]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/raid56.c
7bf65d9a9bd3230616ecbd6e994390cee8cc4b31
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / raid56.c
1 /*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19 #include <linux/sched.h>
20 #include <linux/wait.h>
21 #include <linux/bio.h>
22 #include <linux/slab.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/random.h>
26 #include <linux/iocontext.h>
27 #include <linux/capability.h>
28 #include <linux/ratelimit.h>
29 #include <linux/kthread.h>
30 #include <linux/raid/pq.h>
31 #include <linux/hash.h>
32 #include <linux/list_sort.h>
33 #include <linux/raid/xor.h>
34 #include <linux/vmalloc.h>
35 #include <asm/div64.h>
36 #include "ctree.h"
37 #include "extent_map.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "print-tree.h"
41 #include "volumes.h"
42 #include "raid56.h"
43 #include "async-thread.h"
44 #include "check-integrity.h"
45 #include "rcu-string.h"
46
47 /* set when additional merges to this rbio are not allowed */
48 #define RBIO_RMW_LOCKED_BIT 1
49
50 /*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54 #define RBIO_CACHE_BIT 2
55
56 /*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59 #define RBIO_CACHE_READY_BIT 3
60
61 #define RBIO_CACHE_SIZE 1024
62
63 enum btrfs_rbio_ops {
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
68 };
69
70 struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
81 /*
82 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
86 /*
87 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
119 int real_stripes;
120
121 int stripe_npages;
122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
128 enum btrfs_rbio_ops operation;
129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
136 int scrubp;
137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
150 int generic_bio_cnt;
151
152 refcount_t refs;
153
154 atomic_t stripes_pending;
155
156 atomic_t error;
157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
178 };
179
180 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182 static void rmw_work(struct btrfs_work *work);
183 static void read_rebuild_work(struct btrfs_work *work);
184 static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185 static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
192 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194 static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
196 /*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201 {
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
208 int table_size;
209
210 if (info->stripe_hash_table)
211 return 0;
212
213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
222 if (!table) {
223 table = vzalloc(table_size);
224 if (!table)
225 return -ENOMEM;
226 }
227
228 spin_lock_init(&table->cache_lock);
229 INIT_LIST_HEAD(&table->stripe_cache);
230
231 h = table->table;
232
233 for (i = 0; i < num_entries; i++) {
234 cur = h + i;
235 INIT_LIST_HEAD(&cur->hash_list);
236 spin_lock_init(&cur->lock);
237 init_waitqueue_head(&cur->wait);
238 }
239
240 x = cmpxchg(&info->stripe_hash_table, NULL, table);
241 if (x)
242 kvfree(x);
243 return 0;
244 }
245
246 /*
247 * caching an rbio means to copy anything from the
248 * bio_pages array into the stripe_pages array. We
249 * use the page uptodate bit in the stripe cache array
250 * to indicate if it has valid data
251 *
252 * once the caching is done, we set the cache ready
253 * bit.
254 */
255 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
256 {
257 int i;
258 char *s;
259 char *d;
260 int ret;
261
262 ret = alloc_rbio_pages(rbio);
263 if (ret)
264 return;
265
266 for (i = 0; i < rbio->nr_pages; i++) {
267 if (!rbio->bio_pages[i])
268 continue;
269
270 s = kmap(rbio->bio_pages[i]);
271 d = kmap(rbio->stripe_pages[i]);
272
273 memcpy(d, s, PAGE_SIZE);
274
275 kunmap(rbio->bio_pages[i]);
276 kunmap(rbio->stripe_pages[i]);
277 SetPageUptodate(rbio->stripe_pages[i]);
278 }
279 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
280 }
281
282 /*
283 * we hash on the first logical address of the stripe
284 */
285 static int rbio_bucket(struct btrfs_raid_bio *rbio)
286 {
287 u64 num = rbio->bbio->raid_map[0];
288
289 /*
290 * we shift down quite a bit. We're using byte
291 * addressing, and most of the lower bits are zeros.
292 * This tends to upset hash_64, and it consistently
293 * returns just one or two different values.
294 *
295 * shifting off the lower bits fixes things.
296 */
297 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
298 }
299
300 /*
301 * stealing an rbio means taking all the uptodate pages from the stripe
302 * array in the source rbio and putting them into the destination rbio
303 */
304 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
305 {
306 int i;
307 struct page *s;
308 struct page *d;
309
310 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
311 return;
312
313 for (i = 0; i < dest->nr_pages; i++) {
314 s = src->stripe_pages[i];
315 if (!s || !PageUptodate(s)) {
316 continue;
317 }
318
319 d = dest->stripe_pages[i];
320 if (d)
321 __free_page(d);
322
323 dest->stripe_pages[i] = s;
324 src->stripe_pages[i] = NULL;
325 }
326 }
327
328 /*
329 * merging means we take the bio_list from the victim and
330 * splice it into the destination. The victim should
331 * be discarded afterwards.
332 *
333 * must be called with dest->rbio_list_lock held
334 */
335 static void merge_rbio(struct btrfs_raid_bio *dest,
336 struct btrfs_raid_bio *victim)
337 {
338 bio_list_merge(&dest->bio_list, &victim->bio_list);
339 dest->bio_list_bytes += victim->bio_list_bytes;
340 dest->generic_bio_cnt += victim->generic_bio_cnt;
341 bio_list_init(&victim->bio_list);
342 }
343
344 /*
345 * used to prune items that are in the cache. The caller
346 * must hold the hash table lock.
347 */
348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349 {
350 int bucket = rbio_bucket(rbio);
351 struct btrfs_stripe_hash_table *table;
352 struct btrfs_stripe_hash *h;
353 int freeit = 0;
354
355 /*
356 * check the bit again under the hash table lock.
357 */
358 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 return;
360
361 table = rbio->fs_info->stripe_hash_table;
362 h = table->table + bucket;
363
364 /* hold the lock for the bucket because we may be
365 * removing it from the hash table
366 */
367 spin_lock(&h->lock);
368
369 /*
370 * hold the lock for the bio list because we need
371 * to make sure the bio list is empty
372 */
373 spin_lock(&rbio->bio_list_lock);
374
375 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 list_del_init(&rbio->stripe_cache);
377 table->cache_size -= 1;
378 freeit = 1;
379
380 /* if the bio list isn't empty, this rbio is
381 * still involved in an IO. We take it out
382 * of the cache list, and drop the ref that
383 * was held for the list.
384 *
385 * If the bio_list was empty, we also remove
386 * the rbio from the hash_table, and drop
387 * the corresponding ref
388 */
389 if (bio_list_empty(&rbio->bio_list)) {
390 if (!list_empty(&rbio->hash_list)) {
391 list_del_init(&rbio->hash_list);
392 refcount_dec(&rbio->refs);
393 BUG_ON(!list_empty(&rbio->plug_list));
394 }
395 }
396 }
397
398 spin_unlock(&rbio->bio_list_lock);
399 spin_unlock(&h->lock);
400
401 if (freeit)
402 __free_raid_bio(rbio);
403 }
404
405 /*
406 * prune a given rbio from the cache
407 */
408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409 {
410 struct btrfs_stripe_hash_table *table;
411 unsigned long flags;
412
413 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 return;
415
416 table = rbio->fs_info->stripe_hash_table;
417
418 spin_lock_irqsave(&table->cache_lock, flags);
419 __remove_rbio_from_cache(rbio);
420 spin_unlock_irqrestore(&table->cache_lock, flags);
421 }
422
423 /*
424 * remove everything in the cache
425 */
426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
427 {
428 struct btrfs_stripe_hash_table *table;
429 unsigned long flags;
430 struct btrfs_raid_bio *rbio;
431
432 table = info->stripe_hash_table;
433
434 spin_lock_irqsave(&table->cache_lock, flags);
435 while (!list_empty(&table->stripe_cache)) {
436 rbio = list_entry(table->stripe_cache.next,
437 struct btrfs_raid_bio,
438 stripe_cache);
439 __remove_rbio_from_cache(rbio);
440 }
441 spin_unlock_irqrestore(&table->cache_lock, flags);
442 }
443
444 /*
445 * remove all cached entries and free the hash table
446 * used by unmount
447 */
448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449 {
450 if (!info->stripe_hash_table)
451 return;
452 btrfs_clear_rbio_cache(info);
453 kvfree(info->stripe_hash_table);
454 info->stripe_hash_table = NULL;
455 }
456
457 /*
458 * insert an rbio into the stripe cache. It
459 * must have already been prepared by calling
460 * cache_rbio_pages
461 *
462 * If this rbio was already cached, it gets
463 * moved to the front of the lru.
464 *
465 * If the size of the rbio cache is too big, we
466 * prune an item.
