON(ret == 0);
1894
1895 ret = 0;
1896 if (path->slots[0] > 0) {
1897 path->slots[0]--;
1898 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1899 if (key.objectid == root->root_key.objectid &&
1900 key.type == BTRFS_ROOT_REF_KEY)
1901 ret = -ENOTEMPTY;
1902 }
1903 out:
1904 btrfs_free_path(path);
1905 return ret;
1906 }
1907
1908 static noinline int key_in_sk(struct btrfs_key *key,
1909 struct btrfs_ioctl_search_key *sk)
1910 {
1911 struct btrfs_key test;
1912 int ret;
1913
1914 test.objectid = sk->min_objectid;
1915 test.type = sk->min_type;
1916 test.offset = sk->min_offset;
1917
1918 ret = btrfs_comp_cpu_keys(key, &test);
1919 if (ret < 0)
1920 return 0;
1921
1922 test.objectid = sk->max_objectid;
1923 test.type = sk->max_type;
1924 test.offset = sk->max_offset;
1925
1926 ret = btrfs_comp_cpu_keys(key, &test);
1927 if (ret > 0)
1928 return 0;
1929 return 1;
1930 }
1931
1932 static noinline int copy_to_sk(struct btrfs_path *path,
1933 struct btrfs_key *key,
1934 struct btrfs_ioctl_search_key *sk,
1935 size_t *buf_size,
1936 char __user *ubuf,
1937 unsigned long *sk_offset,
1938 int *num_found)
1939 {
1940 u64 found_transid;
1941 struct extent_buffer *leaf;
1942 struct btrfs_ioctl_search_header sh;
1943 struct btrfs_key test;
1944 unsigned long item_off;
1945 unsigned long item_len;
1946 int nritems;
1947 int i;
1948 int slot;
1949 int ret = 0;
1950
1951 leaf = path->nodes[0];
1952 slot = path->slots[0];
1953 nritems = btrfs_header_nritems(leaf);
1954
1955 if (btrfs_header_generation(leaf) > sk->max_transid) {
1956 i = nritems;
1957 goto advance_key;
1958 }
1959 found_transid = btrfs_header_generation(leaf);
1960
1961 for (i = slot; i < nritems; i++) {
1962 item_off = btrfs_item_ptr_offset(leaf, i);
1963 item_len = btrfs_item_size_nr(leaf, i);
1964
1965 btrfs_item_key_to_cpu(leaf, key, i);
1966 if (!key_in_sk(key, sk))
1967 continue;
1968
1969 if (sizeof(sh) + item_len > *buf_size) {
1970 if (*num_found) {
1971 ret = 1;
1972 goto out;
1973 }
1974
1975 /*
1976 * return one empty item back for v1, which does not
1977 * handle -EOVERFLOW
1978 */
1979
1980 *buf_size = sizeof(sh) + item_len;
1981 item_len = 0;
1982 ret = -EOVERFLOW;
1983 }
1984
1985 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1986 ret = 1;
1987 goto out;
1988 }
1989
1990 sh.objectid = key->objectid;
1991 sh.offset = key->offset;
1992 sh.type = key->type;
1993 sh.len = item_len;
1994 sh.transid = found_transid;
1995
1996 /* copy search result header */
1997 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1998 ret = -EFAULT;
1999 goto out;
2000 }
2001
2002 *sk_offset += sizeof(sh);
2003
2004 if (item_len) {
2005 char __user *up = ubuf + *sk_offset;
2006 /* copy the item */
2007 if (read_extent_buffer_to_user(leaf, up,
2008 item_off, item_len)) {
2009 ret = -EFAULT;
2010 goto out;
2011 }
2012
2013 *sk_offset += item_len;
2014 }
2015 (*num_found)++;
2016
2017 if (ret) /* -EOVERFLOW from above */
2018 goto out;
2019
2020 if (*num_found >= sk->nr_items) {
2021 ret = 1;
2022 goto out;
2023 }
2024 }
2025 advance_key:
2026 ret = 0;
2027 test.objectid = sk->max_objectid;
2028 test.type = sk->max_type;
2029 test.offset = sk->max_offset;
2030 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2031 ret = 1;
2032 else if (key->offset < (u64)-1)
2033 key->offset++;
2034 else if (key->type < (u8)-1) {
2035 key->offset = 0;
2036 key->type++;
2037 } else if (key->objectid < (u64)-1) {
2038 key->offset = 0;
2039 key->type = 0;
2040 key->objectid++;
2041 } else
2042 ret = 1;
2043 out:
2044 /*
2045 * 0: all items from this leaf copied, continue with next
2046 * 1: * more items can be copied, but unused buffer is too small
2047 * * all items were found
2048 * Either way, it will stops the loop which iterates to the next
2049 * leaf
2050 * -EOVERFLOW: item was to large for buffer
2051 * -EFAULT: could not copy extent buffer back to userspace
2052 */
2053 return ret;
2054 }
2055
2056 static noinline int search_ioctl(struct inode *inode,
2057 struct btrfs_ioctl_search_key *sk,
2058 size_t *buf_size,
2059 char __user *ubuf)
2060 {
2061 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2062 struct btrfs_root *root;
2063 struct btrfs_key key;
2064 struct btrfs_path *path;
2065 int ret;
2066 int num_found = 0;
2067 unsigned long sk_offset = 0;
2068
2069 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2070 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2071 return -EOVERFLOW;
2072 }
2073
2074 path = btrfs_alloc_path();
2075 if (!path)
2076 return -ENOMEM;
2077
2078 if (sk->tree_id == 0) {
2079 /* search the root of the inode that was passed */
2080 root = BTRFS_I(inode)->root;
2081 } else {
2082 key.objectid = sk->tree_id;
2083 key.type = BTRFS_ROOT_ITEM_KEY;
2084 key.offset = (u64)-1;
2085 root = btrfs_read_fs_root_no_name(info, &key);
2086 if (IS_ERR(root)) {
2087 btrfs_free_path(path);
2088 return -ENOENT;
2089 }
2090 }
2091
2092 key.objectid = sk->min_objectid;
2093 key.type = sk->min_type;
2094 key.offset = sk->min_offset;
2095
2096 while (1) {
2097 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2098 if (ret != 0) {
2099 if (ret > 0)
2100 ret = 0;
2101 goto err;
2102 }
2103 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2104 &sk_offset, &num_found);
2105 btrfs_release_path(path);
2106 if (ret)
2107 break;
2108
2109 }
2110 if (ret > 0)
2111 ret = 0;
2112 err:
2113 sk->nr_items = num_found;
2114 btrfs_free_path(path);
2115 return ret;
2116 }
2117
2118 static noinline int btrfs_ioctl_tree_search(struct file *file,
2119 void __user *argp)
2120 {
2121 struct btrfs_ioctl_search_args __user *uargs;
2122 struct btrfs_ioctl_search_key sk;
2123 struct inode *inode;
2124 int ret;
2125 size_t buf_size;
2126
2127 if (!capable(CAP_SYS_ADMIN))
2128 return -EPERM;
2129
2130 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2131
2132 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2133 return -EFAULT;
2134
2135 buf_size = sizeof(uargs->buf);
2136
2137 inode = file_inode(file);
2138 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2139
2140 /*
2141 * In the origin implementation an overflow is handled by returning a
2142 * search header with a len of zero, so reset ret.
2143 */
2144 if (ret == -EOVERFLOW)
2145 ret = 0;
2146
2147 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2148 ret = -EFAULT;
2149 return ret;
2150 }
2151
2152 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2153 void __user *argp)
2154 {
2155 struct btrfs_ioctl_search_args_v2 __user *uarg;
2156 struct btrfs_ioctl_search_args_v2 args;
2157 struct inode *inode;
2158 int ret;
2159 size_t buf_size;
2160 const size_t buf_limit = SZ_16M;
2161
2162 if (!capable(CAP_SYS_ADMIN))
2163 return -EPERM;
2164
2165 /* copy search header and buffer size */
2166 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2167 if (copy_from_user(&args, uarg, sizeof(args)))
2168 return -EFAULT;
2169
2170 buf_size = args.buf_size;
2171
2172 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2173 return -EOVERFLOW;
2174
2175 /* limit result size to 16MB */
2176 if (buf_size > buf_limit)
2177 buf_size = buf_limit;
2178
2179 inode = file_inode(file);
2180 ret = search_ioctl(inode, &args.key, &buf_size,
2181 (char *)(&uarg->buf[0]));
2182 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2183 ret = -EFAULT;
2184 else if (ret == -EOVERFLOW &&
2185 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2186 ret = -EFAULT;
2187
2188 return ret;
2189 }
2190
2191 /*
2192 * Search INODE_REFs to identify path name of 'dirid' directory
2193 * in a 'tree_id' tree. and sets path name to 'name'.
2194 */
2195 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2196 u64 tree_id, u64 dirid, char *name)
2197 {
2198 struct btrfs_root *root;
2199 struct btrfs_key key;
2200 char *ptr;
2201 int ret = -1;
2202 int slot;
2203 int len;
2204 int total_len = 0;
2205 struct btrfs_inode_ref *iref;
2206 struct extent_buffer *l;
2207 struct btrfs_path *path;
2208
2209 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2210 name[0]='\0';
2211 return 0;
2212 }
2213
2214 path = btrfs_alloc_path();
2215 if (!path)
2216 return -ENOMEM;
2217
2218 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2219
2220 key.objectid = tree_id;
2221 key.type = BTRFS_ROOT_ITEM_KEY;
2222 key.offset = (u64)-1;
2223 root = btrfs_read_fs_root_no_name(info, &key);
2224 if (IS_ERR(root)) {
2225 btrfs_err(info, "could not find root %llu", tree_id);
2226 ret = -ENOENT;
2227 goto out;
2228 }
2229
2230 key.objectid = dirid;
2231 key.type = BTRFS_INODE_REF_KEY;
2232 key.offset = (u64)-1;
2233
2234 while (1) {
2235 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2236 if (ret < 0)
2237 goto out;
2238 else if (ret > 0) {
2239 ret = btrfs_previous_item(root, path, dirid,
2240 BTRFS_INODE_REF_KEY);
2241 if (ret < 0)
2242 goto out;
2243 else if (ret > 0) {
2244 ret = -ENOENT;
2245 goto out;
2246 }
2247 }
2248
2249 l = path->nodes[0];
2250 slot = path->slots[0];
2251 btrfs_item_key_to_cpu(l, &key, slot);
2252
2253 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2254 len = btrfs_inode_ref_name_len(l, iref);
2255 ptr -= len + 1;
2256 total_len += len + 1;
2257 if (ptr < name) {
2258 ret = -ENAMETOOLONG;
2259 goto out;
2260 }
2261
2262 *(ptr + len) = '/';
2263 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2264
2265 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2266 break;
2267
2268 btrfs_release_path(path);
2269 key.objectid = key.offset;
2270 key.offset = (u64)-1;
2271 dirid = key.objectid;
2272 }
2273 memmove(name, ptr, total_len);
2274 name[total_len] = '\0';
2275 ret = 0;
2276 out:
2277 btrfs_free_path(path);
2278 return ret;
2279 }
2280
2281 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2282 void __user *argp)
2283 {
2284 struct btrfs_ioctl_ino_lookup_args *args;
2285 struct inode *inode;
2286 int ret = 0;
2287
2288 args = memdup_user(argp, sizeof(*args));
2289 if (IS_ERR(args))
2290 return PTR_ERR(args);
2291
2292 inode = file_inode(file);
2293
2294 /*
2295 * Unprivileged query to obtain the containing subvolume root id. The
2296 * path is reset so it's consistent with btrfs_search_path_in_tree.
2297 */
2298 if (args->treeid == 0)
2299 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2300
2301 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2302 args->name[0] = 0;
2303 goto out;
2304 }
2305
2306 if (!capable(CAP_SYS_ADMIN)) {
2307 ret = -EPERM;
2308 goto out;
2309 }
2310
2311 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2312 args->treeid, args->objectid,
2313 args->name);
2314
2315 out:
2316 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2317 ret = -EFAULT;
2318
2319 kfree(args);
2320 return ret;
2321 }
2322
2323 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2324 void __user *arg)
2325 {
2326 struct dentry *parent = file->f_path.dentry;
2327 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2328 struct dentry *dentry;
2329 struct inode *dir = d_inode(parent);
2330 struct inode *inode;
2331 struct btrfs_root *root = BTRFS_I(dir)->root;
2332 struct btrfs_root *dest = NULL;
2333 struct btrfs_ioctl_vol_args *vol_args;
2334 struct btrfs_trans_handle *trans;
2335 struct btrfs_block_rsv block_rsv;
2336 u64 root_flags;
2337 u64 qgroup_reserved;
2338 int namelen;
2339 int ret;
2340 int err = 0;
2341
2342 if (!S_ISDIR(dir->i_mode))
2343 return -ENOTDIR;
2344
2345 vol_args = memdup_user(arg, sizeof(*vol_args));
2346 if (IS_ERR(vol_args))
2347 return PTR_ERR(vol_args);
2348
2349 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2350 namelen = strlen(vol_args->name);
2351 if (strchr(vol_args->name, '/') ||
2352 strncmp(vol_args->name, "..", namelen) == 0) {
2353 err = -EINVAL;
2354 goto out;
2355 }
2356
2357 err = mnt_want_write_file(file);
2358 if (err)
2359 goto out;
2360
2361
2362 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2363 if (err == -EINTR)
2364 goto out_drop_write;
2365 dentry = lookup_one_len(vol_args->name, parent, namelen);
2366 if (IS_ERR(dentry)) {
2367 err = PTR_ERR(dentry);
2368 goto out_unlock_dir;
2369 }
2370
2371 if (d_really_is_negative(dentry)) {
2372 err = -ENOENT;
2373 goto out_dput;
2374 }
2375
2376 inode = d_inode(dentry);
2377 dest = BTRFS_I(inode)->root;
2378 if (!capable(CAP_SYS_ADMIN)) {
2379 /*
2380 * Regular user. Only allow this with a special mount
2381 * option, when the user has write+exec access to the
2382 * subvol root, and when rmdir(2) would have been
2383 * allowed.
