]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/ordered-data.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / ordered-data.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
36 }
37
38 /* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
43 {
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
46 struct btrfs_ordered_extent *entry;
47
48 while (*p) {
49 parent = *p;
50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51
52 if (file_offset < entry->file_offset)
53 p = &(*p)->rb_left;
54 else if (file_offset >= entry_end(entry))
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63 }
64
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67 {
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 "%llu\n", offset);
71 }
72
73 /*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
79 {
80 struct rb_node *n = root->rb_node;
81 struct rb_node *prev = NULL;
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
85
86 while (n) {
87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 prev = n;
89 prev_entry = entry;
90
91 if (file_offset < entry->file_offset)
92 n = n->rb_left;
93 else if (file_offset >= entry_end(entry))
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
101 while (prev && file_offset >= entry_end(prev_entry)) {
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
115 while (prev && file_offset < entry_end(prev_entry)) {
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
122 }
123 *prev_ret = prev;
124 return NULL;
125 }
126
127 /*
128 * helper to check if a given offset is inside a given entry
129 */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136 }
137
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140 {
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145 }
146
147 /*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
153 {
154 struct rb_root *root = &tree->tree;
155 struct rb_node *prev = NULL;
156 struct rb_node *ret;
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
166 if (!ret)
167 ret = prev;
168 if (ret)
169 tree->last = ret;
170 return ret;
171 }
172
173 /* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
186 int type, int dio, int compress_type)
187 {
188 struct btrfs_root *root = BTRFS_I(inode)->root;
189 struct btrfs_ordered_inode_tree *tree;
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
192
193 tree = &BTRFS_I(inode)->ordered_tree;
194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 if (!entry)
196 return -ENOMEM;
197
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 !(type == BTRFS_ORDERED_NOCOW))
203 entry->csum_bytes_left = disk_len;
204 entry->disk_len = disk_len;
205 entry->bytes_left = len;
206 entry->inode = igrab(inode);
207 entry->compress_type = compress_type;
208 entry->truncated_len = (u64)-1;
209 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
210 set_bit(type, &entry->flags);
211
212 if (dio)
213 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214
215 /* one ref for the tree */
216 atomic_set(&entry->refs, 1);
217 init_waitqueue_head(&entry->wait);
218 INIT_LIST_HEAD(&entry->list);
219 INIT_LIST_HEAD(&entry->root_extent_list);
220 INIT_LIST_HEAD(&entry->work_list);
221 init_completion(&entry->completion);
222 INIT_LIST_HEAD(&entry->log_list);
223
224 trace_btrfs_ordered_extent_add(inode, entry);
225
226 spin_lock_irq(&tree->lock);
227 node = tree_insert(&tree->tree, file_offset,
228 &entry->rb_node);
229 if (node)
230 ordered_data_tree_panic(inode, -EEXIST, file_offset);
231 spin_unlock_irq(&tree->lock);
232
233 spin_lock(&root->ordered_extent_lock);
234 list_add_tail(&entry->root_extent_list,
235 &root->ordered_extents);
236 root->nr_ordered_extents++;
237 if (root->nr_ordered_extents == 1) {
238 spin_lock(&root->fs_info->ordered_root_lock);
239 BUG_ON(!list_empty(&root->ordered_root));
240 list_add_tail(&root->ordered_root,
241 &root->fs_info->ordered_roots);
242 spin_unlock(&root->fs_info->ordered_root_lock);
243 }
244 spin_unlock(&root->ordered_extent_lock);
245
246 return 0;
247 }
248
249 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 u64 start, u64 len, u64 disk_len, int type)
251 {
252 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 disk_len, type, 0,
254 BTRFS_COMPRESS_NONE);
255 }
256
257 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 u64 start, u64 len, u64 disk_len, int type)
259 {
260 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261 disk_len, type, 1,
262 BTRFS_COMPRESS_NONE);
263 }
264
265 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 u64 start, u64 len, u64 disk_len,
267 int type, int compress_type)
268 {
269 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 disk_len, type, 0,
271 compress_type);
272 }
273
274 /*
275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
276 * when an ordered extent is finished. If the list covers more than one
277 * ordered extent, it is split across multiples.
