2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
29 #include "transaction.h"
30 #include "dev-replace.h"
35 * This is the implementation for the generic read ahead framework.
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
58 #define MAX_IN_FLIGHT 6
61 struct list_head list
;
62 struct reada_control
*rc
;
70 struct list_head extctl
;
73 struct reada_zone
*zones
[BTRFS_MAX_MIRRORS
];
82 struct list_head list
;
85 struct btrfs_device
*device
;
86 struct btrfs_device
*devs
[BTRFS_MAX_MIRRORS
]; /* full list, incl
92 struct reada_machine_work
{
93 struct btrfs_work work
;
94 struct btrfs_fs_info
*fs_info
;
97 static void reada_extent_put(struct btrfs_fs_info
*, struct reada_extent
*);
98 static void reada_control_release(struct kref
*kref
);
99 static void reada_zone_release(struct kref
*kref
);
100 static void reada_start_machine(struct btrfs_fs_info
*fs_info
);
101 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
);
103 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
104 struct btrfs_key
*top
, u64 generation
);
107 /* in case of err, eb might be NULL */
108 static void __readahead_hook(struct btrfs_fs_info
*fs_info
,
109 struct reada_extent
*re
, struct extent_buffer
*eb
,
116 struct list_head list
;
118 spin_lock(&re
->lock
);
120 * just take the full list from the extent. afterwards we
121 * don't need the lock anymore
123 list_replace_init(&re
->extctl
, &list
);
125 spin_unlock(&re
->lock
);
128 * this is the error case, the extent buffer has not been
129 * read correctly. We won't access anything from it and
130 * just cleanup our data structures. Effectively this will
131 * cut the branch below this node from read ahead.
137 * FIXME: currently we just set nritems to 0 if this is a leaf,
138 * effectively ignoring the content. In a next step we could
139 * trigger more readahead depending from the content, e.g.
140 * fetch the checksums for the extents in the leaf.
142 if (!btrfs_header_level(eb
))
145 nritems
= btrfs_header_nritems(eb
);
146 generation
= btrfs_header_generation(eb
);
147 for (i
= 0; i
< nritems
; i
++) {
148 struct reada_extctl
*rec
;
150 struct btrfs_key key
;
151 struct btrfs_key next_key
;
153 btrfs_node_key_to_cpu(eb
, &key
, i
);
155 btrfs_node_key_to_cpu(eb
, &next_key
, i
+ 1);
158 bytenr
= btrfs_node_blockptr(eb
, i
);
159 n_gen
= btrfs_node_ptr_generation(eb
, i
);
161 list_for_each_entry(rec
, &list
, list
) {
162 struct reada_control
*rc
= rec
->rc
;
165 * if the generation doesn't match, just ignore this
166 * extctl. This will probably cut off a branch from
167 * prefetch. Alternatively one could start a new (sub-)
168 * prefetch for this branch, starting again from root.