2384 *
2385 * Note that this is _not_ check that the subvol is
2386 * empty or doesn't contain data that we wouldn't
2387 * otherwise be able to delete.
2388 *
2389 * Users who want to delete empty subvols should try
2390 * rmdir(2).
2391 */
2392 err = -EPERM;
2393 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2394 goto out_dput;
2395
2396 /*
2397 * Do not allow deletion if the parent dir is the same
2398 * as the dir to be deleted. That means the ioctl
2399 * must be called on the dentry referencing the root
2400 * of the subvol, not a random directory contained
2401 * within it.
2402 */
2403 err = -EINVAL;
2404 if (root == dest)
2405 goto out_dput;
2406
2407 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2408 if (err)
2409 goto out_dput;
2410 }
2411
2412 /* check if subvolume may be deleted by a user */
2413 err = btrfs_may_delete(dir, dentry, 1);
2414 if (err)
2415 goto out_dput;
2416
2417 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2418 err = -EINVAL;
2419 goto out_dput;
2420 }
2421
2422 inode_lock(inode);
2423
2424 /*
2425 * Don't allow to delete a subvolume with send in progress. This is
2426 * inside the i_mutex so the error handling that has to drop the bit
2427 * again is not run concurrently.
2428 */
2429 spin_lock(&dest->root_item_lock);
2430 root_flags = btrfs_root_flags(&dest->root_item);
2431 if (dest->send_in_progress == 0) {
2432 btrfs_set_root_flags(&dest->root_item,
2433 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2434 spin_unlock(&dest->root_item_lock);
2435 } else {
2436 spin_unlock(&dest->root_item_lock);
2437 btrfs_warn(fs_info,
2438 "Attempt to delete subvolume %llu during send",
2439 dest->root_key.objectid);
2440 err = -EPERM;
2441 goto out_unlock_inode;
2442 }
2443
2444 down_write(&fs_info->subvol_sem);
2445
2446 err = may_destroy_subvol(dest);
2447 if (err)
2448 goto out_up_write;
2449
2450 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2451 /*
2452 * One for dir inode, two for dir entries, two for root
2453 * ref/backref.
2454 */
2455 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2456 5, &qgroup_reserved, true);
2457 if (err)
2458 goto out_up_write;
2459
2460 trans = btrfs_start_transaction(root, 0);
2461 if (IS_ERR(trans)) {
2462 err = PTR_ERR(trans);
2463 goto out_release;
2464 }
2465 trans->block_rsv = &block_rsv;
2466 trans->bytes_reserved = block_rsv.size;
2467
2468 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2469
2470 ret = btrfs_unlink_subvol(trans, root, dir,
2471 dest->root_key.objectid,
2472 dentry->d_name.name,
2473 dentry->d_name.len);
2474 if (ret) {
2475 err = ret;
2476 btrfs_abort_transaction(trans, ret);
2477 goto out_end_trans;
2478 }
2479
2480 btrfs_record_root_in_trans(trans, dest);
2481
2482 memset(&dest->root_item.drop_progress, 0,
2483 sizeof(dest->root_item.drop_progress));
2484 dest->root_item.drop_level = 0;
2485 btrfs_set_root_refs(&dest->root_item, 0);
2486
2487 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2488 ret = btrfs_insert_orphan_item(trans,
2489 fs_info->tree_root,
2490 dest->root_key.objectid);
2491 if (ret) {
2492 btrfs_abort_transaction(trans, ret);
2493 err = ret;
2494 goto out_end_trans;
2495 }
2496 }
2497
2498 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2499 BTRFS_UUID_KEY_SUBVOL,
2500 dest->root_key.objectid);
2501 if (ret && ret != -ENOENT) {
2502 btrfs_abort_transaction(trans, ret);
2503 err = ret;
2504 goto out_end_trans;
2505 }
2506 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2507 ret = btrfs_uuid_tree_rem(trans, fs_info,
2508 dest->root_item.received_uuid,
2509 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2510 dest->root_key.objectid);
2511 if (ret && ret != -ENOENT) {
2512 btrfs_abort_transaction(trans, ret);
2513 err = ret;
2514 goto out_end_trans;
2515 }
2516 }
2517
2518 out_end_trans:
2519 trans->block_rsv = NULL;
2520 trans->bytes_reserved = 0;
2521 ret = btrfs_end_transaction(trans);
2522 if (ret && !err)
2523 err = ret;
2524 inode->i_flags |= S_DEAD;
2525 out_release:
2526 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2527 out_up_write:
2528 up_write(&fs_info->subvol_sem);
2529 if (err) {
2530 spin_lock(&dest->root_item_lock);
2531 root_flags = btrfs_root_flags(&dest->root_item);
2532 btrfs_set_root_flags(&dest->root_item,
2533 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2534 spin_unlock(&dest->root_item_lock);
2535 }
2536 out_unlock_inode:
2537 inode_unlock(inode);
2538 if (!err) {
2539 d_invalidate(dentry);
2540 btrfs_invalidate_inodes(dest);
2541 d_delete(dentry);
2542 ASSERT(dest->send_in_progress == 0);
2543
2544 /* the last ref */
2545 if (dest->ino_cache_inode) {
2546 iput(dest->ino_cache_inode);
2547 dest->ino_cache_inode = NULL;
2548 }
2549 }
2550 out_dput:
2551 dput(dentry);
2552 out_unlock_dir:
2553 inode_unlock(dir);
2554 out_drop_write:
2555 mnt_drop_write_file(file);
2556 out:
2557 kfree(vol_args);
2558 return err;
2559 }
2560
2561 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2562 {
2563 struct inode *inode = file_inode(file);
2564 struct btrfs_root *root = BTRFS_I(inode)->root;
2565 struct btrfs_ioctl_defrag_range_args *range;
2566 int ret;
2567
2568 ret = mnt_want_write_file(file);
2569 if (ret)
2570 return ret;
2571
2572 if (btrfs_root_readonly(root)) {
2573 ret = -EROFS;
2574 goto out;
2575 }
2576
2577 switch (inode->i_mode & S_IFMT) {
2578 case S_IFDIR:
2579 if (!capable(CAP_SYS_ADMIN)) {
2580 ret = -EPERM;
2581 goto out;
2582 }
2583 ret = btrfs_defrag_root(root);
2584 break;
2585 case S_IFREG:
2586 if (!(file->f_mode & FMODE_WRITE)) {
2587 ret = -EINVAL;
2588 goto out;
2589 }
2590
2591 range = kzalloc(sizeof(*range), GFP_KERNEL);
2592 if (!range) {
2593 ret = -ENOMEM;
2594 goto out;
2595 }
2596
2597 if (argp) {
2598 if (copy_from_user(range, argp,
2599 sizeof(*range))) {
2600 ret = -EFAULT;
2601 kfree(range);
2602 goto out;
2603 }
2604 /* compression requires us to start the IO */
2605 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2606 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2607 range->extent_thresh = (u32)-1;
2608 }
2609 } else {
2610 /* the rest are all set to zero by kzalloc */
2611 range->len = (u64)-1;
2612 }
2613 ret = btrfs_defrag_file(file_inode(file), file,
2614 range, 0, 0);
2615 if (ret > 0)
2616 ret = 0;
2617 kfree(range);
2618 break;
2619 default:
2620 ret = -EINVAL;
2621 }
2622 out:
2623 mnt_drop_write_file(file);
2624 return ret;
2625 }
2626
2627 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2628 {
2629 struct btrfs_ioctl_vol_args *vol_args;
2630 int ret;
2631
2632 if (!capable(CAP_SYS_ADMIN))
2633 return -EPERM;
2634
2635 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2636 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2637
2638 mutex_lock(&fs_info->volume_mutex);
2639 vol_args = memdup_user(arg, sizeof(*vol_args));
2640 if (IS_ERR(vol_args)) {
2641 ret = PTR_ERR(vol_args);
2642 goto out;
2643 }
2644
2645 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2646 ret = btrfs_init_new_device(fs_info, vol_args->name);
2647
2648 if (!ret)
2649 btrfs_info(fs_info, "disk added %s", vol_args->name);
2650
2651 kfree(vol_args);
2652 out:
2653 mutex_unlock(&fs_info->volume_mutex);
2654 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2655 return ret;
2656 }
2657
2658 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2659 {
2660 struct inode *inode = file_inode(file);
2661 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2662 struct btrfs_ioctl_vol_args_v2 *vol_args;
2663 int ret;
2664
2665 if (!capable(CAP_SYS_ADMIN))
2666 return -EPERM;
2667
2668 ret = mnt_want_write_file(file);
2669 if (ret)
2670 return ret;
2671
2672 vol_args = memdup_user(arg, sizeof(*vol_args));
2673 if (IS_ERR(vol_args)) {
2674 ret = PTR_ERR(vol_args);
2675 goto err_drop;
2676 }
2677
2678 /* Check for compatibility reject unknown flags */
2679 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2680 return -EOPNOTSUPP;
2681
2682 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2683 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2684 goto out;
2685 }
2686
2687 mutex_lock(&fs_info->volume_mutex);
2688 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2689 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2690 } else {
2691 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2692 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2693 }
2694 mutex_unlock(&fs_info->volume_mutex);
2695 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2696
2697 if (!ret) {
2698 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2699 btrfs_info(fs_info, "device deleted: id %llu",
2700 vol_args->devid);
2701 else
2702 btrfs_info(fs_info, "device deleted: %s",
2703 vol_args->name);
2704 }
2705 out:
2706 kfree(vol_args);
2707 err_drop:
2708 mnt_drop_write_file(file);
2709 return ret;
2710 }
2711
2712 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2713 {
2714 struct inode *inode = file_inode(file);
2715 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2716 struct btrfs_ioctl_vol_args *vol_args;
2717 int ret;
2718
2719 if (!capable(CAP_SYS_ADMIN))
2720 return -EPERM;
2721
2722 ret = mnt_want_write_file(file);
2723 if (ret)
2724 return ret;
2725
2726 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2727 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2728 goto out_drop_write;
2729 }
2730
2731 vol_args = memdup_user(arg, sizeof(*vol_args));
2732 if (IS_ERR(vol_args)) {
2733 ret = PTR_ERR(vol_args);
2734 goto out;
2735 }
2736
2737 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2738 mutex_lock(&fs_info->volume_mutex);
2739 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2740 mutex_unlock(&fs_info->volume_mutex);
2741
2742 if (!ret)
2743 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2744 kfree(vol_args);
2745 out:
2746 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2747 out_drop_write:
2748 mnt_drop_write_file(file);
2749
2750 return ret;
2751 }
2752
2753 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2754 void __user *arg)
2755 {
2756 struct btrfs_ioctl_fs_info_args *fi_args;
2757 struct btrfs_device *device;
2758 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2759 int ret = 0;
2760
2761 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2762 if (!fi_args)
2763 return -ENOMEM;
2764
2765 mutex_lock(&fs_devices->device_list_mutex);
2766 fi_args->num_devices = fs_devices->num_devices;
2767 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2768
2769 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2770 if (device->devid > fi_args->max_id)
2771 fi_args->max_id = device->devid;
2772 }
2773 mutex_unlock(&fs_devices->device_list_mutex);
2774
2775 fi_args->nodesize = fs_info->super_copy->nodesize;
2776 fi_args->sectorsize = fs_info->super_copy->sectorsize;
2777 fi_args->clone_alignment = fs_info->super_copy->sectorsize;
2778
2779 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2780 ret = -EFAULT;
2781
2782 kfree(fi_args);
2783 return ret;
2784 }
2785
2786 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2787 void __user *arg)
2788 {
2789 struct btrfs_ioctl_dev_info_args *di_args;
2790 struct btrfs_device *dev;
2791 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2792 int ret = 0;
2793 char *s_uuid = NULL;
2794
2795 di_args = memdup_user(arg, sizeof(*di_args));
2796 if (IS_ERR(di_args))
2797 return PTR_ERR(di_args);
2798
2799 if (!btrfs_is_empty_uuid(di_args->uuid))
2800 s_uuid = di_args->uuid;
2801
2802 mutex_lock(&fs_devices->device_list_mutex);
2803 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2804
2805 if (!dev) {
2806 ret = -ENODEV;
2807 goto out;
2808 }
2809
2810 di_args->devid = dev->devid;
2811 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2812 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2813 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2814 if (dev->name) {
2815 struct rcu_string *name;
2816
2817 rcu_read_lock();
2818 name = rcu_dereference(dev->name);
2819 strncpy(di_args->path, name->str, sizeof(di_args->path));
2820 rcu_read_unlock();
2821 di_args->path[sizeof(di_args->path) - 1] = 0;
2822 } else {
2823 di_args->path[0] = '\0';
2824 }
2825
2826 out:
2827 mutex_unlock(&fs_devices->device_list_mutex);
2828 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2829 ret = -EFAULT;
2830
2831 kfree(di_args);
2832 return ret;
2833 }
2834
2835 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2836 {
2837 struct page *page;
2838
2839 page = grab_cache_page(inode->i_mapping, index);
2840 if (!page)
2841 return ERR_PTR(-ENOMEM);
2842
2843 if (!PageUptodate(page)) {
2844 int ret;
2845
2846 ret = btrfs_readpage(NULL, page);
2847 if (ret)
2848 return ERR_PTR(ret);
2849 lock_page(page);
2850 if (!PageUptodate(page)) {
2851 unlock_page(page);
2852 put_page(page);
2853 return ERR_PTR(-EIO);
2854 }
2855 if (page->mapping != inode->i_mapping) {
2856 unlock_page(page);
2857 put_page(page);
2858 return ERR_PTR(-EAGAIN);
2859 }
2860 }
2861
2862 return page;
2863 }
2864
2865 static int gather_extent_pages(struct inode *inode, struct page **pages,
2866 int num_pages, u64 off)
2867 {
2868 int i;
2869 pgoff_t index = off >> PAGE_SHIFT;
2870
2871 for (i = 0; i < num_pages; i++) {
2872 again:
2873 pages[i] = extent_same_get_page(inode, index + i);
2874 if (IS_ERR(pages[i])) {
2875 int err = PTR_ERR(pages[i]);
2876
2877 if (err == -EAGAIN)
2878 goto again;
2879 pages[i] = NULL;
2880 return err;
2881 }
2882 }
2883 return 0;
2884 }
2885
2886 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2887 bool retry_range_locking)
2888 {
2889 /*
2890 * Do any pending delalloc/csum calculations on inode, one way or
2891 * another, and lock file content.
