]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/ordered-data.c
Btrfs: fix abnormal long waiting in fsync
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / ordered-data.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
36 }
37
38 /* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
43 {
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
46 struct btrfs_ordered_extent *entry;
47
48 while (*p) {
49 parent = *p;
50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51
52 if (file_offset < entry->file_offset)
53 p = &(*p)->rb_left;
54 else if (file_offset >= entry_end(entry))
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63 }
64
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67 {
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 "%llu", offset);
71 }
72
73 /*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
79 {
80 struct rb_node *n = root->rb_node;
81 struct rb_node *prev = NULL;
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
85
86 while (n) {
87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 prev = n;
89 prev_entry = entry;
90
91 if (file_offset < entry->file_offset)
92 n = n->rb_left;
93 else if (file_offset >= entry_end(entry))
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
101 while (prev && file_offset >= entry_end(prev_entry)) {
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
115 while (prev && file_offset < entry_end(prev_entry)) {
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
122 }
123 *prev_ret = prev;
124 return NULL;
125 }
126
127 /*
128 * helper to check if a given offset is inside a given entry
129 */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136 }
137
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140 {
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145 }
146
147 /*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
153 {
154 struct rb_root *root = &tree->tree;
155 struct rb_node *prev = NULL;
156 struct rb_node *ret;
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
166 if (!ret)
167 ret = prev;
168 if (ret)
169 tree->last = ret;
170 return ret;
171 }
172
173 /* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
186 int type, int dio, int compress_type)
187 {
188 struct btrfs_root *root = BTRFS_I(inode)->root;
189 struct btrfs_ordered_inode_tree *tree;
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
192
193 tree = &BTRFS_I(inode)->ordered_tree;
194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 if (!entry)
196 return -ENOMEM;
197
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 !(type == BTRFS_ORDERED_NOCOW))
203 entry->csum_bytes_left = disk_len;
204 entry->disk_len = disk_len;
205 entry->bytes_left = len;
206 entry->inode = igrab(inode);
207 entry->compress_type = compress_type;
208 entry->truncated_len = (u64)-1;
209 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
210 set_bit(type, &entry->flags);
211
212 if (dio)
213 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214
215 /* one ref for the tree */
216 atomic_set(&entry->refs, 1);
217 init_waitqueue_head(&entry->wait);
218 INIT_LIST_HEAD(&entry->list);
219 INIT_LIST_HEAD(&entry->root_extent_list);
220 INIT_LIST_HEAD(&entry->work_list);
221 init_completion(&entry->completion);
222 INIT_LIST_HEAD(&entry->log_list);
223
224 trace_btrfs_ordered_extent_add(inode, entry);
225
226 spin_lock_irq(&tree->lock);
227 node = tree_insert(&tree->tree, file_offset,
228 &entry->rb_node);
229 if (node)
230 ordered_data_tree_panic(inode, -EEXIST, file_offset);
231 spin_unlock_irq(&tree->lock);
232
233 spin_lock(&root->ordered_extent_lock);
234 list_add_tail(&entry->root_extent_list,
235 &root->ordered_extents);
236 root->nr_ordered_extents++;
237 if (root->nr_ordered_extents == 1) {
238 spin_lock(&root->fs_info->ordered_root_lock);
239 BUG_ON(!list_empty(&root->ordered_root));
240 list_add_tail(&root->ordered_root,
241 &root->fs_info->ordered_roots);
242 spin_unlock(&root->fs_info->ordered_root_lock);
243 }
244 spin_unlock(&root->ordered_extent_lock);
245
246 return 0;
247 }
248
249 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 u64 start, u64 len, u64 disk_len, int type)
251 {
252 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 disk_len, type, 0,
254 BTRFS_COMPRESS_NONE);
255 }
256
257 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 u64 start, u64 len, u64 disk_len, int type)
259 {
260 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261 disk_len, type, 1,
262 BTRFS_COMPRESS_NONE);
263 }
264
265 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 u64 start, u64 len, u64 disk_len,
267 int type, int compress_type)
268 {
269 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 disk_len, type, 0,
271 compress_type);
272 }
273
274 /*
275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
276 * when an ordered extent is finished. If the list covers more than one
277 * ordered extent, it is split across multiples.
