]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/reada.c
btrfs: reada, remove pointless BUG_ON in reada_find_extent
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / reada.c
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
31
32 #undef DEBUG
33
34 /*
35 * This is the implementation for the generic read ahead framework.
36 *
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41 *
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
52 * of the filesystem.
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
56 */
57
58 #define MAX_IN_FLIGHT 6
59
60 struct reada_extctl {
61 struct list_head list;
62 struct reada_control *rc;
63 u64 generation;
64 };
65
66 struct reada_extent {
67 u64 logical;
68 struct btrfs_key top;
69 int err;
70 struct list_head extctl;
71 int refcnt;
72 spinlock_t lock;
73 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
74 int nzones;
75 int scheduled;
76 };
77
78 struct reada_zone {
79 u64 start;
80 u64 end;
81 u64 elems;
82 struct list_head list;
83 spinlock_t lock;
84 int locked;
85 struct btrfs_device *device;
86 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87 * self */
88 int ndevs;
89 struct kref refcnt;
90 };
91
92 struct reada_machine_work {
93 struct btrfs_work work;
94 struct btrfs_fs_info *fs_info;
95 };
96
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104 struct btrfs_key *top, u64 generation);
105
106 /* recurses */
107 /* in case of err, eb might be NULL */
108 static void __readahead_hook(struct btrfs_fs_info *fs_info,
109 struct reada_extent *re, struct extent_buffer *eb,
110 int err)
111 {
112 int nritems;
113 int i;
114 u64 bytenr;
115 u64 generation;
116 struct list_head list;
117
118 spin_lock(&re->lock);
119 /*
120 * just take the full list from the extent. afterwards we
121 * don't need the lock anymore
122 */
123 list_replace_init(&re->extctl, &list);
124 re->scheduled = 0;
125 spin_unlock(&re->lock);
126
127 /*
128 * this is the error case, the extent buffer has not been
129 * read correctly. We won't access anything from it and
130 * just cleanup our data structures. Effectively this will
131 * cut the branch below this node from read ahead.
132 */
133 if (err)
134 goto cleanup;
135
136 /*
137 * FIXME: currently we just set nritems to 0 if this is a leaf,
138 * effectively ignoring the content. In a next step we could
139 * trigger more readahead depending from the content, e.g.
140 * fetch the checksums for the extents in the leaf.
141 */
142 if (!btrfs_header_level(eb))
143 goto cleanup;
144
145 nritems = btrfs_header_nritems(eb);
146 generation = btrfs_header_generation(eb);
147 for (i = 0; i < nritems; i++) {
148 struct reada_extctl *rec;
149 u64 n_gen;
150 struct btrfs_key key;
151 struct btrfs_key next_key;
152
153 btrfs_node_key_to_cpu(eb, &key, i);
154 if (i + 1 < nritems)
155 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
156 else
157 next_key = re->top;
158 bytenr = btrfs_node_blockptr(eb, i);
159 n_gen = btrfs_node_ptr_generation(eb, i);
160
161 list_for_each_entry(rec, &list, list) {
162 struct reada_control *rc = rec->rc;
163
164 /*
165 * if the generation doesn't match, just ignore this
166 * extctl. This will probably cut off a branch from
167 * prefetch. Alternatively one could start a new (sub-)
168 * prefetch for this branch, starting again from root.
