]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/ordered-data.c
Merge tag 'for-linus-5.6-2' of git://github.com/cminyard/linux-ipmi
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18
19 static struct kmem_cache *btrfs_ordered_extent_cache;
20
21 static u64 entry_end(struct btrfs_ordered_extent *entry)
22 {
23 if (entry->file_offset + entry->num_bytes < entry->file_offset)
24 return (u64)-1;
25 return entry->file_offset + entry->num_bytes;
26 }
27
28 /* returns NULL if the insertion worked, or it returns the node it did find
29 * in the tree
30 */
31 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
32 struct rb_node *node)
33 {
34 struct rb_node **p = &root->rb_node;
35 struct rb_node *parent = NULL;
36 struct btrfs_ordered_extent *entry;
37
38 while (*p) {
39 parent = *p;
40 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
41
42 if (file_offset < entry->file_offset)
43 p = &(*p)->rb_left;
44 else if (file_offset >= entry_end(entry))
45 p = &(*p)->rb_right;
46 else
47 return parent;
48 }
49
50 rb_link_node(node, parent, p);
51 rb_insert_color(node, root);
52 return NULL;
53 }
54
55 /*
56 * look for a given offset in the tree, and if it can't be found return the
57 * first lesser offset
58 */
59 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
60 struct rb_node **prev_ret)
61 {
62 struct rb_node *n = root->rb_node;
63 struct rb_node *prev = NULL;
64 struct rb_node *test;
65 struct btrfs_ordered_extent *entry;
66 struct btrfs_ordered_extent *prev_entry = NULL;
67
68 while (n) {
69 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
70 prev = n;
71 prev_entry = entry;
72
73 if (file_offset < entry->file_offset)
74 n = n->rb_left;
75 else if (file_offset >= entry_end(entry))
76 n = n->rb_right;
77 else
78 return n;
79 }
80 if (!prev_ret)
81 return NULL;
82
83 while (prev && file_offset >= entry_end(prev_entry)) {
84 test = rb_next(prev);
85 if (!test)
86 break;
87 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
88 rb_node);
89 if (file_offset < entry_end(prev_entry))
90 break;
91
92 prev = test;
93 }
94 if (prev)
95 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
96 rb_node);
97 while (prev && file_offset < entry_end(prev_entry)) {
98 test = rb_prev(prev);
99 if (!test)
100 break;
101 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
102 rb_node);
103 prev = test;
104 }
105 *prev_ret = prev;
106 return NULL;
107 }
108
109 /*
110 * helper to check if a given offset is inside a given entry
111 */
112 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
113 {
114 if (file_offset < entry->file_offset ||
115 entry->file_offset + entry->num_bytes <= file_offset)
116 return 0;
117 return 1;
118 }
119
120 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
121 u64 len)
122 {
123 if (file_offset + len <= entry->file_offset ||
124 entry->file_offset + entry->num_bytes <= file_offset)
125 return 0;
126 return 1;
127 }
128
129 /*
130 * look find the first ordered struct that has this offset, otherwise
131 * the first one less than this offset
132 */
133 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
134 u64 file_offset)
135 {
136 struct rb_root *root = &tree->tree;
137 struct rb_node *prev = NULL;
138 struct rb_node *ret;
139 struct btrfs_ordered_extent *entry;
140
141 if (tree->last) {
142 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
143 rb_node);
144 if (offset_in_entry(entry, file_offset))
145 return tree->last;
146 }
147 ret = __tree_search(root, file_offset, &prev);
148 if (!ret)
149 ret = prev;
150 if (ret)
151 tree->last = ret;
152 return ret;
153 }
154
155 /* allocate and add a new ordered_extent into the per-inode tree.
156 *
157 * The tree is given a single reference on the ordered extent that was
158 * inserted.