278 */
279 void btrfs_add_ordered_sum(struct inode *inode,
280 struct btrfs_ordered_extent *entry,
281 struct btrfs_ordered_sum *sum)
282 {
283 struct btrfs_ordered_inode_tree *tree;
284
285 tree = &BTRFS_I(inode)->ordered_tree;
286 spin_lock_irq(&tree->lock);
287 list_add_tail(&sum->list, &entry->list);
288 WARN_ON(entry->csum_bytes_left < sum->len);
289 entry->csum_bytes_left -= sum->len;
290 if (entry->csum_bytes_left == 0)
291 wake_up(&entry->wait);
292 spin_unlock_irq(&tree->lock);
293 }
294
295 /*
296 * this is used to account for finished IO across a given range
297 * of the file. The IO may span ordered extents. If
298 * a given ordered_extent is completely done, 1 is returned, otherwise
299 * 0.
300 *
301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
302 * to make sure this function only returns 1 once for a given ordered extent.
303 *
304 * file_offset is updated to one byte past the range that is recorded as
305 * complete. This allows you to walk forward in the file.
306 */
307 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
308 struct btrfs_ordered_extent **cached,
309 u64 *file_offset, u64 io_size, int uptodate)
310 {
311 struct btrfs_ordered_inode_tree *tree;
312 struct rb_node *node;
313 struct btrfs_ordered_extent *entry = NULL;
314 int ret;
315 unsigned long flags;
316 u64 dec_end;
317 u64 dec_start;
318 u64 to_dec;
319
320 tree = &BTRFS_I(inode)->ordered_tree;
321 spin_lock_irqsave(&tree->lock, flags);
322 node = tree_search(tree, *file_offset);
323 if (!node) {
324 ret = 1;
325 goto out;
326 }
327
328 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329 if (!offset_in_entry(entry, *file_offset)) {
330 ret = 1;
331 goto out;
332 }
333
334 dec_start = max(*file_offset, entry->file_offset);
335 dec_end = min(*file_offset + io_size, entry->file_offset +
336 entry->len);
337 *file_offset = dec_end;
338 if (dec_start > dec_end) {
339 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
340 dec_start, dec_end);
341 }
342 to_dec = dec_end - dec_start;
343 if (to_dec > entry->bytes_left) {
344 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
345 entry->bytes_left, to_dec);
346 }
347 entry->bytes_left -= to_dec;
348 if (!uptodate)
349 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
350
351 if (entry->bytes_left == 0)
352 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
353 else
354 ret = 1;
355 out:
356 if (!ret && cached && entry) {
357 *cached = entry;
358 atomic_inc(&entry->refs);
359 }
360 spin_unlock_irqrestore(&tree->lock, flags);
361 return ret == 0;
362 }
363
364 /*
365 * this is used to account for finished IO across a given range
366 * of the file. The IO should not span ordered extents. If
367 * a given ordered_extent is completely done, 1 is returned, otherwise
368 * 0.
369 *
370 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
371 * to make sure this function only returns 1 once for a given ordered extent.
