]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/ordered-data.c
btrfs: sysfs: check initialization state before updating features
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / ordered-data.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
36 }
37
38 /* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
43 {
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
46 struct btrfs_ordered_extent *entry;
47
48 while (*p) {
49 parent = *p;
50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51
52 if (file_offset < entry->file_offset)
53 p = &(*p)->rb_left;
54 else if (file_offset >= entry_end(entry))
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63 }
64
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67 {
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 "%llu", offset);
71 }
72
73 /*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
79 {
80 struct rb_node *n = root->rb_node;
81 struct rb_node *prev = NULL;
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
85
86 while (n) {
87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 prev = n;
89 prev_entry = entry;
90
91 if (file_offset < entry->file_offset)
92 n = n->rb_left;
93 else if (file_offset >= entry_end(entry))
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
101 while (prev && file_offset >= entry_end(prev_entry)) {
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
115 while (prev && file_offset < entry_end(prev_entry)) {
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
122 }
123 *prev_ret = prev;
124 return NULL;
125 }
126
127 /*
128 * helper to check if a given offset is inside a given entry
129 */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136 }
137
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140 {
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145 }
146
147 /*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
153 {
154 struct rb_root *root = &tree->tree;
155 struct rb_node *prev = NULL;
156 struct rb_node *ret;
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
166 if (!ret)
167 ret = prev;
168 if (ret)
169 tree->last = ret;
170 return ret;
171 }
172
173 /* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
186 int type, int dio, int compress_type)
187 {
188 struct btrfs_root *root = BTRFS_I(inode)->root;
189 struct btrfs_ordered_inode_tree *tree;
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
192
193 tree = &BTRFS_I(inode)->ordered_tree;
194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 if (!entry)
196 return -ENOMEM;
197
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
201 entry->disk_len = disk_len;
202 entry->bytes_left = len;
203 entry->inode = igrab(inode);
204 entry->compress_type = compress_type;
205 entry->truncated_len = (u64)-1;
206 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
207 set_bit(type, &entry->flags);
208
209 if (dio)
210 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
211
212 /* one ref for the tree */
213 atomic_set(&entry->refs, 1);
214 init_waitqueue_head(&entry->wait);
215 INIT_LIST_HEAD(&entry->list);
216 INIT_LIST_HEAD(&entry->root_extent_list);
217 INIT_LIST_HEAD(&entry->work_list);
218 init_completion(&entry->completion);
219 INIT_LIST_HEAD(&entry->log_list);
220 INIT_LIST_HEAD(&entry->trans_list);
221
222 trace_btrfs_ordered_extent_add(inode, entry);
223
224 spin_lock_irq(&tree->lock);
225 node = tree_insert(&tree->tree, file_offset,
226 &entry->rb_node);
227 if (node)
228 ordered_data_tree_panic(inode, -EEXIST, file_offset);
229 spin_unlock_irq(&tree->lock);
230
231 spin_lock(&root->ordered_extent_lock);
232 list_add_tail(&entry->root_extent_list,
233 &root->ordered_extents);
234 root->nr_ordered_extents++;
235 if (root->nr_ordered_extents == 1) {
236 spin_lock(&root->fs_info->ordered_root_lock);
237 BUG_ON(!list_empty(&root->ordered_root));
238 list_add_tail(&root->ordered_root,
239 &root->fs_info->ordered_roots);
240 spin_unlock(&root->fs_info->ordered_root_lock);
241 }
242 spin_unlock(&root->ordered_extent_lock);
243
244 return 0;
245 }
246
247 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
248 u64 start, u64 len, u64 disk_len, int type)
249 {
250 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251 disk_len, type, 0,
252 BTRFS_COMPRESS_NONE);
253 }
254
255 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
256 u64 start, u64 len, u64 disk_len, int type)
257 {
258 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
259 disk_len, type, 1,
260 BTRFS_COMPRESS_NONE);
261 }
262
263 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
264 u64 start, u64 len, u64 disk_len,
265 int type, int compress_type)
266 {
267 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
268 disk_len, type, 0,
269 compress_type);
270 }
271
272 /*
273 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
274 * when an ordered extent is finished. If the list covers more than one
275 * ordered extent, it is split across multiples.