467 */
468 static void cache_rbio(struct btrfs_raid_bio *rbio)
469 {
470 struct btrfs_stripe_hash_table *table;
471 unsigned long flags;
472
473 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 return;
475
476 table = rbio->fs_info->stripe_hash_table;
477
478 spin_lock_irqsave(&table->cache_lock, flags);
479 spin_lock(&rbio->bio_list_lock);
480
481 /* bump our ref if we were not in the list before */
482 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 refcount_inc(&rbio->refs);
484
485 if (!list_empty(&rbio->stripe_cache)){
486 list_move(&rbio->stripe_cache, &table->stripe_cache);
487 } else {
488 list_add(&rbio->stripe_cache, &table->stripe_cache);
489 table->cache_size += 1;
490 }
491
492 spin_unlock(&rbio->bio_list_lock);
493
494 if (table->cache_size > RBIO_CACHE_SIZE) {
495 struct btrfs_raid_bio *found;
496
497 found = list_entry(table->stripe_cache.prev,
498 struct btrfs_raid_bio,
499 stripe_cache);
500
501 if (found != rbio)
502 __remove_rbio_from_cache(found);
503 }
504
505 spin_unlock_irqrestore(&table->cache_lock, flags);
506 }
507
508 /*
509 * helper function to run the xor_blocks api. It is only
510 * able to do MAX_XOR_BLOCKS at a time, so we need to
511 * loop through.
512 */
513 static void run_xor(void **pages, int src_cnt, ssize_t len)
514 {
515 int src_off = 0;
516 int xor_src_cnt = 0;
517 void *dest = pages[src_cnt];
518
519 while(src_cnt > 0) {
520 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522
523 src_cnt -= xor_src_cnt;
524 src_off += xor_src_cnt;
525 }
526 }
527
528 /*
529 * returns true if the bio list inside this rbio
530 * covers an entire stripe (no rmw required).
531 * Must be called with the bio list lock held, or
532 * at a time when you know it is impossible to add
533 * new bios into the list
534 */
535 static int __rbio_is_full(struct btrfs_raid_bio *rbio)
536 {
537 unsigned long size = rbio->bio_list_bytes;
538 int ret = 1;
539
540 if (size != rbio->nr_data * rbio->stripe_len)
541 ret = 0;
542
543 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
544 return ret;
545 }
546
547 static int rbio_is_full(struct btrfs_raid_bio *rbio)
548 {
549 unsigned long flags;
550 int ret;
551
552 spin_lock_irqsave(&rbio->bio_list_lock, flags);
553 ret = __rbio_is_full(rbio);
554 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
555 return ret;
556 }
557
558 /*
559 * returns 1 if it is safe to merge two rbios together.
560 * The merging is safe if the two rbios correspond to
561 * the same stripe and if they are both going in the same
562 * direction (read vs write), and if neither one is
563 * locked for final IO
564 *
565 * The caller is responsible for locking such that
566 * rmw_locked is safe to test
567 */
568 static int rbio_can_merge(struct btrfs_raid_bio *last,
569 struct btrfs_raid_bio *cur)
570 {
571 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
572 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
573 return 0;
574
575 /*
576 * we can't merge with cached rbios, since the
577 * idea is that when we merge the destination
578 * rbio is going to run our IO for us. We can
579 * steal from cached rbios though, other functions
580 * handle that.
581 */
582 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
583 test_bit(RBIO_CACHE_BIT, &cur->flags))
584 return 0;
585
586 if (last->bbio->raid_map[0] !=
587 cur->bbio->raid_map[0])
588 return 0;
589
590 /* we can't merge with different operations */
591 if (last->operation != cur->operation)
592 return 0;
593 /*
594 * We've need read the full stripe from the drive.
595 * check and repair the parity and write the new results.
596 *
597 * We're not allowed to add any new bios to the
598 * bio list here, anyone else that wants to
599 * change this stripe needs to do their own rmw.
600 */
601 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
602 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
603 return 0;
604
605 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
606 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
607 return 0;
608
609 return 1;
610 }
611
612 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
613 int index)
614 {
615 return stripe * rbio->stripe_npages + index;
616 }
617
618 /*
619 * these are just the pages from the rbio array, not from anything
620 * the FS sent down to us
621 */
622 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
623 int index)
624 {
625 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
626 }
627
628 /*
629 * helper to index into the pstripe
630 */
631 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
632 {
633 return rbio_stripe_page(rbio, rbio->nr_data, index);
634 }
635
636 /*
637 * helper to index into the qstripe, returns null
638 * if there is no qstripe
639 */
640 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
641 {
642 if (rbio->nr_data + 1 == rbio->real_stripes)
643 return NULL;
644 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
645 }
646
647 /*
648 * The first stripe in the table for a logical address
649 * has the lock. rbios are added in one of three ways:
650 *
651 * 1) Nobody has the stripe locked yet. The rbio is given
652 * the lock and 0 is returned. The caller must start the IO
653 * themselves.
654 *
655 * 2) Someone has the stripe locked, but we're able to merge
656 * with the lock owner. The rbio is freed and the IO will
657 * start automatically along with the existing rbio. 1 is returned.
658 *
659 * 3) Someone has the stripe locked, but we're not able to merge.
660 * The rbio is added to the lock owner's plug list, or merged into
661 * an rbio already on the plug list. When the lock owner unlocks,
662 * the next rbio on the list is run and the IO is started automatically.
663 * 1 is returned
664 *
665 * If we return 0, the caller still owns the rbio and must continue with
666 * IO submission. If we return 1, the caller must assume the rbio has
667 * already been freed.
668 */
669 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
670 {
671 int bucket = rbio_bucket(rbio);
672 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
673 struct btrfs_raid_bio *cur;
674 struct btrfs_raid_bio *pending;
675 unsigned long flags;
676 DEFINE_WAIT(wait);
677 struct btrfs_raid_bio *freeit = NULL;
678 struct btrfs_raid_bio *cache_drop = NULL;
679 int ret = 0;
680
681 spin_lock_irqsave(&h->lock, flags);
682 list_for_each_entry(cur, &h->hash_list, hash_list) {
683 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
684 spin_lock(&cur->bio_list_lock);
685
686 /* can we steal this cached rbio's pages? */
687 if (bio_list_empty(&cur->bio_list) &&
688 list_empty(&cur->plug_list) &&
689 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
690 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
691 list_del_init(&cur->hash_list);
692 refcount_dec(&cur->refs);
693
694 steal_rbio(cur, rbio);
695 cache_drop = cur;
696 spin_unlock(&cur->bio_list_lock);
697
698 goto lockit;
699 }
700
701 /* can we merge into the lock owner? */
702 if (rbio_can_merge(cur, rbio)) {
703 merge_rbio(cur, rbio);
704 spin_unlock(&cur->bio_list_lock);
705 freeit = rbio;
706 ret = 1;
707 goto out;
708 }
709
710
711 /*
712 * we couldn't merge with the running
713 * rbio, see if we can merge with the
714 * pending ones. We don't have to
715 * check for rmw_locked because there
716 * is no way they are inside finish_rmw
717 * right now
718 */
719 list_for_each_entry(pending, &cur->plug_list,
720 plug_list) {
721 if (rbio_can_merge(pending, rbio)) {
722 merge_rbio(pending, rbio);
723 spin_unlock(&cur->bio_list_lock);
724 freeit = rbio;
725 ret = 1;
726 goto out;
727 }
728 }
729
730 /* no merging, put us on the tail of the plug list,
731 * our rbio will be started with the currently
732 * running rbio unlocks
733 */
734 list_add_tail(&rbio->plug_list, &cur->plug_list);
735 spin_unlock(&cur->bio_list_lock);
736 ret = 1;
737 goto out;
738 }
739 }
740 lockit:
741 refcount_inc(&rbio->refs);
742 list_add(&rbio->hash_list, &h->hash_list);
743 out:
744 spin_unlock_irqrestore(&h->lock, flags);
745 if (cache_drop)
746 remove_rbio_from_cache(cache_drop);
747 if (freeit)
748 __free_raid_bio(freeit);
749 return ret;
750 }
751
752 /*
753 * called as rmw or parity rebuild is completed. If the plug list has more
754 * rbios waiting for this stripe, the next one on the list will be started
755 */
756 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
757 {
758 int bucket;
759 struct btrfs_stripe_hash *h;
760 unsigned long flags;
761 int keep_cache = 0;
762
763 bucket = rbio_bucket(rbio);
764 h = rbio->fs_info->stripe_hash_table->table + bucket;
765
766 if (list_empty(&rbio->plug_list))
767 cache_rbio(rbio);
768
769 spin_lock_irqsave(&h->lock, flags);
770 spin_lock(&rbio->bio_list_lock);
771
772 if (!list_empty(&rbio->hash_list)) {
773 /*
774 * if we're still cached and there is no other IO
775 * to perform, just leave this rbio here for others
776 * to steal from later
777 */
778 if (list_empty(&rbio->plug_list) &&
779 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
780 keep_cache = 1;
781 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
782 BUG_ON(!bio_list_empty(&rbio->bio_list));
783 goto done;
784 }
785
786 list_del_init(&rbio->hash_list);
787 refcount_dec(&rbio->refs);
788
789 /*
790 * we use the plug list to hold all the rbios
791 * waiting for the chance to lock this stripe.
792 * hand the lock over to one of them.