159 */
160 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
161 u64 disk_bytenr, u64 num_bytes,
162 u64 disk_num_bytes, int type, int dio,
163 int compress_type)
164 {
165 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
166 struct btrfs_root *root = BTRFS_I(inode)->root;
167 struct btrfs_ordered_inode_tree *tree;
168 struct rb_node *node;
169 struct btrfs_ordered_extent *entry;
170
171 tree = &BTRFS_I(inode)->ordered_tree;
172 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
173 if (!entry)
174 return -ENOMEM;
175
176 entry->file_offset = file_offset;
177 entry->disk_bytenr = disk_bytenr;
178 entry->num_bytes = num_bytes;
179 entry->disk_num_bytes = disk_num_bytes;
180 entry->bytes_left = num_bytes;
181 entry->inode = igrab(inode);
182 entry->compress_type = compress_type;
183 entry->truncated_len = (u64)-1;
184 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
185 set_bit(type, &entry->flags);
186
187 if (dio) {
188 percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes,
189 fs_info->delalloc_batch);
190 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
191 }
192
193 /* one ref for the tree */
194 refcount_set(&entry->refs, 1);
195 init_waitqueue_head(&entry->wait);
196 INIT_LIST_HEAD(&entry->list);
197 INIT_LIST_HEAD(&entry->root_extent_list);
198 INIT_LIST_HEAD(&entry->work_list);
199 init_completion(&entry->completion);
200 INIT_LIST_HEAD(&entry->log_list);
201 INIT_LIST_HEAD(&entry->trans_list);
202
203 trace_btrfs_ordered_extent_add(inode, entry);
204
205 spin_lock_irq(&tree->lock);
206 node = tree_insert(&tree->tree, file_offset,
207 &entry->rb_node);
208 if (node)
209 btrfs_panic(fs_info, -EEXIST,
210 "inconsistency in ordered tree at offset %llu",
211 file_offset);
212 spin_unlock_irq(&tree->lock);
213
214 spin_lock(&root->ordered_extent_lock);
215 list_add_tail(&entry->root_extent_list,
216 &root->ordered_extents);
217 root->nr_ordered_extents++;
218 if (root->nr_ordered_extents == 1) {
219 spin_lock(&fs_info->ordered_root_lock);
220 BUG_ON(!list_empty(&root->ordered_root));
221 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
222 spin_unlock(&fs_info->ordered_root_lock);
223 }
224 spin_unlock(&root->ordered_extent_lock);
225
226 /*
227 * We don't need the count_max_extents here, we can assume that all of
228 * that work has been done at higher layers, so this is truly the
229 * smallest the extent is going to get.
230 */
231 spin_lock(&BTRFS_I(inode)->lock);
232 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
233 spin_unlock(&BTRFS_I(inode)->lock);
234
235 return 0;
236 }
237
238 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
239 u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
240 int type)
241 {
242 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
243 num_bytes, disk_num_bytes, type, 0,
244 BTRFS_COMPRESS_NONE);
245 }
246
247 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
248 u64 disk_bytenr, u64 num_bytes,
249 u64 disk_num_bytes, int type)
250 {
251 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
252 num_bytes, disk_num_bytes, type, 1,
253 BTRFS_COMPRESS_NONE);
254 }
255
256 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
257 u64 disk_bytenr, u64 num_bytes,
258 u64 disk_num_bytes, int type,
259 int compress_type)
260 {
261 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
262 num_bytes, disk_num_bytes, type, 0,
263 compress_type);
264 }
265
266 /*
267 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
268 * when an ordered extent is finished. If the list covers more than one
269 * ordered extent, it is split across multiples.
270 */
271 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
272 struct btrfs_ordered_sum *sum)
273 {
274 struct btrfs_ordered_inode_tree *tree;
275
276 tree = &BTRFS_I(entry->inode)->ordered_tree;
277 spin_lock_irq(&tree->lock);
278 list_add_tail(&sum->list, &entry->list);
279 spin_unlock_irq(&tree->lock);
280 }
281
282 /*
283 * this is used to account for finished IO across a given range
284 * of the file. The IO may span ordered extents. If
285 * a given ordered_extent is completely done, 1 is returned, otherwise
286 * 0.