372 */
373 int btrfs_dec_test_ordered_pending(struct inode *inode,
374 struct btrfs_ordered_extent **cached,
375 u64 file_offset, u64 io_size, int uptodate)
376 {
377 struct btrfs_ordered_inode_tree *tree;
378 struct rb_node *node;
379 struct btrfs_ordered_extent *entry = NULL;
380 unsigned long flags;
381 int ret;
382
383 tree = &BTRFS_I(inode)->ordered_tree;
384 spin_lock_irqsave(&tree->lock, flags);
385 if (cached && *cached) {
386 entry = *cached;
387 goto have_entry;
388 }
389
390 node = tree_search(tree, file_offset);
391 if (!node) {
392 ret = 1;
393 goto out;
394 }
395
396 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
397 have_entry:
398 if (!offset_in_entry(entry, file_offset)) {
399 ret = 1;
400 goto out;
401 }
402
403 if (io_size > entry->bytes_left) {
404 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
405 entry->bytes_left, io_size);
406 }
407 entry->bytes_left -= io_size;
408 if (!uptodate)
409 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
410
411 if (entry->bytes_left == 0)
412 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
413 else
414 ret = 1;
415 out:
416 if (!ret && cached && entry) {
417 *cached = entry;
418 atomic_inc(&entry->refs);
419 }
420 spin_unlock_irqrestore(&tree->lock, flags);
421 return ret == 0;
422 }
423
424 /* Needs to either be called under a log transaction or the log_mutex */
425 void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
426 {
427 struct btrfs_ordered_inode_tree *tree;
428 struct btrfs_ordered_extent *ordered;
429 struct rb_node *n;
430 int index = log->log_transid % 2;
431
432 tree = &BTRFS_I(inode)->ordered_tree;
433 spin_lock_irq(&tree->lock);
434 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
435 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
436 spin_lock(&log->log_extents_lock[index]);
437 if (list_empty(&ordered->log_list)) {
438 list_add_tail(&ordered->log_list, &log->logged_list[index]);
439 atomic_inc(&ordered->refs);
440 }
441 spin_unlock(&log->log_extents_lock[index]);
442 }
443 spin_unlock_irq(&tree->lock);
444 }
445
446 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
447 {
448 struct btrfs_ordered_extent *ordered;
449 int index = transid % 2;
450
451 spin_lock_irq(&log->log_extents_lock[index]);
452 while (!list_empty(&log->logged_list[index])) {
453 ordered = list_first_entry(&log->logged_list[index],
454 struct btrfs_ordered_extent,
455 log_list);
456 list_del_init(&ordered->log_list);
457 spin_unlock_irq(&log->log_extents_lock[index]);
458 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
459 &ordered->flags));
460 btrfs_put_ordered_extent(ordered);
461 spin_lock_irq(&log->log_extents_lock[index]);
462 }
463 spin_unlock_irq(&log->log_extents_lock[index]);
464 }
465
466 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
467 {
468 struct btrfs_ordered_extent *ordered;
469 int index = transid % 2;
470
471 spin_lock_irq(&log->log_extents_lock[index]);
472 while (!list_empty(&log->logged_list[index])) {
473 ordered = list_first_entry(&log->logged_list[index],
474 struct btrfs_ordered_extent,
475 log_list);
476 list_del_init(&ordered->log_list);
477 spin_unlock_irq(&log->log_extents_lock[index]);
478 btrfs_put_ordered_extent(ordered);
479 spin_lock_irq(&log->log_extents_lock[index]);
480 }
481 spin_unlock_irq(&log->log_extents_lock[index]);
482 }
483
484 /*
485 * used to drop a reference on an ordered extent. This will free
486 * the extent if the last reference is dropped
487 */
488 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
489 {
490 struct list_head *cur;
491 struct btrfs_ordered_sum *sum;
492
493 trace_btrfs_ordered_extent_put(entry->inode, entry);
494
495 if (atomic_dec_and_test(&entry->refs)) {
496 if (entry->inode)
497 btrfs_add_delayed_iput(entry->inode);
498 while (!list_empty(&entry->list)) {
499 cur = entry->list.next;
500 sum = list_entry(cur, struct btrfs_ordered_sum, list);
501 list_del(&sum->list);
502 kfree(sum);
503 }
504 kmem_cache_free(btrfs_ordered_extent_cache, entry);
505 }
506 }
507
508 /*
509 * remove an ordered extent from the tree. No references are dropped
510 * and waiters are woken up.
