]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/relocation.c
btrfs: simplify iget helpers
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / relocation.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "inode-map.h"
22 #include "qgroup.h"
23 #include "print-tree.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
26 #include "backref.h"
27 #include "misc.h"
28
29 /*
30 * Relocation overview
31 *
32 * [What does relocation do]
33 *
34 * The objective of relocation is to relocate all extents of the target block
35 * group to other block groups.
36 * This is utilized by resize (shrink only), profile converting, compacting
37 * space, or balance routine to spread chunks over devices.
38 *
39 * Before | After
40 * ------------------------------------------------------------------
41 * BG A: 10 data extents | BG A: deleted
42 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
43 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
44 *
45 * [How does relocation work]
46 *
47 * 1. Mark the target block group read-only
48 * New extents won't be allocated from the target block group.
49 *
50 * 2.1 Record each extent in the target block group
51 * To build a proper map of extents to be relocated.
52 *
53 * 2.2 Build data reloc tree and reloc trees
54 * Data reloc tree will contain an inode, recording all newly relocated
55 * data extents.
56 * There will be only one data reloc tree for one data block group.
57 *
58 * Reloc tree will be a special snapshot of its source tree, containing
59 * relocated tree blocks.
60 * Each tree referring to a tree block in target block group will get its
61 * reloc tree built.
62 *
63 * 2.3 Swap source tree with its corresponding reloc tree
64 * Each involved tree only refers to new extents after swap.
65 *
66 * 3. Cleanup reloc trees and data reloc tree.
67 * As old extents in the target block group are still referenced by reloc
68 * trees, we need to clean them up before really freeing the target block
69 * group.
70 *
71 * The main complexity is in steps 2.2 and 2.3.
72 *
73 * The entry point of relocation is relocate_block_group() function.
74 */
75
76 #define RELOCATION_RESERVED_NODES 256
77 /*
78 * map address of tree root to tree
79 */
80 struct mapping_node {
81 struct {
82 struct rb_node rb_node;
83 u64 bytenr;
84 }; /* Use rb_simle_node for search/insert */
85 void *data;
86 };
87
88 struct mapping_tree {
89 struct rb_root rb_root;
90 spinlock_t lock;
91 };
92
93 /*
94 * present a tree block to process
95 */
96 struct tree_block {
97 struct {
98 struct rb_node rb_node;
99 u64 bytenr;
100 }; /* Use rb_simple_node for search/insert */
101 struct btrfs_key key;
102 unsigned int level:8;
103 unsigned int key_ready:1;
104 };
105
106 #define MAX_EXTENTS 128
107
108 struct file_extent_cluster {
109 u64 start;
110 u64 end;
111 u64 boundary[MAX_EXTENTS];
112 unsigned int nr;
113 };
114
115 struct reloc_control {
116 /* block group to relocate */
117 struct btrfs_block_group *block_group;
118 /* extent tree */
119 struct btrfs_root *extent_root;
120 /* inode for moving data */
121 struct inode *data_inode;
122
123 struct btrfs_block_rsv *block_rsv;
124
125 struct btrfs_backref_cache backref_cache;
126
127 struct file_extent_cluster cluster;
128 /* tree blocks have been processed */
129 struct extent_io_tree processed_blocks;
130 /* map start of tree root to corresponding reloc tree */
131 struct mapping_tree reloc_root_tree;
132 /* list of reloc trees */
133 struct list_head reloc_roots;
134 /* list of subvolume trees that get relocated */
135 struct list_head dirty_subvol_roots;
136 /* size of metadata reservation for merging reloc trees */
137 u64 merging_rsv_size;
138 /* size of relocated tree nodes */
139 u64 nodes_relocated;
140 /* reserved size for block group relocation*/
141 u64 reserved_bytes;
142
143 u64 search_start;
144 u64 extents_found;
145
146 unsigned int stage:8;
147 unsigned int create_reloc_tree:1;
148 unsigned int merge_reloc_tree:1;
149 unsigned int found_file_extent:1;
150 };
151
152 /* stages of data relocation */
153 #define MOVE_DATA_EXTENTS 0
154 #define UPDATE_DATA_PTRS 1
155
156 static void mark_block_processed(struct reloc_control *rc,
157 struct btrfs_backref_node *node)
158 {
159 u32 blocksize;
160
161 if (node->level == 0 ||
162 in_range(node->bytenr, rc->block_group->start,
163 rc->block_group->length)) {
164 blocksize = rc->extent_root->fs_info->nodesize;
165 set_extent_bits(&rc->processed_blocks, node->bytenr,
166 node->bytenr + blocksize - 1, EXTENT_DIRTY);
167 }
168 node->processed = 1;
169 }
170
171
172 static void mapping_tree_init(struct mapping_tree *tree)
173 {
174 tree->rb_root = RB_ROOT;
175 spin_lock_init(&tree->lock);
176 }
177
178 /*
179 * walk up backref nodes until reach node presents tree root
180 */
181 static struct btrfs_backref_node *walk_up_backref(
182 struct btrfs_backref_node *node,
183 struct btrfs_backref_edge *edges[], int *index)
184 {
185 struct btrfs_backref_edge *edge;
186 int idx = *index;
187
188 while (!list_empty(&node->upper)) {
189 edge = list_entry(node->upper.next,
190 struct btrfs_backref_edge, list[LOWER]);
191 edges[idx++] = edge;
192 node = edge->node[UPPER];
193 }
194 BUG_ON(node->detached);
195 *index = idx;
196 return node;
197 }
198
199 /*
200 * walk down backref nodes to find start of next reference path
201 */
202 static struct btrfs_backref_node *walk_down_backref(
203 struct btrfs_backref_edge *edges[], int *index)
204 {
205 struct btrfs_backref_edge *edge;
206 struct btrfs_backref_node *lower;
207 int idx = *index;
208
209 while (idx > 0) {
210 edge = edges[idx - 1];
211 lower = edge->node[LOWER];
212 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
213 idx--;
214 continue;
215 }
216 edge = list_entry(edge->list[LOWER].next,
217 struct btrfs_backref_edge, list[LOWER]);
218 edges[idx - 1] = edge;
219 *index = idx;
220 return edge->node[UPPER];
221 }
222 *index = 0;
223 return NULL;
224 }
225
226 static void update_backref_node(struct btrfs_backref_cache *cache,
227 struct btrfs_backref_node *node, u64 bytenr)
228 {
229 struct rb_node *rb_node;
230 rb_erase(&node->rb_node, &cache->rb_root);
231 node->bytenr = bytenr;
232 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
233 if (rb_node)
234 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
235 }
236
237 /*
238 * update backref cache after a transaction commit
239 */
240 static int update_backref_cache(struct btrfs_trans_handle *trans,
241 struct btrfs_backref_cache *cache)
242 {
243 struct btrfs_backref_node *node;
244 int level = 0;
245
246 if (cache->last_trans == 0) {
247 cache->last_trans = trans->transid;
248 return 0;
249 }
250
251 if (cache->last_trans == trans->transid)
252 return 0;
253
254 /*
255 * detached nodes are used to avoid unnecessary backref
256 * lookup. transaction commit changes the extent tree.
