]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/ordered-data.c
Merge branch 'acpica'
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / ordered-data.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
36 }
37
38 /* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
43 {
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
46 struct btrfs_ordered_extent *entry;
47
48 while (*p) {
49 parent = *p;
50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51
52 if (file_offset < entry->file_offset)
53 p = &(*p)->rb_left;
54 else if (file_offset >= entry_end(entry))
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63 }
64
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67 {
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 "%llu\n", offset);
71 }
72
73 /*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
79 {
80 struct rb_node *n = root->rb_node;
81 struct rb_node *prev = NULL;
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
85
86 while (n) {
87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 prev = n;
89 prev_entry = entry;
90
91 if (file_offset < entry->file_offset)
92 n = n->rb_left;
93 else if (file_offset >= entry_end(entry))
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
101 while (prev && file_offset >= entry_end(prev_entry)) {
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
115 while (prev && file_offset < entry_end(prev_entry)) {
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
122 }
123 *prev_ret = prev;
124 return NULL;
125 }
126
127 /*
128 * helper to check if a given offset is inside a given entry
129 */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136 }
137
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140 {
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145 }
146
147 /*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
153 {
154 struct rb_root *root = &tree->tree;
155 struct rb_node *prev = NULL;
156 struct rb_node *ret;
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
166 if (!ret)
167 ret = prev;
168 if (ret)
169 tree->last = ret;
170 return ret;
171 }
172
173 /* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
186 int type, int dio, int compress_type)
187 {
188 struct btrfs_root *root = BTRFS_I(inode)->root;
189 struct btrfs_ordered_inode_tree *tree;
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
192
193 tree = &BTRFS_I(inode)->ordered_tree;
194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 if (!entry)
196 return -ENOMEM;
197
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 !(type == BTRFS_ORDERED_NOCOW))
203 entry->csum_bytes_left = disk_len;
204 entry->disk_len = disk_len;
205 entry->bytes_left = len;
206 entry->inode = igrab(inode);
207 entry->compress_type = compress_type;
208 entry->truncated_len = (u64)-1;
209 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
210 set_bit(type, &entry->flags);
211
212 if (dio)
213 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214
215 /* one ref for the tree */
216 atomic_set(&entry->refs, 1);
217 init_waitqueue_head(&entry->wait);
218 INIT_LIST_HEAD(&entry->list);
219 INIT_LIST_HEAD(&entry->root_extent_list);
220 INIT_LIST_HEAD(&entry->work_list);
221 init_completion(&entry->completion);
222 INIT_LIST_HEAD(&entry->log_list);
223
224 trace_btrfs_ordered_extent_add(inode, entry);
225
226 spin_lock_irq(&tree->lock);
227 node = tree_insert(&tree->tree, file_offset,
228 &entry->rb_node);
229 if (node)
230 ordered_data_tree_panic(inode, -EEXIST, file_offset);
231 spin_unlock_irq(&tree->lock);
232
233 spin_lock(&root->ordered_extent_lock);
234 list_add_tail(&entry->root_extent_list,
235 &root->ordered_extents);
236 root->nr_ordered_extents++;
237 if (root->nr_ordered_extents == 1) {
238 spin_lock(&root->fs_info->ordered_root_lock);
239 BUG_ON(!list_empty(&root->ordered_root));
240 list_add_tail(&root->ordered_root,
241 &root->fs_info->ordered_roots);
242 spin_unlock(&root->fs_info->ordered_root_lock);
243 }
244 spin_unlock(&root->ordered_extent_lock);
245
246 return 0;
247 }
248
249 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 u64 start, u64 len, u64 disk_len, int type)
251 {
252 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 disk_len, type, 0,
254 BTRFS_COMPRESS_NONE);
255 }
256
257 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 u64 start, u64 len, u64 disk_len, int type)
259 {
260 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261 disk_len, type, 1,
262 BTRFS_COMPRESS_NONE);
263 }
264
265 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 u64 start, u64 len, u64 disk_len,
267 int type, int compress_type)
268 {
269 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 disk_len, type, 0,
271 compress_type);
272 }
273
274 /*
275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
276 * when an ordered extent is finished. If the list covers more than one
277 * ordered extent, it is split across multiples.