2892 * The locking order is:
2893 *
2894 * 1) pages
2895 * 2) range in the inode's io tree
2896 */
2897 while (1) {
2898 struct btrfs_ordered_extent *ordered;
2899 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2900 ordered = btrfs_lookup_first_ordered_extent(inode,
2901 off + len - 1);
2902 if ((!ordered ||
2903 ordered->file_offset + ordered->len <= off ||
2904 ordered->file_offset >= off + len) &&
2905 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2906 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2907 if (ordered)
2908 btrfs_put_ordered_extent(ordered);
2909 break;
2910 }
2911 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2912 if (ordered)
2913 btrfs_put_ordered_extent(ordered);
2914 if (!retry_range_locking)
2915 return -EAGAIN;
2916 btrfs_wait_ordered_range(inode, off, len);
2917 }
2918 return 0;
2919 }
2920
2921 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2922 {
2923 inode_unlock(inode1);
2924 inode_unlock(inode2);
2925 }
2926
2927 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2928 {
2929 if (inode1 < inode2)
2930 swap(inode1, inode2);
2931
2932 inode_lock_nested(inode1, I_MUTEX_PARENT);
2933 inode_lock_nested(inode2, I_MUTEX_CHILD);
2934 }
2935
2936 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2937 struct inode *inode2, u64 loff2, u64 len)
2938 {
2939 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2940 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2941 }
2942
2943 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2944 struct inode *inode2, u64 loff2, u64 len,
2945 bool retry_range_locking)
2946 {
2947 int ret;
2948
2949 if (inode1 < inode2) {
2950 swap(inode1, inode2);
2951 swap(loff1, loff2);
2952 }
2953 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2954 if (ret)
2955 return ret;
2956 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2957 if (ret)
2958 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2959 loff1 + len - 1);
2960 return ret;
2961 }
2962
2963 struct cmp_pages {
2964 int num_pages;
2965 struct page **src_pages;
2966 struct page **dst_pages;
2967 };
2968
2969 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2970 {
2971 int i;
2972 struct page *pg;
2973
2974 for (i = 0; i < cmp->num_pages; i++) {
2975 pg = cmp->src_pages[i];
2976 if (pg) {
2977 unlock_page(pg);
2978 put_page(pg);
2979 }
2980 pg = cmp->dst_pages[i];
2981 if (pg) {
2982 unlock_page(pg);
2983 put_page(pg);
2984 }
2985 }
2986 kfree(cmp->src_pages);
2987 kfree(cmp->dst_pages);
2988 }
2989
2990 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2991 struct inode *dst, u64 dst_loff,
2992 u64 len, struct cmp_pages *cmp)
2993 {
2994 int ret;
2995 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2996 struct page **src_pgarr, **dst_pgarr;
2997
2998 /*
2999 * We must gather up all the pages before we initiate our
3000 * extent locking. We use an array for the page pointers. Size
3001 * of the array is bounded by len, which is in turn bounded by
3002 * BTRFS_MAX_DEDUPE_LEN.
3003 */
3004 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3005 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3006 if (!src_pgarr || !dst_pgarr) {
3007 kfree(src_pgarr);
3008 kfree(dst_pgarr);
3009 return -ENOMEM;
3010 }
3011 cmp->num_pages = num_pages;
3012 cmp->src_pages = src_pgarr;
3013 cmp->dst_pages = dst_pgarr;
3014
3015 /*
3016 * If deduping ranges in the same inode, locking rules make it mandatory
3017 * to always lock pages in ascending order to avoid deadlocks with
3018 * concurrent tasks (such as starting writeback/delalloc).
3019 */
3020 if (src == dst && dst_loff < loff) {
3021 swap(src_pgarr, dst_pgarr);
3022 swap(loff, dst_loff);
3023 }
3024
3025 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3026 if (ret)
3027 goto out;
3028
3029 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3030
3031 out:
3032 if (ret)
3033 btrfs_cmp_data_free(cmp);
3034 return 0;
3035 }
3036
3037 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3038 {
3039 int ret = 0;
3040 int i;
3041 struct page *src_page, *dst_page;
3042 unsigned int cmp_len = PAGE_SIZE;
3043 void *addr, *dst_addr;
3044
3045 i = 0;
3046 while (len) {
3047 if (len < PAGE_SIZE)
3048 cmp_len = len;
3049
3050 BUG_ON(i >= cmp->num_pages);
3051
3052 src_page = cmp->src_pages[i];
3053 dst_page = cmp->dst_pages[i];
3054 ASSERT(PageLocked(src_page));
3055 ASSERT(PageLocked(dst_page));
3056
3057 addr = kmap_atomic(src_page);
3058 dst_addr = kmap_atomic(dst_page);
3059
3060 flush_dcache_page(src_page);
3061 flush_dcache_page(dst_page);
3062
3063 if (memcmp(addr, dst_addr, cmp_len))
3064 ret = -EBADE;
3065
3066 kunmap_atomic(addr);
3067 kunmap_atomic(dst_addr);
3068
3069 if (ret)
3070 break;
3071
3072 len -= cmp_len;
3073 i++;
3074 }
3075
3076 return ret;
3077 }
3078
3079 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3080 u64 olen)
3081 {
3082 u64 len = *plen;
3083 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3084
3085 if (off + olen > inode->i_size || off + olen < off)
3086 return -EINVAL;
3087
3088 /* if we extend to eof, continue to block boundary */
3089 if (off + len == inode->i_size)
3090 *plen = len = ALIGN(inode->i_size, bs) - off;
3091
3092 /* Check that we are block aligned - btrfs_clone() requires this */
3093 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3094 return -EINVAL;
3095
3096 return 0;
3097 }
3098
3099 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3100 struct inode *dst, u64 dst_loff)
3101 {
3102 int ret;
3103 u64 len = olen;
3104 struct cmp_pages cmp;
3105 bool same_inode = (src == dst);
3106 u64 same_lock_start = 0;
3107 u64 same_lock_len = 0;
3108
3109 if (len == 0)
3110 return 0;
3111
3112 if (same_inode)
3113 inode_lock(src);
3114 else
3115 btrfs_double_inode_lock(src, dst);
3116
3117 ret = extent_same_check_offsets(src, loff, &len, olen);
3118 if (ret)
3119 goto out_unlock;
3120
3121 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3122 if (ret)
3123 goto out_unlock;
3124
3125 if (same_inode) {
3126 /*
3127 * Single inode case wants the same checks, except we
3128 * don't want our length pushed out past i_size as
3129 * comparing that data range makes no sense.
3130 *
3131 * extent_same_check_offsets() will do this for an
3132 * unaligned length at i_size, so catch it here and
3133 * reject the request.
3134 *
3135 * This effectively means we require aligned extents
3136 * for the single-inode case, whereas the other cases
3137 * allow an unaligned length so long as it ends at
3138 * i_size.
3139 */
3140 if (len != olen) {
3141 ret = -EINVAL;
3142 goto out_unlock;
3143 }
3144
3145 /* Check for overlapping ranges */
3146 if (dst_loff + len > loff && dst_loff < loff + len) {
3147 ret = -EINVAL;
3148 goto out_unlock;
3149 }
3150
3151 same_lock_start = min_t(u64, loff, dst_loff);
3152 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3153 }
3154
3155 /* don't make the dst file partly checksummed */
3156 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3157 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3158 ret = -EINVAL;
3159 goto out_unlock;
3160 }
3161
3162 again:
3163 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3164 if (ret)
3165 goto out_unlock;
3166
3167 if (same_inode)
3168 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3169 false);
3170 else
3171 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3172 false);
3173 /*
3174 * If one of the inodes has dirty pages in the respective range or
3175 * ordered extents, we need to flush dellaloc and wait for all ordered
3176 * extents in the range. We must unlock the pages and the ranges in the
3177 * io trees to avoid deadlocks when flushing delalloc (requires locking
3178 * pages) and when waiting for ordered extents to complete (they require
3179 * range locking).
3180 */
3181 if (ret == -EAGAIN) {
3182 /*
3183 * Ranges in the io trees already unlocked. Now unlock all
3184 * pages before waiting for all IO to complete.
3185 */
3186 btrfs_cmp_data_free(&cmp);
3187 if (same_inode) {
3188 btrfs_wait_ordered_range(src, same_lock_start,
3189 same_lock_len);
3190 } else {
3191 btrfs_wait_ordered_range(src, loff, len);
3192 btrfs_wait_ordered_range(dst, dst_loff, len);
3193 }
3194 goto again;
3195 }
3196 ASSERT(ret == 0);
3197 if (WARN_ON(ret)) {
3198 /* ranges in the io trees already unlocked */
3199 btrfs_cmp_data_free(&cmp);
3200 return ret;
3201 }
3202
3203 /* pass original length for comparison so we stay within i_size */
3204 ret = btrfs_cmp_data(olen, &cmp);
3205 if (ret == 0)
3206 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3207
3208 if (same_inode)
3209 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3210 same_lock_start + same_lock_len - 1);
3211 else
3212 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3213
3214 btrfs_cmp_data_free(&cmp);
3215 out_unlock:
3216 if (same_inode)
3217 inode_unlock(src);
3218 else
3219 btrfs_double_inode_unlock(src, dst);
3220
3221 return ret;
3222 }
3223
3224 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3225
3226 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3227 struct file *dst_file, u64 dst_loff)
3228 {
3229 struct inode *src = file_inode(src_file);
3230 struct inode *dst = file_inode(dst_file);
3231 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3232 ssize_t res;
3233
3234 if (olen > BTRFS_MAX_DEDUPE_LEN)
3235 olen = BTRFS_MAX_DEDUPE_LEN;
3236
3237 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3238 /*
3239 * Btrfs does not support blocksize < page_size. As a
3240 * result, btrfs_cmp_data() won't correctly handle
3241 * this situation without an update.
3242 */
3243 return -EINVAL;
3244 }
3245
3246 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3247 if (res)
3248 return res;
3249 return olen;
3250 }
3251
3252 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3253 struct inode *inode,
3254 u64 endoff,
3255 const u64 destoff,
3256 const u64 olen,
3257 int no_time_update)
3258 {
3259 struct btrfs_root *root = BTRFS_I(inode)->root;
3260 int ret;
3261
3262 inode_inc_iversion(inode);
3263 if (!no_time_update)
3264 inode->i_mtime = inode->i_ctime = current_time(inode);
3265 /*
3266 * We round up to the block size at eof when determining which
3267 * extents to clone above, but shouldn't round up the file size.
3268 */
3269 if (endoff > destoff + olen)
3270 endoff = destoff + olen;
3271 if (endoff > inode->i_size)
3272 btrfs_i_size_write(BTRFS_I(inode), endoff);
3273
3274 ret = btrfs_update_inode(trans, root, inode);
3275 if (ret) {
3276 btrfs_abort_transaction(trans, ret);
3277 btrfs_end_transaction(trans);
3278 goto out;
3279 }
3280 ret = btrfs_end_transaction(trans);
3281 out:
3282 return ret;
3283 }
3284
3285 static void clone_update_extent_map(struct btrfs_inode *inode,
3286 const struct btrfs_trans_handle *trans,
3287 const struct btrfs_path *path,
3288 const u64 hole_offset,
3289 const u64 hole_len)
3290 {
3291 struct extent_map_tree *em_tree = &inode->extent_tree;
3292 struct extent_map *em;
3293 int ret;
3294
3295 em = alloc_extent_map();
3296 if (!em) {
3297 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3298 return;
3299 }
3300
3301 if (path) {
3302 struct btrfs_file_extent_item *fi;
3303
3304 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3305 struct btrfs_file_extent_item);
3306 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3307 em->generation = -1;
3308 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3309 BTRFS_FILE_EXTENT_INLINE)
3310 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3311 &inode->runtime_flags);
3312 } else {
3313 em->start = hole_offset;
3314 em->len = hole_len;
3315 em->ram_bytes = em->len;
3316 em->orig_start = hole_offset;
3317 em->block_start = EXTENT_MAP_HOLE;
3318 em->block_len = 0;
3319 em->orig_block_len = 0;
3320 em->compress_type = BTRFS_COMPRESS_NONE;
3321 em->generation = trans->transid;
3322 }
3323
3324 while (1) {
3325 write_lock(&em_tree->lock);
3326 ret = add_extent_mapping(em_tree, em, 1);
3327 write_unlock(&em_tree->lock);
3328 if (ret != -EEXIST) {
3329 free_extent_map(em);
3330 break;
3331 }
3332 btrfs_drop_extent_cache(inode, em->start,
3333 em->start + em->len - 1, 0);
3334 }
3335
3336 if (ret)
3337 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3338 }
3339
3340 /*
3341 * Make sure we do not end up inserting an inline extent into a file that has
3342 * already other (non-inline) extents. If a file has an inline extent it can
3343 * not have any other extents and the (single) inline extent must start at the
3344 * file offset 0. Failing to respect these rules will lead to file corruption,
3345 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3346 *
3347 * We can have extents that have been already written to disk or we can have
3348 * dirty ranges still in delalloc, in which case the extent maps and items are
3349 * created only when we run delalloc, and the delalloc ranges might fall outside
3350 * the range we are currently locking in the inode's io tree. So we check the
3351 * inode's i_size because of that (i_size updates are done while holding the
3352 * i_mutex, which we are holding here).
3353 * We also check to see if the inode has a size not greater than "datal" but has
3354 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3355 * protected against such concurrent fallocate calls by the i_mutex).
3356 *
3357 * If the file has no extents but a size greater than datal, do not allow the
3358 * copy because we would need turn the inline extent into a non-inline one (even
3359 * with NO_HOLES enabled). If we find our destination inode only has one inline
3360 * extent, just overwrite it with the source inline extent if its size is less
3361 * than the source extent's size, or we could copy the source inline extent's
3362 * data into the destination inode's inline extent if the later is greater then
3363 * the former.
