]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/ioctl.c
Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55 #include "rcu-string.h"
56 #include "send.h"
57 #include "dev-replace.h"
58 #include "props.h"
59 #include "sysfs.h"
60 #include "qgroup.h"
61 #include "tree-log.h"
62 #include "compression.h"
63
64 #ifdef CONFIG_64BIT
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
69 */
70 struct btrfs_ioctl_timespec_32 {
71 __u64 sec;
72 __u32 nsec;
73 } __attribute__ ((__packed__));
74
75 struct btrfs_ioctl_received_subvol_args_32 {
76 char uuid[BTRFS_UUID_SIZE]; /* in */
77 __u64 stransid; /* in */
78 __u64 rtransid; /* out */
79 struct btrfs_ioctl_timespec_32 stime; /* in */
80 struct btrfs_ioctl_timespec_32 rtime; /* out */
81 __u64 flags; /* in */
82 __u64 reserved[16]; /* in */
83 } __attribute__ ((__packed__));
84
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
87 #endif
88
89
90 static int btrfs_clone(struct inode *src, struct inode *inode,
91 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
92 int no_time_update);
93
94 /* Mask out flags that are inappropriate for the given type of inode. */
95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
96 {
97 if (S_ISDIR(mode))
98 return flags;
99 else if (S_ISREG(mode))
100 return flags & ~FS_DIRSYNC_FL;
101 else
102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104
105 /*
106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107 */
108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
109 {
110 unsigned int iflags = 0;
111
112 if (flags & BTRFS_INODE_SYNC)
113 iflags |= FS_SYNC_FL;
114 if (flags & BTRFS_INODE_IMMUTABLE)
115 iflags |= FS_IMMUTABLE_FL;
116 if (flags & BTRFS_INODE_APPEND)
117 iflags |= FS_APPEND_FL;
118 if (flags & BTRFS_INODE_NODUMP)
119 iflags |= FS_NODUMP_FL;
120 if (flags & BTRFS_INODE_NOATIME)
121 iflags |= FS_NOATIME_FL;
122 if (flags & BTRFS_INODE_DIRSYNC)
123 iflags |= FS_DIRSYNC_FL;
124 if (flags & BTRFS_INODE_NODATACOW)
125 iflags |= FS_NOCOW_FL;
126
127 if (flags & BTRFS_INODE_NOCOMPRESS)
128 iflags |= FS_NOCOMP_FL;
129 else if (flags & BTRFS_INODE_COMPRESS)
130 iflags |= FS_COMPR_FL;
131
132 return iflags;
133 }
134
135 /*
136 * Update inode->i_flags based on the btrfs internal flags.
137 */
138 void btrfs_update_iflags(struct inode *inode)
139 {
140 struct btrfs_inode *ip = BTRFS_I(inode);
141 unsigned int new_fl = 0;
142
143 if (ip->flags & BTRFS_INODE_SYNC)
144 new_fl |= S_SYNC;
145 if (ip->flags & BTRFS_INODE_IMMUTABLE)
146 new_fl |= S_IMMUTABLE;
147 if (ip->flags & BTRFS_INODE_APPEND)
148 new_fl |= S_APPEND;
149 if (ip->flags & BTRFS_INODE_NOATIME)
150 new_fl |= S_NOATIME;
151 if (ip->flags & BTRFS_INODE_DIRSYNC)
152 new_fl |= S_DIRSYNC;
153
154 set_mask_bits(&inode->i_flags,
155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
156 new_fl);
157 }
158
159 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
160 {
161 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
162 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
163
164 if (copy_to_user(arg, &flags, sizeof(flags)))
165 return -EFAULT;
166 return 0;
167 }
168
169 static int check_flags(unsigned int flags)
170 {
171 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
172 FS_NOATIME_FL | FS_NODUMP_FL | \
173 FS_SYNC_FL | FS_DIRSYNC_FL | \
174 FS_NOCOMP_FL | FS_COMPR_FL |
175 FS_NOCOW_FL))
176 return -EOPNOTSUPP;
177
178 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
179 return -EINVAL;
180
181 return 0;
182 }
183
184 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
185 {
186 struct inode *inode = file_inode(file);
187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
188 struct btrfs_inode *ip = BTRFS_I(inode);
189 struct btrfs_root *root = ip->root;
190 struct btrfs_trans_handle *trans;
191 unsigned int flags, oldflags;
192 int ret;
193 u64 ip_oldflags;
194 unsigned int i_oldflags;
195 umode_t mode;
196
197 if (!inode_owner_or_capable(inode))
198 return -EPERM;
199
200 if (btrfs_root_readonly(root))
201 return -EROFS;
202
203 if (copy_from_user(&flags, arg, sizeof(flags)))
204 return -EFAULT;
205
206 ret = check_flags(flags);
207 if (ret)
208 return ret;
209
210 ret = mnt_want_write_file(file);
211 if (ret)
212 return ret;
213
214 inode_lock(inode);
215
216 ip_oldflags = ip->flags;
217 i_oldflags = inode->i_flags;
218 mode = inode->i_mode;
219
220 flags = btrfs_mask_flags(inode->i_mode, flags);
221 oldflags = btrfs_flags_to_ioctl(ip->flags);
222 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
223 if (!capable(CAP_LINUX_IMMUTABLE)) {
224 ret = -EPERM;
225 goto out_unlock;
226 }
227 }
228
229 if (flags & FS_SYNC_FL)
230 ip->flags |= BTRFS_INODE_SYNC;
231 else
232 ip->flags &= ~BTRFS_INODE_SYNC;
233 if (flags & FS_IMMUTABLE_FL)
234 ip->flags |= BTRFS_INODE_IMMUTABLE;
235 else
236 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
237 if (flags & FS_APPEND_FL)
238 ip->flags |= BTRFS_INODE_APPEND;
239 else
240 ip->flags &= ~BTRFS_INODE_APPEND;
241 if (flags & FS_NODUMP_FL)
242 ip->flags |= BTRFS_INODE_NODUMP;
243 else
244 ip->flags &= ~BTRFS_INODE_NODUMP;
245 if (flags & FS_NOATIME_FL)
246 ip->flags |= BTRFS_INODE_NOATIME;
247 else
248 ip->flags &= ~BTRFS_INODE_NOATIME;
249 if (flags & FS_DIRSYNC_FL)
250 ip->flags |= BTRFS_INODE_DIRSYNC;
251 else
252 ip->flags &= ~BTRFS_INODE_DIRSYNC;
253 if (flags & FS_NOCOW_FL) {
254 if (S_ISREG(mode)) {
255 /*
256 * It's safe to turn csums off here, no extents exist.
257 * Otherwise we want the flag to reflect the real COW
258 * status of the file and will not set it.
259 */
260 if (inode->i_size == 0)
261 ip->flags |= BTRFS_INODE_NODATACOW
262 | BTRFS_INODE_NODATASUM;
263 } else {
264 ip->flags |= BTRFS_INODE_NODATACOW;
265 }
266 } else {
267 /*
268 * Revert back under same assumptions as above
269 */
270 if (S_ISREG(mode)) {
271 if (inode->i_size == 0)
272 ip->flags &= ~(BTRFS_INODE_NODATACOW
273 | BTRFS_INODE_NODATASUM);
274 } else {
275 ip->flags &= ~BTRFS_INODE_NODATACOW;
276 }
277 }
278
279 /*
280 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
281 * flag may be changed automatically if compression code won't make
282 * things smaller.
283 */
284 if (flags & FS_NOCOMP_FL) {
285 ip->flags &= ~BTRFS_INODE_COMPRESS;
286 ip->flags |= BTRFS_INODE_NOCOMPRESS;
287
288 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
289 if (ret && ret != -ENODATA)
290 goto out_drop;
291 } else if (flags & FS_COMPR_FL) {
292 const char *comp;
293
294 ip->flags |= BTRFS_INODE_COMPRESS;
295 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
296
297 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
298 comp = "lzo";
299 else
300 comp = "zlib";
301 ret = btrfs_set_prop(inode, "btrfs.compression",
302 comp, strlen(comp), 0);
303 if (ret)
304 goto out_drop;
305
306 } else {
307 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
308 if (ret && ret != -ENODATA)
309 goto out_drop;
310 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
311 }
312
313 trans = btrfs_start_transaction(root, 1);
314 if (IS_ERR(trans)) {
315 ret = PTR_ERR(trans);
316 goto out_drop;
317 }
318
319 btrfs_update_iflags(inode);
320 inode_inc_iversion(inode);
321 inode->i_ctime = current_time(inode);
322 ret = btrfs_update_inode(trans, root, inode);
323
324 btrfs_end_transaction(trans);
325 out_drop:
326 if (ret) {
327 ip->flags = ip_oldflags;
328 inode->i_flags = i_oldflags;
329 }
330
331 out_unlock:
332 inode_unlock(inode);
333 mnt_drop_write_file(file);
334 return ret;
335 }
336
337 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
338 {
339 struct inode *inode = file_inode(file);
340
341 return put_user(inode->i_generation, arg);
342 }
343
344 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
345 {
346 struct inode *inode = file_inode(file);
347 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
348 struct btrfs_device *device;
349 struct request_queue *q;
350 struct fstrim_range range;
351 u64 minlen = ULLONG_MAX;
352 u64 num_devices = 0;
353 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
354 int ret;
355
356 if (!capable(CAP_SYS_ADMIN))
357 return -EPERM;
358
359 rcu_read_lock();
360 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
361 dev_list) {
362 if (!device->bdev)
363 continue;
364 q = bdev_get_queue(device->bdev);
365 if (blk_queue_discard(q)) {
366 num_devices++;
367 minlen = min_t(u64, q->limits.discard_granularity,
368 minlen);
369 }
370 }
371 rcu_read_unlock();
372
373 if (!num_devices)
374 return -EOPNOTSUPP;
375 if (copy_from_user(&range, arg, sizeof(range)))
376 return -EFAULT;
377 if (range.start > total_bytes ||
378 range.len < fs_info->sb->s_blocksize)
379 return -EINVAL;
380
381 range.len = min(range.len, total_bytes - range.start);
382 range.minlen = max(range.minlen, minlen);
383 ret = btrfs_trim_fs(fs_info, &range);
384 if (ret < 0)
385 return ret;
386
387 if (copy_to_user(arg, &range, sizeof(range)))
388 return -EFAULT;
389
390 return 0;
391 }
392
393 int btrfs_is_empty_uuid(u8 *uuid)
394 {
395 int i;
396
397 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
398 if (uuid[i])
399 return 0;
400 }
401 return 1;
402 }
403
404 static noinline int create_subvol(struct inode *dir,
405 struct dentry *dentry,
406 const char *name, int namelen,
407 u64 *async_transid,
408 struct btrfs_qgroup_inherit *inherit)
409 {
410 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
411 struct btrfs_trans_handle *trans;
412 struct btrfs_key key;
413 struct btrfs_root_item *root_item;
414 struct btrfs_inode_item *inode_item;
415 struct extent_buffer *leaf;
416 struct btrfs_root *root = BTRFS_I(dir)->root;
417 struct btrfs_root *new_root;
418 struct btrfs_block_rsv block_rsv;
419 struct timespec cur_time = current_time(dir);
420 struct inode *inode;
421 int ret;
422 int err;
423 u64 objectid;
424 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
425 u64 index = 0;
426 u64 qgroup_reserved;
427 uuid_le new_uuid;
428
429 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
430 if (!root_item)
431 return -ENOMEM;
432
433 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
434 if (ret)
435 goto fail_free;
436
437 /*
438 * Don't create subvolume whose level is not zero. Or qgroup will be
439 * screwed up since it assumes subvolume qgroup's level to be 0.
440 */
441 if (btrfs_qgroup_level(objectid)) {
442 ret = -ENOSPC;
443 goto fail_free;
444 }
445
446 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
447 /*
448 * The same as the snapshot creation, please see the comment
449 * of create_snapshot().
450 */
451 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
452 8, &qgroup_reserved, false);
453 if (ret)
454 goto fail_free;
455
456 trans = btrfs_start_transaction(root, 0);
457 if (IS_ERR(trans)) {
458 ret = PTR_ERR(trans);
459 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
460 goto fail_free;
461 }
462 trans->block_rsv = &block_rsv;
463 trans->bytes_reserved = block_rsv.size;
464
465 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
466 if (ret)
467 goto fail;
468
469 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
470 if (IS_ERR(leaf)) {
471 ret = PTR_ERR(leaf);
472 goto fail;
473 }
474
475 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
476 btrfs_set_header_bytenr(leaf, leaf->start);
477 btrfs_set_header_generation(leaf, trans->transid);
478 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
479 btrfs_set_header_owner(leaf, objectid);
480
481 write_extent_buffer_fsid(leaf, fs_info->fsid);
482 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
483 btrfs_mark_buffer_dirty(leaf);
484
485 inode_item = &root_item->inode;
486 btrfs_set_stack_inode_generation(inode_item, 1);
487 btrfs_set_stack_inode_size(inode_item, 3);
488 btrfs_set_stack_inode_nlink(inode_item, 1);
489 btrfs_set_stack_inode_nbytes(inode_item,
490 fs_info->nodesize);
491 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
492
493 btrfs_set_root_flags(root_item, 0);
494 btrfs_set_root_limit(root_item, 0);
495 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
496
497 btrfs_set_root_bytenr(root_item, leaf->start);
498 btrfs_set_root_generation(root_item, trans->transid);
499 btrfs_set_root_level(root_item, 0);
500 btrfs_set_root_refs(root_item, 1);
501 btrfs_set_root_used(root_item, leaf->len);
502 btrfs_set_root_last_snapshot(root_item, 0);
503
504 btrfs_set_root_generation_v2(root_item,
505 btrfs_root_generation(root_item));
506 uuid_le_gen(&new_uuid);
507 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
508 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
509 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
510 root_item->ctime = root_item->otime;
511 btrfs_set_root_ctransid(root_item, trans->transid);
512 btrfs_set_root_otransid(root_item, trans->transid);
513
514 btrfs_tree_unlock(leaf);
515 free_extent_buffer(leaf);
516 leaf = NULL;
517
518 btrfs_set_root_dirid(root_item, new_dirid);
519
520 key.objectid = objectid;
521 key.offset = 0;
522 key.type = BTRFS_ROOT_ITEM_KEY;
523 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
524 root_item);
525 if (ret)
526 goto fail;
527
528 key.offset = (u64)-1;
529 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
530 if (IS_ERR(new_root)) {
531 ret = PTR_ERR(new_root);
532 btrfs_abort_transaction(trans, ret);
533 goto fail;
534 }
535
536 btrfs_record_root_in_trans(trans, new_root);
537
538 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
539 if (ret) {
540 /* We potentially lose an unused inode item here */
541 btrfs_abort_transaction(trans, ret);
542 goto fail;
543 }
544
545 mutex_lock(&new_root->objectid_mutex);
546 new_root->highest_objectid = new_dirid;
547 mutex_unlock(&new_root->objectid_mutex);
548
549 /*
550 * insert the directory item
551 */
552 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
553 if (ret) {
554 btrfs_abort_transaction(trans, ret);
555 goto fail;
556 }
557
558 ret = btrfs_insert_dir_item(trans, root,
559 name, namelen, BTRFS_I(dir), &key,
560 BTRFS_FT_DIR, index);
561 if (ret) {
562 btrfs_abort_transaction(trans, ret);
563 goto fail;
564 }
565
566 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
567 ret = btrfs_update_inode(trans, root, dir);
568 BUG_ON(ret);
569
570 ret = btrfs_add_root_ref(trans, fs_info,
571 objectid, root->root_key.objectid,
572 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
573 BUG_ON(ret);
574
575 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
576 BTRFS_UUID_KEY_SUBVOL, objectid);
577 if (ret)
578 btrfs_abort_transaction(trans, ret);
579
580 fail:
581 kfree(root_item);
582 trans->block_rsv = NULL;
583 trans->bytes_reserved = 0;
584 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
585
586 if (async_transid) {
587 *async_transid = trans->transid;
588 err = btrfs_commit_transaction_async(trans, 1);
589 if (err)
590 err = btrfs_commit_transaction(trans);
591 } else {
592 err = btrfs_commit_transaction(trans);
593 }
594 if (err && !ret)
595 ret = err;
596
597 if (!ret) {
598 inode = btrfs_lookup_dentry(dir, dentry);
599 if (IS_ERR(inode))
600 return PTR_ERR(inode);
601 d_instantiate(dentry, inode);
602 }
603 return ret;
604
605 fail_free:
606 kfree(root_item);
607 return ret;
608 }
609
610 static void btrfs_wait_for_no_snapshotting_writes(struct btrfs_root *root)
611 {
612 s64 writers;
613 DEFINE_WAIT(wait);
614
615 do {
616 prepare_to_wait(&root->subv_writers->wait, &wait,
617 TASK_UNINTERRUPTIBLE);
618
619 writers = percpu_counter_sum(&root->subv_writers->counter);
620 if (writers)
621 schedule();
622
623 finish_wait(&root->subv_writers->wait, &wait);
624 } while (writers);
625 }
626
627 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
628 struct dentry *dentry,
629 u64 *async_transid, bool readonly,
630 struct btrfs_qgroup_inherit *inherit)
631 {
632 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
633 struct inode *inode;
634 struct btrfs_pending_snapshot *pending_snapshot;
635 struct btrfs_trans_handle *trans;
636 int ret;
637
638 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
639 return -EINVAL;
640
641 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
642 if (!pending_snapshot)
643 return -ENOMEM;
644
645 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
646 GFP_KERNEL);
647 pending_snapshot->path = btrfs_alloc_path();
648 if (!pending_snapshot->root_item || !pending_snapshot->path) {
649 ret = -ENOMEM;
650 goto free_pending;
651 }
652
653 atomic_inc(&root->will_be_snapshotted);
654 smp_mb__after_atomic();
655 btrfs_wait_for_no_snapshotting_writes(root);
656
657 ret = btrfs_start_delalloc_inodes(root, 0);
658 if (ret)
659 goto dec_and_free;
660
661 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
662
663 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
664 BTRFS_BLOCK_RSV_TEMP);
665 /*
666 * 1 - parent dir inode
667 * 2 - dir entries
668 * 1 - root item
669 * 2 - root ref/backref
670 * 1 - root of snapshot
671 * 1 - UUID item
672 */
673 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
674 &pending_snapshot->block_rsv, 8,
675 &pending_snapshot->qgroup_reserved,
676 false);
677 if (ret)
678 goto dec_and_free;
679
680 pending_snapshot->dentry = dentry;
681 pending_snapshot->root = root;
682 pending_snapshot->readonly = readonly;
683 pending_snapshot->dir = dir;
684 pending_snapshot->inherit = inherit;
685
686 trans = btrfs_start_transaction(root, 0);
687 if (IS_ERR(trans)) {
688 ret = PTR_ERR(trans);
689 goto fail;
690 }
691
692 spin_lock(&fs_info->trans_lock);
693 list_add(&pending_snapshot->list,
694 &trans->transaction->pending_snapshots);
695 spin_unlock(&fs_info->trans_lock);
696 if (async_transid) {
697 *async_transid = trans->transid;
698 ret = btrfs_commit_transaction_async(trans, 1);
699 if (ret)
700 ret = btrfs_commit_transaction(trans);
701 } else {
702 ret = btrfs_commit_transaction(trans);
703 }
704 if (ret)
705 goto fail;
706
707 ret = pending_snapshot->error;
708 if (ret)
709 goto fail;
710
711 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
712 if (ret)
713 goto fail;
714
715 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
716 if (IS_ERR(inode)) {
717 ret = PTR_ERR(inode);
718 goto fail;
719 }
720
721 d_instantiate(dentry, inode);
722 ret = 0;
723 fail:
724 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
725 dec_and_free:
726 if (atomic_dec_and_test(&root->will_be_snapshotted))
727 wake_up_atomic_t(&root->will_be_snapshotted);
728 free_pending:
729 kfree(pending_snapshot->root_item);
730 btrfs_free_path(pending_snapshot->path);
731 kfree(pending_snapshot);
732
733 return ret;
734 }
735
736 /* copy of may_delete in fs/namei.c()
737 * Check whether we can remove a link victim from directory dir, check
738 * whether the type of victim is right.
739 * 1. We can't do it if dir is read-only (done in permission())
740 * 2. We should have write and exec permissions on dir
741 * 3. We can't remove anything from append-only dir
742 * 4. We can't do anything with immutable dir (done in permission())
743 * 5. If the sticky bit on dir is set we should either
744 * a. be owner of dir, or
745 * b. be owner of victim, or
746 * c. have CAP_FOWNER capability
747 * 6. If the victim is append-only or immutable we can't do anything with
748 * links pointing to it.
