]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/ordered-data.c
Merge tag 'drm-fixes-2019-04-24' of git://anongit.freedesktop.org/drm/drm
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include "ctree.h"
10 #include "transaction.h"
11 #include "btrfs_inode.h"
12 #include "extent_io.h"
13 #include "disk-io.h"
14 #include "compression.h"
15
16 static struct kmem_cache *btrfs_ordered_extent_cache;
17
18 static u64 entry_end(struct btrfs_ordered_extent *entry)
19 {
20 if (entry->file_offset + entry->len < entry->file_offset)
21 return (u64)-1;
22 return entry->file_offset + entry->len;
23 }
24
25 /* returns NULL if the insertion worked, or it returns the node it did find
26 * in the tree
27 */
28 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
29 struct rb_node *node)
30 {
31 struct rb_node **p = &root->rb_node;
32 struct rb_node *parent = NULL;
33 struct btrfs_ordered_extent *entry;
34
35 while (*p) {
36 parent = *p;
37 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
38
39 if (file_offset < entry->file_offset)
40 p = &(*p)->rb_left;
41 else if (file_offset >= entry_end(entry))
42 p = &(*p)->rb_right;
43 else
44 return parent;
45 }
46
47 rb_link_node(node, parent, p);
48 rb_insert_color(node, root);
49 return NULL;
50 }
51
52 static void ordered_data_tree_panic(struct inode *inode, int errno,
53 u64 offset)
54 {
55 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
56 btrfs_panic(fs_info, errno,
57 "Inconsistency in ordered tree at offset %llu", offset);
58 }
59
60 /*
61 * look for a given offset in the tree, and if it can't be found return the
62 * first lesser offset
63 */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 struct rb_node **prev_ret)
66 {
67 struct rb_node *n = root->rb_node;
68 struct rb_node *prev = NULL;
69 struct rb_node *test;
70 struct btrfs_ordered_extent *entry;
71 struct btrfs_ordered_extent *prev_entry = NULL;
72
73 while (n) {
74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 prev = n;
76 prev_entry = entry;
77
78 if (file_offset < entry->file_offset)
79 n = n->rb_left;
80 else if (file_offset >= entry_end(entry))
81 n = n->rb_right;
82 else
83 return n;
84 }
85 if (!prev_ret)
86 return NULL;
87
88 while (prev && file_offset >= entry_end(prev_entry)) {
89 test = rb_next(prev);
90 if (!test)
91 break;
92 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 rb_node);
94 if (file_offset < entry_end(prev_entry))
95 break;
96
97 prev = test;
98 }
99 if (prev)
100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 rb_node);
102 while (prev && file_offset < entry_end(prev_entry)) {
103 test = rb_prev(prev);
104 if (!test)
105 break;
106 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 rb_node);
108 prev = test;
109 }
110 *prev_ret = prev;
111 return NULL;
112 }
113
114 /*
115 * helper to check if a given offset is inside a given entry
116 */
117 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
118 {
119 if (file_offset < entry->file_offset ||
120 entry->file_offset + entry->len <= file_offset)
121 return 0;
122 return 1;
123 }
124
125 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
126 u64 len)
127 {
128 if (file_offset + len <= entry->file_offset ||
129 entry->file_offset + entry->len <= file_offset)
130 return 0;
131 return 1;
132 }
133
134 /*
135 * look find the first ordered struct that has this offset, otherwise
136 * the first one less than this offset
137 */
138 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
139 u64 file_offset)
140 {
141 struct rb_root *root = &tree->tree;
142 struct rb_node *prev = NULL;
143 struct rb_node *ret;
144 struct btrfs_ordered_extent *entry;
145
146 if (tree->last) {
147 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
148 rb_node);
149 if (offset_in_entry(entry, file_offset))
150 return tree->last;
151 }
152 ret = __tree_search(root, file_offset, &prev);
153 if (!ret)
154 ret = prev;
155 if (ret)
156 tree->last = ret;
157 return ret;
158 }
159
160 /* allocate and add a new ordered_extent into the per-inode tree.
161 * file_offset is the logical offset in the file
162 *
163 * start is the disk block number of an extent already reserved in the
164 * extent allocation tree
165 *
166 * len is the length of the extent
167 *
168 * The tree is given a single reference on the ordered extent that was
169 * inserted.