3364 */
3365 static int clone_copy_inline_extent(struct inode *dst,
3366 struct btrfs_trans_handle *trans,
3367 struct btrfs_path *path,
3368 struct btrfs_key *new_key,
3369 const u64 drop_start,
3370 const u64 datal,
3371 const u64 skip,
3372 const u64 size,
3373 char *inline_data)
3374 {
3375 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3376 struct btrfs_root *root = BTRFS_I(dst)->root;
3377 const u64 aligned_end = ALIGN(new_key->offset + datal,
3378 fs_info->sectorsize);
3379 int ret;
3380 struct btrfs_key key;
3381
3382 if (new_key->offset > 0)
3383 return -EOPNOTSUPP;
3384
3385 key.objectid = btrfs_ino(BTRFS_I(dst));
3386 key.type = BTRFS_EXTENT_DATA_KEY;
3387 key.offset = 0;
3388 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3389 if (ret < 0) {
3390 return ret;
3391 } else if (ret > 0) {
3392 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3393 ret = btrfs_next_leaf(root, path);
3394 if (ret < 0)
3395 return ret;
3396 else if (ret > 0)
3397 goto copy_inline_extent;
3398 }
3399 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3400 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3401 key.type == BTRFS_EXTENT_DATA_KEY) {
3402 ASSERT(key.offset > 0);
3403 return -EOPNOTSUPP;
3404 }
3405 } else if (i_size_read(dst) <= datal) {
3406 struct btrfs_file_extent_item *ei;
3407 u64 ext_len;
3408
3409 /*
3410 * If the file size is <= datal, make sure there are no other
3411 * extents following (can happen do to an fallocate call with
3412 * the flag FALLOC_FL_KEEP_SIZE).
3413 */
3414 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3415 struct btrfs_file_extent_item);
3416 /*
3417 * If it's an inline extent, it can not have other extents
3418 * following it.
3419 */
3420 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3421 BTRFS_FILE_EXTENT_INLINE)
3422 goto copy_inline_extent;
3423
3424 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3425 if (ext_len > aligned_end)
3426 return -EOPNOTSUPP;
3427
3428 ret = btrfs_next_item(root, path);
3429 if (ret < 0) {
3430 return ret;
3431 } else if (ret == 0) {
3432 btrfs_item_key_to_cpu(path->nodes[0], &key,
3433 path->slots[0]);
3434 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3435 key.type == BTRFS_EXTENT_DATA_KEY)
3436 return -EOPNOTSUPP;
3437 }
3438 }
3439
3440 copy_inline_extent:
3441 /*
3442 * We have no extent items, or we have an extent at offset 0 which may
3443 * or may not be inlined. All these cases are dealt the same way.
3444 */
3445 if (i_size_read(dst) > datal) {
3446 /*
3447 * If the destination inode has an inline extent...
3448 * This would require copying the data from the source inline
3449 * extent into the beginning of the destination's inline extent.
3450 * But this is really complex, both extents can be compressed
3451 * or just one of them, which would require decompressing and
3452 * re-compressing data (which could increase the new compressed
3453 * size, not allowing the compressed data to fit anymore in an
3454 * inline extent).
3455 * So just don't support this case for now (it should be rare,
3456 * we are not really saving space when cloning inline extents).
3457 */
3458 return -EOPNOTSUPP;
3459 }
3460
3461 btrfs_release_path(path);
3462 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3463 if (ret)
3464 return ret;
3465 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3466 if (ret)
3467 return ret;
3468
3469 if (skip) {
3470 const u32 start = btrfs_file_extent_calc_inline_size(0);
3471
3472 memmove(inline_data + start, inline_data + start + skip, datal);
3473 }
3474
3475 write_extent_buffer(path->nodes[0], inline_data,
3476 btrfs_item_ptr_offset(path->nodes[0],
3477 path->slots[0]),
3478 size);
3479 inode_add_bytes(dst, datal);
3480
3481 return 0;
3482 }
3483
3484 /**
3485 * btrfs_clone() - clone a range from inode file to another
3486 *
3487 * @src: Inode to clone from
3488 * @inode: Inode to clone to
3489 * @off: Offset within source to start clone from
3490 * @olen: Original length, passed by user, of range to clone
3491 * @olen_aligned: Block-aligned value of olen
3492 * @destoff: Offset within @inode to start clone
3493 * @no_time_update: Whether to update mtime/ctime on the target inode
3494 */
3495 static int btrfs_clone(struct inode *src, struct inode *inode,
3496 const u64 off, const u64 olen, const u64 olen_aligned,
3497 const u64 destoff, int no_time_update)
3498 {
3499 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3500 struct btrfs_root *root = BTRFS_I(inode)->root;
3501 struct btrfs_path *path = NULL;
3502 struct extent_buffer *leaf;
3503 struct btrfs_trans_handle *trans;
3504 char *buf = NULL;
3505 struct btrfs_key key;
3506 u32 nritems;
3507 int slot;
3508 int ret;
3509 const u64 len = olen_aligned;
3510 u64 last_dest_end = destoff;
3511
3512 ret = -ENOMEM;
3513 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3514 if (!buf)
3515 return ret;
3516
3517 path = btrfs_alloc_path();
3518 if (!path) {
3519 kvfree(buf);
3520 return ret;
3521 }
3522
3523 path->reada = READA_FORWARD;
3524 /* clone data */
3525 key.objectid = btrfs_ino(BTRFS_I(src));
3526 key.type = BTRFS_EXTENT_DATA_KEY;
3527 key.offset = off;
3528
3529 while (1) {
3530 u64 next_key_min_offset = key.offset + 1;
3531
3532 /*
3533 * note the key will change type as we walk through the
3534 * tree.
3535 */
3536 path->leave_spinning = 1;
3537 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3538 0, 0);
3539 if (ret < 0)
3540 goto out;
3541 /*
3542 * First search, if no extent item that starts at offset off was
3543 * found but the previous item is an extent item, it's possible
3544 * it might overlap our target range, therefore process it.
3545 */
3546 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3547 btrfs_item_key_to_cpu(path->nodes[0], &key,
3548 path->slots[0] - 1);
3549 if (key.type == BTRFS_EXTENT_DATA_KEY)
3550 path->slots[0]--;
3551 }
3552
3553 nritems = btrfs_header_nritems(path->nodes[0]);
3554 process_slot:
3555 if (path->slots[0] >= nritems) {
3556 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3557 if (ret < 0)
3558 goto out;
3559 if (ret > 0)
3560 break;
3561 nritems = btrfs_header_nritems(path->nodes[0]);
3562 }
3563 leaf = path->nodes[0];
3564 slot = path->slots[0];
3565
3566 btrfs_item_key_to_cpu(leaf, &key, slot);
3567 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3568 key.objectid != btrfs_ino(BTRFS_I(src)))
3569 break;
3570
3571 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3572 struct btrfs_file_extent_item *extent;
3573 int type;
3574 u32 size;
3575 struct btrfs_key new_key;
3576 u64 disko = 0, diskl = 0;
3577 u64 datao = 0, datal = 0;
3578 u8 comp;
3579 u64 drop_start;
3580
3581 extent = btrfs_item_ptr(leaf, slot,
3582 struct btrfs_file_extent_item);
3583 comp = btrfs_file_extent_compression(leaf, extent);
3584 type = btrfs_file_extent_type(leaf, extent);
3585 if (type == BTRFS_FILE_EXTENT_REG ||
3586 type == BTRFS_FILE_EXTENT_PREALLOC) {
3587 disko = btrfs_file_extent_disk_bytenr(leaf,
3588 extent);
3589 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3590 extent);
3591 datao = btrfs_file_extent_offset(leaf, extent);
3592 datal = btrfs_file_extent_num_bytes(leaf,
3593 extent);
3594 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3595 /* take upper bound, may be compressed */
3596 datal = btrfs_file_extent_ram_bytes(leaf,
3597 extent);
3598 }
3599
3600 /*
3601 * The first search might have left us at an extent
3602 * item that ends before our target range's start, can
3603 * happen if we have holes and NO_HOLES feature enabled.
3604 */
3605 if (key.offset + datal <= off) {
3606 path->slots[0]++;
3607 goto process_slot;
3608 } else if (key.offset >= off + len) {
3609 break;
3610 }
3611 next_key_min_offset = key.offset + datal;
3612 size = btrfs_item_size_nr(leaf, slot);
3613 read_extent_buffer(leaf, buf,
3614 btrfs_item_ptr_offset(leaf, slot),
3615 size);
3616
3617 btrfs_release_path(path);
3618 path->leave_spinning = 0;
3619
3620 memcpy(&new_key, &key, sizeof(new_key));
3621 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3622 if (off <= key.offset)
3623 new_key.offset = key.offset + destoff - off;
3624 else
3625 new_key.offset = destoff;
3626
3627 /*
3628 * Deal with a hole that doesn't have an extent item
3629 * that represents it (NO_HOLES feature enabled).
3630 * This hole is either in the middle of the cloning
3631 * range or at the beginning (fully overlaps it or
3632 * partially overlaps it).
3633 */
3634 if (new_key.offset != last_dest_end)
3635 drop_start = last_dest_end;
3636 else
3637 drop_start = new_key.offset;
3638
3639 /*
3640 * 1 - adjusting old extent (we may have to split it)
3641 * 1 - add new extent
3642 * 1 - inode update
3643 */
3644 trans = btrfs_start_transaction(root, 3);
3645 if (IS_ERR(trans)) {
3646 ret = PTR_ERR(trans);
3647 goto out;
3648 }
3649
3650 if (type == BTRFS_FILE_EXTENT_REG ||
3651 type == BTRFS_FILE_EXTENT_PREALLOC) {
3652 /*
3653 * a | --- range to clone ---| b
3654 * | ------------- extent ------------- |
3655 */
3656
3657 /* subtract range b */
3658 if (key.offset + datal > off + len)
3659 datal = off + len - key.offset;
3660
3661 /* subtract range a */
3662 if (off > key.offset) {
3663 datao += off - key.offset;
3664 datal -= off - key.offset;
3665 }
3666
3667 ret = btrfs_drop_extents(trans, root, inode,
3668 drop_start,
3669 new_key.offset + datal,
3670 1);
3671 if (ret) {
3672 if (ret != -EOPNOTSUPP)
3673 btrfs_abort_transaction(trans,
3674 ret);
3675 btrfs_end_transaction(trans);
3676 goto out;
3677 }
3678
3679 ret = btrfs_insert_empty_item(trans, root, path,
3680 &new_key, size);
3681 if (ret) {
3682 btrfs_abort_transaction(trans, ret);
3683 btrfs_end_transaction(trans);
3684 goto out;
3685 }
3686
3687 leaf = path->nodes[0];
3688 slot = path->slots[0];
3689 write_extent_buffer(leaf, buf,
3690 btrfs_item_ptr_offset(leaf, slot),
3691 size);
3692
3693 extent = btrfs_item_ptr(leaf, slot,
3694 struct btrfs_file_extent_item);
3695
3696 /* disko == 0 means it's a hole */
3697 if (!disko)
3698 datao = 0;
3699
3700 btrfs_set_file_extent_offset(leaf, extent,
3701 datao);
3702 btrfs_set_file_extent_num_bytes(leaf, extent,
3703 datal);
3704
3705 if (disko) {
3706 inode_add_bytes(inode, datal);
3707 ret = btrfs_inc_extent_ref(trans,
3708 fs_info,
3709 disko, diskl, 0,
3710 root->root_key.objectid,
3711 btrfs_ino(BTRFS_I(inode)),
3712 new_key.offset - datao);
3713 if (ret) {
3714 btrfs_abort_transaction(trans,
3715 ret);
3716 btrfs_end_transaction(trans);
3717 goto out;
3718
3719 }
3720 }
3721 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3722 u64 skip = 0;
3723 u64 trim = 0;
3724
3725 if (off > key.offset) {
3726 skip = off - key.offset;
3727 new_key.offset += skip;
3728 }
3729
3730 if (key.offset + datal > off + len)
3731 trim = key.offset + datal - (off + len);
3732
3733 if (comp && (skip || trim)) {
3734 ret = -EINVAL;
3735 btrfs_end_transaction(trans);
3736 goto out;
3737 }
3738 size -= skip + trim;
3739 datal -= skip + trim;
3740
3741 ret = clone_copy_inline_extent(inode,
3742 trans, path,
3743 &new_key,
3744 drop_start,
3745 datal,
3746 skip, size, buf);
3747 if (ret) {
3748 if (ret != -EOPNOTSUPP)
3749 btrfs_abort_transaction(trans,
3750 ret);
3751 btrfs_end_transaction(trans);
3752 goto out;
3753 }
3754 leaf = path->nodes[0];
3755 slot = path->slots[0];
3756 }
3757
3758 /* If we have an implicit hole (NO_HOLES feature). */
3759 if (drop_start < new_key.offset)
3760 clone_update_extent_map(BTRFS_I(inode), trans,
3761 NULL, drop_start,
3762 new_key.offset - drop_start);
3763
3764 clone_update_extent_map(BTRFS_I(inode), trans,
3765 path, 0, 0);
3766
3767 btrfs_mark_buffer_dirty(leaf);
3768 btrfs_release_path(path);
3769
3770 last_dest_end = ALIGN(new_key.offset + datal,
3771 fs_info->sectorsize);
3772 ret = clone_finish_inode_update(trans, inode,
3773 last_dest_end,
3774 destoff, olen,
3775 no_time_update);
3776 if (ret)
3777 goto out;
3778 if (new_key.offset + datal >= destoff + len)
3779 break;
3780 }
3781 btrfs_release_path(path);
3782 key.offset = next_key_min_offset;
3783
3784 if (fatal_signal_pending(current)) {
3785 ret = -EINTR;
3786 goto out;
3787 }
3788 }
3789 ret = 0;
3790
3791 if (last_dest_end < destoff + len) {
3792 /*
3793 * We have an implicit hole (NO_HOLES feature is enabled) that
3794 * fully or partially overlaps our cloning range at its end.