287 *
288 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
289 * to make sure this function only returns 1 once for a given ordered extent.
290 *
291 * file_offset is updated to one byte past the range that is recorded as
292 * complete. This allows you to walk forward in the file.
293 */
294 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
295 struct btrfs_ordered_extent **cached,
296 u64 *file_offset, u64 io_size, int uptodate)
297 {
298 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
299 struct btrfs_ordered_inode_tree *tree;
300 struct rb_node *node;
301 struct btrfs_ordered_extent *entry = NULL;
302 int ret;
303 unsigned long flags;
304 u64 dec_end;
305 u64 dec_start;
306 u64 to_dec;
307
308 tree = &BTRFS_I(inode)->ordered_tree;
309 spin_lock_irqsave(&tree->lock, flags);
310 node = tree_search(tree, *file_offset);
311 if (!node) {
312 ret = 1;
313 goto out;
314 }
315
316 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
317 if (!offset_in_entry(entry, *file_offset)) {
318 ret = 1;
319 goto out;
320 }
321
322 dec_start = max(*file_offset, entry->file_offset);
323 dec_end = min(*file_offset + io_size,
324 entry->file_offset + entry->num_bytes);
325 *file_offset = dec_end;
326 if (dec_start > dec_end) {
327 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
328 dec_start, dec_end);
329 }
330 to_dec = dec_end - dec_start;
331 if (to_dec > entry->bytes_left) {
332 btrfs_crit(fs_info,
333 "bad ordered accounting left %llu size %llu",
334 entry->bytes_left, to_dec);
335 }
336 entry->bytes_left -= to_dec;
337 if (!uptodate)
338 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
339
340 if (entry->bytes_left == 0) {
341 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
342 /* test_and_set_bit implies a barrier */
343 cond_wake_up_nomb(&entry->wait);
344 } else {
345 ret = 1;
346 }
347 out:
348 if (!ret && cached && entry) {
349 *cached = entry;
350 refcount_inc(&entry->refs);
351 }
352 spin_unlock_irqrestore(&tree->lock, flags);
353 return ret == 0;
354 }
355
356 /*
357 * this is used to account for finished IO across a given range
358 * of the file. The IO should not span ordered extents. If
359 * a given ordered_extent is completely done, 1 is returned, otherwise
360 * 0.
361 *
362 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
363 * to make sure this function only returns 1 once for a given ordered extent.
364 */
365 int btrfs_dec_test_ordered_pending(struct inode *inode,
366 struct btrfs_ordered_extent **cached,
367 u64 file_offset, u64 io_size, int uptodate)
368 {
369 struct btrfs_ordered_inode_tree *tree;
370 struct rb_node *node;
371 struct btrfs_ordered_extent *entry = NULL;
372 unsigned long flags;
373 int ret;
374
375 tree = &BTRFS_I(inode)->ordered_tree;
376 spin_lock_irqsave(&tree->lock, flags);
377 if (cached && *cached) {
378 entry = *cached;
379 goto have_entry;
380 }
381
382 node = tree_search(tree, file_offset);
383 if (!node) {
384 ret = 1;
385 goto out;
386 }
387
388 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
389 have_entry:
390 if (!offset_in_entry(entry, file_offset)) {
391 ret = 1;
392 goto out;
393 }
394
395 if (io_size > entry->bytes_left) {
396 btrfs_crit(BTRFS_I(inode)->root->fs_info,
397 "bad ordered accounting left %llu size %llu",
398 entry->bytes_left, io_size);
399 }
400 entry->bytes_left -= io_size;
401 if (!uptodate)