170 */
171 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
172 u64 start, u64 len, u64 disk_len,
173 int type, int dio, int compress_type)
174 {
175 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
176 struct btrfs_root *root = BTRFS_I(inode)->root;
177 struct btrfs_ordered_inode_tree *tree;
178 struct rb_node *node;
179 struct btrfs_ordered_extent *entry;
180
181 tree = &BTRFS_I(inode)->ordered_tree;
182 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
183 if (!entry)
184 return -ENOMEM;
185
186 entry->file_offset = file_offset;
187 entry->start = start;
188 entry->len = len;
189 entry->disk_len = disk_len;
190 entry->bytes_left = len;
191 entry->inode = igrab(inode);
192 entry->compress_type = compress_type;
193 entry->truncated_len = (u64)-1;
194 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
195 set_bit(type, &entry->flags);
196
197 if (dio)
198 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
199
200 /* one ref for the tree */
201 refcount_set(&entry->refs, 1);
202 init_waitqueue_head(&entry->wait);
203 INIT_LIST_HEAD(&entry->list);
204 INIT_LIST_HEAD(&entry->root_extent_list);
205 INIT_LIST_HEAD(&entry->work_list);
206 init_completion(&entry->completion);
207 INIT_LIST_HEAD(&entry->log_list);
208 INIT_LIST_HEAD(&entry->trans_list);
209
210 trace_btrfs_ordered_extent_add(inode, entry);
211
212 spin_lock_irq(&tree->lock);
213 node = tree_insert(&tree->tree, file_offset,
214 &entry->rb_node);
215 if (node)
216 ordered_data_tree_panic(inode, -EEXIST, file_offset);
217 spin_unlock_irq(&tree->lock);
218
219 spin_lock(&root->ordered_extent_lock);
220 list_add_tail(&entry->root_extent_list,
221 &root->ordered_extents);
222 root->nr_ordered_extents++;
223 if (root->nr_ordered_extents == 1) {
224 spin_lock(&fs_info->ordered_root_lock);
225 BUG_ON(!list_empty(&root->ordered_root));
226 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
227 spin_unlock(&fs_info->ordered_root_lock);
228 }
229 spin_unlock(&root->ordered_extent_lock);
230
231 /*
232 * We don't need the count_max_extents here, we can assume that all of
233 * that work has been done at higher layers, so this is truly the
234 * smallest the extent is going to get.
235 */
236 spin_lock(&BTRFS_I(inode)->lock);
237 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
238 spin_unlock(&BTRFS_I(inode)->lock);
239
240 return 0;
241 }
242
243 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
244 u64 start, u64 len, u64 disk_len, int type)
245 {
246 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
247 disk_len, type, 0,
248 BTRFS_COMPRESS_NONE);
249 }
250
251 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
252 u64 start, u64 len, u64 disk_len, int type)
253 {
254 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
255 disk_len, type, 1,
256 BTRFS_COMPRESS_NONE);
257 }
258
259 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
260 u64 start, u64 len, u64 disk_len,
261 int type, int compress_type)
262 {
263 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
264 disk_len, type, 0,
265 compress_type);
266 }
267
268 /*
269 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
270 * when an ordered extent is finished. If the list covers more than one
271 * ordered extent, it is split across multiples.
272 */
273 void btrfs_add_ordered_sum(struct inode *inode,
274 struct btrfs_ordered_extent *entry,
275 struct btrfs_ordered_sum *sum)
276 {
277 struct btrfs_ordered_inode_tree *tree;
278
279 tree = &BTRFS_I(inode)->ordered_tree;
280 spin_lock_irq(&tree->lock);
281 list_add_tail(&sum->list, &entry->list);
282 spin_unlock_irq(&tree->lock);
283 }
284
285 /*
286 * this is used to account for finished IO across a given range
287 * of the file. The IO may span ordered extents. If
288 * a given ordered_extent is completely done, 1 is returned, otherwise
289 * 0.
290 *
291 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
292 * to make sure this function only returns 1 once for a given ordered extent.
293 *
294 * file_offset is updated to one byte past the range that is recorded as
295 * complete. This allows you to walk forward in the file.