278 */
279 void btrfs_add_ordered_sum(struct inode *inode,
280 struct btrfs_ordered_extent *entry,
281 struct btrfs_ordered_sum *sum)
282 {
283 struct btrfs_ordered_inode_tree *tree;
284
285 tree = &BTRFS_I(inode)->ordered_tree;
286 spin_lock_irq(&tree->lock);
287 list_add_tail(&sum->list, &entry->list);
288 WARN_ON(entry->csum_bytes_left < sum->len);
289 entry->csum_bytes_left -= sum->len;
290 if (entry->csum_bytes_left == 0)
291 wake_up(&entry->wait);
292 spin_unlock_irq(&tree->lock);
293 }
294
295 /*
296 * this is used to account for finished IO across a given range
297 * of the file. The IO may span ordered extents. If
298 * a given ordered_extent is completely done, 1 is returned, otherwise
299 * 0.
300 *
301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
302 * to make sure this function only returns 1 once for a given ordered extent.
303 *
304 * file_offset is updated to one byte past the range that is recorded as
305 * complete. This allows you to walk forward in the file.
306 */
307 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
308 struct btrfs_ordered_extent **cached,
309 u64 *file_offset, u64 io_size, int uptodate)
310 {
311 struct btrfs_ordered_inode_tree *tree;
312 struct rb_node *node;
313 struct btrfs_ordered_extent *entry = NULL;
314 int ret;
315 unsigned long flags;
316 u64 dec_end;
317 u64 dec_start;
318 u64 to_dec;
319
320 tree = &BTRFS_I(inode)->ordered_tree;
321 spin_lock_irqsave(&tree->lock, flags);
322 node = tree_search(tree, *file_offset);
323 if (!node) {
324 ret = 1;
325 goto out;
326 }
327
328 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329 if (!offset_in_entry(entry, *file_offset)) {
330 ret = 1;
331 goto out;
332 }
333
334 dec_start = max(*file_offset, entry->file_offset);
335 dec_end = min(*file_offset + io_size, entry->file_offset +
336 entry->len);
337 *file_offset = dec_end;
338 if (dec_start > dec_end) {
339 btrfs_crit(BTRFS_I(inode)->root->fs_info,
340 "bad ordering dec_start %llu end %llu", dec_start, dec_end);
341 }
342 to_dec = dec_end - dec_start;
343 if (to_dec > entry->bytes_left) {
344 btrfs_crit(BTRFS_I(inode)->root->fs_info,
345 "bad ordered accounting left %llu size %llu",
346 entry->bytes_left, to_dec);
347 }
348 entry->bytes_left -= to_dec;
349 if (!uptodate)
350 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
351
352 if (entry->bytes_left == 0) {
353 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
354 if (waitqueue_active(&entry->wait))
355 wake_up(&entry->wait);
356 } else {
357 ret = 1;
358 }
359 out:
360 if (!ret && cached && entry) {
361 *cached = entry;
362 atomic_inc(&entry->refs);
363 }
364 spin_unlock_irqrestore(&tree->lock, flags);
365 return ret == 0;
366 }
367
368 /*
369 * this is used to account for finished IO across a given range
370 * of the file. The IO should not span ordered extents. If
371 * a given ordered_extent is completely done, 1 is returned, otherwise
372 * 0.
373 *
374 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
375 * to make sure this function only returns 1 once for a given ordered extent.