793 */
794 if (!list_empty(&rbio->plug_list)) {
795 struct btrfs_raid_bio *next;
796 struct list_head *head = rbio->plug_list.next;
797
798 next = list_entry(head, struct btrfs_raid_bio,
799 plug_list);
800
801 list_del_init(&rbio->plug_list);
802
803 list_add(&next->hash_list, &h->hash_list);
804 refcount_inc(&next->refs);
805 spin_unlock(&rbio->bio_list_lock);
806 spin_unlock_irqrestore(&h->lock, flags);
807
808 if (next->operation == BTRFS_RBIO_READ_REBUILD)
809 async_read_rebuild(next);
810 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
811 steal_rbio(rbio, next);
812 async_read_rebuild(next);
813 } else if (next->operation == BTRFS_RBIO_WRITE) {
814 steal_rbio(rbio, next);
815 async_rmw_stripe(next);
816 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
817 steal_rbio(rbio, next);
818 async_scrub_parity(next);
819 }
820
821 goto done_nolock;
822 /*
823 * The barrier for this waitqueue_active is not needed,
824 * we're protected by h->lock and can't miss a wakeup.
825 */
826 } else if (waitqueue_active(&h->wait)) {
827 spin_unlock(&rbio->bio_list_lock);
828 spin_unlock_irqrestore(&h->lock, flags);
829 wake_up(&h->wait);
830 goto done_nolock;
831 }
832 }
833 done:
834 spin_unlock(&rbio->bio_list_lock);
835 spin_unlock_irqrestore(&h->lock, flags);
836
837 done_nolock:
838 if (!keep_cache)
839 remove_rbio_from_cache(rbio);
840 }
841
842 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
843 {
844 int i;
845
846 if (!refcount_dec_and_test(&rbio->refs))
847 return;
848
849 WARN_ON(!list_empty(&rbio->stripe_cache));
850 WARN_ON(!list_empty(&rbio->hash_list));
851 WARN_ON(!bio_list_empty(&rbio->bio_list));
852
853 for (i = 0; i < rbio->nr_pages; i++) {
854 if (rbio->stripe_pages[i]) {
855 __free_page(rbio->stripe_pages[i]);
856 rbio->stripe_pages[i] = NULL;
857 }
858 }
859
860 btrfs_put_bbio(rbio->bbio);
861 kfree(rbio);
862 }
863
864 static void free_raid_bio(struct btrfs_raid_bio *rbio)
865 {
866 unlock_stripe(rbio);
867 __free_raid_bio(rbio);
868 }
869
870 /*
871 * this frees the rbio and runs through all the bios in the
872 * bio_list and calls end_io on them
873 */
874 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
875 {
876 struct bio *cur = bio_list_get(&rbio->bio_list);
877 struct bio *next;
878
879 if (rbio->generic_bio_cnt)
880 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
881
882 free_raid_bio(rbio);
883
884 while (cur) {
885 next = cur->bi_next;
886 cur->bi_next = NULL;
887 cur->bi_error = err;
888 bio_endio(cur);
889 cur = next;
890 }
891 }
892
893 /*
894 * end io function used by finish_rmw. When we finally
895 * get here, we've written a full stripe
896 */
897 static void raid_write_end_io(struct bio *bio)
898 {
899 struct btrfs_raid_bio *rbio = bio->bi_private;
900 int err = bio->bi_error;
901 int max_errors;
902
903 if (err)
904 fail_bio_stripe(rbio, bio);
905
906 bio_put(bio);
907
908 if (!atomic_dec_and_test(&rbio->stripes_pending))
909 return;
910
911 err = 0;
912
913 /* OK, we have read all the stripes we need to. */
914 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
915 0 : rbio->bbio->max_errors;
916 if (atomic_read(&rbio->error) > max_errors)
917 err = -EIO;
918
919 rbio_orig_end_io(rbio, err);
920 }
921
922 /*
923 * the read/modify/write code wants to use the original bio for
924 * any pages it included, and then use the rbio for everything
925 * else. This function decides if a given index (stripe number)
926 * and page number in that stripe fall inside the original bio
927 * or the rbio.
928 *
929 * if you set bio_list_only, you'll get a NULL back for any ranges
930 * that are outside the bio_list
931 *
932 * This doesn't take any refs on anything, you get a bare page pointer
933 * and the caller must bump refs as required.
934 *
935 * You must call index_rbio_pages once before you can trust
936 * the answers from this function.
937 */
938 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
939 int index, int pagenr, int bio_list_only)
940 {
941 int chunk_page;
942 struct page *p = NULL;
943
944 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
945
946 spin_lock_irq(&rbio->bio_list_lock);
947 p = rbio->bio_pages[chunk_page];
948 spin_unlock_irq(&rbio->bio_list_lock);
949
950 if (p || bio_list_only)
951 return p;
952
953 return rbio->stripe_pages[chunk_page];
954 }
955
956 /*
957 * number of pages we need for the entire stripe across all the
958 * drives
959 */
960 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
961 {
962 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
963 }
964
965 /*
966 * allocation and initial setup for the btrfs_raid_bio. Not
967 * this does not allocate any pages for rbio->pages.
968 */
969 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
970 struct btrfs_bio *bbio,
971 u64 stripe_len)
972 {
973 struct btrfs_raid_bio *rbio;
974 int nr_data = 0;
975 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
976 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
977 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
978 void *p;
979
980 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
981 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
982 sizeof(long), GFP_NOFS);
983 if (!rbio)
984 return ERR_PTR(-ENOMEM);
985
986 bio_list_init(&rbio->bio_list);
987 INIT_LIST_HEAD(&rbio->plug_list);
988 spin_lock_init(&rbio->bio_list_lock);
989 INIT_LIST_HEAD(&rbio->stripe_cache);
990 INIT_LIST_HEAD(&rbio->hash_list);
991 rbio->bbio = bbio;
992 rbio->fs_info = fs_info;
993 rbio->stripe_len = stripe_len;
994 rbio->nr_pages = num_pages;
995 rbio->real_stripes = real_stripes;
996 rbio->stripe_npages = stripe_npages;
997 rbio->faila = -1;
998 rbio->failb = -1;
999 refcount_set(&rbio->refs, 1);
1000 atomic_set(&rbio->error, 0);
1001 atomic_set(&rbio->stripes_pending, 0);
1002
1003 /*
1004 * the stripe_pages and bio_pages array point to the extra
1005 * memory we allocated past the end of the rbio
1006 */
1007 p = rbio + 1;
1008 rbio->stripe_pages = p;
1009 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1010 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1011
1012 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1013 nr_data = real_stripes - 1;
1014 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1015 nr_data = real_stripes - 2;
1016 else
1017 BUG();
1018
1019 rbio->nr_data = nr_data;
1020 return rbio;
1021 }
1022
1023 /* allocate pages for all the stripes in the bio, including parity */
1024 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1025 {
1026 int i;
1027 struct page *page;
1028
1029 for (i = 0; i < rbio->nr_pages; i++) {
1030 if (rbio->stripe_pages[i])
1031 continue;
1032 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1033 if (!page)
1034 return -ENOMEM;
1035 rbio->stripe_pages[i] = page;
1036 }
1037 return 0;
1038 }
1039
1040 /* only allocate pages for p/q stripes */
1041 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1042 {
1043 int i;
1044 struct page *page;
1045
1046 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1047
1048 for (; i < rbio->nr_pages; i++) {
1049 if (rbio->stripe_pages[i])
1050 continue;
1051 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1052 if (!page)
1053 return -ENOMEM;
1054 rbio->stripe_pages[i] = page;
1055 }
1056 return 0;
1057 }
1058
1059 /*
1060 * add a single page from a specific stripe into our list of bios for IO
1061 * this will try to merge into existing bios if possible, and returns
1062 * zero if all went well.
1063 */
1064 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1065 struct bio_list *bio_list,
1066 struct page *page,
1067 int stripe_nr,
1068 unsigned long page_index,
1069 unsigned long bio_max_len)
1070 {
1071 struct bio *last = bio_list->tail;
1072 u64 last_end = 0;
1073 int ret;
1074 struct bio *bio;
1075 struct btrfs_bio_stripe *stripe;
1076 u64 disk_start;
1077
1078 stripe = &rbio->bbio->stripes[stripe_nr];
1079 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1080
1081 /* if the device is missing, just fail this stripe */
1082 if (!stripe->dev->bdev)
1083 return fail_rbio_index(rbio, stripe_nr);
1084
1085 /* see if we can add this page onto our existing bio */
1086 if (last) {
1087 last_end = (u64)last->bi_iter.bi_sector << 9;
1088 last_end += last->bi_iter.bi_size;
1089
1090 /*
1091 * we can't merge these if they are from different
1092 * devices or if they are not contiguous
1093 */
1094 if (last_end == disk_start && stripe->dev->bdev &&
1095 !last->bi_error &&
1096 last->bi_bdev == stripe->dev->bdev) {
1097 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1098 if (ret == PAGE_SIZE)
1099 return 0;
1100 }
1101 }
1102
1103 /* put a new bio on the list */
1104 bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1105 if (!bio)
1106 return -ENOMEM;
1107
1108 bio->bi_iter.bi_size = 0;
1109 bio->bi_bdev = stripe->dev->bdev;
1110 bio->bi_iter.bi_sector = disk_start >> 9;
1111
1112 bio_add_page(bio, page, PAGE_SIZE, 0);
1113 bio_list_add(bio_list, bio);
1114 return 0;
1115 }
1116
1117 /*
1118 * while we're doing the read/modify/write cycle, we could
1119 * have errors in reading pages off the disk. This checks
1120 * for errors and if we're not able to read the page it'll
1121 * trigger parity reconstruction. The rmw will be finished
1122 * after we've reconstructed the failed stripes
1123 */
1124 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1125 {
1126 if (rbio->faila >= 0 || rbio->failb >= 0) {
1127 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1128 __raid56_parity_recover(rbio);
1129 } else {
1130 finish_rmw(rbio);
1131 }
1132 }
1133
1134 /*
1135 * helper function to walk our bio list and populate the bio_pages array with
1136 * the result. This seems expensive, but it is faster than constantly
1137 * searching through the bio list as we setup the IO in finish_rmw or stripe
1138 * reconstruction.