276 */
277 void btrfs_add_ordered_sum(struct inode *inode,
278 struct btrfs_ordered_extent *entry,
279 struct btrfs_ordered_sum *sum)
280 {
281 struct btrfs_ordered_inode_tree *tree;
282
283 tree = &BTRFS_I(inode)->ordered_tree;
284 spin_lock_irq(&tree->lock);
285 list_add_tail(&sum->list, &entry->list);
286 spin_unlock_irq(&tree->lock);
287 }
288
289 /*
290 * this is used to account for finished IO across a given range
291 * of the file. The IO may span ordered extents. If
292 * a given ordered_extent is completely done, 1 is returned, otherwise
293 * 0.
294 *
295 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
296 * to make sure this function only returns 1 once for a given ordered extent.
297 *
298 * file_offset is updated to one byte past the range that is recorded as
299 * complete. This allows you to walk forward in the file.
300 */
301 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
302 struct btrfs_ordered_extent **cached,
303 u64 *file_offset, u64 io_size, int uptodate)
304 {
305 struct btrfs_ordered_inode_tree *tree;
306 struct rb_node *node;
307 struct btrfs_ordered_extent *entry = NULL;
308 int ret;
309 unsigned long flags;
310 u64 dec_end;
311 u64 dec_start;
312 u64 to_dec;
313
314 tree = &BTRFS_I(inode)->ordered_tree;
315 spin_lock_irqsave(&tree->lock, flags);
316 node = tree_search(tree, *file_offset);
317 if (!node) {
318 ret = 1;
319 goto out;
320 }
321
322 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
323 if (!offset_in_entry(entry, *file_offset)) {
324 ret = 1;
325 goto out;
326 }
327
328 dec_start = max(*file_offset, entry->file_offset);
329 dec_end = min(*file_offset + io_size, entry->file_offset +
330 entry->len);
331 *file_offset = dec_end;
332 if (dec_start > dec_end) {
333 btrfs_crit(BTRFS_I(inode)->root->fs_info,
334 "bad ordering dec_start %llu end %llu", dec_start, dec_end);
335 }
336 to_dec = dec_end - dec_start;
337 if (to_dec > entry->bytes_left) {
338 btrfs_crit(BTRFS_I(inode)->root->fs_info,
339 "bad ordered accounting left %llu size %llu",
340 entry->bytes_left, to_dec);
341 }
342 entry->bytes_left -= to_dec;
343 if (!uptodate)
344 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
345
346 if (entry->bytes_left == 0) {
347 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
348 /*
349 * Implicit memory barrier after test_and_set_bit
350 */
351 if (waitqueue_active(&entry->wait))
352 wake_up(&entry->wait);
353 } else {
354 ret = 1;
355 }
356 out:
357 if (!ret && cached && entry) {
358 *cached = entry;
359 atomic_inc(&entry->refs);
360 }
361 spin_unlock_irqrestore(&tree->lock, flags);
362 return ret == 0;
363 }
364
365 /*
366 * this is used to account for finished IO across a given range
367 * of the file. The IO should not span ordered extents. If
368 * a given ordered_extent is completely done, 1 is returned, otherwise
369 * 0.
370 *
371 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
372 * to make sure this function only returns 1 once for a given ordered extent.