257 * so the detached nodes are no longer useful.
258 */
259 while (!list_empty(&cache->detached)) {
260 node = list_entry(cache->detached.next,
261 struct btrfs_backref_node, list);
262 btrfs_backref_cleanup_node(cache, node);
263 }
264
265 while (!list_empty(&cache->changed)) {
266 node = list_entry(cache->changed.next,
267 struct btrfs_backref_node, list);
268 list_del_init(&node->list);
269 BUG_ON(node->pending);
270 update_backref_node(cache, node, node->new_bytenr);
271 }
272
273 /*
274 * some nodes can be left in the pending list if there were
275 * errors during processing the pending nodes.
276 */
277 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
278 list_for_each_entry(node, &cache->pending[level], list) {
279 BUG_ON(!node->pending);
280 if (node->bytenr == node->new_bytenr)
281 continue;
282 update_backref_node(cache, node, node->new_bytenr);
283 }
284 }
285
286 cache->last_trans = 0;
287 return 1;
288 }
289
290 static bool reloc_root_is_dead(struct btrfs_root *root)
291 {
292 /*
293 * Pair with set_bit/clear_bit in clean_dirty_subvols and
294 * btrfs_update_reloc_root. We need to see the updated bit before
295 * trying to access reloc_root
296 */
297 smp_rmb();
298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
299 return true;
300 return false;
301 }
302
303 /*
304 * Check if this subvolume tree has valid reloc tree.
305 *
306 * Reloc tree after swap is considered dead, thus not considered as valid.
307 * This is enough for most callers, as they don't distinguish dead reloc root
308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
309 * special case.
310 */
311 static bool have_reloc_root(struct btrfs_root *root)
312 {
313 if (reloc_root_is_dead(root))
314 return false;
315 if (!root->reloc_root)
316 return false;
317 return true;
318 }
319
320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321 {
322 struct btrfs_root *reloc_root;
323
324 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
325 return 0;
326
327 /* This root has been merged with its reloc tree, we can ignore it */
328 if (reloc_root_is_dead(root))
329 return 1;
330
331 reloc_root = root->reloc_root;
332 if (!reloc_root)
333 return 0;
334
335 if (btrfs_header_generation(reloc_root->commit_root) ==
336 root->fs_info->running_transaction->transid)
337 return 0;
338 /*
339 * if there is reloc tree and it was created in previous
340 * transaction backref lookup can find the reloc tree,
341 * so backref node for the fs tree root is useless for
342 * relocation.
343 */
344 return 1;
345 }
346
347 /*
348 * find reloc tree by address of tree root
349 */
350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351 {
352 struct reloc_control *rc = fs_info->reloc_ctl;
353 struct rb_node *rb_node;
354 struct mapping_node *node;
355 struct btrfs_root *root = NULL;
356
357 ASSERT(rc);
358 spin_lock(&rc->reloc_root_tree.lock);
359 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
360 if (rb_node) {
361 node = rb_entry(rb_node, struct mapping_node, rb_node);
362 root = (struct btrfs_root *)node->data;
363 }
364 spin_unlock(&rc->reloc_root_tree.lock);
365 return btrfs_grab_root(root);
366 }
367
368 /*
369 * For useless nodes, do two major clean ups:
370 *
371 * - Cleanup the children edges and nodes
372 * If child node is also orphan (no parent) during cleanup, then the child
373 * node will also be cleaned up.
374 *
375 * - Freeing up leaves (level 0), keeps nodes detached
376 * For nodes, the node is still cached as "detached"
377 *
378 * Return false if @node is not in the @useless_nodes list.
379 * Return true if @node is in the @useless_nodes list.
380 */
381 static bool handle_useless_nodes(struct reloc_control *rc,
382 struct btrfs_backref_node *node)
383 {
384 struct btrfs_backref_cache *cache = &rc->backref_cache;
385 struct list_head *useless_node = &cache->useless_node;
386 bool ret = false;
387
388 while (!list_empty(useless_node)) {
389 struct btrfs_backref_node *cur;
390
391 cur = list_first_entry(useless_node, struct btrfs_backref_node,
392 list);
393 list_del_init(&cur->list);
394
395 /* Only tree root nodes can be added to @useless_nodes */
396 ASSERT(list_empty(&cur->upper));
397
398 if (cur == node)
399 ret = true;
400
401 /* The node is the lowest node */
402 if (cur->lowest) {
403 list_del_init(&cur->lower);
404 cur->lowest = 0;
405 }
406
407 /* Cleanup the lower edges */
408 while (!list_empty(&cur->lower)) {
409 struct btrfs_backref_edge *edge;
410 struct btrfs_backref_node *lower;
411
412 edge = list_entry(cur->lower.next,
413 struct btrfs_backref_edge, list[UPPER]);
414 list_del(&edge->list[UPPER]);
415 list_del(&edge->list[LOWER]);
416 lower = edge->node[LOWER];
417 btrfs_backref_free_edge(cache, edge);
418
419 /* Child node is also orphan, queue for cleanup */
420 if (list_empty(&lower->upper))
421 list_add(&lower->list, useless_node);
422 }
423 /* Mark this block processed for relocation */
424 mark_block_processed(rc, cur);
425
426 /*
427 * Backref nodes for tree leaves are deleted from the cache.
428 * Backref nodes for upper level tree blocks are left in the
429 * cache to avoid unnecessary backref lookup.
430 */
431 if (cur->level > 0) {
432 list_add(&cur->list, &cache->detached);
433 cur->detached = 1;
434 } else {
435 rb_erase(&cur->rb_node, &cache->rb_root);
436 btrfs_backref_free_node(cache, cur);
437 }
438 }
439 return ret;
440 }
441
442 /*
443 * Build backref tree for a given tree block. Root of the backref tree
444 * corresponds the tree block, leaves of the backref tree correspond roots of
445 * b-trees that reference the tree block.
446 *
447 * The basic idea of this function is check backrefs of a given block to find
448 * upper level blocks that reference the block, and then check backrefs of
449 * these upper level blocks recursively. The recursion stops when tree root is
450 * reached or backrefs for the block is cached.
