]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/btrfs/ordered-data.c
Merge tag 'nds32-for-linux-5.2-rc3' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-focal-kernel.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "ctree.h"
11 #include "transaction.h"
12 #include "btrfs_inode.h"
13 #include "extent_io.h"
14 #include "disk-io.h"
15 #include "compression.h"
16
17 static struct kmem_cache *btrfs_ordered_extent_cache;
18
19 static u64 entry_end(struct btrfs_ordered_extent *entry)
20 {
21 if (entry->file_offset + entry->len < entry->file_offset)
22 return (u64)-1;
23 return entry->file_offset + entry->len;
24 }
25
26 /* returns NULL if the insertion worked, or it returns the node it did find
27 * in the tree
28 */
29 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
30 struct rb_node *node)
31 {
32 struct rb_node **p = &root->rb_node;
33 struct rb_node *parent = NULL;
34 struct btrfs_ordered_extent *entry;
35
36 while (*p) {
37 parent = *p;
38 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
39
40 if (file_offset < entry->file_offset)
41 p = &(*p)->rb_left;
42 else if (file_offset >= entry_end(entry))
43 p = &(*p)->rb_right;
44 else
45 return parent;
46 }
47
48 rb_link_node(node, parent, p);
49 rb_insert_color(node, root);
50 return NULL;
51 }
52
53 static void ordered_data_tree_panic(struct inode *inode, int errno,
54 u64 offset)
55 {
56 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
57 btrfs_panic(fs_info, errno,
58 "Inconsistency in ordered tree at offset %llu", offset);
59 }
60
61 /*
62 * look for a given offset in the tree, and if it can't be found return the
63 * first lesser offset
64 */
65 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
66 struct rb_node **prev_ret)
67 {
68 struct rb_node *n = root->rb_node;
69 struct rb_node *prev = NULL;
70 struct rb_node *test;
71 struct btrfs_ordered_extent *entry;
72 struct btrfs_ordered_extent *prev_entry = NULL;
73
74 while (n) {
75 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
76 prev = n;
77 prev_entry = entry;
78
79 if (file_offset < entry->file_offset)
80 n = n->rb_left;
81 else if (file_offset >= entry_end(entry))
82 n = n->rb_right;
83 else
84 return n;
85 }
86 if (!prev_ret)
87 return NULL;
88
89 while (prev && file_offset >= entry_end(prev_entry)) {
90 test = rb_next(prev);
91 if (!test)
92 break;
93 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
94 rb_node);
95 if (file_offset < entry_end(prev_entry))
96 break;
97
98 prev = test;
99 }
100 if (prev)
101 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
102 rb_node);
103 while (prev && file_offset < entry_end(prev_entry)) {
104 test = rb_prev(prev);
105 if (!test)
106 break;
107 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
108 rb_node);
109 prev = test;
110 }
111 *prev_ret = prev;
112 return NULL;
113 }
114
115 /*
116 * helper to check if a given offset is inside a given entry
117 */
118 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
119 {
120 if (file_offset < entry->file_offset ||
121 entry->file_offset + entry->len <= file_offset)
122 return 0;
123 return 1;
124 }
125
126 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
127 u64 len)
128 {
129 if (file_offset + len <= entry->file_offset ||
130 entry->file_offset + entry->len <= file_offset)
131 return 0;
132 return 1;
133 }
134
135 /*
136 * look find the first ordered struct that has this offset, otherwise
137 * the first one less than this offset
138 */
139 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
140 u64 file_offset)
141 {
142 struct rb_root *root = &tree->tree;
143 struct rb_node *prev = NULL;
144 struct rb_node *ret;
145 struct btrfs_ordered_extent *entry;
146
147 if (tree->last) {
148 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
149 rb_node);
150 if (offset_in_entry(entry, file_offset))
151 return tree->last;
152 }
153 ret = __tree_search(root, file_offset, &prev);
154 if (!ret)
155 ret = prev;
156 if (ret)
157 tree->last = ret;
158 return ret;
159 }
160
161 /* allocate and add a new ordered_extent into the per-inode tree.
162 * file_offset is the logical offset in the file
163 *
164 * start is the disk block number of an extent already reserved in the
165 * extent allocation tree
166 *
167 * len is the length of the extent
168 *
169 * The tree is given a single reference on the ordered extent that was
170 * inserted.