169 * FIXME: move the generation check out of this loop
172 if (rec
->generation
!= generation
) {
174 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
175 key
.objectid
, key
.type
, key
.offset
,
176 rec
->generation
, generation
);
179 if (rec
->generation
== generation
&&
180 btrfs_comp_cpu_keys(&key
, &rc
->key_end
) < 0 &&
181 btrfs_comp_cpu_keys(&next_key
, &rc
->key_start
) > 0)
182 reada_add_block(rc
, bytenr
, &next_key
, n_gen
);
188 * free extctl records
190 while (!list_empty(&list
)) {
191 struct reada_control
*rc
;
192 struct reada_extctl
*rec
;
194 rec
= list_first_entry(&list
, struct reada_extctl
, list
);
195 list_del(&rec
->list
);
199 kref_get(&rc
->refcnt
);
200 if (atomic_dec_and_test(&rc
->elems
)) {
201 kref_put(&rc
->refcnt
, reada_control_release
);
204 kref_put(&rc
->refcnt
, reada_control_release
);
206 reada_extent_put(fs_info
, re
); /* one ref for each entry */
212 int btree_readahead_hook(struct btrfs_fs_info
*fs_info
,
213 struct extent_buffer
*eb
, int err
)
216 struct reada_extent
*re
;
219 spin_lock(&fs_info
->reada_lock
);
220 re
= radix_tree_lookup(&fs_info
->reada_tree
,
221 eb
->start
>> PAGE_SHIFT
);
224 spin_unlock(&fs_info
->reada_lock
);
230 __readahead_hook(fs_info
, re
, eb
, err
);
231 reada_extent_put(fs_info
, re
); /* our ref */
234 reada_start_machine(fs_info
);
238 static struct reada_zone
*reada_find_zone(struct btrfs_fs_info
*fs_info
,
239 struct btrfs_device
*dev
, u64 logical
,
240 struct btrfs_bio
*bbio
)
243 struct reada_zone
*zone
;
244 struct btrfs_block_group_cache
*cache
= NULL
;
250 spin_lock(&fs_info
->reada_lock
);
251 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
252 logical
>> PAGE_SHIFT
, 1);
253 if (ret
== 1 && logical
>= zone
->start
&& logical
<= zone
->end
) {
254 kref_get(&zone
->refcnt
);
255 spin_unlock(&fs_info
->reada_lock
);
259 spin_unlock(&fs_info
->reada_lock
);
261 cache
= btrfs_lookup_block_group(fs_info
, logical
);
265 start
= cache
->key
.objectid
;
266 end
= start
+ cache
->key
.offset
- 1;
267 btrfs_put_block_group(cache
);
269 zone
= kzalloc(sizeof(*zone
), GFP_KERNEL
);
275 INIT_LIST_HEAD(&zone
->list
);
276 spin_lock_init(&zone
->lock
);
278 kref_init(&zone
->refcnt
);
280 zone
->device
= dev
; /* our device always sits at index 0 */
281 for (i
= 0; i
< bbio
->num_stripes
; ++i
) {
282 /* bounds have already been checked */
283 zone
->devs
[i
] = bbio
->stripes
[i
].dev
;
285 zone
->ndevs
= bbio
->num_stripes
;
287 spin_lock(&fs_info
->reada_lock
);
288 ret
= radix_tree_insert(&dev
->reada_zones
,
289 (unsigned long)(zone
->end
>> PAGE_SHIFT
),
292 if (ret
== -EEXIST
) {
294 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
295 logical
>> PAGE_SHIFT
, 1);
296 if (ret
== 1 && logical
>= zone
->start
&& logical
<= zone
->end
)
297 kref_get(&zone
->refcnt
);
301 spin_unlock(&fs_info
->reada_lock
);
306 static struct reada_extent
*reada_find_extent(struct btrfs_root
*root
,
308 struct btrfs_key
*top
)
311 struct reada_extent
*re
= NULL
;
312 struct reada_extent
*re_exist
= NULL
;
313 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
314 struct btrfs_bio
*bbio
= NULL
;
315 struct btrfs_device
*dev
;
316 struct btrfs_device
*prev_dev
;
321 unsigned long index
= logical
>> PAGE_SHIFT
;
322 int dev_replace_is_ongoing
;
325 spin_lock(&fs_info
->reada_lock
);
326 re
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
329 spin_unlock(&fs_info
->reada_lock
);
334 re
= kzalloc(sizeof(*re