278 */
279 void btrfs_add_ordered_sum(struct inode *inode,
280 struct btrfs_ordered_extent *entry,
281 struct btrfs_ordered_sum *sum)
282 {
283 struct btrfs_ordered_inode_tree *tree;
284
285 tree = &BTRFS_I(inode)->ordered_tree;
286 spin_lock_irq(&tree->lock);
287 list_add_tail(&sum->list, &entry->list);
288 WARN_ON(entry->csum_bytes_left < sum->len);
289 entry->csum_bytes_left -= sum->len;
290 if (entry->csum_bytes_left == 0)
291 wake_up(&entry->wait);
292 spin_unlock_irq(&tree->lock);
293 }
294
295 /*
296 * this is used to account for finished IO across a given range
297 * of the file. The IO may span ordered extents. If
298 * a given ordered_extent is completely done, 1 is returned, otherwise
299 * 0.
300 *
301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
302 * to make sure this function only returns 1 once for a given ordered extent.
303 *
304 * file_offset is updated to one byte past the range that is recorded as
305 * complete. This allows you to walk forward in the file.
306 */
307 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
308 struct btrfs_ordered_extent **cached,
309 u64 *file_offset, u64 io_size, int uptodate)
310 {
311 struct btrfs_ordered_inode_tree *tree;
312 struct rb_node *node;
313 struct btrfs_ordered_extent *entry = NULL;
314 int ret;
315 unsigned long flags;
316 u64 dec_end;
317 u64 dec_start;
318 u64 to_dec;
319
320 tree = &BTRFS_I(inode)->ordered_tree;
321 spin_lock_irqsave(&tree->lock, flags);
322 node = tree_search(tree, *file_offset);
323 if (!node) {
324 ret = 1;
325 goto out;
326 }
327
328 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329 if (!offset_in_entry(entry, *file_offset)) {
330 ret = 1;
331 goto out;
332 }
333
334 dec_start = max(*file_offset, entry->file_offset);
335 dec_end = min(*file_offset + io_size, entry->file_offset +
336 entry->len);
337 *file_offset = dec_end;
338 if (dec_start > dec_end) {
339 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
340 dec_start, dec_end);
341 }
342 to_dec = dec_end - dec_start;
343 if (to_dec > entry->bytes_left) {
344 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
345 entry->bytes_left, to_dec);
346 }
347 entry->bytes_left -= to_dec;
348 if (!uptodate)
349 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
350
351 if (entry->bytes_left == 0)
352 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
353 else
354 ret = 1;
355 out:
356 if (!ret && cached && entry) {
357 *cached = entry;
358 atomic_inc(&entry->refs);
359 }
360 spin_unlock_irqrestore(&tree->lock, flags);
361 return ret == 0;
362 }
363
364 /*
365 * this is used to account for finished IO across a given range
366 * of the file. The IO should not span ordered extents. If
367 * a given ordered_extent is completely done, 1 is returned, otherwise
368 * 0.
369 *
370 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
371 * to make sure this function only returns 1 once for a given ordered extent.