373 */
374 int btrfs_dec_test_ordered_pending(struct inode *inode,
375 struct btrfs_ordered_extent **cached,
376 u64 file_offset, u64 io_size, int uptodate)
377 {
378 struct btrfs_ordered_inode_tree *tree;
379 struct rb_node *node;
380 struct btrfs_ordered_extent *entry = NULL;
381 unsigned long flags;
382 int ret;
383
384 tree = &BTRFS_I(inode)->ordered_tree;
385 spin_lock_irqsave(&tree->lock, flags);
386 if (cached && *cached) {
387 entry = *cached;
388 goto have_entry;
389 }
390
391 node = tree_search(tree, file_offset);
392 if (!node) {
393 ret = 1;
394 goto out;
395 }
396
397 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
398 have_entry:
399 if (!offset_in_entry(entry, file_offset)) {
400 ret = 1;
401 goto out;
402 }
403
404 if (io_size > entry->bytes_left) {
405 btrfs_crit(BTRFS_I(inode)->root->fs_info,
406 "bad ordered accounting left %llu size %llu",
407 entry->bytes_left, io_size);
408 }
409 entry->bytes_left -= io_size;
410 if (!uptodate)
411 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
412
413 if (entry->bytes_left == 0) {
414 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
415 /*
416 * Implicit memory barrier after test_and_set_bit
417 */
418 if (waitqueue_active(&entry->wait))
419 wake_up(&entry->wait);
420 } else {
421 ret = 1;
422 }
423 out:
424 if (!ret && cached && entry) {
425 *cached = entry;
426 atomic_inc(&entry->refs);
427 }
428 spin_unlock_irqrestore(&tree->lock, flags);
429 return ret == 0;
430 }
431
432 /* Needs to either be called under a log transaction or the log_mutex */
433 void btrfs_get_logged_extents(struct inode *inode,
434 struct list_head *logged_list,
435 const loff_t start,
436 const loff_t end)
437 {
438 struct btrfs_ordered_inode_tree *tree;
439 struct btrfs_ordered_extent *ordered;
440 struct rb_node *n;
441 struct rb_node *prev;
442
443 tree = &BTRFS_I(inode)->ordered_tree;
444 spin_lock_irq(&tree->lock);
445 n = __tree_search(&tree->tree, end, &prev);
446 if (!n)
447 n = prev;
448 for (; n; n = rb_prev(n)) {
449 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
450 if (ordered->file_offset > end)
451 continue;
452 if (entry_end(ordered) <= start)
453 break;
454 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
455 continue;
456 list_add(&ordered->log_list, logged_list);
457 atomic_inc(&ordered->refs);
458 }
459 spin_unlock_irq(&tree->lock);
460 }
461
462 void btrfs_put_logged_extents(struct list_head *logged_list)
463 {
464 struct btrfs_ordered_extent *ordered;
465
466 while (!list_empty(logged_list)) {
467 ordered = list_first_entry(logged_list,
468 struct btrfs_ordered_extent,
469 log_list);
470 list_del_init(&ordered->log_list);
471 btrfs_put_ordered_extent(ordered);
472 }
473 }
474
475 void btrfs_submit_logged_extents(struct list_head *logged_list,
476 struct btrfs_root *log)
477 {
478 int index = log->log_transid % 2;
479
480 spin_lock_irq(&log->log_extents_lock[index]);
481 list_splice_tail(logged_list, &log->logged_list[index]);
482 spin_unlock_irq(&log->log_extents_lock[index]);
483 }
484
485 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
486 struct btrfs_root *log, u64 transid)
487 {
488 struct btrfs_ordered_extent *ordered;
489 int index = transid % 2;
490
491 spin_lock_irq(&log->log_extents_lock[index]);
492 while (!list_empty(&log->logged_list[index])) {
493 struct inode *inode;
494 ordered = list_first_entry(&log->logged_list[index],
495 struct btrfs_ordered_extent,
496 log_list);
497 list_del_init(&ordered->log_list);
498 inode = ordered->inode;
499 spin_unlock_irq(&log->log_extents_lock[index]);
500
501 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
502 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
503 u64 start = ordered->file_offset;
504 u64 end = ordered->file_offset + ordered->len - 1;
505
506 WARN_ON(!inode);
507 filemap_fdatawrite_range(inode->i_mapping, start, end);
508 }
509 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
510 &ordered->flags));
511
512 /*
513 * In order to keep us from losing our ordered extent
514 * information when committing the transaction we have to make
515 * sure that any logged extents are completed when we go to
516 * commit the transaction. To do this we simply increase the
517 * current transactions pending_ordered counter and decrement it
518 * when the ordered extent completes.