749 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
750 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
751 * 9. We can't remove a root or mountpoint.
752 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
753 * nfs_async_unlink().
754 */
755
756 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
757 {
758 int error;
759
760 if (d_really_is_negative(victim))
761 return -ENOENT;
762
763 BUG_ON(d_inode(victim->d_parent) != dir);
764 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
765
766 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
767 if (error)
768 return error;
769 if (IS_APPEND(dir))
770 return -EPERM;
771 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
772 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
773 return -EPERM;
774 if (isdir) {
775 if (!d_is_dir(victim))
776 return -ENOTDIR;
777 if (IS_ROOT(victim))
778 return -EBUSY;
779 } else if (d_is_dir(victim))
780 return -EISDIR;
781 if (IS_DEADDIR(dir))
782 return -ENOENT;
783 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
784 return -EBUSY;
785 return 0;
786 }
787
788 /* copy of may_create in fs/namei.c() */
789 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
790 {
791 if (d_really_is_positive(child))
792 return -EEXIST;
793 if (IS_DEADDIR(dir))
794 return -ENOENT;
795 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
796 }
797
798 /*
799 * Create a new subvolume below @parent. This is largely modeled after
800 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
801 * inside this filesystem so it's quite a bit simpler.
802 */
803 static noinline int btrfs_mksubvol(const struct path *parent,
804 const char *name, int namelen,
805 struct btrfs_root *snap_src,
806 u64 *async_transid, bool readonly,
807 struct btrfs_qgroup_inherit *inherit)
808 {
809 struct inode *dir = d_inode(parent->dentry);
810 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
811 struct dentry *dentry;
812 int error;
813
814 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
815 if (error == -EINTR)
816 return error;
817
818 dentry = lookup_one_len(name, parent->dentry, namelen);
819 error = PTR_ERR(dentry);
820 if (IS_ERR(dentry))
821 goto out_unlock;
822
823 error = btrfs_may_create(dir, dentry);
824 if (error)
825 goto out_dput;
826
827 /*
828 * even if this name doesn't exist, we may get hash collisions.
829 * check for them now when we can safely fail
830 */
831 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
832 dir->i_ino, name,
833 namelen);
834 if (error)
835 goto out_dput;
836
837 down_read(&fs_info->subvol_sem);
838
839 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
840 goto out_up_read;
841
842 if (snap_src) {
843 error = create_snapshot(snap_src, dir, dentry,
844 async_transid, readonly, inherit);
845 } else {
846 error = create_subvol(dir, dentry, name, namelen,
847 async_transid, inherit);
848 }
849 if (!error)
850 fsnotify_mkdir(dir, dentry);
851 out_up_read:
852 up_read(&fs_info->subvol_sem);
853 out_dput:
854 dput(dentry);
855 out_unlock:
856 inode_unlock(dir);
857 return error;
858 }
859
860 /*
861 * When we're defragging a range, we don't want to kick it off again
862 * if it is really just waiting for delalloc to send it down.
863 * If we find a nice big extent or delalloc range for the bytes in the
864 * file you want to defrag, we return 0 to let you know to skip this
865 * part of the file
866 */
867 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
868 {
869 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
870 struct extent_map *em = NULL;
871 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
872 u64 end;
873
874 read_lock(&em_tree->lock);
875 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
876 read_unlock(&em_tree->lock);
877
878 if (em) {
879 end = extent_map_end(em);
880 free_extent_map(em);
881 if (end - offset > thresh)
882 return 0;
883 }
884 /* if we already have a nice delalloc here, just stop */
885 thresh /= 2;
886 end = count_range_bits(io_tree, &offset, offset + thresh,
887 thresh, EXTENT_DELALLOC, 1);
888 if (end >= thresh)
889 return 0;
890 return 1;
891 }
892
893 /*
894 * helper function to walk through a file and find extents
895 * newer than a specific transid, and smaller than thresh.
896 *
897 * This is used by the defragging code to find new and small
898 * extents
899 */
900 static int find_new_extents(struct btrfs_root *root,
901 struct inode *inode, u64 newer_than,
902 u64 *off, u32 thresh)
903 {
904 struct btrfs_path *path;
905 struct btrfs_key min_key;
906 struct extent_buffer *leaf;
907 struct btrfs_file_extent_item *extent;
908 int type;
909 int ret;
910 u64 ino = btrfs_ino(BTRFS_I(inode));
911
912 path = btrfs_alloc_path();
913 if (!path)
914 return -ENOMEM;
915
916 min_key.objectid = ino;
917 min_key.type = BTRFS_EXTENT_DATA_KEY;
918 min_key.offset = *off;
919
920 while (1) {
921 ret = btrfs_search_forward(root, &min_key, path, newer_than);
922 if (ret != 0)
923 goto none;
924 process_slot:
925 if (min_key.objectid != ino)
926 goto none;
927 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
928 goto none;
929
930 leaf = path->nodes[0];
931 extent = btrfs_item_ptr(leaf, path->slots[0],
932 struct btrfs_file_extent_item);
933
934 type = btrfs_file_extent_type(leaf, extent);
935 if (type == BTRFS_FILE_EXTENT_REG &&
936 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
937 check_defrag_in_cache(inode, min_key.offset, thresh)) {
938 *off = min_key.offset;
939 btrfs_free_path(path);
940 return 0;
941 }
942
943 path->slots[0]++;
944 if (path->slots[0] < btrfs_header_nritems(leaf)) {
945 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
946 goto process_slot;
947 }
948
949 if (min_key.offset == (u64)-1)
950 goto none;
951
952 min_key.offset++;
953 btrfs_release_path(path);
954 }
955 none:
956 btrfs_free_path(path);
957 return -ENOENT;
958 }
959
960 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
961 {
962 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
963 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
964 struct extent_map *em;
965 u64 len = PAGE_SIZE;
966
967 /*
968 * hopefully we have this extent in the tree already, try without
969 * the full extent lock
970 */
971 read_lock(&em_tree->lock);
972 em = lookup_extent_mapping(em_tree, start, len);
973 read_unlock(&em_tree->lock);
974
975 if (!em) {
976 struct extent_state *cached = NULL;
977 u64 end = start + len - 1;
978
979 /* get the big lock and read metadata off disk */
980 lock_extent_bits(io_tree, start, end, &cached);
981 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
982 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
983
984 if (IS_ERR(em))
985 return NULL;
986 }
987
988 return em;
989 }
990
991 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
992 {
993 struct extent_map *next;
994 bool ret = true;
995
996 /* this is the last extent */
997 if (em->start + em->len >= i_size_read(inode))
998 return false;
999
1000 next = defrag_lookup_extent(inode, em->start + em->len);
1001 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1002 ret = false;
1003 else if ((em->block_start + em->block_len == next->block_start) &&
1004 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1005 ret = false;
1006
1007 free_extent_map(next);
1008 return ret;
1009 }
1010
1011 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1012 u64 *last_len, u64 *skip, u64 *defrag_end,
1013 int compress)
1014 {
1015 struct extent_map *em;
1016 int ret = 1;
1017 bool next_mergeable = true;
1018 bool prev_mergeable = true;
1019
1020 /*
1021 * make sure that once we start defragging an extent, we keep on
1022 * defragging it
1023 */
1024 if (start < *defrag_end)
1025 return 1;
1026
1027 *skip = 0;
1028
1029 em = defrag_lookup_extent(inode, start);
1030 if (!em)
1031 return 0;
1032
1033 /* this will cover holes, and inline extents */
1034 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1035 ret = 0;
1036 goto out;
1037 }
1038
1039 if (!*defrag_end)
1040 prev_mergeable = false;
1041
1042 next_mergeable = defrag_check_next_extent(inode, em);
1043 /*
1044 * we hit a real extent, if it is big or the next extent is not a
1045 * real extent, don't bother defragging it
1046 */
1047 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1048 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1049 ret = 0;
1050 out:
1051 /*
1052 * last_len ends up being a counter of how many bytes we've defragged.
1053 * every time we choose not to defrag an extent, we reset *last_len
1054 * so that the next tiny extent will force a defrag.
1055 *
1056 * The end result of this is that tiny extents before a single big
1057 * extent will force at least part of that big extent to be defragged.
1058 */
1059 if (ret) {
1060 *defrag_end = extent_map_end(em);
1061 } else {
1062 *last_len = 0;
1063 *skip = extent_map_end(em);
1064 *defrag_end = 0;
1065 }
1066
1067 free_extent_map(em);
1068 return ret;
1069 }
1070
1071 /*
1072 * it doesn't do much good to defrag one or two pages
1073 * at a time. This pulls in a nice chunk of pages
1074 * to COW and defrag.
1075 *
1076 * It also makes sure the delalloc code has enough
1077 * dirty data to avoid making new small extents as part
1078 * of the defrag
1079 *
1080 * It's a good idea to start RA on this range
1081 * before calling this.
1082 */
1083 static int cluster_pages_for_defrag(struct inode *inode,
1084 struct page **pages,
1085 unsigned long start_index,
1086 unsigned long num_pages)
1087 {
1088 unsigned long file_end;
1089 u64 isize = i_size_read(inode);
1090 u64 page_start;
1091 u64 page_end;
1092 u64 page_cnt;
1093 int ret;
1094 int i;
1095 int i_done;
1096 struct btrfs_ordered_extent *ordered;
1097 struct extent_state *cached_state = NULL;
1098 struct extent_io_tree *tree;
1099 struct extent_changeset *data_reserved = NULL;
1100 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1101
1102 file_end = (isize - 1) >> PAGE_SHIFT;
1103 if (!isize || start_index > file_end)
1104 return 0;
1105
1106 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1107
1108 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1109 start_index << PAGE_SHIFT,
1110 page_cnt << PAGE_SHIFT);
1111 if (ret)
1112 return ret;
1113 i_done = 0;
1114 tree = &BTRFS_I(inode)->io_tree;
1115
1116 /* step one, lock all the pages */
1117 for (i = 0; i < page_cnt; i++) {
1118 struct page *page;
1119 again:
1120 page = find_or_create_page(inode->i_mapping,
1121 start_index + i, mask);
1122 if (!page)
1123 break;
1124
1125 page_start = page_offset(page);
1126 page_end = page_start + PAGE_SIZE - 1;
1127 while (1) {
1128 lock_extent_bits(tree, page_start, page_end,
1129 &cached_state);
1130 ordered = btrfs_lookup_ordered_extent(inode,
1131 page_start);
1132 unlock_extent_cached(tree, page_start, page_end,
1133 &cached_state, GFP_NOFS);
1134 if (!ordered)
1135 break;
1136
1137 unlock_page(page);
1138 btrfs_start_ordered_extent(inode, ordered, 1);
1139 btrfs_put_ordered_extent(ordered);
1140 lock_page(page);
1141 /*
1142 * we unlocked the page above, so we need check if
1143 * it was released or not.
1144 */
1145 if (page->mapping != inode->i_mapping) {
1146 unlock_page(page);
1147 put_page(page);
1148 goto again;
1149 }
1150 }
1151
1152 if (!PageUptodate(page)) {
1153 btrfs_readpage(NULL, page);
1154 lock_page(page);
1155 if (!PageUptodate(page)) {
1156 unlock_page(page);
1157 put_page(page);
1158 ret = -EIO;
1159 break;
1160 }
1161 }
1162
1163 if (page->mapping != inode->i_mapping) {
1164 unlock_page(page);
1165 put_page(page);
1166 goto again;
1167 }
1168
1169 pages[i] = page;
1170 i_done++;
1171 }
1172 if (!i_done || ret)
1173 goto out;
1174
1175 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1176 goto out;
1177
1178 /*
1179 * so now we have a nice long stream of locked
1180 * and up to date pages, lets wait on them
1181 */
1182 for (i = 0; i < i_done; i++)
1183 wait_on_page_writeback(pages[i]);
1184
1185 page_start = page_offset(pages[0]);
1186 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1187
1188 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1189 page_start, page_end - 1, &cached_state);
1190 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1191 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1192 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1193 &cached_state, GFP_NOFS);
1194
1195 if (i_done != page_cnt) {
1196 spin_lock(&BTRFS_I(inode)->lock);
1197 BTRFS_I(inode)->outstanding_extents++;
1198 spin_unlock(&BTRFS_I(inode)->lock);
1199 btrfs_delalloc_release_space(inode, data_reserved,
1200 start_index << PAGE_SHIFT,
1201 (page_cnt - i_done) << PAGE_SHIFT);
1202 }
1203
1204
1205 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1206 &cached_state);
1207
1208 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1209 page_start, page_end - 1, &cached_state,
1210 GFP_NOFS);
1211
1212 for (i = 0; i < i_done; i++) {
1213 clear_page_dirty_for_io(pages[i]);
1214 ClearPageChecked(pages[i]);
1215 set_page_extent_mapped(pages[i]);
1216 set_page_dirty(pages[i]);
1217 unlock_page(pages[i]);
1218 put_page(pages[i]);
1219 }
1220 extent_changeset_free(data_reserved);
1221 return i_done;
1222 out:
1223 for (i = 0; i < i_done; i++) {
1224 unlock_page(pages[i]);
1225 put_page(pages[i]);
1226 }
1227 btrfs_delalloc_release_space(inode, data_reserved,
1228 start_index << PAGE_SHIFT,
1229 page_cnt << PAGE_SHIFT);
1230 extent_changeset_free(data_reserved);
1231 return ret;
1232
1233 }
1234
1235 int btrfs_defrag_file(struct inode *inode, struct file *file,
1236 struct btrfs_ioctl_defrag_range_args *range,
1237 u64 newer_than, unsigned long max_to_defrag)
1238 {
1239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1240 struct btrfs_root *root = BTRFS_I(inode)->root;
1241 struct file_ra_state *ra = NULL;
1242 unsigned long last_index;
1243 u64 isize = i_size_read(inode);
1244 u64 last_len = 0;
1245 u64 skip = 0;
1246 u64 defrag_end = 0;
1247 u64 newer_off = range->start;
1248 unsigned long i;
1249 unsigned long ra_index = 0;
1250 int ret;
1251 int defrag_count = 0;
1252 int compress_type = BTRFS_COMPRESS_ZLIB;
1253 u32 extent_thresh = range->extent_thresh;
1254 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1255 unsigned long cluster = max_cluster;
1256 u64 new_align = ~((u64)SZ_128K - 1);
1257 struct page **pages = NULL;
1258 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1259
1260 if (isize == 0)
1261 return 0;
1262
1263 if (range->start >= isize)
1264 return -EINVAL;
1265
1266 if (do_compress) {
1267 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1268 return -EINVAL;
1269 if (range->compress_type)
1270 compress_type = range->compress_type;
1271 }
1272
1273 if (extent_thresh == 0)
1274 extent_thresh = SZ_256K;
1275
1276 /*
1277 * If we were not given a file, allocate a readahead context. As
1278 * readahead is just an optimization, defrag will work without it so
1279 * we don't error out.
1280 */
1281 if (!file) {
1282 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1283 if (ra)
1284 file_ra_state_init(ra, inode->i_mapping);
1285 } else {
1286 ra = &file->f_ra;
1287 }
1288
1289 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1290 if (!pages) {
1291 ret = -ENOMEM;
1292 goto out_ra;
1293 }
1294
1295 /* find the last page to defrag */
1296 if (range->start + range->len > range->start) {
1297 last_index = min_t(u64, isize - 1,
1298 range->start + range->len - 1) >> PAGE_SHIFT;
1299 } else {
1300 last_index = (isize - 1) >> PAGE_SHIFT;
1301 }
1302
1303 if (newer_than) {
1304 ret = find_new_extents(root, inode, newer_than,
1305 &newer_off, SZ_64K);
1306 if (!ret) {
1307 range->start = newer_off;
1308 /*
1309 * we always align our defrag to help keep
1310 * the extents in the file evenly spaced
1311 */
1312 i = (newer_off & new_align) >> PAGE_SHIFT;
1313 } else
1314 goto out_ra;
1315 } else {
1316 i = range->start >> PAGE_SHIFT;
1317 }
1318 if (!max_to_defrag)
1319 max_to_defrag = last_index - i + 1;
1320
1321 /*
1322 * make writeback starts from i, so the defrag range can be
1323 * written sequentially.