372 */
373 int btrfs_dec_test_ordered_pending(struct inode *inode,
374 struct btrfs_ordered_extent **cached,
375 u64 file_offset, u64 io_size, int uptodate)
376 {
377 struct btrfs_ordered_inode_tree *tree;
378 struct rb_node *node;
379 struct btrfs_ordered_extent *entry = NULL;
380 unsigned long flags;
381 int ret;
382
383 tree = &BTRFS_I(inode)->ordered_tree;
384 spin_lock_irqsave(&tree->lock, flags);
385 if (cached && *cached) {
386 entry = *cached;
387 goto have_entry;
388 }
389
390 node = tree_search(tree, file_offset);
391 if (!node) {
392 ret = 1;
393 goto out;
394 }
395
396 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
397 have_entry:
398 if (!offset_in_entry(entry, file_offset)) {
399 ret = 1;
400 goto out;
401 }
402
403 if (io_size > entry->bytes_left) {
404 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
405 entry->bytes_left, io_size);
406 }
407 entry->bytes_left -= io_size;
408 if (!uptodate)
409 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
410
411 if (entry->bytes_left == 0)
412 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
413 else
414 ret = 1;
415 out:
416 if (!ret && cached && entry) {
417 *cached = entry;
418 atomic_inc(&entry->refs);
419 }
420 spin_unlock_irqrestore(&tree->lock, flags);
421 return ret == 0;
422 }
423
424 /* Needs to either be called under a log transaction or the log_mutex */
425 void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
426 {
427 struct btrfs_ordered_inode_tree *tree;
428 struct btrfs_ordered_extent *ordered;
429 struct rb_node *n;
430 int index = log->log_transid % 2;
431
432 tree = &BTRFS_I(inode)->ordered_tree;
433 spin_lock_irq(&tree->lock);
434 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
435 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
436 spin_lock(&log->log_extents_lock[index]);
437 if (list_empty(&ordered->log_list)) {
438 list_add_tail(&ordered->log_list, &log->logged_list[index]);
439 atomic_inc(&ordered->refs);
440 }
441 spin_unlock(&log->log_extents_lock[index]);
442 }
443 spin_unlock_irq(&tree->lock);
444 }
445
446 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
447 {
448 struct btrfs_ordered_extent *ordered;
449 int index = transid % 2;
450
451 spin_lock_irq(&log->log_extents_lock[index]);
452 while (!list_empty(&log->logged_list[index])) {
453 ordered = list_first_entry(&log->logged_list[index],
454 struct btrfs_ordered_extent,
455 log_list);
456 list_del_init(&ordered->log_list);
457 spin_unlock_irq(&log->log_extents_lock[index]);
458 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
459 &ordered->flags));
460 btrfs_put_ordered_extent(ordered);
461 spin_lock_irq(&log->log_extents_lock[index]);
462 }
463 spin_unlock_irq(&log->log_extents_lock[index]);
464 }
465
466 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
467 {
468 struct btrfs_ordered_extent *ordered;
469 int index = transid % 2;
470
471 spin_lock_irq(&log->log_extents_lock[index]);
472 while (!list_empty(&log->logged_list[index])) {
473 ordered = list_first_entry(&log->logged_list[index],
474 struct btrfs_ordered_extent,
475 log_list);
476 list_del_init(&ordered->log_list);
477 spin_unlock_irq(&log->log_extents_lock[index]);
478 btrfs_put_ordered_extent(ordered);
479 spin_lock_irq(&log->log_extents_lock[index]);
480 }
481 spin_unlock_irq(&log->log_extents_lock[index]);
482 }
483
484 /*
485 * used to drop a reference on an ordered extent. This will free
486 * the extent if the last reference is dropped
487 */
488 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
489 {
490 struct list_head *cur;
491 struct btrfs_ordered_sum *sum;
492
493 trace_btrfs_ordered_extent_put(entry->inode, entry);
494
495 if (atomic_dec_and_test(&entry->refs)) {
496 if (entry->inode)
497 btrfs_add_delayed_iput(entry->inode);
498 while (!list_empty(&entry->list)) {
499 cur = entry->list.next;
500 sum = list_entry(cur, struct btrfs_ordered_sum, list);
501 list_del(&sum->list);
502 kfree(sum);
503 }
504 kmem_cache_free(btrfs_ordered_extent_cache, entry);
505 }
506 }
507
508 /*
509 * remove an ordered extent from the tree. No references are dropped
510 * and waiters are woken up.