402 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
403
404 if (entry->bytes_left == 0) {
405 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
406 /* test_and_set_bit implies a barrier */
407 cond_wake_up_nomb(&entry->wait);
408 } else {
409 ret = 1;
410 }
411 out:
412 if (!ret && cached && entry) {
413 *cached = entry;
414 refcount_inc(&entry->refs);
415 }
416 spin_unlock_irqrestore(&tree->lock, flags);
417 return ret == 0;
418 }
419
420 /*
421 * used to drop a reference on an ordered extent. This will free
422 * the extent if the last reference is dropped
423 */
424 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
425 {
426 struct list_head *cur;
427 struct btrfs_ordered_sum *sum;
428
429 trace_btrfs_ordered_extent_put(entry->inode, entry);
430
431 if (refcount_dec_and_test(&entry->refs)) {
432 ASSERT(list_empty(&entry->log_list));
433 ASSERT(list_empty(&entry->trans_list));
434 ASSERT(list_empty(&entry->root_extent_list));
435 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
436 if (entry->inode)
437 btrfs_add_delayed_iput(entry->inode);
438 while (!list_empty(&entry->list)) {
439 cur = entry->list.next;
440 sum = list_entry(cur, struct btrfs_ordered_sum, list);
441 list_del(&sum->list);
442 kvfree(sum);
443 }
444 kmem_cache_free(btrfs_ordered_extent_cache, entry);
445 }
446 }
447
448 /*
449 * remove an ordered extent from the tree. No references are dropped
450 * and waiters are woken up.
451 */
452 void btrfs_remove_ordered_extent(struct inode *inode,
453 struct btrfs_ordered_extent *entry)
454 {
455 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
456 struct btrfs_ordered_inode_tree *tree;
457 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
458 struct btrfs_root *root = btrfs_inode->root;
459 struct rb_node *node;
460
461 /* This is paired with btrfs_add_ordered_extent. */
462 spin_lock(&btrfs_inode->lock);
463 btrfs_mod_outstanding_extents(btrfs_inode, -1);
464 spin_unlock(&btrfs_inode->lock);
465 if (root != fs_info->tree_root)
466 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
467 false);
468
469 if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
470 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes,
471 fs_info->delalloc_batch);
472
473 tree = &btrfs_inode->ordered_tree;
474 spin_lock_irq(&tree->lock);
475 node = &entry->rb_node;
476 rb_erase(node, &tree->tree);
477 RB_CLEAR_NODE(node);
478 if (tree->last == node)
479 tree->last = NULL;
480 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
481 spin_unlock_irq(&tree->lock);
482
483 spin_lock(&root->ordered_extent_lock);
484 list_del_init(&entry->root_extent_list);
485 root->nr_ordered_extents--;
486
487 trace_btrfs_ordered_extent_remove(inode, entry);
488
489 if (!root->nr_ordered_extents) {
490 spin_lock(&fs_info->ordered_root_lock);
491 BUG_ON(list_empty(&root->ordered_root));
492 list_del_init(&root->ordered_root);
493 spin_unlock(&fs_info->ordered_root_lock);
494 }
495 spin_unlock(&root->ordered_extent_lock);
496 wake_up(&entry->wait);
497 }
498
499 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
500 {
501 struct btrfs_ordered_extent *ordered;
502
503 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
504 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
505 complete(&ordered->completion);
506 }
507
508 /*
509 * wait for all the ordered extents in a root. This is done when balancing
510 * space between drives.