171 */
172 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
173 u64 start, u64 len, u64 disk_len,
174 int type, int dio, int compress_type)
175 {
176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
177 struct btrfs_root *root = BTRFS_I(inode)->root;
178 struct btrfs_ordered_inode_tree *tree;
179 struct rb_node *node;
180 struct btrfs_ordered_extent *entry;
181
182 tree = &BTRFS_I(inode)->ordered_tree;
183 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
184 if (!entry)
185 return -ENOMEM;
186
187 entry->file_offset = file_offset;
188 entry->start = start;
189 entry->len = len;
190 entry->disk_len = disk_len;
191 entry->bytes_left = len;
192 entry->inode = igrab(inode);
193 entry->compress_type = compress_type;
194 entry->truncated_len = (u64)-1;
195 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
196 set_bit(type, &entry->flags);
197
198 if (dio) {
199 percpu_counter_add_batch(&fs_info->dio_bytes, len,
200 fs_info->delalloc_batch);
201 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
202 }
203
204 /* one ref for the tree */
205 refcount_set(&entry->refs, 1);
206 init_waitqueue_head(&entry->wait);
207 INIT_LIST_HEAD(&entry->list);
208 INIT_LIST_HEAD(&entry->root_extent_list);
209 INIT_LIST_HEAD(&entry->work_list);
210 init_completion(&entry->completion);
211 INIT_LIST_HEAD(&entry->log_list);
212 INIT_LIST_HEAD(&entry->trans_list);
213
214 trace_btrfs_ordered_extent_add(inode, entry);
215
216 spin_lock_irq(&tree->lock);
217 node = tree_insert(&tree->tree, file_offset,
218 &entry->rb_node);
219 if (node)
220 ordered_data_tree_panic(inode, -EEXIST, file_offset);
221 spin_unlock_irq(&tree->lock);
222
223 spin_lock(&root->ordered_extent_lock);
224 list_add_tail(&entry->root_extent_list,
225 &root->ordered_extents);
226 root->nr_ordered_extents++;
227 if (root->nr_ordered_extents == 1) {
228 spin_lock(&fs_info->ordered_root_lock);
229 BUG_ON(!list_empty(&root->ordered_root));
230 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
231 spin_unlock(&fs_info->ordered_root_lock);
232 }
233 spin_unlock(&root->ordered_extent_lock);
234
235 /*
236 * We don't need the count_max_extents here, we can assume that all of
237 * that work has been done at higher layers, so this is truly the
238 * smallest the extent is going to get.
239 */
240 spin_lock(&BTRFS_I(inode)->lock);
241 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
242 spin_unlock(&BTRFS_I(inode)->lock);
243
244 return 0;
245 }
246
247 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
248 u64 start, u64 len, u64 disk_len, int type)
249 {
250 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251 disk_len, type, 0,
252 BTRFS_COMPRESS_NONE);
253 }
254
255 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
256 u64 start, u64 len, u64 disk_len, int type)
257 {
258 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
259 disk_len, type, 1,
260 BTRFS_COMPRESS_NONE);
261 }
262
263 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
264 u64 start, u64 len, u64 disk_len,
265 int type, int compress_type)
266 {
267 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
268 disk_len, type, 0,
269 compress_type);
270 }
271
272 /*
273 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
274 * when an ordered extent is finished. If the list covers more than one
275 * ordered extent, it is split across multiples.
276 */
277 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
278 struct btrfs_ordered_sum *sum)
279 {
280 struct btrfs_ordered_inode_tree *tree;
281
282 tree = &BTRFS_I(entry->inode)->ordered_tree;
283 spin_lock_irq(&tree->lock);
284 list_add_tail(&sum->list, &entry->list);
285 spin_unlock_irq(&tree->lock);
286 }
287
288 /*
289 * this is used to account for finished IO across a given range
290 * of the file. The IO may span ordered extents. If
291 * a given ordered_extent is completely done, 1 is returned, otherwise
292 * 0.
293 *
294 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
295 * to make sure this function only returns 1 once for a given ordered extent.
296 *
297 * file_offset is updated to one byte past the range that is recorded as
298 * complete. This allows you to walk forward in the file.