3795 */
3796 btrfs_release_path(path);
3797
3798 /*
3799 * 1 - remove extent(s)
3800 * 1 - inode update
3801 */
3802 trans = btrfs_start_transaction(root, 2);
3803 if (IS_ERR(trans)) {
3804 ret = PTR_ERR(trans);
3805 goto out;
3806 }
3807 ret = btrfs_drop_extents(trans, root, inode,
3808 last_dest_end, destoff + len, 1);
3809 if (ret) {
3810 if (ret != -EOPNOTSUPP)
3811 btrfs_abort_transaction(trans, ret);
3812 btrfs_end_transaction(trans);
3813 goto out;
3814 }
3815 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3816 last_dest_end,
3817 destoff + len - last_dest_end);
3818 ret = clone_finish_inode_update(trans, inode, destoff + len,
3819 destoff, olen, no_time_update);
3820 }
3821
3822 out:
3823 btrfs_free_path(path);
3824 kvfree(buf);
3825 return ret;
3826 }
3827
3828 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3829 u64 off, u64 olen, u64 destoff)
3830 {
3831 struct inode *inode = file_inode(file);
3832 struct inode *src = file_inode(file_src);
3833 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3834 struct btrfs_root *root = BTRFS_I(inode)->root;
3835 int ret;
3836 u64 len = olen;
3837 u64 bs = fs_info->sb->s_blocksize;
3838 int same_inode = src == inode;
3839
3840 /*
3841 * TODO:
3842 * - split compressed inline extents. annoying: we need to
3843 * decompress into destination's address_space (the file offset
3844 * may change, so source mapping won't do), then recompress (or
3845 * otherwise reinsert) a subrange.
3846 *
3847 * - split destination inode's inline extents. The inline extents can
3848 * be either compressed or non-compressed.
3849 */
3850
3851 if (btrfs_root_readonly(root))
3852 return -EROFS;
3853
3854 if (file_src->f_path.mnt != file->f_path.mnt ||
3855 src->i_sb != inode->i_sb)
3856 return -EXDEV;
3857
3858 /* don't make the dst file partly checksummed */
3859 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3860 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3861 return -EINVAL;
3862
3863 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3864 return -EISDIR;
3865
3866 if (!same_inode) {
3867 btrfs_double_inode_lock(src, inode);
3868 } else {
3869 inode_lock(src);
3870 }
3871
3872 /* determine range to clone */
3873 ret = -EINVAL;
3874 if (off + len > src->i_size || off + len < off)
3875 goto out_unlock;
3876 if (len == 0)
3877 olen = len = src->i_size - off;
3878 /* if we extend to eof, continue to block boundary */
3879 if (off + len == src->i_size)
3880 len = ALIGN(src->i_size, bs) - off;
3881
3882 if (len == 0) {
3883 ret = 0;
3884 goto out_unlock;
3885 }
3886
3887 /* verify the end result is block aligned */
3888 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3889 !IS_ALIGNED(destoff, bs))
3890 goto out_unlock;
3891
3892 /* verify if ranges are overlapped within the same file */
3893 if (same_inode) {
3894 if (destoff + len > off && destoff < off + len)
3895 goto out_unlock;
3896 }
3897
3898 if (destoff > inode->i_size) {
3899 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3900 if (ret)
3901 goto out_unlock;
3902 }
3903
3904 /*
3905 * Lock the target range too. Right after we replace the file extent
3906 * items in the fs tree (which now point to the cloned data), we might
3907 * have a worker replace them with extent items relative to a write
3908 * operation that was issued before this clone operation (i.e. confront
3909 * with inode.c:btrfs_finish_ordered_io).
3910 */
3911 if (same_inode) {
3912 u64 lock_start = min_t(u64, off, destoff);
3913 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3914
3915 ret = lock_extent_range(src, lock_start, lock_len, true);
3916 } else {
3917 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3918 true);
3919 }
3920 ASSERT(ret == 0);
3921 if (WARN_ON(ret)) {
3922 /* ranges in the io trees already unlocked */
3923 goto out_unlock;
3924 }
3925
3926 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3927
3928 if (same_inode) {
3929 u64 lock_start = min_t(u64, off, destoff);
3930 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3931
3932 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3933 } else {
3934 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3935 }
3936 /*
3937 * Truncate page cache pages so that future reads will see the cloned
3938 * data immediately and not the previous data.
3939 */
3940 truncate_inode_pages_range(&inode->i_data,
3941 round_down(destoff, PAGE_SIZE),
3942 round_up(destoff + len, PAGE_SIZE) - 1);
3943 out_unlock:
3944 if (!same_inode)
3945 btrfs_double_inode_unlock(src, inode);
3946 else
3947 inode_unlock(src);
3948 return ret;
3949 }
3950
3951 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3952 struct file *dst_file, loff_t destoff, u64 len)
3953 {
3954 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3955 }
3956
3957 /*
3958 * there are many ways the trans_start and trans_end ioctls can lead
3959 * to deadlocks. They should only be used by applications that
3960 * basically own the machine, and have a very in depth understanding
3961 * of all the possible deadlocks and enospc problems.
3962 */
3963 static long btrfs_ioctl_trans_start(struct file *file)
3964 {
3965 struct inode *inode = file_inode(file);
3966 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3967 struct btrfs_root *root = BTRFS_I(inode)->root;
3968 struct btrfs_trans_handle *trans;
3969 int ret;
3970 static bool warned = false;
3971
3972 ret = -EPERM;
3973 if (!capable(CAP_SYS_ADMIN))
3974 goto out;
3975
3976 if (!warned) {
3977 btrfs_warn(fs_info,
3978 "Userspace transaction mechanism is considered "
3979 "deprecated and slated to be removed in 4.17. "
3980 "If you have a valid use case please "
3981 "speak up on the mailing list");
3982 WARN_ON(1);
3983 warned = true;
3984 }
3985
3986 ret = -EINPROGRESS;
3987 if (file->private_data)
3988 goto out;
3989
3990 ret = -EROFS;
3991 if (btrfs_root_readonly(root))
3992 goto out;
3993
3994 ret = mnt_want_write_file(file);
3995 if (ret)
3996 goto out;
3997
3998 atomic_inc(&fs_info->open_ioctl_trans);
3999
4000 ret = -ENOMEM;
4001 trans = btrfs_start_ioctl_transaction(root);
4002 if (IS_ERR(trans))
4003 goto out_drop;
4004
4005 file->private_data = trans;
4006 return 0;
4007
4008 out_drop:
4009 atomic_dec(&fs_info->open_ioctl_trans);
4010 mnt_drop_write_file(file);
4011 out:
4012 return ret;
4013 }
4014
4015 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4016 {
4017 struct inode *inode = file_inode(file);
4018 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4019 struct btrfs_root *root = BTRFS_I(inode)->root;
4020 struct btrfs_root *new_root;
4021 struct btrfs_dir_item *di;
4022 struct btrfs_trans_handle *trans;
4023 struct btrfs_path *path;
4024 struct btrfs_key location;
4025 struct btrfs_disk_key disk_key;
4026 u64 objectid = 0;
4027 u64 dir_id;
4028 int ret;
4029
4030 if (!capable(CAP_SYS_ADMIN))
4031 return -EPERM;
4032
4033 ret = mnt_want_write_file(file);
4034 if (ret)
4035 return ret;
4036
4037 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4038 ret = -EFAULT;
4039 goto out;
4040 }
4041
4042 if (!objectid)
4043 objectid = BTRFS_FS_TREE_OBJECTID;
4044
4045 location.objectid = objectid;
4046 location.type = BTRFS_ROOT_ITEM_KEY;
4047 location.offset = (u64)-1;
4048
4049 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4050 if (IS_ERR(new_root)) {
4051 ret = PTR_ERR(new_root);
4052 goto out;
4053 }
4054
4055 path = btrfs_alloc_path();
4056 if (!path) {
4057 ret = -ENOMEM;
4058 goto out;
4059 }
4060 path->leave_spinning = 1;
4061
4062 trans = btrfs_start_transaction(root, 1);
4063 if (IS_ERR(trans)) {
4064 btrfs_free_path(path);
4065 ret = PTR_ERR(trans);
4066 goto out;
4067 }
4068
4069 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4070 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4071 dir_id, "default", 7, 1);
4072 if (IS_ERR_OR_NULL(di)) {
4073 btrfs_free_path(path);
4074 btrfs_end_transaction(trans);
4075 btrfs_err(fs_info,
4076 "Umm, you don't have the default diritem, this isn't going to work");
4077 ret = -ENOENT;
4078 goto out;
4079 }
4080
4081 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4082 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4083 btrfs_mark_buffer_dirty(path->nodes[0]);
4084 btrfs_free_path(path);
4085
4086 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4087 btrfs_end_transaction(trans);
4088 out:
4089 mnt_drop_write_file(file);
4090 return ret;
4091 }
4092
4093 void btrfs_get_block_group_info(struct list_head *groups_list,
4094 struct btrfs_ioctl_space_info *space)
4095 {
4096 struct btrfs_block_group_cache *block_group;
4097
4098 space->total_bytes = 0;
4099 space->used_bytes = 0;
4100 space->flags = 0;
4101 list_for_each_entry(block_group, groups_list, list) {
4102 space->flags = block_group->flags;
4103 space->total_bytes += block_group->key.offset;
4104 space->used_bytes +=
4105 btrfs_block_group_used(&block_group->item);
4106 }
4107 }
4108
4109 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4110 void __user *arg)
4111 {
4112 struct btrfs_ioctl_space_args space_args;
4113 struct btrfs_ioctl_space_info space;
4114 struct btrfs_ioctl_space_info *dest;
4115 struct btrfs_ioctl_space_info *dest_orig;
4116 struct btrfs_ioctl_space_info __user *user_dest;
4117 struct btrfs_space_info *info;
4118 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4119 BTRFS_BLOCK_GROUP_SYSTEM,
4120 BTRFS_BLOCK_GROUP_METADATA,
4121 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4122 int num_types = 4;
4123 int alloc_size;
4124 int ret = 0;
4125 u64 slot_count = 0;
4126 int i, c;
4127
4128 if (copy_from_user(&space_args,
4129 (struct btrfs_ioctl_space_args __user *)arg,
4130 sizeof(space_args)))
4131 return -EFAULT;
4132
4133 for (i = 0; i < num_types; i++) {
4134 struct btrfs_space_info *tmp;
4135
4136 info = NULL;
4137 rcu_read_lock();
4138 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4139 list) {
4140 if (tmp->flags == types[i]) {
4141 info = tmp;
4142 break;
4143 }
4144 }
4145 rcu_read_unlock();
4146
4147 if (!info)
4148 continue;
4149
4150 down_read(&info->groups_sem);
4151 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4152 if (!list_empty(&info->block_groups[c]))
4153 slot_count++;
4154 }
4155 up_read(&info->groups_sem);
4156 }
4157
4158 /*
4159 * Global block reserve, exported as a space_info
4160 */
4161 slot_count++;
4162
4163 /* space_slots == 0 means they are asking for a count */
4164 if (space_args.space_slots == 0) {
4165 space_args.total_spaces = slot_count;
4166 goto out;
4167 }
4168
4169 slot_count = min_t(u64, space_args.space_slots, slot_count);
4170
4171 alloc_size = sizeof(*dest) * slot_count;
4172
4173 /* we generally have at most 6 or so space infos, one for each raid
4174 * level. So, a whole page should be more than enough for everyone
4175 */
4176 if (alloc_size > PAGE_SIZE)
4177 return -ENOMEM;
4178
4179 space_args.total_spaces = 0;
4180 dest = kmalloc(alloc_size, GFP_KERNEL);
4181 if (!dest)
4182 return -ENOMEM;
4183 dest_orig = dest;
4184
4185 /* now we have a buffer to copy into */
4186 for (i = 0; i < num_types; i++) {
4187 struct btrfs_space_info *tmp;
4188
4189 if (!slot_count)
4190 break;
4191
4192 info = NULL;
4193 rcu_read_lock();
4194 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4195 list) {
4196 if (tmp->flags == types[i]) {
4197 info = tmp;
4198 break;
4199 }
4200 }
4201 rcu_read_unlock();
4202
4203 if (!info)
4204 continue;
4205 down_read(&info->groups_sem);
4206 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4207 if (!list_empty(&info->block_groups[c])) {
4208 btrfs_get_block_group_info(
4209 &info->block_groups[c], &space);
4210 memcpy(dest, &space, sizeof(space));
4211 dest++;
4212 space_args.total_spaces++;
4213 slot_count--;
4214 }
4215 if (!slot_count)
4216 break;
4217 }
4218 up_read(&info->groups_sem);
4219 }
4220
4221 /*
4222 * Add global block reserve
4223 */
4224 if (slot_count) {
4225 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4226
4227 spin_lock(&block_rsv->lock);
4228 space.total_bytes = block_rsv->size;
4229 space.used_bytes = block_rsv->size - block_rsv->reserved;
4230 spin_unlock(&block_rsv->lock);
4231 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4232 memcpy(dest, &space, sizeof(space));
4233 space_args.total_spaces++;
4234 }
4235
4236 user_dest = (struct btrfs_ioctl_space_info __user *)
4237 (arg + sizeof(struct btrfs_ioctl_space_args));
4238
4239 if (copy_to_user(user_dest, dest_orig, alloc_size))
4240 ret = -EFAULT;
4241
4242 kfree(dest_orig);
4243 out:
4244 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4245 ret = -EFAULT;
4246
4247 return ret;
4248 }
4249
4250 /*
4251 * there are many ways the trans_start and trans_end ioctls can lead
4252 * to deadlocks. They should only be used by applications that
4253 * basically own the machine, and have a very in depth understanding
4254 * of all the possible deadlocks and enospc problems.