511 */
512 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
513 const u64 range_start, const u64 range_len)
514 {
515 struct btrfs_fs_info *fs_info = root->fs_info;
516 LIST_HEAD(splice);
517 LIST_HEAD(skipped);
518 LIST_HEAD(works);
519 struct btrfs_ordered_extent *ordered, *next;
520 u64 count = 0;
521 const u64 range_end = range_start + range_len;
522
523 mutex_lock(&root->ordered_extent_mutex);
524 spin_lock(&root->ordered_extent_lock);
525 list_splice_init(&root->ordered_extents, &splice);
526 while (!list_empty(&splice) && nr) {
527 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
528 root_extent_list);
529
530 if (range_end <= ordered->disk_bytenr ||
531 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
532 list_move_tail(&ordered->root_extent_list, &skipped);
533 cond_resched_lock(&root->ordered_extent_lock);
534 continue;
535 }
536
537 list_move_tail(&ordered->root_extent_list,
538 &root->ordered_extents);
539 refcount_inc(&ordered->refs);
540 spin_unlock(&root->ordered_extent_lock);
541
542 btrfs_init_work(&ordered->flush_work,
543 btrfs_run_ordered_extent_work, NULL, NULL);
544 list_add_tail(&ordered->work_list, &works);
545 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
546
547 cond_resched();
548 spin_lock(&root->ordered_extent_lock);
549 if (nr != U64_MAX)
550 nr--;
551 count++;
552 }
553 list_splice_tail(&skipped, &root->ordered_extents);
554 list_splice_tail(&splice, &root->ordered_extents);
555 spin_unlock(&root->ordered_extent_lock);
556
557 list_for_each_entry_safe(ordered, next, &works, work_list) {
558 list_del_init(&ordered->work_list);
559 wait_for_completion(&ordered->completion);
560 btrfs_put_ordered_extent(ordered);
561 cond_resched();
562 }
563 mutex_unlock(&root->ordered_extent_mutex);
564
565 return count;
566 }
567
568 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
569 const u64 range_start, const u64 range_len)
570 {
571 struct btrfs_root *root;
572 struct list_head splice;
573 u64 done;
574
575 INIT_LIST_HEAD(&splice);
576
577 mutex_lock(&fs_info->ordered_operations_mutex);
578 spin_lock(&fs_info->ordered_root_lock);
579 list_splice_init(&fs_info->ordered_roots, &splice);
580 while (!list_empty(&splice) && nr) {
581 root = list_first_entry(&splice, struct btrfs_root,
582 ordered_root);
583 root = btrfs_grab_fs_root(root);
584 BUG_ON(!root);
585 list_move_tail(&root->ordered_root,
586 &fs_info->ordered_roots);
587 spin_unlock(&fs_info->ordered_root_lock);
588
589 done = btrfs_wait_ordered_extents(root, nr,
590 range_start, range_len);
591 btrfs_put_fs_root(root);
592
593 spin_lock(&fs_info->ordered_root_lock);
594 if (nr != U64_MAX) {
595 nr -= done;
596 }
597 }
598 list_splice_tail(&splice, &fs_info->ordered_roots);
599 spin_unlock(&fs_info->ordered_root_lock);
600 mutex_unlock(&fs_info->ordered_operations_mutex);
601 }
602
603 /*
604 * Used to start IO or wait for a given ordered extent to finish.
605 *
606 * If wait is one, this effectively waits on page writeback for all the pages
607 * in the extent, and it waits on the io completion code to insert
608 * metadata into the btree corresponding to the extent
609 */
610 void btrfs_start_ordered_extent(struct inode *inode,
611 struct btrfs_ordered_extent *entry,
612 int wait)
613 {
614 u64 start = entry->file_offset;
615 u64 end = start + entry->num_bytes - 1;
616
617 trace_btrfs_ordered_extent_start(inode, entry);
618
619 /*
620 * pages in the range can be dirty, clean or writeback. We
621 * start IO on any dirty ones so the wait doesn't stall waiting
622 * for the flusher thread to find them
623 */
624 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
625 filemap_fdatawrite_range(inode->i_mapping, start, end);
626 if (wait) {
627 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
628 &entry->flags));
629 }
630 }
631
632 /*
633 * Used to wait on ordered extents across a large range of bytes.