169 * FIXME: move the generation check out of this loop
170 */
171 #ifdef DEBUG
172 if (rec->generation != generation) {
173 btrfs_debug(fs_info,
174 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
175 key.objectid, key.type, key.offset,
176 rec->generation, generation);
177 }
178 #endif
179 if (rec->generation == generation &&
180 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
181 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
182 reada_add_block(rc, bytenr, &next_key, n_gen);
183 }
184 }
185
186 cleanup:
187 /*
188 * free extctl records
189 */
190 while (!list_empty(&list)) {
191 struct reada_control *rc;
192 struct reada_extctl *rec;
193
194 rec = list_first_entry(&list, struct reada_extctl, list);
195 list_del(&rec->list);
196 rc = rec->rc;
197 kfree(rec);
198
199 kref_get(&rc->refcnt);
200 if (atomic_dec_and_test(&rc->elems)) {
201 kref_put(&rc->refcnt, reada_control_release);
202 wake_up(&rc->wait);
203 }
204 kref_put(&rc->refcnt, reada_control_release);
205
206 reada_extent_put(fs_info, re); /* one ref for each entry */
207 }
208
209 return;
210 }
211
212 int btree_readahead_hook(struct btrfs_fs_info *fs_info,
213 struct extent_buffer *eb, int err)
214 {
215 int ret = 0;
216 struct reada_extent *re;
217
218 /* find extent */
219 spin_lock(&fs_info->reada_lock);
220 re = radix_tree_lookup(&fs_info->reada_tree,
221 eb->start >> PAGE_SHIFT);
222 if (re)
223 re->refcnt++;
224 spin_unlock(&fs_info->reada_lock);
225 if (!re) {
226 ret = -1;
227 goto start_machine;
228 }
229
230 __readahead_hook(fs_info, re, eb, err);
231 reada_extent_put(fs_info, re); /* our ref */
232
233 start_machine:
234 reada_start_machine(fs_info);
235 return ret;
236 }
237
238 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
239 struct btrfs_device *dev, u64 logical,
240 struct btrfs_bio *bbio)
241 {
242 int ret;
243 struct reada_zone *zone;
244 struct btrfs_block_group_cache *cache = NULL;
245 u64 start;
246 u64 end;
247 int i;
248
249 zone = NULL;
250 spin_lock(&fs_info->reada_lock);
251 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
252 logical >> PAGE_SHIFT, 1);
253 if (ret == 1 && logical >= zone->start && logical <= zone->end) {
254 kref_get(&zone->refcnt);
255 spin_unlock(&fs_info->reada_lock);
256 return zone;
257 }
258
259 spin_unlock(&fs_info->reada_lock);
260
261 cache = btrfs_lookup_block_group(fs_info, logical);
262 if (!cache)
263 return NULL;
264
265 start = cache->key.objectid;
266 end = start + cache->key.offset - 1;
267 btrfs_put_block_group(cache);
268
269 zone = kzalloc(sizeof(*zone), GFP_KERNEL);
270 if (!zone)
271 return NULL;
272
273 zone->start = start;
274 zone->end = end;
275 INIT_LIST_HEAD(&zone->list);
276 spin_lock_init(&zone->lock);
277 zone->locked = 0;
278 kref_init(&zone->refcnt);
279 zone->elems = 0;
280 zone->device = dev; /* our device always sits at index 0 */
281 for (i = 0; i < bbio->num_stripes; ++i) {
282 /* bounds have already been checked */
283 zone->devs[i] = bbio->stripes[i].dev;
284 }
285 zone->ndevs = bbio->num_stripes;
286
287 spin_lock(&fs_info->reada_lock);
288 ret = radix_tree_insert(&dev->reada_zones,
289 (unsigned long)(zone->end >> PAGE_SHIFT),
290 zone);
291
292 if (ret == -EEXIST) {
293 kfree(zone);
294 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
295 logical >> PAGE_SHIFT, 1);
296 if (ret == 1 && logical >= zone->start && logical <= zone->end)
297 kref_get(&zone->refcnt);
298 else
299 zone = NULL;
300 }
301 spin_unlock(&fs_info->reada_lock);