519 */
520 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
521 struct btrfs_ordered_inode_tree *tree;
522
523 tree = &BTRFS_I(inode)->ordered_tree;
524 spin_lock_irq(&tree->lock);
525 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
526 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
527 atomic_inc(&trans->transaction->pending_ordered);
528 }
529 spin_unlock_irq(&tree->lock);
530 }
531 btrfs_put_ordered_extent(ordered);
532 spin_lock_irq(&log->log_extents_lock[index]);
533 }
534 spin_unlock_irq(&log->log_extents_lock[index]);
535 }
536
537 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
538 {
539 struct btrfs_ordered_extent *ordered;
540 int index = transid % 2;
541
542 spin_lock_irq(&log->log_extents_lock[index]);
543 while (!list_empty(&log->logged_list[index])) {
544 ordered = list_first_entry(&log->logged_list[index],
545 struct btrfs_ordered_extent,
546 log_list);
547 list_del_init(&ordered->log_list);
548 spin_unlock_irq(&log->log_extents_lock[index]);
549 btrfs_put_ordered_extent(ordered);
550 spin_lock_irq(&log->log_extents_lock[index]);
551 }
552 spin_unlock_irq(&log->log_extents_lock[index]);
553 }
554
555 /*
556 * used to drop a reference on an ordered extent. This will free
557 * the extent if the last reference is dropped
558 */
559 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
560 {
561 struct list_head *cur;
562 struct btrfs_ordered_sum *sum;
563
564 trace_btrfs_ordered_extent_put(entry->inode, entry);
565
566 if (atomic_dec_and_test(&entry->refs)) {
567 ASSERT(list_empty(&entry->log_list));
568 ASSERT(list_empty(&entry->trans_list));
569 ASSERT(list_empty(&entry->root_extent_list));
570 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
571 if (entry->inode)
572 btrfs_add_delayed_iput(entry->inode);
573 while (!list_empty(&entry->list)) {
574 cur = entry->list.next;
575 sum = list_entry(cur, struct btrfs_ordered_sum, list);
576 list_del(&sum->list);
577 kfree(sum);
578 }
579 kmem_cache_free(btrfs_ordered_extent_cache, entry);
580 }
581 }
582
583 /*
584 * remove an ordered extent from the tree. No references are dropped
585 * and waiters are woken up.
586 */
587 void btrfs_remove_ordered_extent(struct inode *inode,
588 struct btrfs_ordered_extent *entry)
589 {
590 struct btrfs_ordered_inode_tree *tree;
591 struct btrfs_root *root = BTRFS_I(inode)->root;
592 struct rb_node *node;
593 bool dec_pending_ordered = false;
594
595 tree = &BTRFS_I(inode)->ordered_tree;
596 spin_lock_irq(&tree->lock);
597 node = &entry->rb_node;
598 rb_erase(node, &tree->tree);
599 RB_CLEAR_NODE(node);
600 if (tree->last == node)
601 tree->last = NULL;
602 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
603 if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
604 dec_pending_ordered = true;
605 spin_unlock_irq(&tree->lock);
606
607 /*
608 * The current running transaction is waiting on us, we need to let it
609 * know that we're complete and wake it up.
610 */
611 if (dec_pending_ordered) {
612 struct btrfs_transaction *trans;
613
614 /*
615 * The checks for trans are just a formality, it should be set,
616 * but if it isn't we don't want to deref/assert under the spin
617 * lock, so be nice and check if trans is set, but ASSERT() so
618 * if it isn't set a developer will notice.