634 */
635 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
636 {
637 int ret = 0;
638 int ret_wb = 0;
639 u64 end;
640 u64 orig_end;
641 struct btrfs_ordered_extent *ordered;
642
643 if (start + len < start) {
644 orig_end = INT_LIMIT(loff_t);
645 } else {
646 orig_end = start + len - 1;
647 if (orig_end > INT_LIMIT(loff_t))
648 orig_end = INT_LIMIT(loff_t);
649 }
650
651 /* start IO across the range first to instantiate any delalloc
652 * extents
653 */
654 ret = btrfs_fdatawrite_range(inode, start, orig_end);
655 if (ret)
656 return ret;
657
658 /*
659 * If we have a writeback error don't return immediately. Wait first
660 * for any ordered extents that haven't completed yet. This is to make
661 * sure no one can dirty the same page ranges and call writepages()
662 * before the ordered extents complete - to avoid failures (-EEXIST)
663 * when adding the new ordered extents to the ordered tree.
664 */
665 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
666
667 end = orig_end;
668 while (1) {
669 ordered = btrfs_lookup_first_ordered_extent(inode, end);
670 if (!ordered)
671 break;
672 if (ordered->file_offset > orig_end) {
673 btrfs_put_ordered_extent(ordered);
674 break;
675 }
676 if (ordered->file_offset + ordered->num_bytes <= start) {
677 btrfs_put_ordered_extent(ordered);
678 break;
679 }
680 btrfs_start_ordered_extent(inode, ordered, 1);
681 end = ordered->file_offset;
682 /*
683 * If the ordered extent had an error save the error but don't
684 * exit without waiting first for all other ordered extents in
685 * the range to complete.
686 */
687 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
688 ret = -EIO;
689 btrfs_put_ordered_extent(ordered);
690 if (end == 0 || end == start)
691 break;
692 end--;
693 }
694 return ret_wb ? ret_wb : ret;
695 }
696
697 /*
698 * find an ordered extent corresponding to file_offset. return NULL if
699 * nothing is found, otherwise take a reference on the extent and return it
700 */
701 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
702 u64 file_offset)
703 {
704 struct btrfs_ordered_inode_tree *tree;
705 struct rb_node *node;
706 struct btrfs_ordered_extent *entry = NULL;
707
708 tree = &BTRFS_I(inode)->ordered_tree;
709 spin_lock_irq(&tree->lock);
710 node = tree_search(tree, file_offset);
711 if (!node)
712 goto out;
713
714 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
715 if (!offset_in_entry(entry, file_offset))
716 entry = NULL;
717 if (entry)
718 refcount_inc(&entry->refs);
719 out:
720 spin_unlock_irq(&tree->lock);
721 return entry;
722 }
723
724 /* Since the DIO code tries to lock a wide area we need to look for any ordered
725 * extents that exist in the range, rather than just the start of the range.
726 */
727 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
728 struct btrfs_inode *inode, u64 file_offset, u64 len)
729 {
730 struct btrfs_ordered_inode_tree *tree;
731 struct rb_node *node;
732 struct btrfs_ordered_extent *entry = NULL;
733
734 tree = &inode->ordered_tree;
735 spin_lock_irq(&tree->lock);
736 node = tree_search(tree, file_offset);
737 if (!node) {
738 node = tree_search(tree, file_offset + len);
739 if (!node)
740 goto out;
741 }
742
743 while (1) {
744 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
745 if (range_overlaps(entry, file_offset, len))
746 break;
747
748 if (entry->file_offset >= file_offset + len) {
749 entry = NULL;
750 break;
751 }
752 entry = NULL;
753 node = rb_next(node);
754 if (!node)
755 break;
756 }
757 out:
758 if (entry)
759 refcount_inc(&entry->refs);
760 spin_unlock_irq(&tree->lock);
761 return entry;
762 }
763
764 /*
765 * lookup and return any extent before 'file_offset'. NULL is returned
766 * if none is found
767 */
768 struct btrfs_ordered_extent *
769 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
770 {
771 struct btrfs_ordered_inode_tree *tree;
772 struct rb_node *node;
773 struct btrfs_ordered_extent *entry = NULL;
774
775 tree = &BTRFS_I(inode)->ordered_tree;
776 spin_lock_irq(&tree->lock);
777 node = tree_search(tree, file_offset);
778 if (!node)
779 goto out;
780
781 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
782 refcount_inc(&entry->refs);
783 out:
784 spin_unlock_irq(&tree->lock);
785 return entry;
786 }
787
788 /*
789 * After an extent is done, call this to conditionally update the on disk
790 * i_size. i_size is updated to cover any fully written part of the file.
