]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/reada.c
btrfs: preallocate radix tree node for global readahead tree
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / reada.c
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
31
32 #undef DEBUG
33
34 /*
35 * This is the implementation for the generic read ahead framework.
36 *
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41 *
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
52 * of the filesystem.
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
56 */
57
58 #define MAX_IN_FLIGHT 6
59
60 struct reada_extctl {
61 struct list_head list;
62 struct reada_control *rc;
63 u64 generation;
64 };
65
66 struct reada_extent {
67 u64 logical;
68 struct btrfs_key top;
69 int err;
70 struct list_head extctl;
71 int refcnt;
72 spinlock_t lock;
73 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
74 int nzones;
75 int scheduled;
76 };
77
78 struct reada_zone {
79 u64 start;
80 u64 end;
81 u64 elems;
82 struct list_head list;
83 spinlock_t lock;
84 int locked;
85 struct btrfs_device *device;
86 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87 * self */
88 int ndevs;
89 struct kref refcnt;
90 };
91
92 struct reada_machine_work {
93 struct btrfs_work work;
94 struct btrfs_fs_info *fs_info;
95 };
96
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104 struct btrfs_key *top, u64 generation);
105
106 /* recurses */
107 /* in case of err, eb might be NULL */
108 static void __readahead_hook(struct btrfs_fs_info *fs_info,
109 struct reada_extent *re, struct extent_buffer *eb,
110 int err)
111 {
112 int nritems;
113 int i;
114 u64 bytenr;
115 u64 generation;
116 struct list_head list;
117
118 spin_lock(&re->lock);
119 /*
120 * just take the full list from the extent. afterwards we
121 * don't need the lock anymore
122 */
123 list_replace_init(&re->extctl, &list);
124 re->scheduled = 0;
125 spin_unlock(&re->lock);
126
127 /*
128 * this is the error case, the extent buffer has not been
129 * read correctly. We won't access anything from it and
130 * just cleanup our data structures. Effectively this will
131 * cut the branch below this node from read ahead.
132 */
133 if (err)
134 goto cleanup;
135
136 /*
137 * FIXME: currently we just set nritems to 0 if this is a leaf,
138 * effectively ignoring the content. In a next step we could
139 * trigger more readahead depending from the content, e.g.
140 * fetch the checksums for the extents in the leaf.
141 */
142 if (!btrfs_header_level(eb))
143 goto cleanup;
144
145 nritems = btrfs_header_nritems(eb);
146 generation = btrfs_header_generation(eb);
147 for (i = 0; i < nritems; i++) {
148 struct reada_extctl *rec;
149 u64 n_gen;
150 struct btrfs_key key;
151 struct btrfs_key next_key;
152
153 btrfs_node_key_to_cpu(eb, &key, i);
154 if (i + 1 < nritems)
155 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
156 else
157 next_key = re->top;
158 bytenr = btrfs_node_blockptr(eb, i);
159 n_gen = btrfs_node_ptr_generation(eb, i);
160
161 list_for_each_entry(rec, &list, list) {
162 struct reada_control *rc = rec->rc;
163
164 /*
165 * if the generation doesn't match, just ignore this
166 * extctl. This will probably cut off a branch from
167 * prefetch. Alternatively one could start a new (sub-)
168 * prefetch for this branch, starting again from root.