1139 *
1140 * This must be called before you trust the answers from page_in_rbio
1141 */
1142 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1143 {
1144 struct bio *bio;
1145 struct bio_vec *bvec;
1146 u64 start;
1147 unsigned long stripe_offset;
1148 unsigned long page_index;
1149 int i;
1150
1151 spin_lock_irq(&rbio->bio_list_lock);
1152 bio_list_for_each(bio, &rbio->bio_list) {
1153 start = (u64)bio->bi_iter.bi_sector << 9;
1154 stripe_offset = start - rbio->bbio->raid_map[0];
1155 page_index = stripe_offset >> PAGE_SHIFT;
1156
1157 bio_for_each_segment_all(bvec, bio, i)
1158 rbio->bio_pages[page_index + i] = bvec->bv_page;
1159 }
1160 spin_unlock_irq(&rbio->bio_list_lock);
1161 }
1162
1163 /*
1164 * this is called from one of two situations. We either
1165 * have a full stripe from the higher layers, or we've read all
1166 * the missing bits off disk.
1167 *
1168 * This will calculate the parity and then send down any
1169 * changed blocks.
1170 */
1171 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1172 {
1173 struct btrfs_bio *bbio = rbio->bbio;
1174 void *pointers[rbio->real_stripes];
1175 int nr_data = rbio->nr_data;
1176 int stripe;
1177 int pagenr;
1178 int p_stripe = -1;
1179 int q_stripe = -1;
1180 struct bio_list bio_list;
1181 struct bio *bio;
1182 int ret;
1183
1184 bio_list_init(&bio_list);
1185
1186 if (rbio->real_stripes - rbio->nr_data == 1) {
1187 p_stripe = rbio->real_stripes - 1;
1188 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1189 p_stripe = rbio->real_stripes - 2;
1190 q_stripe = rbio->real_stripes - 1;
1191 } else {
1192 BUG();
1193 }
1194
1195 /* at this point we either have a full stripe,
1196 * or we've read the full stripe from the drive.
1197 * recalculate the parity and write the new results.
1198 *
1199 * We're not allowed to add any new bios to the
1200 * bio list here, anyone else that wants to
1201 * change this stripe needs to do their own rmw.
1202 */
1203 spin_lock_irq(&rbio->bio_list_lock);
1204 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1205 spin_unlock_irq(&rbio->bio_list_lock);
1206
1207 atomic_set(&rbio->error, 0);
1208
1209 /*
1210 * now that we've set rmw_locked, run through the
1211 * bio list one last time and map the page pointers
1212 *
1213 * We don't cache full rbios because we're assuming
1214 * the higher layers are unlikely to use this area of
1215 * the disk again soon. If they do use it again,
1216 * hopefully they will send another full bio.
1217 */
1218 index_rbio_pages(rbio);
1219 if (!rbio_is_full(rbio))
1220 cache_rbio_pages(rbio);
1221 else
1222 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1223
1224 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1225 struct page *p;
1226 /* first collect one page from each data stripe */
1227 for (stripe = 0; stripe < nr_data; stripe++) {
1228 p = page_in_rbio(rbio, stripe, pagenr, 0);
1229 pointers[stripe] = kmap(p);
1230 }
1231
1232 /* then add the parity stripe */
1233 p = rbio_pstripe_page(rbio, pagenr);
1234 SetPageUptodate(p);
1235 pointers[stripe++] = kmap(p);
1236
1237 if (q_stripe != -1) {
1238
1239 /*
1240 * raid6, add the qstripe and call the
1241 * library function to fill in our p/q
1242 */
1243 p = rbio_qstripe_page(rbio, pagenr);
1244 SetPageUptodate(p);
1245 pointers[stripe++] = kmap(p);
1246
1247 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1248 pointers);
1249 } else {
1250 /* raid5 */
1251 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1252 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1253 }
1254
1255
1256 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1257 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1258 }
1259
1260 /*
1261 * time to start writing. Make bios for everything from the
1262 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1263 * everything else.
1264 */
1265 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1266 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1267 struct page *page;
1268 if (stripe < rbio->nr_data) {
1269 page = page_in_rbio(rbio, stripe, pagenr, 1);
1270 if (!page)
1271 continue;
1272 } else {
1273 page = rbio_stripe_page(rbio, stripe, pagenr);
1274 }
1275
1276 ret = rbio_add_io_page(rbio, &bio_list,
1277 page, stripe, pagenr, rbio->stripe_len);
1278 if (ret)
1279 goto cleanup;
1280 }
1281 }
1282
1283 if (likely(!bbio->num_tgtdevs))
1284 goto write_data;
1285
1286 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1287 if (!bbio->tgtdev_map[stripe])
1288 continue;
1289
1290 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1291 struct page *page;
1292 if (stripe < rbio->nr_data) {
1293 page = page_in_rbio(rbio, stripe, pagenr, 1);
1294 if (!page)
1295 continue;
1296 } else {
1297 page = rbio_stripe_page(rbio, stripe, pagenr);
1298 }
1299
1300 ret = rbio_add_io_page(rbio, &bio_list, page,
1301 rbio->bbio->tgtdev_map[stripe],
1302 pagenr, rbio->stripe_len);
1303 if (ret)
1304 goto cleanup;
1305 }
1306 }
1307
1308 write_data:
1309 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1310 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1311
1312 while (1) {
1313 bio = bio_list_pop(&bio_list);
1314 if (!bio)
1315 break;
1316
1317 bio->bi_private = rbio;
1318 bio->bi_end_io = raid_write_end_io;
1319 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1320
1321 submit_bio(bio);
1322 }
1323 return;
1324
1325 cleanup:
1326 rbio_orig_end_io(rbio, -EIO);
1327 }
1328
1329 /*
1330 * helper to find the stripe number for a given bio. Used to figure out which
1331 * stripe has failed. This expects the bio to correspond to a physical disk,
1332 * so it looks up based on physical sector numbers.
1333 */
1334 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1335 struct bio *bio)
1336 {
1337 u64 physical = bio->bi_iter.bi_sector;
1338 u64 stripe_start;
1339 int i;
1340 struct btrfs_bio_stripe *stripe;
1341
1342 physical <<= 9;
1343
1344 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1345 stripe = &rbio->bbio->stripes[i];
1346 stripe_start = stripe->physical;
1347 if (physical >= stripe_start &&
1348 physical < stripe_start + rbio->stripe_len &&
1349 bio->bi_bdev == stripe->dev->bdev) {
1350 return i;
1351 }
1352 }
1353 return -1;
1354 }
1355
1356 /*
1357 * helper to find the stripe number for a given
1358 * bio (before mapping). Used to figure out which stripe has
1359 * failed. This looks up based on logical block numbers.
1360 */
1361 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1362 struct bio *bio)
1363 {
1364 u64 logical = bio->bi_iter.bi_sector;
1365 u64 stripe_start;
1366 int i;
1367
1368 logical <<= 9;
1369
1370 for (i = 0; i < rbio->nr_data; i++) {
1371 stripe_start = rbio->bbio->raid_map[i];
1372 if (logical >= stripe_start &&
1373 logical < stripe_start + rbio->stripe_len) {
1374 return i;
1375 }
1376 }
1377 return -1;
1378 }
1379
1380 /*
1381 * returns -EIO if we had too many failures
1382 */
1383 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1384 {
1385 unsigned long flags;
1386 int ret = 0;
1387
1388 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1389
1390 /* we already know this stripe is bad, move on */
1391 if (rbio->faila == failed || rbio->failb == failed)
1392 goto out;
1393
1394 if (rbio->faila == -1) {
1395 /* first failure on this rbio */
1396 rbio->faila = failed;
1397 atomic_inc(&rbio->error);
1398 } else if (rbio->failb == -1) {
1399 /* second failure on this rbio */
1400 rbio->failb = failed;
1401 atomic_inc(&rbio->error);
1402 } else {
1403 ret = -EIO;
1404 }
1405 out:
1406 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1407
1408 return ret;
1409 }
1410
1411 /*
1412 * helper to fail a stripe based on a physical disk
1413 * bio.