1324 */
1325 if (i < inode->i_mapping->writeback_index)
1326 inode->i_mapping->writeback_index = i;
1327
1328 while (i <= last_index && defrag_count < max_to_defrag &&
1329 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1330 /*
1331 * make sure we stop running if someone unmounts
1332 * the FS
1333 */
1334 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1335 break;
1336
1337 if (btrfs_defrag_cancelled(fs_info)) {
1338 btrfs_debug(fs_info, "defrag_file cancelled");
1339 ret = -EAGAIN;
1340 break;
1341 }
1342
1343 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1344 extent_thresh, &last_len, &skip,
1345 &defrag_end, do_compress)){
1346 unsigned long next;
1347 /*
1348 * the should_defrag function tells us how much to skip
1349 * bump our counter by the suggested amount
1350 */
1351 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1352 i = max(i + 1, next);
1353 continue;
1354 }
1355
1356 if (!newer_than) {
1357 cluster = (PAGE_ALIGN(defrag_end) >>
1358 PAGE_SHIFT) - i;
1359 cluster = min(cluster, max_cluster);
1360 } else {
1361 cluster = max_cluster;
1362 }
1363
1364 if (i + cluster > ra_index) {
1365 ra_index = max(i, ra_index);
1366 if (ra)
1367 page_cache_sync_readahead(inode->i_mapping, ra,
1368 file, ra_index, cluster);
1369 ra_index += cluster;
1370 }
1371
1372 inode_lock(inode);
1373 if (do_compress)
1374 BTRFS_I(inode)->defrag_compress = compress_type;
1375 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1376 if (ret < 0) {
1377 inode_unlock(inode);
1378 goto out_ra;
1379 }
1380
1381 defrag_count += ret;
1382 balance_dirty_pages_ratelimited(inode->i_mapping);
1383 inode_unlock(inode);
1384
1385 if (newer_than) {
1386 if (newer_off == (u64)-1)
1387 break;
1388
1389 if (ret > 0)
1390 i += ret;
1391
1392 newer_off = max(newer_off + 1,
1393 (u64)i << PAGE_SHIFT);
1394
1395 ret = find_new_extents(root, inode, newer_than,
1396 &newer_off, SZ_64K);
1397 if (!ret) {
1398 range->start = newer_off;
1399 i = (newer_off & new_align) >> PAGE_SHIFT;
1400 } else {
1401 break;
1402 }
1403 } else {
1404 if (ret > 0) {
1405 i += ret;
1406 last_len += ret << PAGE_SHIFT;
1407 } else {
1408 i++;
1409 last_len = 0;
1410 }
1411 }
1412 }
1413
1414 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1415 filemap_flush(inode->i_mapping);
1416 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1417 &BTRFS_I(inode)->runtime_flags))
1418 filemap_flush(inode->i_mapping);
1419 }
1420
1421 if (do_compress) {
1422 /* the filemap_flush will queue IO into the worker threads, but
1423 * we have to make sure the IO is actually started and that
1424 * ordered extents get created before we return
1425 */
1426 atomic_inc(&fs_info->async_submit_draining);
1427 while (atomic_read(&fs_info->nr_async_submits) ||
1428 atomic_read(&fs_info->async_delalloc_pages)) {
1429 wait_event(fs_info->async_submit_wait,
1430 (atomic_read(&fs_info->nr_async_submits) == 0 &&
1431 atomic_read(&fs_info->async_delalloc_pages) == 0));
1432 }
1433 atomic_dec(&fs_info->async_submit_draining);
1434 }
1435
1436 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1437 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1438 }
1439
1440 ret = defrag_count;
1441
1442 out_ra:
1443 if (do_compress) {
1444 inode_lock(inode);
1445 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1446 inode_unlock(inode);
1447 }
1448 if (!file)
1449 kfree(ra);
1450 kfree(pages);
1451 return ret;
1452 }
1453
1454 static noinline int btrfs_ioctl_resize(struct file *file,
1455 void __user *arg)
1456 {
1457 struct inode *inode = file_inode(file);
1458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1459 u64 new_size;
1460 u64 old_size;
1461 u64 devid = 1;
1462 struct btrfs_root *root = BTRFS_I(inode)->root;
1463 struct btrfs_ioctl_vol_args *vol_args;
1464 struct btrfs_trans_handle *trans;
1465 struct btrfs_device *device = NULL;
1466 char *sizestr;
1467 char *retptr;
1468 char *devstr = NULL;
1469 int ret = 0;
1470 int mod = 0;
1471
1472 if (!capable(CAP_SYS_ADMIN))
1473 return -EPERM;
1474
1475 ret = mnt_want_write_file(file);
1476 if (ret)
1477 return ret;
1478
1479 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1480 mnt_drop_write_file(file);
1481 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1482 }
1483
1484 mutex_lock(&fs_info->volume_mutex);
1485 vol_args = memdup_user(arg, sizeof(*vol_args));
1486 if (IS_ERR(vol_args)) {
1487 ret = PTR_ERR(vol_args);
1488 goto out;
1489 }
1490
1491 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1492
1493 sizestr = vol_args->name;
1494 devstr = strchr(sizestr, ':');
1495 if (devstr) {
1496 sizestr = devstr + 1;
1497 *devstr = '\0';
1498 devstr = vol_args->name;
1499 ret = kstrtoull(devstr, 10, &devid);
1500 if (ret)
1501 goto out_free;
1502 if (!devid) {
1503 ret = -EINVAL;
1504 goto out_free;
1505 }
1506 btrfs_info(fs_info, "resizing devid %llu", devid);
1507 }
1508
1509 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1510 if (!device) {
1511 btrfs_info(fs_info, "resizer unable to find device %llu",
1512 devid);
1513 ret = -ENODEV;
1514 goto out_free;
1515 }
1516
1517 if (!device->writeable) {
1518 btrfs_info(fs_info,
1519 "resizer unable to apply on readonly device %llu",
1520 devid);
1521 ret = -EPERM;
1522 goto out_free;
1523 }
1524
1525 if (!strcmp(sizestr, "max"))
1526 new_size = device->bdev->bd_inode->i_size;
1527 else {
1528 if (sizestr[0] == '-') {
1529 mod = -1;
1530 sizestr++;
1531 } else if (sizestr[0] == '+') {
1532 mod = 1;
1533 sizestr++;
1534 }
1535 new_size = memparse(sizestr, &retptr);
1536 if (*retptr != '\0' || new_size == 0) {
1537 ret = -EINVAL;
1538 goto out_free;
1539 }
1540 }
1541
1542 if (device->is_tgtdev_for_dev_replace) {
1543 ret = -EPERM;
1544 goto out_free;
1545 }
1546
1547 old_size = btrfs_device_get_total_bytes(device);
1548
1549 if (mod < 0) {
1550 if (new_size > old_size) {
1551 ret = -EINVAL;
1552 goto out_free;
1553 }
1554 new_size = old_size - new_size;
1555 } else if (mod > 0) {
1556 if (new_size > ULLONG_MAX - old_size) {
1557 ret = -ERANGE;
1558 goto out_free;
1559 }
1560 new_size = old_size + new_size;
1561 }
1562
1563 if (new_size < SZ_256M) {
1564 ret = -EINVAL;
1565 goto out_free;
1566 }
1567 if (new_size > device->bdev->bd_inode->i_size) {
1568 ret = -EFBIG;
1569 goto out_free;
1570 }
1571
1572 new_size = round_down(new_size, fs_info->sectorsize);
1573
1574 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1575 rcu_str_deref(device->name), new_size);
1576
1577 if (new_size > old_size) {
1578 trans = btrfs_start_transaction(root, 0);
1579 if (IS_ERR(trans)) {
1580 ret = PTR_ERR(trans);
1581 goto out_free;
1582 }
1583 ret = btrfs_grow_device(trans, device, new_size);
1584 btrfs_commit_transaction(trans);
1585 } else if (new_size < old_size) {
1586 ret = btrfs_shrink_device(device, new_size);
1587 } /* equal, nothing need to do */
1588
1589 out_free:
1590 kfree(vol_args);
1591 out:
1592 mutex_unlock(&fs_info->volume_mutex);
1593 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1594 mnt_drop_write_file(file);
1595 return ret;
1596 }
1597
1598 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1599 const char *name, unsigned long fd, int subvol,
1600 u64 *transid, bool readonly,
1601 struct btrfs_qgroup_inherit *inherit)
1602 {
1603 int namelen;
1604 int ret = 0;
1605
1606 if (!S_ISDIR(file_inode(file)->i_mode))
1607 return -ENOTDIR;
1608
1609 ret = mnt_want_write_file(file);
1610 if (ret)
1611 goto out;
1612
1613 namelen = strlen(name);
1614 if (strchr(name, '/')) {
1615 ret = -EINVAL;
1616 goto out_drop_write;
1617 }
1618
1619 if (name[0] == '.' &&
1620 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1621 ret = -EEXIST;
1622 goto out_drop_write;
1623 }
1624
1625 if (subvol) {
1626 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1627 NULL, transid, readonly, inherit);
1628 } else {
1629 struct fd src = fdget(fd);
1630 struct inode *src_inode;
1631 if (!src.file) {
1632 ret = -EINVAL;
1633 goto out_drop_write;
1634 }
1635
1636 src_inode = file_inode(src.file);
1637 if (src_inode->i_sb != file_inode(file)->i_sb) {
1638 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1639 "Snapshot src from another FS");
1640 ret = -EXDEV;
1641 } else if (!inode_owner_or_capable(src_inode)) {
1642 /*
1643 * Subvolume creation is not restricted, but snapshots
1644 * are limited to own subvolumes only
1645 */
1646 ret = -EPERM;
1647 } else {
1648 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1649 BTRFS_I(src_inode)->root,
1650 transid, readonly, inherit);
1651 }
1652 fdput(src);
1653 }
1654 out_drop_write:
1655 mnt_drop_write_file(file);
1656 out:
1657 return ret;
1658 }
1659
1660 static noinline int btrfs_ioctl_snap_create(struct file *file,
1661 void __user *arg, int subvol)
1662 {
1663 struct btrfs_ioctl_vol_args *vol_args;
1664 int ret;
1665
1666 if (!S_ISDIR(file_inode(file)->i_mode))
1667 return -ENOTDIR;
1668
1669 vol_args = memdup_user(arg, sizeof(*vol_args));
1670 if (IS_ERR(vol_args))
1671 return PTR_ERR(vol_args);
1672 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1673
1674 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1675 vol_args->fd, subvol,
1676 NULL, false, NULL);
1677
1678 kfree(vol_args);
1679 return ret;
1680 }
1681
1682 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1683 void __user *arg, int subvol)
1684 {
1685 struct btrfs_ioctl_vol_args_v2 *vol_args;
1686 int ret;
1687 u64 transid = 0;
1688 u64 *ptr = NULL;
1689 bool readonly = false;
1690 struct btrfs_qgroup_inherit *inherit = NULL;
1691
1692 if (!S_ISDIR(file_inode(file)->i_mode))
1693 return -ENOTDIR;
1694
1695 vol_args = memdup_user(arg, sizeof(*vol_args));
1696 if (IS_ERR(vol_args))
1697 return PTR_ERR(vol_args);
1698 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1699
1700 if (vol_args->flags &
1701 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1702 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1703 ret = -EOPNOTSUPP;
1704 goto free_args;
1705 }
1706
1707 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1708 ptr = &transid;
1709 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1710 readonly = true;
1711 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1712 if (vol_args->size > PAGE_SIZE) {
1713 ret = -EINVAL;
1714 goto free_args;
1715 }
1716 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1717 if (IS_ERR(inherit)) {
1718 ret = PTR_ERR(inherit);
1719 goto free_args;
1720 }
1721 }
1722
1723 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1724 vol_args->fd, subvol, ptr,
1725 readonly, inherit);
1726 if (ret)
1727 goto free_inherit;
1728
1729 if (ptr && copy_to_user(arg +
1730 offsetof(struct btrfs_ioctl_vol_args_v2,
1731 transid),
1732 ptr, sizeof(*ptr)))
1733 ret = -EFAULT;
1734
1735 free_inherit:
1736 kfree(inherit);
1737 free_args:
1738 kfree(vol_args);
1739 return ret;
1740 }
1741
1742 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1743 void __user *arg)
1744 {
1745 struct inode *inode = file_inode(file);
1746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1747 struct btrfs_root *root = BTRFS_I(inode)->root;
1748 int ret = 0;
1749 u64 flags = 0;
1750
1751 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1752 return -EINVAL;
1753
1754 down_read(&fs_info->subvol_sem);
1755 if (btrfs_root_readonly(root))
1756 flags |= BTRFS_SUBVOL_RDONLY;
1757 up_read(&fs_info->subvol_sem);
1758
1759 if (copy_to_user(arg, &flags, sizeof(flags)))
1760 ret = -EFAULT;
1761
1762 return ret;
1763 }
1764
1765 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1766 void __user *arg)
1767 {
1768 struct inode *inode = file_inode(file);
1769 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1770 struct btrfs_root *root = BTRFS_I(inode)->root;
1771 struct btrfs_trans_handle *trans;
1772 u64 root_flags;
1773 u64 flags;
1774 int ret = 0;
1775
1776 if (!inode_owner_or_capable(inode))
1777 return -EPERM;
1778
1779 ret = mnt_want_write_file(file);
1780 if (ret)
1781 goto out;
1782
1783 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1784 ret = -EINVAL;
1785 goto out_drop_write;
1786 }
1787
1788 if (copy_from_user(&flags, arg, sizeof(flags))) {
1789 ret = -EFAULT;
1790 goto out_drop_write;
1791 }
1792
1793 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1794 ret = -EINVAL;
1795 goto out_drop_write;
1796 }
1797
1798 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1799 ret = -EOPNOTSUPP;
1800 goto out_drop_write;
1801 }
1802
1803 down_write(&fs_info->subvol_sem);
1804
1805 /* nothing to do */
1806 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1807 goto out_drop_sem;
1808
1809 root_flags = btrfs_root_flags(&root->root_item);
1810 if (flags & BTRFS_SUBVOL_RDONLY) {
1811 btrfs_set_root_flags(&root->root_item,
1812 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1813 } else {
1814 /*
1815 * Block RO -> RW transition if this subvolume is involved in
1816 * send
1817 */
1818 spin_lock(&root->root_item_lock);
1819 if (root->send_in_progress == 0) {
1820 btrfs_set_root_flags(&root->root_item,
1821 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1822 spin_unlock(&root->root_item_lock);
1823 } else {
1824 spin_unlock(&root->root_item_lock);
1825 btrfs_warn(fs_info,
1826 "Attempt to set subvolume %llu read-write during send",
1827 root->root_key.objectid);
1828 ret = -EPERM;
1829 goto out_drop_sem;
1830 }
1831 }
1832
1833 trans = btrfs_start_transaction(root, 1);
1834 if (IS_ERR(trans)) {
1835 ret = PTR_ERR(trans);
1836 goto out_reset;
1837 }
1838
1839 ret = btrfs_update_root(trans, fs_info->tree_root,
1840 &root->root_key, &root->root_item);
1841
1842 btrfs_commit_transaction(trans);
1843 out_reset:
1844 if (ret)
1845 btrfs_set_root_flags(&root->root_item, root_flags);
1846 out_drop_sem:
1847 up_write(&fs_info->subvol_sem);
1848 out_drop_write:
1849 mnt_drop_write_file(file);
1850 out:
1851 return ret;
1852 }
1853
1854 /*
1855 * helper to check if the subvolume references other subvolumes
1856 */
1857 static noinline int may_destroy_subvol(struct btrfs_root *root)
1858 {
1859 struct btrfs_fs_info *fs_info = root->fs_info;
1860 struct btrfs_path *path;
1861 struct btrfs_dir_item *di;
1862 struct btrfs_key key;
1863 u64 dir_id;
1864 int ret;
1865
1866 path = btrfs_alloc_path();
1867 if (!path)
1868 return -ENOMEM;
1869
1870 /* Make sure this root isn't set as the default subvol */
1871 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1872 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1873 dir_id, "default", 7, 0);
1874 if (di && !IS_ERR(di)) {
1875 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1876 if (key.objectid == root->root_key.objectid) {
1877 ret = -EPERM;
1878 btrfs_err(fs_info,
1879 "deleting default subvolume %llu is not allowed",
1880 key.objectid);
1881 goto out;
1882 }
1883 btrfs_release_path(path);
1884 }
1885
1886 key.objectid = root->root_key.objectid;
1887 key.type = BTRFS_ROOT_REF_KEY;
1888 key.offset = (u64)-1;
1889
1890 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1891 if (ret < 0)
1892 goto out;
1893 BUG_ON(ret == 0);
1894
1895 ret = 0;
1896 if (path->slots[0] > 0) {
1897 path->slots[0]--;
1898 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1899 if (key.objectid == root->root_key.objectid &&
1900 key.type == BTRFS_ROOT_REF_KEY)
1901 ret = -ENOTEMPTY;
1902 }
1903 out:
1904 btrfs_free_path(path);
1905 return ret;
1906 }
1907
1908 static noinline int key_in_sk(struct btrfs_key *key,
1909 struct btrfs_ioctl_search_key *sk)
1910 {
1911 struct btrfs_key test;
1912 int ret;
1913
1914 test.objectid = sk->min_objectid;
1915 test.type = sk->min_type;
1916 test.offset = sk->min_offset;
1917
1918 ret = btrfs_comp_cpu_keys(key, &test);
1919 if (ret < 0)
1920 return 0;
1921
1922 test.objectid = sk->max_objectid;
1923 test.type = sk->max_type;
1924 test.offset = sk->max_offset;
1925
1926 ret = btrfs_comp_cpu_keys(key, &test);
1927 if (ret > 0)
1928 return 0;
1929 return 1;
1930 }
1931
1932 static noinline int copy_to_sk(struct btrfs_path *path,
1933 struct btrfs_key *key,
1934 struct btrfs_ioctl_search_key *sk,
1935 size_t *buf_size,
1936 char __user *ubuf,
1937 unsigned long *sk_offset,
1938 int *num_found)
1939 {
1940 u64 found_transid;
1941 struct extent_buffer *leaf;
1942 struct btrfs_ioctl_search_header sh;
1943 struct btrfs_key test;
1944 unsigned long item_off;
1945 unsigned long item_len;
1946 int nritems;
1947 int i;
1948 int slot;
1949 int ret = 0;
1950
1951 leaf = path->nodes[0];
1952 slot = path->slots[0];
1953 nritems = btrfs_header_nritems(leaf);
1954
1955 if (btrfs_header_generation(leaf) > sk->max_transid) {
1956 i = nritems;
1957 goto advance_key;
1958 }
1959 found_transid = btrfs_header_generation(leaf);
1960
1961 for (i = slot; i < nritems; i++) {
1962 item_off = btrfs_item_ptr_offset(leaf, i);
1963 item_len = btrfs_item_size_nr(leaf, i);
1964
1965 btrfs_item_key_to_cpu(leaf, key, i);
1966 if (!key_in_sk(key, sk))
1967 continue;
1968
1969 if (sizeof(sh) + item_len > *buf_size) {
1970 if (*num_found) {
1971 ret = 1;
1972 goto out;
1973 }
1974
1975 /*
1976 * return one empty item back for v1, which does not
1977 * handle -EOVERFLOW
1978 */
1979
1980 *buf_size = sizeof(sh) + item_len;
1981 item_len = 0;
1982 ret = -EOVERFLOW;
1983 }
1984
1985 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1986 ret = 1;
1987 goto out;
1988 }
1989
1990 sh.objectid = key->objectid;
1991 sh.offset = key->offset;
1992 sh.type = key->type;
1993 sh.len = item_len;
1994 sh.transid = found_transid;
1995
1996 /* copy search result header */
1997 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1998 ret = -EFAULT;
1999 goto out;
2000 }
2001
2002 *sk_offset += sizeof(sh);
2003
2004 if (item_len) {
2005 char __user *up = ubuf + *sk_offset;
2006 /* copy the item */
2007 if (read_extent_buffer_to_user(leaf, up,
2008 item_off, item_len)) {
2009 ret = -EFAULT;
2010 goto out;
2011 }
2012
2013 *sk_offset += item_len;
2014 }
2015 (*num_found)++;
2016
2017 if (ret) /* -EOVERFLOW from above */
2018 goto out;
2019
2020 if (*num_found >= sk->nr_items) {
2021 ret = 1;
2022 goto out;
2023 }
2024 }
2025 advance_key:
2026 ret = 0;
2027 test.objectid = sk->max_objectid;
2028 test.type = sk->max_type;
2029 test.offset = sk->max_offset;
2030 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2031 ret = 1;
2032 else if (key->offset < (u64)-1)
2033 key->offset++;
2034 else if (key->type < (u8)-1) {
2035 key->offset = 0;
2036 key->type++;
2037 } else if (key->objectid < (u64)-1) {
2038 key->offset = 0;
2039 key->type = 0;
2040 key->objectid++;
2041 } else
2042 ret = 1;
2043 out:
2044 /*
2045 * 0: all items from this leaf copied, continue with next
2046 * 1: * more items can be copied, but unused buffer is too small
2047 * * all items were found
2048 * Either way, it will stops the loop which iterates to the next
2049 * leaf
2050 * -EOVERFLOW: item was to large for buffer
2051 * -EFAULT: could not copy extent buffer back to userspace
2052 */
2053 return ret;
2054 }
2055
2056 static noinline int search_ioctl(struct inode *inode,
2057 struct btrfs_ioctl_search_key *sk,
2058 size_t *buf_size,
2059 char __user *ubuf)
2060 {
2061 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2062 struct btrfs_root *root;
2063 struct btrfs_key key;
2064 struct btrfs_path *path;
2065 int ret;
2066 int num_found = 0;
2067 unsigned long sk_offset = 0;
2068
2069 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2070 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2071 return -EOVERFLOW;
2072 }
2073
2074 path = btrfs_alloc_path();
2075 if (!path)
2076 return -ENOMEM;
2077
2078 if (sk->tree_id == 0) {
2079 /* search the root of the inode that was passed */
2080 root = BTRFS_I(inode)->root;
2081 } else {
2082 key.objectid = sk->tree_id;
2083 key.type = BTRFS_ROOT_ITEM_KEY;
2084 key.offset = (u64)-1;
2085 root = btrfs_read_fs_root_no_name(info, &key);
2086 if (IS_ERR(root)) {
2087 btrfs_free_path(path);
2088 return -ENOENT;
2089 }
2090 }
2091
2092 key.objectid = sk->min_objectid;
2093 key.type = sk->min_type;
2094 key.offset = sk->min_offset;
2095
2096 while (1) {
2097 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2098 if (ret != 0) {
2099 if (ret > 0)
2100 ret = 0;
2101 goto err;
2102 }
2103 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2104 &sk_offset, &num_found);
2105 btrfs_release_path(path);
2106 if (ret)
2107 break;
2108
2109 }
2110 if (ret > 0)
2111 ret = 0;
2112 err:
2113 sk->nr_items = num_found;
2114 btrfs_free_path(path);
2115 return ret;
2116 }
2117
2118 static noinline int btrfs_ioctl_tree_search(struct file *file,
2119 void __user *argp)
2120 {
2121 struct btrfs_ioctl_search_args __user *uargs;
2122 struct btrfs_ioctl_search_key sk;
2123 struct inode *inode;
2124 int ret;
2125 size_t buf_size;
2126
2127 if (!capable(CAP_SYS_ADMIN))
2128 return -EPERM;
2129
2130 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2131
2132 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2133 return -EFAULT;
2134
2135 buf_size = sizeof(uargs->buf);
2136
2137 inode = file_inode(file);
2138 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2139
2140 /*
2141 * In the origin implementation an overflow is handled by returning a
2142 * search header with a len of zero, so reset ret.
2143 */
2144 if (ret == -EOVERFLOW)
2145 ret = 0;
2146
2147 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2148 ret = -EFAULT;
2149 return ret;
2150 }
2151
2152 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2153 void __user *argp)
2154 {
2155 struct btrfs_ioctl_search_args_v2 __user *uarg;
2156 struct btrfs_ioctl_search_args_v2 args;
2157 struct inode *inode;
2158 int ret;
2159 size_t buf_size;
2160 const size_t buf_limit = SZ_16M;
2161
2162 if (!capable(CAP_SYS_ADMIN))
2163 return -EPERM;
2164
2165 /* copy search header and buffer size */
2166 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2167 if (copy_from_user(&args, uarg, sizeof(args)))
2168 return -EFAULT;
2169
2170 buf_size = args.buf_size;
2171
2172 /* limit result size to 16MB */
2173 if (buf_size > buf_limit)
2174 buf_size = buf_limit;
2175
2176 inode = file_inode(file);
2177 ret = search_ioctl(inode, &args.key, &buf_size,
2178 (char *)(&uarg->buf[0]));
2179 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2180 ret = -EFAULT;
2181 else if (ret == -EOVERFLOW &&
2182 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2183 ret = -EFAULT;
2184
2185 return ret;
2186 }
2187
2188 /*
2189 * Search INODE_REFs to identify path name of 'dirid' directory
2190 * in a 'tree_id' tree. and sets path name to 'name'.