619 */
620 spin_lock(&root->fs_info->trans_lock);
621 trans = root->fs_info->running_transaction;
622 if (trans)
623 atomic_inc(&trans->use_count);
624 spin_unlock(&root->fs_info->trans_lock);
625
626 ASSERT(trans);
627 if (trans) {
628 if (atomic_dec_and_test(&trans->pending_ordered))
629 wake_up(&trans->pending_wait);
630 btrfs_put_transaction(trans);
631 }
632 }
633
634 spin_lock(&root->ordered_extent_lock);
635 list_del_init(&entry->root_extent_list);
636 root->nr_ordered_extents--;
637
638 trace_btrfs_ordered_extent_remove(inode, entry);
639
640 if (!root->nr_ordered_extents) {
641 spin_lock(&root->fs_info->ordered_root_lock);
642 BUG_ON(list_empty(&root->ordered_root));
643 list_del_init(&root->ordered_root);
644 spin_unlock(&root->fs_info->ordered_root_lock);
645 }
646 spin_unlock(&root->ordered_extent_lock);
647 wake_up(&entry->wait);
648 }
649
650 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
651 {
652 struct btrfs_ordered_extent *ordered;
653
654 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
655 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
656 complete(&ordered->completion);
657 }
658
659 /*
660 * wait for all the ordered extents in a root. This is done when balancing
661 * space between drives.
662 */
663 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
664 {
665 struct list_head splice, works;
666 struct btrfs_ordered_extent *ordered, *next;
667 int count = 0;
668
669 INIT_LIST_HEAD(&splice);
670 INIT_LIST_HEAD(&works);
671
672 mutex_lock(&root->ordered_extent_mutex);
673 spin_lock(&root->ordered_extent_lock);
674 list_splice_init(&root->ordered_extents, &splice);
675 while (!list_empty(&splice) && nr) {
676 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
677 root_extent_list);
678 list_move_tail(&ordered->root_extent_list,
679 &root->ordered_extents);
680 atomic_inc(&ordered->refs);
681 spin_unlock(&root->ordered_extent_lock);
682
683 btrfs_init_work(&ordered->flush_work,
684 btrfs_flush_delalloc_helper,
685 btrfs_run_ordered_extent_work, NULL, NULL);
686 list_add_tail(&ordered->work_list, &works);
687 btrfs_queue_work(root->fs_info->flush_workers,
688 &ordered->flush_work);
689
690 cond_resched();
691 spin_lock(&root->ordered_extent_lock);
692 if (nr != -1)
693 nr--;
694 count++;
695 }
696 list_splice_tail(&splice, &root->ordered_extents);
697 spin_unlock(&root->ordered_extent_lock);
698
699 list_for_each_entry_safe(ordered, next, &works, work_list) {
700 list_del_init(&ordered->work_list);
701 wait_for_completion(&ordered->completion);
702 btrfs_put_ordered_extent(ordered);
703 cond_resched();
704 }
705 mutex_unlock(&root->ordered_extent_mutex);
706
707 return count;
708 }
709
710 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
711 {
712 struct btrfs_root *root;
713 struct list_head splice;
714 int done;
715
716 INIT_LIST_HEAD(&splice);
717
718 mutex_lock(&fs_info->ordered_operations_mutex);
719 spin_lock(&fs_info->ordered_root_lock);
720 list_splice_init(&fs_info->ordered_roots, &splice);
721 while (!list_empty(&splice) && nr) {
722 root = list_first_entry(&splice, struct btrfs_root,
723 ordered_root);
724 root = btrfs_grab_fs_root(root);
725 BUG_ON(!root);
726 list_move_tail(&root->ordered_root,
727 &fs_info->ordered_roots);
728 spin_unlock(&fs_info->ordered_root_lock);
729
730 done = btrfs_wait_ordered_extents(root, nr);
731 btrfs_put_fs_root(root);
732
733 spin_lock(&fs_info->ordered_root_lock);
734 if (nr != -1) {
735 nr -= done;
736 WARN_ON(nr < 0);
737 }
738 }
739 list_splice_tail(&splice, &fs_info->ordered_roots);
740 spin_unlock(&fs_info->ordered_root_lock);
741 mutex_unlock(&fs_info->ordered_operations_mutex);
742 }
743
744 /*
745 * Used to start IO or wait for a given ordered extent to finish.