511 */
512 void btrfs_remove_ordered_extent(struct inode *inode,
513 struct btrfs_ordered_extent *entry)
514 {
515 struct btrfs_ordered_inode_tree *tree;
516 struct btrfs_root *root = BTRFS_I(inode)->root;
517 struct rb_node *node;
518
519 tree = &BTRFS_I(inode)->ordered_tree;
520 spin_lock_irq(&tree->lock);
521 node = &entry->rb_node;
522 rb_erase(node, &tree->tree);
523 tree->last = NULL;
524 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
525 spin_unlock_irq(&tree->lock);
526
527 spin_lock(&root->ordered_extent_lock);
528 list_del_init(&entry->root_extent_list);
529 root->nr_ordered_extents--;
530
531 trace_btrfs_ordered_extent_remove(inode, entry);
532
533 /*
534 * we have no more ordered extents for this inode and
535 * no dirty pages. We can safely remove it from the
536 * list of ordered extents
537 */
538 if (RB_EMPTY_ROOT(&tree->tree) &&
539 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
540 spin_lock(&root->fs_info->ordered_root_lock);
541 list_del_init(&BTRFS_I(inode)->ordered_operations);
542 spin_unlock(&root->fs_info->ordered_root_lock);
543 }
544
545 if (!root->nr_ordered_extents) {
546 spin_lock(&root->fs_info->ordered_root_lock);
547 BUG_ON(list_empty(&root->ordered_root));
548 list_del_init(&root->ordered_root);
549 spin_unlock(&root->fs_info->ordered_root_lock);
550 }
551 spin_unlock(&root->ordered_extent_lock);
552 wake_up(&entry->wait);
553 }
554
555 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
556 {
557 struct btrfs_ordered_extent *ordered;
558
559 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
560 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
561 complete(&ordered->completion);
562 }
563
564 /*
565 * wait for all the ordered extents in a root. This is done when balancing
566 * space between drives.
567 */
568 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
569 {
570 struct list_head splice, works;
571 struct btrfs_ordered_extent *ordered, *next;
572 int count = 0;
573
574 INIT_LIST_HEAD(&splice);
575 INIT_LIST_HEAD(&works);
576
577 mutex_lock(&root->fs_info->ordered_operations_mutex);
578 spin_lock(&root->ordered_extent_lock);
579 list_splice_init(&root->ordered_extents, &splice);
580 while (!list_empty(&splice) && nr) {
581 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
582 root_extent_list);
583 list_move_tail(&ordered->root_extent_list,
584 &root->ordered_extents);
585 atomic_inc(&ordered->refs);
586 spin_unlock(&root->ordered_extent_lock);
587
588 ordered->flush_work.func = btrfs_run_ordered_extent_work;
589 list_add_tail(&ordered->work_list, &works);
590 btrfs_queue_worker(&root->fs_info->flush_workers,
591 &ordered->flush_work);
592
593 cond_resched();
594 spin_lock(&root->ordered_extent_lock);
595 if (nr != -1)
596 nr--;
597 count++;
598 }
599 list_splice_tail(&splice, &root->ordered_extents);
600 spin_unlock(&root->ordered_extent_lock);
601
602 list_for_each_entry_safe(ordered, next, &works, work_list) {
603 list_del_init(&ordered->work_list);
604 wait_for_completion(&ordered->completion);
605 btrfs_put_ordered_extent(ordered);
606 cond_resched();
607 }
608 mutex_unlock(&root->fs_info->ordered_operations_mutex);
609
610 return count;
611 }
612
613 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
614 {
615 struct btrfs_root *root;
616 struct list_head splice;
617 int done;
618
619 INIT_LIST_HEAD(&splice);
620
621 spin_lock(&fs_info->ordered_root_lock);
622 list_splice_init(&fs_info->ordered_roots, &splice);
623 while (!list_empty(&splice) && nr) {
624 root = list_first_entry(&splice, struct btrfs_root,
625 ordered_root);
626 root = btrfs_grab_fs_root(root);
627 BUG_ON(!root);
628 list_move_tail(&root->ordered_root,
629 &fs_info->ordered_roots);
630 spin_unlock(&fs_info->ordered_root_lock);
631
632 done = btrfs_wait_ordered_extents(root, nr);
633 btrfs_put_fs_root(root);
634
635 spin_lock(&fs_info->ordered_root_lock);
636 if (nr != -1) {
637 nr -= done;
638 WARN_ON(nr < 0);
639 }
640 }
641 list_splice_tail(&splice, &fs_info->ordered_roots);
642 spin_unlock(&fs_info->ordered_root_lock);
643 }
644
645 /*
646 * this is used during transaction commit to write all the inodes
647 * added to the ordered operation list. These files must be fully on
648 * disk before the transaction commits.