1414 */
1415 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1416 struct bio *bio)
1417 {
1418 int failed = find_bio_stripe(rbio, bio);
1419
1420 if (failed < 0)
1421 return -EIO;
1422
1423 return fail_rbio_index(rbio, failed);
1424 }
1425
1426 /*
1427 * this sets each page in the bio uptodate. It should only be used on private
1428 * rbio pages, nothing that comes in from the higher layers
1429 */
1430 static void set_bio_pages_uptodate(struct bio *bio)
1431 {
1432 struct bio_vec *bvec;
1433 int i;
1434
1435 bio_for_each_segment_all(bvec, bio, i)
1436 SetPageUptodate(bvec->bv_page);
1437 }
1438
1439 /*
1440 * end io for the read phase of the rmw cycle. All the bios here are physical
1441 * stripe bios we've read from the disk so we can recalculate the parity of the
1442 * stripe.
1443 *
1444 * This will usually kick off finish_rmw once all the bios are read in, but it
1445 * may trigger parity reconstruction if we had any errors along the way
1446 */
1447 static void raid_rmw_end_io(struct bio *bio)
1448 {
1449 struct btrfs_raid_bio *rbio = bio->bi_private;
1450
1451 if (bio->bi_error)
1452 fail_bio_stripe(rbio, bio);
1453 else
1454 set_bio_pages_uptodate(bio);
1455
1456 bio_put(bio);
1457
1458 if (!atomic_dec_and_test(&rbio->stripes_pending))
1459 return;
1460
1461 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1462 goto cleanup;
1463
1464 /*
1465 * this will normally call finish_rmw to start our write
1466 * but if there are any failed stripes we'll reconstruct
1467 * from parity first
1468 */
1469 validate_rbio_for_rmw(rbio);
1470 return;
1471
1472 cleanup:
1473
1474 rbio_orig_end_io(rbio, -EIO);
1475 }
1476
1477 static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1478 {
1479 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1480 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1481 }
1482
1483 static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1484 {
1485 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1486 read_rebuild_work, NULL, NULL);
1487
1488 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1489 }
1490
1491 /*
1492 * the stripe must be locked by the caller. It will
1493 * unlock after all the writes are done
1494 */
1495 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1496 {
1497 int bios_to_read = 0;
1498 struct bio_list bio_list;
1499 int ret;
1500 int pagenr;
1501 int stripe;
1502 struct bio *bio;
1503
1504 bio_list_init(&bio_list);
1505
1506 ret = alloc_rbio_pages(rbio);
1507 if (ret)
1508 goto cleanup;
1509
1510 index_rbio_pages(rbio);
1511
1512 atomic_set(&rbio->error, 0);
1513 /*
1514 * build a list of bios to read all the missing parts of this
1515 * stripe
1516 */
1517 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1518 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1519 struct page *page;
1520 /*
1521 * we want to find all the pages missing from
1522 * the rbio and read them from the disk. If
1523 * page_in_rbio finds a page in the bio list
1524 * we don't need to read it off the stripe.
1525 */
1526 page = page_in_rbio(rbio, stripe, pagenr, 1);
1527 if (page)
1528 continue;
1529
1530 page = rbio_stripe_page(rbio, stripe, pagenr);
1531 /*
1532 * the bio cache may have handed us an uptodate
1533 * page. If so, be happy and use it
1534 */
1535 if (PageUptodate(page))
1536 continue;
1537
1538 ret = rbio_add_io_page(rbio, &bio_list, page,
1539 stripe, pagenr, rbio->stripe_len);
1540 if (ret)
1541 goto cleanup;
1542 }
1543 }
1544
1545 bios_to_read = bio_list_size(&bio_list);
1546 if (!bios_to_read) {
1547 /*
1548 * this can happen if others have merged with
1549 * us, it means there is nothing left to read.
1550 * But if there are missing devices it may not be
1551 * safe to do the full stripe write yet.
1552 */
1553 goto finish;
1554 }
1555
1556 /*
1557 * the bbio may be freed once we submit the last bio. Make sure
1558 * not to touch it after that
1559 */
1560 atomic_set(&rbio->stripes_pending, bios_to_read);
1561 while (1) {
1562 bio = bio_list_pop(&bio_list);
1563 if (!bio)
1564 break;
1565
1566 bio->bi_private = rbio;
1567 bio->bi_end_io = raid_rmw_end_io;
1568 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1569
1570 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1571
1572 submit_bio(bio);
1573 }
1574 /* the actual write will happen once the reads are done */
1575 return 0;
1576
1577 cleanup:
1578 rbio_orig_end_io(rbio, -EIO);
1579 return -EIO;
1580
1581 finish:
1582 validate_rbio_for_rmw(rbio);
1583 return 0;
1584 }
1585
1586 /*
1587 * if the upper layers pass in a full stripe, we thank them by only allocating
1588 * enough pages to hold the parity, and sending it all down quickly.
1589 */
1590 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1591 {
1592 int ret;
1593
1594 ret = alloc_rbio_parity_pages(rbio);
1595 if (ret) {
1596 __free_raid_bio(rbio);
1597 return ret;
1598 }
1599
1600 ret = lock_stripe_add(rbio);
1601 if (ret == 0)
1602 finish_rmw(rbio);
1603 return 0;
1604 }
1605
1606 /*
1607 * partial stripe writes get handed over to async helpers.
1608 * We're really hoping to merge a few more writes into this
1609 * rbio before calculating new parity
1610 */
1611 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1612 {
1613 int ret;
1614
1615 ret = lock_stripe_add(rbio);
1616 if (ret == 0)
1617 async_rmw_stripe(rbio);
1618 return 0;
1619 }
1620
1621 /*
1622 * sometimes while we were reading from the drive to
1623 * recalculate parity, enough new bios come into create
1624 * a full stripe. So we do a check here to see if we can
1625 * go directly to finish_rmw
1626 */
1627 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1628 {
1629 /* head off into rmw land if we don't have a full stripe */
1630 if (!rbio_is_full(rbio))
1631 return partial_stripe_write(rbio);
1632 return full_stripe_write(rbio);
1633 }
1634
1635 /*
1636 * We use plugging call backs to collect full stripes.
1637 * Any time we get a partial stripe write while plugged
1638 * we collect it into a list. When the unplug comes down,
1639 * we sort the list by logical block number and merge
1640 * everything we can into the same rbios
1641 */
1642 struct btrfs_plug_cb {
1643 struct blk_plug_cb cb;
1644 struct btrfs_fs_info *info;
1645 struct list_head rbio_list;
1646 struct btrfs_work work;
1647 };
1648
1649 /*
1650 * rbios on the plug list are sorted for easier merging.
1651 */
1652 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1653 {
1654 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1655 plug_list);
1656 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1657 plug_list);
1658 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1659 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1660
1661 if (a_sector < b_sector)
1662 return -1;
1663 if (a_sector > b_sector)
1664 return 1;
1665 return 0;
1666 }
1667
1668 static void run_plug(struct btrfs_plug_cb *plug)
1669 {
1670 struct btrfs_raid_bio *cur;
1671 struct btrfs_raid_bio *last = NULL;
1672
1673 /*
1674 * sort our plug list then try to merge
1675 * everything we can in hopes of creating full
1676 * stripes.
1677 */
1678 list_sort(NULL, &plug->rbio_list, plug_cmp);
1679 while (!list_empty(&plug->rbio_list)) {
1680 cur = list_entry(plug->rbio_list.next,
1681 struct btrfs_raid_bio, plug_list);
1682 list_del_init(&cur->plug_list);
1683
1684 if (rbio_is_full(cur)) {
1685 /* we have a full stripe, send it down */
1686 full_stripe_write(cur);
1687 continue;
1688 }
1689 if (last) {
1690 if (rbio_can_merge(last, cur)) {
1691 merge_rbio(last, cur);
1692 __free_raid_bio(cur);
1693 continue;
1694
1695 }
1696 __raid56_parity_write(last);
1697 }
1698 last = cur;
1699 }
1700 if (last) {
1701 __raid56_parity_write(last);
1702 }
1703 kfree(plug);
1704 }
1705
1706 /*
1707 * if the unplug comes from schedule, we have to push the
1708 * work off to a helper thread
1709 */
1710 static void unplug_work(struct btrfs_work *work)
1711 {
1712 struct btrfs_plug_cb *plug;
1713 plug = container_of(work, struct btrfs_plug_cb, work);
1714 run_plug(plug);
1715 }
1716
1717 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1718 {
1719 struct btrfs_plug_cb *plug;
1720 plug = container_of(cb, struct btrfs_plug_cb, cb);
1721
1722 if (from_schedule) {
1723 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1724 unplug_work, NULL, NULL);
1725 btrfs_queue_work(plug->info->rmw_workers,
1726 &plug->work);
1727 return;
1728 }
1729 run_plug(plug);
1730 }
1731
1732 /*
1733 * our main entry point for writes from the rest of the FS.