451 *
452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453 * all upper level blocks that directly/indirectly reference the block are also
454 * cached.
455 */
456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
457 struct reloc_control *rc, struct btrfs_key *node_key,
458 int level, u64 bytenr)
459 {
460 struct btrfs_backref_iter *iter;
461 struct btrfs_backref_cache *cache = &rc->backref_cache;
462 /* For searching parent of TREE_BLOCK_REF */
463 struct btrfs_path *path;
464 struct btrfs_backref_node *cur;
465 struct btrfs_backref_node *node = NULL;
466 struct btrfs_backref_edge *edge;
467 int ret;
468 int err = 0;
469
470 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
471 if (!iter)
472 return ERR_PTR(-ENOMEM);
473 path = btrfs_alloc_path();
474 if (!path) {
475 err = -ENOMEM;
476 goto out;
477 }
478
479 node = btrfs_backref_alloc_node(cache, bytenr, level);
480 if (!node) {
481 err = -ENOMEM;
482 goto out;
483 }
484
485 node->lowest = 1;
486 cur = node;
487
488 /* Breadth-first search to build backref cache */
489 do {
490 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
491 cur);
492 if (ret < 0) {
493 err = ret;
494 goto out;
495 }
496 edge = list_first_entry_or_null(&cache->pending_edge,
497 struct btrfs_backref_edge, list[UPPER]);
498 /*
499 * The pending list isn't empty, take the first block to
500 * process
501 */
502 if (edge) {
503 list_del_init(&edge->list[UPPER]);
504 cur = edge->node[UPPER];
505 }
506 } while (edge);
507
508 /* Finish the upper linkage of newly added edges/nodes */
509 ret = btrfs_backref_finish_upper_links(cache, node);
510 if (ret < 0) {
511 err = ret;
512 goto out;
513 }
514
515 if (handle_useless_nodes(rc, node))
516 node = NULL;
517 out:
518 btrfs_backref_iter_free(iter);
519 btrfs_free_path(path);
520 if (err) {
521 btrfs_backref_error_cleanup(cache, node);
522 return ERR_PTR(err);
523 }
524 ASSERT(!node || !node->detached);
525 ASSERT(list_empty(&cache->useless_node) &&
526 list_empty(&cache->pending_edge));
527 return node;
528 }
529
530 /*
531 * helper to add backref node for the newly created snapshot.
532 * the backref node is created by cloning backref node that
533 * corresponds to root of source tree
534 */
535 static int clone_backref_node(struct btrfs_trans_handle *trans,
536 struct reloc_control *rc,
537 struct btrfs_root *src,
538 struct btrfs_root *dest)
539 {
540 struct btrfs_root *reloc_root = src->reloc_root;
541 struct btrfs_backref_cache *cache = &rc->backref_cache;
542 struct btrfs_backref_node *node = NULL;
543 struct btrfs_backref_node *new_node;
544 struct btrfs_backref_edge *edge;
545 struct btrfs_backref_edge *new_edge;
546 struct rb_node *rb_node;
547
548 if (cache->last_trans > 0)
549 update_backref_cache(trans, cache);
550
551 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
552 if (rb_node) {
553 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
554 if (node->detached)
555 node = NULL;
556 else
557 BUG_ON(node->new_bytenr != reloc_root->node->start);
558 }
559
560 if (!node) {
561 rb_node = rb_simple_search(&cache->rb_root,
562 reloc_root->commit_root->start);
563 if (rb_node) {
564 node = rb_entry(rb_node, struct btrfs_backref_node,
565 rb_node);
566 BUG_ON(node->detached);
567 }
568 }
569
570 if (!node)
571 return 0;
572
573 new_node = btrfs_backref_alloc_node(cache, dest->node->start,
574 node->level);
575 if (!new_node)
576 return -ENOMEM;
577
578 new_node->lowest = node->lowest;
579 new_node->checked = 1;
580 new_node->root = btrfs_grab_root(dest);
581 ASSERT(new_node->root);
582
583 if (!node->lowest) {
584 list_for_each_entry(edge, &node->lower, list[UPPER]) {
585 new_edge = btrfs_backref_alloc_edge(cache);
586 if (!new_edge)
587 goto fail;
588
589 btrfs_backref_link_edge(new_edge, edge->node[LOWER],
590 new_node, LINK_UPPER);
591 }
592 } else {
593 list_add_tail(&new_node->lower, &cache->leaves);
594 }
595
596 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
597 &new_node->rb_node);
598 if (rb_node)
599 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600
601 if (!new_node->lowest) {
602 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
603 list_add_tail(&new_edge->list[LOWER],
604 &new_edge->node[LOWER]->upper);
605 }
606 }
607 return 0;
608 fail:
609 while (!list_empty(&new_node->lower)) {
610 new_edge = list_entry(new_node->lower.next,
611 struct btrfs_backref_edge, list[UPPER]);
612 list_del(&new_edge->list[UPPER]);
613 btrfs_backref_free_edge(cache, new_edge);
614 }
615 btrfs_backref_free_node(cache, new_node);
616 return -ENOMEM;
617 }
618
619 /*
620 * helper to add 'address of tree root -> reloc tree' mapping
621 */
622 static int __must_check __add_reloc_root(struct btrfs_root *root)
623 {
624 struct btrfs_fs_info *fs_info = root->fs_info;
625 struct rb_node *rb_node;
626 struct mapping_node *node;
627 struct reloc_control *rc = fs_info->reloc_ctl;
628
629 node = kmalloc(sizeof(*node), GFP_NOFS);
630 if (!node)
631 return -ENOMEM;
632
633 node->bytenr = root->commit_root->start;
634 node->data = root;
635
636 spin_lock(&rc->reloc_root_tree.lock);
637 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
638 node->bytenr, &node->rb_node);
639 spin_unlock(&rc->reloc_root_tree.lock);
640 if (rb_node) {
641 btrfs_panic(fs_info, -EEXIST,
642 "Duplicate root found for start=%llu while inserting into relocation tree",
643 node->bytenr);
644 }
645
646 list_add_tail(&root->root_list, &rc->reloc_roots);
647 return 0;
648 }
649
650 /*
651 * helper to delete the 'address of tree root -> reloc tree'
652 * mapping
653 */
654 static void __del_reloc_root(struct btrfs_root *root)
655 {
656 struct btrfs_fs_info *fs_info = root->fs_info;
657 struct rb_node *rb_node;
658 struct mapping_node *node = NULL;
659 struct reloc_control *rc = fs_info->reloc_ctl;
660 bool put_ref = false;
661
662 if (rc && root->node) {
663 spin_lock(&rc->reloc_root_tree.lock);
664 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
665 root->commit_root->start);
666 if (rb_node) {
667 node = rb_entry(rb_node, struct mapping_node, rb_node);
668 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
669 RB_CLEAR_NODE(&node->rb_node);
670 }
671 spin_unlock(&rc->reloc_root_tree.lock);
672 if (!node)
673 return;
674 BUG_ON((struct btrfs_root *)node->data != root);
675 }
676
677 /*
678 * We only put the reloc root here if it's on the list. There's a lot
679 * of places where the pattern is to splice the rc->reloc_roots, process
680 * the reloc roots, and then add the reloc root back onto
681 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
682 * list we don't want the reference being dropped, because the guy
683 * messing with the list is in charge of the reference.