376 */
377 int btrfs_dec_test_ordered_pending(struct inode *inode,
378 struct btrfs_ordered_extent **cached,
379 u64 file_offset, u64 io_size, int uptodate)
380 {
381 struct btrfs_ordered_inode_tree *tree;
382 struct rb_node *node;
383 struct btrfs_ordered_extent *entry = NULL;
384 unsigned long flags;
385 int ret;
386
387 tree = &BTRFS_I(inode)->ordered_tree;
388 spin_lock_irqsave(&tree->lock, flags);
389 if (cached && *cached) {
390 entry = *cached;
391 goto have_entry;
392 }
393
394 node = tree_search(tree, file_offset);
395 if (!node) {
396 ret = 1;
397 goto out;
398 }
399
400 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
401 have_entry:
402 if (!offset_in_entry(entry, file_offset)) {
403 ret = 1;
404 goto out;
405 }
406
407 if (io_size > entry->bytes_left) {
408 btrfs_crit(BTRFS_I(inode)->root->fs_info,
409 "bad ordered accounting left %llu size %llu",
410 entry->bytes_left, io_size);
411 }
412 entry->bytes_left -= io_size;
413 if (!uptodate)
414 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
415
416 if (entry->bytes_left == 0) {
417 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
418 if (waitqueue_active(&entry->wait))
419 wake_up(&entry->wait);
420 } else {
421 ret = 1;
422 }
423 out:
424 if (!ret && cached && entry) {
425 *cached = entry;
426 atomic_inc(&entry->refs);
427 }
428 spin_unlock_irqrestore(&tree->lock, flags);
429 return ret == 0;
430 }
431
432 /* Needs to either be called under a log transaction or the log_mutex */
433 void btrfs_get_logged_extents(struct inode *inode,
434 struct list_head *logged_list)
435 {
436 struct btrfs_ordered_inode_tree *tree;
437 struct btrfs_ordered_extent *ordered;
438 struct rb_node *n;
439
440 tree = &BTRFS_I(inode)->ordered_tree;
441 spin_lock_irq(&tree->lock);
442 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
443 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
444 if (!list_empty(&ordered->log_list))
445 continue;
446 list_add_tail(&ordered->log_list, logged_list);
447 atomic_inc(&ordered->refs);
448 }
449 spin_unlock_irq(&tree->lock);
450 }
451
452 void btrfs_put_logged_extents(struct list_head *logged_list)
453 {
454 struct btrfs_ordered_extent *ordered;
455
456 while (!list_empty(logged_list)) {
457 ordered = list_first_entry(logged_list,
458 struct btrfs_ordered_extent,
459 log_list);
460 list_del_init(&ordered->log_list);
461 btrfs_put_ordered_extent(ordered);
462 }
463 }
464
465 void btrfs_submit_logged_extents(struct list_head *logged_list,
466 struct btrfs_root *log)
467 {
468 int index = log->log_transid % 2;
469
470 spin_lock_irq(&log->log_extents_lock[index]);
471 list_splice_tail(logged_list, &log->logged_list[index]);
472 spin_unlock_irq(&log->log_extents_lock[index]);
473 }
474
475 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
476 {
477 struct btrfs_ordered_extent *ordered;
478 int index = transid % 2;
479
480 spin_lock_irq(&log->log_extents_lock[index]);
481 while (!list_empty(&log->logged_list[index])) {
482 ordered = list_first_entry(&log->logged_list[index],
483 struct btrfs_ordered_extent,
484 log_list);
485 list_del_init(&ordered->log_list);
486 spin_unlock_irq(&log->log_extents_lock[index]);
487
488 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
489 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
490 struct inode *inode = ordered->inode;
491 u64 start = ordered->file_offset;
492 u64 end = ordered->file_offset + ordered->len - 1;
493
494 WARN_ON(!inode);
495 filemap_fdatawrite_range(inode->i_mapping, start, end);
496 }
497 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
498 &ordered->flags));
499
500 btrfs_put_ordered_extent(ordered);
501 spin_lock_irq(&log->log_extents_lock[index]);
502 }
503 spin_unlock_irq(&log->log_extents_lock[index]);
504 }
505
506 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
507 {
508 struct btrfs_ordered_extent *ordered;
509 int index = transid % 2;
510
511 spin_lock_irq(&log->log_extents_lock[index]);
512 while (!list_empty(&log->logged_list[index])) {
513 ordered = list_first_entry(&log->logged_list[index],
514 struct btrfs_ordered_extent,
515 log_list);
516 list_del_init(&ordered->log_list);
517 spin_unlock_irq(&log->log_extents_lock[index]);
518 btrfs_put_ordered_extent(ordered);
519 spin_lock_irq(&log->log_extents_lock[index]);
520 }
521 spin_unlock_irq(&log->log_extents_lock[index]);
522 }
523
524 /*
525 * used to drop a reference on an ordered extent. This will free
526 * the extent if the last reference is dropped
527 */
528 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
529 {
530 struct list_head *cur;
531 struct btrfs_ordered_sum *sum;
532
533 trace_btrfs_ordered_extent_put(entry->inode, entry);
534
535 if (atomic_dec_and_test(&entry->refs)) {
536 if (entry->inode)
537 btrfs_add_delayed_iput(entry->inode);
538 while (!list_empty(&entry->list)) {
539 cur = entry->list.next;
540 sum = list_entry(cur, struct btrfs_ordered_sum, list);
541 list_del(&sum->list);
542 kfree(sum);
543 }
544 kmem_cache_free(btrfs_ordered_extent_cache, entry);
545 }
546 }
547
548 /*
549 * remove an ordered extent from the tree. No references are dropped
550 * and waiters are woken up.