169 * FIXME: move the generation check out of this loop
170 */
171 #ifdef DEBUG
172 if (rec->generation != generation) {
173 btrfs_debug(fs_info,
174 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
175 key.objectid, key.type, key.offset,
176 rec->generation, generation);
177 }
178 #endif
179 if (rec->generation == generation &&
180 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
181 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
182 reada_add_block(rc, bytenr, &next_key, n_gen);
183 }
184 }
185
186 cleanup:
187 /*
188 * free extctl records
189 */
190 while (!list_empty(&list)) {
191 struct reada_control *rc;
192 struct reada_extctl *rec;
193
194 rec = list_first_entry(&list, struct reada_extctl, list);
195 list_del(&rec->list);
196 rc = rec->rc;
197 kfree(rec);
198
199 kref_get(&rc->refcnt);
200 if (atomic_dec_and_test(&rc->elems)) {
201 kref_put(&rc->refcnt, reada_control_release);
202 wake_up(&rc->wait);
203 }
204 kref_put(&rc->refcnt, reada_control_release);
205
206 reada_extent_put(fs_info, re); /* one ref for each entry */
207 }
208
209 return;
210 }
211
212 int btree_readahead_hook(struct btrfs_fs_info *fs_info,
213 struct extent_buffer *eb, int err)
214 {
215 int ret = 0;
216 struct reada_extent *re;
217
218 /* find extent */
219 spin_lock(&fs_info->reada_lock);
220 re = radix_tree_lookup(&fs_info->reada_tree,
221 eb->start >> PAGE_SHIFT);
222 if (re)
223 re->refcnt++;
224 spin_unlock(&fs_info->reada_lock);
225 if (!re) {
226 ret = -1;
227 goto start_machine;
228 }
229
230 __readahead_hook(fs_info, re, eb, err);
231 reada_extent_put(fs_info, re); /* our ref */
232
233 start_machine:
234 reada_start_machine(fs_info);
235 return ret;
236 }
237
238 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
239 struct btrfs_device *dev, u64 logical,
240 struct btrfs_bio *bbio)
241 {
242 int ret;
243 struct reada_zone *zone;
244 struct btrfs_block_group_cache *cache = NULL;
245 u64 start;
246 u64 end;
247 int i;
248
249 zone = NULL;
250 spin_lock(&fs_info->reada_lock);
251 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
252 logical >> PAGE_SHIFT, 1);
253 if (ret == 1 && logical >= zone->start && logical <= zone->end) {
254 kref_get(&zone->refcnt);
255 spin_unlock(&fs_info->reada_lock);
256 return zone;
257 }
258
259 spin_unlock(&fs_info->reada_lock);
260
261 cache = btrfs_lookup_block_group(fs_info, logical);
262 if (!cache)
263 return NULL;
264
265 start = cache->key.objectid;
266 end = start + cache->key.offset - 1;
267 btrfs_put_block_group(cache);
268
269 zone = kzalloc(sizeof(*zone), GFP_KERNEL);
270 if (!zone)
271 return NULL;
272
273 ret = radix_tree_preload(GFP_KERNEL);
274 if (ret) {
275 kfree(zone);
276 return NULL;
277 }
278
279 zone->start = start;
280 zone->end = end;
281 INIT_LIST_HEAD(&zone->list);
282 spin_lock_init(&zone->lock);
283 zone->locked = 0;
284 kref_init(&zone->refcnt);
285 zone->elems = 0;
286 zone->device = dev; /* our device always sits at index 0 */
287 for (i = 0; i < bbio->num_stripes; ++i) {
288 /* bounds have already been checked */
289 zone->devs[i] = bbio->stripes[i].dev;
290 }
291 zone->ndevs = bbio->num_stripes;
292
293 spin_lock(&fs_info->reada_lock);
294 ret = radix_tree_insert(&dev->reada_zones,
295 (unsigned long)(zone->end >> PAGE_SHIFT),
296 zone);
297
298 if (ret == -EEXIST) {
299 kfree(zone);
300 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
301 logical >> PAGE_SHIFT, 1);
302 if (ret == 1 && logical >= zone->start && logical <= zone->end)
303 kref_get(&zone->refcnt);
304 else
305 zone = NULL;
306 }
307 spin_unlock(&fs_info->reada_lock);
308 radix_tree_preload_end();