296 */
297 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
298 struct btrfs_ordered_extent **cached,
299 u64 *file_offset, u64 io_size, int uptodate)
300 {
301 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
302 struct btrfs_ordered_inode_tree *tree;
303 struct rb_node *node;
304 struct btrfs_ordered_extent *entry = NULL;
305 int ret;
306 unsigned long flags;
307 u64 dec_end;
308 u64 dec_start;
309 u64 to_dec;
310
311 tree = &BTRFS_I(inode)->ordered_tree;
312 spin_lock_irqsave(&tree->lock, flags);
313 node = tree_search(tree, *file_offset);
314 if (!node) {
315 ret = 1;
316 goto out;
317 }
318
319 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
320 if (!offset_in_entry(entry, *file_offset)) {
321 ret = 1;
322 goto out;
323 }
324
325 dec_start = max(*file_offset, entry->file_offset);
326 dec_end = min(*file_offset + io_size, entry->file_offset +
327 entry->len);
328 *file_offset = dec_end;
329 if (dec_start > dec_end) {
330 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
331 dec_start, dec_end);
332 }
333 to_dec = dec_end - dec_start;
334 if (to_dec > entry->bytes_left) {
335 btrfs_crit(fs_info,
336 "bad ordered accounting left %llu size %llu",
337 entry->bytes_left, to_dec);
338 }
339 entry->bytes_left -= to_dec;
340 if (!uptodate)
341 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
342
343 if (entry->bytes_left == 0) {
344 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
345 /* test_and_set_bit implies a barrier */
346 cond_wake_up_nomb(&entry->wait);
347 } else {
348 ret = 1;
349 }
350 out:
351 if (!ret && cached && entry) {
352 *cached = entry;
353 refcount_inc(&entry->refs);
354 }
355 spin_unlock_irqrestore(&tree->lock, flags);
356 return ret == 0;
357 }
358
359 /*
360 * this is used to account for finished IO across a given range
361 * of the file. The IO should not span ordered extents. If
362 * a given ordered_extent is completely done, 1 is returned, otherwise
363 * 0.
364 *
365 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
366 * to make sure this function only returns 1 once for a given ordered extent.
367 */
368 int btrfs_dec_test_ordered_pending(struct inode *inode,
369 struct btrfs_ordered_extent **cached,
370 u64 file_offset, u64 io_size, int uptodate)
371 {
372 struct btrfs_ordered_inode_tree *tree;
373 struct rb_node *node;
374 struct btrfs_ordered_extent *entry = NULL;
375 unsigned long flags;
376 int ret;
377
378 tree = &BTRFS_I(inode)->ordered_tree;
379 spin_lock_irqsave(&tree->lock, flags);
380 if (cached && *cached) {
381 entry = *cached;
382 goto have_entry;
383 }
384
385 node = tree_search(tree, file_offset);
386 if (!node) {
387 ret = 1;
388 goto out;
389 }
390
391 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
392 have_entry:
393 if (!offset_in_entry(entry, file_offset)) {
394 ret = 1;
395 goto out;
396 }
397
398 if (io_size > entry->bytes_left) {
399 btrfs_crit(BTRFS_I(inode)->root->fs_info,
400 "bad ordered accounting left %llu size %llu",
401 entry->bytes_left, io_size);
402 }
403 entry->bytes_left -= io_size;
404 if (!uptodate)
405 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
406
407 if (entry->bytes_left == 0) {
408 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
409 /* test_and_set_bit implies a barrier */
410 cond_wake_up_nomb(&entry->wait);
411 } else {
412 ret = 1;
413 }
414 out:
415 if (!ret && cached && entry) {
416 *cached = entry;
417 refcount_inc(&entry->refs);
418 }
419 spin_unlock_irqrestore(&tree->lock, flags);
420 return ret == 0;
421 }
422
423 /*
424 * used to drop a reference on an ordered extent. This will free
425 * the extent if the last reference is dropped
426 */
427 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
428 {
429 struct list_head *cur;
430 struct btrfs_ordered_sum *sum;
431
432 trace_btrfs_ordered_extent_put(entry->inode, entry);
433
434 if (refcount_dec_and_test(&entry->refs)) {
435 ASSERT(list_empty(&entry->log_list));
436 ASSERT(list_empty(&entry->trans_list));
437 ASSERT(list_empty(&entry->root_extent_list));
438 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
439 if (entry->inode)
440 btrfs_add_delayed_iput(entry->inode);
441 while (!list_empty(&entry->list)) {
442 cur = entry->list.next;
443 sum = list_entry(cur, struct btrfs_ordered_sum, list);
444 list_del(&sum->list);
445 kfree(sum);
446 }
447 kmem_cache_free(btrfs_ordered_extent_cache, entry);
448 }
449 }
450
451 /*
452 * remove an ordered extent from the tree. No references are dropped
453 * and waiters are woken up.