), GFP_KERNEL
);
338 blocksize
= root
->nodesize
;
339 re
->logical
= logical
;
341 INIT_LIST_HEAD(&re
->extctl
);
342 spin_lock_init(&re
->lock
);
349 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
, logical
,
351 if (ret
|| !bbio
|| length
< blocksize
)
354 if (bbio
->num_stripes
> BTRFS_MAX_MIRRORS
) {
355 btrfs_err(root
->fs_info
,
356 "readahead: more than %d copies not supported",
361 real_stripes
= bbio
->num_stripes
- bbio
->num_tgtdevs
;
362 for (nzones
= 0; nzones
< real_stripes
; ++nzones
) {
363 struct reada_zone
*zone
;
365 dev
= bbio
->stripes
[nzones
].dev
;
367 /* cannot read ahead on missing device. */
371 zone
= reada_find_zone(fs_info
, dev
, logical
, bbio
);
375 re
->zones
[re
->nzones
++] = zone
;
376 spin_lock(&zone
->lock
);
378 kref_get(&zone
->refcnt
);
380 spin_unlock(&zone
->lock
);
381 spin_lock(&fs_info
->reada_lock
);
382 kref_put(&zone
->refcnt
, reada_zone_release
);
383 spin_unlock(&fs_info
->reada_lock
);
385 if (re
->nzones
== 0) {
386 /* not a single zone found, error and out */
390 /* insert extent in reada_tree + all per-device trees, all or nothing */
391 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
392 spin_lock(&fs_info
->reada_lock
);
393 ret
= radix_tree_insert(&fs_info
->reada_tree
, index
, re
);
394 if (ret
== -EEXIST
) {
395 re_exist
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
397 spin_unlock(&fs_info
->reada_lock
);
398 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
402 spin_unlock(&fs_info
->reada_lock
);
403 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
407 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(
408 &fs_info
->dev_replace
);
409 for (nzones
= 0; nzones
< re
->nzones
; ++nzones
) {
410 dev
= re
->zones
[nzones
]->device
;
412 if (dev
== prev_dev
) {
414 * in case of DUP, just add the first zone. As both
415 * are on the same device, there's nothing to gain
417 * Also, it wouldn't work, as the tree is per device
418 * and adding would fail with EEXIST
425 if (dev_replace_is_ongoing
&&
426 dev
== fs_info
->dev_replace
.tgtdev
) {
428 * as this device is selected for reading only as
429 * a last resort, skip it for read ahead.
434 ret
= radix_tree_insert(&dev
->reada_extents
, index
, re
);
436 while (--nzones
>= 0) {
437 dev
= re
->zones
[nzones
]->device
;
439 /* ignore whether the entry was inserted */
440 radix_tree_delete(&dev
->reada_extents
, index
);
442 BUG_ON(fs_info
== NULL
);
443 radix_tree_delete(&fs_info
->reada_tree
, index
);
444 spin_unlock(&fs_info
->reada_lock
);
445 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
450 spin_unlock(&fs_info
->reada_lock
);
451 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
456 btrfs_put_bbio(bbio
);
460 for (nzones
= 0; nzones
< re
->nzones
; ++nzones
) {
461 struct reada_zone
*zone
;
463 zone
= re
->zones
[nzones
];
464 kref_get(&zone
->refcnt
);
465 spin_lock(&zone
->lock
);
467 if (zone
->elems
== 0) {
469 * no fs_info->reada_lock needed, as this can't be
472 kref_put(&zone
->refcnt
, reada_zone_release
);
474 spin_unlock(&zone
->lock
);
476 spin_lock(&fs_info
->reada_lock
);
477 kref_put(&zone
->refcnt
, reada_zone_release
);
478 spin_unlock(&fs_info
->reada_lock
);
480 btrfs_put_bbio(bbio
);
485 static void reada_extent_put(struct btrfs_fs_info
*fs_info
,
486 struct reada_extent
*re
)
489 unsigned long index
= re
->logical
>> PAGE_SHIFT
;
491 spin_lock(&fs_info
->reada_lock
);
493 spin_unlock(&fs_info
->reada_lock
);