551 */
552 void btrfs_remove_ordered_extent(struct inode *inode,
553 struct btrfs_ordered_extent *entry)
554 {
555 struct btrfs_ordered_inode_tree *tree;
556 struct btrfs_root *root = BTRFS_I(inode)->root;
557 struct rb_node *node;
558
559 tree = &BTRFS_I(inode)->ordered_tree;
560 spin_lock_irq(&tree->lock);
561 node = &entry->rb_node;
562 rb_erase(node, &tree->tree);
563 if (tree->last == node)
564 tree->last = NULL;
565 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
566 spin_unlock_irq(&tree->lock);
567
568 spin_lock(&root->ordered_extent_lock);
569 list_del_init(&entry->root_extent_list);
570 root->nr_ordered_extents--;
571
572 trace_btrfs_ordered_extent_remove(inode, entry);
573
574 /*
575 * we have no more ordered extents for this inode and
576 * no dirty pages. We can safely remove it from the
577 * list of ordered extents
578 */
579 if (RB_EMPTY_ROOT(&tree->tree) &&
580 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
581 spin_lock(&root->fs_info->ordered_root_lock);
582 list_del_init(&BTRFS_I(inode)->ordered_operations);
583 spin_unlock(&root->fs_info->ordered_root_lock);
584 }
585
586 if (!root->nr_ordered_extents) {
587 spin_lock(&root->fs_info->ordered_root_lock);
588 BUG_ON(list_empty(&root->ordered_root));
589 list_del_init(&root->ordered_root);
590 spin_unlock(&root->fs_info->ordered_root_lock);
591 }
592 spin_unlock(&root->ordered_extent_lock);
593 wake_up(&entry->wait);
594 }
595
596 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
597 {
598 struct btrfs_ordered_extent *ordered;
599
600 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
601 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
602 complete(&ordered->completion);
603 }
604
605 /*
606 * wait for all the ordered extents in a root. This is done when balancing
607 * space between drives.
608 */
609 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
610 {
611 struct list_head splice, works;
612 struct btrfs_ordered_extent *ordered, *next;
613 int count = 0;
614
615 INIT_LIST_HEAD(&splice);
616 INIT_LIST_HEAD(&works);
617
618 mutex_lock(&root->ordered_extent_mutex);
619 spin_lock(&root->ordered_extent_lock);
620 list_splice_init(&root->ordered_extents, &splice);
621 while (!list_empty(&splice) && nr) {
622 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
623 root_extent_list);
624 list_move_tail(&ordered->root_extent_list,
625 &root->ordered_extents);
626 atomic_inc(&ordered->refs);
627 spin_unlock(&root->ordered_extent_lock);
628
629 btrfs_init_work(&ordered->flush_work,
630 btrfs_run_ordered_extent_work, NULL, NULL);
631 list_add_tail(&ordered->work_list, &works);
632 btrfs_queue_work(root->fs_info->flush_workers,
633 &ordered->flush_work);
634
635 cond_resched();
636 spin_lock(&root->ordered_extent_lock);
637 if (nr != -1)
638 nr--;
639 count++;
640 }
641 list_splice_tail(&splice, &root->ordered_extents);
642 spin_unlock(&root->ordered_extent_lock);
643
644 list_for_each_entry_safe(ordered, next, &works, work_list) {
645 list_del_init(&ordered->work_list);
646 wait_for_completion(&ordered->completion);
647 btrfs_put_ordered_extent(ordered);
648 cond_resched();
649 }
650 mutex_unlock(&root->ordered_extent_mutex);
651
652 return count;
653 }
654
655 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
656 {
657 struct btrfs_root *root;
658 struct list_head splice;
659 int done;