2191 */
2192 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2193 u64 tree_id, u64 dirid, char *name)
2194 {
2195 struct btrfs_root *root;
2196 struct btrfs_key key;
2197 char *ptr;
2198 int ret = -1;
2199 int slot;
2200 int len;
2201 int total_len = 0;
2202 struct btrfs_inode_ref *iref;
2203 struct extent_buffer *l;
2204 struct btrfs_path *path;
2205
2206 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2207 name[0]='\0';
2208 return 0;
2209 }
2210
2211 path = btrfs_alloc_path();
2212 if (!path)
2213 return -ENOMEM;
2214
2215 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2216
2217 key.objectid = tree_id;
2218 key.type = BTRFS_ROOT_ITEM_KEY;
2219 key.offset = (u64)-1;
2220 root = btrfs_read_fs_root_no_name(info, &key);
2221 if (IS_ERR(root)) {
2222 btrfs_err(info, "could not find root %llu", tree_id);
2223 ret = -ENOENT;
2224 goto out;
2225 }
2226
2227 key.objectid = dirid;
2228 key.type = BTRFS_INODE_REF_KEY;
2229 key.offset = (u64)-1;
2230
2231 while (1) {
2232 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2233 if (ret < 0)
2234 goto out;
2235 else if (ret > 0) {
2236 ret = btrfs_previous_item(root, path, dirid,
2237 BTRFS_INODE_REF_KEY);
2238 if (ret < 0)
2239 goto out;
2240 else if (ret > 0) {
2241 ret = -ENOENT;
2242 goto out;
2243 }
2244 }
2245
2246 l = path->nodes[0];
2247 slot = path->slots[0];
2248 btrfs_item_key_to_cpu(l, &key, slot);
2249
2250 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2251 len = btrfs_inode_ref_name_len(l, iref);
2252 ptr -= len + 1;
2253 total_len += len + 1;
2254 if (ptr < name) {
2255 ret = -ENAMETOOLONG;
2256 goto out;
2257 }
2258
2259 *(ptr + len) = '/';
2260 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2261
2262 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2263 break;
2264
2265 btrfs_release_path(path);
2266 key.objectid = key.offset;
2267 key.offset = (u64)-1;
2268 dirid = key.objectid;
2269 }
2270 memmove(name, ptr, total_len);
2271 name[total_len] = '\0';
2272 ret = 0;
2273 out:
2274 btrfs_free_path(path);
2275 return ret;
2276 }
2277
2278 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2279 void __user *argp)
2280 {
2281 struct btrfs_ioctl_ino_lookup_args *args;
2282 struct inode *inode;
2283 int ret = 0;
2284
2285 args = memdup_user(argp, sizeof(*args));
2286 if (IS_ERR(args))
2287 return PTR_ERR(args);
2288
2289 inode = file_inode(file);
2290
2291 /*
2292 * Unprivileged query to obtain the containing subvolume root id. The
2293 * path is reset so it's consistent with btrfs_search_path_in_tree.
2294 */
2295 if (args->treeid == 0)
2296 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2297
2298 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2299 args->name[0] = 0;
2300 goto out;
2301 }
2302
2303 if (!capable(CAP_SYS_ADMIN)) {
2304 ret = -EPERM;
2305 goto out;
2306 }
2307
2308 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2309 args->treeid, args->objectid,
2310 args->name);
2311
2312 out:
2313 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2314 ret = -EFAULT;
2315
2316 kfree(args);
2317 return ret;
2318 }
2319
2320 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2321 void __user *arg)
2322 {
2323 struct dentry *parent = file->f_path.dentry;
2324 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2325 struct dentry *dentry;
2326 struct inode *dir = d_inode(parent);
2327 struct inode *inode;
2328 struct btrfs_root *root = BTRFS_I(dir)->root;
2329 struct btrfs_root *dest = NULL;
2330 struct btrfs_ioctl_vol_args *vol_args;
2331 struct btrfs_trans_handle *trans;
2332 struct btrfs_block_rsv block_rsv;
2333 u64 root_flags;
2334 u64 qgroup_reserved;
2335 int namelen;
2336 int ret;
2337 int err = 0;
2338
2339 if (!S_ISDIR(dir->i_mode))
2340 return -ENOTDIR;
2341
2342 vol_args = memdup_user(arg, sizeof(*vol_args));
2343 if (IS_ERR(vol_args))
2344 return PTR_ERR(vol_args);
2345
2346 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2347 namelen = strlen(vol_args->name);
2348 if (strchr(vol_args->name, '/') ||
2349 strncmp(vol_args->name, "..", namelen) == 0) {
2350 err = -EINVAL;
2351 goto out;
2352 }
2353
2354 err = mnt_want_write_file(file);
2355 if (err)
2356 goto out;
2357
2358
2359 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2360 if (err == -EINTR)
2361 goto out_drop_write;
2362 dentry = lookup_one_len(vol_args->name, parent, namelen);
2363 if (IS_ERR(dentry)) {
2364 err = PTR_ERR(dentry);
2365 goto out_unlock_dir;
2366 }
2367
2368 if (d_really_is_negative(dentry)) {
2369 err = -ENOENT;
2370 goto out_dput;
2371 }
2372
2373 inode = d_inode(dentry);
2374 dest = BTRFS_I(inode)->root;
2375 if (!capable(CAP_SYS_ADMIN)) {
2376 /*
2377 * Regular user. Only allow this with a special mount
2378 * option, when the user has write+exec access to the
2379 * subvol root, and when rmdir(2) would have been
2380 * allowed.
2381 *
2382 * Note that this is _not_ check that the subvol is
2383 * empty or doesn't contain data that we wouldn't
2384 * otherwise be able to delete.
2385 *
2386 * Users who want to delete empty subvols should try
2387 * rmdir(2).
2388 */
2389 err = -EPERM;
2390 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2391 goto out_dput;
2392
2393 /*
2394 * Do not allow deletion if the parent dir is the same
2395 * as the dir to be deleted. That means the ioctl
2396 * must be called on the dentry referencing the root
2397 * of the subvol, not a random directory contained
2398 * within it.
2399 */
2400 err = -EINVAL;
2401 if (root == dest)
2402 goto out_dput;
2403
2404 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2405 if (err)
2406 goto out_dput;
2407 }
2408
2409 /* check if subvolume may be deleted by a user */
2410 err = btrfs_may_delete(dir, dentry, 1);
2411 if (err)
2412 goto out_dput;
2413
2414 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2415 err = -EINVAL;
2416 goto out_dput;
2417 }
2418
2419 inode_lock(inode);
2420
2421 /*
2422 * Don't allow to delete a subvolume with send in progress. This is
2423 * inside the i_mutex so the error handling that has to drop the bit
2424 * again is not run concurrently.
2425 */
2426 spin_lock(&dest->root_item_lock);
2427 root_flags = btrfs_root_flags(&dest->root_item);
2428 if (dest->send_in_progress == 0) {
2429 btrfs_set_root_flags(&dest->root_item,
2430 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2431 spin_unlock(&dest->root_item_lock);
2432 } else {
2433 spin_unlock(&dest->root_item_lock);
2434 btrfs_warn(fs_info,
2435 "Attempt to delete subvolume %llu during send",
2436 dest->root_key.objectid);
2437 err = -EPERM;
2438 goto out_unlock_inode;
2439 }
2440
2441 down_write(&fs_info->subvol_sem);
2442
2443 err = may_destroy_subvol(dest);
2444 if (err)
2445 goto out_up_write;
2446
2447 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2448 /*
2449 * One for dir inode, two for dir entries, two for root
2450 * ref/backref.
2451 */
2452 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2453 5, &qgroup_reserved, true);
2454 if (err)
2455 goto out_up_write;
2456
2457 trans = btrfs_start_transaction(root, 0);
2458 if (IS_ERR(trans)) {
2459 err = PTR_ERR(trans);
2460 goto out_release;
2461 }
2462 trans->block_rsv = &block_rsv;
2463 trans->bytes_reserved = block_rsv.size;
2464
2465 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2466
2467 ret = btrfs_unlink_subvol(trans, root, dir,
2468 dest->root_key.objectid,
2469 dentry->d_name.name,
2470 dentry->d_name.len);
2471 if (ret) {
2472 err = ret;
2473 btrfs_abort_transaction(trans, ret);
2474 goto out_end_trans;
2475 }
2476
2477 btrfs_record_root_in_trans(trans, dest);
2478
2479 memset(&dest->root_item.drop_progress, 0,
2480 sizeof(dest->root_item.drop_progress));
2481 dest->root_item.drop_level = 0;
2482 btrfs_set_root_refs(&dest->root_item, 0);
2483
2484 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2485 ret = btrfs_insert_orphan_item(trans,
2486 fs_info->tree_root,
2487 dest->root_key.objectid);
2488 if (ret) {
2489 btrfs_abort_transaction(trans, ret);
2490 err = ret;
2491 goto out_end_trans;
2492 }
2493 }
2494
2495 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2496 BTRFS_UUID_KEY_SUBVOL,
2497 dest->root_key.objectid);
2498 if (ret && ret != -ENOENT) {
2499 btrfs_abort_transaction(trans, ret);
2500 err = ret;
2501 goto out_end_trans;
2502 }
2503 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2504 ret = btrfs_uuid_tree_rem(trans, fs_info,
2505 dest->root_item.received_uuid,
2506 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2507 dest->root_key.objectid);
2508 if (ret && ret != -ENOENT) {
2509 btrfs_abort_transaction(trans, ret);
2510 err = ret;
2511 goto out_end_trans;
2512 }
2513 }
2514
2515 out_end_trans:
2516 trans->block_rsv = NULL;
2517 trans->bytes_reserved = 0;
2518 ret = btrfs_end_transaction(trans);
2519 if (ret && !err)
2520 err = ret;
2521 inode->i_flags |= S_DEAD;
2522 out_release:
2523 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2524 out_up_write:
2525 up_write(&fs_info->subvol_sem);
2526 if (err) {
2527 spin_lock(&dest->root_item_lock);
2528 root_flags = btrfs_root_flags(&dest->root_item);
2529 btrfs_set_root_flags(&dest->root_item,
2530 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2531 spin_unlock(&dest->root_item_lock);
2532 }
2533 out_unlock_inode:
2534 inode_unlock(inode);
2535 if (!err) {
2536 d_invalidate(dentry);
2537 btrfs_invalidate_inodes(dest);
2538 d_delete(dentry);
2539 ASSERT(dest->send_in_progress == 0);
2540
2541 /* the last ref */
2542 if (dest->ino_cache_inode) {
2543 iput(dest->ino_cache_inode);
2544 dest->ino_cache_inode = NULL;
2545 }
2546 }
2547 out_dput:
2548 dput(dentry);
2549 out_unlock_dir:
2550 inode_unlock(dir);
2551 out_drop_write:
2552 mnt_drop_write_file(file);
2553 out:
2554 kfree(vol_args);
2555 return err;
2556 }
2557
2558 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2559 {
2560 struct inode *inode = file_inode(file);
2561 struct btrfs_root *root = BTRFS_I(inode)->root;
2562 struct btrfs_ioctl_defrag_range_args *range;
2563 int ret;
2564
2565 ret = mnt_want_write_file(file);
2566 if (ret)
2567 return ret;
2568
2569 if (btrfs_root_readonly(root)) {
2570 ret = -EROFS;
2571 goto out;
2572 }
2573
2574 switch (inode->i_mode & S_IFMT) {
2575 case S_IFDIR:
2576 if (!capable(CAP_SYS_ADMIN)) {
2577 ret = -EPERM;
2578 goto out;
2579 }
2580 ret = btrfs_defrag_root(root);
2581 break;
2582 case S_IFREG:
2583 if (!(file->f_mode & FMODE_WRITE)) {
2584 ret = -EINVAL;
2585 goto out;
2586 }
2587
2588 range = kzalloc(sizeof(*range), GFP_KERNEL);
2589 if (!range) {
2590 ret = -ENOMEM;
2591 goto out;
2592 }
2593
2594 if (argp) {
2595 if (copy_from_user(range, argp,
2596 sizeof(*range))) {
2597 ret = -EFAULT;
2598 kfree(range);
2599 goto out;
2600 }
2601 /* compression requires us to start the IO */
2602 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2603 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2604 range->extent_thresh = (u32)-1;
2605 }
2606 } else {
2607 /* the rest are all set to zero by kzalloc */
2608 range->len = (u64)-1;
2609 }
2610 ret = btrfs_defrag_file(file_inode(file), file,
2611 range, 0, 0);
2612 if (ret > 0)
2613 ret = 0;
2614 kfree(range);
2615 break;
2616 default:
2617 ret = -EINVAL;
2618 }
2619 out:
2620 mnt_drop_write_file(file);
2621 return ret;
2622 }
2623
2624 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2625 {
2626 struct btrfs_ioctl_vol_args *vol_args;
2627 int ret;
2628
2629 if (!capable(CAP_SYS_ADMIN))
2630 return -EPERM;
2631
2632 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2633 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2634
2635 mutex_lock(&fs_info->volume_mutex);
2636 vol_args = memdup_user(arg, sizeof(*vol_args));
2637 if (IS_ERR(vol_args)) {
2638 ret = PTR_ERR(vol_args);
2639 goto out;
2640 }
2641
2642 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2643 ret = btrfs_init_new_device(fs_info, vol_args->name);
2644
2645 if (!ret)
2646 btrfs_info(fs_info, "disk added %s", vol_args->name);
2647
2648 kfree(vol_args);
2649 out:
2650 mutex_unlock(&fs_info->volume_mutex);
2651 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2652 return ret;
2653 }
2654
2655 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2656 {
2657 struct inode *inode = file_inode(file);
2658 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2659 struct btrfs_ioctl_vol_args_v2 *vol_args;
2660 int ret;
2661
2662 if (!capable(CAP_SYS_ADMIN))
2663 return -EPERM;
2664
2665 ret = mnt_want_write_file(file);
2666 if (ret)
2667 return ret;
2668
2669 vol_args = memdup_user(arg, sizeof(*vol_args));
2670 if (IS_ERR(vol_args)) {
2671 ret = PTR_ERR(vol_args);
2672 goto err_drop;
2673 }
2674
2675 /* Check for compatibility reject unknown flags */
2676 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2677 return -EOPNOTSUPP;
2678
2679 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2680 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2681 goto out;
2682 }
2683
2684 mutex_lock(&fs_info->volume_mutex);
2685 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2686 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2687 } else {
2688 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2689 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2690 }
2691 mutex_unlock(&fs_info->volume_mutex);
2692 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2693
2694 if (!ret) {
2695 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2696 btrfs_info(fs_info, "device deleted: id %llu",
2697 vol_args->devid);
2698 else
2699 btrfs_info(fs_info, "device deleted: %s",
2700 vol_args->name);
2701 }
2702 out:
2703 kfree(vol_args);
2704 err_drop:
2705 mnt_drop_write_file(file);
2706 return ret;
2707 }
2708
2709 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2710 {
2711 struct inode *inode = file_inode(file);
2712 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2713 struct btrfs_ioctl_vol_args *vol_args;
2714 int ret;
2715
2716 if (!capable(CAP_SYS_ADMIN))
2717 return -EPERM;
2718
2719 ret = mnt_want_write_file(file);
2720 if (ret)
2721 return ret;
2722
2723 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2724 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2725 goto out_drop_write;
2726 }
2727
2728 vol_args = memdup_user(arg, sizeof(*vol_args));
2729 if (IS_ERR(vol_args)) {
2730 ret = PTR_ERR(vol_args);
2731 goto out;
2732 }
2733
2734 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2735 mutex_lock(&fs_info->volume_mutex);
2736 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2737 mutex_unlock(&fs_info->volume_mutex);
2738
2739 if (!ret)
2740 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2741 kfree(vol_args);
2742 out:
2743 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2744 out_drop_write:
2745 mnt_drop_write_file(file);
2746
2747 return ret;
2748 }
2749
2750 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2751 void __user *arg)
2752 {
2753 struct btrfs_ioctl_fs_info_args *fi_args;
2754 struct btrfs_device *device;
2755 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2756 int ret = 0;
2757
2758 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2759 if (!fi_args)
2760 return -ENOMEM;
2761
2762 mutex_lock(&fs_devices->device_list_mutex);
2763 fi_args->num_devices = fs_devices->num_devices;
2764 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2765
2766 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2767 if (device->devid > fi_args->max_id)
2768 fi_args->max_id = device->devid;
2769 }
2770 mutex_unlock(&fs_devices->device_list_mutex);
2771
2772 fi_args->nodesize = fs_info->super_copy->nodesize;
2773 fi_args->sectorsize = fs_info->super_copy->sectorsize;
2774 fi_args->clone_alignment = fs_info->super_copy->sectorsize;
2775
2776 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2777 ret = -EFAULT;
2778
2779 kfree(fi_args);
2780 return ret;
2781 }
2782
2783 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2784 void __user *arg)
2785 {
2786 struct btrfs_ioctl_dev_info_args *di_args;
2787 struct btrfs_device *dev;
2788 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2789 int ret = 0;
2790 char *s_uuid = NULL;
2791
2792 di_args = memdup_user(arg, sizeof(*di_args));
2793 if (IS_ERR(di_args))
2794 return PTR_ERR(di_args);
2795
2796 if (!btrfs_is_empty_uuid(di_args->uuid))
2797 s_uuid = di_args->uuid;
2798
2799 mutex_lock(&fs_devices->device_list_mutex);
2800 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2801
2802 if (!dev) {
2803 ret = -ENODEV;
2804 goto out;
2805 }
2806
2807 di_args->devid = dev->devid;
2808 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2809 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2810 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2811 if (dev->name) {
2812 struct rcu_string *name;
2813
2814 rcu_read_lock();
2815 name = rcu_dereference(dev->name);
2816 strncpy(di_args->path, name->str, sizeof(di_args->path));
2817 rcu_read_unlock();
2818 di_args->path[sizeof(di_args->path) - 1] = 0;
2819 } else {
2820 di_args->path[0] = '\0';
2821 }
2822
2823 out:
2824 mutex_unlock(&fs_devices->device_list_mutex);
2825 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2826 ret = -EFAULT;
2827
2828 kfree(di_args);
2829 return ret;
2830 }
2831
2832 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2833 {
2834 struct page *page;
2835
2836 page = grab_cache_page(inode->i_mapping, index);
2837 if (!page)
2838 return ERR_PTR(-ENOMEM);
2839
2840 if (!PageUptodate(page)) {
2841 int ret;
2842
2843 ret = btrfs_readpage(NULL, page);
2844 if (ret)
2845 return ERR_PTR(ret);
2846 lock_page(page);
2847 if (!PageUptodate(page)) {
2848 unlock_page(page);
2849 put_page(page);
2850 return ERR_PTR(-EIO);
2851 }
2852 if (page->mapping != inode->i_mapping) {
2853 unlock_page(page);
2854 put_page(page);
2855 return ERR_PTR(-EAGAIN);
2856 }
2857 }
2858
2859 return page;
2860 }
2861
2862 static int gather_extent_pages(struct inode *inode, struct page **pages,
2863 int num_pages, u64 off)
2864 {
2865 int i;
2866 pgoff_t index = off >> PAGE_SHIFT;
2867
2868 for (i = 0; i < num_pages; i++) {
2869 again:
2870 pages[i] = extent_same_get_page(inode, index + i);
2871 if (IS_ERR(pages[i])) {
2872 int err = PTR_ERR(pages[i]);
2873
2874 if (err == -EAGAIN)
2875 goto again;
2876 pages[i] = NULL;
2877 return err;
2878 }
2879 }
2880 return 0;
2881 }
2882
2883 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2884 bool retry_range_locking)
2885 {
2886 /*
2887 * Do any pending delalloc/csum calculations on inode, one way or
2888 * another, and lock file content.