791 */
792 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
793 struct btrfs_ordered_extent *ordered)
794 {
795 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
796 u64 disk_i_size;
797 u64 new_i_size;
798 u64 i_size = i_size_read(inode);
799 struct rb_node *node;
800 struct rb_node *prev = NULL;
801 struct btrfs_ordered_extent *test;
802 int ret = 1;
803 u64 orig_offset = offset;
804
805 spin_lock_irq(&tree->lock);
806 if (ordered) {
807 offset = entry_end(ordered);
808 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
809 offset = min(offset,
810 ordered->file_offset +
811 ordered->truncated_len);
812 } else {
813 offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
814 }
815 disk_i_size = BTRFS_I(inode)->disk_i_size;
816
817 /*
818 * truncate file.
819 * If ordered is not NULL, then this is called from endio and
820 * disk_i_size will be updated by either truncate itself or any
821 * in-flight IOs which are inside the disk_i_size.
822 *
823 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
824 * fails somehow, we need to make sure we have a precise disk_i_size by
825 * updating it as usual.
826 *
827 */
828 if (!ordered && disk_i_size > i_size) {
829 BTRFS_I(inode)->disk_i_size = orig_offset;
830 ret = 0;
831 goto out;
832 }
833
834 /*
835 * if the disk i_size is already at the inode->i_size, or
836 * this ordered extent is inside the disk i_size, we're done
837 */
838 if (disk_i_size == i_size)
839 goto out;
840
841 /*
842 * We still need to update disk_i_size if outstanding_isize is greater
843 * than disk_i_size.
844 */
845 if (offset <= disk_i_size &&
846 (!ordered || ordered->outstanding_isize <= disk_i_size))
847 goto out;
848
849 /*
850 * walk backward from this ordered extent to disk_i_size.
851 * if we find an ordered extent then we can't update disk i_size
852 * yet
853 */
854 if (ordered) {
855 node = rb_prev(&ordered->rb_node);
856 } else {
857 prev = tree_search(tree, offset);
858 /*
859 * we insert file extents without involving ordered struct,
860 * so there should be no ordered struct cover this offset
861 */
862 if (prev) {
863 test = rb_entry(prev, struct btrfs_ordered_extent,
864 rb_node);
865 BUG_ON(offset_in_entry(test, offset));
866 }
867 node = prev;
868 }
869 for (; node; node = rb_prev(node)) {
870 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
871
872 /* We treat this entry as if it doesn't exist */
873 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
874 continue;
875
876 if (entry_end(test) <= disk_i_size)
877 break;
878 if (test->file_offset >= i_size)
879 break;
880
881 /*
882 * We don't update disk_i_size now, so record this undealt
883 * i_size. Or we will not know the real i_size.
884 */
885 if (test->outstanding_isize < offset)
886 test->outstanding_isize = offset;
887 if (ordered &&
888 ordered->outstanding_isize > test->outstanding_isize)
889 test->outstanding_isize = ordered->outstanding_isize;
890 goto out;
891 }
892 new_i_size = min_t(u64, offset, i_size);
893
894 /*
895 * Some ordered extents may completed before the current one, and
896 * we hold the real i_size in ->outstanding_isize.
897 */
898 if (ordered && ordered->outstanding_isize > new_i_size)
899 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
900 BTRFS_I(inode)->disk_i_size = new_i_size;
901 ret = 0;
902 out:
903 /*
904 * We need to do this because we can't remove ordered extents until
905 * after the i_disk_size has been updated and then the inode has been
906 * updated to reflect the change, so we need to tell anybody who finds
907 * this ordered extent that we've already done all the real work, we
908 * just haven't completed all the other work.
