]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/btrfs/ioctl.c
Merge branch 'work.read_write' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-focal-kernel.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55 #include "rcu-string.h"
56 #include "send.h"
57 #include "dev-replace.h"
58 #include "props.h"
59 #include "sysfs.h"
60 #include "qgroup.h"
61 #include "tree-log.h"
62 #include "compression.h"
63
64 #ifdef CONFIG_64BIT
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
69 */
70 struct btrfs_ioctl_timespec_32 {
71 __u64 sec;
72 __u32 nsec;
73 } __attribute__ ((__packed__));
74
75 struct btrfs_ioctl_received_subvol_args_32 {
76 char uuid[BTRFS_UUID_SIZE]; /* in */
77 __u64 stransid; /* in */
78 __u64 rtransid; /* out */
79 struct btrfs_ioctl_timespec_32 stime; /* in */
80 struct btrfs_ioctl_timespec_32 rtime; /* out */
81 __u64 flags; /* in */
82 __u64 reserved[16]; /* in */
83 } __attribute__ ((__packed__));
84
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
87 #endif
88
89
90 static int btrfs_clone(struct inode *src, struct inode *inode,
91 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
92 int no_time_update);
93
94 /* Mask out flags that are inappropriate for the given type of inode. */
95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
96 {
97 if (S_ISDIR(mode))
98 return flags;
99 else if (S_ISREG(mode))
100 return flags & ~FS_DIRSYNC_FL;
101 else
102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104
105 /*
106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107 */
108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
109 {
110 unsigned int iflags = 0;
111
112 if (flags & BTRFS_INODE_SYNC)
113 iflags |= FS_SYNC_FL;
114 if (flags & BTRFS_INODE_IMMUTABLE)
115 iflags |= FS_IMMUTABLE_FL;
116 if (flags & BTRFS_INODE_APPEND)
117 iflags |= FS_APPEND_FL;
118 if (flags & BTRFS_INODE_NODUMP)
119 iflags |= FS_NODUMP_FL;
120 if (flags & BTRFS_INODE_NOATIME)
121 iflags |= FS_NOATIME_FL;
122 if (flags & BTRFS_INODE_DIRSYNC)
123 iflags |= FS_DIRSYNC_FL;
124 if (flags & BTRFS_INODE_NODATACOW)
125 iflags |= FS_NOCOW_FL;
126
127 if (flags & BTRFS_INODE_NOCOMPRESS)
128 iflags |= FS_NOCOMP_FL;
129 else if (flags & BTRFS_INODE_COMPRESS)
130 iflags |= FS_COMPR_FL;
131
132 return iflags;
133 }
134
135 /*
136 * Update inode->i_flags based on the btrfs internal flags.
137 */
138 void btrfs_update_iflags(struct inode *inode)
139 {
140 struct btrfs_inode *ip = BTRFS_I(inode);
141 unsigned int new_fl = 0;
142
143 if (ip->flags & BTRFS_INODE_SYNC)
144 new_fl |= S_SYNC;
145 if (ip->flags & BTRFS_INODE_IMMUTABLE)
146 new_fl |= S_IMMUTABLE;
147 if (ip->flags & BTRFS_INODE_APPEND)
148 new_fl |= S_APPEND;
149 if (ip->flags & BTRFS_INODE_NOATIME)
150 new_fl |= S_NOATIME;
151 if (ip->flags & BTRFS_INODE_DIRSYNC)
152 new_fl |= S_DIRSYNC;
153
154 set_mask_bits(&inode->i_flags,
155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
156 new_fl);
157 }
158
159 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
160 {
161 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
162 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
163
164 if (copy_to_user(arg, &flags, sizeof(flags)))
165 return -EFAULT;
166 return 0;
167 }
168
169 static int check_flags(unsigned int flags)
170 {
171 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
172 FS_NOATIME_FL | FS_NODUMP_FL | \
173 FS_SYNC_FL | FS_DIRSYNC_FL | \
174 FS_NOCOMP_FL | FS_COMPR_FL |
175 FS_NOCOW_FL))
176 return -EOPNOTSUPP;
177
178 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
179 return -EINVAL;
180
181 return 0;
182 }
183
184 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
185 {
186 struct inode *inode = file_inode(file);
187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
188 struct btrfs_inode *ip = BTRFS_I(inode);
189 struct btrfs_root *root = ip->root;
190 struct btrfs_trans_handle *trans;
191 unsigned int flags, oldflags;
192 int ret;
193 u64 ip_oldflags;
194 unsigned int i_oldflags;
195 umode_t mode;
196
197 if (!inode_owner_or_capable(inode))
198 return -EPERM;
199
200 if (btrfs_root_readonly(root))
201 return -EROFS;
202
203 if (copy_from_user(&flags, arg, sizeof(flags)))
204 return -EFAULT;
205
206 ret = check_flags(flags);
207 if (ret)
208 return ret;
209
210 ret = mnt_want_write_file(file);
211 if (ret)
212 return ret;
213
214 inode_lock(inode);
215
216 ip_oldflags = ip->flags;
217 i_oldflags = inode->i_flags;
218 mode = inode->i_mode;
219
220 flags = btrfs_mask_flags(inode->i_mode, flags);
221 oldflags = btrfs_flags_to_ioctl(ip->flags);
222 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
223 if (!capable(CAP_LINUX_IMMUTABLE)) {
224 ret = -EPERM;
225 goto out_unlock;
226 }
227 }
228
229 if (flags & FS_SYNC_FL)
230 ip->flags |= BTRFS_INODE_SYNC;
231 else
232 ip->flags &= ~BTRFS_INODE_SYNC;
233 if (flags & FS_IMMUTABLE_FL)
234 ip->flags |= BTRFS_INODE_IMMUTABLE;
235 else
236 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
237 if (flags & FS_APPEND_FL)
238 ip->flags |= BTRFS_INODE_APPEND;
239 else
240 ip->flags &= ~BTRFS_INODE_APPEND;
241 if (flags & FS_NODUMP_FL)
242 ip->flags |= BTRFS_INODE_NODUMP;
243 else
244 ip->flags &= ~BTRFS_INODE_NODUMP;
245 if (flags & FS_NOATIME_FL)
246 ip->flags |= BTRFS_INODE_NOATIME;
247 else
248 ip->flags &= ~BTRFS_INODE_NOATIME;
249 if (flags & FS_DIRSYNC_FL)
250 ip->flags |= BTRFS_INODE_DIRSYNC;
251 else
252 ip->flags &= ~BTRFS_INODE_DIRSYNC;
253 if (flags & FS_NOCOW_FL) {
254 if (S_ISREG(mode)) {
255 /*
256 * It's safe to turn csums off here, no extents exist.
257 * Otherwise we want the flag to reflect the real COW
258 * status of the file and will not set it.
259 */
260 if (inode->i_size == 0)
261 ip->flags |= BTRFS_INODE_NODATACOW
262 | BTRFS_INODE_NODATASUM;
263 } else {
264 ip->flags |= BTRFS_INODE_NODATACOW;
265 }
266 } else {
267 /*
268 * Revert back under same assumptions as above
269 */
270 if (S_ISREG(mode)) {
271 if (inode->i_size == 0)
272 ip->flags &= ~(BTRFS_INODE_NODATACOW
273 | BTRFS_INODE_NODATASUM);
274 } else {
275 ip->flags &= ~BTRFS_INODE_NODATACOW;
276 }
277 }
278
279 /*
280 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
281 * flag may be changed automatically if compression code won't make
282 * things smaller.
283 */
284 if (flags & FS_NOCOMP_FL) {
285 ip->flags &= ~BTRFS_INODE_COMPRESS;
286 ip->flags |= BTRFS_INODE_NOCOMPRESS;
287
288 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
289 if (ret && ret != -ENODATA)
290 goto out_drop;
291 } else if (flags & FS_COMPR_FL) {
292 const char *comp;
293
294 ip->flags |= BTRFS_INODE_COMPRESS;
295 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
296
297 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
298 comp = "lzo";
299 else if (fs_info->compress_type == BTRFS_COMPRESS_ZLIB)
300 comp = "zlib";
301 else
302 comp = "zstd";
303 ret = btrfs_set_prop(inode, "btrfs.compression",
304 comp, strlen(comp), 0);
305 if (ret)
306 goto out_drop;
307
308 } else {
309 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
310 if (ret && ret != -ENODATA)
311 goto out_drop;
312 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
313 }
314
315 trans = btrfs_start_transaction(root, 1);
316 if (IS_ERR(trans)) {
317 ret = PTR_ERR(trans);
318 goto out_drop;
319 }
320
321 btrfs_update_iflags(inode);
322 inode_inc_iversion(inode);
323 inode->i_ctime = current_time(inode);
324 ret = btrfs_update_inode(trans, root, inode);
325
326 btrfs_end_transaction(trans);
327 out_drop:
328 if (ret) {
329 ip->flags = ip_oldflags;
330 inode->i_flags = i_oldflags;
331 }
332
333 out_unlock:
334 inode_unlock(inode);
335 mnt_drop_write_file(file);
336 return ret;
337 }
338
339 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
340 {
341 struct inode *inode = file_inode(file);
342
343 return put_user(inode->i_generation, arg);
344 }
345
346 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
347 {
348 struct inode *inode = file_inode(file);
349 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
350 struct btrfs_device *device;
351 struct request_queue *q;
352 struct fstrim_range range;
353 u64 minlen = ULLONG_MAX;
354 u64 num_devices = 0;
355 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
356 int ret;
357
358 if (!capable(CAP_SYS_ADMIN))
359 return -EPERM;
360
361 rcu_read_lock();
362 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
363 dev_list) {
364 if (!device->bdev)
365 continue;
366 q = bdev_get_queue(device->bdev);
367 if (blk_queue_discard(q)) {
368 num_devices++;
369 minlen = min_t(u64, q->limits.discard_granularity,
370 minlen);
371 }
372 }
373 rcu_read_unlock();
374
375 if (!num_devices)
376 return -EOPNOTSUPP;
377 if (copy_from_user(&range, arg, sizeof(range)))
378 return -EFAULT;
379 if (range.start > total_bytes ||
380 range.len < fs_info->sb->s_blocksize)
381 return -EINVAL;
382
383 range.len = min(range.len, total_bytes - range.start);
384 range.minlen = max(range.minlen, minlen);
385 ret = btrfs_trim_fs(fs_info, &range);
386 if (ret < 0)
387 return ret;
388
389 if (copy_to_user(arg, &range, sizeof(range)))
390 return -EFAULT;
391
392 return 0;
393 }
394
395 int btrfs_is_empty_uuid(u8 *uuid)
396 {
397 int i;
398
399 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
400 if (uuid[i])
401 return 0;
402 }
403 return 1;
404 }
405
406 static noinline int create_subvol(struct inode *dir,
407 struct dentry *dentry,
408 const char *name, int namelen,
409 u64 *async_transid,
410 struct btrfs_qgroup_inherit *inherit)
411 {
412 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
413 struct btrfs_trans_handle *trans;
414 struct btrfs_key key;
415 struct btrfs_root_item *root_item;
416 struct btrfs_inode_item *inode_item;
417 struct extent_buffer *leaf;
418 struct btrfs_root *root = BTRFS_I(dir)->root;
419 struct btrfs_root *new_root;
420 struct btrfs_block_rsv block_rsv;
421 struct timespec cur_time = current_time(dir);
422 struct inode *inode;
423 int ret;
424 int err;
425 u64 objectid;
426 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
427 u64 index = 0;
428 u64 qgroup_reserved;
429 uuid_le new_uuid;
430
431 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
432 if (!root_item)
433 return -ENOMEM;
434
435 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
436 if (ret)
437 goto fail_free;
438
439 /*
440 * Don't create subvolume whose level is not zero. Or qgroup will be
441 * screwed up since it assumes subvolume qgroup's level to be 0.
442 */
443 if (btrfs_qgroup_level(objectid)) {
444 ret = -ENOSPC;
445 goto fail_free;
446 }
447
448 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
449 /*
450 * The same as the snapshot creation, please see the comment
451 * of create_snapshot().
452 */
453 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
454 8, &qgroup_reserved, false);
455 if (ret)
456 goto fail_free;
457
458 trans = btrfs_start_transaction(root, 0);
459 if (IS_ERR(trans)) {
460 ret = PTR_ERR(trans);
461 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
462 goto fail_free;
463 }
464 trans->block_rsv = &block_rsv;
465 trans->bytes_reserved = block_rsv.size;
466
467 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
468 if (ret)
469 goto fail;
470
471 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
472 if (IS_ERR(leaf)) {
473 ret = PTR_ERR(leaf);
474 goto fail;
475 }
476
477 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
478 btrfs_set_header_bytenr(leaf, leaf->start);
479 btrfs_set_header_generation(leaf, trans->transid);
480 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
481 btrfs_set_header_owner(leaf, objectid);
482
483 write_extent_buffer_fsid(leaf, fs_info->fsid);
484 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
485 btrfs_mark_buffer_dirty(leaf);
486
487 inode_item = &root_item->inode;
488 btrfs_set_stack_inode_generation(inode_item, 1);
489 btrfs_set_stack_inode_size(inode_item, 3);
490 btrfs_set_stack_inode_nlink(inode_item, 1);
491 btrfs_set_stack_inode_nbytes(inode_item,
492 fs_info->nodesize);
493 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
494
495 btrfs_set_root_flags(root_item, 0);
496 btrfs_set_root_limit(root_item, 0);
497 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
498
499 btrfs_set_root_bytenr(root_item, leaf->start);
500 btrfs_set_root_generation(root_item, trans->transid);
501 btrfs_set_root_level(root_item, 0);
502 btrfs_set_root_refs(root_item, 1);
503 btrfs_set_root_used(root_item, leaf->len);
504 btrfs_set_root_last_snapshot(root_item, 0);
505
506 btrfs_set_root_generation_v2(root_item,
507 btrfs_root_generation(root_item));
508 uuid_le_gen(&new_uuid);
509 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
510 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
511 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
512 root_item->ctime = root_item->otime;
513 btrfs_set_root_ctransid(root_item, trans->transid);
514 btrfs_set_root_otransid(root_item, trans->transid);
515
516 btrfs_tree_unlock(leaf);
517 free_extent_buffer(leaf);
518 leaf = NULL;
519
520 btrfs_set_root_dirid(root_item, new_dirid);
521
522 key.objectid = objectid;
523 key.offset = 0;
524 key.type = BTRFS_ROOT_ITEM_KEY;
525 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
526 root_item);
527 if (ret)
528 goto fail;
529
530 key.offset = (u64)-1;
531 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
532 if (IS_ERR(new_root)) {
533 ret = PTR_ERR(new_root);
534 btrfs_abort_transaction(trans, ret);
535 goto fail;
536 }
537
538 btrfs_record_root_in_trans(trans, new_root);
539
540 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
541 if (ret) {
542 /* We potentially lose an unused inode item here */
543 btrfs_abort_transaction(trans, ret);
544 goto fail;
545 }
546
547 mutex_lock(&new_root->objectid_mutex);
548 new_root->highest_objectid = new_dirid;
549 mutex_unlock(&new_root->objectid_mutex);
550
551 /*
552 * insert the directory item
553 */
554 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
555 if (ret) {
556 btrfs_abort_transaction(trans, ret);
557 goto fail;
558 }
559
560 ret = btrfs_insert_dir_item(trans, root,
561 name, namelen, BTRFS_I(dir), &key,
562 BTRFS_FT_DIR, index);
563 if (ret) {
564 btrfs_abort_transaction(trans, ret);
565 goto fail;
566 }
567
568 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
569 ret = btrfs_update_inode(trans, root, dir);
570 BUG_ON(ret);
571
572 ret = btrfs_add_root_ref(trans, fs_info,
573 objectid, root->root_key.objectid,
574 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
575 BUG_ON(ret);
576
577 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
578 BTRFS_UUID_KEY_SUBVOL, objectid);
579 if (ret)
580 btrfs_abort_transaction(trans, ret);
581
582 fail:
583 kfree(root_item);
584 trans->block_rsv = NULL;
585 trans->bytes_reserved = 0;
586 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
587
588 if (async_transid) {
589 *async_transid = trans->transid;
590 err = btrfs_commit_transaction_async(trans, 1);
591 if (err)
592 err = btrfs_commit_transaction(trans);
593 } else {
594 err = btrfs_commit_transaction(trans);
595 }
596 if (err && !ret)
597 ret = err;
598
599 if (!ret) {
600 inode = btrfs_lookup_dentry(dir, dentry);
601 if (IS_ERR(inode))
602 return PTR_ERR(inode);
603 d_instantiate(dentry, inode);
604 }
605 return ret;
606
607 fail_free:
608 kfree(root_item);
609 return ret;
610 }
611
612 static void btrfs_wait_for_no_snapshotting_writes(struct btrfs_root *root)
613 {
614 s64 writers;
615 DEFINE_WAIT(wait);
616
617 do {
618 prepare_to_wait(&root->subv_writers->wait, &wait,
619 TASK_UNINTERRUPTIBLE);
620
621 writers = percpu_counter_sum(&root->subv_writers->counter);
622 if (writers)
623 schedule();
624
625 finish_wait(&root->subv_writers->wait, &wait);
626 } while (writers);
627 }
628
629 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
630 struct dentry *dentry,
631 u64 *async_transid, bool readonly,
632 struct btrfs_qgroup_inherit *inherit)
633 {
634 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
635 struct inode *inode;
636 struct btrfs_pending_snapshot *pending_snapshot;
637 struct btrfs_trans_handle *trans;
638 int ret;
639
640 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
641 return -EINVAL;
642
643 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
644 if (!pending_snapshot)
645 return -ENOMEM;
646
647 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
648 GFP_KERNEL);
649 pending_snapshot->path = btrfs_alloc_path();
650 if (!pending_snapshot->root_item || !pending_snapshot->path) {
651 ret = -ENOMEM;
652 goto free_pending;
653 }
654
655 atomic_inc(&root->will_be_snapshotted);
656 smp_mb__after_atomic();
657 btrfs_wait_for_no_snapshotting_writes(root);
658
659 ret = btrfs_start_delalloc_inodes(root, 0);
660 if (ret)
661 goto dec_and_free;
662
663 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
664
665 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
666 BTRFS_BLOCK_RSV_TEMP);
667 /*
668 * 1 - parent dir inode
669 * 2 - dir entries
670 * 1 - root item
671 * 2 - root ref/backref
672 * 1 - root of snapshot
673 * 1 - UUID item
674 */
675 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
676 &pending_snapshot->block_rsv, 8,
677 &pending_snapshot->qgroup_reserved,
678 false);
679 if (ret)
680 goto dec_and_free;
681
682 pending_snapshot->dentry = dentry;
683 pending_snapshot->root = root;
684 pending_snapshot->readonly = readonly;
685 pending_snapshot->dir = dir;
686 pending_snapshot->inherit = inherit;
687
688 trans = btrfs_start_transaction(root, 0);
689 if (IS_ERR(trans)) {
690 ret = PTR_ERR(trans);
691 goto fail;
692 }
693
694 spin_lock(&fs_info->trans_lock);
695 list_add(&pending_snapshot->list,
696 &trans->transaction->pending_snapshots);
697 spin_unlock(&fs_info->trans_lock);
698 if (async_transid) {
699 *async_transid = trans->transid;
700 ret = btrfs_commit_transaction_async(trans, 1);
701 if (ret)
702 ret = btrfs_commit_transaction(trans);
703 } else {
704 ret = btrfs_commit_transaction(trans);
705 }
706 if (ret)
707 goto fail;
708
709 ret = pending_snapshot->error;
710 if (ret)
711 goto fail;
712
713 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
714 if (ret)
715 goto fail;
716
717 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
718 if (IS_ERR(inode)) {
719 ret = PTR_ERR(inode);
720 goto fail;
721 }
722
723 d_instantiate(dentry, inode);
724 ret = 0;
725 fail:
726 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
727 dec_and_free:
728 if (atomic_dec_and_test(&root->will_be_snapshotted))
729 wake_up_atomic_t(&root->will_be_snapshotted);
730 free_pending:
731 kfree(pending_snapshot->root_item);
732 btrfs_free_path(pending_snapshot->path);
733 kfree(pending_snapshot);
734
735 return ret;
736 }
737
738 /* copy of may_delete in fs/namei.c()
739 * Check whether we can remove a link victim from directory dir, check
740 * whether the type of victim is right.
741 * 1. We can't do it if dir is read-only (done in permission())
742 * 2. We should have write and exec permissions on dir
743 * 3. We can't remove anything from append-only dir
744 * 4. We can't do anything with immutable dir (done in permission())
745 * 5. If the sticky bit on dir is set we should either
746 * a. be owner of dir, or
747 * b. be owner of victim, or
748 * c. have CAP_FOWNER capability
749 * 6. If the victim is append-only or immutable we can't do anything with
750 * links pointing to it.