2889 * The locking order is:
2890 *
2891 * 1) pages
2892 * 2) range in the inode's io tree
2893 */
2894 while (1) {
2895 struct btrfs_ordered_extent *ordered;
2896 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2897 ordered = btrfs_lookup_first_ordered_extent(inode,
2898 off + len - 1);
2899 if ((!ordered ||
2900 ordered->file_offset + ordered->len <= off ||
2901 ordered->file_offset >= off + len) &&
2902 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2903 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2904 if (ordered)
2905 btrfs_put_ordered_extent(ordered);
2906 break;
2907 }
2908 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2909 if (ordered)
2910 btrfs_put_ordered_extent(ordered);
2911 if (!retry_range_locking)
2912 return -EAGAIN;
2913 btrfs_wait_ordered_range(inode, off, len);
2914 }
2915 return 0;
2916 }
2917
2918 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2919 {
2920 inode_unlock(inode1);
2921 inode_unlock(inode2);
2922 }
2923
2924 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2925 {
2926 if (inode1 < inode2)
2927 swap(inode1, inode2);
2928
2929 inode_lock_nested(inode1, I_MUTEX_PARENT);
2930 inode_lock_nested(inode2, I_MUTEX_CHILD);
2931 }
2932
2933 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2934 struct inode *inode2, u64 loff2, u64 len)
2935 {
2936 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2937 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2938 }
2939
2940 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2941 struct inode *inode2, u64 loff2, u64 len,
2942 bool retry_range_locking)
2943 {
2944 int ret;
2945
2946 if (inode1 < inode2) {
2947 swap(inode1, inode2);
2948 swap(loff1, loff2);
2949 }
2950 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2951 if (ret)
2952 return ret;
2953 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2954 if (ret)
2955 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2956 loff1 + len - 1);
2957 return ret;
2958 }
2959
2960 struct cmp_pages {
2961 int num_pages;
2962 struct page **src_pages;
2963 struct page **dst_pages;
2964 };
2965
2966 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2967 {
2968 int i;
2969 struct page *pg;
2970
2971 for (i = 0; i < cmp->num_pages; i++) {
2972 pg = cmp->src_pages[i];
2973 if (pg) {
2974 unlock_page(pg);
2975 put_page(pg);
2976 }
2977 pg = cmp->dst_pages[i];
2978 if (pg) {
2979 unlock_page(pg);
2980 put_page(pg);
2981 }
2982 }
2983 kfree(cmp->src_pages);
2984 kfree(cmp->dst_pages);
2985 }
2986
2987 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2988 struct inode *dst, u64 dst_loff,
2989 u64 len, struct cmp_pages *cmp)
2990 {
2991 int ret;
2992 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2993 struct page **src_pgarr, **dst_pgarr;
2994
2995 /*
2996 * We must gather up all the pages before we initiate our
2997 * extent locking. We use an array for the page pointers. Size
2998 * of the array is bounded by len, which is in turn bounded by
2999 * BTRFS_MAX_DEDUPE_LEN.
3000 */
3001 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3002 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3003 if (!src_pgarr || !dst_pgarr) {
3004 kfree(src_pgarr);
3005 kfree(dst_pgarr);
3006 return -ENOMEM;
3007 }
3008 cmp->num_pages = num_pages;
3009 cmp->src_pages = src_pgarr;
3010 cmp->dst_pages = dst_pgarr;
3011
3012 /*
3013 * If deduping ranges in the same inode, locking rules make it mandatory
3014 * to always lock pages in ascending order to avoid deadlocks with
3015 * concurrent tasks (such as starting writeback/delalloc).
3016 */
3017 if (src == dst && dst_loff < loff) {
3018 swap(src_pgarr, dst_pgarr);
3019 swap(loff, dst_loff);
3020 }
3021
3022 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3023 if (ret)
3024 goto out;
3025
3026 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3027
3028 out:
3029 if (ret)
3030 btrfs_cmp_data_free(cmp);
3031 return 0;
3032 }
3033
3034 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3035 {
3036 int ret = 0;
3037 int i;
3038 struct page *src_page, *dst_page;
3039 unsigned int cmp_len = PAGE_SIZE;
3040 void *addr, *dst_addr;
3041
3042 i = 0;
3043 while (len) {
3044 if (len < PAGE_SIZE)
3045 cmp_len = len;
3046
3047 BUG_ON(i >= cmp->num_pages);
3048
3049 src_page = cmp->src_pages[i];
3050 dst_page = cmp->dst_pages[i];
3051 ASSERT(PageLocked(src_page));
3052 ASSERT(PageLocked(dst_page));
3053
3054 addr = kmap_atomic(src_page);
3055 dst_addr = kmap_atomic(dst_page);
3056
3057 flush_dcache_page(src_page);
3058 flush_dcache_page(dst_page);
3059
3060 if (memcmp(addr, dst_addr, cmp_len))
3061 ret = -EBADE;
3062
3063 kunmap_atomic(addr);
3064 kunmap_atomic(dst_addr);
3065
3066 if (ret)
3067 break;
3068
3069 len -= cmp_len;
3070 i++;
3071 }
3072
3073 return ret;
3074 }
3075
3076 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3077 u64 olen)
3078 {
3079 u64 len = *plen;
3080 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3081
3082 if (off + olen > inode->i_size || off + olen < off)
3083 return -EINVAL;
3084
3085 /* if we extend to eof, continue to block boundary */
3086 if (off + len == inode->i_size)
3087 *plen = len = ALIGN(inode->i_size, bs) - off;
3088
3089 /* Check that we are block aligned - btrfs_clone() requires this */
3090 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3091 return -EINVAL;
3092
3093 return 0;
3094 }
3095
3096 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3097 struct inode *dst, u64 dst_loff)
3098 {
3099 int ret;
3100 u64 len = olen;
3101 struct cmp_pages cmp;
3102 bool same_inode = (src == dst);
3103 u64 same_lock_start = 0;
3104 u64 same_lock_len = 0;
3105
3106 if (len == 0)
3107 return 0;
3108
3109 if (same_inode)
3110 inode_lock(src);
3111 else
3112 btrfs_double_inode_lock(src, dst);
3113
3114 ret = extent_same_check_offsets(src, loff, &len, olen);
3115 if (ret)
3116 goto out_unlock;
3117
3118 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3119 if (ret)
3120 goto out_unlock;
3121
3122 if (same_inode) {
3123 /*
3124 * Single inode case wants the same checks, except we
3125 * don't want our length pushed out past i_size as
3126 * comparing that data range makes no sense.
3127 *
3128 * extent_same_check_offsets() will do this for an
3129 * unaligned length at i_size, so catch it here and
3130 * reject the request.
3131 *
3132 * This effectively means we require aligned extents
3133 * for the single-inode case, whereas the other cases
3134 * allow an unaligned length so long as it ends at
3135 * i_size.
3136 */
3137 if (len != olen) {
3138 ret = -EINVAL;
3139 goto out_unlock;
3140 }
3141
3142 /* Check for overlapping ranges */
3143 if (dst_loff + len > loff && dst_loff < loff + len) {
3144 ret = -EINVAL;
3145 goto out_unlock;
3146 }
3147
3148 same_lock_start = min_t(u64, loff, dst_loff);
3149 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3150 }
3151
3152 /* don't make the dst file partly checksummed */
3153 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3154 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3155 ret = -EINVAL;
3156 goto out_unlock;
3157 }
3158
3159 again:
3160 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3161 if (ret)
3162 goto out_unlock;
3163
3164 if (same_inode)
3165 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3166 false);
3167 else
3168 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3169 false);
3170 /*
3171 * If one of the inodes has dirty pages in the respective range or
3172 * ordered extents, we need to flush dellaloc and wait for all ordered
3173 * extents in the range. We must unlock the pages and the ranges in the
3174 * io trees to avoid deadlocks when flushing delalloc (requires locking
3175 * pages) and when waiting for ordered extents to complete (they require
3176 * range locking).
3177 */
3178 if (ret == -EAGAIN) {
3179 /*
3180 * Ranges in the io trees already unlocked. Now unlock all
3181 * pages before waiting for all IO to complete.
3182 */
3183 btrfs_cmp_data_free(&cmp);
3184 if (same_inode) {
3185 btrfs_wait_ordered_range(src, same_lock_start,
3186 same_lock_len);
3187 } else {
3188 btrfs_wait_ordered_range(src, loff, len);
3189 btrfs_wait_ordered_range(dst, dst_loff, len);
3190 }
3191 goto again;
3192 }
3193 ASSERT(ret == 0);
3194 if (WARN_ON(ret)) {
3195 /* ranges in the io trees already unlocked */
3196 btrfs_cmp_data_free(&cmp);
3197 return ret;
3198 }
3199
3200 /* pass original length for comparison so we stay within i_size */
3201 ret = btrfs_cmp_data(olen, &cmp);
3202 if (ret == 0)
3203 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3204
3205 if (same_inode)
3206 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3207 same_lock_start + same_lock_len - 1);
3208 else
3209 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3210
3211 btrfs_cmp_data_free(&cmp);
3212 out_unlock:
3213 if (same_inode)
3214 inode_unlock(src);
3215 else
3216 btrfs_double_inode_unlock(src, dst);
3217
3218 return ret;
3219 }
3220
3221 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3222
3223 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3224 struct file *dst_file, u64 dst_loff)
3225 {
3226 struct inode *src = file_inode(src_file);
3227 struct inode *dst = file_inode(dst_file);
3228 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3229 ssize_t res;
3230
3231 if (olen > BTRFS_MAX_DEDUPE_LEN)
3232 olen = BTRFS_MAX_DEDUPE_LEN;
3233
3234 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3235 /*
3236 * Btrfs does not support blocksize < page_size. As a
3237 * result, btrfs_cmp_data() won't correctly handle
3238 * this situation without an update.
3239 */
3240 return -EINVAL;
3241 }
3242
3243 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3244 if (res)
3245 return res;
3246 return olen;
3247 }
3248
3249 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3250 struct inode *inode,
3251 u64 endoff,
3252 const u64 destoff,
3253 const u64 olen,
3254 int no_time_update)
3255 {
3256 struct btrfs_root *root = BTRFS_I(inode)->root;
3257 int ret;
3258
3259 inode_inc_iversion(inode);
3260 if (!no_time_update)
3261 inode->i_mtime = inode->i_ctime = current_time(inode);
3262 /*
3263 * We round up to the block size at eof when determining which
3264 * extents to clone above, but shouldn't round up the file size.
3265 */
3266 if (endoff > destoff + olen)
3267 endoff = destoff + olen;
3268 if (endoff > inode->i_size)
3269 btrfs_i_size_write(BTRFS_I(inode), endoff);
3270
3271 ret = btrfs_update_inode(trans, root, inode);
3272 if (ret) {
3273 btrfs_abort_transaction(trans, ret);
3274 btrfs_end_transaction(trans);
3275 goto out;
3276 }
3277 ret = btrfs_end_transaction(trans);
3278 out:
3279 return ret;
3280 }
3281
3282 static void clone_update_extent_map(struct btrfs_inode *inode,
3283 const struct btrfs_trans_handle *trans,
3284 const struct btrfs_path *path,
3285 const u64 hole_offset,
3286 const u64 hole_len)
3287 {
3288 struct extent_map_tree *em_tree = &inode->extent_tree;
3289 struct extent_map *em;
3290 int ret;
3291
3292 em = alloc_extent_map();
3293 if (!em) {
3294 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3295 return;
3296 }
3297
3298 if (path) {
3299 struct btrfs_file_extent_item *fi;
3300
3301 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3302 struct btrfs_file_extent_item);
3303 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3304 em->generation = -1;
3305 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3306 BTRFS_FILE_EXTENT_INLINE)
3307 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3308 &inode->runtime_flags);
3309 } else {
3310 em->start = hole_offset;
3311 em->len = hole_len;
3312 em->ram_bytes = em->len;
3313 em->orig_start = hole_offset;
3314 em->block_start = EXTENT_MAP_HOLE;
3315 em->block_len = 0;
3316 em->orig_block_len = 0;
3317 em->compress_type = BTRFS_COMPRESS_NONE;
3318 em->generation = trans->transid;
3319 }
3320
3321 while (1) {
3322 write_lock(&em_tree->lock);
3323 ret = add_extent_mapping(em_tree, em, 1);
3324 write_unlock(&em_tree->lock);
3325 if (ret != -EEXIST) {
3326 free_extent_map(em);
3327 break;
3328 }
3329 btrfs_drop_extent_cache(inode, em->start,
3330 em->start + em->len - 1, 0);
3331 }
3332
3333 if (ret)
3334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3335 }
3336
3337 /*
3338 * Make sure we do not end up inserting an inline extent into a file that has
3339 * already other (non-inline) extents. If a file has an inline extent it can
3340 * not have any other extents and the (single) inline extent must start at the
3341 * file offset 0. Failing to respect these rules will lead to file corruption,
3342 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3343 *
3344 * We can have extents that have been already written to disk or we can have
3345 * dirty ranges still in delalloc, in which case the extent maps and items are
3346 * created only when we run delalloc, and the delalloc ranges might fall outside
3347 * the range we are currently locking in the inode's io tree. So we check the
3348 * inode's i_size because of that (i_size updates are done while holding the
3349 * i_mutex, which we are holding here).
3350 * We also check to see if the inode has a size not greater than "datal" but has
3351 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3352 * protected against such concurrent fallocate calls by the i_mutex).
3353 *
3354 * If the file has no extents but a size greater than datal, do not allow the
3355 * copy because we would need turn the inline extent into a non-inline one (even
3356 * with NO_HOLES enabled). If we find our destination inode only has one inline
3357 * extent, just overwrite it with the source inline extent if its size is less
3358 * than the source extent's size, or we could copy the source inline extent's
3359 * data into the destination inode's inline extent if the later is greater then
3360 * the former.
3361 */
3362 static int clone_copy_inline_extent(struct inode *dst,
3363 struct btrfs_trans_handle *trans,
3364 struct btrfs_path *path,
3365 struct btrfs_key *new_key,
3366 const u64 drop_start,
3367 const u64 datal,
3368 const u64 skip,
3369 const u64 size,
3370 char *inline_data)
3371 {
3372 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3373 struct btrfs_root *root = BTRFS_I(dst)->root;
3374 const u64 aligned_end = ALIGN(new_key->offset + datal,
3375 fs_info->sectorsize);
3376 int ret;
3377 struct btrfs_key key;
3378
3379 if (new_key->offset > 0)
3380 return -EOPNOTSUPP;
3381
3382 key.objectid = btrfs_ino(BTRFS_I(dst));
3383 key.type = BTRFS_EXTENT_DATA_KEY;
3384 key.offset = 0;
3385 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3386 if (ret < 0) {
3387 return ret;
3388 } else if (ret > 0) {
3389 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3390 ret = btrfs_next_leaf(root, path);
3391 if (ret < 0)
3392 return ret;
3393 else if (ret > 0)
3394 goto copy_inline_extent;
3395 }
3396 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3397 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3398 key.type == BTRFS_EXTENT_DATA_KEY) {
3399 ASSERT(key.offset > 0);
3400 return -EOPNOTSUPP;
3401 }
3402 } else if (i_size_read(dst) <= datal) {
3403 struct btrfs_file_extent_item *ei;
3404 u64 ext_len;
3405
3406 /*
3407 * If the file size is <= datal, make sure there are no other
3408 * extents following (can happen do to an fallocate call with
3409 * the flag FALLOC_FL_KEEP_SIZE).
3410 */
3411 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3412 struct btrfs_file_extent_item);
3413 /*
3414 * If it's an inline extent, it can not have other extents
3415 * following it.
3416 */
3417 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3418 BTRFS_FILE_EXTENT_INLINE)
3419 goto copy_inline_extent;
3420
3421 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3422 if (ext_len > aligned_end)
3423 return -EOPNOTSUPP;
3424
3425 ret = btrfs_next_item(root, path);
3426 if (ret < 0) {
3427 return ret;
3428 } else if (ret == 0) {
3429 btrfs_item_key_to_cpu(path->nodes[0], &key,
3430 path->slots[0]);
3431 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3432 key.type == BTRFS_EXTENT_DATA_KEY)
3433 return -EOPNOTSUPP;
3434 }
3435 }
3436
3437 copy_inline_extent:
3438 /*
3439 * We have no extent items, or we have an extent at offset 0 which may
3440 * or may not be inlined. All these cases are dealt the same way.
3441 */
3442 if (i_size_read(dst) > datal) {
3443 /*
3444 * If the destination inode has an inline extent...
3445 * This would require copying the data from the source inline
3446 * extent into the beginning of the destination's inline extent.
3447 * But this is really complex, both extents can be compressed
3448 * or just one of them, which would require decompressing and
3449 * re-compressing data (which could increase the new compressed
3450 * size, not allowing the compressed data to fit anymore in an
3451 * inline extent).
3452 * So just don't support this case for now (it should be rare,
3453 * we are not really saving space when cloning inline extents).
3454 */
3455 return -EOPNOTSUPP;
3456 }
3457
3458 btrfs_release_path(path);
3459 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3460 if (ret)
3461 return ret;
3462 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3463 if (ret)
3464 return ret;
3465
3466 if (skip) {
3467 const u32 start = btrfs_file_extent_calc_inline_size(0);
3468
3469 memmove(inline_data + start, inline_data + start + skip, datal);
3470 }
3471
3472 write_extent_buffer(path->nodes[0], inline_data,
3473 btrfs_item_ptr_offset(path->nodes[0],
3474 path->slots[0]),
3475 size);
3476 inode_add_bytes(dst, datal);
3477
3478 return 0;
3479 }
3480
3481 /**
3482 * btrfs_clone() - clone a range from inode file to another
3483 *
3484 * @src: Inode to clone from
3485 * @inode: Inode to clone to
3486 * @off: Offset within source to start clone from
3487 * @olen: Original length, passed by user, of range to clone
3488 * @olen_aligned: Block-aligned value of olen
3489 * @destoff: Offset within @inode to start clone
3490 * @no_time_update: Whether to update mtime/ctime on the target inode
3491 */
3492 static int btrfs_clone(struct inode *src, struct inode *inode,
3493 const u64 off, const u64 olen, const u64 olen_aligned,
3494 const u64 destoff, int no_time_update)
3495 {
3496 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3497 struct btrfs_root *root = BTRFS_I(inode)->root;
3498 struct btrfs_path *path = NULL;
3499 struct extent_buffer *leaf;
3500 struct btrfs_trans_handle *trans;
3501 char *buf = NULL;
3502 struct btrfs_key key;
3503 u32 nritems;
3504 int slot;
3505 int ret;
3506 const u64 len = olen_aligned;
3507 u64 last_dest_end = destoff;
3508
3509 ret = -ENOMEM;
3510 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3511 if (!buf)
3512 return ret;
3513
3514 path = btrfs_alloc_path();
3515 if (!path) {
3516 kvfree(buf);
3517 return ret;
3518 }
3519
3520 path->reada = READA_FORWARD;
3521 /* clone data */
3522 key.objectid = btrfs_ino(BTRFS_I(src));
3523 key.type = BTRFS_EXTENT_DATA_KEY;
3524 key.offset = off;
3525
3526 while (1) {
3527 u64 next_key_min_offset = key.offset + 1;
3528
3529 /*
3530 * note the key will change type as we walk through the
3531 * tree.
3532 */
3533 path->leave_spinning = 1;
3534 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3535 0, 0);
3536 if (ret < 0)
3537 goto out;
3538 /*
3539 * First search, if no extent item that starts at offset off was
3540 * found but the previous item is an extent item, it's possible
3541 * it might overlap our target range, therefore process it.
3542 */
3543 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3544 btrfs_item_key_to_cpu(path->nodes[0], &key,
3545 path->slots[0] - 1);
3546 if (key.type == BTRFS_EXTENT_DATA_KEY)
3547 path->slots[0]--;
3548 }
3549
3550 nritems = btrfs_header_nritems(path->nodes[0]);
3551 process_slot:
3552 if (path->slots[0] >= nritems) {
3553 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3554 if (ret < 0)
3555 goto out;
3556 if (ret > 0)
3557 break;
3558 nritems = btrfs_header_nritems(path->nodes[0]);
3559 }
3560 leaf = path->nodes[0];
3561 slot = path->slots[0];
3562
3563 btrfs_item_key_to_cpu(leaf, &key, slot);
3564 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3565 key.objectid != btrfs_ino(BTRFS_I(src)))
3566 break;
3567
3568 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3569 struct btrfs_file_extent_item *extent;
3570 int type;
3571 u32 size;
3572 struct btrfs_key new_key;
3573 u64 disko = 0, diskl = 0;
3574 u64 datao = 0, datal = 0;
3575 u8 comp;
3576 u64 drop_start;
3577
3578 extent = btrfs_item_ptr(leaf, slot,
3579 struct btrfs_file_extent_item);
3580 comp = btrfs_file_extent_compression(leaf, extent);
3581 type = btrfs_file_extent_type(leaf, extent);
3582 if (type == BTRFS_FILE_EXTENT_REG ||
3583 type == BTRFS_FILE_EXTENT_PREALLOC) {
3584 disko = btrfs_file_extent_disk_bytenr(leaf,
3585 extent);
3586 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3587 extent);
3588 datao = btrfs_file_extent_offset(leaf, extent);
3589 datal = btrfs_file_extent_num_bytes(leaf,
3590 extent);
3591 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3592 /* take upper bound, may be compressed */
3593 datal = btrfs_file_extent_ram_bytes(leaf,
3594 extent);
3595 }
3596
3597 /*
3598 * The first search might have left us at an extent
3599 * item that ends before our target range's start, can
3600 * happen if we have holes and NO_HOLES feature enabled.