511 */
512 void btrfs_remove_ordered_extent(struct inode *inode,
513 struct btrfs_ordered_extent *entry)
514 {
515 struct btrfs_ordered_inode_tree *tree;
516 struct btrfs_root *root = BTRFS_I(inode)->root;
517 struct rb_node *node;
518
519 tree = &BTRFS_I(inode)->ordered_tree;
520 spin_lock_irq(&tree->lock);
521 node = &entry->rb_node;
522 rb_erase(node, &tree->tree);
523 tree->last = NULL;
524 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
525 spin_unlock_irq(&tree->lock);
526
527 spin_lock(&root->ordered_extent_lock);
528 list_del_init(&entry->root_extent_list);
529 root->nr_ordered_extents--;
530
531 trace_btrfs_ordered_extent_remove(inode, entry);
532
533 /*
534 * we have no more ordered extents for this inode and
535 * no dirty pages. We can safely remove it from the
536 * list of ordered extents
537 */
538 if (RB_EMPTY_ROOT(&tree->tree) &&
539 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
540 spin_lock(&root->fs_info->ordered_root_lock);
541 list_del_init(&BTRFS_I(inode)->ordered_operations);
542 spin_unlock(&root->fs_info->ordered_root_lock);
543 }
544
545 if (!root->nr_ordered_extents) {
546 spin_lock(&root->fs_info->ordered_root_lock);
547 BUG_ON(list_empty(&root->ordered_root));
548 list_del_init(&root->ordered_root);
549 spin_unlock(&root->fs_info->ordered_root_lock);
550 }
551 spin_unlock(&root->ordered_extent_lock);
552 wake_up(&entry->wait);
553 }
554
555 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
556 {
557 struct btrfs_ordered_extent *ordered;
558
559 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
560 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
561 complete(&ordered->completion);
562 }
563
564 /*
565 * wait for all the ordered extents in a root. This is done when balancing
566 * space between drives.
567 */
568 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
569 {
570 struct list_head splice, works;
571 struct btrfs_ordered_extent *ordered, *next;
572 int count = 0;
573
574 INIT_LIST_HEAD(&splice);
575 INIT_LIST_HEAD(&works);
576
577 mutex_lock(&root->fs_info->ordered_operations_mutex);
578 spin_lock(&root->ordered_extent_lock);
579 list_splice_init(&root->ordered_extents, &splice);
580 while (!list_empty(&splice) && nr) {
581 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
582 root_extent_list);
583 list_move_tail(&ordered->root_extent_list,
584 &root->ordered_extents);
585 atomic_inc(&ordered->refs);
586 spin_unlock(&root->ordered_extent_lock);
587
588 ordered->flush_work.func = btrfs_run_ordered_extent_work;
589 list_add_tail(&ordered->work_list, &works);
590 btrfs_queue_worker(&root->fs_info->flush_workers,
591 &ordered->flush_work);
592
593 cond_resched();
594 spin_lock(&root->ordered_extent_lock);
595 if (nr != -1)
596 nr--;
597 count++;
598 }
599 list_splice_tail(&splice, &root->ordered_extents);
600 spin_unlock(&root->ordered_extent_lock);
601
602 list_for_each_entry_safe(ordered, next, &works, work_list) {
603 list_del_init(&ordered->work_list);
604 wait_for_completion(&ordered->completion);
605 btrfs_put_ordered_extent(ordered);
606 cond_resched();
607 }
608 mutex_unlock(&root->fs_info->ordered_operations_mutex);
609
610 return count;
611 }
612
613 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
614 {
615 struct btrfs_root *root;
616 struct list_head splice;
617 int done;
618
619 INIT_LIST_HEAD(&splice);
620
621 spin_lock(&fs_info->ordered_root_lock);
622 list_splice_init(&fs_info->ordered_roots, &splice);
623 while (!list_empty(&splice) && nr) {
624 root = list_first_entry(&splice, struct btrfs_root,
625 ordered_root);
626 root = btrfs_grab_fs_root(root);
627 BUG_ON(!root);
628 list_move_tail(&root->ordered_root,
629 &fs_info->ordered_roots);
630 spin_unlock(&fs_info->ordered_root_lock);
631
632 done = btrfs_wait_ordered_extents(root, nr);
633 btrfs_put_fs_root(root);
634
635 spin_lock(&fs_info->ordered_root_lock);
636 if (nr != -1) {
637 nr -= done;
638 WARN_ON(nr < 0);
639 }
640 }
641 spin_unlock(&fs_info->ordered_root_lock);
642 }
643
644 /*
645 * this is used during transaction commit to write all the inodes
646 * added to the ordered operation list. These files must be fully on
647 * disk before the transaction commits.