746 *
747 * If wait is one, this effectively waits on page writeback for all the pages
748 * in the extent, and it waits on the io completion code to insert
749 * metadata into the btree corresponding to the extent
750 */
751 void btrfs_start_ordered_extent(struct inode *inode,
752 struct btrfs_ordered_extent *entry,
753 int wait)
754 {
755 u64 start = entry->file_offset;
756 u64 end = start + entry->len - 1;
757
758 trace_btrfs_ordered_extent_start(inode, entry);
759
760 /*
761 * pages in the range can be dirty, clean or writeback. We
762 * start IO on any dirty ones so the wait doesn't stall waiting
763 * for the flusher thread to find them
764 */
765 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
766 filemap_fdatawrite_range(inode->i_mapping, start, end);
767 if (wait) {
768 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
769 &entry->flags));
770 }
771 }
772
773 /*
774 * Used to wait on ordered extents across a large range of bytes.
775 */
776 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
777 {
778 int ret = 0;
779 int ret_wb = 0;
780 u64 end;
781 u64 orig_end;
782 struct btrfs_ordered_extent *ordered;
783
784 if (start + len < start) {
785 orig_end = INT_LIMIT(loff_t);
786 } else {
787 orig_end = start + len - 1;
788 if (orig_end > INT_LIMIT(loff_t))
789 orig_end = INT_LIMIT(loff_t);
790 }
791
792 /* start IO across the range first to instantiate any delalloc
793 * extents
794 */
795 ret = btrfs_fdatawrite_range(inode, start, orig_end);
796 if (ret)
797 return ret;
798
799 /*
800 * If we have a writeback error don't return immediately. Wait first
801 * for any ordered extents that haven't completed yet. This is to make
802 * sure no one can dirty the same page ranges and call writepages()
803 * before the ordered extents complete - to avoid failures (-EEXIST)
804 * when adding the new ordered extents to the ordered tree.
805 */
806 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
807
808 end = orig_end;
809 while (1) {
810 ordered = btrfs_lookup_first_ordered_extent(inode, end);
811 if (!ordered)
812 break;
813 if (ordered->file_offset > orig_end) {
814 btrfs_put_ordered_extent(ordered);
815 break;
816 }
817 if (ordered->file_offset + ordered->len <= start) {
818 btrfs_put_ordered_extent(ordered);
819 break;
820 }
821 btrfs_start_ordered_extent(inode, ordered, 1);
822 end = ordered->file_offset;
823 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
824 ret = -EIO;
825 btrfs_put_ordered_extent(ordered);
826 if (ret || end == 0 || end == start)
827 break;
828 end--;
829 }
830 return ret_wb ? ret_wb : ret;
831 }
832
833 /*
834 * find an ordered extent corresponding to file_offset. return NULL if
835 * nothing is found, otherwise take a reference on the extent and return it
836 */
837 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
838 u64 file_offset)
839 {
840 struct btrfs_ordered_inode_tree *tree;
841 struct rb_node *node;
842 struct btrfs_ordered_extent *entry = NULL;
843
844 tree = &BTRFS_I(inode)->ordered_tree;
845 spin_lock_irq(&tree->lock);
846 node = tree_search(tree, file_offset);
847 if (!node)
848 goto out;
849
850 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
851 if (!offset_in_entry(entry, file_offset))
852 entry = NULL;
853 if (entry)
854 atomic_inc(&entry->refs);
855 out:
856 spin_unlock_irq(&tree->lock);
857 return entry;
858 }
859
860 /* Since the DIO code tries to lock a wide area we need to look for any ordered
861 * extents that exist in the range, rather than just the start of the range.