649 *
650 * we have two modes here, one is to just start the IO via filemap_flush
651 * and the other is to wait for all the io. When we wait, we have an
652 * extra check to make sure the ordered operation list really is empty
653 * before we return
654 */
655 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
656 struct btrfs_root *root, int wait)
657 {
658 struct btrfs_inode *btrfs_inode;
659 struct inode *inode;
660 struct btrfs_transaction *cur_trans = trans->transaction;
661 struct list_head splice;
662 struct list_head works;
663 struct btrfs_delalloc_work *work, *next;
664 int ret = 0;
665
666 INIT_LIST_HEAD(&splice);
667 INIT_LIST_HEAD(&works);
668
669 mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
670 spin_lock(&root->fs_info->ordered_root_lock);
671 list_splice_init(&cur_trans->ordered_operations, &splice);
672 while (!list_empty(&splice)) {
673 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
674 ordered_operations);
675 inode = &btrfs_inode->vfs_inode;
676
677 list_del_init(&btrfs_inode->ordered_operations);
678
679 /*
680 * the inode may be getting freed (in sys_unlink path).
681 */
682 inode = igrab(inode);
683 if (!inode)
684 continue;
685
686 if (!wait)
687 list_add_tail(&BTRFS_I(inode)->ordered_operations,
688 &cur_trans->ordered_operations);
689 spin_unlock(&root->fs_info->ordered_root_lock);
690
691 work = btrfs_alloc_delalloc_work(inode, wait, 1);
692 if (!work) {
693 spin_lock(&root->fs_info->ordered_root_lock);
694 if (list_empty(&BTRFS_I(inode)->ordered_operations))
695 list_add_tail(&btrfs_inode->ordered_operations,
696 &splice);
697 list_splice_tail(&splice,
698 &cur_trans->ordered_operations);
699 spin_unlock(&root->fs_info->ordered_root_lock);
700 ret = -ENOMEM;
701 goto out;
702 }
703 list_add_tail(&work->list, &works);
704 btrfs_queue_worker(&root->fs_info->flush_workers,
705 &work->work);
706
707 cond_resched();
708 spin_lock(&root->fs_info->ordered_root_lock);
709 }
710 spin_unlock(&root->fs_info->ordered_root_lock);
711 out:
712 list_for_each_entry_safe(work, next, &works, list) {
713 list_del_init(&work->list);
714 btrfs_wait_and_free_delalloc_work(work);
715 }
716 mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
717 return ret;
718 }
719
720 /*
721 * Used to start IO or wait for a given ordered extent to finish.
722 *
723 * If wait is one, this effectively waits on page writeback for all the pages
724 * in the extent, and it waits on the io completion code to insert
725 * metadata into the btree corresponding to the extent
726 */
727 void btrfs_start_ordered_extent(struct inode *inode,
728 struct btrfs_ordered_extent *entry,
729 int wait)
730 {
731 u64 start = entry->file_offset;
732 u64 end = start + entry->len - 1;
733
734 trace_btrfs_ordered_extent_start(inode, entry);
735
736 /*
737 * pages in the range can be dirty, clean or writeback. We
738 * start IO on any dirty ones so the wait doesn't stall waiting
739 * for the flusher thread to find them
740 */
741 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
742 filemap_fdatawrite_range(inode->i_mapping, start, end);
743 if (wait) {
744 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
745 &entry->flags));
746 }
747 }
748
749 /*
750 * Used to wait on ordered extents across a large range of bytes.