497 radix_tree_delete(&fs_info
->reada_tree
, index
);
498 for (i
= 0; i
< re
->nzones
; ++i
) {
499 struct reada_zone
*zone
= re
->zones
[i
];
501 radix_tree_delete(&zone
->device
->reada_extents
, index
);
504 spin_unlock(&fs_info
->reada_lock
);
506 for (i
= 0; i
< re
->nzones
; ++i
) {
507 struct reada_zone
*zone
= re
->zones
[i
];
509 kref_get(&zone
->refcnt
);
510 spin_lock(&zone
->lock
);
512 if (zone
->elems
== 0) {
513 /* no fs_info->reada_lock needed, as this can't be
515 kref_put(&zone
->refcnt
, reada_zone_release
);
517 spin_unlock(&zone
->lock
);
519 spin_lock(&fs_info
->reada_lock
);
520 kref_put(&zone
->refcnt
, reada_zone_release
);
521 spin_unlock(&fs_info
->reada_lock
);
527 static void reada_zone_release(struct kref
*kref
)
529 struct reada_zone
*zone
= container_of(kref
, struct reada_zone
, refcnt
);
531 radix_tree_delete(&zone
->device
->reada_zones
,
532 zone
->end
>> PAGE_SHIFT
);
537 static void reada_control_release(struct kref
*kref
)
539 struct reada_control
*rc
= container_of(kref
, struct reada_control
,
545 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
546 struct btrfs_key
*top
, u64 generation
)
548 struct btrfs_root
*root
= rc
->root
;
549 struct reada_extent
*re
;
550 struct reada_extctl
*rec
;
552 re
= reada_find_extent(root
, logical
, top
); /* takes one ref */
556 rec
= kzalloc(sizeof(*rec
), GFP_KERNEL
);
558 reada_extent_put(root
->fs_info
, re
);
563 rec
->generation
= generation
;
564 atomic_inc(&rc
->elems
);
566 spin_lock(&re
->lock
);
567 list_add_tail(&rec
->list
, &re
->extctl
);
568 spin_unlock(&re
->lock
);
570 /* leave the ref on the extent */
576 * called with fs_info->reada_lock held
578 static void reada_peer_zones_set_lock(struct reada_zone
*zone
, int lock
)
581 unsigned long index
= zone
->end
>> PAGE_SHIFT
;
583 for (i
= 0; i
< zone
->ndevs
; ++i
) {
584 struct reada_zone
*peer
;
585 peer
= radix_tree_lookup(&zone
->devs
[i
]->reada_zones
, index
);
586 if (peer
&& peer
->device
!= zone
->device
)
592 * called with fs_info->reada_lock held
594 static int reada_pick_zone(struct btrfs_device
*dev
)
596 struct reada_zone
*top_zone
= NULL
;
597 struct reada_zone
*top_locked_zone
= NULL
;
599 u64 top_locked_elems
= 0;
600 unsigned long index
= 0;
603 if (dev
->reada_curr_zone
) {
604 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 0);
605 kref_put(&dev
->reada_curr_zone
->refcnt
, reada_zone_release
);
606 dev
->reada_curr_zone
= NULL
;
608 /* pick the zone with the most elements */
610 struct reada_zone
*zone
;
612 ret
= radix_tree_gang_lookup(&dev
->reada_zones
,
613 (void **)&zone
, index
, 1);
616 index
= (zone
->end
>> PAGE_SHIFT
) + 1;
618 if (zone
->elems
> top_locked_elems
) {
619 top_locked_elems
= zone
->elems
;
620 top_locked_zone
= zone
;
623 if (zone
->elems
> top_elems
) {
624 top_elems
= zone
->elems
;
630 dev
->reada_curr_zone
= top_zone
;
631 else if (top_locked_zone
)
632 dev
->reada_curr_zone
= top_locked_zone
;
636 dev
->reada_next
= dev
->reada_curr_zone
->start
;
637 kref_get(&dev
->reada_curr_zone
->refcnt
);
638 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 1);
643 static int reada_start_machine_dev(struct btrfs_fs_info
*fs_info
,
644 struct btrfs_device
*dev
)
646 struct reada_extent
*re
= NULL
;
648 struct extent_buffer
*eb
= NULL
;
653 spin_lock(&fs_info
->reada_lock
);
654 if (dev
->reada_curr_zone
== NULL
) {
655 ret
= reada_pick_zone(dev
);
657 spin_unlock(&fs_info
->reada_lock
);