751 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
752 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
753 * 9. We can't remove a root or mountpoint.
754 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
755 * nfs_async_unlink().
756 */
757
758 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
759 {
760 int error;
761
762 if (d_really_is_negative(victim))
763 return -ENOENT;
764
765 BUG_ON(d_inode(victim->d_parent) != dir);
766 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
767
768 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
769 if (error)
770 return error;
771 if (IS_APPEND(dir))
772 return -EPERM;
773 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
774 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
775 return -EPERM;
776 if (isdir) {
777 if (!d_is_dir(victim))
778 return -ENOTDIR;
779 if (IS_ROOT(victim))
780 return -EBUSY;
781 } else if (d_is_dir(victim))
782 return -EISDIR;
783 if (IS_DEADDIR(dir))
784 return -ENOENT;
785 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
786 return -EBUSY;
787 return 0;
788 }
789
790 /* copy of may_create in fs/namei.c() */
791 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
792 {
793 if (d_really_is_positive(child))
794 return -EEXIST;
795 if (IS_DEADDIR(dir))
796 return -ENOENT;
797 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
798 }
799
800 /*
801 * Create a new subvolume below @parent. This is largely modeled after
802 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
803 * inside this filesystem so it's quite a bit simpler.
804 */
805 static noinline int btrfs_mksubvol(const struct path *parent,
806 const char *name, int namelen,
807 struct btrfs_root *snap_src,
808 u64 *async_transid, bool readonly,
809 struct btrfs_qgroup_inherit *inherit)
810 {
811 struct inode *dir = d_inode(parent->dentry);
812 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
813 struct dentry *dentry;
814 int error;
815
816 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
817 if (error == -EINTR)
818 return error;
819
820 dentry = lookup_one_len(name, parent->dentry, namelen);
821 error = PTR_ERR(dentry);
822 if (IS_ERR(dentry))
823 goto out_unlock;
824
825 error = btrfs_may_create(dir, dentry);
826 if (error)
827 goto out_dput;
828
829 /*
830 * even if this name doesn't exist, we may get hash collisions.
831 * check for them now when we can safely fail
832 */
833 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
834 dir->i_ino, name,
835 namelen);
836 if (error)
837 goto out_dput;
838
839 down_read(&fs_info->subvol_sem);
840
841 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
842 goto out_up_read;
843
844 if (snap_src) {
845 error = create_snapshot(snap_src, dir, dentry,
846 async_transid, readonly, inherit);
847 } else {
848 error = create_subvol(dir, dentry, name, namelen,
849 async_transid, inherit);
850 }
851 if (!error)
852 fsnotify_mkdir(dir, dentry);
853 out_up_read:
854 up_read(&fs_info->subvol_sem);
855 out_dput:
856 dput(dentry);
857 out_unlock:
858 inode_unlock(dir);
859 return error;
860 }
861
862 /*
863 * When we're defragging a range, we don't want to kick it off again
864 * if it is really just waiting for delalloc to send it down.
865 * If we find a nice big extent or delalloc range for the bytes in the
866 * file you want to defrag, we return 0 to let you know to skip this
867 * part of the file
868 */
869 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
870 {
871 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
872 struct extent_map *em = NULL;
873 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
874 u64 end;
875
876 read_lock(&em_tree->lock);
877 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
878 read_unlock(&em_tree->lock);
879
880 if (em) {
881 end = extent_map_end(em);
882 free_extent_map(em);
883 if (end - offset > thresh)
884 return 0;
885 }
886 /* if we already have a nice delalloc here, just stop */
887 thresh /= 2;
888 end = count_range_bits(io_tree, &offset, offset + thresh,
889 thresh, EXTENT_DELALLOC, 1);
890 if (end >= thresh)
891 return 0;
892 return 1;
893 }
894
895 /*
896 * helper function to walk through a file and find extents
897 * newer than a specific transid, and smaller than thresh.
898 *
899 * This is used by the defragging code to find new and small
900 * extents
901 */
902 static int find_new_extents(struct btrfs_root *root,
903 struct inode *inode, u64 newer_than,
904 u64 *off, u32 thresh)
905 {
906 struct btrfs_path *path;
907 struct btrfs_key min_key;
908 struct extent_buffer *leaf;
909 struct btrfs_file_extent_item *extent;
910 int type;
911 int ret;
912 u64 ino = btrfs_ino(BTRFS_I(inode));
913
914 path = btrfs_alloc_path();
915 if (!path)
916 return -ENOMEM;
917
918 min_key.objectid = ino;
919 min_key.type = BTRFS_EXTENT_DATA_KEY;
920 min_key.offset = *off;
921
922 while (1) {
923 ret = btrfs_search_forward(root, &min_key, path, newer_than);
924 if (ret != 0)
925 goto none;
926 process_slot:
927 if (min_key.objectid != ino)
928 goto none;
929 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
930 goto none;
931
932 leaf = path->nodes[0];
933 extent = btrfs_item_ptr(leaf, path->slots[0],
934 struct btrfs_file_extent_item);
935
936 type = btrfs_file_extent_type(leaf, extent);
937 if (type == BTRFS_FILE_EXTENT_REG &&
938 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
939 check_defrag_in_cache(inode, min_key.offset, thresh)) {
940 *off = min_key.offset;
941 btrfs_free_path(path);
942 return 0;
943 }
944
945 path->slots[0]++;
946 if (path->slots[0] < btrfs_header_nritems(leaf)) {
947 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
948 goto process_slot;
949 }
950
951 if (min_key.offset == (u64)-1)
952 goto none;
953
954 min_key.offset++;
955 btrfs_release_path(path);
956 }
957 none:
958 btrfs_free_path(path);
959 return -ENOENT;
960 }
961
962 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
963 {
964 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
965 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
966 struct extent_map *em;
967 u64 len = PAGE_SIZE;
968
969 /*
970 * hopefully we have this extent in the tree already, try without
971 * the full extent lock
972 */
973 read_lock(&em_tree->lock);
974 em = lookup_extent_mapping(em_tree, start, len);
975 read_unlock(&em_tree->lock);
976
977 if (!em) {
978 struct extent_state *cached = NULL;
979 u64 end = start + len - 1;
980
981 /* get the big lock and read metadata off disk */
982 lock_extent_bits(io_tree, start, end, &cached);
983 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
984 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
985
986 if (IS_ERR(em))
987 return NULL;
988 }
989
990 return em;
991 }
992
993 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
994 {
995 struct extent_map *next;
996 bool ret = true;
997
998 /* this is the last extent */
999 if (em->start + em->len >= i_size_read(inode))
1000 return false;
1001
1002 next = defrag_lookup_extent(inode, em->start + em->len);
1003 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1004 ret = false;
1005 else if ((em->block_start + em->block_len == next->block_start) &&
1006 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1007 ret = false;
1008
1009 free_extent_map(next);
1010 return ret;
1011 }
1012
1013 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1014 u64 *last_len, u64 *skip, u64 *defrag_end,
1015 int compress)
1016 {
1017 struct extent_map *em;
1018 int ret = 1;
1019 bool next_mergeable = true;
1020 bool prev_mergeable = true;
1021
1022 /*
1023 * make sure that once we start defragging an extent, we keep on
1024 * defragging it
1025 */
1026 if (start < *defrag_end)
1027 return 1;
1028
1029 *skip = 0;
1030
1031 em = defrag_lookup_extent(inode, start);
1032 if (!em)
1033 return 0;
1034
1035 /* this will cover holes, and inline extents */
1036 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1037 ret = 0;
1038 goto out;
1039 }
1040
1041 if (!*defrag_end)
1042 prev_mergeable = false;
1043
1044 next_mergeable = defrag_check_next_extent(inode, em);
1045 /*
1046 * we hit a real extent, if it is big or the next extent is not a
1047 * real extent, don't bother defragging it
1048 */
1049 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1050 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1051 ret = 0;
1052 out:
1053 /*
1054 * last_len ends up being a counter of how many bytes we've defragged.
1055 * every time we choose not to defrag an extent, we reset *last_len
1056 * so that the next tiny extent will force a defrag.
1057 *
1058 * The end result of this is that tiny extents before a single big
1059 * extent will force at least part of that big extent to be defragged.
1060 */
1061 if (ret) {
1062 *defrag_end = extent_map_end(em);
1063 } else {
1064 *last_len = 0;
1065 *skip = extent_map_end(em);
1066 *defrag_end = 0;
1067 }
1068
1069 free_extent_map(em);
1070 return ret;
1071 }
1072
1073 /*
1074 * it doesn't do much good to defrag one or two pages
1075 * at a time. This pulls in a nice chunk of pages
1076 * to COW and defrag.
1077 *
1078 * It also makes sure the delalloc code has enough
1079 * dirty data to avoid making new small extents as part
1080 * of the defrag
1081 *
1082 * It's a good idea to start RA on this range
1083 * before calling this.
1084 */
1085 static int cluster_pages_for_defrag(struct inode *inode,
1086 struct page **pages,
1087 unsigned long start_index,
1088 unsigned long num_pages)
1089 {
1090 unsigned long file_end;
1091 u64 isize = i_size_read(inode);
1092 u64 page_start;
1093 u64 page_end;
1094 u64 page_cnt;
1095 int ret;
1096 int i;
1097 int i_done;
1098 struct btrfs_ordered_extent *ordered;
1099 struct extent_state *cached_state = NULL;
1100 struct extent_io_tree *tree;
1101 struct extent_changeset *data_reserved = NULL;
1102 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1103
1104 file_end = (isize - 1) >> PAGE_SHIFT;
1105 if (!isize || start_index > file_end)
1106 return 0;
1107
1108 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1109
1110 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1111 start_index << PAGE_SHIFT,
1112 page_cnt << PAGE_SHIFT);
1113 if (ret)
1114 return ret;
1115 i_done = 0;
1116 tree = &BTRFS_I(inode)->io_tree;
1117
1118 /* step one, lock all the pages */
1119 for (i = 0; i < page_cnt; i++) {
1120 struct page *page;
1121 again:
1122 page = find_or_create_page(inode->i_mapping,
1123 start_index + i, mask);
1124 if (!page)
1125 break;
1126
1127 page_start = page_offset(page);
1128 page_end = page_start + PAGE_SIZE - 1;
1129 while (1) {
1130 lock_extent_bits(tree, page_start, page_end,
1131 &cached_state);
1132 ordered = btrfs_lookup_ordered_extent(inode,
1133 page_start);
1134 unlock_extent_cached(tree, page_start, page_end,
1135 &cached_state, GFP_NOFS);
1136 if (!ordered)
1137 break;
1138
1139 unlock_page(page);
1140 btrfs_start_ordered_extent(inode, ordered, 1);
1141 btrfs_put_ordered_extent(ordered);
1142 lock_page(page);
1143 /*
1144 * we unlocked the page above, so we need check if
1145 * it was released or not.
1146 */
1147 if (page->mapping != inode->i_mapping) {
1148 unlock_page(page);
1149 put_page(page);
1150 goto again;
1151 }
1152 }
1153
1154 if (!PageUptodate(page)) {
1155 btrfs_readpage(NULL, page);
1156 lock_page(page);
1157 if (!PageUptodate(page)) {
1158 unlock_page(page);
1159 put_page(page);
1160 ret = -EIO;
1161 break;
1162 }
1163 }
1164
1165 if (page->mapping != inode->i_mapping) {
1166 unlock_page(page);
1167 put_page(page);
1168 goto again;
1169 }
1170
1171 pages[i] = page;
1172 i_done++;
1173 }
1174 if (!i_done || ret)
1175 goto out;
1176
1177 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1178 goto out;
1179
1180 /*
1181 * so now we have a nice long stream of locked
1182 * and up to date pages, lets wait on them
1183 */
1184 for (i = 0; i < i_done; i++)
1185 wait_on_page_writeback(pages[i]);
1186
1187 page_start = page_offset(pages[0]);
1188 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1189
1190 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1191 page_start, page_end - 1, &cached_state);
1192 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1193 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1194 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1195 &cached_state, GFP_NOFS);
1196
1197 if (i_done != page_cnt) {
1198 spin_lock(&BTRFS_I(inode)->lock);
1199 BTRFS_I(inode)->outstanding_extents++;
1200 spin_unlock(&BTRFS_I(inode)->lock);
1201 btrfs_delalloc_release_space(inode, data_reserved,
1202 start_index << PAGE_SHIFT,
1203 (page_cnt - i_done) << PAGE_SHIFT);
1204 }
1205
1206
1207 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1208 &cached_state);
1209
1210 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1211 page_start, page_end - 1, &cached_state,
1212 GFP_NOFS);
1213
1214 for (i = 0; i < i_done; i++) {
1215 clear_page_dirty_for_io(pages[i]);
1216 ClearPageChecked(pages[i]);
1217 set_page_extent_mapped(pages[i]);
1218 set_page_dirty(pages[i]);
1219 unlock_page(pages[i]);
1220 put_page(pages[i]);
1221 }
1222 extent_changeset_free(data_reserved);
1223 return i_done;
1224 out:
1225 for (i = 0; i < i_done; i++) {
1226 unlock_page(pages[i]);
1227 put_page(pages[i]);
1228 }
1229 btrfs_delalloc_release_space(inode, data_reserved,
1230 start_index << PAGE_SHIFT,
1231 page_cnt << PAGE_SHIFT);
1232 extent_changeset_free(data_reserved);
1233 return ret;
1234
1235 }
1236
1237 int btrfs_defrag_file(struct inode *inode, struct file *file,
1238 struct btrfs_ioctl_defrag_range_args *range,
1239 u64 newer_than, unsigned long max_to_defrag)
1240 {
1241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1242 struct btrfs_root *root = BTRFS_I(inode)->root;
1243 struct file_ra_state *ra = NULL;
1244 unsigned long last_index;
1245 u64 isize = i_size_read(inode);
1246 u64 last_len = 0;
1247 u64 skip = 0;
1248 u64 defrag_end = 0;
1249 u64 newer_off = range->start;
1250 unsigned long i;
1251 unsigned long ra_index = 0;
1252 int ret;
1253 int defrag_count = 0;
1254 int compress_type = BTRFS_COMPRESS_ZLIB;
1255 u32 extent_thresh = range->extent_thresh;
1256 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1257 unsigned long cluster = max_cluster;
1258 u64 new_align = ~((u64)SZ_128K - 1);
1259 struct page **pages = NULL;
1260 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1261
1262 if (isize == 0)
1263 return 0;
1264
1265 if (range->start >= isize)
1266 return -EINVAL;
1267
1268 if (do_compress) {
1269 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1270 return -EINVAL;
1271 if (range->compress_type)
1272 compress_type = range->compress_type;
1273 }
1274
1275 if (extent_thresh == 0)
1276 extent_thresh = SZ_256K;
1277
1278 /*
1279 * If we were not given a file, allocate a readahead context. As
1280 * readahead is just an optimization, defrag will work without it so
1281 * we don't error out.
1282 */
1283 if (!file) {
1284 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1285 if (ra)
1286 file_ra_state_init(ra, inode->i_mapping);
1287 } else {
1288 ra = &file->f_ra;
1289 }
1290
1291 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1292 if (!pages) {
1293 ret = -ENOMEM;
1294 goto out_ra;
1295 }
1296
1297 /* find the last page to defrag */
1298 if (range->start + range->len > range->start) {
1299 last_index = min_t(u64, isize - 1,
1300 range->start + range->len - 1) >> PAGE_SHIFT;
1301 } else {
1302 last_index = (isize - 1) >> PAGE_SHIFT;
1303 }
1304
1305 if (newer_than) {
1306 ret = find_new_extents(root, inode, newer_than,
1307 &newer_off, SZ_64K);
1308 if (!ret) {
1309 range->start = newer_off;
1310 /*
1311 * we always align our defrag to help keep
1312 * the extents in the file evenly spaced
1313 */
1314 i = (newer_off & new_align) >> PAGE_SHIFT;
1315 } else
1316 goto out_ra;
1317 } else {
1318 i = range->start >> PAGE_SHIFT;
1319 }
1320 if (!max_to_defrag)
1321 max_to_defrag = last_index - i + 1;
1322
1323 /*
1324 * make writeback starts from i, so the defrag range can be
1325 * written sequentially.