309
310 return zone;
311 }
312
313 static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
314 u64 logical,
315 struct btrfs_key *top)
316 {
317 int ret;
318 struct reada_extent *re = NULL;
319 struct reada_extent *re_exist = NULL;
320 struct btrfs_bio *bbio = NULL;
321 struct btrfs_device *dev;
322 struct btrfs_device *prev_dev;
323 u32 blocksize;
324 u64 length;
325 int real_stripes;
326 int nzones = 0;
327 unsigned long index = logical >> PAGE_SHIFT;
328 int dev_replace_is_ongoing;
329 int have_zone = 0;
330
331 spin_lock(&fs_info->reada_lock);
332 re = radix_tree_lookup(&fs_info->reada_tree, index);
333 if (re)
334 re->refcnt++;
335 spin_unlock(&fs_info->reada_lock);
336
337 if (re)
338 return re;
339
340 re = kzalloc(sizeof(*re), GFP_KERNEL);
341 if (!re)
342 return NULL;
343
344 blocksize = fs_info->nodesize;
345 re->logical = logical;
346 re->top = *top;
347 INIT_LIST_HEAD(&re->extctl);
348 spin_lock_init(&re->lock);
349 re->refcnt = 1;
350
351 /*
352 * map block
353 */
354 length = blocksize;
355 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
356 &length, &bbio, 0);
357 if (ret || !bbio || length < blocksize)
358 goto error;
359
360 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
361 btrfs_err(fs_info,
362 "readahead: more than %d copies not supported",
363 BTRFS_MAX_MIRRORS);
364 goto error;
365 }
366
367 real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
368 for (nzones = 0; nzones < real_stripes; ++nzones) {
369 struct reada_zone *zone;
370
371 dev = bbio->stripes[nzones].dev;
372
373 /* cannot read ahead on missing device. */
374 if (!dev->bdev)
375 continue;
376
377 zone = reada_find_zone(fs_info, dev, logical, bbio);
378 if (!zone)
379 continue;
380
381 re->zones[re->nzones++] = zone;
382 spin_lock(&zone->lock);
383 if (!zone->elems)
384 kref_get(&zone->refcnt);
385 ++zone->elems;
386 spin_unlock(&zone->lock);
387 spin_lock(&fs_info->reada_lock);
388 kref_put(&zone->refcnt, reada_zone_release);
389 spin_unlock(&fs_info->reada_lock);
390 }
391 if (re->nzones == 0) {
392 /* not a single zone found, error and out */
393 goto error;
394 }
395
396 ret = radix_tree_preload(GFP_KERNEL);
397 if (ret)
398 goto error;
399
400 /* insert extent in reada_tree + all per-device trees, all or nothing */
401 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
402 spin_lock(&fs_info->reada_lock);
403 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
404 if (ret == -EEXIST) {
405 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
406 re_exist->refcnt++;
407 spin_unlock(&fs_info->reada_lock);
408 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
409 radix_tree_preload_end();
410 goto error;
411 }
412 if (ret) {
413 spin_unlock(&fs_info->reada_lock);
414 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
415 radix_tree_preload_end();
416 goto error;
417 }
418 radix_tree_preload_end();
419 prev_dev = NULL;
420 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
421 &fs_info->dev_replace);
422 for (nzones = 0; nzones < re->nzones; ++nzones) {
423 dev = re->zones[nzones]->device;
424
425 if (dev == prev_dev) {
426 /*
427 * in case of DUP, just add the first zone. As both
428 * are on the same device, there's nothing to gain
429 * from adding both.
430 * Also, it wouldn't work, as the tree is per device
431 * and adding would fail with EEXIST
432 */
433 continue;
434 }
435 if (!dev->bdev)
436 continue;
437
438 if (dev_replace_is_ongoing &&
439 dev == fs_info->dev_replace.tgtdev) {
440 /*
441 * as this device is selected for reading only as
442 * a last resort, skip it for read ahead.