302
303 return zone;
304 }
305
306 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
307 u64 logical,
308 struct btrfs_key *top)
309 {
310 int ret;
311 struct reada_extent *re = NULL;
312 struct reada_extent *re_exist = NULL;
313 struct btrfs_fs_info *fs_info = root->fs_info;
314 struct btrfs_bio *bbio = NULL;
315 struct btrfs_device *dev;
316 struct btrfs_device *prev_dev;
317 u32 blocksize;
318 u64 length;
319 int real_stripes;
320 int nzones = 0;
321 unsigned long index = logical >> PAGE_SHIFT;
322 int dev_replace_is_ongoing;
323 int have_zone = 0;
324
325 spin_lock(&fs_info->reada_lock);
326 re = radix_tree_lookup(&fs_info->reada_tree, index);
327 if (re)
328 re->refcnt++;
329 spin_unlock(&fs_info->reada_lock);
330
331 if (re)
332 return re;
333
334 re = kzalloc(sizeof(*re), GFP_KERNEL);
335 if (!re)
336 return NULL;
337
338 blocksize = root->nodesize;
339 re->logical = logical;
340 re->top = *top;
341 INIT_LIST_HEAD(&re->extctl);
342 spin_lock_init(&re->lock);
343 re->refcnt = 1;
344
345 /*
346 * map block
347 */
348 length = blocksize;
349 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
350 &length, &bbio, 0);
351 if (ret || !bbio || length < blocksize)
352 goto error;
353
354 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
355 btrfs_err(root->fs_info,
356 "readahead: more than %d copies not supported",
357 BTRFS_MAX_MIRRORS);
358 goto error;
359 }
360
361 real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
362 for (nzones = 0; nzones < real_stripes; ++nzones) {
363 struct reada_zone *zone;
364
365 dev = bbio->stripes[nzones].dev;
366
367 /* cannot read ahead on missing device. */
368 if (!dev->bdev)
369 continue;
370
371 zone = reada_find_zone(fs_info, dev, logical, bbio);
372 if (!zone)
373 continue;
374
375 re->zones[re->nzones++] = zone;
376 spin_lock(&zone->lock);
377 if (!zone->elems)
378 kref_get(&zone->refcnt);
379 ++zone->elems;
380 spin_unlock(&zone->lock);
381 spin_lock(&fs_info->reada_lock);
382 kref_put(&zone->refcnt, reada_zone_release);
383 spin_unlock(&fs_info->reada_lock);
384 }
385 if (re->nzones == 0) {
386 /* not a single zone found, error and out */
387 goto error;
388 }
389
390 /* insert extent in reada_tree + all per-device trees, all or nothing */
391 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
392 spin_lock(&fs_info->reada_lock);
393 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
394 if (ret == -EEXIST) {
395 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
396 re_exist->refcnt++;
397 spin_unlock(&fs_info->reada_lock);
398 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
399 goto error;
400 }
401 if (ret) {
402 spin_unlock(&fs_info->reada_lock);
403 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
404 goto error;
405 }
406 prev_dev = NULL;
407 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
408 &fs_info->dev_replace);
409 for (nzones = 0; nzones < re->nzones; ++nzones) {
410 dev = re->zones[nzones]->device;
411
412 if (dev == prev_dev) {
413 /*
414 * in case of DUP, just add the first zone. As both
415 * are on the same device, there's nothing to gain
416 * from adding both.
417 * Also, it wouldn't work, as the tree is per device
418 * and adding would fail with EEXIST
419 */
420 continue;
421 }
422 if (!dev->bdev)
423 continue;
424
425 if (dev_replace_is_ongoing &&
426 dev == fs_info->dev_replace.tgtdev) {
427 /*
428 * as this device is selected for reading only as
429 * a last resort, skip it for read ahead.