1326 */
1327 if (i < inode->i_mapping->writeback_index)
1328 inode->i_mapping->writeback_index = i;
1329
1330 while (i <= last_index && defrag_count < max_to_defrag &&
1331 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1332 /*
1333 * make sure we stop running if someone unmounts
1334 * the FS
1335 */
1336 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1337 break;
1338
1339 if (btrfs_defrag_cancelled(fs_info)) {
1340 btrfs_debug(fs_info, "defrag_file cancelled");
1341 ret = -EAGAIN;
1342 break;
1343 }
1344
1345 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1346 extent_thresh, &last_len, &skip,
1347 &defrag_end, do_compress)){
1348 unsigned long next;
1349 /*
1350 * the should_defrag function tells us how much to skip
1351 * bump our counter by the suggested amount
1352 */
1353 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1354 i = max(i + 1, next);
1355 continue;
1356 }
1357
1358 if (!newer_than) {
1359 cluster = (PAGE_ALIGN(defrag_end) >>
1360 PAGE_SHIFT) - i;
1361 cluster = min(cluster, max_cluster);
1362 } else {
1363 cluster = max_cluster;
1364 }
1365
1366 if (i + cluster > ra_index) {
1367 ra_index = max(i, ra_index);
1368 if (ra)
1369 page_cache_sync_readahead(inode->i_mapping, ra,
1370 file, ra_index, cluster);
1371 ra_index += cluster;
1372 }
1373
1374 inode_lock(inode);
1375 if (do_compress)
1376 BTRFS_I(inode)->defrag_compress = compress_type;
1377 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1378 if (ret < 0) {
1379 inode_unlock(inode);
1380 goto out_ra;
1381 }
1382
1383 defrag_count += ret;
1384 balance_dirty_pages_ratelimited(inode->i_mapping);
1385 inode_unlock(inode);
1386
1387 if (newer_than) {
1388 if (newer_off == (u64)-1)
1389 break;
1390
1391 if (ret > 0)
1392 i += ret;
1393
1394 newer_off = max(newer_off + 1,
1395 (u64)i << PAGE_SHIFT);
1396
1397 ret = find_new_extents(root, inode, newer_than,
1398 &newer_off, SZ_64K);
1399 if (!ret) {
1400 range->start = newer_off;
1401 i = (newer_off & new_align) >> PAGE_SHIFT;
1402 } else {
1403 break;
1404 }
1405 } else {
1406 if (ret > 0) {
1407 i += ret;
1408 last_len += ret << PAGE_SHIFT;
1409 } else {
1410 i++;
1411 last_len = 0;
1412 }
1413 }
1414 }
1415
1416 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1417 filemap_flush(inode->i_mapping);
1418 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1419 &BTRFS_I(inode)->runtime_flags))
1420 filemap_flush(inode->i_mapping);
1421 }
1422
1423 if (do_compress) {
1424 /* the filemap_flush will queue IO into the worker threads, but
1425 * we have to make sure the IO is actually started and that
1426 * ordered extents get created before we return
1427 */
1428 atomic_inc(&fs_info->async_submit_draining);
1429 while (atomic_read(&fs_info->nr_async_submits) ||
1430 atomic_read(&fs_info->async_delalloc_pages)) {
1431 wait_event(fs_info->async_submit_wait,
1432 (atomic_read(&fs_info->nr_async_submits) == 0 &&
1433 atomic_read(&fs_info->async_delalloc_pages) == 0));
1434 }
1435 atomic_dec(&fs_info->async_submit_draining);
1436 }
1437
1438 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1439 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1440 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1441 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1442 }
1443
1444 ret = defrag_count;
1445
1446 out_ra:
1447 if (do_compress) {
1448 inode_lock(inode);
1449 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1450 inode_unlock(inode);
1451 }
1452 if (!file)
1453 kfree(ra);
1454 kfree(pages);
1455 return ret;
1456 }
1457
1458 static noinline int btrfs_ioctl_resize(struct file *file,
1459 void __user *arg)
1460 {
1461 struct inode *inode = file_inode(file);
1462 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1463 u64 new_size;
1464 u64 old_size;
1465 u64 devid = 1;
1466 struct btrfs_root *root = BTRFS_I(inode)->root;
1467 struct btrfs_ioctl_vol_args *vol_args;
1468 struct btrfs_trans_handle *trans;
1469 struct btrfs_device *device = NULL;
1470 char *sizestr;
1471 char *retptr;
1472 char *devstr = NULL;
1473 int ret = 0;
1474 int mod = 0;
1475
1476 if (!capable(CAP_SYS_ADMIN))
1477 return -EPERM;
1478
1479 ret = mnt_want_write_file(file);
1480 if (ret)
1481 return ret;
1482
1483 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1484 mnt_drop_write_file(file);
1485 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1486 }
1487
1488 mutex_lock(&fs_info->volume_mutex);
1489 vol_args = memdup_user(arg, sizeof(*vol_args));
1490 if (IS_ERR(vol_args)) {
1491 ret = PTR_ERR(vol_args);
1492 goto out;
1493 }
1494
1495 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1496
1497 sizestr = vol_args->name;
1498 devstr = strchr(sizestr, ':');
1499 if (devstr) {
1500 sizestr = devstr + 1;
1501 *devstr = '\0';
1502 devstr = vol_args->name;
1503 ret = kstrtoull(devstr, 10, &devid);
1504 if (ret)
1505 goto out_free;
1506 if (!devid) {
1507 ret = -EINVAL;
1508 goto out_free;
1509 }
1510 btrfs_info(fs_info, "resizing devid %llu", devid);
1511 }
1512
1513 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1514 if (!device) {
1515 btrfs_info(fs_info, "resizer unable to find device %llu",
1516 devid);
1517 ret = -ENODEV;
1518 goto out_free;
1519 }
1520
1521 if (!device->writeable) {
1522 btrfs_info(fs_info,
1523 "resizer unable to apply on readonly device %llu",
1524 devid);
1525 ret = -EPERM;
1526 goto out_free;
1527 }
1528
1529 if (!strcmp(sizestr, "max"))
1530 new_size = device->bdev->bd_inode->i_size;
1531 else {
1532 if (sizestr[0] == '-') {
1533 mod = -1;
1534 sizestr++;
1535 } else if (sizestr[0] == '+') {
1536 mod = 1;
1537 sizestr++;
1538 }
1539 new_size = memparse(sizestr, &retptr);
1540 if (*retptr != '\0' || new_size == 0) {
1541 ret = -EINVAL;
1542 goto out_free;
1543 }
1544 }
1545
1546 if (device->is_tgtdev_for_dev_replace) {
1547 ret = -EPERM;
1548 goto out_free;
1549 }
1550
1551 old_size = btrfs_device_get_total_bytes(device);
1552
1553 if (mod < 0) {
1554 if (new_size > old_size) {
1555 ret = -EINVAL;
1556 goto out_free;
1557 }
1558 new_size = old_size - new_size;
1559 } else if (mod > 0) {
1560 if (new_size > ULLONG_MAX - old_size) {
1561 ret = -ERANGE;
1562 goto out_free;
1563 }
1564 new_size = old_size + new_size;
1565 }
1566
1567 if (new_size < SZ_256M) {
1568 ret = -EINVAL;
1569 goto out_free;
1570 }
1571 if (new_size > device->bdev->bd_inode->i_size) {
1572 ret = -EFBIG;
1573 goto out_free;
1574 }
1575
1576 new_size = round_down(new_size, fs_info->sectorsize);
1577
1578 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1579 rcu_str_deref(device->name), new_size);
1580
1581 if (new_size > old_size) {
1582 trans = btrfs_start_transaction(root, 0);
1583 if (IS_ERR(trans)) {
1584 ret = PTR_ERR(trans);
1585 goto out_free;
1586 }
1587 ret = btrfs_grow_device(trans, device, new_size);
1588 btrfs_commit_transaction(trans);
1589 } else if (new_size < old_size) {
1590 ret = btrfs_shrink_device(device, new_size);
1591 } /* equal, nothing need to do */
1592
1593 out_free:
1594 kfree(vol_args);
1595 out:
1596 mutex_unlock(&fs_info->volume_mutex);
1597 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1598 mnt_drop_write_file(file);
1599 return ret;
1600 }
1601
1602 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1603 const char *name, unsigned long fd, int subvol,
1604 u64 *transid, bool readonly,
1605 struct btrfs_qgroup_inherit *inherit)
1606 {
1607 int namelen;
1608 int ret = 0;
1609
1610 if (!S_ISDIR(file_inode(file)->i_mode))
1611 return -ENOTDIR;
1612
1613 ret = mnt_want_write_file(file);
1614 if (ret)
1615 goto out;
1616
1617 namelen = strlen(name);
1618 if (strchr(name, '/')) {
1619 ret = -EINVAL;
1620 goto out_drop_write;
1621 }
1622
1623 if (name[0] == '.' &&
1624 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1625 ret = -EEXIST;
1626 goto out_drop_write;
1627 }
1628
1629 if (subvol) {
1630 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1631 NULL, transid, readonly, inherit);
1632 } else {
1633 struct fd src = fdget(fd);
1634 struct inode *src_inode;
1635 if (!src.file) {
1636 ret = -EINVAL;
1637 goto out_drop_write;
1638 }
1639
1640 src_inode = file_inode(src.file);
1641 if (src_inode->i_sb != file_inode(file)->i_sb) {
1642 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1643 "Snapshot src from another FS");
1644 ret = -EXDEV;
1645 } else if (!inode_owner_or_capable(src_inode)) {
1646 /*
1647 * Subvolume creation is not restricted, but snapshots
1648 * are limited to own subvolumes only
1649 */
1650 ret = -EPERM;
1651 } else {
1652 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1653 BTRFS_I(src_inode)->root,
1654 transid, readonly, inherit);
1655 }
1656 fdput(src);
1657 }
1658 out_drop_write:
1659 mnt_drop_write_file(file);
1660 out:
1661 return ret;
1662 }
1663
1664 static noinline int btrfs_ioctl_snap_create(struct file *file,
1665 void __user *arg, int subvol)
1666 {
1667 struct btrfs_ioctl_vol_args *vol_args;
1668 int ret;
1669
1670 if (!S_ISDIR(file_inode(file)->i_mode))
1671 return -ENOTDIR;
1672
1673 vol_args = memdup_user(arg, sizeof(*vol_args));
1674 if (IS_ERR(vol_args))
1675 return PTR_ERR(vol_args);
1676 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1677
1678 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1679 vol_args->fd, subvol,
1680 NULL, false, NULL);
1681
1682 kfree(vol_args);
1683 return ret;
1684 }
1685
1686 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1687 void __user *arg, int subvol)
1688 {
1689 struct btrfs_ioctl_vol_args_v2 *vol_args;
1690 int ret;
1691 u64 transid = 0;
1692 u64 *ptr = NULL;
1693 bool readonly = false;
1694 struct btrfs_qgroup_inherit *inherit = NULL;
1695
1696 if (!S_ISDIR(file_inode(file)->i_mode))
1697 return -ENOTDIR;
1698
1699 vol_args = memdup_user(arg, sizeof(*vol_args));
1700 if (IS_ERR(vol_args))
1701 return PTR_ERR(vol_args);
1702 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1703
1704 if (vol_args->flags &
1705 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1706 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1707 ret = -EOPNOTSUPP;
1708 goto free_args;
1709 }
1710
1711 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1712 ptr = &transid;
1713 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1714 readonly = true;
1715 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1716 if (vol_args->size > PAGE_SIZE) {
1717 ret = -EINVAL;
1718 goto free_args;
1719 }
1720 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1721 if (IS_ERR(inherit)) {
1722 ret = PTR_ERR(inherit);
1723 goto free_args;
1724 }
1725 }
1726
1727 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1728 vol_args->fd, subvol, ptr,
1729 readonly, inherit);
1730 if (ret)
1731 goto free_inherit;
1732
1733 if (ptr && copy_to_user(arg +
1734 offsetof(struct btrfs_ioctl_vol_args_v2,
1735 transid),
1736 ptr, sizeof(*ptr)))
1737 ret = -EFAULT;
1738
1739 free_inherit:
1740 kfree(inherit);
1741 free_args:
1742 kfree(vol_args);
1743 return ret;
1744 }
1745
1746 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1747 void __user *arg)
1748 {
1749 struct inode *inode = file_inode(file);
1750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1751 struct btrfs_root *root = BTRFS_I(inode)->root;
1752 int ret = 0;
1753 u64 flags = 0;
1754
1755 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1756 return -EINVAL;
1757
1758 down_read(&fs_info->subvol_sem);
1759 if (btrfs_root_readonly(root))
1760 flags |= BTRFS_SUBVOL_RDONLY;
1761 up_read(&fs_info->subvol_sem);
1762
1763 if (copy_to_user(arg, &flags, sizeof(flags)))
1764 ret = -EFAULT;
1765
1766 return ret;
1767 }
1768
1769 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1770 void __user *arg)
1771 {
1772 struct inode *inode = file_inode(file);
1773 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1774 struct btrfs_root *root = BTRFS_I(inode)->root;
1775 struct btrfs_trans_handle *trans;
1776 u64 root_flags;
1777 u64 flags;
1778 int ret = 0;
1779
1780 if (!inode_owner_or_capable(inode))
1781 return -EPERM;
1782
1783 ret = mnt_want_write_file(file);
1784 if (ret)
1785 goto out;
1786
1787 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1788 ret = -EINVAL;
1789 goto out_drop_write;
1790 }
1791
1792 if (copy_from_user(&flags, arg, sizeof(flags))) {
1793 ret = -EFAULT;
1794 goto out_drop_write;
1795 }
1796
1797 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1798 ret = -EINVAL;
1799 goto out_drop_write;
1800 }
1801
1802 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1803 ret = -EOPNOTSUPP;
1804 goto out_drop_write;
1805 }
1806
1807 down_write(&fs_info->subvol_sem);
1808
1809 /* nothing to do */
1810 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1811 goto out_drop_sem;
1812
1813 root_flags = btrfs_root_flags(&root->root_item);
1814 if (flags & BTRFS_SUBVOL_RDONLY) {
1815 btrfs_set_root_flags(&root->root_item,
1816 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1817 } else {
1818 /*
1819 * Block RO -> RW transition if this subvolume is involved in
1820 * send
1821 */
1822 spin_lock(&root->root_item_lock);
1823 if (root->send_in_progress == 0) {
1824 btrfs_set_root_flags(&root->root_item,
1825 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1826 spin_unlock(&root->root_item_lock);
1827 } else {
1828 spin_unlock(&root->root_item_lock);
1829 btrfs_warn(fs_info,
1830 "Attempt to set subvolume %llu read-write during send",
1831 root->root_key.objectid);
1832 ret = -EPERM;
1833 goto out_drop_sem;
1834 }
1835 }
1836
1837 trans = btrfs_start_transaction(root, 1);
1838 if (IS_ERR(trans)) {
1839 ret = PTR_ERR(trans);
1840 goto out_reset;
1841 }
1842
1843 ret = btrfs_update_root(trans, fs_info->tree_root,
1844 &root->root_key, &root->root_item);
1845
1846 btrfs_commit_transaction(trans);
1847 out_reset:
1848 if (ret)
1849 btrfs_set_root_flags(&root->root_item, root_flags);
1850 out_drop_sem:
1851 up_write(&fs_info->subvol_sem);
1852 out_drop_write:
1853 mnt_drop_write_file(file);
1854 out:
1855 return ret;
1856 }
1857
1858 /*
1859 * helper to check if the subvolume references other subvolumes
1860 */
1861 static noinline int may_destroy_subvol(struct btrfs_root *root)
1862 {
1863 struct btrfs_fs_info *fs_info = root->fs_info;
1864 struct btrfs_path *path;
1865 struct btrfs_dir_item *di;
1866 struct btrfs_key key;
1867 u64 dir_id;
1868 int ret;
1869
1870 path = btrfs_alloc_path();
1871 if (!path)
1872 return -ENOMEM;
1873
1874 /* Make sure this root isn't set as the default subvol */
1875 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1876 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1877 dir_id, "default", 7, 0);
1878 if (di && !IS_ERR(di)) {
1879 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1880 if (key.objectid == root->root_key.objectid) {
1881 ret = -EPERM;
1882 btrfs_err(fs_info,
1883 "deleting default subvolume %llu is not allowed",
1884 key.objectid);
1885 goto out;
1886 }
1887 btrfs_release_path(path);
1888 }
1889
1890 key.objectid = root->root_key.objectid;
1891 key.type = BTRFS_ROOT_REF_KEY;
1892 key.offset = (u64)-1;
1893
1894 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1895 if (ret < 0)
1896 goto out;
1897 BUG_ON(ret == 0);
1898
1899 ret = 0;
1900 if (path->slots[0] > 0) {
1901 path->slots[0]--;
1902 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1903 if (key.objectid == root->root_key.objectid &&
1904 key.type == BTRFS_ROOT_REF_KEY)
1905 ret = -ENOTEMPTY;
1906 }
1907 out:
1908 btrfs_free_path(path);
1909 return ret;
1910 }
1911
1912 static noinline int key_in_sk(struct btrfs_key *key,
1913 struct btrfs_ioctl_search_key *sk)
1914 {
1915 struct btrfs_key test;
1916 int ret;
1917
1918 test.objectid = sk->min_objectid;
1919 test.type = sk->min_type;
1920 test.offset = sk->min_offset;
1921
1922 ret = btrfs_comp_cpu_keys(key, &test);
1923 if (ret < 0)
1924 return 0;
1925
1926 test.objectid = sk->max_objectid;
1927 test.type = sk->max_type;
1928 test.offset = sk->max_offset;
1929
1930 ret = btrfs_comp_cpu_keys(key, &test);
1931 if (ret > 0)
1932 return 0;
1933 return 1;
1934 }
1935
1936 static noinline int copy_to_sk(struct btrfs_path *path,
1937 struct btrfs_key *key,
1938 struct btrfs_ioctl_search_key *sk,
1939 size_t *buf_size,
1940 char __user *ubuf,
1941 unsigned long *sk_offset,
1942 int *num_found)
1943 {
1944 u64 found_transid;
1945 struct extent_buffer *leaf;
1946 struct btrfs_ioctl_search_header sh;
1947 struct btrfs_key test;
1948 unsigned long item_off;
1949 unsigned long item_len;
1950 int nritems;
1951 int i;
1952 int slot;
1953 int ret = 0;
1954
1955 leaf = path->nodes[0];
1956 slot = path->slots[0];
1957 nritems = btrfs_header_nritems(leaf);
1958
1959 if (btrfs_header_generation(leaf) > sk->max_transid) {
1960 i = nritems;
1961 goto advance_key;
1962 }
1963 found_transid = btrfs_header_generation(leaf);
1964
1965 for (i = slot; i < nritems; i++) {
1966 item_off = btrfs_item_ptr_offset(leaf, i);
1967 item_len = btrfs_item_size_nr(leaf, i);
1968
1969 btrfs_item_key_to_cpu(leaf, key, i);
1970 if (!key_in_sk(key, sk))
1971 continue;
1972
1973 if (sizeof(sh) + item_len > *buf_size) {
1974 if (*num_found) {
1975 ret = 1;
1976 goto out;
1977 }
1978
1979 /*
1980 * return one empty item back for v1, which does not
1981 * handle -EOVERFLOW
1982 */
1983
1984 *buf_size = sizeof(sh) + item_len;
1985 item_len = 0;
1986 ret = -EOVERFLOW;
1987 }
1988
1989 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1990 ret = 1;
1991 goto out;
1992 }
1993
1994 sh.objectid = key->objectid;
1995 sh.offset = key->offset;
1996 sh.type = key->type;
1997 sh.len = item_len;
1998 sh.transid = found_transid;
1999
2000 /* copy search result header */
2001 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2002 ret = -EFAULT;
2003 goto out;
2004 }
2005
2006 *sk_offset += sizeof(sh);
2007
2008 if (item_len) {
2009 char __user *up = ubuf + *sk_offset;
2010 /* copy the item */
2011 if (read_extent_buffer_to_user(leaf, up,
2012 item_off, item_len)) {
2013 ret = -EFAULT;
2014 goto out;
2015 }
2016
2017 *sk_offset += item_len;
2018 }
2019 (*num_found)++;
2020
2021 if (ret) /* -EOVERFLOW from above */
2022 goto out;
2023
2024 if (*num_found >= sk->nr_items) {
2025 ret = 1;
2026 goto out;
2027 }
2028 }
2029 advance_key:
2030 ret = 0;
2031 test.objectid = sk->max_objectid;
2032 test.type = sk->max_type;
2033 test.offset = sk->max_offset;
2034 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2035 ret = 1;
2036 else if (key->offset < (u64)-1)
2037 key->offset++;
2038 else if (key->type < (u8)-1) {
2039 key->offset = 0;
2040 key->type++;
2041 } else if (key->objectid < (u64)-1) {
2042 key->offset = 0;
2043 key->type = 0;
2044 key->objectid++;
2045 } else
2046 ret = 1;
2047 out:
2048 /*
2049 * 0: all items from this leaf copied, continue with next
2050 * 1: * more items can be copied, but unused buffer is too small
2051 * * all items were found
2052 * Either way, it will stops the loop which iterates to the next
2053 * leaf
2054 * -EOVERFLOW: item was to large for buffer
2055 * -EFAULT: could not copy extent buffer back to userspace
2056 */
2057 return ret;
2058 }
2059
2060 static noinline int search_ioctl(struct inode *inode,
2061 struct btrfs_ioctl_search_key *sk,
2062 size_t *buf_size,
2063 char __user *ubuf)
2064 {
2065 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2066 struct btrfs_root *root;
2067 struct btrfs_key key;
2068 struct btrfs_path *path;
2069 int ret;
2070 int num_found = 0;
2071 unsigned long sk_offset = 0;
2072
2073 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2074 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2075 return -EOVERFLOW;
2076 }
2077
2078 path = btrfs_alloc_path();
2079 if (!path)
2080 return -ENOMEM;
2081
2082 if (sk->tree_id == 0) {
2083 /* search the root of the inode that was passed */
2084 root = BTRFS_I(inode)->root;
2085 } else {
2086 key.objectid = sk->tree_id;
2087 key.type = BTRFS_ROOT_ITEM_KEY;
2088 key.offset = (u64)-1;
2089 root = btrfs_read_fs_root_no_name(info, &key);
2090 if (IS_ERR(root)) {
2091 btrfs_free_path(path);
2092 return -ENOENT;
2093 }
2094 }
2095
2096 key.objectid = sk->min_objectid;
2097 key.type = sk->min_type;
2098 key.offset = sk->min_offset;
2099
2100 while (1) {
2101 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2102 if (ret != 0) {
2103 if (ret > 0)
2104 ret = 0;
2105 goto err;
2106 }
2107 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2108 &sk_offset, &num_found);
2109 btrfs_release_path(path);
2110 if (ret)
2111 break;
2112
2113 }
2114 if (ret > 0)
2115 ret = 0;
2116 err:
2117 sk->nr_items = num_found;
2118 btrfs_free_path(path);
2119 return ret;
2120 }
2121
2122 static noinline int btrfs_ioctl_tree_search(struct file *file,
2123 void __user *argp)
2124 {
2125 struct btrfs_ioctl_search_args __user *uargs;
2126 struct btrfs_ioctl_search_key sk;
2127 struct inode *inode;
2128 int ret;
2129 size_t buf_size;
2130
2131 if (!capable(CAP_SYS_ADMIN))
2132 return -EPERM;
2133
2134 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2135
2136 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2137 return -EFAULT;
2138
2139 buf_size = sizeof(uargs->buf);
2140
2141 inode = file_inode(file);
2142 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2143
2144 /*
2145 * In the origin implementation an overflow is handled by returning a
2146 * search header with a len of zero, so reset ret.
2147 */
2148 if (ret == -EOVERFLOW)
2149 ret = 0;
2150
2151 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2152 ret = -EFAULT;
2153 return ret;
2154 }
2155
2156 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2157 void __user *argp)
2158 {
2159 struct btrfs_ioctl_search_args_v2 __user *uarg;
2160 struct btrfs_ioctl_search_args_v2 args;
2161 struct inode *inode;
2162 int ret;
2163 size_t buf_size;
2164 const size_t buf_limit = SZ_16M;
2165
2166 if (!capable(CAP_SYS_ADMIN))
2167 return -EPERM;
2168
2169 /* copy search header and buffer size */
2170 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2171 if (copy_from_user(&args, uarg, sizeof(args)))
2172 return -EFAULT;
2173
2174 buf_size = args.buf_size;
2175
2176 /* limit result size to 16MB */
2177 if (buf_size > buf_limit)
2178 buf_size = buf_limit;
2179
2180 inode = file_inode(file);
2181 ret = search_ioctl(inode, &args.key, &buf_size,
2182 (char *)(&uarg->buf[0]));
2183 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2184 ret = -EFAULT;
2185 else if (ret == -EOVERFLOW &&
2186 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2187 ret = -EFAULT;
2188
2189 return ret;
2190 }
2191
2192 /*
2193 * Search INODE_REFs to identify path name of 'dirid' directory
2194 * in a 'tree_id' tree. and sets path name to 'name'.