4255 */
4256 long btrfs_ioctl_trans_end(struct file *file)
4257 {
4258 struct inode *inode = file_inode(file);
4259 struct btrfs_root *root = BTRFS_I(inode)->root;
4260 struct btrfs_trans_handle *trans;
4261
4262 trans = file->private_data;
4263 if (!trans)
4264 return -EINVAL;
4265 file->private_data = NULL;
4266
4267 btrfs_end_transaction(trans);
4268
4269 atomic_dec(&root->fs_info->open_ioctl_trans);
4270
4271 mnt_drop_write_file(file);
4272 return 0;
4273 }
4274
4275 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4276 void __user *argp)
4277 {
4278 struct btrfs_trans_handle *trans;
4279 u64 transid;
4280 int ret;
4281
4282 trans = btrfs_attach_transaction_barrier(root);
4283 if (IS_ERR(trans)) {
4284 if (PTR_ERR(trans) != -ENOENT)
4285 return PTR_ERR(trans);
4286
4287 /* No running transaction, don't bother */
4288 transid = root->fs_info->last_trans_committed;
4289 goto out;
4290 }
4291 transid = trans->transid;
4292 ret = btrfs_commit_transaction_async(trans, 0);
4293 if (ret) {
4294 btrfs_end_transaction(trans);
4295 return ret;
4296 }
4297 out:
4298 if (argp)
4299 if (copy_to_user(argp, &transid, sizeof(transid)))
4300 return -EFAULT;
4301 return 0;
4302 }
4303
4304 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4305 void __user *argp)
4306 {
4307 u64 transid;
4308
4309 if (argp) {
4310 if (copy_from_user(&transid, argp, sizeof(transid)))
4311 return -EFAULT;
4312 } else {
4313 transid = 0; /* current trans */
4314 }
4315 return btrfs_wait_for_commit(fs_info, transid);
4316 }
4317
4318 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4319 {
4320 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4321 struct btrfs_ioctl_scrub_args *sa;
4322 int ret;
4323
4324 if (!capable(CAP_SYS_ADMIN))
4325 return -EPERM;
4326
4327 sa = memdup_user(arg, sizeof(*sa));
4328 if (IS_ERR(sa))
4329 return PTR_ERR(sa);
4330
4331 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4332 ret = mnt_want_write_file(file);
4333 if (ret)
4334 goto out;
4335 }
4336
4337 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4338 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4339 0);
4340
4341 if (copy_to_user(arg, sa, sizeof(*sa)))
4342 ret = -EFAULT;
4343
4344 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4345 mnt_drop_write_file(file);
4346 out:
4347 kfree(sa);
4348 return ret;
4349 }
4350
4351 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4352 {
4353 if (!capable(CAP_SYS_ADMIN))
4354 return -EPERM;
4355
4356 return btrfs_scrub_cancel(fs_info);
4357 }
4358
4359 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4360 void __user *arg)
4361 {
4362 struct btrfs_ioctl_scrub_args *sa;
4363 int ret;
4364
4365 if (!capable(CAP_SYS_ADMIN))
4366 return -EPERM;
4367
4368 sa = memdup_user(arg, sizeof(*sa));
4369 if (IS_ERR(sa))
4370 return PTR_ERR(sa);
4371
4372 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4373
4374 if (copy_to_user(arg, sa, sizeof(*sa)))
4375 ret = -EFAULT;
4376
4377 kfree(sa);
4378 return ret;
4379 }
4380
4381 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4382 void __user *arg)
4383 {
4384 struct btrfs_ioctl_get_dev_stats *sa;
4385 int ret;
4386
4387 sa = memdup_user(arg, sizeof(*sa));
4388 if (IS_ERR(sa))
4389 return PTR_ERR(sa);
4390
4391 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4392 kfree(sa);
4393 return -EPERM;
4394 }
4395
4396 ret = btrfs_get_dev_stats(fs_info, sa);
4397
4398 if (copy_to_user(arg, sa, sizeof(*sa)))
4399 ret = -EFAULT;
4400
4401 kfree(sa);
4402 return ret;
4403 }
4404
4405 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4406 void __user *arg)
4407 {
4408 struct btrfs_ioctl_dev_replace_args *p;
4409 int ret;
4410
4411 if (!capable(CAP_SYS_ADMIN))
4412 return -EPERM;
4413
4414 p = memdup_user(arg, sizeof(*p));
4415 if (IS_ERR(p))
4416 return PTR_ERR(p);
4417
4418 switch (p->cmd) {
4419 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4420 if (fs_info->sb->s_flags & MS_RDONLY) {
4421 ret = -EROFS;
4422 goto out;
4423 }
4424 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4425 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4426 } else {
4427 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4428 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4429 }
4430 break;
4431 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4432 btrfs_dev_replace_status(fs_info, p);
4433 ret = 0;
4434 break;
4435 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4436 ret = btrfs_dev_replace_cancel(fs_info, p);
4437 break;
4438 default:
4439 ret = -EINVAL;
4440 break;
4441 }
4442
4443 if (copy_to_user(arg, p, sizeof(*p)))
4444 ret = -EFAULT;
4445 out:
4446 kfree(p);
4447 return ret;
4448 }
4449
4450 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4451 {
4452 int ret = 0;
4453 int i;
4454 u64 rel_ptr;
4455 int size;
4456 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4457 struct inode_fs_paths *ipath = NULL;
4458 struct btrfs_path *path;
4459
4460 if (!capable(CAP_DAC_READ_SEARCH))
4461 return -EPERM;
4462
4463 path = btrfs_alloc_path();
4464 if (!path) {
4465 ret = -ENOMEM;
4466 goto out;
4467 }
4468
4469 ipa = memdup_user(arg, sizeof(*ipa));
4470 if (IS_ERR(ipa)) {
4471 ret = PTR_ERR(ipa);
4472 ipa = NULL;
4473 goto out;
4474 }
4475
4476 size = min_t(u32, ipa->size, 4096);
4477 ipath = init_ipath(size, root, path);
4478 if (IS_ERR(ipath)) {
4479 ret = PTR_ERR(ipath);
4480 ipath = NULL;
4481 goto out;
4482 }
4483
4484 ret = paths_from_inode(ipa->inum, ipath);
4485 if (ret < 0)
4486 goto out;
4487
4488 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4489 rel_ptr = ipath->fspath->val[i] -
4490 (u64)(unsigned long)ipath->fspath->val;
4491 ipath->fspath->val[i] = rel_ptr;
4492 }
4493
4494 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4495 (void *)(unsigned long)ipath->fspath, size);
4496 if (ret) {
4497 ret = -EFAULT;
4498 goto out;
4499 }
4500
4501 out:
4502 btrfs_free_path(path);
4503 free_ipath(ipath);
4504 kfree(ipa);
4505
4506 return ret;
4507 }
4508
4509 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4510 {
4511 struct btrfs_data_container *inodes = ctx;
4512 const size_t c = 3 * sizeof(u64);
4513
4514 if (inodes->bytes_left >= c) {
4515 inodes->bytes_left -= c;
4516 inodes->val[inodes->elem_cnt] = inum;
4517 inodes->val[inodes->elem_cnt + 1] = offset;
4518 inodes->val[inodes->elem_cnt + 2] = root;
4519 inodes->elem_cnt += 3;
4520 } else {
4521 inodes->bytes_missing += c - inodes->bytes_left;
4522 inodes->bytes_left = 0;
4523 inodes->elem_missed += 3;
4524 }
4525
4526 return 0;
4527 }
4528
4529 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4530 void __user *arg)
4531 {
4532 int ret = 0;
4533 int size;
4534 struct btrfs_ioctl_logical_ino_args *loi;
4535 struct btrfs_data_container *inodes = NULL;
4536 struct btrfs_path *path = NULL;
4537
4538 if (!capable(CAP_SYS_ADMIN))
4539 return -EPERM;
4540
4541 loi = memdup_user(arg, sizeof(*loi));
4542 if (IS_ERR(loi))
4543 return PTR_ERR(loi);
4544
4545 path = btrfs_alloc_path();
4546 if (!path) {
4547 ret = -ENOMEM;
4548 goto out;
4549 }
4550
4551 size = min_t(u32, loi->size, SZ_64K);
4552 inodes = init_data_container(size);
4553 if (IS_ERR(inodes)) {
4554 ret = PTR_ERR(inodes);
4555 inodes = NULL;
4556 goto out;
4557 }
4558
4559 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4560 build_ino_list, inodes);
4561 if (ret == -EINVAL)
4562 ret = -ENOENT;
4563 if (ret < 0)
4564 goto out;
4565
4566 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4567 (void *)(unsigned long)inodes, size);
4568 if (ret)
4569 ret = -EFAULT;
4570
4571 out:
4572 btrfs_free_path(path);
4573 kvfree(inodes);
4574 kfree(loi);
4575
4576 return ret;
4577 }
4578
4579 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4580 struct btrfs_ioctl_balance_args *bargs)
4581 {
4582 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4583
4584 bargs->flags = bctl->flags;
4585
4586 if (atomic_read(&fs_info->balance_running))
4587 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4588 if (atomic_read(&fs_info->balance_pause_req))
4589 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4590 if (atomic_read(&fs_info->balance_cancel_req))
4591 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4592
4593 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4594 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4595 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4596
4597 if (lock) {
4598 spin_lock(&fs_info->balance_lock);
4599 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4600 spin_unlock(&fs_info->balance_lock);
4601 } else {
4602 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4603 }
4604 }
4605
4606 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4607 {
4608 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4609 struct btrfs_fs_info *fs_info = root->fs_info;
4610 struct btrfs_ioctl_balance_args *bargs;
4611 struct btrfs_balance_control *bctl;
4612 bool need_unlock; /* for mut. excl. ops lock */
4613 int ret;
4614
4615 if (!capable(CAP_SYS_ADMIN))
4616 return -EPERM;
4617
4618 ret = mnt_want_write_file(file);
4619 if (ret)
4620 return ret;
4621
4622 again:
4623 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4624 mutex_lock(&fs_info->volume_mutex);
4625 mutex_lock(&fs_info->balance_mutex);
4626 need_unlock = true;
4627 goto locked;
4628 }
4629
4630 /*
4631 * mut. excl. ops lock is locked. Three possibilities:
4632 * (1) some other op is running
4633 * (2) balance is running
4634 * (3) balance is paused -- special case (think resume)
4635 */
4636 mutex_lock(&fs_info->balance_mutex);
4637 if (fs_info->balance_ctl) {
4638 /* this is either (2) or (3) */
4639 if (!atomic_read(&fs_info->balance_running)) {
4640 mutex_unlock(&fs_info->balance_mutex);
4641 if (!mutex_trylock(&fs_info->volume_mutex))
4642 goto again;
4643 mutex_lock(&fs_info->balance_mutex);
4644
4645 if (fs_info->balance_ctl &&
4646 !atomic_read(&fs_info->balance_running)) {
4647 /* this is (3) */
4648 need_unlock = false;
4649 goto locked;
4650 }
4651
4652 mutex_unlock(&fs_info->balance_mutex);
4653 mutex_unlock(&fs_info->volume_mutex);
4654 goto again;
4655 } else {
4656 /* this is (2) */
4657 mutex_unlock(&fs_info->balance_mutex);
4658 ret = -EINPROGRESS;
4659 goto out;
4660 }
4661 } else {
4662 /* this is (1) */
4663 mutex_unlock(&fs_info->balance_mutex);
4664 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4665 goto out;
4666 }
4667
4668 locked:
4669 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4670
4671 if (arg) {
4672 bargs = memdup_user(arg, sizeof(*bargs));
4673 if (IS_ERR(bargs)) {
4674 ret = PTR_ERR(bargs);
4675 goto out_unlock;
4676 }
4677
4678 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4679 if (!fs_info->balance_ctl) {
4680 ret = -ENOTCONN;
4681 goto out_bargs;
4682 }
4683
4684 bctl = fs_info->balance_ctl;
4685 spin_lock(&fs_info->balance_lock);
4686 bctl->flags |= BTRFS_BALANCE_RESUME;
4687 spin_unlock(&fs_info->balance_lock);
4688
4689 goto do_balance;
4690 }
4691 } else {
4692 bargs = NULL;
4693 }
4694
4695 if (fs_info->balance_ctl) {
4696 ret = -EINPROGRESS;
4697 goto out_bargs;
4698 }
4699
4700 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4701 if (!bctl) {
4702 ret = -ENOMEM;
4703 goto out_bargs;
4704 }
4705
4706 bctl->fs_info = fs_info;
4707 if (arg) {
4708 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4709 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4710 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4711
4712 bctl->flags = bargs->flags;
4713 } else {
4714 /* balance everything - no filters */
4715 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4716 }
4717
4718 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4719 ret = -EINVAL;
4720 goto out_bctl;
4721 }
4722
4723 do_balance:
4724 /*
4725 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4726 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4727 * or, if restriper was paused all the way until unmount, in
4728 * free_fs_info. The flag is cleared in __cancel_balance.