299 */
300 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
301 struct btrfs_ordered_extent **cached,
302 u64 *file_offset, u64 io_size, int uptodate)
303 {
304 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
305 struct btrfs_ordered_inode_tree *tree;
306 struct rb_node *node;
307 struct btrfs_ordered_extent *entry = NULL;
308 int ret;
309 unsigned long flags;
310 u64 dec_end;
311 u64 dec_start;
312 u64 to_dec;
313
314 tree = &BTRFS_I(inode)->ordered_tree;
315 spin_lock_irqsave(&tree->lock, flags);
316 node = tree_search(tree, *file_offset);
317 if (!node) {
318 ret = 1;
319 goto out;
320 }
321
322 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
323 if (!offset_in_entry(entry, *file_offset)) {
324 ret = 1;
325 goto out;
326 }
327
328 dec_start = max(*file_offset, entry->file_offset);
329 dec_end = min(*file_offset + io_size, entry->file_offset +
330 entry->len);
331 *file_offset = dec_end;
332 if (dec_start > dec_end) {
333 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
334 dec_start, dec_end);
335 }
336 to_dec = dec_end - dec_start;
337 if (to_dec > entry->bytes_left) {
338 btrfs_crit(fs_info,
339 "bad ordered accounting left %llu size %llu",
340 entry->bytes_left, to_dec);
341 }
342 entry->bytes_left -= to_dec;
343 if (!uptodate)
344 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
345
346 if (entry->bytes_left == 0) {
347 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
348 /* test_and_set_bit implies a barrier */
349 cond_wake_up_nomb(&entry->wait);
350 } else {
351 ret = 1;
352 }
353 out:
354 if (!ret && cached && entry) {
355 *cached = entry;
356 refcount_inc(&entry->refs);
357 }
358 spin_unlock_irqrestore(&tree->lock, flags);
359 return ret == 0;
360 }
361
362 /*
363 * this is used to account for finished IO across a given range
364 * of the file. The IO should not span ordered extents. If
365 * a given ordered_extent is completely done, 1 is returned, otherwise
366 * 0.
367 *
368 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
369 * to make sure this function only returns 1 once for a given ordered extent.
370 */
371 int btrfs_dec_test_ordered_pending(struct inode *inode,
372 struct btrfs_ordered_extent **cached,
373 u64 file_offset, u64 io_size, int uptodate)
374 {
375 struct btrfs_ordered_inode_tree *tree;
376 struct rb_node *node;
377 struct btrfs_ordered_extent *entry = NULL;
378 unsigned long flags;
379 int ret;
380
381 tree = &BTRFS_I(inode)->ordered_tree;
382 spin_lock_irqsave(&tree->lock, flags);
383 if (cached && *cached) {
384 entry = *cached;
385 goto have_entry;
386 }
387
388 node = tree_search(tree, file_offset);
389 if (!node) {
390 ret = 1;
391 goto out;
392 }
393
394 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
395 have_entry:
396 if (!offset_in_entry(entry, file_offset)) {
397 ret = 1;
398 goto out;
399 }
400
401 if (io_size > entry->bytes_left) {
402 btrfs_crit(BTRFS_I(inode)->root->fs_info,
403 "bad ordered accounting left %llu size %llu",
404 entry->bytes_left, io_size);
405 }
406 entry->bytes_left -= io_size;
407 if (!uptodate)
408 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
409
410 if (entry->bytes_left == 0) {
411 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
412 /* test_and_set_bit implies a barrier */
413 cond_wake_up_nomb(&entry->wait);
414 } else {
415 ret = 1;
416 }
417 out:
418 if (!ret && cached && entry) {
419 *cached = entry;
420 refcount_inc(&entry->refs);
421 }
422 spin_unlock_irqrestore(&tree->lock, flags);
423 return ret == 0;
424 }
425
426 /*
427 * used to drop a reference on an ordered extent. This will free
428 * the extent if the last reference is dropped
429 */
430 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
431 {
432 struct list_head *cur;
433 struct btrfs_ordered_sum *sum;
434
435 trace_btrfs_ordered_extent_put(entry->inode, entry);
436
437 if (refcount_dec_and_test(&entry->refs)) {
438 ASSERT(list_empty(&entry->log_list));
439 ASSERT(list_empty(&entry->trans_list));
440 ASSERT(list_empty(&entry->root_extent_list));
441 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
442 if (entry->inode)
443 btrfs_add_delayed_iput(entry->inode);
444 while (!list_empty(&entry->list)) {
445 cur = entry->list.next;
446 sum = list_entry(cur, struct btrfs_ordered_sum, list);
447 list_del(&sum->list);
448 kvfree(sum);
449 }
450 kmem_cache_free(btrfs_ordered_extent_cache, entry);
451 }
452 }
453
454 /*
455 * remove an ordered extent from the tree. No references are dropped
456 * and waiters are woken up.