862 */
863 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
864 u64 file_offset,
865 u64 len)
866 {
867 struct btrfs_ordered_inode_tree *tree;
868 struct rb_node *node;
869 struct btrfs_ordered_extent *entry = NULL;
870
871 tree = &BTRFS_I(inode)->ordered_tree;
872 spin_lock_irq(&tree->lock);
873 node = tree_search(tree, file_offset);
874 if (!node) {
875 node = tree_search(tree, file_offset + len);
876 if (!node)
877 goto out;
878 }
879
880 while (1) {
881 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
882 if (range_overlaps(entry, file_offset, len))
883 break;
884
885 if (entry->file_offset >= file_offset + len) {
886 entry = NULL;
887 break;
888 }
889 entry = NULL;
890 node = rb_next(node);
891 if (!node)
892 break;
893 }
894 out:
895 if (entry)
896 atomic_inc(&entry->refs);
897 spin_unlock_irq(&tree->lock);
898 return entry;
899 }
900
901 bool btrfs_have_ordered_extents_in_range(struct inode *inode,
902 u64 file_offset,
903 u64 len)
904 {
905 struct btrfs_ordered_extent *oe;
906
907 oe = btrfs_lookup_ordered_range(inode, file_offset, len);
908 if (oe) {
909 btrfs_put_ordered_extent(oe);
910 return true;
911 }
912 return false;
913 }
914
915 /*
916 * lookup and return any extent before 'file_offset'. NULL is returned
917 * if none is found
918 */
919 struct btrfs_ordered_extent *
920 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
921 {
922 struct btrfs_ordered_inode_tree *tree;
923 struct rb_node *node;
924 struct btrfs_ordered_extent *entry = NULL;
925
926 tree = &BTRFS_I(inode)->ordered_tree;
927 spin_lock_irq(&tree->lock);
928 node = tree_search(tree, file_offset);
929 if (!node)
930 goto out;
931
932 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
933 atomic_inc(&entry->refs);
934 out:
935 spin_unlock_irq(&tree->lock);
936 return entry;
937 }
938
939 /*
940 * After an extent is done, call this to conditionally update the on disk
941 * i_size. i_size is updated to cover any fully written part of the file.
942 */
943 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
944 struct btrfs_ordered_extent *ordered)
945 {
946 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
947 u64 disk_i_size;
948 u64 new_i_size;
949 u64 i_size = i_size_read(inode);
950 struct rb_node *node;
951 struct rb_node *prev = NULL;
952 struct btrfs_ordered_extent *test;
953 int ret = 1;
954
955 spin_lock_irq(&tree->lock);
956 if (ordered) {
957 offset = entry_end(ordered);
958 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
959 offset = min(offset,
960 ordered->file_offset +
961 ordered->truncated_len);
962 } else {
963 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
964 }
965 disk_i_size = BTRFS_I(inode)->disk_i_size;
966
967 /* truncate file */
968 if (disk_i_size > i_size) {
969 BTRFS_I(inode)->disk_i_size = i_size;
970 ret = 0;
971 goto out;
972 }
973
974 /*
975 * if the disk i_size is already at the inode->i_size, or
976 * this ordered extent is inside the disk i_size, we're done
977 */
978 if (disk_i_size == i_size)
979 goto out;
980
981 /*
982 * We still need to update disk_i_size if outstanding_isize is greater
983 * than disk_i_size.
984 */
985 if (offset <= disk_i_size &&
986 (!ordered || ordered->outstanding_isize <= disk_i_size))
987 goto out;
988
989 /*
990 * walk backward from this ordered extent to disk_i_size.