2195 */
2196 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2197 u64 tree_id, u64 dirid, char *name)
2198 {
2199 struct btrfs_root *root;
2200 struct btrfs_key key;
2201 char *ptr;
2202 int ret = -1;
2203 int slot;
2204 int len;
2205 int total_len = 0;
2206 struct btrfs_inode_ref *iref;
2207 struct extent_buffer *l;
2208 struct btrfs_path *path;
2209
2210 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2211 name[0]='\0';
2212 return 0;
2213 }
2214
2215 path = btrfs_alloc_path();
2216 if (!path)
2217 return -ENOMEM;
2218
2219 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2220
2221 key.objectid = tree_id;
2222 key.type = BTRFS_ROOT_ITEM_KEY;
2223 key.offset = (u64)-1;
2224 root = btrfs_read_fs_root_no_name(info, &key);
2225 if (IS_ERR(root)) {
2226 btrfs_err(info, "could not find root %llu", tree_id);
2227 ret = -ENOENT;
2228 goto out;
2229 }
2230
2231 key.objectid = dirid;
2232 key.type = BTRFS_INODE_REF_KEY;
2233 key.offset = (u64)-1;
2234
2235 while (1) {
2236 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2237 if (ret < 0)
2238 goto out;
2239 else if (ret > 0) {
2240 ret = btrfs_previous_item(root, path, dirid,
2241 BTRFS_INODE_REF_KEY);
2242 if (ret < 0)
2243 goto out;
2244 else if (ret > 0) {
2245 ret = -ENOENT;
2246 goto out;
2247 }
2248 }
2249
2250 l = path->nodes[0];
2251 slot = path->slots[0];
2252 btrfs_item_key_to_cpu(l, &key, slot);
2253
2254 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2255 len = btrfs_inode_ref_name_len(l, iref);
2256 ptr -= len + 1;
2257 total_len += len + 1;
2258 if (ptr < name) {
2259 ret = -ENAMETOOLONG;
2260 goto out;
2261 }
2262
2263 *(ptr + len) = '/';
2264 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2265
2266 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2267 break;
2268
2269 btrfs_release_path(path);
2270 key.objectid = key.offset;
2271 key.offset = (u64)-1;
2272 dirid = key.objectid;
2273 }
2274 memmove(name, ptr, total_len);
2275 name[total_len] = '\0';
2276 ret = 0;
2277 out:
2278 btrfs_free_path(path);
2279 return ret;
2280 }
2281
2282 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2283 void __user *argp)
2284 {
2285 struct btrfs_ioctl_ino_lookup_args *args;
2286 struct inode *inode;
2287 int ret = 0;
2288
2289 args = memdup_user(argp, sizeof(*args));
2290 if (IS_ERR(args))
2291 return PTR_ERR(args);
2292
2293 inode = file_inode(file);
2294
2295 /*
2296 * Unprivileged query to obtain the containing subvolume root id. The
2297 * path is reset so it's consistent with btrfs_search_path_in_tree.
2298 */
2299 if (args->treeid == 0)
2300 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2301
2302 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2303 args->name[0] = 0;
2304 goto out;
2305 }
2306
2307 if (!capable(CAP_SYS_ADMIN)) {
2308 ret = -EPERM;
2309 goto out;
2310 }
2311
2312 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2313 args->treeid, args->objectid,
2314 args->name);
2315
2316 out:
2317 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2318 ret = -EFAULT;
2319
2320 kfree(args);
2321 return ret;
2322 }
2323
2324 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2325 void __user *arg)
2326 {
2327 struct dentry *parent = file->f_path.dentry;
2328 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2329 struct dentry *dentry;
2330 struct inode *dir = d_inode(parent);
2331 struct inode *inode;
2332 struct btrfs_root *root = BTRFS_I(dir)->root;
2333 struct btrfs_root *dest = NULL;
2334 struct btrfs_ioctl_vol_args *vol_args;
2335 struct btrfs_trans_handle *trans;
2336 struct btrfs_block_rsv block_rsv;
2337 u64 root_flags;
2338 u64 qgroup_reserved;
2339 int namelen;
2340 int ret;
2341 int err = 0;
2342
2343 if (!S_ISDIR(dir->i_mode))
2344 return -ENOTDIR;
2345
2346 vol_args = memdup_user(arg, sizeof(*vol_args));
2347 if (IS_ERR(vol_args))
2348 return PTR_ERR(vol_args);
2349
2350 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2351 namelen = strlen(vol_args->name);
2352 if (strchr(vol_args->name, '/') ||
2353 strncmp(vol_args->name, "..", namelen) == 0) {
2354 err = -EINVAL;
2355 goto out;
2356 }
2357
2358 err = mnt_want_write_file(file);
2359 if (err)
2360 goto out;
2361
2362
2363 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2364 if (err == -EINTR)
2365 goto out_drop_write;
2366 dentry = lookup_one_len(vol_args->name, parent, namelen);
2367 if (IS_ERR(dentry)) {
2368 err = PTR_ERR(dentry);
2369 goto out_unlock_dir;
2370 }
2371
2372 if (d_really_is_negative(dentry)) {
2373 err = -ENOENT;
2374 goto out_dput;
2375 }
2376
2377 inode = d_inode(dentry);
2378 dest = BTRFS_I(inode)->root;
2379 if (!capable(CAP_SYS_ADMIN)) {
2380 /*
2381 * Regular user. Only allow this with a special mount
2382 * option, when the user has write+exec access to the
2383 * subvol root, and when rmdir(2) would have been
2384 * allowed.
2385 *
2386 * Note that this is _not_ check that the subvol is
2387 * empty or doesn't contain data that we wouldn't
2388 * otherwise be able to delete.
2389 *
2390 * Users who want to delete empty subvols should try
2391 * rmdir(2).
2392 */
2393 err = -EPERM;
2394 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2395 goto out_dput;
2396
2397 /*
2398 * Do not allow deletion if the parent dir is the same
2399 * as the dir to be deleted. That means the ioctl
2400 * must be called on the dentry referencing the root
2401 * of the subvol, not a random directory contained
2402 * within it.
2403 */
2404 err = -EINVAL;
2405 if (root == dest)
2406 goto out_dput;
2407
2408 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2409 if (err)
2410 goto out_dput;
2411 }
2412
2413 /* check if subvolume may be deleted by a user */
2414 err = btrfs_may_delete(dir, dentry, 1);
2415 if (err)
2416 goto out_dput;
2417
2418 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2419 err = -EINVAL;
2420 goto out_dput;
2421 }
2422
2423 inode_lock(inode);
2424
2425 /*
2426 * Don't allow to delete a subvolume with send in progress. This is
2427 * inside the i_mutex so the error handling that has to drop the bit
2428 * again is not run concurrently.
2429 */
2430 spin_lock(&dest->root_item_lock);
2431 root_flags = btrfs_root_flags(&dest->root_item);
2432 if (dest->send_in_progress == 0) {
2433 btrfs_set_root_flags(&dest->root_item,
2434 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2435 spin_unlock(&dest->root_item_lock);
2436 } else {
2437 spin_unlock(&dest->root_item_lock);
2438 btrfs_warn(fs_info,
2439 "Attempt to delete subvolume %llu during send",
2440 dest->root_key.objectid);
2441 err = -EPERM;
2442 goto out_unlock_inode;
2443 }
2444
2445 down_write(&fs_info->subvol_sem);
2446
2447 err = may_destroy_subvol(dest);
2448 if (err)
2449 goto out_up_write;
2450
2451 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2452 /*
2453 * One for dir inode, two for dir entries, two for root
2454 * ref/backref.
2455 */
2456 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2457 5, &qgroup_reserved, true);
2458 if (err)
2459 goto out_up_write;
2460
2461 trans = btrfs_start_transaction(root, 0);
2462 if (IS_ERR(trans)) {
2463 err = PTR_ERR(trans);
2464 goto out_release;
2465 }
2466 trans->block_rsv = &block_rsv;
2467 trans->bytes_reserved = block_rsv.size;
2468
2469 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2470
2471 ret = btrfs_unlink_subvol(trans, root, dir,
2472 dest->root_key.objectid,
2473 dentry->d_name.name,
2474 dentry->d_name.len);
2475 if (ret) {
2476 err = ret;
2477 btrfs_abort_transaction(trans, ret);
2478 goto out_end_trans;
2479 }
2480
2481 btrfs_record_root_in_trans(trans, dest);
2482
2483 memset(&dest->root_item.drop_progress, 0,
2484 sizeof(dest->root_item.drop_progress));
2485 dest->root_item.drop_level = 0;
2486 btrfs_set_root_refs(&dest->root_item, 0);
2487
2488 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2489 ret = btrfs_insert_orphan_item(trans,
2490 fs_info->tree_root,
2491 dest->root_key.objectid);
2492 if (ret) {
2493 btrfs_abort_transaction(trans, ret);
2494 err = ret;
2495 goto out_end_trans;
2496 }
2497 }
2498
2499 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2500 BTRFS_UUID_KEY_SUBVOL,
2501 dest->root_key.objectid);
2502 if (ret && ret != -ENOENT) {
2503 btrfs_abort_transaction(trans, ret);
2504 err = ret;
2505 goto out_end_trans;
2506 }
2507 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2508 ret = btrfs_uuid_tree_rem(trans, fs_info,
2509 dest->root_item.received_uuid,
2510 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2511 dest->root_key.objectid);
2512 if (ret && ret != -ENOENT) {
2513 btrfs_abort_transaction(trans, ret);
2514 err = ret;
2515 goto out_end_trans;
2516 }
2517 }
2518
2519 out_end_trans:
2520 trans->block_rsv = NULL;
2521 trans->bytes_reserved = 0;
2522 ret = btrfs_end_transaction(trans);
2523 if (ret && !err)
2524 err = ret;
2525 inode->i_flags |= S_DEAD;
2526 out_release:
2527 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2528 out_up_write:
2529 up_write(&fs_info->subvol_sem);
2530 if (err) {
2531 spin_lock(&dest->root_item_lock);
2532 root_flags = btrfs_root_flags(&dest->root_item);
2533 btrfs_set_root_flags(&dest->root_item,
2534 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2535 spin_unlock(&dest->root_item_lock);
2536 }
2537 out_unlock_inode:
2538 inode_unlock(inode);
2539 if (!err) {
2540 d_invalidate(dentry);
2541 btrfs_invalidate_inodes(dest);
2542 d_delete(dentry);
2543 ASSERT(dest->send_in_progress == 0);
2544
2545 /* the last ref */
2546 if (dest->ino_cache_inode) {
2547 iput(dest->ino_cache_inode);
2548 dest->ino_cache_inode = NULL;
2549 }
2550 }
2551 out_dput:
2552 dput(dentry);
2553 out_unlock_dir:
2554 inode_unlock(dir);
2555 out_drop_write:
2556 mnt_drop_write_file(file);
2557 out:
2558 kfree(vol_args);
2559 return err;
2560 }
2561
2562 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2563 {
2564 struct inode *inode = file_inode(file);
2565 struct btrfs_root *root = BTRFS_I(inode)->root;
2566 struct btrfs_ioctl_defrag_range_args *range;
2567 int ret;
2568
2569 ret = mnt_want_write_file(file);
2570 if (ret)
2571 return ret;
2572
2573 if (btrfs_root_readonly(root)) {
2574 ret = -EROFS;
2575 goto out;
2576 }
2577
2578 switch (inode->i_mode & S_IFMT) {
2579 case S_IFDIR:
2580 if (!capable(CAP_SYS_ADMIN)) {
2581 ret = -EPERM;
2582 goto out;
2583 }
2584 ret = btrfs_defrag_root(root);
2585 break;
2586 case S_IFREG:
2587 if (!(file->f_mode & FMODE_WRITE)) {
2588 ret = -EINVAL;
2589 goto out;
2590 }
2591
2592 range = kzalloc(sizeof(*range), GFP_KERNEL);
2593 if (!range) {
2594 ret = -ENOMEM;
2595 goto out;
2596 }
2597
2598 if (argp) {
2599 if (copy_from_user(range, argp,
2600 sizeof(*range))) {
2601 ret = -EFAULT;
2602 kfree(range);
2603 goto out;
2604 }
2605 /* compression requires us to start the IO */
2606 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2607 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2608 range->extent_thresh = (u32)-1;
2609 }
2610 } else {
2611 /* the rest are all set to zero by kzalloc */
2612 range->len = (u64)-1;
2613 }
2614 ret = btrfs_defrag_file(file_inode(file), file,
2615 range, 0, 0);
2616 if (ret > 0)
2617 ret = 0;
2618 kfree(range);
2619 break;
2620 default:
2621 ret = -EINVAL;
2622 }
2623 out:
2624 mnt_drop_write_file(file);
2625 return ret;
2626 }
2627
2628 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2629 {
2630 struct btrfs_ioctl_vol_args *vol_args;
2631 int ret;
2632
2633 if (!capable(CAP_SYS_ADMIN))
2634 return -EPERM;
2635
2636 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2637 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2638
2639 mutex_lock(&fs_info->volume_mutex);
2640 vol_args = memdup_user(arg, sizeof(*vol_args));
2641 if (IS_ERR(vol_args)) {
2642 ret = PTR_ERR(vol_args);
2643 goto out;
2644 }
2645
2646 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2647 ret = btrfs_init_new_device(fs_info, vol_args->name);
2648
2649 if (!ret)
2650 btrfs_info(fs_info, "disk added %s", vol_args->name);
2651
2652 kfree(vol_args);
2653 out:
2654 mutex_unlock(&fs_info->volume_mutex);
2655 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2656 return ret;
2657 }
2658
2659 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2660 {
2661 struct inode *inode = file_inode(file);
2662 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2663 struct btrfs_ioctl_vol_args_v2 *vol_args;
2664 int ret;
2665
2666 if (!capable(CAP_SYS_ADMIN))
2667 return -EPERM;
2668
2669 ret = mnt_want_write_file(file);
2670 if (ret)
2671 return ret;
2672
2673 vol_args = memdup_user(arg, sizeof(*vol_args));
2674 if (IS_ERR(vol_args)) {
2675 ret = PTR_ERR(vol_args);
2676 goto err_drop;
2677 }
2678
2679 /* Check for compatibility reject unknown flags */
2680 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2681 return -EOPNOTSUPP;
2682
2683 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2684 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2685 goto out;
2686 }
2687
2688 mutex_lock(&fs_info->volume_mutex);
2689 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2690 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2691 } else {
2692 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2693 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2694 }
2695 mutex_unlock(&fs_info->volume_mutex);
2696 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2697
2698 if (!ret) {
2699 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2700 btrfs_info(fs_info, "device deleted: id %llu",
2701 vol_args->devid);
2702 else
2703 btrfs_info(fs_info, "device deleted: %s",
2704 vol_args->name);
2705 }
2706 out:
2707 kfree(vol_args);
2708 err_drop:
2709 mnt_drop_write_file(file);
2710 return ret;
2711 }
2712
2713 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2714 {
2715 struct inode *inode = file_inode(file);
2716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2717 struct btrfs_ioctl_vol_args *vol_args;
2718 int ret;
2719
2720 if (!capable(CAP_SYS_ADMIN))
2721 return -EPERM;
2722
2723 ret = mnt_want_write_file(file);
2724 if (ret)
2725 return ret;
2726
2727 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2728 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2729 goto out_drop_write;
2730 }
2731
2732 vol_args = memdup_user(arg, sizeof(*vol_args));
2733 if (IS_ERR(vol_args)) {
2734 ret = PTR_ERR(vol_args);
2735 goto out;
2736 }
2737
2738 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2739 mutex_lock(&fs_info->volume_mutex);
2740 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2741 mutex_unlock(&fs_info->volume_mutex);
2742
2743 if (!ret)
2744 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2745 kfree(vol_args);
2746 out:
2747 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2748 out_drop_write:
2749 mnt_drop_write_file(file);
2750
2751 return ret;
2752 }
2753
2754 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2755 void __user *arg)
2756 {
2757 struct btrfs_ioctl_fs_info_args *fi_args;
2758 struct btrfs_device *device;
2759 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2760 int ret = 0;
2761
2762 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2763 if (!fi_args)
2764 return -ENOMEM;
2765
2766 mutex_lock(&fs_devices->device_list_mutex);
2767 fi_args->num_devices = fs_devices->num_devices;
2768 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2769
2770 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2771 if (device->devid > fi_args->max_id)
2772 fi_args->max_id = device->devid;
2773 }
2774 mutex_unlock(&fs_devices->device_list_mutex);
2775
2776 fi_args->nodesize = fs_info->super_copy->nodesize;
2777 fi_args->sectorsize = fs_info->super_copy->sectorsize;
2778 fi_args->clone_alignment = fs_info->super_copy->sectorsize;
2779
2780 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2781 ret = -EFAULT;
2782
2783 kfree(fi_args);
2784 return ret;
2785 }
2786
2787 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2788 void __user *arg)
2789 {
2790 struct btrfs_ioctl_dev_info_args *di_args;
2791 struct btrfs_device *dev;
2792 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2793 int ret = 0;
2794 char *s_uuid = NULL;
2795
2796 di_args = memdup_user(arg, sizeof(*di_args));
2797 if (IS_ERR(di_args))
2798 return PTR_ERR(di_args);
2799
2800 if (!btrfs_is_empty_uuid(di_args->uuid))
2801 s_uuid = di_args->uuid;
2802
2803 mutex_lock(&fs_devices->device_list_mutex);
2804 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2805
2806 if (!dev) {
2807 ret = -ENODEV;
2808 goto out;
2809 }
2810
2811 di_args->devid = dev->devid;
2812 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2813 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2814 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2815 if (dev->name) {
2816 struct rcu_string *name;
2817
2818 rcu_read_lock();
2819 name = rcu_dereference(dev->name);
2820 strncpy(di_args->path, name->str, sizeof(di_args->path));
2821 rcu_read_unlock();
2822 di_args->path[sizeof(di_args->path) - 1] = 0;
2823 } else {
2824 di_args->path[0] = '\0';
2825 }
2826
2827 out:
2828 mutex_unlock(&fs_devices->device_list_mutex);
2829 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2830 ret = -EFAULT;
2831
2832 kfree(di_args);
2833 return ret;
2834 }
2835
2836 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2837 {
2838 struct page *page;
2839
2840 page = grab_cache_page(inode->i_mapping, index);
2841 if (!page)
2842 return ERR_PTR(-ENOMEM);
2843
2844 if (!PageUptodate(page)) {
2845 int ret;
2846
2847 ret = btrfs_readpage(NULL, page);
2848 if (ret)
2849 return ERR_PTR(ret);
2850 lock_page(page);
2851 if (!PageUptodate(page)) {
2852 unlock_page(page);
2853 put_page(page);
2854 return ERR_PTR(-EIO);
2855 }
2856 if (page->mapping != inode->i_mapping) {
2857 unlock_page(page);
2858 put_page(page);
2859 return ERR_PTR(-EAGAIN);
2860 }
2861 }
2862
2863 return page;
2864 }
2865
2866 static int gather_extent_pages(struct inode *inode, struct page **pages,
2867 int num_pages, u64 off)
2868 {
2869 int i;
2870 pgoff_t index = off >> PAGE_SHIFT;
2871
2872 for (i = 0; i < num_pages; i++) {
2873 again:
2874 pages[i] = extent_same_get_page(inode, index + i);
2875 if (IS_ERR(pages[i])) {
2876 int err = PTR_ERR(pages[i]);
2877
2878 if (err == -EAGAIN)
2879 goto again;
2880 pages[i] = NULL;
2881 return err;
2882 }
2883 }
2884 return 0;
2885 }
2886
2887 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2888 bool retry_range_locking)
2889 {
2890 /*
2891 * Do any pending delalloc/csum calculations on inode, one way or
2892 * another, and lock file content.