443 */
444 continue;
445 }
446 prev_dev = dev;
447 ret = radix_tree_insert(&dev->reada_extents, index, re);
448 if (ret) {
449 while (--nzones >= 0) {
450 dev = re->zones[nzones]->device;
451 BUG_ON(dev == NULL);
452 /* ignore whether the entry was inserted */
453 radix_tree_delete(&dev->reada_extents, index);
454 }
455 radix_tree_delete(&fs_info->reada_tree, index);
456 spin_unlock(&fs_info->reada_lock);
457 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
458 goto error;
459 }
460 have_zone = 1;
461 }
462 spin_unlock(&fs_info->reada_lock);
463 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
464
465 if (!have_zone)
466 goto error;
467
468 btrfs_put_bbio(bbio);
469 return re;
470
471 error:
472 for (nzones = 0; nzones < re->nzones; ++nzones) {
473 struct reada_zone *zone;
474
475 zone = re->zones[nzones];
476 kref_get(&zone->refcnt);
477 spin_lock(&zone->lock);
478 --zone->elems;
479 if (zone->elems == 0) {
480 /*
481 * no fs_info->reada_lock needed, as this can't be
482 * the last ref
483 */
484 kref_put(&zone->refcnt, reada_zone_release);
485 }
486 spin_unlock(&zone->lock);
487
488 spin_lock(&fs_info->reada_lock);
489 kref_put(&zone->refcnt, reada_zone_release);
490 spin_unlock(&fs_info->reada_lock);
491 }
492 btrfs_put_bbio(bbio);
493 kfree(re);
494 return re_exist;
495 }
496
497 static void reada_extent_put(struct btrfs_fs_info *fs_info,
498 struct reada_extent *re)
499 {
500 int i;
501 unsigned long index = re->logical >> PAGE_SHIFT;
502
503 spin_lock(&fs_info->reada_lock);
504 if (--re->refcnt) {
505 spin_unlock(&fs_info->reada_lock);
506 return;
507 }
508
509 radix_tree_delete(&fs_info->reada_tree, index);
510 for (i = 0; i < re->nzones; ++i) {
511 struct reada_zone *zone = re->zones[i];
512
513 radix_tree_delete(&zone->device->reada_extents, index);
514 }
515
516 spin_unlock(&fs_info->reada_lock);
517
518 for (i = 0; i < re->nzones; ++i) {
519 struct reada_zone *zone = re->zones[i];
520
521 kref_get(&zone->refcnt);
522 spin_lock(&zone->lock);
523 --zone->elems;
524 if (zone->elems == 0) {
525 /* no fs_info->reada_lock needed, as this can't be
526 * the last ref */
527 kref_put(&zone->refcnt, reada_zone_release);
528 }
529 spin_unlock(&zone->lock);
530
531 spin_lock(&fs_info->reada_lock);
532 kref_put(&zone->refcnt, reada_zone_release);
533 spin_unlock(&fs_info->reada_lock);
534 }
535
536 kfree(re);
537 }
538
539 static void reada_zone_release(struct kref *kref)
540 {
541 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
542
543 radix_tree_delete(&zone->device->reada_zones,
544 zone->end >> PAGE_SHIFT);
545
546 kfree(zone);
547 }
548
549 static void reada_control_release(struct kref *kref)
550 {
551 struct reada_control *rc = container_of(kref, struct reada_control,
552 refcnt);
553
554 kfree(rc);
555 }
556
557 static int reada_add_block(struct reada_control *rc, u64 logical,
558 struct btrfs_key *top, u64 generation)
559 {
560 struct btrfs_fs_info *fs_info = rc->fs_info;
561 struct reada_extent *re;
562 struct reada_extctl *rec;
563
564 /* takes one ref */
565 re = reada_find_extent(fs_info, logical, top);
566 if (!re)
567 return -1;
568
569 rec = kzalloc(sizeof(*rec), GFP_KERNEL);
570 if (!rec) {
571 reada_extent_put(fs_info, re);
572 return -ENOMEM;
573 }
574
575 rec->rc = rc;
576 rec->generation = generation;
577 atomic_inc(&rc->elems);
578
579 spin_lock(&re->lock);
580 list_add_tail(&rec->list, &re->extctl);
581 spin_unlock(&re->lock);
582
583 /* leave the ref on the extent */
584
585 return 0;
586 }
587
588 /*
589 * called with fs_info->reada_lock held