660
661 INIT_LIST_HEAD(&splice);
662
663 mutex_lock(&fs_info->ordered_operations_mutex);
664 spin_lock(&fs_info->ordered_root_lock);
665 list_splice_init(&fs_info->ordered_roots, &splice);
666 while (!list_empty(&splice) && nr) {
667 root = list_first_entry(&splice, struct btrfs_root,
668 ordered_root);
669 root = btrfs_grab_fs_root(root);
670 BUG_ON(!root);
671 list_move_tail(&root->ordered_root,
672 &fs_info->ordered_roots);
673 spin_unlock(&fs_info->ordered_root_lock);
674
675 done = btrfs_wait_ordered_extents(root, nr);
676 btrfs_put_fs_root(root);
677
678 spin_lock(&fs_info->ordered_root_lock);
679 if (nr != -1) {
680 nr -= done;
681 WARN_ON(nr < 0);
682 }
683 }
684 list_splice_tail(&splice, &fs_info->ordered_roots);
685 spin_unlock(&fs_info->ordered_root_lock);
686 mutex_unlock(&fs_info->ordered_operations_mutex);
687 }
688
689 /*
690 * this is used during transaction commit to write all the inodes
691 * added to the ordered operation list. These files must be fully on
692 * disk before the transaction commits.
693 *
694 * we have two modes here, one is to just start the IO via filemap_flush
695 * and the other is to wait for all the io. When we wait, we have an
696 * extra check to make sure the ordered operation list really is empty
697 * before we return
698 */
699 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
700 struct btrfs_root *root, int wait)
701 {
702 struct btrfs_inode *btrfs_inode;
703 struct inode *inode;
704 struct btrfs_transaction *cur_trans = trans->transaction;
705 struct list_head splice;
706 struct list_head works;
707 struct btrfs_delalloc_work *work, *next;
708 int ret = 0;
709
710 INIT_LIST_HEAD(&splice);
711 INIT_LIST_HEAD(&works);
712
713 mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
714 spin_lock(&root->fs_info->ordered_root_lock);
715 list_splice_init(&cur_trans->ordered_operations, &splice);
716 while (!list_empty(&splice)) {
717 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
718 ordered_operations);
719 inode = &btrfs_inode->vfs_inode;
720
721 list_del_init(&btrfs_inode->ordered_operations);
722
723 /*
724 * the inode may be getting freed (in sys_unlink path).
725 */
726 inode = igrab(inode);
727 if (!inode)
728 continue;
729
730 if (!wait)
731 list_add_tail(&BTRFS_I(inode)->ordered_operations,
732 &cur_trans->ordered_operations);
733 spin_unlock(&root->fs_info->ordered_root_lock);
734
735 work = btrfs_alloc_delalloc_work(inode, wait, 1);
736 if (!work) {
737 spin_lock(&root->fs_info->ordered_root_lock);
738 if (list_empty(&BTRFS_I(inode)->ordered_operations))
739 list_add_tail(&btrfs_inode->ordered_operations,
740 &splice);
741 list_splice_tail(&splice,
742 &cur_trans->ordered_operations);
743 spin_unlock(&root->fs_info->ordered_root_lock);
744 ret = -ENOMEM;
745 goto out;
746 }
747 list_add_tail(&work->list, &works);
748 btrfs_queue_work(root->fs_info->flush_workers,
749 &work->work);
750
751 cond_resched();
752 spin_lock(&root->fs_info->ordered_root_lock);
753 }
754 spin_unlock(&root->fs_info->ordered_root_lock);
755 out:
756 list_for_each_entry_safe(work, next, &works, list) {
757 list_del_init(&work->list);
758 btrfs_wait_and_free_delalloc_work(work);
759 }
760 mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
761 return ret;
762 }
763
764 /*
765 * Used to start IO or wait for a given ordered extent to finish.