1734 */
1735 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1736 struct btrfs_bio *bbio, u64 stripe_len)
1737 {
1738 struct btrfs_raid_bio *rbio;
1739 struct btrfs_plug_cb *plug = NULL;
1740 struct blk_plug_cb *cb;
1741 int ret;
1742
1743 rbio = alloc_rbio(fs_info, bbio, stripe_len);
1744 if (IS_ERR(rbio)) {
1745 btrfs_put_bbio(bbio);
1746 return PTR_ERR(rbio);
1747 }
1748 bio_list_add(&rbio->bio_list, bio);
1749 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1750 rbio->operation = BTRFS_RBIO_WRITE;
1751
1752 btrfs_bio_counter_inc_noblocked(fs_info);
1753 rbio->generic_bio_cnt = 1;
1754
1755 /*
1756 * don't plug on full rbios, just get them out the door
1757 * as quickly as we can
1758 */
1759 if (rbio_is_full(rbio)) {
1760 ret = full_stripe_write(rbio);
1761 if (ret)
1762 btrfs_bio_counter_dec(fs_info);
1763 return ret;
1764 }
1765
1766 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1767 if (cb) {
1768 plug = container_of(cb, struct btrfs_plug_cb, cb);
1769 if (!plug->info) {
1770 plug->info = fs_info;
1771 INIT_LIST_HEAD(&plug->rbio_list);
1772 }
1773 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1774 ret = 0;
1775 } else {
1776 ret = __raid56_parity_write(rbio);
1777 if (ret)
1778 btrfs_bio_counter_dec(fs_info);
1779 }
1780 return ret;
1781 }
1782
1783 /*
1784 * all parity reconstruction happens here. We've read in everything
1785 * we can find from the drives and this does the heavy lifting of
1786 * sorting the good from the bad.
1787 */
1788 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1789 {
1790 int pagenr, stripe;
1791 void **pointers;
1792 int faila = -1, failb = -1;
1793 struct page *page;
1794 int err;
1795 int i;
1796
1797 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1798 if (!pointers) {
1799 err = -ENOMEM;
1800 goto cleanup_io;
1801 }
1802
1803 faila = rbio->faila;
1804 failb = rbio->failb;
1805
1806 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1807 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1808 spin_lock_irq(&rbio->bio_list_lock);
1809 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1810 spin_unlock_irq(&rbio->bio_list_lock);
1811 }
1812
1813 index_rbio_pages(rbio);
1814
1815 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1816 /*
1817 * Now we just use bitmap to mark the horizontal stripes in
1818 * which we have data when doing parity scrub.
1819 */
1820 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1821 !test_bit(pagenr, rbio->dbitmap))
1822 continue;
1823
1824 /* setup our array of pointers with pages
1825 * from each stripe
1826 */
1827 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1828 /*
1829 * if we're rebuilding a read, we have to use
1830 * pages from the bio list
1831 */
1832 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1833 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1834 (stripe == faila || stripe == failb)) {
1835 page = page_in_rbio(rbio, stripe, pagenr, 0);
1836 } else {
1837 page = rbio_stripe_page(rbio, stripe, pagenr);
1838 }
1839 pointers[stripe] = kmap(page);
1840 }
1841
1842 /* all raid6 handling here */
1843 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1844 /*
1845 * single failure, rebuild from parity raid5
1846 * style
1847 */
1848 if (failb < 0) {
1849 if (faila == rbio->nr_data) {
1850 /*
1851 * Just the P stripe has failed, without
1852 * a bad data or Q stripe.
1853 * TODO, we should redo the xor here.
1854 */
1855 err = -EIO;
1856 goto cleanup;
1857 }
1858 /*
1859 * a single failure in raid6 is rebuilt
1860 * in the pstripe code below
1861 */
1862 goto pstripe;
1863 }
1864
1865 /* make sure our ps and qs are in order */
1866 if (faila > failb) {
1867 int tmp = failb;
1868 failb = faila;
1869 faila = tmp;
1870 }
1871
1872 /* if the q stripe is failed, do a pstripe reconstruction
1873 * from the xors.
1874 * If both the q stripe and the P stripe are failed, we're
1875 * here due to a crc mismatch and we can't give them the
1876 * data they want
1877 */
1878 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1879 if (rbio->bbio->raid_map[faila] ==
1880 RAID5_P_STRIPE) {
1881 err = -EIO;
1882 goto cleanup;
1883 }
1884 /*
1885 * otherwise we have one bad data stripe and
1886 * a good P stripe. raid5!
1887 */
1888 goto pstripe;
1889 }
1890
1891 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1892 raid6_datap_recov(rbio->real_stripes,
1893 PAGE_SIZE, faila, pointers);
1894 } else {
1895 raid6_2data_recov(rbio->real_stripes,
1896 PAGE_SIZE, faila, failb,
1897 pointers);
1898 }
1899 } else {
1900 void *p;
1901
1902 /* rebuild from P stripe here (raid5 or raid6) */
1903 BUG_ON(failb != -1);
1904 pstripe:
1905 /* Copy parity block into failed block to start with */
1906 memcpy(pointers[faila],
1907 pointers[rbio->nr_data],
1908 PAGE_SIZE);
1909
1910 /* rearrange the pointer array */
1911 p = pointers[faila];
1912 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1913 pointers[stripe] = pointers[stripe + 1];
1914 pointers[rbio->nr_data - 1] = p;
1915
1916 /* xor in the rest */
1917 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1918 }
1919 /* if we're doing this rebuild as part of an rmw, go through
1920 * and set all of our private rbio pages in the
1921 * failed stripes as uptodate. This way finish_rmw will
1922 * know they can be trusted. If this was a read reconstruction,
1923 * other endio functions will fiddle the uptodate bits
1924 */
1925 if (rbio->operation == BTRFS_RBIO_WRITE) {
1926 for (i = 0; i < rbio->stripe_npages; i++) {
1927 if (faila != -1) {
1928 page = rbio_stripe_page(rbio, faila, i);
1929 SetPageUptodate(page);
1930 }
1931 if (failb != -1) {
1932 page = rbio_stripe_page(rbio, failb, i);
1933 SetPageUptodate(page);
1934 }
1935 }
1936 }
1937 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1938 /*
1939 * if we're rebuilding a read, we have to use
1940 * pages from the bio list
1941 */
1942 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1943 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1944 (stripe == faila || stripe == failb)) {
1945 page = page_in_rbio(rbio, stripe, pagenr, 0);
1946 } else {
1947 page = rbio_stripe_page(rbio, stripe, pagenr);
1948 }
1949 kunmap(page);
1950 }
1951 }
1952
1953 err = 0;
1954 cleanup:
1955 kfree(pointers);
1956
1957 cleanup_io:
1958 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1959 if (err == 0)
1960 cache_rbio_pages(rbio);
1961 else
1962 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1963
1964 rbio_orig_end_io(rbio, err);
1965 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1966 rbio_orig_end_io(rbio, err);
1967 } else if (err == 0) {
1968 rbio->faila = -1;
1969 rbio->failb = -1;
1970
1971 if (rbio->operation == BTRFS_RBIO_WRITE)
1972 finish_rmw(rbio);
1973 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1974 finish_parity_scrub(rbio, 0);
1975 else
1976 BUG();
1977 } else {
1978 rbio_orig_end_io(rbio, err);
1979 }
1980 }
1981
1982 /*
1983 * This is called only for stripes we've read from disk to
1984 * reconstruct the parity.
1985 */
1986 static void raid_recover_end_io(struct bio *bio)
1987 {
1988 struct btrfs_raid_bio *rbio = bio->bi_private;
1989
1990 /*
1991 * we only read stripe pages off the disk, set them
1992 * up to date if there were no errors
1993 */
1994 if (bio->bi_error)
1995 fail_bio_stripe(rbio, bio);
1996 else
1997 set_bio_pages_uptodate(bio);
1998 bio_put(bio);
1999
2000 if (!atomic_dec_and_test(&rbio->stripes_pending))
2001 return;
2002
2003 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2004 rbio_orig_end_io(rbio, -EIO);
2005 else
2006 __raid_recover_end_io(rbio);
2007 }
2008
2009 /*
2010 * reads everything we need off the disk to reconstruct
2011 * the parity. endio handlers trigger final reconstruction
2012 * when the IO is done.
2013 *
2014 * This is used both for reads from the higher layers and for
2015 * parity construction required to finish a rmw cycle.
2016 */
2017 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2018 {
2019 int bios_to_read = 0;
2020 struct bio_list bio_list;
2021 int ret;
2022 int pagenr;
2023 int stripe;
2024 struct bio *bio;
2025
2026 bio_list_init(&bio_list);
2027
2028 ret = alloc_rbio_pages(rbio);
2029 if (ret)
2030 goto cleanup;
2031
2032 atomic_set(&rbio->error, 0);
2033
2034 /*
2035 * read everything that hasn't failed. Thanks to the
2036 * stripe cache, it is possible that some or all of these
2037 * pages are going to be uptodate.
2038 */
2039 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2040 if (rbio->faila == stripe || rbio->failb == stripe) {
2041 atomic_inc(&rbio->error);
2042 continue;
2043 }
2044
2045 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2046 struct page *p;
2047
2048 /*
2049 * the rmw code may have already read this
2050 * page in
2051 */
2052 p = rbio_stripe_page(rbio, stripe, pagenr);
2053 if (PageUptodate(p))
2054 continue;
2055
2056 ret = rbio_add_io_page(rbio, &bio_list,
2057 rbio_stripe_page(rbio, stripe, pagenr),
2058 stripe, pagenr, rbio->stripe_len);
2059 if (ret < 0)
2060 goto cleanup;
2061 }
2062 }
2063
2064 bios_to_read = bio_list_size(&bio_list);
2065 if (!bios_to_read) {
2066 /*
2067 * we might have no bios to read just because the pages
2068 * were up to date, or we might have no bios to read because
2069 * the devices were gone.