648 *
649 * we have two modes here, one is to just start the IO via filemap_flush
650 * and the other is to wait for all the io. When we wait, we have an
651 * extra check to make sure the ordered operation list really is empty
652 * before we return
653 */
654 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
655 struct btrfs_root *root, int wait)
656 {
657 struct btrfs_inode *btrfs_inode;
658 struct inode *inode;
659 struct btrfs_transaction *cur_trans = trans->transaction;
660 struct list_head splice;
661 struct list_head works;
662 struct btrfs_delalloc_work *work, *next;
663 int ret = 0;
664
665 INIT_LIST_HEAD(&splice);
666 INIT_LIST_HEAD(&works);
667
668 mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
669 spin_lock(&root->fs_info->ordered_root_lock);
670 list_splice_init(&cur_trans->ordered_operations, &splice);
671 while (!list_empty(&splice)) {
672 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
673 ordered_operations);
674 inode = &btrfs_inode->vfs_inode;
675
676 list_del_init(&btrfs_inode->ordered_operations);
677
678 /*
679 * the inode may be getting freed (in sys_unlink path).
680 */
681 inode = igrab(inode);
682 if (!inode)
683 continue;
684
685 if (!wait)
686 list_add_tail(&BTRFS_I(inode)->ordered_operations,
687 &cur_trans->ordered_operations);
688 spin_unlock(&root->fs_info->ordered_root_lock);
689
690 work = btrfs_alloc_delalloc_work(inode, wait, 1);
691 if (!work) {
692 spin_lock(&root->fs_info->ordered_root_lock);
693 if (list_empty(&BTRFS_I(inode)->ordered_operations))
694 list_add_tail(&btrfs_inode->ordered_operations,
695 &splice);
696 list_splice_tail(&splice,
697 &cur_trans->ordered_operations);
698 spin_unlock(&root->fs_info->ordered_root_lock);
699 ret = -ENOMEM;
700 goto out;
701 }
702 list_add_tail(&work->list, &works);
703 btrfs_queue_worker(&root->fs_info->flush_workers,
704 &work->work);
705
706 cond_resched();
707 spin_lock(&root->fs_info->ordered_root_lock);
708 }
709 spin_unlock(&root->fs_info->ordered_root_lock);
710 out:
711 list_for_each_entry_safe(work, next, &works, list) {
712 list_del_init(&work->list);
713 btrfs_wait_and_free_delalloc_work(work);
714 }
715 mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
716 return ret;
717 }
718
719 /*
720 * Used to start IO or wait for a given ordered extent to finish.
721 *
722 * If wait is one, this effectively waits on page writeback for all the pages
723 * in the extent, and it waits on the io completion code to insert
724 * metadata into the btree corresponding to the extent
725 */
726 void btrfs_start_ordered_extent(struct inode *inode,
727 struct btrfs_ordered_extent *entry,
728 int wait)
729 {
730 u64 start = entry->file_offset;
731 u64 end = start + entry->len - 1;
732
733 trace_btrfs_ordered_extent_start(inode, entry);
734
735 /*
736 * pages in the range can be dirty, clean or writeback. We
737 * start IO on any dirty ones so the wait doesn't stall waiting
738 * for the flusher thread to find them
739 */
740 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
741 filemap_fdatawrite_range(inode->i_mapping, start, end);
742 if (wait) {
743 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
744 &entry->flags));
745 }
746 }
747
748 /*
749 * Used to wait on ordered extents across a large range of bytes.