457 */
458 void btrfs_remove_ordered_extent(struct inode *inode,
459 struct btrfs_ordered_extent *entry)
460 {
461 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
462 struct btrfs_ordered_inode_tree *tree;
463 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
464 struct btrfs_root *root = btrfs_inode->root;
465 struct rb_node *node;
466
467 /* This is paired with btrfs_add_ordered_extent. */
468 spin_lock(&btrfs_inode->lock);
469 btrfs_mod_outstanding_extents(btrfs_inode, -1);
470 spin_unlock(&btrfs_inode->lock);
471 if (root != fs_info->tree_root)
472 btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
473
474 if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
475 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->len,
476 fs_info->delalloc_batch);
477
478 tree = &btrfs_inode->ordered_tree;
479 spin_lock_irq(&tree->lock);
480 node = &entry->rb_node;
481 rb_erase(node, &tree->tree);
482 RB_CLEAR_NODE(node);
483 if (tree->last == node)
484 tree->last = NULL;
485 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
486 spin_unlock_irq(&tree->lock);
487
488 spin_lock(&root->ordered_extent_lock);
489 list_del_init(&entry->root_extent_list);
490 root->nr_ordered_extents--;
491
492 trace_btrfs_ordered_extent_remove(inode, entry);
493
494 if (!root->nr_ordered_extents) {
495 spin_lock(&fs_info->ordered_root_lock);
496 BUG_ON(list_empty(&root->ordered_root));
497 list_del_init(&root->ordered_root);
498 spin_unlock(&fs_info->ordered_root_lock);
499 }
500 spin_unlock(&root->ordered_extent_lock);
501 wake_up(&entry->wait);
502 }
503
504 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
505 {
506 struct btrfs_ordered_extent *ordered;
507
508 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
509 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
510 complete(&ordered->completion);
511 }
512
513 /*
514 * wait for all the ordered extents in a root. This is done when balancing
515 * space between drives.
516 */
517 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
518 const u64 range_start, const u64 range_len)
519 {
520 struct btrfs_fs_info *fs_info = root->fs_info;
521 LIST_HEAD(splice);
522 LIST_HEAD(skipped);
523 LIST_HEAD(works);
524 struct btrfs_ordered_extent *ordered, *next;
525 u64 count = 0;
526 const u64 range_end = range_start + range_len;
527
528 mutex_lock(&root->ordered_extent_mutex);
529 spin_lock(&root->ordered_extent_lock);
530 list_splice_init(&root->ordered_extents, &splice);
531 while (!list_empty(&splice) && nr) {
532 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
533 root_extent_list);
534
535 if (range_end <= ordered->start ||
536 ordered->start + ordered->disk_len <= range_start) {
537 list_move_tail(&ordered->root_extent_list, &skipped);
538 cond_resched_lock(&root->ordered_extent_lock);
539 continue;
540 }
541
542 list_move_tail(&ordered->root_extent_list,
543 &root->ordered_extents);
544 refcount_inc(&ordered->refs);
545 spin_unlock(&root->ordered_extent_lock);
546
547 btrfs_init_work(&ordered->flush_work,
548 btrfs_flush_delalloc_helper,
549 btrfs_run_ordered_extent_work, NULL, NULL);
550 list_add_tail(&ordered->work_list, &works);
551 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
552
553 cond_resched();
554 spin_lock(&root->ordered_extent_lock);
555 if (nr != U64_MAX)
556 nr--;
557 count++;
558 }
559 list_splice_tail(&skipped, &root->ordered_extents);
560 list_splice_tail(&splice, &root->ordered_extents);