2070 */
2071 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2072 __raid_recover_end_io(rbio);
2073 goto out;
2074 } else {
2075 goto cleanup;
2076 }
2077 }
2078
2079 /*
2080 * the bbio may be freed once we submit the last bio. Make sure
2081 * not to touch it after that
2082 */
2083 atomic_set(&rbio->stripes_pending, bios_to_read);
2084 while (1) {
2085 bio = bio_list_pop(&bio_list);
2086 if (!bio)
2087 break;
2088
2089 bio->bi_private = rbio;
2090 bio->bi_end_io = raid_recover_end_io;
2091 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2092
2093 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2094
2095 submit_bio(bio);
2096 }
2097 out:
2098 return 0;
2099
2100 cleanup:
2101 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2102 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2103 rbio_orig_end_io(rbio, -EIO);
2104 return -EIO;
2105 }
2106
2107 /*
2108 * the main entry point for reads from the higher layers. This
2109 * is really only called when the normal read path had a failure,
2110 * so we assume the bio they send down corresponds to a failed part
2111 * of the drive.
2112 */
2113 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2114 struct btrfs_bio *bbio, u64 stripe_len,
2115 int mirror_num, int generic_io)
2116 {
2117 struct btrfs_raid_bio *rbio;
2118 int ret;
2119
2120 if (generic_io) {
2121 ASSERT(bbio->mirror_num == mirror_num);
2122 btrfs_io_bio(bio)->mirror_num = mirror_num;
2123 }
2124
2125 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2126 if (IS_ERR(rbio)) {
2127 if (generic_io)
2128 btrfs_put_bbio(bbio);
2129 return PTR_ERR(rbio);
2130 }
2131
2132 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2133 bio_list_add(&rbio->bio_list, bio);
2134 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2135
2136 rbio->faila = find_logical_bio_stripe(rbio, bio);
2137 if (rbio->faila == -1) {
2138 btrfs_warn(fs_info,
2139 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2140 __func__, (u64)bio->bi_iter.bi_sector << 9,
2141 (u64)bio->bi_iter.bi_size, bbio->map_type);
2142 if (generic_io)
2143 btrfs_put_bbio(bbio);
2144 kfree(rbio);
2145 return -EIO;
2146 }
2147
2148 if (generic_io) {
2149 btrfs_bio_counter_inc_noblocked(fs_info);
2150 rbio->generic_bio_cnt = 1;
2151 } else {
2152 btrfs_get_bbio(bbio);
2153 }
2154
2155 /*
2156 * reconstruct from the q stripe if they are
2157 * asking for mirror 3
2158 */
2159 if (mirror_num == 3)
2160 rbio->failb = rbio->real_stripes - 2;
2161
2162 ret = lock_stripe_add(rbio);
2163
2164 /*
2165 * __raid56_parity_recover will end the bio with
2166 * any errors it hits. We don't want to return
2167 * its error value up the stack because our caller
2168 * will end up calling bio_endio with any nonzero
2169 * return
2170 */
2171 if (ret == 0)
2172 __raid56_parity_recover(rbio);
2173 /*
2174 * our rbio has been added to the list of
2175 * rbios that will be handled after the
2176 * currently lock owner is done
2177 */
2178 return 0;
2179
2180 }
2181
2182 static void rmw_work(struct btrfs_work *work)
2183 {
2184 struct btrfs_raid_bio *rbio;
2185
2186 rbio = container_of(work, struct btrfs_raid_bio, work);
2187 raid56_rmw_stripe(rbio);
2188 }
2189
2190 static void read_rebuild_work(struct btrfs_work *work)
2191 {
2192 struct btrfs_raid_bio *rbio;
2193
2194 rbio = container_of(work, struct btrfs_raid_bio, work);
2195 __raid56_parity_recover(rbio);
2196 }
2197
2198 /*
2199 * The following code is used to scrub/replace the parity stripe
2200 *
2201 * Note: We need make sure all the pages that add into the scrub/replace
2202 * raid bio are correct and not be changed during the scrub/replace. That
2203 * is those pages just hold metadata or file data with checksum.
2204 */
2205
2206 struct btrfs_raid_bio *
2207 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2208 struct btrfs_bio *bbio, u64 stripe_len,
2209 struct btrfs_device *scrub_dev,
2210 unsigned long *dbitmap, int stripe_nsectors)
2211 {
2212 struct btrfs_raid_bio *rbio;
2213 int i;
2214
2215 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2216 if (IS_ERR(rbio))
2217 return NULL;
2218 bio_list_add(&rbio->bio_list, bio);
2219 /*
2220 * This is a special bio which is used to hold the completion handler
2221 * and make the scrub rbio is similar to the other types
2222 */
2223 ASSERT(!bio->bi_iter.bi_size);
2224 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2225
2226 for (i = 0; i < rbio->real_stripes; i++) {
2227 if (bbio->stripes[i].dev == scrub_dev) {
2228 rbio->scrubp = i;
2229 break;
2230 }
2231 }
2232
2233 /* Now we just support the sectorsize equals to page size */
2234 ASSERT(fs_info->sectorsize == PAGE_SIZE);
2235 ASSERT(rbio->stripe_npages == stripe_nsectors);
2236 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2237
2238 return rbio;
2239 }
2240
2241 /* Used for both parity scrub and missing. */
2242 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2243 u64 logical)
2244 {
2245 int stripe_offset;
2246 int index;
2247
2248 ASSERT(logical >= rbio->bbio->raid_map[0]);
2249 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2250 rbio->stripe_len * rbio->nr_data);
2251 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2252 index = stripe_offset >> PAGE_SHIFT;
2253 rbio->bio_pages[index] = page;
2254 }
2255
2256 /*
2257 * We just scrub the parity that we have correct data on the same horizontal,
2258 * so we needn't allocate all pages for all the stripes.
2259 */
2260 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2261 {
2262 int i;
2263 int bit;
2264 int index;
2265 struct page *page;
2266
2267 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2268 for (i = 0; i < rbio->real_stripes; i++) {
2269 index = i * rbio->stripe_npages + bit;
2270 if (rbio->stripe_pages[index])
2271 continue;
2272
2273 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2274 if (!page)
2275 return -ENOMEM;
2276 rbio->stripe_pages[index] = page;
2277 }
2278 }
2279 return 0;
2280 }
2281
2282 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2283 int need_check)
2284 {
2285 struct btrfs_bio *bbio = rbio->bbio;
2286 void *pointers[rbio->real_stripes];
2287 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2288 int nr_data = rbio->nr_data;
2289 int stripe;
2290 int pagenr;
2291 int p_stripe = -1;
2292 int q_stripe = -1;
2293 struct page *p_page = NULL;
2294 struct page *q_page = NULL;
2295 struct bio_list bio_list;
2296 struct bio *bio;
2297 int is_replace = 0;
2298 int ret;
2299
2300 bio_list_init(&bio_list);
2301
2302 if (rbio->real_stripes - rbio->nr_data == 1) {
2303 p_stripe = rbio->real_stripes - 1;
2304 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2305 p_stripe = rbio->real_stripes - 2;
2306 q_stripe = rbio->real_stripes - 1;
2307 } else {
2308 BUG();
2309 }
2310
2311 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2312 is_replace = 1;
2313 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2314 }
2315
2316 /*
2317 * Because the higher layers(scrubber) are unlikely to
2318 * use this area of the disk again soon, so don't cache
2319 * it.
2320 */
2321 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2322
2323 if (!need_check)
2324 goto writeback;
2325
2326 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2327 if (!p_page)
2328 goto cleanup;
2329 SetPageUptodate(p_page);
2330
2331 if (q_stripe != -1) {
2332 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2333 if (!q_page) {
2334 __free_page(p_page);
2335 goto cleanup;
2336 }
2337 SetPageUptodate(q_page);
2338 }
2339
2340 atomic_set(&rbio->error, 0);
2341
2342 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2343 struct page *p;
2344 void *parity;
2345 /* first collect one page from each data stripe */
2346 for (stripe = 0; stripe < nr_data; stripe++) {
2347 p = page_in_rbio(rbio, stripe, pagenr, 0);
2348 pointers[stripe] = kmap(p);
2349 }
2350
2351 /* then add the parity stripe */
2352 pointers[stripe++] = kmap(p_page);
2353
2354 if (q_stripe != -1) {
2355
2356 /*
2357 * raid6, add the qstripe and call the
2358 * library function to fill in our p/q
2359 */
2360 pointers[stripe++] = kmap(q_page);
2361
2362 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2363 pointers);
2364 } else {
2365 /* raid5 */
2366 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2367 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2368 }
2369
2370 /* Check scrubbing parity and repair it */
2371 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2372 parity = kmap(p);
2373 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2374 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2375 else
2376 /* Parity is right, needn't writeback */
2377 bitmap_clear(rbio->dbitmap, pagenr, 1);
2378 kunmap(p);
2379
2380 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2381 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2382 }
2383
2384 __free_page(p_page);
2385 if (q_page)
2386 __free_page(q_page);
2387
2388 writeback:
2389 /*
2390 * time to start writing. Make bios for everything from the
2391 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2392 * everything else.