766 *
767 * If wait is one, this effectively waits on page writeback for all the pages
768 * in the extent, and it waits on the io completion code to insert
769 * metadata into the btree corresponding to the extent
770 */
771 void btrfs_start_ordered_extent(struct inode *inode,
772 struct btrfs_ordered_extent *entry,
773 int wait)
774 {
775 u64 start = entry->file_offset;
776 u64 end = start + entry->len - 1;
777
778 trace_btrfs_ordered_extent_start(inode, entry);
779
780 /*
781 * pages in the range can be dirty, clean or writeback. We
782 * start IO on any dirty ones so the wait doesn't stall waiting
783 * for the flusher thread to find them
784 */
785 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
786 filemap_fdatawrite_range(inode->i_mapping, start, end);
787 if (wait) {
788 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
789 &entry->flags));
790 }
791 }
792
793 /*
794 * Used to wait on ordered extents across a large range of bytes.
795 */
796 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
797 {
798 int ret = 0;
799 u64 end;
800 u64 orig_end;
801 struct btrfs_ordered_extent *ordered;
802
803 if (start + len < start) {
804 orig_end = INT_LIMIT(loff_t);
805 } else {
806 orig_end = start + len - 1;
807 if (orig_end > INT_LIMIT(loff_t))
808 orig_end = INT_LIMIT(loff_t);
809 }
810
811 /* start IO across the range first to instantiate any delalloc
812 * extents
813 */
814 ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
815 if (ret)
816 return ret;
817 /*
818 * So with compression we will find and lock a dirty page and clear the
819 * first one as dirty, setup an async extent, and immediately return
820 * with the entire range locked but with nobody actually marked with
821 * writeback. So we can't just filemap_write_and_wait_range() and
822 * expect it to work since it will just kick off a thread to do the
823 * actual work. So we need to call filemap_fdatawrite_range _again_
824 * since it will wait on the page lock, which won't be unlocked until
825 * after the pages have been marked as writeback and so we're good to go
826 * from there. We have to do this otherwise we'll miss the ordered
827 * extents and that results in badness. Please Josef, do not think you
828 * know better and pull this out at some point in the future, it is
829 * right and you are wrong.
830 */
831 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
832 &BTRFS_I(inode)->runtime_flags)) {
833 ret = filemap_fdatawrite_range(inode->i_mapping, start,
834 orig_end);
835 if (ret)
836 return ret;
837 }
838 ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
839 if (ret)
840 return ret;
841
842 end = orig_end;
843 while (1) {
844 ordered = btrfs_lookup_first_ordered_extent(inode, end);
845 if (!ordered)
846 break;
847 if (ordered->file_offset > orig_end) {
848 btrfs_put_ordered_extent(ordered);
849 break;
850 }
851 if (ordered->file_offset + ordered->len <= start) {
852 btrfs_put_ordered_extent(ordered);
853 break;
854 }
855 btrfs_start_ordered_extent(inode, ordered, 1);
856 end = ordered->file_offset;
857 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
858 ret = -EIO;
859 btrfs_put_ordered_extent(ordered);
860 if (ret || end == 0 || end == start)
861 break;
862 end--;
863 }
864 return ret;
865 }
866
867 /*
868 * find an ordered extent corresponding to file_offset. return NULL if
869 * nothing is found, otherwise take a reference on the extent and return it
870 */
871 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
872 u64 file_offset)
873 {
874 struct btrfs_ordered_inode_tree *tree;
875 struct rb_node *node;
876 struct btrfs_ordered_extent *entry = NULL;
877
878 tree = &BTRFS_I(inode)->ordered_tree;
879 spin_lock_irq(&tree->lock);
880 node = tree_search(tree, file_offset);
881 if (!node)
882 goto out;
883
884 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
885 if (!offset_in_entry(entry, file_offset))
886 entry = NULL;
887 if (entry)
888 atomic_inc(&entry->refs);
889 out:
890 spin_unlock_irq(&tree->lock);
891 return entry;
892 }
893
894 /* Since the DIO code tries to lock a wide area we need to look for any ordered
895 * extents that exist in the range, rather than just the start of the range.