561 spin_unlock(&root->ordered_extent_lock);
562
563 list_for_each_entry_safe(ordered, next, &works, work_list) {
564 list_del_init(&ordered->work_list);
565 wait_for_completion(&ordered->completion);
566 btrfs_put_ordered_extent(ordered);
567 cond_resched();
568 }
569 mutex_unlock(&root->ordered_extent_mutex);
570
571 return count;
572 }
573
574 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
575 const u64 range_start, const u64 range_len)
576 {
577 struct btrfs_root *root;
578 struct list_head splice;
579 u64 total_done = 0;
580 u64 done;
581
582 INIT_LIST_HEAD(&splice);
583
584 mutex_lock(&fs_info->ordered_operations_mutex);
585 spin_lock(&fs_info->ordered_root_lock);
586 list_splice_init(&fs_info->ordered_roots, &splice);
587 while (!list_empty(&splice) && nr) {
588 root = list_first_entry(&splice, struct btrfs_root,
589 ordered_root);
590 root = btrfs_grab_fs_root(root);
591 BUG_ON(!root);
592 list_move_tail(&root->ordered_root,
593 &fs_info->ordered_roots);
594 spin_unlock(&fs_info->ordered_root_lock);
595
596 done = btrfs_wait_ordered_extents(root, nr,
597 range_start, range_len);
598 btrfs_put_fs_root(root);
599 total_done += done;
600
601 spin_lock(&fs_info->ordered_root_lock);
602 if (nr != U64_MAX) {
603 nr -= done;
604 }
605 }
606 list_splice_tail(&splice, &fs_info->ordered_roots);
607 spin_unlock(&fs_info->ordered_root_lock);
608 mutex_unlock(&fs_info->ordered_operations_mutex);
609
610 return total_done;
611 }
612
613 /*
614 * Used to start IO or wait for a given ordered extent to finish.
615 *
616 * If wait is one, this effectively waits on page writeback for all the pages
617 * in the extent, and it waits on the io completion code to insert
618 * metadata into the btree corresponding to the extent
619 */
620 void btrfs_start_ordered_extent(struct inode *inode,
621 struct btrfs_ordered_extent *entry,
622 int wait)
623 {
624 u64 start = entry->file_offset;
625 u64 end = start + entry->len - 1;
626
627 trace_btrfs_ordered_extent_start(inode, entry);
628
629 /*
630 * pages in the range can be dirty, clean or writeback. We
631 * start IO on any dirty ones so the wait doesn't stall waiting
632 * for the flusher thread to find them
633 */
634 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
635 filemap_fdatawrite_range(inode->i_mapping, start, end);
636 if (wait) {
637 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
638 &entry->flags));
639 }
640 }
641
642 /*
643 * Used to wait on ordered extents across a large range of bytes.
644 */
645 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
646 {
647 int ret = 0;
648 int ret_wb = 0;
649 u64 end;
650 u64 orig_end;
651 struct btrfs_ordered_extent *ordered;
652
653 if (start + len < start) {
654 orig_end = INT_LIMIT(loff_t);
655 } else {
656 orig_end = start + len - 1;
657 if (orig_end > INT_LIMIT(loff_t))
658 orig_end = INT_LIMIT(loff_t);
659 }
660
661 /* start IO across the range first to instantiate any delalloc
662 * extents
663 */
664 ret = btrfs_fdatawrite_range(inode, start, orig_end);
665 if (ret)
666 return ret;
667
668 /*
669 * If we have a writeback error don't return immediately. Wait first
670 * for any ordered extents that haven't completed yet. This is to make
671 * sure no one can dirty the same page ranges and call writepages()
672 * before the ordered extents complete - to avoid failures (-EEXIST)
673 * when adding the new ordered extents to the ordered tree.