430 */
431 continue;
432 }
433 prev_dev = dev;
434 ret = radix_tree_insert(&dev->reada_extents, index, re);
435 if (ret) {
436 while (--nzones >= 0) {
437 dev = re->zones[nzones]->device;
438 BUG_ON(dev == NULL);
439 /* ignore whether the entry was inserted */
440 radix_tree_delete(&dev->reada_extents, index);
441 }
442 BUG_ON(fs_info == NULL);
443 radix_tree_delete(&fs_info->reada_tree, index);
444 spin_unlock(&fs_info->reada_lock);
445 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
446 goto error;
447 }
448 have_zone = 1;
449 }
450 spin_unlock(&fs_info->reada_lock);
451 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
452
453 if (!have_zone)
454 goto error;
455
456 btrfs_put_bbio(bbio);
457 return re;
458
459 error:
460 for (nzones = 0; nzones < re->nzones; ++nzones) {
461 struct reada_zone *zone;
462
463 zone = re->zones[nzones];
464 kref_get(&zone->refcnt);
465 spin_lock(&zone->lock);
466 --zone->elems;
467 if (zone->elems == 0) {
468 /*
469 * no fs_info->reada_lock needed, as this can't be
470 * the last ref
471 */
472 kref_put(&zone->refcnt, reada_zone_release);
473 }
474 spin_unlock(&zone->lock);
475
476 spin_lock(&fs_info->reada_lock);
477 kref_put(&zone->refcnt, reada_zone_release);
478 spin_unlock(&fs_info->reada_lock);
479 }
480 btrfs_put_bbio(bbio);
481 kfree(re);
482 return re_exist;
483 }
484
485 static void reada_extent_put(struct btrfs_fs_info *fs_info,
486 struct reada_extent *re)
487 {
488 int i;
489 unsigned long index = re->logical >> PAGE_SHIFT;
490
491 spin_lock(&fs_info->reada_lock);
492 if (--re->refcnt) {
493 spin_unlock(&fs_info->reada_lock);
494 return;
495 }
496
497 radix_tree_delete(&fs_info->reada_tree, index);
498 for (i = 0; i < re->nzones; ++i) {
499 struct reada_zone *zone = re->zones[i];
500
501 radix_tree_delete(&zone->device->reada_extents, index);
502 }
503
504 spin_unlock(&fs_info->reada_lock);
505
506 for (i = 0; i < re->nzones; ++i) {
507 struct reada_zone *zone = re->zones[i];
508
509 kref_get(&zone->refcnt);
510 spin_lock(&zone->lock);
511 --zone->elems;
512 if (zone->elems == 0) {
513 /* no fs_info->reada_lock needed, as this can't be
514 * the last ref */
515 kref_put(&zone->refcnt, reada_zone_release);
516 }
517 spin_unlock(&zone->lock);
518
519 spin_lock(&fs_info->reada_lock);
520 kref_put(&zone->refcnt, reada_zone_release);
521 spin_unlock(&fs_info->reada_lock);
522 }
523
524 kfree(re);
525 }
526
527 static void reada_zone_release(struct kref *kref)
528 {
529 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
530
531 radix_tree_delete(&zone->device->reada_zones,
532 zone->end >> PAGE_SHIFT);
533
534 kfree(zone);
535 }
536
537 static void reada_control_release(struct kref *kref)
538 {
539 struct reada_control *rc = container_of(kref, struct reada_control,
540 refcnt);
541
542 kfree(rc);
543 }
544
545 static int reada_add_block(struct reada_control *rc, u64 logical,
546 struct btrfs_key *top, u64 generation)
547 {
548 struct btrfs_root *root = rc->root;
549 struct reada_extent *re;
550 struct reada_extctl *rec;
551
552 re = reada_find_extent(root, logical, top); /* takes one ref */
553 if (!re)
554 return -1;
555
556 rec = kzalloc(sizeof(*rec), GFP_KERNEL);
557 if (!rec) {
558 reada_extent_put(root->fs_info, re);
559 return -ENOMEM;
560 }
561
562 rec->rc = rc;
563 rec->generation = generation;
564 atomic_inc(&rc->elems);
565
566 spin_lock(&re->lock);
567 list_add_tail(&rec->list, &re->extctl);
568 spin_unlock(&re->lock);
569
570 /* leave the ref on the extent */
571
572 return 0;
573 }
574
575 /*
576 * called with fs_info->reada_lock held