454 */
455 void btrfs_remove_ordered_extent(struct inode *inode,
456 struct btrfs_ordered_extent *entry)
457 {
458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
459 struct btrfs_ordered_inode_tree *tree;
460 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
461 struct btrfs_root *root = btrfs_inode->root;
462 struct rb_node *node;
463
464 /* This is paired with btrfs_add_ordered_extent. */
465 spin_lock(&btrfs_inode->lock);
466 btrfs_mod_outstanding_extents(btrfs_inode, -1);
467 spin_unlock(&btrfs_inode->lock);
468 if (root != fs_info->tree_root)
469 btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
470
471 tree = &btrfs_inode->ordered_tree;
472 spin_lock_irq(&tree->lock);
473 node = &entry->rb_node;
474 rb_erase(node, &tree->tree);
475 RB_CLEAR_NODE(node);
476 if (tree->last == node)
477 tree->last = NULL;
478 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
479 spin_unlock_irq(&tree->lock);
480
481 spin_lock(&root->ordered_extent_lock);
482 list_del_init(&entry->root_extent_list);
483 root->nr_ordered_extents--;
484
485 trace_btrfs_ordered_extent_remove(inode, entry);
486
487 if (!root->nr_ordered_extents) {
488 spin_lock(&fs_info->ordered_root_lock);
489 BUG_ON(list_empty(&root->ordered_root));
490 list_del_init(&root->ordered_root);
491 spin_unlock(&fs_info->ordered_root_lock);
492 }
493 spin_unlock(&root->ordered_extent_lock);
494 wake_up(&entry->wait);
495 }
496
497 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
498 {
499 struct btrfs_ordered_extent *ordered;
500
501 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
502 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
503 complete(&ordered->completion);
504 }
505
506 /*
507 * wait for all the ordered extents in a root. This is done when balancing
508 * space between drives.
509 */
510 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
511 const u64 range_start, const u64 range_len)
512 {
513 struct btrfs_fs_info *fs_info = root->fs_info;
514 LIST_HEAD(splice);
515 LIST_HEAD(skipped);
516 LIST_HEAD(works);
517 struct btrfs_ordered_extent *ordered, *next;
518 u64 count = 0;
519 const u64 range_end = range_start + range_len;
520
521 mutex_lock(&root->ordered_extent_mutex);
522 spin_lock(&root->ordered_extent_lock);
523 list_splice_init(&root->ordered_extents, &splice);
524 while (!list_empty(&splice) && nr) {
525 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
526 root_extent_list);
527
528 if (range_end <= ordered->start ||
529 ordered->start + ordered->disk_len <= range_start) {
530 list_move_tail(&ordered->root_extent_list, &skipped);
531 cond_resched_lock(&root->ordered_extent_lock);
532 continue;
533 }
534
535 list_move_tail(&ordered->root_extent_list,
536 &root->ordered_extents);
537 refcount_inc(&ordered->refs);
538 spin_unlock(&root->ordered_extent_lock);
539
540 btrfs_init_work(&ordered->flush_work,
541 btrfs_flush_delalloc_helper,
542 btrfs_run_ordered_extent_work, NULL, NULL);
543 list_add_tail(&ordered->work_list, &works);
544 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
545
546 cond_resched();
547 spin_lock(&root->ordered_extent_lock);
548 if (nr != U64_MAX)
549 nr--;
550 count++;
551 }
552 list_splice_tail(&skipped, &root->ordered_extents);
553 list_splice_tail(&splice, &root->ordered_extents);
554 spin_unlock(&root->ordered_extent_lock);
555