909 */
910 if (ordered)
911 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
912 spin_unlock_irq(&tree->lock);
913 return ret;
914 }
915
916 /*
917 * search the ordered extents for one corresponding to 'offset' and
918 * try to find a checksum. This is used because we allow pages to
919 * be reclaimed before their checksum is actually put into the btree
920 */
921 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
922 u8 *sum, int len)
923 {
924 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
925 struct btrfs_ordered_sum *ordered_sum;
926 struct btrfs_ordered_extent *ordered;
927 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
928 unsigned long num_sectors;
929 unsigned long i;
930 u32 sectorsize = btrfs_inode_sectorsize(inode);
931 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
932 int index = 0;
933
934 ordered = btrfs_lookup_ordered_extent(inode, offset);
935 if (!ordered)
936 return 0;
937
938 spin_lock_irq(&tree->lock);
939 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
940 if (disk_bytenr >= ordered_sum->bytenr &&
941 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
942 i = (disk_bytenr - ordered_sum->bytenr) >>
943 inode->i_sb->s_blocksize_bits;
944 num_sectors = ordered_sum->len >>
945 inode->i_sb->s_blocksize_bits;
946 num_sectors = min_t(int, len - index, num_sectors - i);
947 memcpy(sum + index, ordered_sum->sums + i * csum_size,
948 num_sectors * csum_size);
949
950 index += (int)num_sectors * csum_size;
951 if (index == len)
952 goto out;
953 disk_bytenr += num_sectors * sectorsize;
954 }
955 }
956 out:
957 spin_unlock_irq(&tree->lock);
958 btrfs_put_ordered_extent(ordered);
959 return index;
960 }
961
962 /*
963 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
964 * ordered extents in it are run to completion.
965 *
966 * @tree: IO tree used for locking out other users of the range
967 * @inode: Inode whose ordered tree is to be searched
968 * @start: Beginning of range to flush
969 * @end: Last byte of range to lock
970 * @cached_state: If passed, will return the extent state responsible for the
971 * locked range. It's the caller's responsibility to free the cached state.
972 *
973 * This function always returns with the given range locked, ensuring after it's
974 * called no order extent can be pending.
975 */
976 void btrfs_lock_and_flush_ordered_range(struct extent_io_tree *tree,
977 struct btrfs_inode *inode, u64 start,
978 u64 end,
979 struct extent_state **cached_state)
980 {
981 struct btrfs_ordered_extent *ordered;
982 struct extent_state *cache = NULL;
983 struct extent_state **cachedp = &cache;
984
985 if (cached_state)
986 cachedp = cached_state;
987
988 while (1) {
989 lock_extent_bits(tree, start, end, cachedp);
990 ordered = btrfs_lookup_ordered_range(inode, start,
991 end - start + 1);
992 if (!ordered) {
993 /*
994 * If no external cached_state has been passed then
995 * decrement the extra ref taken for cachedp since we
996 * aren't exposing it outside of this function
997 */
998 if (!cached_state)
999 refcount_dec(&cache->refs);
1000 break;
1001 }
1002 unlock_extent_cached(tree, start, end, cachedp);
1003 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1004 btrfs_put_ordered_extent(ordered);
1005 }
1006 }
1007
1008 int __init ordered_data_init(void)
1009 {
1010 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1011 sizeof(struct btrfs_ordered_extent), 0,
1012 SLAB_MEM_SPREAD,
1013 NULL);
1014 if (!btrfs_ordered_extent_cache)
1015 return -ENOMEM;
1016
1017 return 0;
1018 }
1019
1020 void __cold ordered_data_exit(void)
1021 {
1022 kmem_cache_destroy(btrfs_ordered_extent_cache);
1023 }