4729 */
4730 need_unlock = false;
4731
4732 ret = btrfs_balance(bctl, bargs);
4733 bctl = NULL;
4734
4735 if (arg) {
4736 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4737 ret = -EFAULT;
4738 }
4739
4740 out_bctl:
4741 kfree(bctl);
4742 out_bargs:
4743 kfree(bargs);
4744 out_unlock:
4745 mutex_unlock(&fs_info->balance_mutex);
4746 mutex_unlock(&fs_info->volume_mutex);
4747 if (need_unlock)
4748 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4749 out:
4750 mnt_drop_write_file(file);
4751 return ret;
4752 }
4753
4754 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4755 {
4756 if (!capable(CAP_SYS_ADMIN))
4757 return -EPERM;
4758
4759 switch (cmd) {
4760 case BTRFS_BALANCE_CTL_PAUSE:
4761 return btrfs_pause_balance(fs_info);
4762 case BTRFS_BALANCE_CTL_CANCEL:
4763 return btrfs_cancel_balance(fs_info);
4764 }
4765
4766 return -EINVAL;
4767 }
4768
4769 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4770 void __user *arg)
4771 {
4772 struct btrfs_ioctl_balance_args *bargs;
4773 int ret = 0;
4774
4775 if (!capable(CAP_SYS_ADMIN))
4776 return -EPERM;
4777
4778 mutex_lock(&fs_info->balance_mutex);
4779 if (!fs_info->balance_ctl) {
4780 ret = -ENOTCONN;
4781 goto out;
4782 }
4783
4784 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4785 if (!bargs) {
4786 ret = -ENOMEM;
4787 goto out;
4788 }
4789
4790 update_ioctl_balance_args(fs_info, 1, bargs);
4791
4792 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4793 ret = -EFAULT;
4794
4795 kfree(bargs);
4796 out:
4797 mutex_unlock(&fs_info->balance_mutex);
4798 return ret;
4799 }
4800
4801 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4802 {
4803 struct inode *inode = file_inode(file);
4804 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4805 struct btrfs_ioctl_quota_ctl_args *sa;
4806 struct btrfs_trans_handle *trans = NULL;
4807 int ret;
4808 int err;
4809
4810 if (!capable(CAP_SYS_ADMIN))
4811 return -EPERM;
4812
4813 ret = mnt_want_write_file(file);
4814 if (ret)
4815 return ret;
4816
4817 sa = memdup_user(arg, sizeof(*sa));
4818 if (IS_ERR(sa)) {
4819 ret = PTR_ERR(sa);
4820 goto drop_write;
4821 }
4822
4823 down_write(&fs_info->subvol_sem);
4824 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4825 if (IS_ERR(trans)) {
4826 ret = PTR_ERR(trans);
4827 goto out;
4828 }
4829
4830 switch (sa->cmd) {
4831 case BTRFS_QUOTA_CTL_ENABLE:
4832 ret = btrfs_quota_enable(trans, fs_info);
4833 break;
4834 case BTRFS_QUOTA_CTL_DISABLE:
4835 ret = btrfs_quota_disable(trans, fs_info);
4836 break;
4837 default:
4838 ret = -EINVAL;
4839 break;
4840 }
4841
4842 err = btrfs_commit_transaction(trans);
4843 if (err && !ret)
4844 ret = err;
4845 out:
4846 kfree(sa);
4847 up_write(&fs_info->subvol_sem);
4848 drop_write:
4849 mnt_drop_write_file(file);
4850 return ret;
4851 }
4852
4853 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4854 {
4855 struct inode *inode = file_inode(file);
4856 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4857 struct btrfs_root *root = BTRFS_I(inode)->root;
4858 struct btrfs_ioctl_qgroup_assign_args *sa;
4859 struct btrfs_trans_handle *trans;
4860 int ret;
4861 int err;
4862
4863 if (!capable(CAP_SYS_ADMIN))
4864 return -EPERM;
4865
4866 ret = mnt_want_write_file(file);
4867 if (ret)
4868 return ret;
4869
4870 sa = memdup_user(arg, sizeof(*sa));
4871 if (IS_ERR(sa)) {
4872 ret = PTR_ERR(sa);
4873 goto drop_write;
4874 }
4875
4876 trans = btrfs_join_transaction(root);
4877 if (IS_ERR(trans)) {
4878 ret = PTR_ERR(trans);
4879 goto out;
4880 }
4881
4882 if (sa->assign) {
4883 ret = btrfs_add_qgroup_relation(trans, fs_info,
4884 sa->src, sa->dst);
4885 } else {
4886 ret = btrfs_del_qgroup_relation(trans, fs_info,
4887 sa->src, sa->dst);
4888 }
4889
4890 /* update qgroup status and info */
4891 err = btrfs_run_qgroups(trans, fs_info);
4892 if (err < 0)
4893 btrfs_handle_fs_error(fs_info, err,
4894 "failed to update qgroup status and info");
4895 err = btrfs_end_transaction(trans);
4896 if (err && !ret)
4897 ret = err;
4898
4899 out:
4900 kfree(sa);
4901 drop_write:
4902 mnt_drop_write_file(file);
4903 return ret;
4904 }
4905
4906 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4907 {
4908 struct inode *inode = file_inode(file);
4909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4910 struct btrfs_root *root = BTRFS_I(inode)->root;
4911 struct btrfs_ioctl_qgroup_create_args *sa;
4912 struct btrfs_trans_handle *trans;
4913 int ret;
4914 int err;
4915
4916 if (!capable(CAP_SYS_ADMIN))
4917 return -EPERM;
4918
4919 ret = mnt_want_write_file(file);
4920 if (ret)
4921 return ret;
4922
4923 sa = memdup_user(arg, sizeof(*sa));
4924 if (IS_ERR(sa)) {
4925 ret = PTR_ERR(sa);
4926 goto drop_write;
4927 }
4928
4929 if (!sa->qgroupid) {
4930 ret = -EINVAL;
4931 goto out;
4932 }
4933
4934 trans = btrfs_join_transaction(root);
4935 if (IS_ERR(trans)) {
4936 ret = PTR_ERR(trans);
4937 goto out;
4938 }
4939
4940 if (sa->create) {
4941 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4942 } else {
4943 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4944 }
4945
4946 err = btrfs_end_transaction(trans);
4947 if (err && !ret)
4948 ret = err;
4949
4950 out:
4951 kfree(sa);
4952 drop_write:
4953 mnt_drop_write_file(file);
4954 return ret;
4955 }
4956
4957 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4958 {
4959 struct inode *inode = file_inode(file);
4960 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4961 struct btrfs_root *root = BTRFS_I(inode)->root;
4962 struct btrfs_ioctl_qgroup_limit_args *sa;
4963 struct btrfs_trans_handle *trans;
4964 int ret;
4965 int err;
4966 u64 qgroupid;
4967
4968 if (!capable(CAP_SYS_ADMIN))
4969 return -EPERM;
4970
4971 ret = mnt_want_write_file(file);
4972 if (ret)
4973 return ret;
4974
4975 sa = memdup_user(arg, sizeof(*sa));
4976 if (IS_ERR(sa)) {
4977 ret = PTR_ERR(sa);
4978 goto drop_write;
4979 }
4980
4981 trans = btrfs_join_transaction(root);
4982 if (IS_ERR(trans)) {
4983 ret = PTR_ERR(trans);
4984 goto out;
4985 }
4986
4987 qgroupid = sa->qgroupid;
4988 if (!qgroupid) {
4989 /* take the current subvol as qgroup */
4990 qgroupid = root->root_key.objectid;
4991 }
4992
4993 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
4994
4995 err = btrfs_end_transaction(trans);
4996 if (err && !ret)
4997 ret = err;
4998
4999 out:
5000 kfree(sa);
5001 drop_write:
5002 mnt_drop_write_file(file);
5003 return ret;
5004 }
5005
5006 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5007 {
5008 struct inode *inode = file_inode(file);
5009 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5010 struct btrfs_ioctl_quota_rescan_args *qsa;
5011 int ret;
5012
5013 if (!capable(CAP_SYS_ADMIN))
5014 return -EPERM;
5015
5016 ret = mnt_want_write_file(file);
5017 if (ret)
5018 return ret;
5019
5020 qsa = memdup_user(arg, sizeof(*qsa));
5021 if (IS_ERR(qsa)) {
5022 ret = PTR_ERR(qsa);
5023 goto drop_write;
5024 }
5025
5026 if (qsa->flags) {
5027 ret = -EINVAL;
5028 goto out;
5029 }
5030
5031 ret = btrfs_qgroup_rescan(fs_info);
5032
5033 out:
5034 kfree(qsa);
5035 drop_write:
5036 mnt_drop_write_file(file);
5037 return ret;
5038 }
5039
5040 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5041 {
5042 struct inode *inode = file_inode(file);
5043 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5044 struct btrfs_ioctl_quota_rescan_args *qsa;
5045 int ret = 0;
5046
5047 if (!capable(CAP_SYS_ADMIN))
5048 return -EPERM;
5049
5050 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5051 if (!qsa)
5052 return -ENOMEM;
5053
5054 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5055 qsa->flags = 1;
5056 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5057 }
5058
5059 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5060 ret = -EFAULT;
5061
5062 kfree(qsa);
5063 return ret;
5064 }
5065
5066 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5067 {
5068 struct inode *inode = file_inode(file);
5069 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5070
5071 if (!capable(CAP_SYS_ADMIN))
5072 return -EPERM;
5073
5074 return btrfs_qgroup_wait_for_completion(fs_info, true);
5075 }
5076
5077 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5078 struct btrfs_ioctl_received_subvol_args *sa)
5079 {
5080 struct inode *inode = file_inode(file);
5081 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5082 struct btrfs_root *root = BTRFS_I(inode)->root;
5083 struct btrfs_root_item *root_item = &root->root_item;
5084 struct btrfs_trans_handle *trans;
5085 struct timespec ct = current_time(inode);
5086 int ret = 0;
5087 int received_uuid_changed;
5088
5089 if (!inode_owner_or_capable(inode))
5090 return -EPERM;
5091
5092 ret = mnt_want_write_file(file);
5093 if (ret < 0)
5094 return ret;
5095
5096 down_write(&fs_info->subvol_sem);
5097
5098 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5099 ret = -EINVAL;
5100 goto out;
5101 }
5102
5103 if (btrfs_root_readonly(root)) {
5104 ret = -EROFS;
5105 goto out;
5106 }
5107
5108 /*
5109 * 1 - root item
5110 * 2 - uuid items (received uuid + subvol uuid)
5111 */
5112 trans = btrfs_start_transaction(root, 3);
5113 if (IS_ERR(trans)) {
5114 ret = PTR_ERR(trans);
5115 trans = NULL;
5116 goto out;
5117 }
5118
5119 sa->rtransid = trans->transid;
5120 sa->rtime.sec = ct.tv_sec;
5121 sa->rtime.nsec = ct.tv_nsec;
5122
5123 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5124 BTRFS_UUID_SIZE);
5125 if (received_uuid_changed &&
5126 !btrfs_is_empty_uuid(root_item->received_uuid))
5127 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5128 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5129 root->root_key.objectid);
5130 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5131 btrfs_set_root_stransid(root_item, sa->stransid);
5132 btrfs_set_root_rtransid(root_item, sa->rtransid);
5133 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5134 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5135 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5136 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5137
5138 ret = btrfs_update_root(trans, fs_info->tree_root,
5139 &root->root_key, &root->root_item);
5140 if (ret < 0) {
5141 btrfs_end_transaction(trans);
5142 goto out;
5143 }
5144 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5145 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5146 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5147 root->root_key.objectid);
5148 if (ret < 0 && ret != -EEXIST) {
5149 btrfs_abort_transaction(trans, ret);
5150 goto out;
5151 }
5152 }
5153 ret = btrfs_commit_transaction(trans);
5154 if (ret < 0) {
5155 btrfs_abort_transaction(trans, ret);
5156 goto out;
5157 }
5158
5159 out:
5160 up_write(&fs_info->subvol_sem);
5161 mnt_drop_write_file(file);
5162 return ret;
5163 }
5164
5165 #ifdef CONFIG_64BIT
5166 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5167 void __user *arg)
5168 {
5169 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5170 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5171 int ret = 0;
5172
5173 args32 = memdup_user(arg, sizeof(*args32));
5174 if (IS_ERR(args32))
5175 return PTR_ERR(args32);
5176
5177 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5178 if (!args64) {
5179 ret = -ENOMEM;
5180 goto out;
5181 }
5182
5183 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5184 args64->stransid = args32->stransid;
5185 args64->rtransid = args32->rtransid;
5186 args64->stime.sec = args32->stime.sec;
5187 args64->stime.nsec = args32->stime.nsec;
5188 args64->rtime.sec = args32->rtime.sec;
5189 args64->rtime.nsec = args32->rtime.nsec;
5190 args64->flags = args32->flags;
5191
5192 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5193 if (ret)
5194 goto out;
5195
5196 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5197 args32->stransid = args64->stransid;
5198 args32->rtransid = args64->rtransid;
5199 args32->stime.sec = args64->stime.sec;
5200 args32->stime.nsec = args64->stime.nsec;
5201 args32->rtime.sec = args64->rtime.sec;
5202 args32->rtime.nsec = args64->rtime.nsec;
5203 args32->flags = args64->flags;
5204
5205 ret = copy_to_user(arg, args32, sizeof(*args32));
5206 if (ret)
5207 ret = -EFAULT;
5208
5209 out:
5210 kfree(args32);
5211 kfree(args64);
5212 return ret;
5213 }
5214 #endif
5215
5216 static long btrfs_ioctl_set_received_subvol(struct file *file,
5217 void __user *arg)
5218 {
5219 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5220 int ret = 0;
5221
5222 sa = memdup_user(arg, sizeof(*sa));
5223 if (IS_ERR(sa))
5224 return PTR_ERR(sa);
5225
5226 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5227
5228 if (ret)
5229 goto out;
5230
5231 ret = copy_to_user(arg, sa, sizeof(*sa));
5232 if (ret)
5233 ret = -EFAULT;
5234
5235 out:
5236 kfree(sa);
5237 return ret;
5238 }
5239
5240 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5241 {
5242 struct inode *inode = file_inode(file);
5243 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5244 size_t len;
5245 int ret;