991 * if we find an ordered extent then we can't update disk i_size
992 * yet
993 */
994 if (ordered) {
995 node = rb_prev(&ordered->rb_node);
996 } else {
997 prev = tree_search(tree, offset);
998 /*
999 * we insert file extents without involving ordered struct,
1000 * so there should be no ordered struct cover this offset
1001 */
1002 if (prev) {
1003 test = rb_entry(prev, struct btrfs_ordered_extent,
1004 rb_node);
1005 BUG_ON(offset_in_entry(test, offset));
1006 }
1007 node = prev;
1008 }
1009 for (; node; node = rb_prev(node)) {
1010 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1011
1012 /* We treat this entry as if it doesnt exist */
1013 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1014 continue;
1015 if (test->file_offset + test->len <= disk_i_size)
1016 break;
1017 if (test->file_offset >= i_size)
1018 break;
1019 if (entry_end(test) > disk_i_size) {
1020 /*
1021 * we don't update disk_i_size now, so record this
1022 * undealt i_size. Or we will not know the real
1023 * i_size.
1024 */
1025 if (test->outstanding_isize < offset)
1026 test->outstanding_isize = offset;
1027 if (ordered &&
1028 ordered->outstanding_isize >
1029 test->outstanding_isize)
1030 test->outstanding_isize =
1031 ordered->outstanding_isize;
1032 goto out;
1033 }
1034 }
1035 new_i_size = min_t(u64, offset, i_size);
1036
1037 /*
1038 * Some ordered extents may completed before the current one, and
1039 * we hold the real i_size in ->outstanding_isize.
1040 */
1041 if (ordered && ordered->outstanding_isize > new_i_size)
1042 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1043 BTRFS_I(inode)->disk_i_size = new_i_size;
1044 ret = 0;
1045 out:
1046 /*
1047 * We need to do this because we can't remove ordered extents until
1048 * after the i_disk_size has been updated and then the inode has been
1049 * updated to reflect the change, so we need to tell anybody who finds
1050 * this ordered extent that we've already done all the real work, we
1051 * just haven't completed all the other work.
1052 */
1053 if (ordered)
1054 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1055 spin_unlock_irq(&tree->lock);
1056 return ret;
1057 }
1058
1059 /*
1060 * search the ordered extents for one corresponding to 'offset' and
1061 * try to find a checksum. This is used because we allow pages to
1062 * be reclaimed before their checksum is actually put into the btree
1063 */
1064 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1065 u32 *sum, int len)
1066 {
1067 struct btrfs_ordered_sum *ordered_sum;
1068 struct btrfs_ordered_extent *ordered;
1069 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1070 unsigned long num_sectors;
1071 unsigned long i;
1072 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1073 int index = 0;
1074
1075 ordered = btrfs_lookup_ordered_extent(inode, offset);
1076 if (!ordered)
1077 return 0;
1078
1079 spin_lock_irq(&tree->lock);
1080 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1081 if (disk_bytenr >= ordered_sum->bytenr &&
1082 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1083 i = (disk_bytenr - ordered_sum->bytenr) >>
1084 inode->i_sb->s_blocksize_bits;
1085 num_sectors = ordered_sum->len >>
1086 inode->i_sb->s_blocksize_bits;
1087 num_sectors = min_t(int, len - index, num_sectors - i);
1088 memcpy(sum + index, ordered_sum->sums + i,
1089 num_sectors);
1090
1091 index += (int)num_sectors;
1092 if (index == len)
1093 goto out;
1094 disk_bytenr += num_sectors * sectorsize;
1095 }
1096 }
1097 out:
1098 spin_unlock_irq(&tree->lock);
1099 btrfs_put_ordered_extent(ordered);
1100 return index;
1101 }
1102
1103 int __init ordered_data_init(void)
1104 {
1105 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1106 sizeof(struct btrfs_ordered_extent), 0,
1107 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1108 NULL);
1109 if (!btrfs_ordered_extent_cache)
1110 return -ENOMEM;
1111
1112 return 0;
1113 }
1114
1115 void ordered_data_exit(void)
1116 {
1117 if (btrfs_ordered_extent_cache)
1118 kmem_cache_destroy(btrfs_ordered_extent_cache);
1119 }