577 */
578 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
579 {
580 int i;
581 unsigned long index = zone->end >> PAGE_SHIFT;
582
583 for (i = 0; i < zone->ndevs; ++i) {
584 struct reada_zone *peer;
585 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
586 if (peer && peer->device != zone->device)
587 peer->locked = lock;
588 }
589 }
590
591 /*
592 * called with fs_info->reada_lock held
593 */
594 static int reada_pick_zone(struct btrfs_device *dev)
595 {
596 struct reada_zone *top_zone = NULL;
597 struct reada_zone *top_locked_zone = NULL;
598 u64 top_elems = 0;
599 u64 top_locked_elems = 0;
600 unsigned long index = 0;
601 int ret;
602
603 if (dev->reada_curr_zone) {
604 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
605 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
606 dev->reada_curr_zone = NULL;
607 }
608 /* pick the zone with the most elements */
609 while (1) {
610 struct reada_zone *zone;
611
612 ret = radix_tree_gang_lookup(&dev->reada_zones,
613 (void **)&zone, index, 1);
614 if (ret == 0)
615 break;
616 index = (zone->end >> PAGE_SHIFT) + 1;
617 if (zone->locked) {
618 if (zone->elems > top_locked_elems) {
619 top_locked_elems = zone->elems;
620 top_locked_zone = zone;
621 }
622 } else {
623 if (zone->elems > top_elems) {
624 top_elems = zone->elems;
625 top_zone = zone;
626 }
627 }
628 }
629 if (top_zone)
630 dev->reada_curr_zone = top_zone;
631 else if (top_locked_zone)
632 dev->reada_curr_zone = top_locked_zone;
633 else
634 return 0;
635
636 dev->reada_next = dev->reada_curr_zone->start;
637 kref_get(&dev->reada_curr_zone->refcnt);
638 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
639
640 return 1;
641 }
642
643 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
644 struct btrfs_device *dev)
645 {
646 struct reada_extent *re = NULL;
647 int mirror_num = 0;
648 struct extent_buffer *eb = NULL;
649 u64 logical;
650 int ret;
651 int i;
652
653 spin_lock(&fs_info->reada_lock);
654 if (dev->reada_curr_zone == NULL) {
655 ret = reada_pick_zone(dev);
656 if (!ret) {
657 spin_unlock(&fs_info->reada_lock);
658 return 0;
659 }
660 }
661 /*
662 * FIXME currently we issue the reads one extent at a time. If we have
663 * a contiguous block of extents, we could also coagulate them or use
664 * plugging to speed things up
665 */
666 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
667 dev->reada_next >> PAGE_SHIFT, 1);
668 if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
669 ret = reada_pick_zone(dev);
670 if (!ret) {
671 spin_unlock(&fs_info->reada_lock);
672 return 0;
673 }
674 re = NULL;
675 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
676 dev->reada_next >> PAGE_SHIFT, 1);
677 }
678 if (ret == 0) {
679 spin_unlock(&fs_info->reada_lock);
680 return 0;
681 }
682 dev->reada_next = re->logical + fs_info->tree_root->nodesize;
683 re->refcnt++;
684
685 spin_unlock(&fs_info->reada_lock);
686
687 spin_lock(&re->lock);
688 if (re->scheduled || list_empty(&re->extctl)) {
689 spin_unlock(&re->lock);
690 reada_extent_put(fs_info, re);
691 return 0;
692 }
693 re->scheduled = 1;
694 spin_unlock(&re->lock);
695
696 /*
697 * find mirror num
698 */
699 for (i = 0; i < re->nzones; ++i) {
700 if (re->zones[i]->device == dev) {
701 mirror_num = i + 1;
702 break;
703 }
704 }
705 logical = re->logical;
706
707 atomic_inc(&dev->reada_in_flight);
708 ret = reada_tree_block_flagged(fs_info->extent_root, logical,
709 mirror_num, &eb);
710 if (ret)
711 __readahead_hook(fs_info, re, NULL, ret);
712 else if (eb)
713 __readahead_hook(fs_info, re, eb, ret);