590 */
591 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
592 {
593 int i;
594 unsigned long index = zone->end >> PAGE_SHIFT;
595
596 for (i = 0; i < zone->ndevs; ++i) {
597 struct reada_zone *peer;
598 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
599 if (peer && peer->device != zone->device)
600 peer->locked = lock;
601 }
602 }
603
604 /*
605 * called with fs_info->reada_lock held
606 */
607 static int reada_pick_zone(struct btrfs_device *dev)
608 {
609 struct reada_zone *top_zone = NULL;
610 struct reada_zone *top_locked_zone = NULL;
611 u64 top_elems = 0;
612 u64 top_locked_elems = 0;
613 unsigned long index = 0;
614 int ret;
615
616 if (dev->reada_curr_zone) {
617 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
618 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
619 dev->reada_curr_zone = NULL;
620 }
621 /* pick the zone with the most elements */
622 while (1) {
623 struct reada_zone *zone;
624
625 ret = radix_tree_gang_lookup(&dev->reada_zones,
626 (void **)&zone, index, 1);
627 if (ret == 0)
628 break;
629 index = (zone->end >> PAGE_SHIFT) + 1;
630 if (zone->locked) {
631 if (zone->elems > top_locked_elems) {
632 top_locked_elems = zone->elems;
633 top_locked_zone = zone;
634 }
635 } else {
636 if (zone->elems > top_elems) {
637 top_elems = zone->elems;
638 top_zone = zone;
639 }
640 }
641 }
642 if (top_zone)
643 dev->reada_curr_zone = top_zone;
644 else if (top_locked_zone)
645 dev->reada_curr_zone = top_locked_zone;
646 else
647 return 0;
648
649 dev->reada_next = dev->reada_curr_zone->start;
650 kref_get(&dev->reada_curr_zone->refcnt);
651 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
652
653 return 1;
654 }
655
656 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
657 struct btrfs_device *dev)
658 {
659 struct reada_extent *re = NULL;
660 int mirror_num = 0;
661 struct extent_buffer *eb = NULL;
662 u64 logical;
663 int ret;
664 int i;
665
666 spin_lock(&fs_info->reada_lock);
667 if (dev->reada_curr_zone == NULL) {
668 ret = reada_pick_zone(dev);
669 if (!ret) {
670 spin_unlock(&fs_info->reada_lock);
671 return 0;
672 }
673 }
674 /*
675 * FIXME currently we issue the reads one extent at a time. If we have
676 * a contiguous block of extents, we could also coagulate them or use
677 * plugging to speed things up
678 */
679 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
680 dev->reada_next >> PAGE_SHIFT, 1);
681 if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
682 ret = reada_pick_zone(dev);
683 if (!ret) {
684 spin_unlock(&fs_info->reada_lock);
685 return 0;
686 }
687 re = NULL;
688 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
689 dev->reada_next >> PAGE_SHIFT, 1);
690 }
691 if (ret == 0) {
692 spin_unlock(&fs_info->reada_lock);
693 return 0;
694 }
695 dev->reada_next = re->logical + fs_info->nodesize;
696 re->refcnt++;
697
698 spin_unlock(&fs_info->reada_lock);
699
700 spin_lock(&re->lock);
701 if (re->scheduled || list_empty(&re->extctl)) {
702 spin_unlock(&re->lock);
703 reada_extent_put(fs_info, re);
704 return 0;
705 }
706 re->scheduled = 1;
707 spin_unlock(&re->lock);
708
709 /*
710 * find mirror num
711 */
712 for (i = 0; i < re->nzones; ++i) {
713 if (re->zones[i]->device == dev) {
714 mirror_num = i + 1;
715 break;
716 }
717 }
718 logical = re->logical;
719
720 atomic_inc(&dev->reada_in_flight);
721 ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
722 if (ret)
723 __readahead_hook(fs_info, re, NULL, ret);
724 else if (eb)
725 __readahead_hook(fs_info, re, eb, ret);