2893 * The locking order is:
2894 *
2895 * 1) pages
2896 * 2) range in the inode's io tree
2897 */
2898 while (1) {
2899 struct btrfs_ordered_extent *ordered;
2900 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2901 ordered = btrfs_lookup_first_ordered_extent(inode,
2902 off + len - 1);
2903 if ((!ordered ||
2904 ordered->file_offset + ordered->len <= off ||
2905 ordered->file_offset >= off + len) &&
2906 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2907 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2908 if (ordered)
2909 btrfs_put_ordered_extent(ordered);
2910 break;
2911 }
2912 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2913 if (ordered)
2914 btrfs_put_ordered_extent(ordered);
2915 if (!retry_range_locking)
2916 return -EAGAIN;
2917 btrfs_wait_ordered_range(inode, off, len);
2918 }
2919 return 0;
2920 }
2921
2922 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2923 {
2924 inode_unlock(inode1);
2925 inode_unlock(inode2);
2926 }
2927
2928 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2929 {
2930 if (inode1 < inode2)
2931 swap(inode1, inode2);
2932
2933 inode_lock_nested(inode1, I_MUTEX_PARENT);
2934 inode_lock_nested(inode2, I_MUTEX_CHILD);
2935 }
2936
2937 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2938 struct inode *inode2, u64 loff2, u64 len)
2939 {
2940 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2941 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2942 }
2943
2944 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2945 struct inode *inode2, u64 loff2, u64 len,
2946 bool retry_range_locking)
2947 {
2948 int ret;
2949
2950 if (inode1 < inode2) {
2951 swap(inode1, inode2);
2952 swap(loff1, loff2);
2953 }
2954 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2955 if (ret)
2956 return ret;
2957 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2958 if (ret)
2959 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2960 loff1 + len - 1);
2961 return ret;
2962 }
2963
2964 struct cmp_pages {
2965 int num_pages;
2966 struct page **src_pages;
2967 struct page **dst_pages;
2968 };
2969
2970 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2971 {
2972 int i;
2973 struct page *pg;
2974
2975 for (i = 0; i < cmp->num_pages; i++) {
2976 pg = cmp->src_pages[i];
2977 if (pg) {
2978 unlock_page(pg);
2979 put_page(pg);
2980 }
2981 pg = cmp->dst_pages[i];
2982 if (pg) {
2983 unlock_page(pg);
2984 put_page(pg);
2985 }
2986 }
2987 kfree(cmp->src_pages);
2988 kfree(cmp->dst_pages);
2989 }
2990
2991 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2992 struct inode *dst, u64 dst_loff,
2993 u64 len, struct cmp_pages *cmp)
2994 {
2995 int ret;
2996 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2997 struct page **src_pgarr, **dst_pgarr;
2998
2999 /*
3000 * We must gather up all the pages before we initiate our
3001 * extent locking. We use an array for the page pointers. Size
3002 * of the array is bounded by len, which is in turn bounded by
3003 * BTRFS_MAX_DEDUPE_LEN.
3004 */
3005 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3006 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3007 if (!src_pgarr || !dst_pgarr) {
3008 kfree(src_pgarr);
3009 kfree(dst_pgarr);
3010 return -ENOMEM;
3011 }
3012 cmp->num_pages = num_pages;
3013 cmp->src_pages = src_pgarr;
3014 cmp->dst_pages = dst_pgarr;
3015
3016 /*
3017 * If deduping ranges in the same inode, locking rules make it mandatory
3018 * to always lock pages in ascending order to avoid deadlocks with
3019 * concurrent tasks (such as starting writeback/delalloc).
3020 */
3021 if (src == dst && dst_loff < loff) {
3022 swap(src_pgarr, dst_pgarr);
3023 swap(loff, dst_loff);
3024 }
3025
3026 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3027 if (ret)
3028 goto out;
3029
3030 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3031
3032 out:
3033 if (ret)
3034 btrfs_cmp_data_free(cmp);
3035 return 0;
3036 }
3037
3038 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3039 {
3040 int ret = 0;
3041 int i;
3042 struct page *src_page, *dst_page;
3043 unsigned int cmp_len = PAGE_SIZE;
3044 void *addr, *dst_addr;
3045
3046 i = 0;
3047 while (len) {
3048 if (len < PAGE_SIZE)
3049 cmp_len = len;
3050
3051 BUG_ON(i >= cmp->num_pages);
3052
3053 src_page = cmp->src_pages[i];
3054 dst_page = cmp->dst_pages[i];
3055 ASSERT(PageLocked(src_page));
3056 ASSERT(PageLocked(dst_page));
3057
3058 addr = kmap_atomic(src_page);
3059 dst_addr = kmap_atomic(dst_page);
3060
3061 flush_dcache_page(src_page);
3062 flush_dcache_page(dst_page);
3063
3064 if (memcmp(addr, dst_addr, cmp_len))
3065 ret = -EBADE;
3066
3067 kunmap_atomic(addr);
3068 kunmap_atomic(dst_addr);
3069
3070 if (ret)
3071 break;
3072
3073 len -= cmp_len;
3074 i++;
3075 }
3076
3077 return ret;
3078 }
3079
3080 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3081 u64 olen)
3082 {
3083 u64 len = *plen;
3084 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3085
3086 if (off + olen > inode->i_size || off + olen < off)
3087 return -EINVAL;
3088
3089 /* if we extend to eof, continue to block boundary */
3090 if (off + len == inode->i_size)
3091 *plen = len = ALIGN(inode->i_size, bs) - off;
3092
3093 /* Check that we are block aligned - btrfs_clone() requires this */
3094 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3095 return -EINVAL;
3096
3097 return 0;
3098 }
3099
3100 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3101 struct inode *dst, u64 dst_loff)
3102 {
3103 int ret;
3104 u64 len = olen;
3105 struct cmp_pages cmp;
3106 bool same_inode = (src == dst);
3107 u64 same_lock_start = 0;
3108 u64 same_lock_len = 0;
3109
3110 if (len == 0)
3111 return 0;
3112
3113 if (same_inode)
3114 inode_lock(src);
3115 else
3116 btrfs_double_inode_lock(src, dst);
3117
3118 ret = extent_same_check_offsets(src, loff, &len, olen);
3119 if (ret)
3120 goto out_unlock;
3121
3122 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3123 if (ret)
3124 goto out_unlock;
3125
3126 if (same_inode) {
3127 /*
3128 * Single inode case wants the same checks, except we
3129 * don't want our length pushed out past i_size as
3130 * comparing that data range makes no sense.
3131 *
3132 * extent_same_check_offsets() will do this for an
3133 * unaligned length at i_size, so catch it here and
3134 * reject the request.
3135 *
3136 * This effectively means we require aligned extents
3137 * for the single-inode case, whereas the other cases
3138 * allow an unaligned length so long as it ends at
3139 * i_size.
3140 */
3141 if (len != olen) {
3142 ret = -EINVAL;
3143 goto out_unlock;
3144 }
3145
3146 /* Check for overlapping ranges */
3147 if (dst_loff + len > loff && dst_loff < loff + len) {
3148 ret = -EINVAL;
3149 goto out_unlock;
3150 }
3151
3152 same_lock_start = min_t(u64, loff, dst_loff);
3153 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3154 }
3155
3156 /* don't make the dst file partly checksummed */
3157 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3158 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3159 ret = -EINVAL;
3160 goto out_unlock;
3161 }
3162
3163 again:
3164 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3165 if (ret)
3166 goto out_unlock;
3167
3168 if (same_inode)
3169 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3170 false);
3171 else
3172 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3173 false);
3174 /*
3175 * If one of the inodes has dirty pages in the respective range or
3176 * ordered extents, we need to flush dellaloc and wait for all ordered
3177 * extents in the range. We must unlock the pages and the ranges in the
3178 * io trees to avoid deadlocks when flushing delalloc (requires locking
3179 * pages) and when waiting for ordered extents to complete (they require
3180 * range locking).
3181 */
3182 if (ret == -EAGAIN) {
3183 /*
3184 * Ranges in the io trees already unlocked. Now unlock all
3185 * pages before waiting for all IO to complete.
3186 */
3187 btrfs_cmp_data_free(&cmp);
3188 if (same_inode) {
3189 btrfs_wait_ordered_range(src, same_lock_start,
3190 same_lock_len);
3191 } else {
3192 btrfs_wait_ordered_range(src, loff, len);
3193 btrfs_wait_ordered_range(dst, dst_loff, len);
3194 }
3195 goto again;
3196 }
3197 ASSERT(ret == 0);
3198 if (WARN_ON(ret)) {
3199 /* ranges in the io trees already unlocked */
3200 btrfs_cmp_data_free(&cmp);
3201 return ret;
3202 }
3203
3204 /* pass original length for comparison so we stay within i_size */
3205 ret = btrfs_cmp_data(olen, &cmp);
3206 if (ret == 0)
3207 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3208
3209 if (same_inode)
3210 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3211 same_lock_start + same_lock_len - 1);
3212 else
3213 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3214
3215 btrfs_cmp_data_free(&cmp);
3216 out_unlock:
3217 if (same_inode)
3218 inode_unlock(src);
3219 else
3220 btrfs_double_inode_unlock(src, dst);
3221
3222 return ret;
3223 }
3224
3225 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3226
3227 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3228 struct file *dst_file, u64 dst_loff)
3229 {
3230 struct inode *src = file_inode(src_file);
3231 struct inode *dst = file_inode(dst_file);
3232 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3233 ssize_t res;
3234
3235 if (olen > BTRFS_MAX_DEDUPE_LEN)
3236 olen = BTRFS_MAX_DEDUPE_LEN;
3237
3238 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3239 /*
3240 * Btrfs does not support blocksize < page_size. As a
3241 * result, btrfs_cmp_data() won't correctly handle
3242 * this situation without an update.
3243 */
3244 return -EINVAL;
3245 }
3246
3247 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3248 if (res)
3249 return res;
3250 return olen;
3251 }
3252
3253 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3254 struct inode *inode,
3255 u64 endoff,
3256 const u64 destoff,
3257 const u64 olen,
3258 int no_time_update)
3259 {
3260 struct btrfs_root *root = BTRFS_I(inode)->root;
3261 int ret;
3262
3263 inode_inc_iversion(inode);
3264 if (!no_time_update)
3265 inode->i_mtime = inode->i_ctime = current_time(inode);
3266 /*
3267 * We round up to the block size at eof when determining which
3268 * extents to clone above, but shouldn't round up the file size.
3269 */
3270 if (endoff > destoff + olen)
3271 endoff = destoff + olen;
3272 if (endoff > inode->i_size)
3273 btrfs_i_size_write(BTRFS_I(inode), endoff);
3274
3275 ret = btrfs_update_inode(trans, root, inode);
3276 if (ret) {
3277 btrfs_abort_transaction(trans, ret);
3278 btrfs_end_transaction(trans);
3279 goto out;
3280 }
3281 ret = btrfs_end_transaction(trans);
3282 out:
3283 return ret;
3284 }
3285
3286 static void clone_update_extent_map(struct btrfs_inode *inode,
3287 const struct btrfs_trans_handle *trans,
3288 const struct btrfs_path *path,
3289 const u64 hole_offset,
3290 const u64 hole_len)
3291 {
3292 struct extent_map_tree *em_tree = &inode->extent_tree;
3293 struct extent_map *em;
3294 int ret;
3295
3296 em = alloc_extent_map();
3297 if (!em) {
3298 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3299 return;
3300 }
3301
3302 if (path) {
3303 struct btrfs_file_extent_item *fi;
3304
3305 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3306 struct btrfs_file_extent_item);
3307 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3308 em->generation = -1;
3309 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3310 BTRFS_FILE_EXTENT_INLINE)
3311 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3312 &inode->runtime_flags);
3313 } else {
3314 em->start = hole_offset;
3315 em->len = hole_len;
3316 em->ram_bytes = em->len;
3317 em->orig_start = hole_offset;
3318 em->block_start = EXTENT_MAP_HOLE;
3319 em->block_len = 0;
3320 em->orig_block_len = 0;
3321 em->compress_type = BTRFS_COMPRESS_NONE;
3322 em->generation = trans->transid;
3323 }
3324
3325 while (1) {
3326 write_lock(&em_tree->lock);
3327 ret = add_extent_mapping(em_tree, em, 1);
3328 write_unlock(&em_tree->lock);
3329 if (ret != -EEXIST) {
3330 free_extent_map(em);
3331 break;
3332 }
3333 btrfs_drop_extent_cache(inode, em->start,
3334 em->start + em->len - 1, 0);
3335 }
3336
3337 if (ret)
3338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3339 }
3340
3341 /*
3342 * Make sure we do not end up inserting an inline extent into a file that has
3343 * already other (non-inline) extents. If a file has an inline extent it can
3344 * not have any other extents and the (single) inline extent must start at the
3345 * file offset 0. Failing to respect these rules will lead to file corruption,
3346 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3347 *
3348 * We can have extents that have been already written to disk or we can have
3349 * dirty ranges still in delalloc, in which case the extent maps and items are
3350 * created only when we run delalloc, and the delalloc ranges might fall outside
3351 * the range we are currently locking in the inode's io tree. So we check the
3352 * inode's i_size because of that (i_size updates are done while holding the
3353 * i_mutex, which we are holding here).
3354 * We also check to see if the inode has a size not greater than "datal" but has
3355 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3356 * protected against such concurrent fallocate calls by the i_mutex).
3357 *
3358 * If the file has no extents but a size greater than datal, do not allow the
3359 * copy because we would need turn the inline extent into a non-inline one (even
3360 * with NO_HOLES enabled). If we find our destination inode only has one inline
3361 * extent, just overwrite it with the source inline extent if its size is less
3362 * than the source extent's size, or we could copy the source inline extent's
3363 * data into the destination inode's inline extent if the later is greater then
3364 * the former.
3365 */
3366 static int clone_copy_inline_extent(struct inode *dst,
3367 struct btrfs_trans_handle *trans,
3368 struct btrfs_path *path,
3369 struct btrfs_key *new_key,
3370 const u64 drop_start,
3371 const u64 datal,
3372 const u64 skip,
3373 const u64 size,
3374 char *inline_data)
3375 {
3376 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3377 struct btrfs_root *root = BTRFS_I(dst)->root;
3378 const u64 aligned_end = ALIGN(new_key->offset + datal,
3379 fs_info->sectorsize);
3380 int ret;
3381 struct btrfs_key key;
3382
3383 if (new_key->offset > 0)
3384 return -EOPNOTSUPP;
3385
3386 key.objectid = btrfs_ino(BTRFS_I(dst));
3387 key.type = BTRFS_EXTENT_DATA_KEY;
3388 key.offset = 0;
3389 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3390 if (ret < 0) {
3391 return ret;
3392 } else if (ret > 0) {
3393 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3394 ret = btrfs_next_leaf(root, path);
3395 if (ret < 0)
3396 return ret;
3397 else if (ret > 0)
3398 goto copy_inline_extent;
3399 }
3400 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3401 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3402 key.type == BTRFS_EXTENT_DATA_KEY) {
3403 ASSERT(key.offset > 0);
3404 return -EOPNOTSUPP;
3405 }
3406 } else if (i_size_read(dst) <= datal) {
3407 struct btrfs_file_extent_item *ei;
3408 u64 ext_len;
3409
3410 /*
3411 * If the file size is <= datal, make sure there are no other
3412 * extents following (can happen do to an fallocate call with
3413 * the flag FALLOC_FL_KEEP_SIZE).
3414 */
3415 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3416 struct btrfs_file_extent_item);
3417 /*
3418 * If it's an inline extent, it can not have other extents
3419 * following it.
3420 */
3421 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3422 BTRFS_FILE_EXTENT_INLINE)
3423 goto copy_inline_extent;
3424
3425 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3426 if (ext_len > aligned_end)
3427 return -EOPNOTSUPP;
3428
3429 ret = btrfs_next_item(root, path);
3430 if (ret < 0) {
3431 return ret;
3432 } else if (ret == 0) {
3433 btrfs_item_key_to_cpu(path->nodes[0], &key,
3434 path->slots[0]);
3435 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3436 key.type == BTRFS_EXTENT_DATA_KEY)
3437 return -EOPNOTSUPP;
3438 }
3439 }
3440
3441 copy_inline_extent:
3442 /*
3443 * We have no extent items, or we have an extent at offset 0 which may
3444 * or may not be inlined. All these cases are dealt the same way.
3445 */
3446 if (i_size_read(dst) > datal) {
3447 /*
3448 * If the destination inode has an inline extent...
3449 * This would require copying the data from the source inline
3450 * extent into the beginning of the destination's inline extent.
3451 * But this is really complex, both extents can be compressed
3452 * or just one of them, which would require decompressing and
3453 * re-compressing data (which could increase the new compressed
3454 * size, not allowing the compressed data to fit anymore in an
3455 * inline extent).
3456 * So just don't support this case for now (it should be rare,
3457 * we are not really saving space when cloning inline extents).
3458 */
3459 return -EOPNOTSUPP;
3460 }
3461
3462 btrfs_release_path(path);
3463 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3464 if (ret)
3465 return ret;
3466 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3467 if (ret)
3468 return ret;
3469
3470 if (skip) {
3471 const u32 start = btrfs_file_extent_calc_inline_size(0);
3472
3473 memmove(inline_data + start, inline_data + start + skip, datal);
3474 }
3475
3476 write_extent_buffer(path->nodes[0], inline_data,
3477 btrfs_item_ptr_offset(path->nodes[0],
3478 path->slots[0]),
3479 size);
3480 inode_add_bytes(dst, datal);
3481
3482 return 0;
3483 }
3484
3485 /**
3486 * btrfs_clone() - clone a range from inode file to another
3487 *
3488 * @src: Inode to clone from
3489 * @inode: Inode to clone to
3490 * @off: Offset within source to start clone from
3491 * @olen: Original length, passed by user, of range to clone
3492 * @olen_aligned: Block-aligned value of olen
3493 * @destoff: Offset within @inode to start clone
3494 * @no_time_update: Whether to update mtime/ctime on the target inode
3495 */
3496 static int btrfs_clone(struct inode *src, struct inode *inode,
3497 const u64 off, const u64 olen, const u64 olen_aligned,
3498 const u64 destoff, int no_time_update)
3499 {
3500 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3501 struct btrfs_root *root = BTRFS_I(inode)->root;
3502 struct btrfs_path *path = NULL;
3503 struct extent_buffer *leaf;
3504 struct btrfs_trans_handle *trans;
3505 char *buf = NULL;
3506 struct btrfs_key key;
3507 u32 nritems;
3508 int slot;
3509 int ret;
3510 const u64 len = olen_aligned;
3511 u64 last_dest_end = destoff;
3512
3513 ret = -ENOMEM;
3514 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3515 if (!buf)
3516 return ret;
3517
3518 path = btrfs_alloc_path();
3519 if (!path) {
3520 kvfree(buf);
3521 return ret;
3522 }
3523
3524 path->reada = READA_FORWARD;
3525 /* clone data */
3526 key.objectid = btrfs_ino(BTRFS_I(src));
3527 key.type = BTRFS_EXTENT_DATA_KEY;
3528 key.offset = off;
3529
3530 while (1) {
3531 u64 next_key_min_offset = key.offset + 1;
3532
3533 /*
3534 * note the key will change type as we walk through the
3535 * tree.
3536 */
3537 path->leave_spinning = 1;
3538 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3539 0, 0);
3540 if (ret < 0)
3541 goto out;
3542 /*
3543 * First search, if no extent item that starts at offset off was
3544 * found but the previous item is an extent item, it's possible
3545 * it might overlap our target range, therefore process it.
3546 */
3547 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3548 btrfs_item_key_to_cpu(path->nodes[0], &key,
3549 path->slots[0] - 1);
3550 if (key.type == BTRFS_EXTENT_DATA_KEY)
3551 path->slots[0]--;
3552 }
3553
3554 nritems = btrfs_header_nritems(path->nodes[0]);
3555 process_slot:
3556 if (path->slots[0] >= nritems) {
3557 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3558 if (ret < 0)
3559 goto out;
3560 if (ret > 0)
3561 break;
3562 nritems = btrfs_header_nritems(path->nodes[0]);
3563 }
3564 leaf = path->nodes[0];
3565 slot = path->slots[0];
3566
3567 btrfs_item_key_to_cpu(leaf, &key, slot);
3568 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3569 key.objectid != btrfs_ino(BTRFS_I(src)))
3570 break;
3571
3572 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3573 struct btrfs_file_extent_item *extent;
3574 int type;
3575 u32 size;
3576 struct btrfs_key new_key;
3577 u64 disko = 0, diskl = 0;
3578 u64 datao = 0, datal = 0;
3579 u8 comp;
3580 u64 drop_start;
3581
3582 extent = btrfs_item_ptr(leaf, slot,
3583 struct btrfs_file_extent_item);
3584 comp = btrfs_file_extent_compression(leaf, extent);
3585 type = btrfs_file_extent_type(leaf, extent);
3586 if (type == BTRFS_FILE_EXTENT_REG ||
3587 type == BTRFS_FILE_EXTENT_PREALLOC) {
3588 disko = btrfs_file_extent_disk_bytenr(leaf,
3589 extent);
3590 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3591 extent);
3592 datao = btrfs_file_extent_offset(leaf, extent);
3593 datal = btrfs_file_extent_num_bytes(leaf,
3594 extent);
3595 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3596 /* take upper bound, may be compressed */
3597 datal = btrfs_file_extent_ram_bytes(leaf,
3598 extent);
3599 }
3600
3601 /*
3602 * The first search might have left us at an extent
3603 * item that ends before our target range's start, can
3604 * happen if we have holes and NO_HOLES feature enabled.