714
715 if (eb)
716 free_extent_buffer(eb);
717
718 atomic_dec(&dev->reada_in_flight);
719 reada_extent_put(fs_info, re);
720
721 return 1;
722
723 }
724
725 static void reada_start_machine_worker(struct btrfs_work *work)
726 {
727 struct reada_machine_work *rmw;
728 struct btrfs_fs_info *fs_info;
729 int old_ioprio;
730
731 rmw = container_of(work, struct reada_machine_work, work);
732 fs_info = rmw->fs_info;
733
734 kfree(rmw);
735
736 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
737 task_nice_ioprio(current));
738 set_task_ioprio(current, BTRFS_IOPRIO_READA);
739 __reada_start_machine(fs_info);
740 set_task_ioprio(current, old_ioprio);
741
742 atomic_dec(&fs_info->reada_works_cnt);
743 }
744
745 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
746 {
747 struct btrfs_device *device;
748 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
749 u64 enqueued;
750 u64 total = 0;
751 int i;
752
753 do {
754 enqueued = 0;
755 mutex_lock(&fs_devices->device_list_mutex);
756 list_for_each_entry(device, &fs_devices->devices, dev_list) {
757 if (atomic_read(&device->reada_in_flight) <
758 MAX_IN_FLIGHT)
759 enqueued += reada_start_machine_dev(fs_info,
760 device);
761 }
762 mutex_unlock(&fs_devices->device_list_mutex);
763 total += enqueued;
764 } while (enqueued && total < 10000);
765
766 if (enqueued == 0)
767 return;
768
769 /*
770 * If everything is already in the cache, this is effectively single
771 * threaded. To a) not hold the caller for too long and b) to utilize
772 * more cores, we broke the loop above after 10000 iterations and now
773 * enqueue to workers to finish it. This will distribute the load to
774 * the cores.
775 */
776 for (i = 0; i < 2; ++i) {
777 reada_start_machine(fs_info);
778 if (atomic_read(&fs_info->reada_works_cnt) >
779 BTRFS_MAX_MIRRORS * 2)
780 break;
781 }
782 }
783
784 static void reada_start_machine(struct btrfs_fs_info *fs_info)
785 {
786 struct reada_machine_work *rmw;
787
788 rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
789 if (!rmw) {
790 /* FIXME we cannot handle this properly right now */
791 BUG();
792 }
793 btrfs_init_work(&rmw->work, btrfs_readahead_helper,
794 reada_start_machine_worker, NULL, NULL);
795 rmw->fs_info = fs_info;
796
797 btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
798 atomic_inc(&fs_info->reada_works_cnt);
799 }
800
801 #ifdef DEBUG
802 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
803 {
804 struct btrfs_device *device;
805 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
806 unsigned long index;
807 int ret;
808 int i;
809 int j;
810 int cnt;
811
812 spin_lock(&fs_info->reada_lock);
813 list_for_each_entry(device, &fs_devices->devices, dev_list) {
814 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
815 atomic_read(&device->reada_in_flight));
816 index = 0;
817 while (1) {
818 struct reada_zone *zone;
819 ret = radix_tree_gang_lookup(&device->reada_zones,
820 (void **)&zone, index, 1);
821 if (ret == 0)
822 break;
823 pr_debug(" zone %llu-%llu elems %llu locked %d devs",
824 zone->start, zone->end, zone->elems,
825 zone->locked);
826 for (j = 0; j < zone->ndevs; ++j) {
827 pr_cont(" %lld",
828 zone->devs[j]->devid);
829 }
830 if (device->reada_curr_zone == zone)
831 pr_cont(" curr off %llu",
832 device->reada_next - zone->start);
833 pr_cont("\n");
834 index = (zone->end >> PAGE_SHIFT) + 1;
835 }
836 cnt = 0;
837 index = 0;
838 while (all) {
839 struct reada_extent *re = NULL;
840
841 ret = radix_tree_gang_lookup(&device->reada_extents,
842 (void **)&re, index, 1);