726
727 if (eb)
728 free_extent_buffer(eb);
729
730 atomic_dec(&dev->reada_in_flight);
731 reada_extent_put(fs_info, re);
732
733 return 1;
734
735 }
736
737 static void reada_start_machine_worker(struct btrfs_work *work)
738 {
739 struct reada_machine_work *rmw;
740 struct btrfs_fs_info *fs_info;
741 int old_ioprio;
742
743 rmw = container_of(work, struct reada_machine_work, work);
744 fs_info = rmw->fs_info;
745
746 kfree(rmw);
747
748 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
749 task_nice_ioprio(current));
750 set_task_ioprio(current, BTRFS_IOPRIO_READA);
751 __reada_start_machine(fs_info);
752 set_task_ioprio(current, old_ioprio);
753
754 atomic_dec(&fs_info->reada_works_cnt);
755 }
756
757 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
758 {
759 struct btrfs_device *device;
760 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
761 u64 enqueued;
762 u64 total = 0;
763 int i;
764
765 do {
766 enqueued = 0;
767 mutex_lock(&fs_devices->device_list_mutex);
768 list_for_each_entry(device, &fs_devices->devices, dev_list) {
769 if (atomic_read(&device->reada_in_flight) <
770 MAX_IN_FLIGHT)
771 enqueued += reada_start_machine_dev(fs_info,
772 device);
773 }
774 mutex_unlock(&fs_devices->device_list_mutex);
775 total += enqueued;
776 } while (enqueued && total < 10000);
777
778 if (enqueued == 0)
779 return;
780
781 /*
782 * If everything is already in the cache, this is effectively single
783 * threaded. To a) not hold the caller for too long and b) to utilize
784 * more cores, we broke the loop above after 10000 iterations and now
785 * enqueue to workers to finish it. This will distribute the load to
786 * the cores.
787 */
788 for (i = 0; i < 2; ++i) {
789 reada_start_machine(fs_info);
790 if (atomic_read(&fs_info->reada_works_cnt) >
791 BTRFS_MAX_MIRRORS * 2)
792 break;
793 }
794 }
795
796 static void reada_start_machine(struct btrfs_fs_info *fs_info)
797 {
798 struct reada_machine_work *rmw;
799
800 rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
801 if (!rmw) {
802 /* FIXME we cannot handle this properly right now */
803 BUG();
804 }
805 btrfs_init_work(&rmw->work, btrfs_readahead_helper,
806 reada_start_machine_worker, NULL, NULL);
807 rmw->fs_info = fs_info;
808
809 btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
810 atomic_inc(&fs_info->reada_works_cnt);
811 }
812
813 #ifdef DEBUG
814 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
815 {
816 struct btrfs_device *device;
817 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
818 unsigned long index;
819 int ret;
820 int i;
821 int j;
822 int cnt;
823
824 spin_lock(&fs_info->reada_lock);
825 list_for_each_entry(device, &fs_devices->devices, dev_list) {
826 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
827 atomic_read(&device->reada_in_flight));
828 index = 0;
829 while (1) {
830 struct reada_zone *zone;
831 ret = radix_tree_gang_lookup(&device->reada_zones,
832 (void **)&zone, index, 1);
833 if (ret == 0)
834 break;
835 pr_debug(" zone %llu-%llu elems %llu locked %d devs",
836 zone->start, zone->end, zone->elems,
837 zone->locked);
838 for (j = 0; j < zone->ndevs; ++j) {
839 pr_cont(" %lld",
840 zone->devs[j]->devid);
841 }
842 if (device->reada_curr_zone == zone)
843 pr_cont(" curr off %llu",
844 device->reada_next - zone->start);
845 pr_cont("\n");
846 index = (zone->end >> PAGE_SHIFT) + 1;
847 }
848 cnt = 0;
849 index = 0;
850 while (all) {
851 struct reada_extent *re = NULL;
852
853 ret = radix_tree_gang_lookup(&device->reada_extents,
854 (void **)&re, index, 1);