751 */
752 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
753 {
754 int ret = 0;
755 u64 end;
756 u64 orig_end;
757 struct btrfs_ordered_extent *ordered;
758
759 if (start + len < start) {
760 orig_end = INT_LIMIT(loff_t);
761 } else {
762 orig_end = start + len - 1;
763 if (orig_end > INT_LIMIT(loff_t))
764 orig_end = INT_LIMIT(loff_t);
765 }
766
767 /* start IO across the range first to instantiate any delalloc
768 * extents
769 */
770 ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
771 if (ret)
772 return ret;
773 /*
774 * So with compression we will find and lock a dirty page and clear the
775 * first one as dirty, setup an async extent, and immediately return
776 * with the entire range locked but with nobody actually marked with
777 * writeback. So we can't just filemap_write_and_wait_range() and
778 * expect it to work since it will just kick off a thread to do the
779 * actual work. So we need to call filemap_fdatawrite_range _again_
780 * since it will wait on the page lock, which won't be unlocked until
781 * after the pages have been marked as writeback and so we're good to go
782 * from there. We have to do this otherwise we'll miss the ordered
783 * extents and that results in badness. Please Josef, do not think you
784 * know better and pull this out at some point in the future, it is
785 * right and you are wrong.
786 */
787 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
788 &BTRFS_I(inode)->runtime_flags)) {
789 ret = filemap_fdatawrite_range(inode->i_mapping, start,
790 orig_end);
791 if (ret)
792 return ret;
793 }
794 ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
795 if (ret)
796 return ret;
797
798 end = orig_end;
799 while (1) {
800 ordered = btrfs_lookup_first_ordered_extent(inode, end);
801 if (!ordered)
802 break;
803 if (ordered->file_offset > orig_end) {
804 btrfs_put_ordered_extent(ordered);
805 break;
806 }
807 if (ordered->file_offset + ordered->len <= start) {
808 btrfs_put_ordered_extent(ordered);
809 break;
810 }
811 btrfs_start_ordered_extent(inode, ordered, 1);
812 end = ordered->file_offset;
813 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
814 ret = -EIO;
815 btrfs_put_ordered_extent(ordered);
816 if (ret || end == 0 || end == start)
817 break;
818 end--;
819 }
820 return ret;
821 }
822
823 /*
824 * find an ordered extent corresponding to file_offset. return NULL if
825 * nothing is found, otherwise take a reference on the extent and return it
826 */
827 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
828 u64 file_offset)
829 {
830 struct btrfs_ordered_inode_tree *tree;
831 struct rb_node *node;
832 struct btrfs_ordered_extent *entry = NULL;
833
834 tree = &BTRFS_I(inode)->ordered_tree;
835 spin_lock_irq(&tree->lock);
836 node = tree_search(tree, file_offset);
837 if (!node)
838 goto out;
839
840 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
841 if (!offset_in_entry(entry, file_offset))
842 entry = NULL;
843 if (entry)
844 atomic_inc(&entry->refs);
845 out:
846 spin_unlock_irq(&tree->lock);
847 return entry;
848 }
849
850 /* Since the DIO code tries to lock a wide area we need to look for any ordered
851 * extents that exist in the range, rather than just the start of the range.