3601 */
3602 if (key.offset + datal <= off) {
3603 path->slots[0]++;
3604 goto process_slot;
3605 } else if (key.offset >= off + len) {
3606 break;
3607 }
3608 next_key_min_offset = key.offset + datal;
3609 size = btrfs_item_size_nr(leaf, slot);
3610 read_extent_buffer(leaf, buf,
3611 btrfs_item_ptr_offset(leaf, slot),
3612 size);
3613
3614 btrfs_release_path(path);
3615 path->leave_spinning = 0;
3616
3617 memcpy(&new_key, &key, sizeof(new_key));
3618 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3619 if (off <= key.offset)
3620 new_key.offset = key.offset + destoff - off;
3621 else
3622 new_key.offset = destoff;
3623
3624 /*
3625 * Deal with a hole that doesn't have an extent item
3626 * that represents it (NO_HOLES feature enabled).
3627 * This hole is either in the middle of the cloning
3628 * range or at the beginning (fully overlaps it or
3629 * partially overlaps it).
3630 */
3631 if (new_key.offset != last_dest_end)
3632 drop_start = last_dest_end;
3633 else
3634 drop_start = new_key.offset;
3635
3636 /*
3637 * 1 - adjusting old extent (we may have to split it)
3638 * 1 - add new extent
3639 * 1 - inode update
3640 */
3641 trans = btrfs_start_transaction(root, 3);
3642 if (IS_ERR(trans)) {
3643 ret = PTR_ERR(trans);
3644 goto out;
3645 }
3646
3647 if (type == BTRFS_FILE_EXTENT_REG ||
3648 type == BTRFS_FILE_EXTENT_PREALLOC) {
3649 /*
3650 * a | --- range to clone ---| b
3651 * | ------------- extent ------------- |
3652 */
3653
3654 /* subtract range b */
3655 if (key.offset + datal > off + len)
3656 datal = off + len - key.offset;
3657
3658 /* subtract range a */
3659 if (off > key.offset) {
3660 datao += off - key.offset;
3661 datal -= off - key.offset;
3662 }
3663
3664 ret = btrfs_drop_extents(trans, root, inode,
3665 drop_start,
3666 new_key.offset + datal,
3667 1);
3668 if (ret) {
3669 if (ret != -EOPNOTSUPP)
3670 btrfs_abort_transaction(trans,
3671 ret);
3672 btrfs_end_transaction(trans);
3673 goto out;
3674 }
3675
3676 ret = btrfs_insert_empty_item(trans, root, path,
3677 &new_key, size);
3678 if (ret) {
3679 btrfs_abort_transaction(trans, ret);
3680 btrfs_end_transaction(trans);
3681 goto out;
3682 }
3683
3684 leaf = path->nodes[0];
3685 slot = path->slots[0];
3686 write_extent_buffer(leaf, buf,
3687 btrfs_item_ptr_offset(leaf, slot),
3688 size);
3689
3690 extent = btrfs_item_ptr(leaf, slot,
3691 struct btrfs_file_extent_item);
3692
3693 /* disko == 0 means it's a hole */
3694 if (!disko)
3695 datao = 0;
3696
3697 btrfs_set_file_extent_offset(leaf, extent,
3698 datao);
3699 btrfs_set_file_extent_num_bytes(leaf, extent,
3700 datal);
3701
3702 if (disko) {
3703 inode_add_bytes(inode, datal);
3704 ret = btrfs_inc_extent_ref(trans,
3705 fs_info,
3706 disko, diskl, 0,
3707 root->root_key.objectid,
3708 btrfs_ino(BTRFS_I(inode)),
3709 new_key.offset - datao);
3710 if (ret) {
3711 btrfs_abort_transaction(trans,
3712 ret);
3713 btrfs_end_transaction(trans);
3714 goto out;
3715
3716 }
3717 }
3718 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3719 u64 skip = 0;
3720 u64 trim = 0;
3721
3722 if (off > key.offset) {
3723 skip = off - key.offset;
3724 new_key.offset += skip;
3725 }
3726
3727 if (key.offset + datal > off + len)
3728 trim = key.offset + datal - (off + len);
3729
3730 if (comp && (skip || trim)) {
3731 ret = -EINVAL;
3732 btrfs_end_transaction(trans);
3733 goto out;
3734 }
3735 size -= skip + trim;
3736 datal -= skip + trim;
3737
3738 ret = clone_copy_inline_extent(inode,
3739 trans, path,
3740 &new_key,
3741 drop_start,
3742 datal,
3743 skip, size, buf);
3744 if (ret) {
3745 if (ret != -EOPNOTSUPP)
3746 btrfs_abort_transaction(trans,
3747 ret);
3748 btrfs_end_transaction(trans);
3749 goto out;
3750 }
3751 leaf = path->nodes[0];
3752 slot = path->slots[0];
3753 }
3754
3755 /* If we have an implicit hole (NO_HOLES feature). */
3756 if (drop_start < new_key.offset)
3757 clone_update_extent_map(BTRFS_I(inode), trans,
3758 NULL, drop_start,
3759 new_key.offset - drop_start);
3760
3761 clone_update_extent_map(BTRFS_I(inode), trans,
3762 path, 0, 0);
3763
3764 btrfs_mark_buffer_dirty(leaf);
3765 btrfs_release_path(path);
3766
3767 last_dest_end = ALIGN(new_key.offset + datal,
3768 fs_info->sectorsize);
3769 ret = clone_finish_inode_update(trans, inode,
3770 last_dest_end,
3771 destoff, olen,
3772 no_time_update);
3773 if (ret)
3774 goto out;
3775 if (new_key.offset + datal >= destoff + len)
3776 break;
3777 }
3778 btrfs_release_path(path);
3779 key.offset = next_key_min_offset;
3780
3781 if (fatal_signal_pending(current)) {
3782 ret = -EINTR;
3783 goto out;
3784 }
3785 }
3786 ret = 0;
3787
3788 if (last_dest_end < destoff + len) {
3789 /*
3790 * We have an implicit hole (NO_HOLES feature is enabled) that
3791 * fully or partially overlaps our cloning range at its end.
3792 */
3793 btrfs_release_path(path);
3794
3795 /*
3796 * 1 - remove extent(s)
3797 * 1 - inode update
3798 */
3799 trans = btrfs_start_transaction(root, 2);
3800 if (IS_ERR(trans)) {
3801 ret = PTR_ERR(trans);
3802 goto out;
3803 }
3804 ret = btrfs_drop_extents(trans, root, inode,
3805 last_dest_end, destoff + len, 1);
3806 if (ret) {
3807 if (ret != -EOPNOTSUPP)
3808 btrfs_abort_transaction(trans, ret);
3809 btrfs_end_transaction(trans);
3810 goto out;
3811 }
3812 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3813 last_dest_end,
3814 destoff + len - last_dest_end);
3815 ret = clone_finish_inode_update(trans, inode, destoff + len,
3816 destoff, olen, no_time_update);
3817 }
3818
3819 out:
3820 btrfs_free_path(path);
3821 kvfree(buf);
3822 return ret;
3823 }
3824
3825 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3826 u64 off, u64 olen, u64 destoff)
3827 {
3828 struct inode *inode = file_inode(file);
3829 struct inode *src = file_inode(file_src);
3830 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3831 struct btrfs_root *root = BTRFS_I(inode)->root;
3832 int ret;
3833 u64 len = olen;
3834 u64 bs = fs_info->sb->s_blocksize;
3835 int same_inode = src == inode;
3836
3837 /*
3838 * TODO:
3839 * - split compressed inline extents. annoying: we need to
3840 * decompress into destination's address_space (the file offset
3841 * may change, so source mapping won't do), then recompress (or
3842 * otherwise reinsert) a subrange.
3843 *
3844 * - split destination inode's inline extents. The inline extents can
3845 * be either compressed or non-compressed.
3846 */
3847
3848 if (btrfs_root_readonly(root))
3849 return -EROFS;
3850
3851 if (file_src->f_path.mnt != file->f_path.mnt ||
3852 src->i_sb != inode->i_sb)
3853 return -EXDEV;
3854
3855 /* don't make the dst file partly checksummed */
3856 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3857 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3858 return -EINVAL;
3859
3860 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3861 return -EISDIR;
3862
3863 if (!same_inode) {
3864 btrfs_double_inode_lock(src, inode);
3865 } else {
3866 inode_lock(src);
3867 }
3868
3869 /* determine range to clone */
3870 ret = -EINVAL;
3871 if (off + len > src->i_size || off + len < off)
3872 goto out_unlock;
3873 if (len == 0)
3874 olen = len = src->i_size - off;
3875 /* if we extend to eof, continue to block boundary */
3876 if (off + len == src->i_size)
3877 len = ALIGN(src->i_size, bs) - off;
3878
3879 if (len == 0) {
3880 ret = 0;
3881 goto out_unlock;
3882 }
3883
3884 /* verify the end result is block aligned */
3885 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3886 !IS_ALIGNED(destoff, bs))
3887 goto out_unlock;
3888
3889 /* verify if ranges are overlapped within the same file */
3890 if (same_inode) {
3891 if (destoff + len > off && destoff < off + len)
3892 goto out_unlock;
3893 }
3894
3895 if (destoff > inode->i_size) {
3896 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3897 if (ret)
3898 goto out_unlock;
3899 }
3900
3901 /*
3902 * Lock the target range too. Right after we replace the file extent
3903 * items in the fs tree (which now point to the cloned data), we might
3904 * have a worker replace them with extent items relative to a write
3905 * operation that was issued before this clone operation (i.e. confront
3906 * with inode.c:btrfs_finish_ordered_io).
3907 */
3908 if (same_inode) {
3909 u64 lock_start = min_t(u64, off, destoff);
3910 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3911
3912 ret = lock_extent_range(src, lock_start, lock_len, true);
3913 } else {
3914 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3915 true);
3916 }
3917 ASSERT(ret == 0);
3918 if (WARN_ON(ret)) {
3919 /* ranges in the io trees already unlocked */
3920 goto out_unlock;
3921 }
3922
3923 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3924
3925 if (same_inode) {
3926 u64 lock_start = min_t(u64, off, destoff);
3927 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3928
3929 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3930 } else {
3931 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3932 }
3933 /*
3934 * Truncate page cache pages so that future reads will see the cloned
3935 * data immediately and not the previous data.
3936 */
3937 truncate_inode_pages_range(&inode->i_data,
3938 round_down(destoff, PAGE_SIZE),
3939 round_up(destoff + len, PAGE_SIZE) - 1);
3940 out_unlock:
3941 if (!same_inode)
3942 btrfs_double_inode_unlock(src, inode);
3943 else
3944 inode_unlock(src);
3945 return ret;
3946 }
3947
3948 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3949 struct file *dst_file, loff_t destoff, u64 len)
3950 {
3951 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3952 }
3953
3954 /*
3955 * there are many ways the trans_start and trans_end ioctls can lead
3956 * to deadlocks. They should only be used by applications that
3957 * basically own the machine, and have a very in depth understanding
3958 * of all the possible deadlocks and enospc problems.
3959 */
3960 static long btrfs_ioctl_trans_start(struct file *file)
3961 {
3962 struct inode *inode = file_inode(file);
3963 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3964 struct btrfs_root *root = BTRFS_I(inode)->root;
3965 struct btrfs_trans_handle *trans;
3966 struct btrfs_file_private *private;
3967 int ret;
3968 static bool warned = false;
3969
3970 ret = -EPERM;
3971 if (!capable(CAP_SYS_ADMIN))
3972 goto out;
3973
3974 if (!warned) {
3975 btrfs_warn(fs_info,
3976 "Userspace transaction mechanism is considered "
3977 "deprecated and slated to be removed in 4.17. "
3978 "If you have a valid use case please "
3979 "speak up on the mailing list");
3980 WARN_ON(1);
3981 warned = true;
3982 }
3983
3984 ret = -EINPROGRESS;
3985 private = file->private_data;
3986 if (private && private->trans)
3987 goto out;
3988 if (!private) {
3989 private = kzalloc(sizeof(struct btrfs_file_private),
3990 GFP_KERNEL);
3991 if (!private)
3992 return -ENOMEM;
3993 file->private_data = private;
3994 }
3995
3996 ret = -EROFS;
3997 if (btrfs_root_readonly(root))
3998 goto out;
3999
4000 ret = mnt_want_write_file(file);
4001 if (ret)
4002 goto out;
4003
4004 atomic_inc(&fs_info->open_ioctl_trans);
4005
4006 ret = -ENOMEM;
4007 trans = btrfs_start_ioctl_transaction(root);
4008 if (IS_ERR(trans))
4009 goto out_drop;
4010
4011 private->trans = trans;
4012 return 0;
4013
4014 out_drop:
4015 atomic_dec(&fs_info->open_ioctl_trans);
4016 mnt_drop_write_file(file);
4017 out:
4018 return ret;
4019 }
4020
4021 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4022 {
4023 struct inode *inode = file_inode(file);
4024 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4025 struct btrfs_root *root = BTRFS_I(inode)->root;
4026 struct btrfs_root *new_root;
4027 struct btrfs_dir_item *di;
4028 struct btrfs_trans_handle *trans;
4029 struct btrfs_path *path;
4030 struct btrfs_key location;
4031 struct btrfs_disk_key disk_key;
4032 u64 objectid = 0;
4033 u64 dir_id;
4034 int ret;
4035
4036 if (!capable(CAP_SYS_ADMIN))
4037 return -EPERM;
4038
4039 ret = mnt_want_write_file(file);
4040 if (ret)
4041 return ret;
4042
4043 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4044 ret = -EFAULT;
4045 goto out;
4046 }
4047
4048 if (!objectid)
4049 objectid = BTRFS_FS_TREE_OBJECTID;
4050
4051 location.objectid = objectid;
4052 location.type = BTRFS_ROOT_ITEM_KEY;
4053 location.offset = (u64)-1;
4054
4055 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4056 if (IS_ERR(new_root)) {
4057 ret = PTR_ERR(new_root);
4058 goto out;
4059 }
4060
4061 path = btrfs_alloc_path();
4062 if (!path) {
4063 ret = -ENOMEM;
4064 goto out;
4065 }
4066 path->leave_spinning = 1;
4067
4068 trans = btrfs_start_transaction(root, 1);
4069 if (IS_ERR(trans)) {
4070 btrfs_free_path(path);
4071 ret = PTR_ERR(trans);
4072 goto out;
4073 }
4074
4075 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4076 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4077 dir_id, "default", 7, 1);
4078 if (IS_ERR_OR_NULL(di)) {
4079 btrfs_free_path(path);
4080 btrfs_end_transaction(trans);
4081 btrfs_err(fs_info,
4082 "Umm, you don't have the default diritem, this isn't going to work");
4083 ret = -ENOENT;
4084 goto out;
4085 }
4086
4087 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4088 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4089 btrfs_mark_buffer_dirty(path->nodes[0]);
4090 btrfs_free_path(path);
4091
4092 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4093 btrfs_end_transaction(trans);
4094 out:
4095 mnt_drop_write_file(file);
4096 return ret;
4097 }
4098
4099 void btrfs_get_block_group_info(struct list_head *groups_list,
4100 struct btrfs_ioctl_space_info *space)
4101 {
4102 struct btrfs_block_group_cache *block_group;
4103
4104 space->total_bytes = 0;
4105 space->used_bytes = 0;
4106 space->flags = 0;
4107 list_for_each_entry(block_group, groups_list, list) {
4108 space->flags = block_group->flags;
4109 space->total_bytes += block_group->key.offset;
4110 space->used_bytes +=
4111 btrfs_block_group_used(&block_group->item);
4112 }
4113 }
4114
4115 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4116 void __user *arg)
4117 {
4118 struct btrfs_ioctl_space_args space_args;
4119 struct btrfs_ioctl_space_info space;
4120 struct btrfs_ioctl_space_info *dest;
4121 struct btrfs_ioctl_space_info *dest_orig;
4122 struct btrfs_ioctl_space_info __user *user_dest;
4123 struct btrfs_space_info *info;
4124 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4125 BTRFS_BLOCK_GROUP_SYSTEM,
4126 BTRFS_BLOCK_GROUP_METADATA,
4127 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4128 int num_types = 4;
4129 int alloc_size;
4130 int ret = 0;
4131 u64 slot_count = 0;
4132 int i, c;
4133
4134 if (copy_from_user(&space_args,
4135 (struct btrfs_ioctl_space_args __user *)arg,
4136 sizeof(space_args)))
4137 return -EFAULT;
4138
4139 for (i = 0; i < num_types; i++) {
4140 struct btrfs_space_info *tmp;
4141
4142 info = NULL;
4143 rcu_read_lock();
4144 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4145 list) {
4146 if (tmp->flags == types[i]) {
4147 info = tmp;
4148 break;
4149 }
4150 }
4151 rcu_read_unlock();
4152
4153 if (!info)
4154 continue;
4155
4156 down_read(&info->groups_sem);
4157 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4158 if (!list_empty(&info->block_groups[c]))
4159 slot_count++;
4160 }
4161 up_read(&info->groups_sem);
4162 }
4163
4164 /*
4165 * Global block reserve, exported as a space_info
4166 */
4167 slot_count++;
4168
4169 /* space_slots == 0 means they are asking for a count */
4170 if (space_args.space_slots == 0) {
4171 space_args.total_spaces = slot_count;
4172 goto out;
4173 }
4174
4175 slot_count = min_t(u64, space_args.space_slots, slot_count);
4176
4177 alloc_size = sizeof(*dest) * slot_count;
4178
4179 /* we generally have at most 6 or so space infos, one for each raid
4180 * level. So, a whole page should be more than enough for everyone
4181 */
4182 if (alloc_size > PAGE_SIZE)
4183 return -ENOMEM;
4184
4185 space_args.total_spaces = 0;
4186 dest = kmalloc(alloc_size, GFP_KERNEL);
4187 if (!dest)
4188 return -ENOMEM;
4189 dest_orig = dest;
4190
4191 /* now we have a buffer to copy into */
4192 for (i = 0; i < num_types; i++) {
4193 struct btrfs_space_info *tmp;
4194
4195 if (!slot_count)
4196 break;
4197
4198 info = NULL;
4199 rcu_read_lock();
4200 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4201 list) {
4202 if (tmp->flags == types[i]) {
4203 info = tmp;
4204 break;
4205 }
4206 }
4207 rcu_read_unlock();
4208
4209 if (!info)
4210 continue;
4211 down_read(&info->groups_sem);
4212 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4213 if (!list_empty(&info->block_groups[c])) {
4214 btrfs_get_block_group_info(
4215 &info->block_groups[c], &space);
4216 memcpy(dest, &space, sizeof(space));
4217 dest++;
4218 space_args.total_spaces++;
4219 slot_count--;
4220 }
4221 if (!slot_count)
4222 break;
4223 }
4224 up_read(&info->groups_sem);
4225 }
4226
4227 /*
4228 * Add global block reserve
4229 */
4230 if (slot_count) {
4231 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4232
4233 spin_lock(&block_rsv->lock);
4234 space.total_bytes = block_rsv->size;
4235 space.used_bytes = block_rsv->size - block_rsv->reserved;
4236 spin_unlock(&block_rsv->lock);
4237 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4238 memcpy(dest, &space, sizeof(space));
4239 space_args.total_spaces++;
4240 }
4241
4242 user_dest = (struct btrfs_ioctl_space_info __user *)
4243 (arg + sizeof(struct btrfs_ioctl_space_args));
4244
4245 if (copy_to_user(user_dest, dest_orig, alloc_size))
4246 ret = -EFAULT;
4247
4248 kfree(dest_orig);
4249 out:
4250 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4251 ret = -EFAULT;
4252
4253 return ret;
4254 }
4255
4256 /*
4257 * there are many ways the trans_start and trans_end ioctls can lead
4258 * to deadlocks. They should only be used by applications that
4259 * basically own the machine, and have a very in depth understanding
4260 * of all the possible deadlocks and enospc problems.