843 if (ret == 0)
844 break;
845 pr_debug(" re: logical %llu size %u empty %d scheduled %d",
846 re->logical, fs_info->tree_root->nodesize,
847 list_empty(&re->extctl), re->scheduled);
848
849 for (i = 0; i < re->nzones; ++i) {
850 pr_cont(" zone %llu-%llu devs",
851 re->zones[i]->start,
852 re->zones[i]->end);
853 for (j = 0; j < re->zones[i]->ndevs; ++j) {
854 pr_cont(" %lld",
855 re->zones[i]->devs[j]->devid);
856 }
857 }
858 pr_cont("\n");
859 index = (re->logical >> PAGE_SHIFT) + 1;
860 if (++cnt > 15)
861 break;
862 }
863 }
864
865 index = 0;
866 cnt = 0;
867 while (all) {
868 struct reada_extent *re = NULL;
869
870 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
871 index, 1);
872 if (ret == 0)
873 break;
874 if (!re->scheduled) {
875 index = (re->logical >> PAGE_SHIFT) + 1;
876 continue;
877 }
878 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
879 re->logical, fs_info->tree_root->nodesize,
880 list_empty(&re->extctl), re->scheduled);
881 for (i = 0; i < re->nzones; ++i) {
882 pr_cont(" zone %llu-%llu devs",
883 re->zones[i]->start,
884 re->zones[i]->end);
885 for (j = 0; j < re->zones[i]->ndevs; ++j) {
886 pr_cont(" %lld",
887 re->zones[i]->devs[j]->devid);
888 }
889 }
890 pr_cont("\n");
891 index = (re->logical >> PAGE_SHIFT) + 1;
892 }
893 spin_unlock(&fs_info->reada_lock);
894 }
895 #endif
896
897 /*
898 * interface
899 */
900 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
901 struct btrfs_key *key_start, struct btrfs_key *key_end)
902 {
903 struct reada_control *rc;
904 u64 start;
905 u64 generation;
906 int ret;
907 struct extent_buffer *node;
908 static struct btrfs_key max_key = {
909 .objectid = (u64)-1,
910 .type = (u8)-1,
911 .offset = (u64)-1
912 };
913
914 rc = kzalloc(sizeof(*rc), GFP_KERNEL);
915 if (!rc)
916 return ERR_PTR(-ENOMEM);
917
918 rc->root = root;
919 rc->key_start = *key_start;
920 rc->key_end = *key_end;
921 atomic_set(&rc->elems, 0);
922 init_waitqueue_head(&rc->wait);
923 kref_init(&rc->refcnt);
924 kref_get(&rc->refcnt); /* one ref for having elements */
925
926 node = btrfs_root_node(root);
927 start = node->start;
928 generation = btrfs_header_generation(node);
929 free_extent_buffer(node);
930
931 ret = reada_add_block(rc, start, &max_key, generation);
932 if (ret) {
933 kfree(rc);
934 return ERR_PTR(ret);
935 }
936
937 reada_start_machine(root->fs_info);
938
939 return rc;
940 }
941
942 #ifdef DEBUG
943 int btrfs_reada_wait(void *handle)
944 {
945 struct reada_control *rc = handle;
946 struct btrfs_fs_info *fs_info = rc->root->fs_info;
947
948 while (atomic_read(&rc->elems)) {
949 if (!atomic_read(&fs_info->reada_works_cnt))
950 reada_start_machine(fs_info);
951 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
952 5 * HZ);
953 dump_devs(rc->root->fs_info,
954 atomic_read(&rc->elems) < 10 ? 1 : 0);
955 }
956
957 dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
958
959 kref_put(&rc->refcnt, reada_control_release);
960
961 return 0;
962 }
963 #else
964 int btrfs_reada_wait(void *handle)
965 {
966 struct reada_control *rc = handle;
967 struct btrfs_fs_info *fs_info = rc->root->fs_info;
968
969 while (atomic_read(&rc->elems)) {
970 if (!atomic_read(&fs_info->reada_works_cnt))
971 reada_start_machine(fs_info);
972 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
973 (HZ + 9) / 10);
974 }
975
976 kref_put(&rc->refcnt, reada_control_release);
977
978 return 0;
979 }
980 #endif
981
982 void btrfs_reada_detach(void *handle)
983 {
984 struct reada_control *rc = handle;
985
986 kref_put(&rc->refcnt, reada_control_release);
987 }