852 */
853 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
854 u64 file_offset,
855 u64 len)
856 {
857 struct btrfs_ordered_inode_tree *tree;
858 struct rb_node *node;
859 struct btrfs_ordered_extent *entry = NULL;
860
861 tree = &BTRFS_I(inode)->ordered_tree;
862 spin_lock_irq(&tree->lock);
863 node = tree_search(tree, file_offset);
864 if (!node) {
865 node = tree_search(tree, file_offset + len);
866 if (!node)
867 goto out;
868 }
869
870 while (1) {
871 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
872 if (range_overlaps(entry, file_offset, len))
873 break;
874
875 if (entry->file_offset >= file_offset + len) {
876 entry = NULL;
877 break;
878 }
879 entry = NULL;
880 node = rb_next(node);
881 if (!node)
882 break;
883 }
884 out:
885 if (entry)
886 atomic_inc(&entry->refs);
887 spin_unlock_irq(&tree->lock);
888 return entry;
889 }
890
891 /*
892 * lookup and return any extent before 'file_offset'. NULL is returned
893 * if none is found
894 */
895 struct btrfs_ordered_extent *
896 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
897 {
898 struct btrfs_ordered_inode_tree *tree;
899 struct rb_node *node;
900 struct btrfs_ordered_extent *entry = NULL;
901
902 tree = &BTRFS_I(inode)->ordered_tree;
903 spin_lock_irq(&tree->lock);
904 node = tree_search(tree, file_offset);
905 if (!node)
906 goto out;
907
908 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
909 atomic_inc(&entry->refs);
910 out:
911 spin_unlock_irq(&tree->lock);
912 return entry;
913 }
914
915 /*
916 * After an extent is done, call this to conditionally update the on disk
917 * i_size. i_size is updated to cover any fully written part of the file.
918 */
919 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
920 struct btrfs_ordered_extent *ordered)
921 {
922 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
923 u64 disk_i_size;
924 u64 new_i_size;
925 u64 i_size = i_size_read(inode);
926 struct rb_node *node;
927 struct rb_node *prev = NULL;
928 struct btrfs_ordered_extent *test;
929 int ret = 1;
930
931 spin_lock_irq(&tree->lock);
932 if (ordered) {
933 offset = entry_end(ordered);
934 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
935 offset = min(offset,
936 ordered->file_offset +
937 ordered->truncated_len);
938 } else {
939 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
940 }
941 disk_i_size = BTRFS_I(inode)->disk_i_size;
942
943 /* truncate file */
944 if (disk_i_size > i_size) {
945 BTRFS_I(inode)->disk_i_size = i_size;
946 ret = 0;
947 goto out;
948 }
949
950 /*
951 * if the disk i_size is already at the inode->i_size, or
952 * this ordered extent is inside the disk i_size, we're done
953 */
954 if (disk_i_size == i_size)
955 goto out;
956
957 /*
958 * We still need to update disk_i_size if outstanding_isize is greater
959 * than disk_i_size.
960 */
961 if (offset <= disk_i_size &&
962 (!ordered || ordered->outstanding_isize <= disk_i_size))
963 goto out;
964
965 /*
966 * walk backward from this ordered extent to disk_i_size.
967 * if we find an ordered extent then we can't update disk i_size
968 * yet
969 */
970 if (ordered) {
971 node = rb_prev(&ordered->rb_node);
972 } else {
973 prev = tree_search(tree, offset);
974 /*
975 * we insert file extents without involving ordered struct,
976 * so there should be no ordered struct cover this offset
977 */
978 if (prev) {
979 test = rb_entry(prev, struct btrfs_ordered_extent,
980 rb_node);
981 BUG_ON(offset_in_entry(test, offset));
982 }
983 node = prev;
984 }
985 for (; node; node = rb_prev(node)) {
986 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
987
988 /* We treat this entry as if it doesnt exist */
989 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
990 continue;
991 if (test->file_offset + test->len <= disk_i_size)
992 break;
993 if (test->file_offset >= i_size)
994 break;
995 if (entry_end(test) > disk_i_size) {
996 /*
997 * we don't update disk_i_size now, so record this
998 * undealt i_size. Or we will not know the real
999 * i_size.
1000 */
1001 if (test->outstanding_isize < offset)
1002 test->outstanding_isize = offset;
1003 if (ordered &&
1004 ordered->outstanding_isize >
1005 test->outstanding_isize)
1006 test->outstanding_isize =
1007 ordered->outstanding_isize;
1008 goto out;
1009 }
1010 }
1011 new_i_size = min_t(u64, offset, i_size);
1012
1013 /*
1014 * Some ordered extents may completed before the current one, and
1015 * we hold the real i_size in ->outstanding_isize.