684 */
685 spin_lock(&fs_info->trans_lock);
686 if (!list_empty(&root->root_list)) {
687 put_ref = true;
688 list_del_init(&root->root_list);
689 }
690 spin_unlock(&fs_info->trans_lock);
691 if (put_ref)
692 btrfs_put_root(root);
693 kfree(node);
694 }
695
696 /*
697 * helper to update the 'address of tree root -> reloc tree'
698 * mapping
699 */
700 static int __update_reloc_root(struct btrfs_root *root)
701 {
702 struct btrfs_fs_info *fs_info = root->fs_info;
703 struct rb_node *rb_node;
704 struct mapping_node *node = NULL;
705 struct reloc_control *rc = fs_info->reloc_ctl;
706
707 spin_lock(&rc->reloc_root_tree.lock);
708 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
709 root->commit_root->start);
710 if (rb_node) {
711 node = rb_entry(rb_node, struct mapping_node, rb_node);
712 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
713 }
714 spin_unlock(&rc->reloc_root_tree.lock);
715
716 if (!node)
717 return 0;
718 BUG_ON((struct btrfs_root *)node->data != root);
719
720 spin_lock(&rc->reloc_root_tree.lock);
721 node->bytenr = root->node->start;
722 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
723 node->bytenr, &node->rb_node);
724 spin_unlock(&rc->reloc_root_tree.lock);
725 if (rb_node)
726 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
727 return 0;
728 }
729
730 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
731 struct btrfs_root *root, u64 objectid)
732 {
733 struct btrfs_fs_info *fs_info = root->fs_info;
734 struct btrfs_root *reloc_root;
735 struct extent_buffer *eb;
736 struct btrfs_root_item *root_item;
737 struct btrfs_key root_key;
738 int ret;
739
740 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
741 BUG_ON(!root_item);
742
743 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
744 root_key.type = BTRFS_ROOT_ITEM_KEY;
745 root_key.offset = objectid;
746
747 if (root->root_key.objectid == objectid) {
748 u64 commit_root_gen;
749
750 /* called by btrfs_init_reloc_root */
751 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
752 BTRFS_TREE_RELOC_OBJECTID);
753 BUG_ON(ret);
754 /*
755 * Set the last_snapshot field to the generation of the commit
756 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
757 * correctly (returns true) when the relocation root is created
758 * either inside the critical section of a transaction commit
759 * (through transaction.c:qgroup_account_snapshot()) and when
760 * it's created before the transaction commit is started.
761 */
762 commit_root_gen = btrfs_header_generation(root->commit_root);
763 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
764 } else {
765 /*
766 * called by btrfs_reloc_post_snapshot_hook.
767 * the source tree is a reloc tree, all tree blocks
768 * modified after it was created have RELOC flag
769 * set in their headers. so it's OK to not update
770 * the 'last_snapshot'.
771 */
772 ret = btrfs_copy_root(trans, root, root->node, &eb,
773 BTRFS_TREE_RELOC_OBJECTID);
774 BUG_ON(ret);
775 }
776
777 memcpy(root_item, &root->root_item, sizeof(*root_item));
778 btrfs_set_root_bytenr(root_item, eb->start);
779 btrfs_set_root_level(root_item, btrfs_header_level(eb));
780 btrfs_set_root_generation(root_item, trans->transid);
781
782 if (root->root_key.objectid == objectid) {
783 btrfs_set_root_refs(root_item, 0);
784 memset(&root_item->drop_progress, 0,
785 sizeof(struct btrfs_disk_key));
786 root_item->drop_level = 0;
787 }
788
789 btrfs_tree_unlock(eb);
790 free_extent_buffer(eb);
791
792 ret = btrfs_insert_root(trans, fs_info->tree_root,
793 &root_key, root_item);
794 BUG_ON(ret);
795 kfree(root_item);
796
797 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
798 BUG_ON(IS_ERR(reloc_root));
799 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
800 reloc_root->last_trans = trans->transid;
801 return reloc_root;
802 }
803
804 /*
805 * create reloc tree for a given fs tree. reloc tree is just a
806 * snapshot of the fs tree with special root objectid.
807 *
808 * The reloc_root comes out of here with two references, one for
809 * root->reloc_root, and another for being on the rc->reloc_roots list.
810 */
811 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
812 struct btrfs_root *root)
813 {
814 struct btrfs_fs_info *fs_info = root->fs_info;
815 struct btrfs_root *reloc_root;
816 struct reloc_control *rc = fs_info->reloc_ctl;
817 struct btrfs_block_rsv *rsv;
818 int clear_rsv = 0;
819 int ret;
820
821 if (!rc)
822 return 0;
823
824 /*
825 * The subvolume has reloc tree but the swap is finished, no need to
826 * create/update the dead reloc tree
827 */
828 if (reloc_root_is_dead(root))
829 return 0;
830
831 /*
832 * This is subtle but important. We do not do
833 * record_root_in_transaction for reloc roots, instead we record their
834 * corresponding fs root, and then here we update the last trans for the
835 * reloc root. This means that we have to do this for the entire life
836 * of the reloc root, regardless of which stage of the relocation we are
837 * in.
838 */
839 if (root->reloc_root) {
840 reloc_root = root->reloc_root;
841 reloc_root->last_trans = trans->transid;
842 return 0;
843 }
844
845 /*
846 * We are merging reloc roots, we do not need new reloc trees. Also
847 * reloc trees never need their own reloc tree.