4261 */
4262 long btrfs_ioctl_trans_end(struct file *file)
4263 {
4264 struct inode *inode = file_inode(file);
4265 struct btrfs_root *root = BTRFS_I(inode)->root;
4266 struct btrfs_file_private *private = file->private_data;
4267
4268 if (!private || !private->trans)
4269 return -EINVAL;
4270
4271 btrfs_end_transaction(private->trans);
4272 private->trans = NULL;
4273
4274 atomic_dec(&root->fs_info->open_ioctl_trans);
4275
4276 mnt_drop_write_file(file);
4277 return 0;
4278 }
4279
4280 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4281 void __user *argp)
4282 {
4283 struct btrfs_trans_handle *trans;
4284 u64 transid;
4285 int ret;
4286
4287 trans = btrfs_attach_transaction_barrier(root);
4288 if (IS_ERR(trans)) {
4289 if (PTR_ERR(trans) != -ENOENT)
4290 return PTR_ERR(trans);
4291
4292 /* No running transaction, don't bother */
4293 transid = root->fs_info->last_trans_committed;
4294 goto out;
4295 }
4296 transid = trans->transid;
4297 ret = btrfs_commit_transaction_async(trans, 0);
4298 if (ret) {
4299 btrfs_end_transaction(trans);
4300 return ret;
4301 }
4302 out:
4303 if (argp)
4304 if (copy_to_user(argp, &transid, sizeof(transid)))
4305 return -EFAULT;
4306 return 0;
4307 }
4308
4309 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4310 void __user *argp)
4311 {
4312 u64 transid;
4313
4314 if (argp) {
4315 if (copy_from_user(&transid, argp, sizeof(transid)))
4316 return -EFAULT;
4317 } else {
4318 transid = 0; /* current trans */
4319 }
4320 return btrfs_wait_for_commit(fs_info, transid);
4321 }
4322
4323 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4324 {
4325 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4326 struct btrfs_ioctl_scrub_args *sa;
4327 int ret;
4328
4329 if (!capable(CAP_SYS_ADMIN))
4330 return -EPERM;
4331
4332 sa = memdup_user(arg, sizeof(*sa));
4333 if (IS_ERR(sa))
4334 return PTR_ERR(sa);
4335
4336 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4337 ret = mnt_want_write_file(file);
4338 if (ret)
4339 goto out;
4340 }
4341
4342 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4343 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4344 0);
4345
4346 if (copy_to_user(arg, sa, sizeof(*sa)))
4347 ret = -EFAULT;
4348
4349 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4350 mnt_drop_write_file(file);
4351 out:
4352 kfree(sa);
4353 return ret;
4354 }
4355
4356 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4357 {
4358 if (!capable(CAP_SYS_ADMIN))
4359 return -EPERM;
4360
4361 return btrfs_scrub_cancel(fs_info);
4362 }
4363
4364 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4365 void __user *arg)
4366 {
4367 struct btrfs_ioctl_scrub_args *sa;
4368 int ret;
4369
4370 if (!capable(CAP_SYS_ADMIN))
4371 return -EPERM;
4372
4373 sa = memdup_user(arg, sizeof(*sa));
4374 if (IS_ERR(sa))
4375 return PTR_ERR(sa);
4376
4377 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4378
4379 if (copy_to_user(arg, sa, sizeof(*sa)))
4380 ret = -EFAULT;
4381
4382 kfree(sa);
4383 return ret;
4384 }
4385
4386 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4387 void __user *arg)
4388 {
4389 struct btrfs_ioctl_get_dev_stats *sa;
4390 int ret;
4391
4392 sa = memdup_user(arg, sizeof(*sa));
4393 if (IS_ERR(sa))
4394 return PTR_ERR(sa);
4395
4396 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4397 kfree(sa);
4398 return -EPERM;
4399 }
4400
4401 ret = btrfs_get_dev_stats(fs_info, sa);
4402
4403 if (copy_to_user(arg, sa, sizeof(*sa)))
4404 ret = -EFAULT;
4405
4406 kfree(sa);
4407 return ret;
4408 }
4409
4410 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4411 void __user *arg)
4412 {
4413 struct btrfs_ioctl_dev_replace_args *p;
4414 int ret;
4415
4416 if (!capable(CAP_SYS_ADMIN))
4417 return -EPERM;
4418
4419 p = memdup_user(arg, sizeof(*p));
4420 if (IS_ERR(p))
4421 return PTR_ERR(p);
4422
4423 switch (p->cmd) {
4424 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4425 if (fs_info->sb->s_flags & MS_RDONLY) {
4426 ret = -EROFS;
4427 goto out;
4428 }
4429 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4430 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4431 } else {
4432 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4433 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4434 }
4435 break;
4436 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4437 btrfs_dev_replace_status(fs_info, p);
4438 ret = 0;
4439 break;
4440 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4441 ret = btrfs_dev_replace_cancel(fs_info, p);
4442 break;
4443 default:
4444 ret = -EINVAL;
4445 break;
4446 }
4447
4448 if (copy_to_user(arg, p, sizeof(*p)))
4449 ret = -EFAULT;
4450 out:
4451 kfree(p);
4452 return ret;
4453 }
4454
4455 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4456 {
4457 int ret = 0;
4458 int i;
4459 u64 rel_ptr;
4460 int size;
4461 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4462 struct inode_fs_paths *ipath = NULL;
4463 struct btrfs_path *path;
4464
4465 if (!capable(CAP_DAC_READ_SEARCH))
4466 return -EPERM;
4467
4468 path = btrfs_alloc_path();
4469 if (!path) {
4470 ret = -ENOMEM;
4471 goto out;
4472 }
4473
4474 ipa = memdup_user(arg, sizeof(*ipa));
4475 if (IS_ERR(ipa)) {
4476 ret = PTR_ERR(ipa);
4477 ipa = NULL;
4478 goto out;
4479 }
4480
4481 size = min_t(u32, ipa->size, 4096);
4482 ipath = init_ipath(size, root, path);
4483 if (IS_ERR(ipath)) {
4484 ret = PTR_ERR(ipath);
4485 ipath = NULL;
4486 goto out;
4487 }
4488
4489 ret = paths_from_inode(ipa->inum, ipath);
4490 if (ret < 0)
4491 goto out;
4492
4493 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4494 rel_ptr = ipath->fspath->val[i] -
4495 (u64)(unsigned long)ipath->fspath->val;
4496 ipath->fspath->val[i] = rel_ptr;
4497 }
4498
4499 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4500 (void *)(unsigned long)ipath->fspath, size);
4501 if (ret) {
4502 ret = -EFAULT;
4503 goto out;
4504 }
4505
4506 out:
4507 btrfs_free_path(path);
4508 free_ipath(ipath);
4509 kfree(ipa);
4510
4511 return ret;
4512 }
4513
4514 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4515 {
4516 struct btrfs_data_container *inodes = ctx;
4517 const size_t c = 3 * sizeof(u64);
4518
4519 if (inodes->bytes_left >= c) {
4520 inodes->bytes_left -= c;
4521 inodes->val[inodes->elem_cnt] = inum;
4522 inodes->val[inodes->elem_cnt + 1] = offset;
4523 inodes->val[inodes->elem_cnt + 2] = root;
4524 inodes->elem_cnt += 3;
4525 } else {
4526 inodes->bytes_missing += c - inodes->bytes_left;
4527 inodes->bytes_left = 0;
4528 inodes->elem_missed += 3;
4529 }
4530
4531 return 0;
4532 }
4533
4534 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4535 void __user *arg)
4536 {
4537 int ret = 0;
4538 int size;
4539 struct btrfs_ioctl_logical_ino_args *loi;
4540 struct btrfs_data_container *inodes = NULL;
4541 struct btrfs_path *path = NULL;
4542
4543 if (!capable(CAP_SYS_ADMIN))
4544 return -EPERM;
4545
4546 loi = memdup_user(arg, sizeof(*loi));
4547 if (IS_ERR(loi))
4548 return PTR_ERR(loi);
4549
4550 path = btrfs_alloc_path();
4551 if (!path) {
4552 ret = -ENOMEM;
4553 goto out;
4554 }
4555
4556 size = min_t(u32, loi->size, SZ_64K);
4557 inodes = init_data_container(size);
4558 if (IS_ERR(inodes)) {
4559 ret = PTR_ERR(inodes);
4560 inodes = NULL;
4561 goto out;
4562 }
4563
4564 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4565 build_ino_list, inodes);
4566 if (ret == -EINVAL)
4567 ret = -ENOENT;
4568 if (ret < 0)
4569 goto out;
4570
4571 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4572 (void *)(unsigned long)inodes, size);
4573 if (ret)
4574 ret = -EFAULT;
4575
4576 out:
4577 btrfs_free_path(path);
4578 kvfree(inodes);
4579 kfree(loi);
4580
4581 return ret;
4582 }
4583
4584 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4585 struct btrfs_ioctl_balance_args *bargs)
4586 {
4587 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4588
4589 bargs->flags = bctl->flags;
4590
4591 if (atomic_read(&fs_info->balance_running))
4592 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4593 if (atomic_read(&fs_info->balance_pause_req))
4594 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4595 if (atomic_read(&fs_info->balance_cancel_req))
4596 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4597
4598 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4599 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4600 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4601
4602 if (lock) {
4603 spin_lock(&fs_info->balance_lock);
4604 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4605 spin_unlock(&fs_info->balance_lock);
4606 } else {
4607 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4608 }
4609 }
4610
4611 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4612 {
4613 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4614 struct btrfs_fs_info *fs_info = root->fs_info;
4615 struct btrfs_ioctl_balance_args *bargs;
4616 struct btrfs_balance_control *bctl;
4617 bool need_unlock; /* for mut. excl. ops lock */
4618 int ret;
4619
4620 if (!capable(CAP_SYS_ADMIN))
4621 return -EPERM;
4622
4623 ret = mnt_want_write_file(file);
4624 if (ret)
4625 return ret;
4626
4627 again:
4628 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4629 mutex_lock(&fs_info->volume_mutex);
4630 mutex_lock(&fs_info->balance_mutex);
4631 need_unlock = true;
4632 goto locked;
4633 }
4634
4635 /*
4636 * mut. excl. ops lock is locked. Three possibilities:
4637 * (1) some other op is running
4638 * (2) balance is running
4639 * (3) balance is paused -- special case (think resume)
4640 */
4641 mutex_lock(&fs_info->balance_mutex);
4642 if (fs_info->balance_ctl) {
4643 /* this is either (2) or (3) */
4644 if (!atomic_read(&fs_info->balance_running)) {
4645 mutex_unlock(&fs_info->balance_mutex);
4646 if (!mutex_trylock(&fs_info->volume_mutex))
4647 goto again;
4648 mutex_lock(&fs_info->balance_mutex);
4649
4650 if (fs_info->balance_ctl &&
4651 !atomic_read(&fs_info->balance_running)) {
4652 /* this is (3) */
4653 need_unlock = false;
4654 goto locked;
4655 }
4656
4657 mutex_unlock(&fs_info->balance_mutex);
4658 mutex_unlock(&fs_info->volume_mutex);
4659 goto again;
4660 } else {
4661 /* this is (2) */
4662 mutex_unlock(&fs_info->balance_mutex);
4663 ret = -EINPROGRESS;
4664 goto out;
4665 }
4666 } else {
4667 /* this is (1) */
4668 mutex_unlock(&fs_info->balance_mutex);
4669 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4670 goto out;
4671 }
4672
4673 locked:
4674 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4675
4676 if (arg) {
4677 bargs = memdup_user(arg, sizeof(*bargs));
4678 if (IS_ERR(bargs)) {
4679 ret = PTR_ERR(bargs);
4680 goto out_unlock;
4681 }
4682
4683 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4684 if (!fs_info->balance_ctl) {
4685 ret = -ENOTCONN;
4686 goto out_bargs;
4687 }
4688
4689 bctl = fs_info->balance_ctl;
4690 spin_lock(&fs_info->balance_lock);
4691 bctl->flags |= BTRFS_BALANCE_RESUME;
4692 spin_unlock(&fs_info->balance_lock);
4693
4694 goto do_balance;
4695 }
4696 } else {
4697 bargs = NULL;
4698 }
4699
4700 if (fs_info->balance_ctl) {
4701 ret = -EINPROGRESS;
4702 goto out_bargs;
4703 }
4704
4705 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4706 if (!bctl) {
4707 ret = -ENOMEM;
4708 goto out_bargs;
4709 }
4710
4711 bctl->fs_info = fs_info;
4712 if (arg) {
4713 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4714 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4715 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4716
4717 bctl->flags = bargs->flags;
4718 } else {
4719 /* balance everything - no filters */
4720 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4721 }
4722
4723 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4724 ret = -EINVAL;
4725 goto out_bctl;
4726 }
4727
4728 do_balance:
4729 /*
4730 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4731 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4732 * or, if restriper was paused all the way until unmount, in
4733 * free_fs_info. The flag is cleared in __cancel_balance.
4734 */
4735 need_unlock = false;
4736
4737 ret = btrfs_balance(bctl, bargs);
4738 bctl = NULL;
4739
4740 if (arg) {
4741 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4742 ret = -EFAULT;
4743 }
4744
4745 out_bctl:
4746 kfree(bctl);
4747 out_bargs:
4748 kfree(bargs);
4749 out_unlock:
4750 mutex_unlock(&fs_info->balance_mutex);
4751 mutex_unlock(&fs_info->volume_mutex);
4752 if (need_unlock)
4753 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4754 out:
4755 mnt_drop_write_file(file);
4756 return ret;
4757 }
4758
4759 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4760 {
4761 if (!capable(CAP_SYS_ADMIN))
4762 return -EPERM;
4763
4764 switch (cmd) {
4765 case BTRFS_BALANCE_CTL_PAUSE:
4766 return btrfs_pause_balance(fs_info);
4767 case BTRFS_BALANCE_CTL_CANCEL:
4768 return btrfs_cancel_balance(fs_info);
4769 }
4770
4771 return -EINVAL;
4772 }
4773
4774 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4775 void __user *arg)
4776 {
4777 struct btrfs_ioctl_balance_args *bargs;
4778 int ret = 0;
4779
4780 if (!capable(CAP_SYS_ADMIN))
4781 return -EPERM;
4782
4783 mutex_lock(&fs_info->balance_mutex);
4784 if (!fs_info->balance_ctl) {
4785 ret = -ENOTCONN;
4786 goto out;
4787 }
4788
4789 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4790 if (!bargs) {
4791 ret = -ENOMEM;
4792 goto out;
4793 }
4794
4795 update_ioctl_balance_args(fs_info, 1, bargs);
4796
4797 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4798 ret = -EFAULT;
4799
4800 kfree(bargs);
4801 out:
4802 mutex_unlock(&fs_info->balance_mutex);
4803 return ret;
4804 }
4805
4806 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4807 {
4808 struct inode *inode = file_inode(file);
4809 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4810 struct btrfs_ioctl_quota_ctl_args *sa;
4811 struct btrfs_trans_handle *trans = NULL;
4812 int ret;
4813 int err;
4814
4815 if (!capable(CAP_SYS_ADMIN))
4816 return -EPERM;
4817
4818 ret = mnt_want_write_file(file);
4819 if (ret)
4820 return ret;
4821
4822 sa = memdup_user(arg, sizeof(*sa));
4823 if (IS_ERR(sa)) {
4824 ret = PTR_ERR(sa);
4825 goto drop_write;
4826 }
4827
4828 down_write(&fs_info->subvol_sem);
4829 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4830 if (IS_ERR(trans)) {
4831 ret = PTR_ERR(trans);
4832 goto out;
4833 }
4834
4835 switch (sa->cmd) {
4836 case BTRFS_QUOTA_CTL_ENABLE:
4837 ret = btrfs_quota_enable(trans, fs_info);
4838 break;
4839 case BTRFS_QUOTA_CTL_DISABLE:
4840 ret = btrfs_quota_disable(trans, fs_info);
4841 break;
4842 default:
4843 ret = -EINVAL;
4844 break;
4845 }
4846
4847 err = btrfs_commit_transaction(trans);
4848 if (err && !ret)
4849 ret = err;
4850 out:
4851 kfree(sa);
4852 up_write(&fs_info->subvol_sem);
4853 drop_write:
4854 mnt_drop_write_file(file);
4855 return ret;
4856 }
4857
4858 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4859 {
4860 struct inode *inode = file_inode(file);
4861 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4862 struct btrfs_root *root = BTRFS_I(inode)->root;
4863 struct btrfs_ioctl_qgroup_assign_args *sa;
4864 struct btrfs_trans_handle *trans;
4865 int ret;
4866 int err;
4867
4868 if (!capable(CAP_SYS_ADMIN))
4869 return -EPERM;
4870
4871 ret = mnt_want_write_file(file);
4872 if (ret)
4873 return ret;
4874
4875 sa = memdup_user(arg, sizeof(*sa));
4876 if (IS_ERR(sa)) {
4877 ret = PTR_ERR(sa);
4878 goto drop_write;
4879 }
4880
4881 trans = btrfs_join_transaction(root);
4882 if (IS_ERR(trans)) {
4883 ret = PTR_ERR(trans);
4884 goto out;
4885 }
4886
4887 if (sa->assign) {
4888 ret = btrfs_add_qgroup_relation(trans, fs_info,
4889 sa->src, sa->dst);
4890 } else {
4891 ret = btrfs_del_qgroup_relation(trans, fs_info,
4892 sa->src, sa->dst);
4893 }
4894
4895 /* update qgroup status and info */
4896 err = btrfs_run_qgroups(trans, fs_info);
4897 if (err < 0)
4898 btrfs_handle_fs_error(fs_info, err,
4899 "failed to update qgroup status and info");
4900 err = btrfs_end_transaction(trans);
4901 if (err && !ret)
4902 ret = err;
4903
4904 out:
4905 kfree(sa);
4906 drop_write:
4907 mnt_drop_write_file(file);
4908 return ret;
4909 }
4910
4911 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4912 {
4913 struct inode *inode = file_inode(file);
4914 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4915 struct btrfs_root *root = BTRFS_I(inode)->root;
4916 struct btrfs_ioctl_qgroup_create_args *sa;
4917 struct btrfs_trans_handle *trans;
4918 int ret;
4919 int err;
4920
4921 if (!capable(CAP_SYS_ADMIN))
4922 return -EPERM;
4923
4924 ret = mnt_want_write_file(file);
4925 if (ret)
4926 return ret;
4927
4928 sa = memdup_user(arg, sizeof(*sa));
4929 if (IS_ERR(sa)) {
4930 ret = PTR_ERR(sa);
4931 goto drop_write;
4932 }
4933
4934 if (!sa->qgroupid) {
4935 ret = -EINVAL;
4936 goto out;
4937 }
4938
4939 trans = btrfs_join_transaction(root);
4940 if (IS_ERR(trans)) {
4941 ret = PTR_ERR(trans);
4942 goto out;
4943 }
4944
4945 if (sa->create) {
4946 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4947 } else {
4948 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4949 }
4950
4951 err = btrfs_end_transaction(trans);
4952 if (err && !ret)
4953 ret = err;
4954
4955 out:
4956 kfree(sa);
4957 drop_write:
4958 mnt_drop_write_file(file);
4959 return ret;
4960 }
4961
4962 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4963 {
4964 struct inode *inode = file_inode(file);
4965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4966 struct btrfs_root *root = BTRFS_I(inode)->root;
4967 struct btrfs_ioctl_qgroup_limit_args *sa;
4968 struct btrfs_trans_handle *trans;
4969 int ret;
4970 int err;
4971 u64 qgroupid;
4972
4973 if (!capable(CAP_SYS_ADMIN))
4974 return -EPERM;
4975
4976 ret = mnt_want_write_file(file);
4977 if (ret)
4978 return ret;
4979
4980 sa = memdup_user(arg, sizeof(*sa));
4981 if (IS_ERR(sa)) {
4982 ret = PTR_ERR(sa);
4983 goto drop_write;
4984 }
4985
4986 trans = btrfs_join_transaction(root);
4987 if (IS_ERR(trans)) {
4988 ret = PTR_ERR(trans);
4989 goto out;
4990 }
4991
4992 qgroupid = sa->qgroupid;
4993 if (!qgroupid) {
4994 /* take the current subvol as qgroup */
4995 qgroupid = root->root_key.objectid;
4996 }
4997
4998 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
4999
5000 err = btrfs_end_transaction(trans);
5001 if (err && !ret)
5002 ret = err;
5003
5004 out:
5005 kfree(sa);
5006 drop_write:
5007 mnt_drop_write_file(file);
5008 return ret;
5009 }
5010
5011 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5012 {
5013 struct inode *inode = file_inode(file);
5014 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5015 struct btrfs_ioctl_quota_rescan_args *qsa;
5016 int ret;
5017
5018 if (!capable(CAP_SYS_ADMIN))
5019 return -EPERM;
5020
5021 ret = mnt_want_write_file(file);
5022 if (ret)
5023 return ret;
5024
5025 qsa = memdup_user(arg, sizeof(*qsa));
5026 if (IS_ERR(qsa)) {
5027 ret = PTR_ERR(qsa);
5028 goto drop_write;
5029 }
5030
5031 if (qsa->flags) {
5032 ret = -EINVAL;
5033 goto out;