2393 */
2394 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2395 struct page *page;
2396
2397 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2398 ret = rbio_add_io_page(rbio, &bio_list,
2399 page, rbio->scrubp, pagenr, rbio->stripe_len);
2400 if (ret)
2401 goto cleanup;
2402 }
2403
2404 if (!is_replace)
2405 goto submit_write;
2406
2407 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2408 struct page *page;
2409
2410 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2411 ret = rbio_add_io_page(rbio, &bio_list, page,
2412 bbio->tgtdev_map[rbio->scrubp],
2413 pagenr, rbio->stripe_len);
2414 if (ret)
2415 goto cleanup;
2416 }
2417
2418 submit_write:
2419 nr_data = bio_list_size(&bio_list);
2420 if (!nr_data) {
2421 /* Every parity is right */
2422 rbio_orig_end_io(rbio, 0);
2423 return;
2424 }
2425
2426 atomic_set(&rbio->stripes_pending, nr_data);
2427
2428 while (1) {
2429 bio = bio_list_pop(&bio_list);
2430 if (!bio)
2431 break;
2432
2433 bio->bi_private = rbio;
2434 bio->bi_end_io = raid_write_end_io;
2435 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2436
2437 submit_bio(bio);
2438 }
2439 return;
2440
2441 cleanup:
2442 rbio_orig_end_io(rbio, -EIO);
2443 }
2444
2445 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2446 {
2447 if (stripe >= 0 && stripe < rbio->nr_data)
2448 return 1;
2449 return 0;
2450 }
2451
2452 /*
2453 * While we're doing the parity check and repair, we could have errors
2454 * in reading pages off the disk. This checks for errors and if we're
2455 * not able to read the page it'll trigger parity reconstruction. The
2456 * parity scrub will be finished after we've reconstructed the failed
2457 * stripes
2458 */
2459 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2460 {
2461 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2462 goto cleanup;
2463
2464 if (rbio->faila >= 0 || rbio->failb >= 0) {
2465 int dfail = 0, failp = -1;
2466
2467 if (is_data_stripe(rbio, rbio->faila))
2468 dfail++;
2469 else if (is_parity_stripe(rbio->faila))
2470 failp = rbio->faila;
2471
2472 if (is_data_stripe(rbio, rbio->failb))
2473 dfail++;
2474 else if (is_parity_stripe(rbio->failb))
2475 failp = rbio->failb;
2476
2477 /*
2478 * Because we can not use a scrubbing parity to repair
2479 * the data, so the capability of the repair is declined.
2480 * (In the case of RAID5, we can not repair anything)
2481 */
2482 if (dfail > rbio->bbio->max_errors - 1)
2483 goto cleanup;
2484
2485 /*
2486 * If all data is good, only parity is correctly, just
2487 * repair the parity.
2488 */
2489 if (dfail == 0) {
2490 finish_parity_scrub(rbio, 0);
2491 return;
2492 }
2493
2494 /*
2495 * Here means we got one corrupted data stripe and one
2496 * corrupted parity on RAID6, if the corrupted parity
2497 * is scrubbing parity, luckily, use the other one to repair
2498 * the data, or we can not repair the data stripe.
2499 */
2500 if (failp != rbio->scrubp)
2501 goto cleanup;
2502
2503 __raid_recover_end_io(rbio);
2504 } else {
2505 finish_parity_scrub(rbio, 1);
2506 }
2507 return;
2508
2509 cleanup:
2510 rbio_orig_end_io(rbio, -EIO);
2511 }
2512
2513 /*
2514 * end io for the read phase of the rmw cycle. All the bios here are physical
2515 * stripe bios we've read from the disk so we can recalculate the parity of the
2516 * stripe.
2517 *
2518 * This will usually kick off finish_rmw once all the bios are read in, but it
2519 * may trigger parity reconstruction if we had any errors along the way
2520 */
2521 static void raid56_parity_scrub_end_io(struct bio *bio)
2522 {
2523 struct btrfs_raid_bio *rbio = bio->bi_private;
2524
2525 if (bio->bi_error)
2526 fail_bio_stripe(rbio, bio);
2527 else
2528 set_bio_pages_uptodate(bio);
2529
2530 bio_put(bio);
2531
2532 if (!atomic_dec_and_test(&rbio->stripes_pending))
2533 return;
2534
2535 /*
2536 * this will normally call finish_rmw to start our write
2537 * but if there are any failed stripes we'll reconstruct
2538 * from parity first
2539 */
2540 validate_rbio_for_parity_scrub(rbio);
2541 }
2542
2543 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2544 {
2545 int bios_to_read = 0;
2546 struct bio_list bio_list;
2547 int ret;
2548 int pagenr;
2549 int stripe;
2550 struct bio *bio;
2551
2552 ret = alloc_rbio_essential_pages(rbio);
2553 if (ret)
2554 goto cleanup;
2555
2556 bio_list_init(&bio_list);
2557
2558 atomic_set(&rbio->error, 0);
2559 /*
2560 * build a list of bios to read all the missing parts of this
2561 * stripe
2562 */
2563 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2564 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2565 struct page *page;
2566 /*
2567 * we want to find all the pages missing from
2568 * the rbio and read them from the disk. If
2569 * page_in_rbio finds a page in the bio list
2570 * we don't need to read it off the stripe.
2571 */
2572 page = page_in_rbio(rbio, stripe, pagenr, 1);
2573 if (page)
2574 continue;
2575
2576 page = rbio_stripe_page(rbio, stripe, pagenr);
2577 /*
2578 * the bio cache may have handed us an uptodate
2579 * page. If so, be happy and use it
2580 */
2581 if (PageUptodate(page))
2582 continue;
2583
2584 ret = rbio_add_io_page(rbio, &bio_list, page,
2585 stripe, pagenr, rbio->stripe_len);
2586 if (ret)
2587 goto cleanup;
2588 }
2589 }
2590
2591 bios_to_read = bio_list_size(&bio_list);
2592 if (!bios_to_read) {
2593 /*
2594 * this can happen if others have merged with
2595 * us, it means there is nothing left to read.
2596 * But if there are missing devices it may not be
2597 * safe to do the full stripe write yet.
2598 */
2599 goto finish;
2600 }
2601
2602 /*
2603 * the bbio may be freed once we submit the last bio. Make sure
2604 * not to touch it after that
2605 */
2606 atomic_set(&rbio->stripes_pending, bios_to_read);
2607 while (1) {
2608 bio = bio_list_pop(&bio_list);
2609 if (!bio)
2610 break;
2611
2612 bio->bi_private = rbio;
2613 bio->bi_end_io = raid56_parity_scrub_end_io;
2614 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2615
2616 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2617
2618 submit_bio(bio);
2619 }
2620 /* the actual write will happen once the reads are done */
2621 return;
2622
2623 cleanup:
2624 rbio_orig_end_io(rbio, -EIO);
2625 return;
2626
2627 finish:
2628 validate_rbio_for_parity_scrub(rbio);
2629 }
2630
2631 static void scrub_parity_work(struct btrfs_work *work)
2632 {
2633 struct btrfs_raid_bio *rbio;
2634
2635 rbio = container_of(work, struct btrfs_raid_bio, work);
2636 raid56_parity_scrub_stripe(rbio);
2637 }
2638
2639 static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2640 {
2641 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2642 scrub_parity_work, NULL, NULL);
2643
2644 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2645 }
2646
2647 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2648 {
2649 if (!lock_stripe_add(rbio))
2650 async_scrub_parity(rbio);
2651 }
2652
2653 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2654
2655 struct btrfs_raid_bio *
2656 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2657 struct btrfs_bio *bbio, u64 length)
2658 {
2659 struct btrfs_raid_bio *rbio;
2660
2661 rbio = alloc_rbio(fs_info, bbio, length);
2662 if (IS_ERR(rbio))
2663 return NULL;
2664
2665 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2666 bio_list_add(&rbio->bio_list, bio);
2667 /*
2668 * This is a special bio which is used to hold the completion handler
2669 * and make the scrub rbio is similar to the other types
2670 */
2671 ASSERT(!bio->bi_iter.bi_size);
2672
2673 rbio->faila = find_logical_bio_stripe(rbio, bio);
2674 if (rbio->faila == -1) {
2675 BUG();
2676 kfree(rbio);
2677 return NULL;
2678 }
2679
2680 return rbio;
2681 }
2682
2683 static void missing_raid56_work(struct btrfs_work *work)
2684 {
2685 struct btrfs_raid_bio *rbio;
2686
2687 rbio = container_of(work, struct btrfs_raid_bio, work);
2688 __raid56_parity_recover(rbio);
2689 }
2690
2691 static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2692 {
2693 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2694 missing_raid56_work, NULL, NULL);
2695
2696 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2697 }
2698
2699 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2700 {
2701 if (!lock_stripe_add(rbio))
2702 async_missing_raid56(rbio);
2703 }