848 */
849 if (!rc->create_reloc_tree ||
850 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
851 return 0;
852
853 if (!trans->reloc_reserved) {
854 rsv = trans->block_rsv;
855 trans->block_rsv = rc->block_rsv;
856 clear_rsv = 1;
857 }
858 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
859 if (clear_rsv)
860 trans->block_rsv = rsv;
861
862 ret = __add_reloc_root(reloc_root);
863 BUG_ON(ret < 0);
864 root->reloc_root = btrfs_grab_root(reloc_root);
865 return 0;
866 }
867
868 /*
869 * update root item of reloc tree
870 */
871 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
872 struct btrfs_root *root)
873 {
874 struct btrfs_fs_info *fs_info = root->fs_info;
875 struct btrfs_root *reloc_root;
876 struct btrfs_root_item *root_item;
877 int ret;
878
879 if (!have_reloc_root(root))
880 goto out;
881
882 reloc_root = root->reloc_root;
883 root_item = &reloc_root->root_item;
884
885 /*
886 * We are probably ok here, but __del_reloc_root() will drop its ref of
887 * the root. We have the ref for root->reloc_root, but just in case
888 * hold it while we update the reloc root.
889 */
890 btrfs_grab_root(reloc_root);
891
892 /* root->reloc_root will stay until current relocation finished */
893 if (fs_info->reloc_ctl->merge_reloc_tree &&
894 btrfs_root_refs(root_item) == 0) {
895 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
896 /*
897 * Mark the tree as dead before we change reloc_root so
898 * have_reloc_root will not touch it from now on.
899 */
900 smp_wmb();
901 __del_reloc_root(reloc_root);
902 }
903
904 if (reloc_root->commit_root != reloc_root->node) {
905 __update_reloc_root(reloc_root);
906 btrfs_set_root_node(root_item, reloc_root->node);
907 free_extent_buffer(reloc_root->commit_root);
908 reloc_root->commit_root = btrfs_root_node(reloc_root);
909 }
910
911 ret = btrfs_update_root(trans, fs_info->tree_root,
912 &reloc_root->root_key, root_item);
913 BUG_ON(ret);
914 btrfs_put_root(reloc_root);
915 out:
916 return 0;
917 }
918
919 /*
920 * helper to find first cached inode with inode number >= objectid
921 * in a subvolume
922 */
923 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
924 {
925 struct rb_node *node;
926 struct rb_node *prev;
927 struct btrfs_inode *entry;
928 struct inode *inode;
929
930 spin_lock(&root->inode_lock);
931 again:
932 node = root->inode_tree.rb_node;
933 prev = NULL;
934 while (node) {
935 prev = node;
936 entry = rb_entry(node, struct btrfs_inode, rb_node);
937
938 if (objectid < btrfs_ino(entry))
939 node = node->rb_left;
940 else if (objectid > btrfs_ino(entry))
941 node = node->rb_right;
942 else
943 break;
944 }
945 if (!node) {
946 while (prev) {
947 entry = rb_entry(prev, struct btrfs_inode, rb_node);
948 if (objectid <= btrfs_ino(entry)) {
949 node = prev;
950 break;
951 }
952 prev = rb_next(prev);
953 }
954 }
955 while (node) {
956 entry = rb_entry(node, struct btrfs_inode, rb_node);
957 inode = igrab(&entry->vfs_inode);
958 if (inode) {
959 spin_unlock(&root->inode_lock);
960 return inode;
961 }
962
963 objectid = btrfs_ino(entry) + 1;
964 if (cond_resched_lock(&root->inode_lock))
965 goto again;
966
967 node = rb_next(node);
968 }
969 spin_unlock(&root->inode_lock);
970 return NULL;
971 }
972
973 /*
974 * get new location of data
975 */
976 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
977 u64 bytenr, u64 num_bytes)
978 {
979 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
980 struct btrfs_path *path;
981 struct btrfs_file_extent_item *fi;
982 struct extent_buffer *leaf;
983 int ret;
984
985 path = btrfs_alloc_path();
986 if (!path)
987 return -ENOMEM;
988
989 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
990 ret = btrfs_lookup_file_extent(NULL, root, path,
991 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
992 if (ret < 0)
993 goto out;
994 if (ret > 0) {
995 ret = -ENOENT;
996 goto out;
997 }
998
999 leaf = path->nodes[0];
1000 fi = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_file_extent_item);
1002
1003 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1004 btrfs_file_extent_compression(leaf, fi) ||
1005 btrfs_file_extent_encryption(leaf, fi) ||
1006 btrfs_file_extent_other_encoding(leaf, fi));
1007
1008 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1009 ret = -EINVAL;
1010 goto out;
1011 }
1012
1013 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1014 ret = 0;
1015 out:
1016 btrfs_free_path(path);
1017 return ret;
1018 }
1019
1020 /*
1021 * update file extent items in the tree leaf to point to
1022 * the new locations.
1023 */
1024 static noinline_for_stack
1025 int replace_file_extents(struct btrfs_trans_handle *trans,
1026 struct reloc_control *rc,
1027 struct btrfs_root *root,
1028 struct extent_buffer *leaf)
1029 {
1030 struct btrfs_fs_info *fs_info = root->fs_info;
1031 struct btrfs_key key;
1032 struct btrfs_file_extent_item *fi;
1033 struct inode *inode = NULL;
1034 u64 parent;
1035 u64 bytenr;
1036 u64 new_bytenr = 0;
1037 u64 num_bytes;
1038 u64 end;
1039 u32 nritems;
1040 u32 i;
1041 int ret = 0;
1042 int first = 1;
1043 int dirty = 0;
1044
1045 if (rc->stage != UPDATE_DATA_PTRS)
1046 return 0;
1047
1048 /* reloc trees always use full backref */
1049 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1050 parent = leaf->start;
1051 else
1052 parent = 0;
1053
1054 nritems = btrfs_header_nritems(leaf);
1055 for (i = 0; i < nritems; i++) {
1056 struct btrfs_ref ref = { 0 };
1057
1058 cond_resched();
1059 btrfs_item_key_to_cpu(leaf, &key, i);
1060 if (key.type != BTRFS_EXTENT_DATA_KEY)
1061 continue;
1062 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1063 if (btrfs_file_extent_type(leaf, fi) ==
1064 BTRFS_FILE_EXTENT_INLINE)
1065 continue;
1066 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1067 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1068 if (bytenr == 0)
1069 continue;
1070 if (!in_range(bytenr, rc->block_group->start,
1071 rc->block_group->length))
1072 continue;
1073
1074 /*
1075 * if we are modifying block in fs tree, wait for readpage
1076 * to complete and drop the extent cache
1077 */
1078 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1079 if (first) {
1080 inode = find_next_inode(root, key.objectid);
1081 first = 0;
1082 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1083 btrfs_add_delayed_iput(inode);
1084 inode = find_next_inode(root, key.objectid);
1085 }
1086 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1087 end = key.offset +
1088 btrfs_file_extent_num_bytes(leaf, fi);
1089 WARN_ON(!IS_ALIGNED(key.offset,
1090 fs_info->sectorsize));
1091 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1092 end--;
1093 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1094 key.offset, end);
1095 if (!ret)
1096 continue;
1097
1098 btrfs_drop_extent_cache(BTRFS_I(inode),
1099 key.offset, end, 1);
1100 unlock_extent(&BTRFS_I(inode)->io_tree,
1101 key.offset, end);
1102 }
1103 }
1104
1105 ret = get_new_location(rc->data_inode, &new_bytenr,
1106 bytenr, num_bytes);
1107 if (ret) {
1108 /*
1109 * Don't have to abort since we've not changed anything
1110 * in the file extent yet.