896 */
897 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
898 u64 file_offset,
899 u64 len)
900 {
901 struct btrfs_ordered_inode_tree *tree;
902 struct rb_node *node;
903 struct btrfs_ordered_extent *entry = NULL;
904
905 tree = &BTRFS_I(inode)->ordered_tree;
906 spin_lock_irq(&tree->lock);
907 node = tree_search(tree, file_offset);
908 if (!node) {
909 node = tree_search(tree, file_offset + len);
910 if (!node)
911 goto out;
912 }
913
914 while (1) {
915 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
916 if (range_overlaps(entry, file_offset, len))
917 break;
918
919 if (entry->file_offset >= file_offset + len) {
920 entry = NULL;
921 break;
922 }
923 entry = NULL;
924 node = rb_next(node);
925 if (!node)
926 break;
927 }
928 out:
929 if (entry)
930 atomic_inc(&entry->refs);
931 spin_unlock_irq(&tree->lock);
932 return entry;
933 }
934
935 /*
936 * lookup and return any extent before 'file_offset'. NULL is returned
937 * if none is found
938 */
939 struct btrfs_ordered_extent *
940 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
941 {
942 struct btrfs_ordered_inode_tree *tree;
943 struct rb_node *node;
944 struct btrfs_ordered_extent *entry = NULL;
945
946 tree = &BTRFS_I(inode)->ordered_tree;
947 spin_lock_irq(&tree->lock);
948 node = tree_search(tree, file_offset);
949 if (!node)
950 goto out;
951
952 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
953 atomic_inc(&entry->refs);
954 out:
955 spin_unlock_irq(&tree->lock);
956 return entry;
957 }
958
959 /*
960 * After an extent is done, call this to conditionally update the on disk
961 * i_size. i_size is updated to cover any fully written part of the file.
962 */
963 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
964 struct btrfs_ordered_extent *ordered)
965 {
966 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
967 u64 disk_i_size;
968 u64 new_i_size;
969 u64 i_size = i_size_read(inode);
970 struct rb_node *node;
971 struct rb_node *prev = NULL;
972 struct btrfs_ordered_extent *test;
973 int ret = 1;
974
975 spin_lock_irq(&tree->lock);
976 if (ordered) {
977 offset = entry_end(ordered);
978 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
979 offset = min(offset,
980 ordered->file_offset +
981 ordered->truncated_len);
982 } else {
983 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
984 }
985 disk_i_size = BTRFS_I(inode)->disk_i_size;
986
987 /* truncate file */
988 if (disk_i_size > i_size) {
989 BTRFS_I(inode)->disk_i_size = i_size;
990 ret = 0;
991 goto out;
992 }
993
994 /*
995 * if the disk i_size is already at the inode->i_size, or
996 * this ordered extent is inside the disk i_size, we're done
997 */
998 if (disk_i_size == i_size)
999 goto out;
1000
1001 /*
1002 * We still need to update disk_i_size if outstanding_isize is greater
1003 * than disk_i_size.
1004 */
1005 if (offset <= disk_i_size &&
1006 (!ordered || ordered->outstanding_isize <= disk_i_size))
1007 goto out;
1008
1009 /*
1010 * walk backward from this ordered extent to disk_i_size.
1011 * if we find an ordered extent then we can't update disk i_size
1012 * yet
1013 */
1014 if (ordered) {
1015 node = rb_prev(&ordered->rb_node);
1016 } else {
1017 prev = tree_search(tree, offset);
1018 /*
1019 * we insert file extents without involving ordered struct,
1020 * so there should be no ordered struct cover this offset
1021 */
1022 if (prev) {
1023 test = rb_entry(prev, struct btrfs_ordered_extent,
1024 rb_node);
1025 BUG_ON(offset_in_entry(test, offset));
1026 }
1027 node = prev;
1028 }
1029 for (; node; node = rb_prev(node)) {
1030 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1031
1032 /* We treat this entry as if it doesnt exist */
1033 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1034 continue;
1035 if (test->file_offset + test->len <= disk_i_size)
1036 break;
1037 if (test->file_offset >= i_size)
1038 break;
1039 if (entry_end(test) > disk_i_size) {
1040 /*
1041 * we don't update disk_i_size now, so record this
1042 * undealt i_size. Or we will not know the real
1043 * i_size.