662 * FIXME currently we issue the reads one extent at a time. If we have
663 * a contiguous block of extents, we could also coagulate them or use
664 * plugging to speed things up
666 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
667 dev
->reada_next
>> PAGE_SHIFT
, 1);
668 if (ret
== 0 || re
->logical
> dev
->reada_curr_zone
->end
) {
669 ret
= reada_pick_zone(dev
);
671 spin_unlock(&fs_info
->reada_lock
);
675 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
676 dev
->reada_next
>> PAGE_SHIFT
, 1);
679 spin_unlock(&fs_info
->reada_lock
);
682 dev
->reada_next
= re
->logical
+ fs_info
->tree_root
->nodesize
;
685 spin_unlock(&fs_info
->reada_lock
);
687 spin_lock(&re
->lock
);
688 if (re
->scheduled
|| list_empty(&re
->extctl
)) {
689 spin_unlock(&re
->lock
);
690 reada_extent_put(fs_info
, re
);
694 spin_unlock(&re
->lock
);
699 for (i
= 0; i
< re
->nzones
; ++i
) {
700 if (re
->zones
[i
]->device
== dev
) {
705 logical
= re
->logical
;
707 atomic_inc(&dev
->reada_in_flight
);
708 ret
= reada_tree_block_flagged(fs_info
->extent_root
, logical
,
711 __readahead_hook(fs_info
, re
, NULL
, ret
);
713 __readahead_hook(fs_info
, re
, eb
, ret
);
716 free_extent_buffer(eb
);
718 atomic_dec(&dev
->reada_in_flight
);
719 reada_extent_put(fs_info
, re
);
725 static void reada_start_machine_worker(struct btrfs_work
*work
)
727 struct reada_machine_work
*rmw
;
728 struct btrfs_fs_info
*fs_info
;
731 rmw
= container_of(work
, struct reada_machine_work
, work
);
732 fs_info
= rmw
->fs_info
;
736 old_ioprio
= IOPRIO_PRIO_VALUE(task_nice_ioclass(current
),
737 task_nice_ioprio(current
));
738 set_task_ioprio(current
, BTRFS_IOPRIO_READA
);
739 __reada_start_machine(fs_info
);
740 set_task_ioprio(current
, old_ioprio
);
742 atomic_dec(&fs_info
->reada_works_cnt
);
745 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
)
747 struct btrfs_device
*device
;
748 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
755 mutex_lock(&fs_devices
->device_list_mutex
);
756 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
757 if (atomic_read(&device
->reada_in_flight
) <
759 enqueued
+= reada_start_machine_dev(fs_info
,
762 mutex_unlock(&fs_devices
->device_list_mutex
);
764 } while (enqueued
&& total
< 10000);
770 * If everything is already in the cache, this is effectively single
771 * threaded. To a) not hold the caller for too long and b) to utilize
772 * more cores, we broke the loop above after 10000 iterations and now
773 * enqueue to workers to finish it. This will distribute the load to
776 for (i
= 0; i
< 2; ++i
) {
777 reada_start_machine(fs_info
);
778 if (atomic_read(&fs_info
->reada_works_cnt
) >
779 BTRFS_MAX_MIRRORS
* 2)
784 static void reada_start_machine(struct btrfs_fs_info
*fs_info
)
786 struct reada_machine_work
*rmw
;
788 rmw
= kzalloc(sizeof(*rmw
), GFP_KERNEL
);
790 /* FIXME we cannot handle this properly right now */
793 btrfs_init_work(&rmw
->work
, btrfs_readahead_helper
,
794 reada_start_machine_worker
, NULL
, NULL
);
795 rmw
->fs_info
= fs_info
;
797 btrfs_queue_work(fs_info
->readahead_workers
, &rmw
->work
);
798 atomic_inc(&fs_info
->reada_works_cnt
);
802 static void dump_devs(struct btrfs_fs_info
*fs_info
, int all
)
804 struct btrfs_device
*device
;
805 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
812 spin_lock(&fs_info
->reada_lock
);
813 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
814 btrfs_debug(fs_info
, "dev %lld has %d in flight", device
->devid
,
815 atomic_read(&device