1016 */
1017 if (ordered && ordered->outstanding_isize > new_i_size)
1018 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1019 BTRFS_I(inode)->disk_i_size = new_i_size;
1020 ret = 0;
1021 out:
1022 /*
1023 * We need to do this because we can't remove ordered extents until
1024 * after the i_disk_size has been updated and then the inode has been
1025 * updated to reflect the change, so we need to tell anybody who finds
1026 * this ordered extent that we've already done all the real work, we
1027 * just haven't completed all the other work.
1028 */
1029 if (ordered)
1030 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1031 spin_unlock_irq(&tree->lock);
1032 return ret;
1033 }
1034
1035 /*
1036 * search the ordered extents for one corresponding to 'offset' and
1037 * try to find a checksum. This is used because we allow pages to
1038 * be reclaimed before their checksum is actually put into the btree
1039 */
1040 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1041 u32 *sum, int len)
1042 {
1043 struct btrfs_ordered_sum *ordered_sum;
1044 struct btrfs_ordered_extent *ordered;
1045 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1046 unsigned long num_sectors;
1047 unsigned long i;
1048 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1049 int index = 0;
1050
1051 ordered = btrfs_lookup_ordered_extent(inode, offset);
1052 if (!ordered)
1053 return 0;
1054
1055 spin_lock_irq(&tree->lock);
1056 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1057 if (disk_bytenr >= ordered_sum->bytenr &&
1058 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1059 i = (disk_bytenr - ordered_sum->bytenr) >>
1060 inode->i_sb->s_blocksize_bits;
1061 num_sectors = ordered_sum->len >>
1062 inode->i_sb->s_blocksize_bits;
1063 num_sectors = min_t(int, len - index, num_sectors - i);
1064 memcpy(sum + index, ordered_sum->sums + i,
1065 num_sectors);
1066
1067 index += (int)num_sectors;
1068 if (index == len)
1069 goto out;
1070 disk_bytenr += num_sectors * sectorsize;
1071 }
1072 }
1073 out:
1074 spin_unlock_irq(&tree->lock);
1075 btrfs_put_ordered_extent(ordered);
1076 return index;
1077 }
1078
1079
1080 /*
1081 * add a given inode to the list of inodes that must be fully on
1082 * disk before a transaction commit finishes.
1083 *
1084 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1085 * used to make sure renamed files are fully on disk.
1086 *
1087 * It is a noop if the inode is already fully on disk.
1088 *
1089 * If trans is not null, we'll do a friendly check for a transaction that
1090 * is already flushing things and force the IO down ourselves.
1091 */
1092 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1093 struct btrfs_root *root, struct inode *inode)
1094 {
1095 struct btrfs_transaction *cur_trans = trans->transaction;
1096 u64 last_mod;
1097
1098 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1099
1100 /*
1101 * if this file hasn't been changed since the last transaction
1102 * commit, we can safely return without doing anything
1103 */
1104 if (last_mod <= root->fs_info->last_trans_committed)
1105 return;
1106
1107 spin_lock(&root->fs_info->ordered_root_lock);
1108 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1109 list_add_tail(&BTRFS_I(inode)->ordered_operations,
1110 &cur_trans->ordered_operations);
1111 }
1112 spin_unlock(&root->fs_info->ordered_root_lock);
1113 }
1114
1115 int __init ordered_data_init(void)
1116 {
1117 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1118 sizeof(struct btrfs_ordered_extent), 0,
1119 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1120 NULL);
1121 if (!btrfs_ordered_extent_cache)
1122 return -ENOMEM;
1123
1124 return 0;
1125 }
1126
1127 void ordered_data_exit(void)
1128 {
1129 if (btrfs_ordered_extent_cache)
1130 kmem_cache_destroy(btrfs_ordered_extent_cache);
1131 }