674 */
675 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
676
677 end = orig_end;
678 while (1) {
679 ordered = btrfs_lookup_first_ordered_extent(inode, end);
680 if (!ordered)
681 break;
682 if (ordered->file_offset > orig_end) {
683 btrfs_put_ordered_extent(ordered);
684 break;
685 }
686 if (ordered->file_offset + ordered->len <= start) {
687 btrfs_put_ordered_extent(ordered);
688 break;
689 }
690 btrfs_start_ordered_extent(inode, ordered, 1);
691 end = ordered->file_offset;
692 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
693 ret = -EIO;
694 btrfs_put_ordered_extent(ordered);
695 if (ret || end == 0 || end == start)
696 break;
697 end--;
698 }
699 return ret_wb ? ret_wb : ret;
700 }
701
702 /*
703 * find an ordered extent corresponding to file_offset. return NULL if
704 * nothing is found, otherwise take a reference on the extent and return it
705 */
706 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
707 u64 file_offset)
708 {
709 struct btrfs_ordered_inode_tree *tree;
710 struct rb_node *node;
711 struct btrfs_ordered_extent *entry = NULL;
712
713 tree = &BTRFS_I(inode)->ordered_tree;
714 spin_lock_irq(&tree->lock);
715 node = tree_search(tree, file_offset);
716 if (!node)
717 goto out;
718
719 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
720 if (!offset_in_entry(entry, file_offset))
721 entry = NULL;
722 if (entry)
723 refcount_inc(&entry->refs);
724 out:
725 spin_unlock_irq(&tree->lock);
726 return entry;
727 }
728
729 /* Since the DIO code tries to lock a wide area we need to look for any ordered
730 * extents that exist in the range, rather than just the start of the range.
731 */
732 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
733 struct btrfs_inode *inode, u64 file_offset, u64 len)
734 {
735 struct btrfs_ordered_inode_tree *tree;
736 struct rb_node *node;
737 struct btrfs_ordered_extent *entry = NULL;
738
739 tree = &inode->ordered_tree;
740 spin_lock_irq(&tree->lock);
741 node = tree_search(tree, file_offset);
742 if (!node) {
743 node = tree_search(tree, file_offset + len);
744 if (!node)
745 goto out;
746 }
747
748 while (1) {
749 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
750 if (range_overlaps(entry, file_offset, len))
751 break;
752
753 if (entry->file_offset >= file_offset + len) {
754 entry = NULL;
755 break;
756 }
757 entry = NULL;
758 node = rb_next(node);
759 if (!node)
760 break;
761 }
762 out:
763 if (entry)
764 refcount_inc(&entry->refs);
765 spin_unlock_irq(&tree->lock);
766 return entry;
767 }
768
769 /*
770 * lookup and return any extent before 'file_offset'. NULL is returned
771 * if none is found
772 */
773 struct btrfs_ordered_extent *
774 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
775 {
776 struct btrfs_ordered_inode_tree *tree;
777 struct rb_node *node;
778 struct btrfs_ordered_extent *entry = NULL;
779
780 tree = &BTRFS_I(inode)->ordered_tree;
781 spin_lock_irq(&tree->lock);
782 node = tree_search(tree, file_offset);
783 if (!node)
784 goto out;
785
786 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
787 refcount_inc(&entry->refs);
788 out:
789 spin_unlock_irq(&tree->lock);
790 return entry;
791 }
792
793 /*
794 * After an extent is done, call this to conditionally update the on disk
795 * i_size. i_size is updated to cover any fully written part of the file.
796 */
797 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
798 struct btrfs_ordered_extent *ordered)
799 {
800 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
801 u64 disk_i_size;
802 u64 new_i_size;
803 u64 i_size = i_size_read(inode);
804 struct rb_node *node;
805 struct rb_node *prev = NULL;
806 struct btrfs_ordered_extent *test;
807 int ret = 1;
808 u64 orig_offset = offset;
809
810 spin_lock_irq(&tree->lock);
811 if (ordered) {
812 offset = entry_end(ordered);
813 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
814 offset = min(offset,
815 ordered->file_offset +
816 ordered->truncated_len);
817 } else {
818 offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
819 }
820 disk_i_size = BTRFS_I(inode)->disk_i_size;
821
822 /*
823 * truncate file.
824 * If ordered is not NULL, then this is called from endio and
825 * disk_i_size will be updated by either truncate itself or any
826 * in-flight IOs which are inside the disk_i_size.
827 *
828 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
829 * fails somehow, we need to make sure we have a precise disk_i_size by
830 * updating it as usual.
831 *
832 */
833 if (!ordered && disk_i_size > i_size) {
834 BTRFS_I(inode)->disk_i_size = orig_offset;
835 ret = 0;
836 goto out;
837 }
838
839 /*
840 * if the disk i_size is already at the inode->i_size, or
841 * this ordered extent is inside the disk i_size, we're done
842 */
843 if (disk_i_size == i_size)
844 goto out;
845
846 /*
847 * We still need to update disk_i_size if outstanding_isize is greater
848 * than disk_i_size.