750 */
751 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
752 {
753 int ret = 0;
754 u64 end;
755 u64 orig_end;
756 struct btrfs_ordered_extent *ordered;
757
758 if (start + len < start) {
759 orig_end = INT_LIMIT(loff_t);
760 } else {
761 orig_end = start + len - 1;
762 if (orig_end > INT_LIMIT(loff_t))
763 orig_end = INT_LIMIT(loff_t);
764 }
765
766 /* start IO across the range first to instantiate any delalloc
767 * extents
768 */
769 ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
770 if (ret)
771 return ret;
772 /*
773 * So with compression we will find and lock a dirty page and clear the
774 * first one as dirty, setup an async extent, and immediately return
775 * with the entire range locked but with nobody actually marked with
776 * writeback. So we can't just filemap_write_and_wait_range() and
777 * expect it to work since it will just kick off a thread to do the
778 * actual work. So we need to call filemap_fdatawrite_range _again_
779 * since it will wait on the page lock, which won't be unlocked until
780 * after the pages have been marked as writeback and so we're good to go
781 * from there. We have to do this otherwise we'll miss the ordered
782 * extents and that results in badness. Please Josef, do not think you
783 * know better and pull this out at some point in the future, it is
784 * right and you are wrong.
785 */
786 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
787 &BTRFS_I(inode)->runtime_flags)) {
788 ret = filemap_fdatawrite_range(inode->i_mapping, start,
789 orig_end);
790 if (ret)
791 return ret;
792 }
793 ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
794 if (ret)
795 return ret;
796
797 end = orig_end;
798 while (1) {
799 ordered = btrfs_lookup_first_ordered_extent(inode, end);
800 if (!ordered)
801 break;
802 if (ordered->file_offset > orig_end) {
803 btrfs_put_ordered_extent(ordered);
804 break;
805 }
806 if (ordered->file_offset + ordered->len < start) {
807 btrfs_put_ordered_extent(ordered);
808 break;
809 }
810 btrfs_start_ordered_extent(inode, ordered, 1);
811 end = ordered->file_offset;
812 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
813 ret = -EIO;
814 btrfs_put_ordered_extent(ordered);
815 if (ret || end == 0 || end == start)
816 break;
817 end--;
818 }
819 return ret;
820 }
821
822 /*
823 * find an ordered extent corresponding to file_offset. return NULL if
824 * nothing is found, otherwise take a reference on the extent and return it
825 */
826 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
827 u64 file_offset)
828 {
829 struct btrfs_ordered_inode_tree *tree;
830 struct rb_node *node;
831 struct btrfs_ordered_extent *entry = NULL;
832
833 tree = &BTRFS_I(inode)->ordered_tree;
834 spin_lock_irq(&tree->lock);
835 node = tree_search(tree, file_offset);
836 if (!node)
837 goto out;
838
839 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
840 if (!offset_in_entry(entry, file_offset))
841 entry = NULL;
842 if (entry)
843 atomic_inc(&entry->refs);
844 out:
845 spin_unlock_irq(&tree->lock);
846 return entry;
847 }
848
849 /* Since the DIO code tries to lock a wide area we need to look for any ordered
850 * extents that exist in the range, rather than just the start of the range.