556 list_for_each_entry_safe(ordered, next, &works, work_list) {
557 list_del_init(&ordered->work_list);
558 wait_for_completion(&ordered->completion);
559 btrfs_put_ordered_extent(ordered);
560 cond_resched();
561 }
562 mutex_unlock(&root->ordered_extent_mutex);
563
564 return count;
565 }
566
567 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
568 const u64 range_start, const u64 range_len)
569 {
570 struct btrfs_root *root;
571 struct list_head splice;
572 u64 total_done = 0;
573 u64 done;
574
575 INIT_LIST_HEAD(&splice);
576
577 mutex_lock(&fs_info->ordered_operations_mutex);
578 spin_lock(&fs_info->ordered_root_lock);
579 list_splice_init(&fs_info->ordered_roots, &splice);
580 while (!list_empty(&splice) && nr) {
581 root = list_first_entry(&splice, struct btrfs_root,
582 ordered_root);
583 root = btrfs_grab_fs_root(root);
584 BUG_ON(!root);
585 list_move_tail(&root->ordered_root,
586 &fs_info->ordered_roots);
587 spin_unlock(&fs_info->ordered_root_lock);
588
589 done = btrfs_wait_ordered_extents(root, nr,
590 range_start, range_len);
591 btrfs_put_fs_root(root);
592 total_done += done;
593
594 spin_lock(&fs_info->ordered_root_lock);
595 if (nr != U64_MAX) {
596 nr -= done;
597 }
598 }
599 list_splice_tail(&splice, &fs_info->ordered_roots);
600 spin_unlock(&fs_info->ordered_root_lock);
601 mutex_unlock(&fs_info->ordered_operations_mutex);
602
603 return total_done;
604 }
605
606 /*
607 * Used to start IO or wait for a given ordered extent to finish.
608 *
609 * If wait is one, this effectively waits on page writeback for all the pages
610 * in the extent, and it waits on the io completion code to insert
611 * metadata into the btree corresponding to the extent
612 */
613 void btrfs_start_ordered_extent(struct inode *inode,
614 struct btrfs_ordered_extent *entry,
615 int wait)
616 {
617 u64 start = entry->file_offset;
618 u64 end = start + entry->len - 1;
619
620 trace_btrfs_ordered_extent_start(inode, entry);
621
622 /*
623 * pages in the range can be dirty, clean or writeback. We
624 * start IO on any dirty ones so the wait doesn't stall waiting
625 * for the flusher thread to find them
626 */
627 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
628 filemap_fdatawrite_range(inode->i_mapping, start, end);
629 if (wait) {
630 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
631 &entry->flags));
632 }
633 }
634
635 /*
636 * Used to wait on ordered extents across a large range of bytes.
637 */
638 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
639 {
640 int ret = 0;
641 int ret_wb = 0;
642 u64 end;
643 u64 orig_end;
644 struct btrfs_ordered_extent *ordered;
645
646 if (start + len < start) {
647 orig_end = INT_LIMIT(loff_t);
648 } else {
649 orig_end = start + len - 1;
650 if (orig_end > INT_LIMIT(loff_t))
651 orig_end = INT_LIMIT(loff_t);
652 }
653
654 /* start IO across the range first to instantiate any delalloc
655 * extents
656 */
657 ret = btrfs_fdatawrite_range(inode, start, orig_end);
658 if (ret)
659 return ret;
660
661 /*
662 * If we have a writeback error don't return immediately. Wait first
663 * for any ordered extents that haven't completed yet. This is to make
664 * sure no one can dirty the same page ranges and call writepages()
665 * before the ordered extents complete - to avoid failures (-EEXIST)
666 * when adding the new ordered extents to the ordered tree.