5034 }
5035
5036 ret = btrfs_qgroup_rescan(fs_info);
5037
5038 out:
5039 kfree(qsa);
5040 drop_write:
5041 mnt_drop_write_file(file);
5042 return ret;
5043 }
5044
5045 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5046 {
5047 struct inode *inode = file_inode(file);
5048 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5049 struct btrfs_ioctl_quota_rescan_args *qsa;
5050 int ret = 0;
5051
5052 if (!capable(CAP_SYS_ADMIN))
5053 return -EPERM;
5054
5055 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5056 if (!qsa)
5057 return -ENOMEM;
5058
5059 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5060 qsa->flags = 1;
5061 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5062 }
5063
5064 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5065 ret = -EFAULT;
5066
5067 kfree(qsa);
5068 return ret;
5069 }
5070
5071 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5072 {
5073 struct inode *inode = file_inode(file);
5074 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5075
5076 if (!capable(CAP_SYS_ADMIN))
5077 return -EPERM;
5078
5079 return btrfs_qgroup_wait_for_completion(fs_info, true);
5080 }
5081
5082 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5083 struct btrfs_ioctl_received_subvol_args *sa)
5084 {
5085 struct inode *inode = file_inode(file);
5086 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5087 struct btrfs_root *root = BTRFS_I(inode)->root;
5088 struct btrfs_root_item *root_item = &root->root_item;
5089 struct btrfs_trans_handle *trans;
5090 struct timespec ct = current_time(inode);
5091 int ret = 0;
5092 int received_uuid_changed;
5093
5094 if (!inode_owner_or_capable(inode))
5095 return -EPERM;
5096
5097 ret = mnt_want_write_file(file);
5098 if (ret < 0)
5099 return ret;
5100
5101 down_write(&fs_info->subvol_sem);
5102
5103 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5104 ret = -EINVAL;
5105 goto out;
5106 }
5107
5108 if (btrfs_root_readonly(root)) {
5109 ret = -EROFS;
5110 goto out;
5111 }
5112
5113 /*
5114 * 1 - root item
5115 * 2 - uuid items (received uuid + subvol uuid)
5116 */
5117 trans = btrfs_start_transaction(root, 3);
5118 if (IS_ERR(trans)) {
5119 ret = PTR_ERR(trans);
5120 trans = NULL;
5121 goto out;
5122 }
5123
5124 sa->rtransid = trans->transid;
5125 sa->rtime.sec = ct.tv_sec;
5126 sa->rtime.nsec = ct.tv_nsec;
5127
5128 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5129 BTRFS_UUID_SIZE);
5130 if (received_uuid_changed &&
5131 !btrfs_is_empty_uuid(root_item->received_uuid))
5132 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5133 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5134 root->root_key.objectid);
5135 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5136 btrfs_set_root_stransid(root_item, sa->stransid);
5137 btrfs_set_root_rtransid(root_item, sa->rtransid);
5138 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5139 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5140 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5141 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5142
5143 ret = btrfs_update_root(trans, fs_info->tree_root,
5144 &root->root_key, &root->root_item);
5145 if (ret < 0) {
5146 btrfs_end_transaction(trans);
5147 goto out;
5148 }
5149 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5150 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5151 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5152 root->root_key.objectid);
5153 if (ret < 0 && ret != -EEXIST) {
5154 btrfs_abort_transaction(trans, ret);
5155 goto out;
5156 }
5157 }
5158 ret = btrfs_commit_transaction(trans);
5159 if (ret < 0) {
5160 btrfs_abort_transaction(trans, ret);
5161 goto out;
5162 }
5163
5164 out:
5165 up_write(&fs_info->subvol_sem);
5166 mnt_drop_write_file(file);
5167 return ret;
5168 }
5169
5170 #ifdef CONFIG_64BIT
5171 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5172 void __user *arg)
5173 {
5174 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5175 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5176 int ret = 0;
5177
5178 args32 = memdup_user(arg, sizeof(*args32));
5179 if (IS_ERR(args32))
5180 return PTR_ERR(args32);
5181
5182 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5183 if (!args64) {
5184 ret = -ENOMEM;
5185 goto out;
5186 }
5187
5188 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5189 args64->stransid = args32->stransid;
5190 args64->rtransid = args32->rtransid;
5191 args64->stime.sec = args32->stime.sec;
5192 args64->stime.nsec = args32->stime.nsec;
5193 args64->rtime.sec = args32->rtime.sec;
5194 args64->rtime.nsec = args32->rtime.nsec;
5195 args64->flags = args32->flags;
5196
5197 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5198 if (ret)
5199 goto out;
5200
5201 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5202 args32->stransid = args64->stransid;
5203 args32->rtransid = args64->rtransid;
5204 args32->stime.sec = args64->stime.sec;
5205 args32->stime.nsec = args64->stime.nsec;
5206 args32->rtime.sec = args64->rtime.sec;
5207 args32->rtime.nsec = args64->rtime.nsec;
5208 args32->flags = args64->flags;
5209
5210 ret = copy_to_user(arg, args32, sizeof(*args32));
5211 if (ret)
5212 ret = -EFAULT;
5213
5214 out:
5215 kfree(args32);
5216 kfree(args64);
5217 return ret;
5218 }
5219 #endif
5220
5221 static long btrfs_ioctl_set_received_subvol(struct file *file,
5222 void __user *arg)
5223 {
5224 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5225 int ret = 0;
5226
5227 sa = memdup_user(arg, sizeof(*sa));
5228 if (IS_ERR(sa))
5229 return PTR_ERR(sa);
5230
5231 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5232
5233 if (ret)
5234 goto out;
5235
5236 ret = copy_to_user(arg, sa, sizeof(*sa));
5237 if (ret)
5238 ret = -EFAULT;
5239
5240 out:
5241 kfree(sa);
5242 return ret;
5243 }
5244
5245 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5246 {
5247 struct inode *inode = file_inode(file);
5248 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5249 size_t len;
5250 int ret;
5251 char label[BTRFS_LABEL_SIZE];
5252
5253 spin_lock(&fs_info->super_lock);
5254 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5255 spin_unlock(&fs_info->super_lock);
5256
5257 len = strnlen(label, BTRFS_LABEL_SIZE);
5258
5259 if (len == BTRFS_LABEL_SIZE) {
5260 btrfs_warn(fs_info,
5261 "label is too long, return the first %zu bytes",
5262 --len);
5263 }
5264
5265 ret = copy_to_user(arg, label, len);
5266
5267 return ret ? -EFAULT : 0;
5268 }
5269
5270 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5271 {
5272 struct inode *inode = file_inode(file);
5273 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5274 struct btrfs_root *root = BTRFS_I(inode)->root;
5275 struct btrfs_super_block *super_block = fs_info->super_copy;
5276 struct btrfs_trans_handle *trans;
5277 char label[BTRFS_LABEL_SIZE];
5278 int ret;
5279
5280 if (!capable(CAP_SYS_ADMIN))
5281 return -EPERM;
5282
5283 if (copy_from_user(label, arg, sizeof(label)))
5284 return -EFAULT;
5285
5286 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5287 btrfs_err(fs_info,
5288 "unable to set label with more than %d bytes",
5289 BTRFS_LABEL_SIZE - 1);
5290 return -EINVAL;
5291 }
5292
5293 ret = mnt_want_write_file(file);
5294 if (ret)
5295 return ret;
5296
5297 trans = btrfs_start_transaction(root, 0);
5298 if (IS_ERR(trans)) {
5299 ret = PTR_ERR(trans);
5300 goto out_unlock;
5301 }
5302
5303 spin_lock(&fs_info->super_lock);
5304 strcpy(super_block->label, label);
5305 spin_unlock(&fs_info->super_lock);
5306 ret = btrfs_commit_transaction(trans);
5307
5308 out_unlock:
5309 mnt_drop_write_file(file);
5310 return ret;
5311 }
5312
5313 #define INIT_FEATURE_FLAGS(suffix) \
5314 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5315 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5316 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5317
5318 int btrfs_ioctl_get_supported_features(void __user *arg)
5319 {
5320 static const struct btrfs_ioctl_feature_flags features[3] = {
5321 INIT_FEATURE_FLAGS(SUPP),
5322 INIT_FEATURE_FLAGS(SAFE_SET),
5323 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5324 };
5325
5326 if (copy_to_user(arg, &features, sizeof(features)))
5327 return -EFAULT;
5328
5329 return 0;
5330 }
5331
5332 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5333 {
5334 struct inode *inode = file_inode(file);
5335 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5336 struct btrfs_super_block *super_block = fs_info->super_copy;
5337 struct btrfs_ioctl_feature_flags features;
5338
5339 features.compat_flags = btrfs_super_compat_flags(super_block);
5340 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5341 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5342
5343 if (copy_to_user(arg, &features, sizeof(features)))
5344 return -EFAULT;
5345
5346 return 0;
5347 }
5348
5349 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5350 enum btrfs_feature_set set,
5351 u64 change_mask, u64 flags, u64 supported_flags,
5352 u64 safe_set, u64 safe_clear)
5353 {
5354 const char *type = btrfs_feature_set_names[set];
5355 char *names;
5356 u64 disallowed, unsupported;
5357 u64 set_mask = flags & change_mask;
5358 u64 clear_mask = ~flags & change_mask;
5359
5360 unsupported = set_mask & ~supported_flags;
5361 if (unsupported) {
5362 names = btrfs_printable_features(set, unsupported);
5363 if (names) {
5364 btrfs_warn(fs_info,
5365 "this kernel does not support the %s feature bit%s",
5366 names, strchr(names, ',') ? "s" : "");
5367 kfree(names);
5368 } else
5369 btrfs_warn(fs_info,
5370 "this kernel does not support %s bits 0x%llx",
5371 type, unsupported);
5372 return -EOPNOTSUPP;
5373 }
5374
5375 disallowed = set_mask & ~safe_set;
5376 if (disallowed) {
5377 names = btrfs_printable_features(set, disallowed);
5378 if (names) {
5379 btrfs_warn(fs_info,
5380 "can't set the %s feature bit%s while mounted",
5381 names, strchr(names, ',') ? "s" : "");
5382 kfree(names);
5383 } else
5384 btrfs_warn(fs_info,
5385 "can't set %s bits 0x%llx while mounted",
5386 type, disallowed);
5387 return -EPERM;
5388 }
5389
5390 disallowed = clear_mask & ~safe_clear;
5391 if (disallowed) {
5392 names = btrfs_printable_features(set, disallowed);
5393 if (names) {
5394 btrfs_warn(fs_info,
5395 "can't clear the %s feature bit%s while mounted",
5396 names, strchr(names, ',') ? "s" : "");
5397 kfree(names);
5398 } else
5399 btrfs_warn(fs_info,
5400 "can't clear %s bits 0x%llx while mounted",
5401 type, disallowed);
5402 return -EPERM;
5403 }
5404
5405 return 0;
5406 }
5407
5408 #define check_feature(fs_info, change_mask, flags, mask_base) \
5409 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5410 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5411 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5412 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5413
5414 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5415 {
5416 struct inode *inode = file_inode(file);
5417 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5418 struct btrfs_root *root = BTRFS_I(inode)->root;
5419 struct btrfs_super_block *super_block = fs_info->super_copy;
5420 struct btrfs_ioctl_feature_flags flags[2];
5421 struct btrfs_trans_handle *trans;
5422 u64 newflags;
5423 int ret;
5424
5425 if (!capable(CAP_SYS_ADMIN))
5426 return -EPERM;
5427
5428 if (copy_from_user(flags, arg, sizeof(flags)))
5429 return -EFAULT;
5430
5431 /* Nothing to do */
5432 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5433 !flags[0].incompat_flags)
5434 return 0;
5435
5436 ret = check_feature(fs_info, flags[0].compat_flags,
5437 flags[1].compat_flags, COMPAT);
5438 if (ret)
5439 return ret;
5440
5441 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5442 flags[1].compat_ro_flags, COMPAT_RO);
5443 if (ret)
5444 return ret;
5445
5446 ret = check_feature(fs_info, flags[0].incompat_flags,
5447 flags[1].incompat_flags, INCOMPAT);
5448 if (ret)
5449 return ret;
5450
5451 ret = mnt_want_write_file(file);
5452 if (ret)
5453 return ret;
5454
5455 trans = btrfs_start_transaction(root, 0);
5456 if (IS_ERR(trans)) {
5457 ret = PTR_ERR(trans);
5458 goto out_drop_write;
5459 }
5460
5461 spin_lock(&fs_info->super_lock);
5462 newflags = btrfs_super_compat_flags(super_block);
5463 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5464 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5465 btrfs_set_super_compat_flags(super_block, newflags);
5466
5467 newflags = btrfs_super_compat_ro_flags(super_block);
5468 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5469 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5470 btrfs_set_super_compat_ro_flags(super_block, newflags);
5471
5472 newflags = btrfs_super_incompat_flags(super_block);
5473 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5474 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5475 btrfs_set_super_incompat_flags(super_block, newflags);
5476 spin_unlock(&fs_info->super_lock);
5477
5478 ret = btrfs_commit_transaction(trans);
5479 out_drop_write:
5480 mnt_drop_write_file(file);
5481
5482 return ret;
5483 }
5484
5485 long btrfs_ioctl(struct file *file, unsigned int
5486 cmd, unsigned long arg)
5487 {
5488 struct inode *inode = file_inode(file);
5489 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5490 struct btrfs_root *root = BTRFS_I(inode)->root;
5491 void __user *argp = (void __user *)arg;
5492
5493 switch (cmd) {
5494 case FS_IOC_GETFLAGS:
5495 return btrfs_ioctl_getflags(file, argp);
5496 case FS_IOC_SETFLAGS:
5497 return btrfs_ioctl_setflags(file, argp);
5498 case FS_IOC_GETVERSION:
5499 return btrfs_ioctl_getversion(file, argp);
5500 case FITRIM:
5501 return btrfs_ioctl_fitrim(file, argp);
5502 case BTRFS_IOC_SNAP_CREATE:
5503 return btrfs_ioctl_snap_create(file, argp, 0);
5504 case BTRFS_IOC_SNAP_CREATE_V2:
5505 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5506 case BTRFS_IOC_SUBVOL_CREATE:
5507 return btrfs_ioctl_snap_create(file, argp, 1);
5508 case BTRFS_IOC_SUBVOL_CREATE_V2:
5509 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5510 case BTRFS_IOC_SNAP_DESTROY:
5511 return btrfs_ioctl_snap_destroy(file, argp);
5512 case BTRFS_IOC_SUBVOL_GETFLAGS:
5513 return btrfs_ioctl_subvol_getflags(file, argp);
5514 case BTRFS_IOC_SUBVOL_SETFLAGS:
5515 return btrfs_ioctl_subvol_setflags(file, argp);
5516 case BTRFS_IOC_DEFAULT_SUBVOL:
5517 return btrfs_ioctl_default_subvol(file, argp);
5518 case BTRFS_IOC_DEFRAG:
5519 return btrfs_ioctl_defrag(file, NULL);
5520 case BTRFS_IOC_DEFRAG_RANGE:
5521 return btrfs_ioctl_defrag(file, argp);
5522 case BTRFS_IOC_RESIZE:
5523 return btrfs_ioctl_resize(file, argp);
5524 case BTRFS_IOC_ADD_DEV:
5525 return btrfs_ioctl_add_dev(fs_info, argp);
5526 case BTRFS_IOC_RM_DEV:
5527 return btrfs_ioctl_rm_dev(file, argp);
5528 case BTRFS_IOC_RM_DEV_V2:
5529 return btrfs_ioctl_rm_dev_v2(file, argp);
5530 case BTRFS_IOC_FS_INFO:
5531 return btrfs_ioctl_fs_info(fs_info, argp);
5532 case BTRFS_IOC_DEV_INFO:
5533 return btrfs_ioctl_dev_info(fs_info, argp);
5534 case BTRFS_IOC_BALANCE:
5535 return btrfs_ioctl_balance(file, NULL);
5536 case BTRFS_IOC_TRANS_START:
5537 return btrfs_ioctl_trans_start(file);
5538 case BTRFS_IOC_TRANS_END:
5539 return btrfs_ioctl_trans_end(file);
5540 case BTRFS_IOC_TREE_SEARCH:
5541 return btrfs_ioctl_tree_search(file, argp);
5542 case BTRFS_IOC_TREE_SEARCH_V2:
5543 return btrfs_ioctl_tree_search_v2(file, argp);
5544 case BTRFS_IOC_INO_LOOKUP:
5545 return btrfs_ioctl_ino_lookup(file, argp);
5546 case BTRFS_IOC_INO_PATHS:
5547 return btrfs_ioctl_ino_to_path(root, argp);
5548 case BTRFS_IOC_LOGICAL_INO:
5549 return btrfs_ioctl_logical_to_ino(fs_info, argp);
5550 case BTRFS_IOC_SPACE_INFO:
5551 return btrfs_ioctl_space_info(fs_info, argp);
5552 case BTRFS_IOC_SYNC: {
5553 int ret;
5554
5555 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5556 if (ret)
5557 return ret;
5558 ret = btrfs_sync_fs(inode->i_sb, 1);
5559 /*
5560 * The transaction thread may want to do more work,
5561 * namely it pokes the cleaner kthread that will start
5562 * processing uncleaned subvols.
5563 */
5564 wake_up_process(fs_info->transaction_kthread);
5565 return ret;
5566 }
5567 case BTRFS_IOC_START_SYNC:
5568 return btrfs_ioctl_start_sync(root, argp);
5569 case BTRFS_IOC_WAIT_SYNC:
5570 return btrfs_ioctl_wait_sync(fs_info, argp);
5571 case BTRFS_IOC_SCRUB:
5572 return btrfs_ioctl_scrub(file, argp);
5573 case BTRFS_IOC_SCRUB_CANCEL:
5574 return btrfs_ioctl_scrub_cancel(fs_info);
5575 case BTRFS_IOC_SCRUB_PROGRESS:
5576 return btrfs_ioctl_scrub_progress(fs_info, argp);
5577 case BTRFS_IOC_BALANCE_V2:
5578 return btrfs_ioctl_balance(file, argp);
5579 case BTRFS_IOC_BALANCE_CTL:
5580 return btrfs_ioctl_balance_ctl(fs_info, arg);
5581 case BTRFS_IOC_BALANCE_PROGRESS:
5582 return btrfs_ioctl_balance_progress(fs_info, argp);
5583 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5584 return btrfs_ioctl_set_received_subvol(file, argp);
5585 #ifdef CONFIG_64BIT
5586 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5587 return btrfs_ioctl_set_received_subvol_32(file, argp);
5588 #endif
5589 case BTRFS_IOC_SEND:
5590 return btrfs_ioctl_send(file, argp);
5591 case BTRFS_IOC_GET_DEV_STATS:
5592 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5593 case BTRFS_IOC_QUOTA_CTL:
5594 return btrfs_ioctl_quota_ctl(file, argp);
5595 case BTRFS_IOC_QGROUP_ASSIGN:
5596 return btrfs_ioctl_qgroup_assign(file, argp);
5597 case BTRFS_IOC_QGROUP_CREATE:
5598 return btrfs_ioctl_qgroup_create(file, argp);
5599 case BTRFS_IOC_QGROUP_LIMIT:
5600 return btrfs_ioctl_qgroup_limit(file, argp);
5601 case BTRFS_IOC_QUOTA_RESCAN:
5602 return btrfs_ioctl_quota_rescan(file, argp);
5603 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5604 return btrfs_ioctl_quota_rescan_status(file, argp);
5605 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5606 return btrfs_ioctl_quota_rescan_wait(file, argp);
5607 case BTRFS_IOC_DEV_REPLACE:
5608 return btrfs_ioctl_dev_replace(fs_info, argp);
5609 case BTRFS_IOC_GET_FSLABEL:
5610 return btrfs_ioctl_get_fslabel(file, argp);
5611 case BTRFS_IOC_SET_FSLABEL:
5612 return btrfs_ioctl_set_fslabel(file, argp);
5613 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5614 return btrfs_ioctl_get_supported_features(argp);
5615 case BTRFS_IOC_GET_FEATURES:
5616 return btrfs_ioctl_get_features(file, argp);
5617 case BTRFS_IOC_SET_FEATURES:
5618 return btrfs_ioctl_set_features(file, argp);
5619 }
5620
5621 return -ENOTTY;
5622 }
5623
5624 #ifdef CONFIG_COMPAT
5625 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5626 {
5627 /*
5628 * These all access 32-bit values anyway so no further
5629 * handling is necessary.
5630 */
5631 switch (cmd) {
5632 case FS_IOC32_GETFLAGS:
5633 cmd = FS_IOC_GETFLAGS;
5634 break;
5635 case FS_IOC32_SETFLAGS:
5636 cmd = FS_IOC_SETFLAGS;
5637 break;
5638 case FS_IOC32_GETVERSION:
5639 cmd = FS_IOC_GETVERSION;
5640 break;
5641 }
5642
5643 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5644 }
5645 #endif