851 */
852 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
853 u64 file_offset,
854 u64 len)
855 {
856 struct btrfs_ordered_inode_tree *tree;
857 struct rb_node *node;
858 struct btrfs_ordered_extent *entry = NULL;
859
860 tree = &BTRFS_I(inode)->ordered_tree;
861 spin_lock_irq(&tree->lock);
862 node = tree_search(tree, file_offset);
863 if (!node) {
864 node = tree_search(tree, file_offset + len);
865 if (!node)
866 goto out;
867 }
868
869 while (1) {
870 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
871 if (range_overlaps(entry, file_offset, len))
872 break;
873
874 if (entry->file_offset >= file_offset + len) {
875 entry = NULL;
876 break;
877 }
878 entry = NULL;
879 node = rb_next(node);
880 if (!node)
881 break;
882 }
883 out:
884 if (entry)
885 atomic_inc(&entry->refs);
886 spin_unlock_irq(&tree->lock);
887 return entry;
888 }
889
890 /*
891 * lookup and return any extent before 'file_offset'. NULL is returned
892 * if none is found
893 */
894 struct btrfs_ordered_extent *
895 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
896 {
897 struct btrfs_ordered_inode_tree *tree;
898 struct rb_node *node;
899 struct btrfs_ordered_extent *entry = NULL;
900
901 tree = &BTRFS_I(inode)->ordered_tree;
902 spin_lock_irq(&tree->lock);
903 node = tree_search(tree, file_offset);
904 if (!node)
905 goto out;
906
907 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
908 atomic_inc(&entry->refs);
909 out:
910 spin_unlock_irq(&tree->lock);
911 return entry;
912 }
913
914 /*
915 * After an extent is done, call this to conditionally update the on disk
916 * i_size. i_size is updated to cover any fully written part of the file.
917 */
918 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
919 struct btrfs_ordered_extent *ordered)
920 {
921 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
922 u64 disk_i_size;
923 u64 new_i_size;
924 u64 i_size = i_size_read(inode);
925 struct rb_node *node;
926 struct rb_node *prev = NULL;
927 struct btrfs_ordered_extent *test;
928 int ret = 1;
929
930 spin_lock_irq(&tree->lock);
931 if (ordered) {
932 offset = entry_end(ordered);
933 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
934 offset = min(offset,
935 ordered->file_offset +
936 ordered->truncated_len);
937 } else {
938 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
939 }
940 disk_i_size = BTRFS_I(inode)->disk_i_size;
941
942 /* truncate file */
943 if (disk_i_size > i_size) {
944 BTRFS_I(inode)->disk_i_size = i_size;
945 ret = 0;
946 goto out;
947 }
948
949 /*
950 * if the disk i_size is already at the inode->i_size, or
951 * this ordered extent is inside the disk i_size, we're done
952 */
953 if (disk_i_size == i_size)
954 goto out;
955
956 /*
957 * We still need to update disk_i_size if outstanding_isize is greater
958 * than disk_i_size.
959 */
960 if (offset <= disk_i_size &&
961 (!ordered || ordered->outstanding_isize <= disk_i_size))
962 goto out;
963
964 /*
965 * walk backward from this ordered extent to disk_i_size.
966 * if we find an ordered extent then we can't update disk i_size
967 * yet
968 */
969 if (ordered) {
970 node = rb_prev(&ordered->rb_node);
971 } else {
972 prev = tree_search(tree, offset);
973 /*
974 * we insert file extents without involving ordered struct,
975 * so there should be no ordered struct cover this offset
976 */
977 if (prev) {
978 test = rb_entry(prev, struct btrfs_ordered_extent,
979 rb_node);
980 BUG_ON(offset_in_entry(test, offset));
981 }
982 node = prev;
983 }
984 for (; node; node = rb_prev(node)) {
985 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
986
987 /* We treat this entry as if it doesnt exist */
988 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
989 continue;
990 if (test->file_offset + test->len <= disk_i_size)
991 break;
992 if (test->file_offset >= i_size)
993 break;
994 if (entry_end(test) > disk_i_size) {
995 /*
996 * we don't update disk_i_size now, so record this
997 * undealt i_size. Or we will not know the real
998 * i_size.
999 */
1000 if (test->outstanding_isize < offset)
1001 test->outstanding_isize = offset;
1002 if (ordered &&
1003 ordered->outstanding_isize >
1004 test->outstanding_isize)
1005 test->outstanding_isize =
1006 ordered->outstanding_isize;
1007 goto out;
1008 }
1009 }
1010 new_i_size = min_t(u64, offset, i_size);
1011
1012 /*
1013 * Some ordered extents may completed before the current one, and
1014 * we hold the real i_size in ->outstanding_isize.