1111 */
1112 break;
1113 }
1114
1115 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1116 dirty = 1;
1117
1118 key.offset -= btrfs_file_extent_offset(leaf, fi);
1119 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1120 num_bytes, parent);
1121 ref.real_root = root->root_key.objectid;
1122 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1123 key.objectid, key.offset);
1124 ret = btrfs_inc_extent_ref(trans, &ref);
1125 if (ret) {
1126 btrfs_abort_transaction(trans, ret);
1127 break;
1128 }
1129
1130 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1131 num_bytes, parent);
1132 ref.real_root = root->root_key.objectid;
1133 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1134 key.objectid, key.offset);
1135 ret = btrfs_free_extent(trans, &ref);
1136 if (ret) {
1137 btrfs_abort_transaction(trans, ret);
1138 break;
1139 }
1140 }
1141 if (dirty)
1142 btrfs_mark_buffer_dirty(leaf);
1143 if (inode)
1144 btrfs_add_delayed_iput(inode);
1145 return ret;
1146 }
1147
1148 static noinline_for_stack
1149 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1150 struct btrfs_path *path, int level)
1151 {
1152 struct btrfs_disk_key key1;
1153 struct btrfs_disk_key key2;
1154 btrfs_node_key(eb, &key1, slot);
1155 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1156 return memcmp(&key1, &key2, sizeof(key1));
1157 }
1158
1159 /*
1160 * try to replace tree blocks in fs tree with the new blocks
1161 * in reloc tree. tree blocks haven't been modified since the
1162 * reloc tree was create can be replaced.
1163 *
1164 * if a block was replaced, level of the block + 1 is returned.
1165 * if no block got replaced, 0 is returned. if there are other
1166 * errors, a negative error number is returned.
1167 */
1168 static noinline_for_stack
1169 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1170 struct btrfs_root *dest, struct btrfs_root *src,
1171 struct btrfs_path *path, struct btrfs_key *next_key,
1172 int lowest_level, int max_level)
1173 {
1174 struct btrfs_fs_info *fs_info = dest->fs_info;
1175 struct extent_buffer *eb;
1176 struct extent_buffer *parent;
1177 struct btrfs_ref ref = { 0 };
1178 struct btrfs_key key;
1179 u64 old_bytenr;
1180 u64 new_bytenr;
1181 u64 old_ptr_gen;
1182 u64 new_ptr_gen;
1183 u64 last_snapshot;
1184 u32 blocksize;
1185 int cow = 0;
1186 int level;
1187 int ret;
1188 int slot;
1189
1190 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1191 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1192
1193 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1194 again:
1195 slot = path->slots[lowest_level];
1196 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1197
1198 eb = btrfs_lock_root_node(dest);
1199 btrfs_set_lock_blocking_write(eb);
1200 level = btrfs_header_level(eb);
1201
1202 if (level < lowest_level) {
1203 btrfs_tree_unlock(eb);
1204 free_extent_buffer(eb);
1205 return 0;
1206 }
1207
1208 if (cow) {
1209 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1210 BUG_ON(ret);
1211 }
1212 btrfs_set_lock_blocking_write(eb);
1213
1214 if (next_key) {
1215 next_key->objectid = (u64)-1;
1216 next_key->type = (u8)-1;
1217 next_key->offset = (u64)-1;
1218 }
1219
1220 parent = eb;
1221 while (1) {
1222 struct btrfs_key first_key;
1223
1224 level = btrfs_header_level(parent);
1225 BUG_ON(level < lowest_level);
1226
1227 ret = btrfs_bin_search(parent, &key, &slot);
1228 if (ret < 0)
1229 break;
1230 if (ret && slot > 0)
1231 slot--;
1232
1233 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1234 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1235
1236 old_bytenr = btrfs_node_blockptr(parent, slot);
1237 blocksize = fs_info->nodesize;
1238 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1239 btrfs_node_key_to_cpu(parent, &first_key, slot);
1240
1241 if (level <= max_level) {
1242 eb = path->nodes[level];
1243 new_bytenr = btrfs_node_blockptr(eb,
1244 path->slots[level]);
1245 new_ptr_gen = btrfs_node_ptr_generation(eb,
1246 path->slots[level]);
1247 } else {
1248 new_bytenr = 0;
1249 new_ptr_gen = 0;
1250 }
1251
1252 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1253 ret = level;
1254 break;
1255 }
1256
1257 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1258 memcmp_node_keys(parent, slot, path, level)) {
1259 if (level <= lowest_level) {
1260 ret = 0;
1261 break;
1262 }
1263
1264 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1265 level - 1, &first_key);
1266 if (IS_ERR(eb)) {
1267 ret = PTR_ERR(eb);
1268 break;
1269 } else if (!extent_buffer_uptodate(eb)) {
1270 ret = -EIO;
1271 free_extent_buffer(eb);
1272 break;
1273 }
1274 btrfs_tree_lock(eb);
1275 if (cow) {
1276 ret = btrfs_cow_block(trans, dest, eb, parent,
1277 slot, &eb);
1278 BUG_ON(ret);
1279 }
1280 btrfs_set_lock_blocking_write(eb);
1281
1282 btrfs_tree_unlock(parent);
1283 free_extent_buffer(parent);
1284
1285 parent = eb;
1286 continue;
1287 }
1288
1289 if (!cow) {
1290 btrfs_tree_unlock(parent);
1291 free_extent_buffer(parent);
1292 cow = 1;
1293 goto again;
1294 }
1295
1296 btrfs_node_key_to_cpu(path->nodes[level], &key,
1297 path->slots[level]);
1298 btrfs_release_path(path);
1299
1300 path->lowest_level = level;
1301 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1302 path->lowest_level = 0;
1303 BUG_ON(ret);
1304
1305 /*
1306 * Info qgroup to trace both subtrees.