667 */
668 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
669
670 end = orig_end;
671 while (1) {
672 ordered = btrfs_lookup_first_ordered_extent(inode, end);
673 if (!ordered)
674 break;
675 if (ordered->file_offset > orig_end) {
676 btrfs_put_ordered_extent(ordered);
677 break;
678 }
679 if (ordered->file_offset + ordered->len <= start) {
680 btrfs_put_ordered_extent(ordered);
681 break;
682 }
683 btrfs_start_ordered_extent(inode, ordered, 1);
684 end = ordered->file_offset;
685 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
686 ret = -EIO;
687 btrfs_put_ordered_extent(ordered);
688 if (ret || end == 0 || end == start)
689 break;
690 end--;
691 }
692 return ret_wb ? ret_wb : ret;
693 }
694
695 /*
696 * find an ordered extent corresponding to file_offset. return NULL if
697 * nothing is found, otherwise take a reference on the extent and return it
698 */
699 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
700 u64 file_offset)
701 {
702 struct btrfs_ordered_inode_tree *tree;
703 struct rb_node *node;
704 struct btrfs_ordered_extent *entry = NULL;
705
706 tree = &BTRFS_I(inode)->ordered_tree;
707 spin_lock_irq(&tree->lock);
708 node = tree_search(tree, file_offset);
709 if (!node)
710 goto out;
711
712 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
713 if (!offset_in_entry(entry, file_offset))
714 entry = NULL;
715 if (entry)
716 refcount_inc(&entry->refs);
717 out:
718 spin_unlock_irq(&tree->lock);
719 return entry;
720 }
721
722 /* Since the DIO code tries to lock a wide area we need to look for any ordered
723 * extents that exist in the range, rather than just the start of the range.
724 */
725 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
726 struct btrfs_inode *inode, u64 file_offset, u64 len)
727 {
728 struct btrfs_ordered_inode_tree *tree;
729 struct rb_node *node;
730 struct btrfs_ordered_extent *entry = NULL;
731
732 tree = &inode->ordered_tree;
733 spin_lock_irq(&tree->lock);
734 node = tree_search(tree, file_offset);
735 if (!node) {
736 node = tree_search(tree, file_offset + len);
737 if (!node)
738 goto out;
739 }
740
741 while (1) {
742 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
743 if (range_overlaps(entry, file_offset, len))
744 break;
745
746 if (entry->file_offset >= file_offset + len) {
747 entry = NULL;
748 break;
749 }
750 entry = NULL;
751 node = rb_next(node);
752 if (!node)
753 break;
754 }
755 out:
756 if (entry)
757 refcount_inc(&entry->refs);
758 spin_unlock_irq(&tree->lock);
759 return entry;
760 }
761
762 /*
763 * lookup and return any extent before 'file_offset'. NULL is returned
764 * if none is found
765 */
766 struct btrfs_ordered_extent *
767 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
768 {
769 struct btrfs_ordered_inode_tree *tree;
770 struct rb_node *node;
771 struct btrfs_ordered_extent *entry = NULL;
772
773 tree = &BTRFS_I(inode)->ordered_tree;
774 spin_lock_irq(&tree->lock);
775 node = tree_search(tree, file_offset);
776 if (!node)
777 goto out;
778
779 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
780 refcount_inc(&entry->refs);
781 out:
782 spin_unlock_irq(&tree->lock);
783 return entry;
784 }
785
786 /*
787 * After an extent is done, call this to conditionally update the on disk
788 * i_size. i_size is updated to cover any fully written part of the file.
789 */
790 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
791 struct btrfs_ordered_extent *ordered)
792 {
793 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
794 u64 disk_i_size;
795 u64 new_i_size;
796 u64 i_size = i_size_read(inode);
797 struct rb_node *node;
798 struct rb_node *prev = NULL;
799 struct btrfs_ordered_extent *test;
800 int ret = 1;
801 u64 orig_offset = offset;
802
803 spin_lock_irq(&tree->lock);
804 if (ordered) {
805 offset = entry_end(ordered);
806 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
807 offset = min(offset,
808 ordered->file_offset +
809 ordered->truncated_len);
810 } else {
811 offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
812 }
813 disk_i_size = BTRFS_I(inode)->disk_i_size;
814
815 /*
816 * truncate file.
817 * If ordered is not NULL, then this is called from endio and
818 * disk_i_size will be updated by either truncate itself or any
819 * in-flight IOs which are inside the disk_i_size.
820 *
821 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
822 * fails somehow, we need to make sure we have a precise disk_i_size by
823 * updating it as usual.
824 *
825 */
826 if (!ordered && disk_i_size > i_size) {
827 BTRFS_I(inode)->disk_i_size = orig_offset;
828 ret = 0;
829 goto out;
830 }
831
832 /*
833 * if the disk i_size is already at the inode->i_size, or
834 * this ordered extent is inside the disk i_size, we're done
835 */
836 if (disk_i_size == i_size)
837 goto out;
838
839 /*
840 * We still need to update disk_i_size if outstanding_isize is greater
841 * than disk_i_size.