1015 */
1016 if (ordered && ordered->outstanding_isize > new_i_size)
1017 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1018 BTRFS_I(inode)->disk_i_size = new_i_size;
1019 ret = 0;
1020 out:
1021 /*
1022 * We need to do this because we can't remove ordered extents until
1023 * after the i_disk_size has been updated and then the inode has been
1024 * updated to reflect the change, so we need to tell anybody who finds
1025 * this ordered extent that we've already done all the real work, we
1026 * just haven't completed all the other work.
1027 */
1028 if (ordered)
1029 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1030 spin_unlock_irq(&tree->lock);
1031 return ret;
1032 }
1033
1034 /*
1035 * search the ordered extents for one corresponding to 'offset' and
1036 * try to find a checksum. This is used because we allow pages to
1037 * be reclaimed before their checksum is actually put into the btree
1038 */
1039 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1040 u32 *sum, int len)
1041 {
1042 struct btrfs_ordered_sum *ordered_sum;
1043 struct btrfs_ordered_extent *ordered;
1044 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1045 unsigned long num_sectors;
1046 unsigned long i;
1047 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1048 int index = 0;
1049
1050 ordered = btrfs_lookup_ordered_extent(inode, offset);
1051 if (!ordered)
1052 return 0;
1053
1054 spin_lock_irq(&tree->lock);
1055 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1056 if (disk_bytenr >= ordered_sum->bytenr &&
1057 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1058 i = (disk_bytenr - ordered_sum->bytenr) >>
1059 inode->i_sb->s_blocksize_bits;
1060 num_sectors = ordered_sum->len >>
1061 inode->i_sb->s_blocksize_bits;
1062 num_sectors = min_t(int, len - index, num_sectors - i);
1063 memcpy(sum + index, ordered_sum->sums + i,
1064 num_sectors);
1065
1066 index += (int)num_sectors;
1067 if (index == len)
1068 goto out;
1069 disk_bytenr += num_sectors * sectorsize;
1070 }
1071 }
1072 out:
1073 spin_unlock_irq(&tree->lock);
1074 btrfs_put_ordered_extent(ordered);
1075 return index;
1076 }
1077
1078
1079 /*
1080 * add a given inode to the list of inodes that must be fully on
1081 * disk before a transaction commit finishes.
1082 *
1083 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1084 * used to make sure renamed files are fully on disk.
1085 *
1086 * It is a noop if the inode is already fully on disk.
1087 *
1088 * If trans is not null, we'll do a friendly check for a transaction that
1089 * is already flushing things and force the IO down ourselves.
1090 */
1091 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1092 struct btrfs_root *root, struct inode *inode)
1093 {
1094 struct btrfs_transaction *cur_trans = trans->transaction;
1095 u64 last_mod;
1096
1097 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1098
1099 /*
1100 * if this file hasn't been changed since the last transaction
1101 * commit, we can safely return without doing anything
1102 */
1103 if (last_mod <= root->fs_info->last_trans_committed)
1104 return;
1105
1106 spin_lock(&root->fs_info->ordered_root_lock);
1107 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1108 list_add_tail(&BTRFS_I(inode)->ordered_operations,
1109 &cur_trans->ordered_operations);
1110 }
1111 spin_unlock(&root->fs_info->ordered_root_lock);
1112 }
1113
1114 int __init ordered_data_init(void)
1115 {
1116 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1117 sizeof(struct btrfs_ordered_extent), 0,
1118 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1119 NULL);
1120 if (!btrfs_ordered_extent_cache)
1121 return -ENOMEM;
1122
1123 return 0;
1124 }
1125
1126 void ordered_data_exit(void)
1127 {
1128 if (btrfs_ordered_extent_cache)
1129 kmem_cache_destroy(btrfs_ordered_extent_cache);
1130 }