849 */
850 if (offset <= disk_i_size &&
851 (!ordered || ordered->outstanding_isize <= disk_i_size))
852 goto out;
853
854 /*
855 * walk backward from this ordered extent to disk_i_size.
856 * if we find an ordered extent then we can't update disk i_size
857 * yet
858 */
859 if (ordered) {
860 node = rb_prev(&ordered->rb_node);
861 } else {
862 prev = tree_search(tree, offset);
863 /*
864 * we insert file extents without involving ordered struct,
865 * so there should be no ordered struct cover this offset
866 */
867 if (prev) {
868 test = rb_entry(prev, struct btrfs_ordered_extent,
869 rb_node);
870 BUG_ON(offset_in_entry(test, offset));
871 }
872 node = prev;
873 }
874 for (; node; node = rb_prev(node)) {
875 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
876
877 /* We treat this entry as if it doesn't exist */
878 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
879 continue;
880
881 if (entry_end(test) <= disk_i_size)
882 break;
883 if (test->file_offset >= i_size)
884 break;
885
886 /*
887 * We don't update disk_i_size now, so record this undealt
888 * i_size. Or we will not know the real i_size.
889 */
890 if (test->outstanding_isize < offset)
891 test->outstanding_isize = offset;
892 if (ordered &&
893 ordered->outstanding_isize > test->outstanding_isize)
894 test->outstanding_isize = ordered->outstanding_isize;
895 goto out;
896 }
897 new_i_size = min_t(u64, offset, i_size);
898
899 /*
900 * Some ordered extents may completed before the current one, and
901 * we hold the real i_size in ->outstanding_isize.
902 */
903 if (ordered && ordered->outstanding_isize > new_i_size)
904 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
905 BTRFS_I(inode)->disk_i_size = new_i_size;
906 ret = 0;
907 out:
908 /*
909 * We need to do this because we can't remove ordered extents until
910 * after the i_disk_size has been updated and then the inode has been
911 * updated to reflect the change, so we need to tell anybody who finds
912 * this ordered extent that we've already done all the real work, we
913 * just haven't completed all the other work.
914 */
915 if (ordered)
916 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
917 spin_unlock_irq(&tree->lock);
918 return ret;
919 }
920
921 /*
922 * search the ordered extents for one corresponding to 'offset' and
923 * try to find a checksum. This is used because we allow pages to
924 * be reclaimed before their checksum is actually put into the btree
925 */
926 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
927 u32 *sum, int len)
928 {
929 struct btrfs_ordered_sum *ordered_sum;
930 struct btrfs_ordered_extent *ordered;
931 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
932 unsigned long num_sectors;
933 unsigned long i;
934 u32 sectorsize = btrfs_inode_sectorsize(inode);
935 int index = 0;
936
937 ordered = btrfs_lookup_ordered_extent(inode, offset);
938 if (!ordered)
939 return 0;
940
941 spin_lock_irq(&tree->lock);
942 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
943 if (disk_bytenr >= ordered_sum->bytenr &&
944 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
945 i = (disk_bytenr - ordered_sum->bytenr) >>
946 inode->i_sb->s_blocksize_bits;
947 num_sectors = ordered_sum->len >>
948 inode->i_sb->s_blocksize_bits;
949 num_sectors = min_t(int, len - index, num_sectors - i);
950 memcpy(sum + index, ordered_sum->sums + i,
951 num_sectors);
952
953 index += (int)num_sectors;
954 if (index == len)
955 goto out;
956 disk_bytenr += num_sectors * sectorsize;
957 }
958 }
959 out:
960 spin_unlock_irq(&tree->lock);
961 btrfs_put_ordered_extent(ordered);
962 return index;
963 }
964
965 int __init ordered_data_init(void)
966 {
967 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
968 sizeof(struct btrfs_ordered_extent), 0,
969 SLAB_MEM_SPREAD,
970 NULL);
971 if (!btrfs_ordered_extent_cache)
972 return -ENOMEM;
973
974 return 0;
975 }
976
977 void __cold ordered_data_exit(void)
978 {
979 kmem_cache_destroy(btrfs_ordered_extent_cache);
980 }