1044 */
1045 if (test->outstanding_isize < offset)
1046 test->outstanding_isize = offset;
1047 if (ordered &&
1048 ordered->outstanding_isize >
1049 test->outstanding_isize)
1050 test->outstanding_isize =
1051 ordered->outstanding_isize;
1052 goto out;
1053 }
1054 }
1055 new_i_size = min_t(u64, offset, i_size);
1056
1057 /*
1058 * Some ordered extents may completed before the current one, and
1059 * we hold the real i_size in ->outstanding_isize.
1060 */
1061 if (ordered && ordered->outstanding_isize > new_i_size)
1062 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1063 BTRFS_I(inode)->disk_i_size = new_i_size;
1064 ret = 0;
1065 out:
1066 /*
1067 * We need to do this because we can't remove ordered extents until
1068 * after the i_disk_size has been updated and then the inode has been
1069 * updated to reflect the change, so we need to tell anybody who finds
1070 * this ordered extent that we've already done all the real work, we
1071 * just haven't completed all the other work.
1072 */
1073 if (ordered)
1074 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1075 spin_unlock_irq(&tree->lock);
1076 return ret;
1077 }
1078
1079 /*
1080 * search the ordered extents for one corresponding to 'offset' and
1081 * try to find a checksum. This is used because we allow pages to
1082 * be reclaimed before their checksum is actually put into the btree
1083 */
1084 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1085 u32 *sum, int len)
1086 {
1087 struct btrfs_ordered_sum *ordered_sum;
1088 struct btrfs_ordered_extent *ordered;
1089 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1090 unsigned long num_sectors;
1091 unsigned long i;
1092 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1093 int index = 0;
1094
1095 ordered = btrfs_lookup_ordered_extent(inode, offset);
1096 if (!ordered)
1097 return 0;
1098
1099 spin_lock_irq(&tree->lock);
1100 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1101 if (disk_bytenr >= ordered_sum->bytenr &&
1102 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1103 i = (disk_bytenr - ordered_sum->bytenr) >>
1104 inode->i_sb->s_blocksize_bits;
1105 num_sectors = ordered_sum->len >>
1106 inode->i_sb->s_blocksize_bits;
1107 num_sectors = min_t(int, len - index, num_sectors - i);
1108 memcpy(sum + index, ordered_sum->sums + i,
1109 num_sectors);
1110
1111 index += (int)num_sectors;
1112 if (index == len)
1113 goto out;
1114 disk_bytenr += num_sectors * sectorsize;
1115 }
1116 }
1117 out:
1118 spin_unlock_irq(&tree->lock);
1119 btrfs_put_ordered_extent(ordered);
1120 return index;
1121 }
1122
1123
1124 /*
1125 * add a given inode to the list of inodes that must be fully on
1126 * disk before a transaction commit finishes.
1127 *
1128 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1129 * used to make sure renamed files are fully on disk.
1130 *
1131 * It is a noop if the inode is already fully on disk.
1132 *
1133 * If trans is not null, we'll do a friendly check for a transaction that
1134 * is already flushing things and force the IO down ourselves.
1135 */
1136 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1137 struct btrfs_root *root, struct inode *inode)
1138 {
1139 struct btrfs_transaction *cur_trans = trans->transaction;
1140 u64 last_mod;
1141
1142 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1143
1144 /*
1145 * if this file hasn't been changed since the last transaction
1146 * commit, we can safely return without doing anything
1147 */
1148 if (last_mod <= root->fs_info->last_trans_committed)
1149 return;
1150
1151 spin_lock(&root->fs_info->ordered_root_lock);
1152 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1153 list_add_tail(&BTRFS_I(inode)->ordered_operations,
1154 &cur_trans->ordered_operations);
1155 }
1156 spin_unlock(&root->fs_info->ordered_root_lock);
1157 }
1158
1159 int __init ordered_data_init(void)
1160 {
1161 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1162 sizeof(struct btrfs_ordered_extent), 0,
1163 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1164 NULL);
1165 if (!btrfs_ordered_extent_cache)
1166 return -ENOMEM;
1167
1168 return 0;
1169 }
1170
1171 void ordered_data_exit(void)
1172 {
1173 if (btrfs_ordered_extent_cache)
1174 kmem_cache_destroy(btrfs_ordered_extent_cache);
1175 }