->reada_in_flight
));
818 struct reada_zone
*zone
;
819 ret
= radix_tree_gang_lookup(&device
->reada_zones
,
820 (void **)&zone
, index
, 1);
823 pr_debug(" zone %llu-%llu elems %llu locked %d devs",
824 zone
->start
, zone
->end
, zone
->elems
,
826 for (j
= 0; j
< zone
->ndevs
; ++j
) {
828 zone
->devs
[j
]->devid
);
830 if (device
->reada_curr_zone
== zone
)
831 pr_cont(" curr off %llu",
832 device
->reada_next
- zone
->start
);
834 index
= (zone
->end
>> PAGE_SHIFT
) + 1;
839 struct reada_extent
*re
= NULL
;
841 ret
= radix_tree_gang_lookup(&device
->reada_extents
,
842 (void **)&re
, index
, 1);
845 pr_debug(" re: logical %llu size %u empty %d scheduled %d",
846 re
->logical
, fs_info
->tree_root
->nodesize
,
847 list_empty(&re
->extctl
), re
->scheduled
);
849 for (i
= 0; i
< re
->nzones
; ++i
) {
850 pr_cont(" zone %llu-%llu devs",
853 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
855 re
->zones
[i
]->devs
[j
]->devid
);
859 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
868 struct reada_extent
*re
= NULL
;
870 ret
= radix_tree_gang_lookup(&fs_info
->reada_tree
, (void **)&re
,
874 if (!re
->scheduled
) {
875 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
878 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
879 re
->logical
, fs_info
->tree_root
->nodesize
,
880 list_empty(&re
->extctl
), re
->scheduled
);
881 for (i
= 0; i
< re
->nzones
; ++i
) {
882 pr_cont(" zone %llu-%llu devs",
885 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
887 re
->zones
[i
]->devs
[j
]->devid
);
891 index
= (re
->logical
>> PAGE_SHIFT
) + 1;
893 spin_unlock(&fs_info
->reada_lock
);
900 struct reada_control
*btrfs_reada_add(struct btrfs_root
*root
,
901 struct btrfs_key
*key_start
, struct btrfs_key
*key_end
)
903 struct reada_control
*rc
;
907 struct extent_buffer
*node
;
908 static struct btrfs_key max_key
= {
914 rc
= kzalloc(sizeof(*rc
), GFP_KERNEL
);
916 return ERR_PTR(-ENOMEM
);
919 rc
->key_start
= *key_start
;
920 rc
->key_end
= *key_end
;
921 atomic_set(&rc
->elems
, 0);
922 init_waitqueue_head(&rc
->wait
);
923 kref_init(&rc
->refcnt
);
924 kref_get(&rc
->refcnt
); /* one ref for having elements */
926 node
= btrfs_root_node(root
);
928 generation
= btrfs_header_generation(node
);
929 free_extent_buffer(node
);
931 ret
= reada_add_block(rc
, start
, &max_key
, generation
);
937 reada_start_machine(root
->fs_info
);
943 int btrfs_reada_wait(void *handle
)
945 struct reada_control
*rc
= handle
;
946 struct btrfs_fs_info
*fs_info
= rc
->root
->fs_info
;
948 while (atomic_read(&rc
->elems
)) {
949 if (!atomic_read(&fs_info
->reada_works_cnt
))
950 reada_start_machine(fs_info
);
951 wait_event_timeout(rc
->wait
, atomic_read(&rc
->elems
) == 0,
953 dump_devs(rc
->root
->fs_info
,
954 atomic_read(&rc
->elems
) < 10 ? 1 : 0);
957 dump_devs(rc
->root
->fs_info
, atomic_read(&rc
->elems
) < 10 ? 1 : 0);
959 kref_put(&rc
->refcnt
, reada_control_release
);
964 int btrfs_reada_wait(void *handle
)
966 struct reada_control
*rc
= handle
;
967 struct btrfs_fs_info
*fs_info
= rc
->root
->fs_info
;
969 while (atomic_read(&rc
->elems
)) {
970 if (!atomic_read(&fs_info
->reada_works_cnt
))
971 reada_start_machine(fs_info
);
972 wait_event_timeout(rc
->wait
, atomic_read(&rc
->elems
) == 0,
976 kref_put(&rc
->refcnt
, reada_control_release
);
982 void btrfs_reada_detach(void *handle
)
984 struct reada_control
*rc
= handle
;
986 kref_put(&rc
->refcnt
, reada_control_release
);