5246 char label[BTRFS_LABEL_SIZE];
5247
5248 spin_lock(&fs_info->super_lock);
5249 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5250 spin_unlock(&fs_info->super_lock);
5251
5252 len = strnlen(label, BTRFS_LABEL_SIZE);
5253
5254 if (len == BTRFS_LABEL_SIZE) {
5255 btrfs_warn(fs_info,
5256 "label is too long, return the first %zu bytes",
5257 --len);
5258 }
5259
5260 ret = copy_to_user(arg, label, len);
5261
5262 return ret ? -EFAULT : 0;
5263 }
5264
5265 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5266 {
5267 struct inode *inode = file_inode(file);
5268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5269 struct btrfs_root *root = BTRFS_I(inode)->root;
5270 struct btrfs_super_block *super_block = fs_info->super_copy;
5271 struct btrfs_trans_handle *trans;
5272 char label[BTRFS_LABEL_SIZE];
5273 int ret;
5274
5275 if (!capable(CAP_SYS_ADMIN))
5276 return -EPERM;
5277
5278 if (copy_from_user(label, arg, sizeof(label)))
5279 return -EFAULT;
5280
5281 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5282 btrfs_err(fs_info,
5283 "unable to set label with more than %d bytes",
5284 BTRFS_LABEL_SIZE - 1);
5285 return -EINVAL;
5286 }
5287
5288 ret = mnt_want_write_file(file);
5289 if (ret)
5290 return ret;
5291
5292 trans = btrfs_start_transaction(root, 0);
5293 if (IS_ERR(trans)) {
5294 ret = PTR_ERR(trans);
5295 goto out_unlock;
5296 }
5297
5298 spin_lock(&fs_info->super_lock);
5299 strcpy(super_block->label, label);
5300 spin_unlock(&fs_info->super_lock);
5301 ret = btrfs_commit_transaction(trans);
5302
5303 out_unlock:
5304 mnt_drop_write_file(file);
5305 return ret;
5306 }
5307
5308 #define INIT_FEATURE_FLAGS(suffix) \
5309 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5310 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5311 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5312
5313 int btrfs_ioctl_get_supported_features(void __user *arg)
5314 {
5315 static const struct btrfs_ioctl_feature_flags features[3] = {
5316 INIT_FEATURE_FLAGS(SUPP),
5317 INIT_FEATURE_FLAGS(SAFE_SET),
5318 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5319 };
5320
5321 if (copy_to_user(arg, &features, sizeof(features)))
5322 return -EFAULT;
5323
5324 return 0;
5325 }
5326
5327 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5328 {
5329 struct inode *inode = file_inode(file);
5330 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5331 struct btrfs_super_block *super_block = fs_info->super_copy;
5332 struct btrfs_ioctl_feature_flags features;
5333
5334 features.compat_flags = btrfs_super_compat_flags(super_block);
5335 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5336 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5337
5338 if (copy_to_user(arg, &features, sizeof(features)))
5339 return -EFAULT;
5340
5341 return 0;
5342 }
5343
5344 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5345 enum btrfs_feature_set set,
5346 u64 change_mask, u64 flags, u64 supported_flags,
5347 u64 safe_set, u64 safe_clear)
5348 {
5349 const char *type = btrfs_feature_set_names[set];
5350 char *names;
5351 u64 disallowed, unsupported;
5352 u64 set_mask = flags & change_mask;
5353 u64 clear_mask = ~flags & change_mask;
5354
5355 unsupported = set_mask & ~supported_flags;
5356 if (unsupported) {
5357 names = btrfs_printable_features(set, unsupported);
5358 if (names) {
5359 btrfs_warn(fs_info,
5360 "this kernel does not support the %s feature bit%s",
5361 names, strchr(names, ',') ? "s" : "");
5362 kfree(names);
5363 } else
5364 btrfs_warn(fs_info,
5365 "this kernel does not support %s bits 0x%llx",
5366 type, unsupported);
5367 return -EOPNOTSUPP;
5368 }
5369
5370 disallowed = set_mask & ~safe_set;
5371 if (disallowed) {
5372 names = btrfs_printable_features(set, disallowed);
5373 if (names) {
5374 btrfs_warn(fs_info,
5375 "can't set the %s feature bit%s while mounted",
5376 names, strchr(names, ',') ? "s" : "");
5377 kfree(names);
5378 } else
5379 btrfs_warn(fs_info,
5380 "can't set %s bits 0x%llx while mounted",
5381 type, disallowed);
5382 return -EPERM;
5383 }
5384
5385 disallowed = clear_mask & ~safe_clear;
5386 if (disallowed) {
5387 names = btrfs_printable_features(set, disallowed);
5388 if (names) {
5389 btrfs_warn(fs_info,
5390 "can't clear the %s feature bit%s while mounted",
5391 names, strchr(names, ',') ? "s" : "");
5392 kfree(names);
5393 } else
5394 btrfs_warn(fs_info,
5395 "can't clear %s bits 0x%llx while mounted",
5396 type, disallowed);
5397 return -EPERM;
5398 }
5399
5400 return 0;
5401 }
5402
5403 #define check_feature(fs_info, change_mask, flags, mask_base) \
5404 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5405 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5406 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5407 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5408
5409 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5410 {
5411 struct inode *inode = file_inode(file);
5412 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5413 struct btrfs_root *root = BTRFS_I(inode)->root;
5414 struct btrfs_super_block *super_block = fs_info->super_copy;
5415 struct btrfs_ioctl_feature_flags flags[2];
5416 struct btrfs_trans_handle *trans;
5417 u64 newflags;
5418 int ret;
5419
5420 if (!capable(CAP_SYS_ADMIN))
5421 return -EPERM;
5422
5423 if (copy_from_user(flags, arg, sizeof(flags)))
5424 return -EFAULT;
5425
5426 /* Nothing to do */
5427 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5428 !flags[0].incompat_flags)
5429 return 0;
5430
5431 ret = check_feature(fs_info, flags[0].compat_flags,
5432 flags[1].compat_flags, COMPAT);
5433 if (ret)
5434 return ret;
5435
5436 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5437 flags[1].compat_ro_flags, COMPAT_RO);
5438 if (ret)
5439 return ret;
5440
5441 ret = check_feature(fs_info, flags[0].incompat_flags,
5442 flags[1].incompat_flags, INCOMPAT);
5443 if (ret)
5444 return ret;
5445
5446 ret = mnt_want_write_file(file);
5447 if (ret)
5448 return ret;
5449
5450 trans = btrfs_start_transaction(root, 0);
5451 if (IS_ERR(trans)) {
5452 ret = PTR_ERR(trans);
5453 goto out_drop_write;
5454 }
5455
5456 spin_lock(&fs_info->super_lock);
5457 newflags = btrfs_super_compat_flags(super_block);
5458 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5459 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5460 btrfs_set_super_compat_flags(super_block, newflags);
5461
5462 newflags = btrfs_super_compat_ro_flags(super_block);
5463 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5464 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5465 btrfs_set_super_compat_ro_flags(super_block, newflags);
5466
5467 newflags = btrfs_super_incompat_flags(super_block);
5468 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5469 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5470 btrfs_set_super_incompat_flags(super_block, newflags);
5471 spin_unlock(&fs_info->super_lock);
5472
5473 ret = btrfs_commit_transaction(trans);
5474 out_drop_write:
5475 mnt_drop_write_file(file);
5476
5477 return ret;
5478 }
5479
5480 long btrfs_ioctl(struct file *file, unsigned int
5481 cmd, unsigned long arg)
5482 {
5483 struct inode *inode = file_inode(file);
5484 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5485 struct btrfs_root *root = BTRFS_I(inode)->root;
5486 void __user *argp = (void __user *)arg;
5487
5488 switch (cmd) {
5489 case FS_IOC_GETFLAGS:
5490 return btrfs_ioctl_getflags(file, argp);
5491 case FS_IOC_SETFLAGS:
5492 return btrfs_ioctl_setflags(file, argp);
5493 case FS_IOC_GETVERSION:
5494 return btrfs_ioctl_getversion(file, argp);
5495 case FITRIM:
5496 return btrfs_ioctl_fitrim(file, argp);
5497 case BTRFS_IOC_SNAP_CREATE:
5498 return btrfs_ioctl_snap_create(file, argp, 0);
5499 case BTRFS_IOC_SNAP_CREATE_V2:
5500 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5501 case BTRFS_IOC_SUBVOL_CREATE:
5502 return btrfs_ioctl_snap_create(file, argp, 1);
5503 case BTRFS_IOC_SUBVOL_CREATE_V2:
5504 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5505 case BTRFS_IOC_SNAP_DESTROY:
5506 return btrfs_ioctl_snap_destroy(file, argp);
5507 case BTRFS_IOC_SUBVOL_GETFLAGS:
5508 return btrfs_ioctl_subvol_getflags(file, argp);
5509 case BTRFS_IOC_SUBVOL_SETFLAGS:
5510 return btrfs_ioctl_subvol_setflags(file, argp);
5511 case BTRFS_IOC_DEFAULT_SUBVOL:
5512 return btrfs_ioctl_default_subvol(file, argp);
5513 case BTRFS_IOC_DEFRAG:
5514 return btrfs_ioctl_defrag(file, NULL);
5515 case BTRFS_IOC_DEFRAG_RANGE:
5516 return btrfs_ioctl_defrag(file, argp);
5517 case BTRFS_IOC_RESIZE:
5518 return btrfs_ioctl_resize(file, argp);
5519 case BTRFS_IOC_ADD_DEV:
5520 return btrfs_ioctl_add_dev(fs_info, argp);
5521 case BTRFS_IOC_RM_DEV:
5522 return btrfs_ioctl_rm_dev(file, argp);
5523 case BTRFS_IOC_RM_DEV_V2:
5524 return btrfs_ioctl_rm_dev_v2(file, argp);
5525 case BTRFS_IOC_FS_INFO:
5526 return btrfs_ioctl_fs_info(fs_info, argp);
5527 case BTRFS_IOC_DEV_INFO:
5528 return btrfs_ioctl_dev_info(fs_info, argp);
5529 case BTRFS_IOC_BALANCE:
5530 return btrfs_ioctl_balance(file, NULL);
5531 case BTRFS_IOC_TRANS_START:
5532 return btrfs_ioctl_trans_start(file);
5533 case BTRFS_IOC_TRANS_END:
5534 return btrfs_ioctl_trans_end(file);
5535 case BTRFS_IOC_TREE_SEARCH:
5536 return btrfs_ioctl_tree_search(file, argp);
5537 case BTRFS_IOC_TREE_SEARCH_V2:
5538 return btrfs_ioctl_tree_search_v2(file, argp);
5539 case BTRFS_IOC_INO_LOOKUP:
5540 return btrfs_ioctl_ino_lookup(file, argp);
5541 case BTRFS_IOC_INO_PATHS:
5542 return btrfs_ioctl_ino_to_path(root, argp);
5543 case BTRFS_IOC_LOGICAL_INO:
5544 return btrfs_ioctl_logical_to_ino(fs_info, argp);
5545 case BTRFS_IOC_SPACE_INFO:
5546 return btrfs_ioctl_space_info(fs_info, argp);
5547 case BTRFS_IOC_SYNC: {
5548 int ret;
5549
5550 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5551 if (ret)
5552 return ret;
5553 ret = btrfs_sync_fs(inode->i_sb, 1);
5554 /*
5555 * The transaction thread may want to do more work,
5556 * namely it pokes the cleaner kthread that will start
5557 * processing uncleaned subvols.
5558 */
5559 wake_up_process(fs_info->transaction_kthread);
5560 return ret;
5561 }
5562 case BTRFS_IOC_START_SYNC:
5563 return btrfs_ioctl_start_sync(root, argp);
5564 case BTRFS_IOC_WAIT_SYNC:
5565 return btrfs_ioctl_wait_sync(fs_info, argp);
5566 case BTRFS_IOC_SCRUB:
5567 return btrfs_ioctl_scrub(file, argp);
5568 case BTRFS_IOC_SCRUB_CANCEL:
5569 return btrfs_ioctl_scrub_cancel(fs_info);
5570 case BTRFS_IOC_SCRUB_PROGRESS:
5571 return btrfs_ioctl_scrub_progress(fs_info, argp);
5572 case BTRFS_IOC_BALANCE_V2:
5573 return btrfs_ioctl_balance(file, argp);
5574 case BTRFS_IOC_BALANCE_CTL:
5575 return btrfs_ioctl_balance_ctl(fs_info, arg);
5576 case BTRFS_IOC_BALANCE_PROGRESS:
5577 return btrfs_ioctl_balance_progress(fs_info, argp);
5578 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5579 return btrfs_ioctl_set_received_subvol(file, argp);
5580 #ifdef CONFIG_64BIT
5581 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5582 return btrfs_ioctl_set_received_subvol_32(file, argp);
5583 #endif
5584 case BTRFS_IOC_SEND:
5585 return btrfs_ioctl_send(file, argp);
5586 case BTRFS_IOC_GET_DEV_STATS:
5587 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5588 case BTRFS_IOC_QUOTA_CTL:
5589 return btrfs_ioctl_quota_ctl(file, argp);
5590 case BTRFS_IOC_QGROUP_ASSIGN:
5591 return btrfs_ioctl_qgroup_assign(file, argp);
5592 case BTRFS_IOC_QGROUP_CREATE:
5593 return btrfs_ioctl_qgroup_create(file, argp);
5594 case BTRFS_IOC_QGROUP_LIMIT:
5595 return btrfs_ioctl_qgroup_limit(file, argp);
5596 case BTRFS_IOC_QUOTA_RESCAN:
5597 return btrfs_ioctl_quota_rescan(file, argp);
5598 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5599 return btrfs_ioctl_quota_rescan_status(file, argp);
5600 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5601 return btrfs_ioctl_quota_rescan_wait(file, argp);
5602 case BTRFS_IOC_DEV_REPLACE:
5603 return btrfs_ioctl_dev_replace(fs_info, argp);
5604 case BTRFS_IOC_GET_FSLABEL:
5605 return btrfs_ioctl_get_fslabel(file, argp);
5606 case BTRFS_IOC_SET_FSLABEL:
5607 return btrfs_ioctl_set_fslabel(file, argp);
5608 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5609 return btrfs_ioctl_get_supported_features(argp);
5610 case BTRFS_IOC_GET_FEATURES:
5611 return btrfs_ioctl_get_features(file, argp);
5612 case BTRFS_IOC_SET_FEATURES:
5613 return btrfs_ioctl_set_features(file, argp);
5614 }
5615
5616 return -ENOTTY;
5617 }
5618
5619 #ifdef CONFIG_COMPAT
5620 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5621 {
5622 /*
5623 * These all access 32-bit values anyway so no further
5624 * handling is necessary.
5625 */
5626 switch (cmd) {
5627 case FS_IOC32_GETFLAGS:
5628 cmd = FS_IOC_GETFLAGS;
5629 break;
5630 case FS_IOC32_SETFLAGS:
5631 cmd = FS_IOC_SETFLAGS;
5632 break;
5633 case FS_IOC32_GETVERSION:
5634 cmd = FS_IOC_GETVERSION;
5635 break;
5636 }
5637
5638 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5639 }
5640 #endif