855 if (ret == 0)
856 break;
857 pr_debug(" re: logical %llu size %u empty %d scheduled %d",
858 re->logical, fs_info->nodesize,
859 list_empty(&re->extctl), re->scheduled);
860
861 for (i = 0; i < re->nzones; ++i) {
862 pr_cont(" zone %llu-%llu devs",
863 re->zones[i]->start,
864 re->zones[i]->end);
865 for (j = 0; j < re->zones[i]->ndevs; ++j) {
866 pr_cont(" %lld",
867 re->zones[i]->devs[j]->devid);
868 }
869 }
870 pr_cont("\n");
871 index = (re->logical >> PAGE_SHIFT) + 1;
872 if (++cnt > 15)
873 break;
874 }
875 }
876
877 index = 0;
878 cnt = 0;
879 while (all) {
880 struct reada_extent *re = NULL;
881
882 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
883 index, 1);
884 if (ret == 0)
885 break;
886 if (!re->scheduled) {
887 index = (re->logical >> PAGE_SHIFT) + 1;
888 continue;
889 }
890 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
891 re->logical, fs_info->nodesize,
892 list_empty(&re->extctl), re->scheduled);
893 for (i = 0; i < re->nzones; ++i) {
894 pr_cont(" zone %llu-%llu devs",
895 re->zones[i]->start,
896 re->zones[i]->end);
897 for (j = 0; j < re->zones[i]->ndevs; ++j) {
898 pr_cont(" %lld",
899 re->zones[i]->devs[j]->devid);
900 }
901 }
902 pr_cont("\n");
903 index = (re->logical >> PAGE_SHIFT) + 1;
904 }
905 spin_unlock(&fs_info->reada_lock);
906 }
907 #endif
908
909 /*
910 * interface
911 */
912 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
913 struct btrfs_key *key_start, struct btrfs_key *key_end)
914 {
915 struct reada_control *rc;
916 u64 start;
917 u64 generation;
918 int ret;
919 struct extent_buffer *node;
920 static struct btrfs_key max_key = {
921 .objectid = (u64)-1,
922 .type = (u8)-1,
923 .offset = (u64)-1
924 };
925
926 rc = kzalloc(sizeof(*rc), GFP_KERNEL);
927 if (!rc)
928 return ERR_PTR(-ENOMEM);
929
930 rc->fs_info = root->fs_info;
931 rc->key_start = *key_start;
932 rc->key_end = *key_end;
933 atomic_set(&rc->elems, 0);
934 init_waitqueue_head(&rc->wait);
935 kref_init(&rc->refcnt);
936 kref_get(&rc->refcnt); /* one ref for having elements */
937
938 node = btrfs_root_node(root);
939 start = node->start;
940 generation = btrfs_header_generation(node);
941 free_extent_buffer(node);
942
943 ret = reada_add_block(rc, start, &max_key, generation);
944 if (ret) {
945 kfree(rc);
946 return ERR_PTR(ret);
947 }
948
949 reada_start_machine(root->fs_info);
950
951 return rc;
952 }
953
954 #ifdef DEBUG
955 int btrfs_reada_wait(void *handle)
956 {
957 struct reada_control *rc = handle;
958 struct btrfs_fs_info *fs_info = rc->fs_info;
959
960 while (atomic_read(&rc->elems)) {
961 if (!atomic_read(&fs_info->reada_works_cnt))
962 reada_start_machine(fs_info);
963 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
964 5 * HZ);
965 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
966 }
967
968 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
969
970 kref_put(&rc->refcnt, reada_control_release);
971
972 return 0;
973 }
974 #else
975 int btrfs_reada_wait(void *handle)
976 {
977 struct reada_control *rc = handle;
978 struct btrfs_fs_info *fs_info = rc->fs_info;
979
980 while (atomic_read(&rc->elems)) {
981 if (!atomic_read(&fs_info->reada_works_cnt))
982 reada_start_machine(fs_info);
983 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
984 (HZ + 9) / 10);
985 }
986
987 kref_put(&rc->refcnt, reada_control_release);
988
989 return 0;
990 }
991 #endif
992
993 void btrfs_reada_detach(void *handle)
994 {
995 struct reada_control *rc = handle;
996
997 kref_put(&rc->refcnt, reada_control_release);
998 }