3605 */
3606 if (key.offset + datal <= off) {
3607 path->slots[0]++;
3608 goto process_slot;
3609 } else if (key.offset >= off + len) {
3610 break;
3611 }
3612 next_key_min_offset = key.offset + datal;
3613 size = btrfs_item_size_nr(leaf, slot);
3614 read_extent_buffer(leaf, buf,
3615 btrfs_item_ptr_offset(leaf, slot),
3616 size);
3617
3618 btrfs_release_path(path);
3619 path->leave_spinning = 0;
3620
3621 memcpy(&new_key, &key, sizeof(new_key));
3622 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3623 if (off <= key.offset)
3624 new_key.offset = key.offset + destoff - off;
3625 else
3626 new_key.offset = destoff;
3627
3628 /*
3629 * Deal with a hole that doesn't have an extent item
3630 * that represents it (NO_HOLES feature enabled).
3631 * This hole is either in the middle of the cloning
3632 * range or at the beginning (fully overlaps it or
3633 * partially overlaps it).
3634 */
3635 if (new_key.offset != last_dest_end)
3636 drop_start = last_dest_end;
3637 else
3638 drop_start = new_key.offset;
3639
3640 /*
3641 * 1 - adjusting old extent (we may have to split it)
3642 * 1 - add new extent
3643 * 1 - inode update
3644 */
3645 trans = btrfs_start_transaction(root, 3);
3646 if (IS_ERR(trans)) {
3647 ret = PTR_ERR(trans);
3648 goto out;
3649 }
3650
3651 if (type == BTRFS_FILE_EXTENT_REG ||
3652 type == BTRFS_FILE_EXTENT_PREALLOC) {
3653 /*
3654 * a | --- range to clone ---| b
3655 * | ------------- extent ------------- |
3656 */
3657
3658 /* subtract range b */
3659 if (key.offset + datal > off + len)
3660 datal = off + len - key.offset;
3661
3662 /* subtract range a */
3663 if (off > key.offset) {
3664 datao += off - key.offset;
3665 datal -= off - key.offset;
3666 }
3667
3668 ret = btrfs_drop_extents(trans, root, inode,
3669 drop_start,
3670 new_key.offset + datal,
3671 1);
3672 if (ret) {
3673 if (ret != -EOPNOTSUPP)
3674 btrfs_abort_transaction(trans,
3675 ret);
3676 btrfs_end_transaction(trans);
3677 goto out;
3678 }
3679
3680 ret = btrfs_insert_empty_item(trans, root, path,
3681 &new_key, size);
3682 if (ret) {
3683 btrfs_abort_transaction(trans, ret);
3684 btrfs_end_transaction(trans);
3685 goto out;
3686 }
3687
3688 leaf = path->nodes[0];
3689 slot = path->slots[0];
3690 write_extent_buffer(leaf, buf,
3691 btrfs_item_ptr_offset(leaf, slot),
3692 size);
3693
3694 extent = btrfs_item_ptr(leaf, slot,
3695 struct btrfs_file_extent_item);
3696
3697 /* disko == 0 means it's a hole */
3698 if (!disko)
3699 datao = 0;
3700
3701 btrfs_set_file_extent_offset(leaf, extent,
3702 datao);
3703 btrfs_set_file_extent_num_bytes(leaf, extent,
3704 datal);
3705
3706 if (disko) {
3707 inode_add_bytes(inode, datal);
3708 ret = btrfs_inc_extent_ref(trans,
3709 fs_info,
3710 disko, diskl, 0,
3711 root->root_key.objectid,
3712 btrfs_ino(BTRFS_I(inode)),
3713 new_key.offset - datao);
3714 if (ret) {
3715 btrfs_abort_transaction(trans,
3716 ret);
3717 btrfs_end_transaction(trans);
3718 goto out;
3719
3720 }
3721 }
3722 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3723 u64 skip = 0;
3724 u64 trim = 0;
3725
3726 if (off > key.offset) {
3727 skip = off - key.offset;
3728 new_key.offset += skip;
3729 }
3730
3731 if (key.offset + datal > off + len)
3732 trim = key.offset + datal - (off + len);
3733
3734 if (comp && (skip || trim)) {
3735 ret = -EINVAL;
3736 btrfs_end_transaction(trans);
3737 goto out;
3738 }
3739 size -= skip + trim;
3740 datal -= skip + trim;
3741
3742 ret = clone_copy_inline_extent(inode,
3743 trans, path,
3744 &new_key,
3745 drop_start,
3746 datal,
3747 skip, size, buf);
3748 if (ret) {
3749 if (ret != -EOPNOTSUPP)
3750 btrfs_abort_transaction(trans,
3751 ret);
3752 btrfs_end_transaction(trans);
3753 goto out;
3754 }
3755 leaf = path->nodes[0];
3756 slot = path->slots[0];
3757 }
3758
3759 /* If we have an implicit hole (NO_HOLES feature). */
3760 if (drop_start < new_key.offset)
3761 clone_update_extent_map(BTRFS_I(inode), trans,
3762 NULL, drop_start,
3763 new_key.offset - drop_start);
3764
3765 clone_update_extent_map(BTRFS_I(inode), trans,
3766 path, 0, 0);
3767
3768 btrfs_mark_buffer_dirty(leaf);
3769 btrfs_release_path(path);
3770
3771 last_dest_end = ALIGN(new_key.offset + datal,
3772 fs_info->sectorsize);
3773 ret = clone_finish_inode_update(trans, inode,
3774 last_dest_end,
3775 destoff, olen,
3776 no_time_update);
3777 if (ret)
3778 goto out;
3779 if (new_key.offset + datal >= destoff + len)
3780 break;
3781 }
3782 btrfs_release_path(path);
3783 key.offset = next_key_min_offset;
3784
3785 if (fatal_signal_pending(current)) {
3786 ret = -EINTR;
3787 goto out;
3788 }
3789 }
3790 ret = 0;
3791
3792 if (last_dest_end < destoff + len) {
3793 /*
3794 * We have an implicit hole (NO_HOLES feature is enabled) that
3795 * fully or partially overlaps our cloning range at its end.
3796 */
3797 btrfs_release_path(path);
3798
3799 /*
3800 * 1 - remove extent(s)
3801 * 1 - inode update
3802 */
3803 trans = btrfs_start_transaction(root, 2);
3804 if (IS_ERR(trans)) {
3805 ret = PTR_ERR(trans);
3806 goto out;
3807 }
3808 ret = btrfs_drop_extents(trans, root, inode,
3809 last_dest_end, destoff + len, 1);
3810 if (ret) {
3811 if (ret != -EOPNOTSUPP)
3812 btrfs_abort_transaction(trans, ret);
3813 btrfs_end_transaction(trans);
3814 goto out;
3815 }
3816 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3817 last_dest_end,
3818 destoff + len - last_dest_end);
3819 ret = clone_finish_inode_update(trans, inode, destoff + len,
3820 destoff, olen, no_time_update);
3821 }
3822
3823 out:
3824 btrfs_free_path(path);
3825 kvfree(buf);
3826 return ret;
3827 }
3828
3829 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3830 u64 off, u64 olen, u64 destoff)
3831 {
3832 struct inode *inode = file_inode(file);
3833 struct inode *src = file_inode(file_src);
3834 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3835 struct btrfs_root *root = BTRFS_I(inode)->root;
3836 int ret;
3837 u64 len = olen;
3838 u64 bs = fs_info->sb->s_blocksize;
3839 int same_inode = src == inode;
3840
3841 /*
3842 * TODO:
3843 * - split compressed inline extents. annoying: we need to
3844 * decompress into destination's address_space (the file offset
3845 * may change, so source mapping won't do), then recompress (or
3846 * otherwise reinsert) a subrange.
3847 *
3848 * - split destination inode's inline extents. The inline extents can
3849 * be either compressed or non-compressed.
3850 */
3851
3852 if (btrfs_root_readonly(root))
3853 return -EROFS;
3854
3855 if (file_src->f_path.mnt != file->f_path.mnt ||
3856 src->i_sb != inode->i_sb)
3857 return -EXDEV;
3858
3859 /* don't make the dst file partly checksummed */
3860 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3861 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3862 return -EINVAL;
3863
3864 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3865 return -EISDIR;
3866
3867 if (!same_inode) {
3868 btrfs_double_inode_lock(src, inode);
3869 } else {
3870 inode_lock(src);
3871 }
3872
3873 /* determine range to clone */
3874 ret = -EINVAL;
3875 if (off + len > src->i_size || off + len < off)
3876 goto out_unlock;
3877 if (len == 0)
3878 olen = len = src->i_size - off;
3879 /* if we extend to eof, continue to block boundary */
3880 if (off + len == src->i_size)
3881 len = ALIGN(src->i_size, bs) - off;
3882
3883 if (len == 0) {
3884 ret = 0;
3885 goto out_unlock;
3886 }
3887
3888 /* verify the end result is block aligned */
3889 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3890 !IS_ALIGNED(destoff, bs))
3891 goto out_unlock;
3892
3893 /* verify if ranges are overlapped within the same file */
3894 if (same_inode) {
3895 if (destoff + len > off && destoff < off + len)
3896 goto out_unlock;
3897 }
3898
3899 if (destoff > inode->i_size) {
3900 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3901 if (ret)
3902 goto out_unlock;
3903 }
3904
3905 /*
3906 * Lock the target range too. Right after we replace the file extent
3907 * items in the fs tree (which now point to the cloned data), we might
3908 * have a worker replace them with extent items relative to a write
3909 * operation that was issued before this clone operation (i.e. confront
3910 * with inode.c:btrfs_finish_ordered_io).
3911 */
3912 if (same_inode) {
3913 u64 lock_start = min_t(u64, off, destoff);
3914 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3915
3916 ret = lock_extent_range(src, lock_start, lock_len, true);
3917 } else {
3918 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3919 true);
3920 }
3921 ASSERT(ret == 0);
3922 if (WARN_ON(ret)) {
3923 /* ranges in the io trees already unlocked */
3924 goto out_unlock;
3925 }
3926
3927 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3928
3929 if (same_inode) {
3930 u64 lock_start = min_t(u64, off, destoff);
3931 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3932
3933 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3934 } else {
3935 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3936 }
3937 /*
3938 * Truncate page cache pages so that future reads will see the cloned
3939 * data immediately and not the previous data.
3940 */
3941 truncate_inode_pages_range(&inode->i_data,
3942 round_down(destoff, PAGE_SIZE),
3943 round_up(destoff + len, PAGE_SIZE) - 1);
3944 out_unlock:
3945 if (!same_inode)
3946 btrfs_double_inode_unlock(src, inode);
3947 else
3948 inode_unlock(src);
3949 return ret;
3950 }
3951
3952 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3953 struct file *dst_file, loff_t destoff, u64 len)
3954 {
3955 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3956 }
3957
3958 /*
3959 * there are many ways the trans_start and trans_end ioctls can lead
3960 * to deadlocks. They should only be used by applications that
3961 * basically own the machine, and have a very in depth understanding
3962 * of all the possible deadlocks and enospc problems.
3963 */
3964 static long btrfs_ioctl_trans_start(struct file *file)
3965 {
3966 struct inode *inode = file_inode(file);
3967 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3968 struct btrfs_root *root = BTRFS_I(inode)->root;
3969 struct btrfs_trans_handle *trans;
3970 struct btrfs_file_private *private;
3971 int ret;
3972 static bool warned = false;
3973
3974 ret = -EPERM;
3975 if (!capable(CAP_SYS_ADMIN))
3976 goto out;
3977
3978 if (!warned) {
3979 btrfs_warn(fs_info,
3980 "Userspace transaction mechanism is considered "
3981 "deprecated and slated to be removed in 4.17. "
3982 "If you have a valid use case please "
3983 "speak up on the mailing list");
3984 WARN_ON(1);
3985 warned = true;
3986 }
3987
3988 ret = -EINPROGRESS;
3989 private = file->private_data;
3990 if (private && private->trans)
3991 goto out;
3992 if (!private) {
3993 private = kzalloc(sizeof(struct btrfs_file_private),
3994 GFP_KERNEL);
3995 if (!private)
3996 return -ENOMEM;
3997 file->private_data = private;
3998 }
3999
4000 ret = -EROFS;
4001 if (btrfs_root_readonly(root))
4002 goto out;
4003
4004 ret = mnt_want_write_file(file);
4005 if (ret)
4006 goto out;
4007
4008 atomic_inc(&fs_info->open_ioctl_trans);
4009
4010 ret = -ENOMEM;
4011 trans = btrfs_start_ioctl_transaction(root);
4012 if (IS_ERR(trans))
4013 goto out_drop;
4014
4015 private->trans = trans;
4016 return 0;
4017
4018 out_drop:
4019 atomic_dec(&fs_info->open_ioctl_trans);
4020 mnt_drop_write_file(file);
4021 out:
4022 return ret;
4023 }
4024
4025 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4026 {
4027 struct inode *inode = file_inode(file);
4028 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4029 struct btrfs_root *root = BTRFS_I(inode)->root;
4030 struct btrfs_root *new_root;
4031 struct btrfs_dir_item *di;
4032 struct btrfs_trans_handle *trans;
4033 struct btrfs_path *path;
4034 struct btrfs_key location;
4035 struct btrfs_disk_key disk_key;
4036 u64 objectid = 0;
4037 u64 dir_id;
4038 int ret;
4039
4040 if (!capable(CAP_SYS_ADMIN))
4041 return -EPERM;
4042
4043 ret = mnt_want_write_file(file);
4044 if (ret)
4045 return ret;
4046
4047 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4048 ret = -EFAULT;
4049 goto out;
4050 }
4051
4052 if (!objectid)
4053 objectid = BTRFS_FS_TREE_OBJECTID;
4054
4055 location.objectid = objectid;
4056 location.type = BTRFS_ROOT_ITEM_KEY;
4057 location.offset = (u64)-1;
4058
4059 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4060 if (IS_ERR(new_root)) {
4061 ret = PTR_ERR(new_root);
4062 goto out;
4063 }
4064
4065 path = btrfs_alloc_path();
4066 if (!path) {
4067 ret = -ENOMEM;
4068 goto out;
4069 }
4070 path->leave_spinning = 1;
4071
4072 trans = btrfs_start_transaction(root, 1);
4073 if (IS_ERR(trans)) {
4074 btrfs_free_path(path);
4075 ret = PTR_ERR(trans);
4076 goto out;
4077 }
4078
4079 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4080 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4081 dir_id, "default", 7, 1);
4082 if (IS_ERR_OR_NULL(di)) {
4083 btrfs_free_path(path);
4084 btrfs_end_transaction(trans);
4085 btrfs_err(fs_info,
4086 "Umm, you don't have the default diritem, this isn't going to work");
4087 ret = -ENOENT;
4088 goto out;
4089 }
4090
4091 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4092 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4093 btrfs_mark_buffer_dirty(path->nodes[0]);
4094 btrfs_free_path(path);
4095
4096 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4097 btrfs_end_transaction(trans);
4098 out:
4099 mnt_drop_write_file(file);
4100 return ret;
4101 }
4102
4103 void btrfs_get_block_group_info(struct list_head *groups_list,
4104 struct btrfs_ioctl_space_info *space)
4105 {
4106 struct btrfs_block_group_cache *block_group;
4107
4108 space->total_bytes = 0;
4109 space->used_bytes = 0;
4110 space->flags = 0;
4111 list_for_each_entry(block_group, groups_list, list) {
4112 space->flags = block_group->flags;
4113 space->total_bytes += block_group->key.offset;
4114 space->used_bytes +=
4115 btrfs_block_group_used(&block_group->item);
4116 }
4117 }
4118
4119 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4120 void __user *arg)
4121 {
4122 struct btrfs_ioctl_space_args space_args;
4123 struct btrfs_ioctl_space_info space;
4124 struct btrfs_ioctl_space_info *dest;
4125 struct btrfs_ioctl_space_info *dest_orig;
4126 struct btrfs_ioctl_space_info __user *user_dest;
4127 struct btrfs_space_info *info;
4128 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4129 BTRFS_BLOCK_GROUP_SYSTEM,
4130 BTRFS_BLOCK_GROUP_METADATA,
4131 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4132 int num_types = 4;
4133 int alloc_size;
4134 int ret = 0;
4135 u64 slot_count = 0;
4136 int i, c;
4137
4138 if (copy_from_user(&space_args,
4139 (struct btrfs_ioctl_space_args __user *)arg,
4140 sizeof(space_args)))
4141 return -EFAULT;
4142
4143 for (i = 0; i < num_types; i++) {
4144 struct btrfs_space_info *tmp;
4145
4146 info = NULL;
4147 rcu_read_lock();
4148 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4149 list) {
4150 if (tmp->flags == types[i]) {
4151 info = tmp;
4152 break;
4153 }
4154 }
4155 rcu_read_unlock();
4156
4157 if (!info)
4158 continue;
4159
4160 down_read(&info->groups_sem);
4161 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4162 if (!list_empty(&info->block_groups[c]))
4163 slot_count++;
4164 }
4165 up_read(&info->groups_sem);
4166 }
4167
4168 /*
4169 * Global block reserve, exported as a space_info
4170 */
4171 slot_count++;
4172
4173 /* space_slots == 0 means they are asking for a count */
4174 if (space_args.space_slots == 0) {
4175 space_args.total_spaces = slot_count;
4176 goto out;
4177 }
4178
4179 slot_count = min_t(u64, space_args.space_slots, slot_count);
4180
4181 alloc_size = sizeof(*dest) * slot_count;
4182
4183 /* we generally have at most 6 or so space infos, one for each raid
4184 * level. So, a whole page should be more than enough for everyone
4185 */
4186 if (alloc_size > PAGE_SIZE)
4187 return -ENOMEM;
4188
4189 space_args.total_spaces = 0;
4190 dest = kmalloc(alloc_size, GFP_KERNEL);
4191 if (!dest)
4192 return -ENOMEM;
4193 dest_orig = dest;
4194
4195 /* now we have a buffer to copy into */
4196 for (i = 0; i < num_types; i++) {
4197 struct btrfs_space_info *tmp;
4198
4199 if (!slot_count)
4200 break;
4201
4202 info = NULL;
4203 rcu_read_lock();
4204 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4205 list) {
4206 if (tmp->flags == types[i]) {
4207 info = tmp;
4208 break;
4209 }
4210 }
4211 rcu_read_unlock();
4212
4213 if (!info)
4214 continue;
4215 down_read(&info->groups_sem);
4216 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4217 if (!list_empty(&info->block_groups[c])) {
4218 btrfs_get_block_group_info(
4219 &info->block_groups[c], &space);
4220 memcpy(dest, &space, sizeof(space));
4221 dest++;
4222 space_args.total_spaces++;
4223 slot_count--;
4224 }
4225 if (!slot_count)
4226 break;
4227 }
4228 up_read(&info->groups_sem);
4229 }
4230
4231 /*
4232 * Add global block reserve
4233 */
4234 if (slot_count) {
4235 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4236
4237 spin_lock(&block_rsv->lock);
4238 space.total_bytes = block_rsv->size;
4239 space.used_bytes = block_rsv->size - block_rsv->reserved;
4240 spin_unlock(&block_rsv->lock);
4241 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4242 memcpy(dest, &space, sizeof(space));
4243 space_args.total_spaces++;
4244 }
4245
4246 user_dest = (struct btrfs_ioctl_space_info __user *)
4247 (arg + sizeof(struct btrfs_ioctl_space_args));
4248
4249 if (copy_to_user(user_dest, dest_orig, alloc_size))
4250 ret = -EFAULT;
4251
4252 kfree(dest_orig);
4253 out:
4254 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4255 ret = -EFAULT;
4256
4257 return ret;
4258 }
4259
4260 /*
4261 * there are many ways the trans_start and trans_end ioctls can lead
4262 * to deadlocks. They should only be used by applications that
4263 * basically own the machine, and have a very in depth understanding
4264 * of all the possible deadlocks and enospc problems.