842 */
843 if (offset <= disk_i_size &&
844 (!ordered || ordered->outstanding_isize <= disk_i_size))
845 goto out;
846
847 /*
848 * walk backward from this ordered extent to disk_i_size.
849 * if we find an ordered extent then we can't update disk i_size
850 * yet
851 */
852 if (ordered) {
853 node = rb_prev(&ordered->rb_node);
854 } else {
855 prev = tree_search(tree, offset);
856 /*
857 * we insert file extents without involving ordered struct,
858 * so there should be no ordered struct cover this offset
859 */
860 if (prev) {
861 test = rb_entry(prev, struct btrfs_ordered_extent,
862 rb_node);
863 BUG_ON(offset_in_entry(test, offset));
864 }
865 node = prev;
866 }
867 for (; node; node = rb_prev(node)) {
868 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
869
870 /* We treat this entry as if it doesn't exist */
871 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
872 continue;
873
874 if (entry_end(test) <= disk_i_size)
875 break;
876 if (test->file_offset >= i_size)
877 break;
878
879 /*
880 * We don't update disk_i_size now, so record this undealt
881 * i_size. Or we will not know the real i_size.
882 */
883 if (test->outstanding_isize < offset)
884 test->outstanding_isize = offset;
885 if (ordered &&
886 ordered->outstanding_isize > test->outstanding_isize)
887 test->outstanding_isize = ordered->outstanding_isize;
888 goto out;
889 }
890 new_i_size = min_t(u64, offset, i_size);
891
892 /*
893 * Some ordered extents may completed before the current one, and
894 * we hold the real i_size in ->outstanding_isize.
895 */
896 if (ordered && ordered->outstanding_isize > new_i_size)
897 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
898 BTRFS_I(inode)->disk_i_size = new_i_size;
899 ret = 0;
900 out:
901 /*
902 * We need to do this because we can't remove ordered extents until
903 * after the i_disk_size has been updated and then the inode has been
904 * updated to reflect the change, so we need to tell anybody who finds
905 * this ordered extent that we've already done all the real work, we
906 * just haven't completed all the other work.
907 */
908 if (ordered)
909 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
910 spin_unlock_irq(&tree->lock);
911 return ret;
912 }
913
914 /*
915 * search the ordered extents for one corresponding to 'offset' and
916 * try to find a checksum. This is used because we allow pages to
917 * be reclaimed before their checksum is actually put into the btree
918 */
919 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
920 u32 *sum, int len)
921 {
922 struct btrfs_ordered_sum *ordered_sum;
923 struct btrfs_ordered_extent *ordered;
924 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
925 unsigned long num_sectors;
926 unsigned long i;
927 u32 sectorsize = btrfs_inode_sectorsize(inode);
928 int index = 0;
929
930 ordered = btrfs_lookup_ordered_extent(inode, offset);
931 if (!ordered)
932 return 0;
933
934 spin_lock_irq(&tree->lock);
935 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
936 if (disk_bytenr >= ordered_sum->bytenr &&
937 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
938 i = (disk_bytenr - ordered_sum->bytenr) >>
939 inode->i_sb->s_blocksize_bits;
940 num_sectors = ordered_sum->len >>
941 inode->i_sb->s_blocksize_bits;
942 num_sectors = min_t(int, len - index, num_sectors - i);
943 memcpy(sum + index, ordered_sum->sums + i,
944 num_sectors);
945
946 index += (int)num_sectors;
947 if (index == len)
948 goto out;
949 disk_bytenr += num_sectors * sectorsize;
950 }
951 }
952 out:
953 spin_unlock_irq(&tree->lock);
954 btrfs_put_ordered_extent(ordered);
955 return index;
956 }
957
958 int __init ordered_data_init(void)
959 {
960 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
961 sizeof(struct btrfs_ordered_extent), 0,
962 SLAB_MEM_SPREAD,
963 NULL);
964 if (!btrfs_ordered_extent_cache)
965 return -ENOMEM;
966
967 return 0;
968 }
969
970 void __cold ordered_data_exit(void)
971 {
972 kmem_cache_destroy(btrfs_ordered_extent_cache);
973 }