1307 *
1308 * We must trace both trees.
1309 * 1) Tree reloc subtree
1310 * If not traced, we will leak data numbers
1311 * 2) Fs subtree
1312 * If not traced, we will double count old data
1313 *
1314 * We don't scan the subtree right now, but only record
1315 * the swapped tree blocks.
1316 * The real subtree rescan is delayed until we have new
1317 * CoW on the subtree root node before transaction commit.
1318 */
1319 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1320 rc->block_group, parent, slot,
1321 path->nodes[level], path->slots[level],
1322 last_snapshot);
1323 if (ret < 0)
1324 break;
1325 /*
1326 * swap blocks in fs tree and reloc tree.
1327 */
1328 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1329 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1330 btrfs_mark_buffer_dirty(parent);
1331
1332 btrfs_set_node_blockptr(path->nodes[level],
1333 path->slots[level], old_bytenr);
1334 btrfs_set_node_ptr_generation(path->nodes[level],
1335 path->slots[level], old_ptr_gen);
1336 btrfs_mark_buffer_dirty(path->nodes[level]);
1337
1338 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1339 blocksize, path->nodes[level]->start);
1340 ref.skip_qgroup = true;
1341 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1342 ret = btrfs_inc_extent_ref(trans, &ref);
1343 BUG_ON(ret);
1344 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1345 blocksize, 0);
1346 ref.skip_qgroup = true;
1347 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1348 ret = btrfs_inc_extent_ref(trans, &ref);
1349 BUG_ON(ret);
1350
1351 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1352 blocksize, path->nodes[level]->start);
1353 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1354 ref.skip_qgroup = true;
1355 ret = btrfs_free_extent(trans, &ref);
1356 BUG_ON(ret);
1357
1358 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1359 blocksize, 0);
1360 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1361 ref.skip_qgroup = true;
1362 ret = btrfs_free_extent(trans, &ref);
1363 BUG_ON(ret);
1364
1365 btrfs_unlock_up_safe(path, 0);
1366
1367 ret = level;
1368 break;
1369 }
1370 btrfs_tree_unlock(parent);
1371 free_extent_buffer(parent);
1372 return ret;
1373 }
1374
1375 /*
1376 * helper to find next relocated block in reloc tree
1377 */
1378 static noinline_for_stack
1379 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1380 int *level)
1381 {
1382 struct extent_buffer *eb;
1383 int i;
1384 u64 last_snapshot;
1385 u32 nritems;
1386
1387 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1388
1389 for (i = 0; i < *level; i++) {
1390 free_extent_buffer(path->nodes[i]);
1391 path->nodes[i] = NULL;
1392 }
1393
1394 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1395 eb = path->nodes[i];
1396 nritems = btrfs_header_nritems(eb);
1397 while (path->slots[i] + 1 < nritems) {
1398 path->slots[i]++;
1399 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1400 last_snapshot)
1401 continue;
1402
1403 *level = i;
1404 return 0;
1405 }
1406 free_extent_buffer(path->nodes[i]);
1407 path->nodes[i] = NULL;
1408 }
1409 return 1;
1410 }
1411
1412 /*
1413 * walk down reloc tree to find relocated block of lowest level
1414 */
1415 static noinline_for_stack
1416 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1417 int *level)
1418 {
1419 struct btrfs_fs_info *fs_info = root->fs_info;
1420 struct extent_buffer *eb = NULL;
1421 int i;
1422 u64 bytenr;
1423 u64 ptr_gen = 0;
1424 u64 last_snapshot;
1425 u32 nritems;
1426
1427 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1428
1429 for (i = *level; i > 0; i--) {
1430 struct btrfs_key first_key;
1431
1432 eb = path->nodes[i];
1433 nritems = btrfs_header_nritems(eb);
1434 while (path->slots[i] < nritems) {
1435 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1436 if (ptr_gen > last_snapshot)
1437 break;
1438 path->slots[i]++;
1439 }
1440 if (path->slots[i] >= nritems) {
1441 if (i == *level)
1442 break;
1443 *level = i + 1;
1444 return 0;
1445 }
1446 if (i == 1) {
1447 *level = i;
1448 return 0;
1449 }
1450
1451 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1452 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
1453 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
1454 &first_key);
1455 if (IS_ERR(eb)) {
1456 return PTR_ERR(eb);
1457 } else if (!extent_buffer_uptodate(eb)) {
1458 free_extent_buffer(eb);
1459 return -EIO;
1460 }
1461 BUG_ON(btrfs_header_level(eb) != i - 1);
1462 path->nodes[i - 1] = eb;
1463 path->slots[i - 1] = 0;
1464 }
1465 return 1;
1466 }
1467
1468 /*
1469 * invalidate extent cache for file extents whose key in range of
1470 * [min_key, max_key)
1471 */
1472 static int invalidate_extent_cache(struct btrfs_root *root,
1473 struct btrfs_key *min_key,
1474 struct btrfs_key *max_key)
1475 {
1476 struct btrfs_fs_info *fs_info = root->fs_info;
1477 struct inode *inode = NULL;
1478 u64 objectid;
1479 u64 start, end;
1480 u64 ino;
1481
1482 objectid = min_key->objectid;
1483 while (1) {
1484 cond_resched();
1485 iput(inode);
1486
1487 if (objectid > max_key->objectid)
1488 break;
1489
1490 inode = find_next_inode(root, objectid);
1491 if (!inode)
1492 break;
1493 ino = btrfs_ino(BTRFS_I(inode));
1494
1495 if (ino > max_key->objectid) {
1496 iput(inode);
1497 break;
1498 }
1499
1500 objectid = ino + 1;
1501 if (!S_ISREG(inode->i_mode))
1502 continue;
1503
1504 if (unlikely(min_key->objectid == ino)) {
1505 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1506 continue;
1507 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1508 start = 0;
1509 else {
1510 start = min_key->offset;
1511 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1512 }
1513 } else {
1514 start = 0;
1515 }
1516
1517 if (unlikely(max_key->objectid == ino)) {
1518 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1519 continue;
1520 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1521 end = (u64)-1;
1522 } else {
1523 if (max_key->offset == 0)
1524 continue;
1525 end = max_key->offset;
1526 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1527 end--;
1528 }
1529 } else {
1530 end = (u64)-1;
1531 }
1532
1533 /* the lock_extent waits for readpage to complete */