4265 */
4266 long btrfs_ioctl_trans_end(struct file *file)
4267 {
4268 struct inode *inode = file_inode(file);
4269 struct btrfs_root *root = BTRFS_I(inode)->root;
4270 struct btrfs_file_private *private = file->private_data;
4271
4272 if (!private || !private->trans)
4273 return -EINVAL;
4274
4275 btrfs_end_transaction(private->trans);
4276 private->trans = NULL;
4277
4278 atomic_dec(&root->fs_info->open_ioctl_trans);
4279
4280 mnt_drop_write_file(file);
4281 return 0;
4282 }
4283
4284 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4285 void __user *argp)
4286 {
4287 struct btrfs_trans_handle *trans;
4288 u64 transid;
4289 int ret;
4290
4291 trans = btrfs_attach_transaction_barrier(root);
4292 if (IS_ERR(trans)) {
4293 if (PTR_ERR(trans) != -ENOENT)
4294 return PTR_ERR(trans);
4295
4296 /* No running transaction, don't bother */
4297 transid = root->fs_info->last_trans_committed;
4298 goto out;
4299 }
4300 transid = trans->transid;
4301 ret = btrfs_commit_transaction_async(trans, 0);
4302 if (ret) {
4303 btrfs_end_transaction(trans);
4304 return ret;
4305 }
4306 out:
4307 if (argp)
4308 if (copy_to_user(argp, &transid, sizeof(transid)))
4309 return -EFAULT;
4310 return 0;
4311 }
4312
4313 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4314 void __user *argp)
4315 {
4316 u64 transid;
4317
4318 if (argp) {
4319 if (copy_from_user(&transid, argp, sizeof(transid)))
4320 return -EFAULT;
4321 } else {
4322 transid = 0; /* current trans */
4323 }
4324 return btrfs_wait_for_commit(fs_info, transid);
4325 }
4326
4327 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4328 {
4329 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4330 struct btrfs_ioctl_scrub_args *sa;
4331 int ret;
4332
4333 if (!capable(CAP_SYS_ADMIN))
4334 return -EPERM;
4335
4336 sa = memdup_user(arg, sizeof(*sa));
4337 if (IS_ERR(sa))
4338 return PTR_ERR(sa);
4339
4340 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4341 ret = mnt_want_write_file(file);
4342 if (ret)
4343 goto out;
4344 }
4345
4346 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4347 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4348 0);
4349
4350 if (copy_to_user(arg, sa, sizeof(*sa)))
4351 ret = -EFAULT;
4352
4353 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4354 mnt_drop_write_file(file);
4355 out:
4356 kfree(sa);
4357 return ret;
4358 }
4359
4360 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4361 {
4362 if (!capable(CAP_SYS_ADMIN))
4363 return -EPERM;
4364
4365 return btrfs_scrub_cancel(fs_info);
4366 }
4367
4368 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4369 void __user *arg)
4370 {
4371 struct btrfs_ioctl_scrub_args *sa;
4372 int ret;
4373
4374 if (!capable(CAP_SYS_ADMIN))
4375 return -EPERM;
4376
4377 sa = memdup_user(arg, sizeof(*sa));
4378 if (IS_ERR(sa))
4379 return PTR_ERR(sa);
4380
4381 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4382
4383 if (copy_to_user(arg, sa, sizeof(*sa)))
4384 ret = -EFAULT;
4385
4386 kfree(sa);
4387 return ret;
4388 }
4389
4390 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4391 void __user *arg)
4392 {
4393 struct btrfs_ioctl_get_dev_stats *sa;
4394 int ret;
4395
4396 sa = memdup_user(arg, sizeof(*sa));
4397 if (IS_ERR(sa))
4398 return PTR_ERR(sa);
4399
4400 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4401 kfree(sa);
4402 return -EPERM;
4403 }
4404
4405 ret = btrfs_get_dev_stats(fs_info, sa);
4406
4407 if (copy_to_user(arg, sa, sizeof(*sa)))
4408 ret = -EFAULT;
4409
4410 kfree(sa);
4411 return ret;
4412 }
4413
4414 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4415 void __user *arg)
4416 {
4417 struct btrfs_ioctl_dev_replace_args *p;
4418 int ret;
4419
4420 if (!capable(CAP_SYS_ADMIN))
4421 return -EPERM;
4422
4423 p = memdup_user(arg, sizeof(*p));
4424 if (IS_ERR(p))
4425 return PTR_ERR(p);
4426
4427 switch (p->cmd) {
4428 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4429 if (sb_rdonly(fs_info->sb)) {
4430 ret = -EROFS;
4431 goto out;
4432 }
4433 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4434 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4435 } else {
4436 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4437 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4438 }
4439 break;
4440 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4441 btrfs_dev_replace_status(fs_info, p);
4442 ret = 0;
4443 break;
4444 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4445 ret = btrfs_dev_replace_cancel(fs_info, p);
4446 break;
4447 default:
4448 ret = -EINVAL;
4449 break;
4450 }
4451
4452 if (copy_to_user(arg, p, sizeof(*p)))
4453 ret = -EFAULT;
4454 out:
4455 kfree(p);
4456 return ret;
4457 }
4458
4459 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4460 {
4461 int ret = 0;
4462 int i;
4463 u64 rel_ptr;
4464 int size;
4465 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4466 struct inode_fs_paths *ipath = NULL;
4467 struct btrfs_path *path;
4468
4469 if (!capable(CAP_DAC_READ_SEARCH))
4470 return -EPERM;
4471
4472 path = btrfs_alloc_path();
4473 if (!path) {
4474 ret = -ENOMEM;
4475 goto out;
4476 }
4477
4478 ipa = memdup_user(arg, sizeof(*ipa));
4479 if (IS_ERR(ipa)) {
4480 ret = PTR_ERR(ipa);
4481 ipa = NULL;
4482 goto out;
4483 }
4484
4485 size = min_t(u32, ipa->size, 4096);
4486 ipath = init_ipath(size, root, path);
4487 if (IS_ERR(ipath)) {
4488 ret = PTR_ERR(ipath);
4489 ipath = NULL;
4490 goto out;
4491 }
4492
4493 ret = paths_from_inode(ipa->inum, ipath);
4494 if (ret < 0)
4495 goto out;
4496
4497 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4498 rel_ptr = ipath->fspath->val[i] -
4499 (u64)(unsigned long)ipath->fspath->val;
4500 ipath->fspath->val[i] = rel_ptr;
4501 }
4502
4503 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4504 (void *)(unsigned long)ipath->fspath, size);
4505 if (ret) {
4506 ret = -EFAULT;
4507 goto out;
4508 }
4509
4510 out:
4511 btrfs_free_path(path);
4512 free_ipath(ipath);
4513 kfree(ipa);
4514
4515 return ret;
4516 }
4517
4518 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4519 {
4520 struct btrfs_data_container *inodes = ctx;
4521 const size_t c = 3 * sizeof(u64);
4522
4523 if (inodes->bytes_left >= c) {
4524 inodes->bytes_left -= c;
4525 inodes->val[inodes->elem_cnt] = inum;
4526 inodes->val[inodes->elem_cnt + 1] = offset;
4527 inodes->val[inodes->elem_cnt + 2] = root;
4528 inodes->elem_cnt += 3;
4529 } else {
4530 inodes->bytes_missing += c - inodes->bytes_left;
4531 inodes->bytes_left = 0;
4532 inodes->elem_missed += 3;
4533 }
4534
4535 return 0;
4536 }
4537
4538 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4539 void __user *arg)
4540 {
4541 int ret = 0;
4542 int size;
4543 struct btrfs_ioctl_logical_ino_args *loi;
4544 struct btrfs_data_container *inodes = NULL;
4545 struct btrfs_path *path = NULL;
4546
4547 if (!capable(CAP_SYS_ADMIN))
4548 return -EPERM;
4549
4550 loi = memdup_user(arg, sizeof(*loi));
4551 if (IS_ERR(loi))
4552 return PTR_ERR(loi);
4553
4554 path = btrfs_alloc_path();
4555 if (!path) {
4556 ret = -ENOMEM;
4557 goto out;
4558 }
4559
4560 size = min_t(u32, loi->size, SZ_64K);
4561 inodes = init_data_container(size);
4562 if (IS_ERR(inodes)) {
4563 ret = PTR_ERR(inodes);
4564 inodes = NULL;
4565 goto out;
4566 }
4567
4568 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4569 build_ino_list, inodes);
4570 if (ret == -EINVAL)
4571 ret = -ENOENT;
4572 if (ret < 0)
4573 goto out;
4574
4575 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4576 (void *)(unsigned long)inodes, size);
4577 if (ret)
4578 ret = -EFAULT;
4579
4580 out:
4581 btrfs_free_path(path);
4582 kvfree(inodes);
4583 kfree(loi);
4584
4585 return ret;
4586 }
4587
4588 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4589 struct btrfs_ioctl_balance_args *bargs)
4590 {
4591 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4592
4593 bargs->flags = bctl->flags;
4594
4595 if (atomic_read(&fs_info->balance_running))
4596 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4597 if (atomic_read(&fs_info->balance_pause_req))
4598 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4599 if (atomic_read(&fs_info->balance_cancel_req))
4600 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4601
4602 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4603 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4604 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4605
4606 if (lock) {
4607 spin_lock(&fs_info->balance_lock);
4608 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4609 spin_unlock(&fs_info->balance_lock);
4610 } else {
4611 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4612 }
4613 }
4614
4615 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4616 {
4617 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4618 struct btrfs_fs_info *fs_info = root->fs_info;
4619 struct btrfs_ioctl_balance_args *bargs;
4620 struct btrfs_balance_control *bctl;
4621 bool need_unlock; /* for mut. excl. ops lock */
4622 int ret;
4623
4624 if (!capable(CAP_SYS_ADMIN))
4625 return -EPERM;
4626
4627 ret = mnt_want_write_file(file);
4628 if (ret)
4629 return ret;
4630
4631 again:
4632 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4633 mutex_lock(&fs_info->volume_mutex);
4634 mutex_lock(&fs_info->balance_mutex);
4635 need_unlock = true;
4636 goto locked;
4637 }
4638
4639 /*
4640 * mut. excl. ops lock is locked. Three possibilities:
4641 * (1) some other op is running
4642 * (2) balance is running
4643 * (3) balance is paused -- special case (think resume)
4644 */
4645 mutex_lock(&fs_info->balance_mutex);
4646 if (fs_info->balance_ctl) {
4647 /* this is either (2) or (3) */
4648 if (!atomic_read(&fs_info->balance_running)) {
4649 mutex_unlock(&fs_info->balance_mutex);
4650 if (!mutex_trylock(&fs_info->volume_mutex))
4651 goto again;
4652 mutex_lock(&fs_info->balance_mutex);
4653
4654 if (fs_info->balance_ctl &&
4655 !atomic_read(&fs_info->balance_running)) {
4656 /* this is (3) */
4657 need_unlock = false;
4658 goto locked;
4659 }
4660
4661 mutex_unlock(&fs_info->balance_mutex);
4662 mutex_unlock(&fs_info->volume_mutex);
4663 goto again;
4664 } else {
4665 /* this is (2) */
4666 mutex_unlock(&fs_info->balance_mutex);
4667 ret = -EINPROGRESS;
4668 goto out;
4669 }
4670 } else {
4671 /* this is (1) */
4672 mutex_unlock(&fs_info->balance_mutex);
4673 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4674 goto out;
4675 }
4676
4677 locked:
4678 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4679
4680 if (arg) {
4681 bargs = memdup_user(arg, sizeof(*bargs));
4682 if (IS_ERR(bargs)) {
4683 ret = PTR_ERR(bargs);
4684 goto out_unlock;
4685 }
4686
4687 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4688 if (!fs_info->balance_ctl) {
4689 ret = -ENOTCONN;
4690 goto out_bargs;
4691 }
4692
4693 bctl = fs_info->balance_ctl;
4694 spin_lock(&fs_info->balance_lock);
4695 bctl->flags |= BTRFS_BALANCE_RESUME;
4696 spin_unlock(&fs_info->balance_lock);
4697
4698 goto do_balance;
4699 }
4700 } else {
4701 bargs = NULL;
4702 }
4703
4704 if (fs_info->balance_ctl) {
4705 ret = -EINPROGRESS;
4706 goto out_bargs;
4707 }
4708
4709 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4710 if (!bctl) {
4711 ret = -ENOMEM;
4712 goto out_bargs;
4713 }
4714
4715 bctl->fs_info = fs_info;
4716 if (arg) {
4717 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4718 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4719 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4720
4721 bctl->flags = bargs->flags;
4722 } else {
4723 /* balance everything - no filters */
4724 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4725 }
4726
4727 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4728 ret = -EINVAL;
4729 goto out_bctl;
4730 }
4731
4732 do_balance:
4733 /*
4734 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4735 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4736 * or, if restriper was paused all the way until unmount, in
4737 * free_fs_info. The flag is cleared in __cancel_balance.
4738 */
4739 need_unlock = false;
4740
4741 ret = btrfs_balance(bctl, bargs);
4742 bctl = NULL;
4743
4744 if (arg) {
4745 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4746 ret = -EFAULT;
4747 }
4748
4749 out_bctl:
4750 kfree(bctl);
4751 out_bargs:
4752 kfree(bargs);
4753 out_unlock:
4754 mutex_unlock(&fs_info->balance_mutex);
4755 mutex_unlock(&fs_info->volume_mutex);
4756 if (need_unlock)
4757 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4758 out:
4759 mnt_drop_write_file(file);
4760 return ret;
4761 }
4762
4763 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4764 {
4765 if (!capable(CAP_SYS_ADMIN))
4766 return -EPERM;
4767
4768 switch (cmd) {
4769 case BTRFS_BALANCE_CTL_PAUSE:
4770 return btrfs_pause_balance(fs_info);
4771 case BTRFS_BALANCE_CTL_CANCEL:
4772 return btrfs_cancel_balance(fs_info);
4773 }
4774
4775 return -EINVAL;
4776 }
4777
4778 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4779 void __user *arg)
4780 {
4781 struct btrfs_ioctl_balance_args *bargs;
4782 int ret = 0;
4783
4784 if (!capable(CAP_SYS_ADMIN))
4785 return -EPERM;
4786
4787 mutex_lock(&fs_info->balance_mutex);
4788 if (!fs_info->balance_ctl) {
4789 ret = -ENOTCONN;
4790 goto out;
4791 }
4792
4793 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4794 if (!bargs) {
4795 ret = -ENOMEM;
4796 goto out;
4797 }
4798
4799 update_ioctl_balance_args(fs_info, 1, bargs);
4800
4801 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4802 ret = -EFAULT;
4803
4804 kfree(bargs);
4805 out:
4806 mutex_unlock(&fs_info->balance_mutex);
4807 return ret;
4808 }
4809
4810 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4811 {
4812 struct inode *inode = file_inode(file);
4813 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4814 struct btrfs_ioctl_quota_ctl_args *sa;
4815 struct btrfs_trans_handle *trans = NULL;
4816 int ret;
4817 int err;
4818
4819 if (!capable(CAP_SYS_ADMIN))
4820 return -EPERM;
4821
4822 ret = mnt_want_write_file(file);
4823 if (ret)
4824 return ret;
4825
4826 sa = memdup_user(arg, sizeof(*sa));
4827 if (IS_ERR(sa)) {
4828 ret = PTR_ERR(sa);
4829 goto drop_write;
4830 }
4831
4832 down_write(&fs_info->subvol_sem);
4833 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4834 if (IS_ERR(trans)) {
4835 ret = PTR_ERR(trans);
4836 goto out;
4837 }
4838
4839 switch (sa->cmd) {
4840 case BTRFS_QUOTA_CTL_ENABLE:
4841 ret = btrfs_quota_enable(trans, fs_info);
4842 break;
4843 case BTRFS_QUOTA_CTL_DISABLE:
4844 ret = btrfs_quota_disable(trans, fs_info);
4845 break;
4846 default:
4847 ret = -EINVAL;
4848 break;
4849 }
4850
4851 err = btrfs_commit_transaction(trans);
4852 if (err && !ret)
4853 ret = err;
4854 out:
4855 kfree(sa);
4856 up_write(&fs_info->subvol_sem);
4857 drop_write:
4858 mnt_drop_write_file(file);
4859 return ret;
4860 }
4861
4862 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4863 {
4864 struct inode *inode = file_inode(file);
4865 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4866 struct btrfs_root *root = BTRFS_I(inode)->root;
4867 struct btrfs_ioctl_qgroup_assign_args *sa;
4868 struct btrfs_trans_handle *trans;
4869 int ret;
4870 int err;
4871
4872 if (!capable(CAP_SYS_ADMIN))
4873 return -EPERM;
4874
4875 ret = mnt_want_write_file(file);
4876 if (ret)
4877 return ret;
4878
4879 sa = memdup_user(arg, sizeof(*sa));
4880 if (IS_ERR(sa)) {
4881 ret = PTR_ERR(sa);
4882 goto drop_write;
4883 }
4884
4885 trans = btrfs_join_transaction(root);
4886 if (IS_ERR(trans)) {
4887 ret = PTR_ERR(trans);
4888 goto out;
4889 }
4890
4891 if (sa->assign) {
4892 ret = btrfs_add_qgroup_relation(trans, fs_info,
4893 sa->src, sa->dst);
4894 } else {
4895 ret = btrfs_del_qgroup_relation(trans, fs_info,
4896 sa->src, sa->dst);
4897 }
4898
4899 /* update qgroup status and info */
4900 err = btrfs_run_qgroups(trans, fs_info);
4901 if (err < 0)
4902 btrfs_handle_fs_error(fs_info, err,
4903 "failed to update qgroup status and info");
4904 err = btrfs_end_transaction(trans);
4905 if (err && !ret)
4906 ret = err;
4907
4908 out:
4909 kfree(sa);
4910 drop_write:
4911 mnt_drop_write_file(file);
4912 return ret;
4913 }
4914
4915 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4916 {
4917 struct inode *inode = file_inode(file);
4918 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4919 struct btrfs_root *root = BTRFS_I(inode)->root;
4920 struct btrfs_ioctl_qgroup_create_args *sa;
4921 struct btrfs_trans_handle *trans;
4922 int ret;
4923 int err;
4924
4925 if (!capable(CAP_SYS_ADMIN))
4926 return -EPERM;
4927
4928 ret = mnt_want_write_file(file);
4929 if (ret)
4930 return ret;
4931
4932 sa = memdup_user(arg, sizeof(*sa));
4933 if (IS_ERR(sa)) {
4934 ret = PTR_ERR(sa);
4935 goto drop_write;
4936 }
4937
4938 if (!sa->qgroupid) {
4939 ret = -EINVAL;
4940 goto out;
4941 }
4942
4943 trans = btrfs_join_transaction(root);
4944 if (IS_ERR(trans)) {
4945 ret = PTR_ERR(trans);
4946 goto out;
4947 }
4948
4949 if (sa->create) {
4950 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4951 } else {
4952 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4953 }
4954
4955 err = btrfs_end_transaction(trans);
4956 if (err && !ret)
4957 ret = err;
4958
4959 out:
4960 kfree(sa);
4961 drop_write:
4962 mnt_drop_write_file(file);
4963 return ret;
4964 }
4965
4966 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4967 {
4968 struct inode *inode = file_inode(file);
4969 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4970 struct btrfs_root *root = BTRFS_I(inode)->root;
4971 struct btrfs_ioctl_qgroup_limit_args *sa;
4972 struct btrfs_trans_handle *trans;
4973 int ret;
4974 int err;
4975 u64 qgroupid;
4976
4977 if (!capable(CAP_SYS_ADMIN))
4978 return -EPERM;
4979
4980 ret = mnt_want_write_file(file);
4981 if (ret)
4982 return ret;
4983
4984 sa = memdup_user(arg, sizeof(*sa));
4985 if (IS_ERR(sa)) {
4986 ret = PTR_ERR(sa);
4987 goto drop_write;
4988 }
4989
4990 trans = btrfs_join_transaction(root);
4991 if (IS_ERR(trans)) {
4992 ret = PTR_ERR(trans);
4993 goto out;
4994 }
4995
4996 qgroupid = sa->qgroupid;
4997 if (!qgroupid) {
4998 /* take the current subvol as qgroup */
4999 qgroupid = root->root_key.objectid;
5000 }
5001
5002 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5003
5004 err = btrfs_end_transaction(trans);
5005 if (err && !ret)
5006 ret = err;
5007
5008 out:
5009 kfree(sa);
5010 drop_write:
5011 mnt_drop_write_file(file);
5012 return ret;
5013 }
5014
5015 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5016 {
5017 struct inode *inode = file_inode(file);
5018 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5019 struct btrfs_ioctl_quota_rescan_args *qsa;
5020 int ret;
5021
5022 if (!capable(CAP_SYS_ADMIN))
5023 return -EPERM;
5024
5025 ret = mnt_want_write_file(file);
5026 if (ret)
5027 return ret;
5028
5029 qsa = memdup_user(arg, sizeof(*qsa));
5030 if (IS_ERR(qsa)) {
5031 ret = PTR_ERR(qsa);
5032 goto drop_write;
5033 }
5034
5035 if (qsa->flags) {
5036 ret = -EINVAL;
5037 goto out;
5038 }
5039
5040 ret = btrfs_qgroup_rescan(fs_info);
5041
5042 out:
5043 kfree(qsa);
5044 drop_write:
5045 mnt_drop_write_file(file);
5046 return ret;
5047 }
5048
5049 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5050 {
5051 struct inode *inode = file_inode(file);
5052 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5053 struct btrfs_ioctl_quota_rescan_args *qsa;
5054 int ret = 0;
5055
5056 if (!capable(CAP_SYS_ADMIN))
5057 return -EPERM;
5058
5059 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5060 if (!qsa)
5061 return -ENOMEM;
5062
5063 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5064 qsa->flags = 1;
5065 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5066 }
5067
5068 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5069 ret = -EFAULT;
5070
5071 kfree(qsa);
5072 return ret;
5073 }
5074
5075 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5076 {
5077 struct inode *inode = file_inode(file);
5078 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5079
5080 if (!capable(CAP_SYS_ADMIN))
5081 return -EPERM;
5082
5083 return btrfs_qgroup_wait_for_completion(fs_info, true);
5084 }
5085
5086 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5087 struct btrfs_ioctl_received_subvol_args *sa)
5088 {
5089 struct inode *inode = file_inode(file);
5090 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5091 struct btrfs_root *root = BTRFS_I(inode)->root;
5092 struct btrfs_root_item *root_item = &root->root_item;
5093 struct btrfs_trans_handle *trans;
5094 struct timespec ct = current_time(inode);
5095 int ret = 0;
5096 int received_uuid_changed;
5097
5098 if (!inode_owner_or_capable(inode))
5099 return -EPERM;
5100
5101 ret = mnt_want_write_file(file);
5102 if (ret < 0)
5103 return ret;
5104
5105 down_write(&fs_info->subvol_sem);
5106
5107 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5108 ret = -EINVAL;
5109 goto out;
5110 }
5111
5112 if (btrfs_root_readonly(root)) {
5113 ret = -EROFS;
5114 goto out;
5115 }
5116
5117 /*
5118 * 1 - root item
5119 * 2 - uuid items (received uuid + subvol uuid)
5120 */
5121 trans = btrfs_start_transaction(root, 3);
5122 if (IS_ERR(trans)) {
5123 ret = PTR_ERR(trans);
5124 trans = NULL;
5125 goto out;
5126 }
5127
5128 sa->rtransid = trans->transid;
5129 sa->rtime.sec = ct.tv_sec;
5130 sa->rtime.nsec = ct.tv_nsec;
5131
5132 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5133 BTRFS_UUID_SIZE);
5134 if (received_uuid_changed &&
5135 !btrfs_is_empty_uuid(root_item->received_uuid))
5136 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5137 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5138 root->root_key.objectid);
5139 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5140 btrfs_set_root_stransid(root_item, sa->stransid);
5141 btrfs_set_root_rtransid(root_item, sa->rtransid);
5142 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5143 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5144 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5145 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5146
5147 ret = btrfs_update_root(trans, fs_info->tree_root,
5148 &root->root_key, &root->root_item);
5149 if (ret < 0) {
5150 btrfs_end_transaction(trans);
5151 goto out;
5152 }
5153 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5154 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5155 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5156 root->root_key.objectid);
5157 if (ret < 0 && ret != -EEXIST) {
5158 btrfs_abort_transaction(trans, ret);
5159 goto out;
5160 }
5161 }
5162 ret = btrfs_commit_transaction(trans);
5163 if (ret < 0) {
5164 btrfs_abort_transaction(trans, ret);
5165 goto out;
5166 }
5167
5168 out:
5169 up_write(&fs_info->subvol_sem);
5170 mnt_drop_write_file(file);
5171 return ret;
5172 }
5173
5174 #ifdef CONFIG_64BIT
5175 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5176 void __user *arg)
5177 {
5178 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5179 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5180 int ret = 0;
5181
5182 args32 = memdup_user(arg, sizeof(*args32));
5183 if (IS_ERR(args32))
5184 return PTR_ERR(args32);
5185
5186 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5187 if (!args64) {
5188 ret = -ENOMEM;
5189 goto out;
5190 }
5191
5192 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5193 args64->stransid = args32->stransid;
5194 args64->rtransid = args32->rtransid;
5195 args64->stime.sec = args32->stime.sec;
5196 args64->stime.nsec = args32->stime.nsec;
5197 args64->rtime.sec = args32->rtime.sec;
5198 args64->rtime.nsec = args32->rtime.nsec;
5199 args64->flags = args32->flags;
5200
5201 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5202 if (ret)
5203 goto out;
5204
5205 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5206 args32->stransid = args64->stransid;
5207 args32->rtransid = args64->rtransid;
5208 args32->stime.sec = args64->stime.sec;
5209 args32->stime.nsec = args64->stime.nsec;
5210 args32->rtime.sec = args64->rtime.sec;
5211 args32->rtime.nsec = args64->rtime.nsec;
5212 args32->flags = args64->flags;
5213
5214 ret = copy_to_user(arg, args32, sizeof(*args32));
5215 if (ret)
5216 ret = -EFAULT;
5217
5218 out:
5219 kfree(args32);
5220 kfree(args64);
5221 return ret;
5222 }
5223 #endif
5224
5225 static long btrfs_ioctl_set_received_subvol(struct file *file,
5226 void __user *arg)
5227 {
5228 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5229 int ret = 0;
5230
5231 sa = memdup_user(arg, sizeof(*sa));
5232 if (IS_ERR(sa))
5233 return PTR_ERR(sa);
5234
5235 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5236
5237 if (ret)
5238 goto out;
5239
5240 ret = copy_to_user(arg, sa, sizeof(*sa));
5241 if (ret)
5242 ret = -EFAULT;
5243
5244 out:
5245 kfree(sa);
5246 return ret;
5247 }
5248
5249 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5250 {
5251 struct inode *inode = file_inode(file);
5252 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5253 size_t len;
5254 int ret;
5255 char label[BTRFS_LABEL_SIZE];
5256
5257 spin_lock(&fs_info->super_lock);
5258 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5259 spin_unlock(&fs_info->super_lock);
5260
5261 len = strnlen(label, BTRFS_LABEL_SIZE);
5262
5263 if (len == BTRFS_LABEL_SIZE) {
5264 btrfs_warn(fs_info,
5265 "label is too long, return the first %zu bytes",
5266 --len);
5267 }
5268
5269 ret = copy_to_user(arg, label, len);
5270
5271 return ret ? -EFAULT : 0;
5272 }
5273
5274 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5275 {
5276 struct inode *inode = file_inode(file);
5277 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5278 struct btrfs_root *root = BTRFS_I(inode)->root;
5279 struct btrfs_super_block *super_block = fs_info->super_copy;
5280 struct btrfs_trans_handle *trans;
5281 char label[BTRFS_LABEL_SIZE];
5282 int ret;
5283
5284 if (!capable(CAP_SYS_ADMIN))
5285 return -EPERM;
5286
5287 if (copy_from_user(label, arg, sizeof(label)))
5288 return -EFAULT;
5289
5290 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5291 btrfs_err(fs_info,
5292 "unable to set label with more than %d bytes",
5293 BTRFS_LABEL_SIZE - 1);
5294 return -EINVAL;
5295 }
5296
5297 ret = mnt_want_write_file(file);
5298 if (ret)
5299 return ret;
5300
5301 trans = btrfs_start_transaction(root, 0);
5302 if (IS_ERR(trans)) {
5303 ret = PTR_ERR(trans);
5304 goto out_unlock;
5305 }
5306
5307 spin_lock(&fs_info->super_lock);
5308 strcpy(super_block->label, label);
5309 spin_unlock(&fs_info->super_lock);
5310 ret = btrfs_commit_transaction(trans);
5311
5312 out_unlock:
5313 mnt_drop_write_file(file);
5314 return ret;
5315 }
5316
5317 #define INIT_FEATURE_FLAGS(suffix) \
5318 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5319 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5320 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5321
5322 int btrfs_ioctl_get_supported_features(void __user *arg)
5323 {
5324 static const struct btrfs_ioctl_feature_flags features[3] = {
5325 INIT_FEATURE_FLAGS(SUPP),
5326 INIT_FEATURE_FLAGS(SAFE_SET),
5327 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5328 };
5329
5330 if (copy_to_user(arg, &features, sizeof(features)))
5331 return -EFAULT;
5332
5333 return 0;
5334 }
5335
5336 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5337 {
5338 struct inode *inode = file_inode(file);
5339 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5340 struct btrfs_super_block *super_block = fs_info->super_copy;
5341 struct btrfs_ioctl_feature_flags features;
5342
5343 features.compat_flags = btrfs_super_compat_flags(super_block);
5344 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5345 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5346
5347 if (copy_to_user(arg, &features, sizeof(features)))
5348 return -EFAULT;
5349
5350 return 0;
5351 }
5352
5353 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5354 enum btrfs_feature_set set,
5355 u64 change_mask, u64 flags, u64 supported_flags,
5356 u64 safe_set, u64 safe_clear)
5357 {
5358 const char *type = btrfs_feature_set_names[set];
5359 char *names;
5360 u64 disallowed, unsupported;
5361 u64 set_mask = flags & change_mask;
5362 u64 clear_mask = ~flags & change_mask;
5363
5364 unsupported = set_mask & ~supported_flags;
5365 if (unsupported) {
5366 names = btrfs_printable_features(set, unsupported);
5367 if (names) {
5368 btrfs_warn(fs_info,
5369 "this kernel does not support the %s feature bit%s",
5370 names, strchr(names, ',') ? "s" : "");
5371 kfree(names);
5372 } else
5373 btrfs_warn(fs_info,
5374 "this kernel does not support %s bits 0x%llx",
5375 type, unsupported);
5376 return -EOPNOTSUPP;
5377 }
5378
5379 disallowed = set_mask & ~safe_set;
5380 if (disallowed) {
5381 names = btrfs_printable_features(set, disallowed);
5382 if (names) {
5383 btrfs_warn(fs_info,
5384 "can't set the %s feature bit%s while mounted",
5385 names, strchr(names, ',') ? "s" : "");
5386 kfree(names);
5387 } else
5388 btrfs_warn(fs_info,
5389 "can't set %s bits 0x%llx while mounted",
5390 type, disallowed);
5391 return -EPERM;
5392 }
5393
5394 disallowed = clear_mask & ~safe_clear;
5395 if (disallowed) {
5396 names = btrfs_printable_features(set, disallowed);
5397 if (names) {
5398 btrfs_warn(fs_info,
5399 "can't clear the %s feature bit%s while mounted",
5400 names, strchr(names, ',') ? "s" : "");
5401 kfree(names);
5402 } else
5403 btrfs_warn(fs_info,
5404 "can't clear %s bits 0x%llx while mounted",
5405 type, disallowed);
5406 return -EPERM;
5407 }
5408
5409 return 0;
5410 }
5411
5412 #define check_feature(fs_info, change_mask, flags, mask_base) \
5413 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5414 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5415 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5416 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5417
5418 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5419 {
5420 struct inode *inode = file_inode(file);
5421 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5422 struct btrfs_root *root = BTRFS_I(inode)->root;
5423 struct btrfs_super_block *super_block = fs_info->super_copy;
5424 struct btrfs_ioctl_feature_flags flags[2];
5425 struct btrfs_trans_handle *trans;
5426 u64 newflags;
5427 int ret;
5428
5429 if (!capable(CAP_SYS_ADMIN))
5430 return -EPERM;
5431
5432 if (copy_from_user(flags, arg, sizeof(flags)))
5433 return -EFAULT;
5434
5435 /* Nothing to do */
5436 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5437 !flags[0].incompat_flags)
5438 return 0;
5439
5440 ret = check_feature(fs_info, flags[0].compat_flags,
5441 flags[1].compat_flags, COMPAT);
5442 if (ret)
5443 return ret;
5444
5445 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5446 flags[1].compat_ro_flags, COMPAT_RO);
5447 if (ret)
5448 return ret;
5449
5450 ret = check_feature(fs_info, flags[0].incompat_flags,
5451 flags[1].incompat_flags, INCOMPAT);
5452 if (ret)
5453 return ret;
5454
5455 ret = mnt_want_write_file(file);
5456 if (ret)
5457 return ret;
5458
5459 trans = btrfs_start_transaction(root, 0);
5460 if (IS_ERR(trans)) {
5461 ret = PTR_ERR(trans);
5462 goto out_drop_write;
5463 }
5464
5465 spin_lock(&fs_info->super_lock);
5466 newflags = btrfs_super_compat_flags(super_block);
5467 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5468 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5469 btrfs_set_super_compat_flags(super_block, newflags);
5470
5471 newflags = btrfs_super_compat_ro_flags(super_block);
5472 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5473 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5474 btrfs_set_super_compat_ro_flags(super_block, newflags);
5475
5476 newflags = btrfs_super_incompat_flags(super_block);
5477 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5478 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5479 btrfs_set_super_incompat_flags(super_block, newflags);
5480 spin_unlock(&fs_info->super_lock);
5481
5482 ret = btrfs_commit_transaction(trans);
5483 out_drop_write:
5484 mnt_drop_write_file(file);
5485
5486 return ret;
5487 }
5488
5489 long btrfs_ioctl(struct file *file, unsigned int
5490 cmd, unsigned long arg)
5491 {
5492 struct inode *inode = file_inode(file);
5493 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5494 struct btrfs_root *root = BTRFS_I(inode)->root;
5495 void __user *argp = (void __user *)arg;
5496
5497 switch (cmd) {
5498 case FS_IOC_GETFLAGS:
5499 return btrfs_ioctl_getflags(file, argp);
5500 case FS_IOC_SETFLAGS:
5501 return btrfs_ioctl_setflags(file, argp);
5502 case FS_IOC_GETVERSION:
5503 return btrfs_ioctl_getversion(file, argp);
5504 case FITRIM:
5505 return btrfs_ioctl_fitrim(file, argp);
5506 case BTRFS_IOC_SNAP_CREATE:
5507 return btrfs_ioctl_snap_create(file, argp, 0);
5508 case BTRFS_IOC_SNAP_CREATE_V2:
5509 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5510 case BTRFS_IOC_SUBVOL_CREATE:
5511 return btrfs_ioctl_snap_create(file, argp, 1);
5512 case BTRFS_IOC_SUBVOL_CREATE_V2:
5513 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5514 case BTRFS_IOC_SNAP_DESTROY:
5515 return btrfs_ioctl_snap_destroy(file, argp);
5516 case BTRFS_IOC_SUBVOL_GETFLAGS:
5517 return btrfs_ioctl_subvol_getflags(file, argp);
5518 case BTRFS_IOC_SUBVOL_SETFLAGS:
5519 return btrfs_ioctl_subvol_setflags(file, argp);
5520 case BTRFS_IOC_DEFAULT_SUBVOL:
5521 return btrfs_ioctl_default_subvol(file, argp);
5522 case BTRFS_IOC_DEFRAG:
5523 return btrfs_ioctl_defrag(file, NULL);
5524 case BTRFS_IOC_DEFRAG_RANGE:
5525 return btrfs_ioctl_defrag(file, argp);
5526 case BTRFS_IOC_RESIZE:
5527 return btrfs_ioctl_resize(file, argp);
5528 case BTRFS_IOC_ADD_DEV:
5529 return btrfs_ioctl_add_dev(fs_info, argp);
5530 case BTRFS_IOC_RM_DEV:
5531 return btrfs_ioctl_rm_dev(file, argp);
5532 case BTRFS_IOC_RM_DEV_V2:
5533 return btrfs_ioctl_rm_dev_v2(file, argp);
5534 case BTRFS_IOC_FS_INFO:
5535 return btrfs_ioctl_fs_info(fs_info, argp);
5536 case BTRFS_IOC_DEV_INFO:
5537 return btrfs_ioctl_dev_info(fs_info, argp);
5538 case BTRFS_IOC_BALANCE:
5539 return btrfs_ioctl_balance(file, NULL);
5540 case BTRFS_IOC_TRANS_START:
5541 return btrfs_ioctl_trans_start(file);
5542 case BTRFS_IOC_TRANS_END:
5543 return btrfs_ioctl_trans_end(file);
5544 case BTRFS_IOC_TREE_SEARCH:
5545 return btrfs_ioctl_tree_search(file, argp);
5546 case BTRFS_IOC_TREE_SEARCH_V2:
5547 return btrfs_ioctl_tree_search_v2(file, argp);
5548 case BTRFS_IOC_INO_LOOKUP:
5549 return btrfs_ioctl_ino_lookup(file, argp);
5550 case BTRFS_IOC_INO_PATHS:
5551 return btrfs_ioctl_ino_to_path(root, argp);
5552 case BTRFS_IOC_LOGICAL_INO:
5553 return btrfs_ioctl_logical_to_ino(fs_info, argp);
5554 case BTRFS_IOC_SPACE_INFO:
5555 return btrfs_ioctl_space_info(fs_info, argp);
5556 case BTRFS_IOC_SYNC: {
5557 int ret;
5558
5559 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5560 if (ret)
5561 return ret;
5562 ret = btrfs_sync_fs(inode->i_sb, 1);
5563 /*
5564 * The transaction thread may want to do more work,
5565 * namely it pokes the cleaner kthread that will start
5566 * processing uncleaned subvols.
5567 */
5568 wake_up_process(fs_info->transaction_kthread);
5569 return ret;
5570 }
5571 case BTRFS_IOC_START_SYNC:
5572 return btrfs_ioctl_start_sync(root, argp);
5573 case BTRFS_IOC_WAIT_SYNC:
5574 return btrfs_ioctl_wait_sync(fs_info, argp);
5575 case BTRFS_IOC_SCRUB:
5576 return btrfs_ioctl_scrub(file, argp);
5577 case BTRFS_IOC_SCRUB_CANCEL:
5578 return btrfs_ioctl_scrub_cancel(fs_info);
5579 case BTRFS_IOC_SCRUB_PROGRESS:
5580 return btrfs_ioctl_scrub_progress(fs_info, argp);
5581 case BTRFS_IOC_BALANCE_V2:
5582 return btrfs_ioctl_balance(file, argp);
5583 case BTRFS_IOC_BALANCE_CTL:
5584 return btrfs_ioctl_balance_ctl(fs_info, arg);
5585 case BTRFS_IOC_BALANCE_PROGRESS:
5586 return btrfs_ioctl_balance_progress(fs_info, argp);
5587 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5588 return btrfs_ioctl_set_received_subvol(file, argp);
5589 #ifdef CONFIG_64BIT
5590 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5591 return btrfs_ioctl_set_received_subvol_32(file, argp);
5592 #endif
5593 case BTRFS_IOC_SEND:
5594 return btrfs_ioctl_send(file, argp);
5595 case BTRFS_IOC_GET_DEV_STATS:
5596 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5597 case BTRFS_IOC_QUOTA_CTL:
5598 return btrfs_ioctl_quota_ctl(file, argp);
5599 case BTRFS_IOC_QGROUP_ASSIGN:
5600 return btrfs_ioctl_qgroup_assign(file, argp);
5601 case BTRFS_IOC_QGROUP_CREATE:
5602 return btrfs_ioctl_qgroup_create(file, argp);
5603 case BTRFS_IOC_QGROUP_LIMIT:
5604 return btrfs_ioctl_qgroup_limit(file, argp);
5605 case BTRFS_IOC_QUOTA_RESCAN:
5606 return btrfs_ioctl_quota_rescan(file, argp);
5607 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5608 return btrfs_ioctl_quota_rescan_status(file, argp);
5609 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5610 return btrfs_ioctl_quota_rescan_wait(file, argp);
5611 case BTRFS_IOC_DEV_REPLACE:
5612 return btrfs_ioctl_dev_replace(fs_info, argp);
5613 case BTRFS_IOC_GET_FSLABEL:
5614 return btrfs_ioctl_get_fslabel(file, argp);
5615 case BTRFS_IOC_SET_FSLABEL:
5616 return btrfs_ioctl_set_fslabel(file, argp);
5617 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5618 return btrfs_ioctl_get_supported_features(argp);
5619 case BTRFS_IOC_GET_FEATURES:
5620 return btrfs_ioctl_get_features(file, argp);
5621 case BTRFS_IOC_SET_FEATURES:
5622 return btrfs_ioctl_set_features(file, argp);
5623 }
5624
5625 return -ENOTTY;
5626 }
5627
5628 #ifdef CONFIG_COMPAT
5629 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5630 {
5631 /*
5632 * These all access 32-bit values anyway so no further
5633 * handling is necessary.
5634 */
5635 switch (cmd) {
5636 case FS_IOC32_GETFLAGS:
5637 cmd = FS_IOC_GETFLAGS;
5638 break;
5639 case FS_IOC32_SETFLAGS:
5640 cmd = FS_IOC_SETFLAGS;
5641 break;
5642 case FS_IOC32_GETVERSION:
5643 cmd = FS_IOC_GETVERSION;
5644 break;
5645 }
5646
5647 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5648 }
5649 #endif