1534 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1535 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1536 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1537 }
1538 return 0;
1539 }
1540
1541 static int find_next_key(struct btrfs_path *path, int level,
1542 struct btrfs_key *key)
1543
1544 {
1545 while (level < BTRFS_MAX_LEVEL) {
1546 if (!path->nodes[level])
1547 break;
1548 if (path->slots[level] + 1 <
1549 btrfs_header_nritems(path->nodes[level])) {
1550 btrfs_node_key_to_cpu(path->nodes[level], key,
1551 path->slots[level] + 1);
1552 return 0;
1553 }
1554 level++;
1555 }
1556 return 1;
1557 }
1558
1559 /*
1560 * Insert current subvolume into reloc_control::dirty_subvol_roots
1561 */
1562 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1563 struct reloc_control *rc,
1564 struct btrfs_root *root)
1565 {
1566 struct btrfs_root *reloc_root = root->reloc_root;
1567 struct btrfs_root_item *reloc_root_item;
1568
1569 /* @root must be a subvolume tree root with a valid reloc tree */
1570 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1571 ASSERT(reloc_root);
1572
1573 reloc_root_item = &reloc_root->root_item;
1574 memset(&reloc_root_item->drop_progress, 0,
1575 sizeof(reloc_root_item->drop_progress));
1576 reloc_root_item->drop_level = 0;
1577 btrfs_set_root_refs(reloc_root_item, 0);
1578 btrfs_update_reloc_root(trans, root);
1579
1580 if (list_empty(&root->reloc_dirty_list)) {
1581 btrfs_grab_root(root);
1582 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1583 }
1584 }
1585
1586 static int clean_dirty_subvols(struct reloc_control *rc)
1587 {
1588 struct btrfs_root *root;
1589 struct btrfs_root *next;
1590 int ret = 0;
1591 int ret2;
1592
1593 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1594 reloc_dirty_list) {
1595 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1596 /* Merged subvolume, cleanup its reloc root */
1597 struct btrfs_root *reloc_root = root->reloc_root;
1598
1599 list_del_init(&root->reloc_dirty_list);
1600 root->reloc_root = NULL;
1601 /*
1602 * Need barrier to ensure clear_bit() only happens after
1603 * root->reloc_root = NULL. Pairs with have_reloc_root.
1604 */
1605 smp_wmb();
1606 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1607 if (reloc_root) {
1608 /*
1609 * btrfs_drop_snapshot drops our ref we hold for
1610 * ->reloc_root. If it fails however we must
1611 * drop the ref ourselves.
1612 */
1613 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1614 if (ret2 < 0) {
1615 btrfs_put_root(reloc_root);
1616 if (!ret)
1617 ret = ret2;
1618 }
1619 }
1620 btrfs_put_root(root);
1621 } else {
1622 /* Orphan reloc tree, just clean it up */
1623 ret2 = btrfs_drop_snapshot(root, 0, 1);
1624 if (ret2 < 0) {
1625 btrfs_put_root(root);
1626 if (!ret)
1627 ret = ret2;
1628 }
1629 }
1630 }
1631 return ret;
1632 }
1633
1634 /*
1635 * merge the relocated tree blocks in reloc tree with corresponding
1636 * fs tree.
1637 */
1638 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1639 struct btrfs_root *root)
1640 {
1641 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1642 struct btrfs_key key;
1643 struct btrfs_key next_key;
1644 struct btrfs_trans_handle *trans = NULL;
1645 struct btrfs_root *reloc_root;
1646 struct btrfs_root_item *root_item;
1647 struct btrfs_path *path;
1648 struct extent_buffer *leaf;
1649 int level;
1650 int max_level;
1651 int replaced = 0;
1652 int ret;
1653 int err = 0;
1654 u32 min_reserved;
1655
1656 path = btrfs_alloc_path();
1657 if (!path)
1658 return -ENOMEM;
1659 path->reada = READA_FORWARD;
1660
1661 reloc_root = root->reloc_root;
1662 root_item = &reloc_root->root_item;
1663
1664 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1665 level = btrfs_root_level(root_item);
1666 atomic_inc(&reloc_root->node->refs);
1667 path->nodes[level] = reloc_root->node;
1668 path->slots[level] = 0;
1669 } else {
1670 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1671
1672 level = root_item->drop_level;
1673 BUG_ON(level == 0);
1674 path->lowest_level = level;
1675 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1676 path->lowest_level = 0;
1677 if (ret < 0) {
1678 btrfs_free_path(path);
1679 return ret;
1680 }
1681
1682 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1683 path->slots[level]);
1684 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1685
1686 btrfs_unlock_up_safe(path, 0);
1687 }
1688
1689 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1690 memset(&next_key, 0, sizeof(next_key));
1691
1692 while (1) {
1693 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1694 BTRFS_RESERVE_FLUSH_ALL);
1695 if (ret) {
1696 err = ret;
1697 goto out;
1698 }
1699 trans = btrfs_start_transaction(root, 0);
1700 if (IS_ERR(trans)) {
1701 err = PTR_ERR(trans);
1702 trans = NULL;
1703 goto out;
1704 }
1705
1706 /*
1707 * At this point we no longer have a reloc_control, so we can't
1708 * depend on btrfs_init_reloc_root to update our last_trans.
1709 *
1710 * But that's ok, we started the trans handle on our
1711 * corresponding fs_root, which means it's been added to the
1712 * dirty list. At commit time we'll still call
1713 * btrfs_update_reloc_root() and update our root item
1714 * appropriately.
1715 */
1716 reloc_root->last_trans = trans->transid;
1717 trans->block_rsv = rc->block_rsv;
1718
1719 replaced = 0;
1720 max_level = level;
1721
1722 ret = walk_down_reloc_tree(reloc_root, path, &level);
1723 if (ret < 0) {
1724 err = ret;
1725 goto out;
1726 }
1727 if (ret > 0)
1728 break;
1729
1730 if (!find_next_key(path, level, &key) &&
1731 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1732 ret = 0;
1733 } else {
1734 ret = replace_path(trans, rc, root, reloc_root, path,
1735 &next_key, level, max_level);
1736 }
1737 if (ret < 0) {
1738 err = ret;
1739 goto out;
1740 }
1741
1742 if (ret > 0) {
1743 level = ret;
1744 btrfs_node_key_to_cpu(path->nodes[level], &key,
1745 path->slots[level]);
1746 replaced = 1;
1747 }
1748
1749 ret = walk_up_reloc_tree(reloc_root, path, &level);
1750 if (ret > 0)
1751 break;
1752
1753 BUG_ON(level == 0);
1754 /*
1755 * save the merging progress in the drop_progress.
1756 * this is OK since root refs == 1 in this case.
1757 */
1758 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1759 path->slots[level]);
1760 root_item->drop_level = level;
1761
1762 btrfs_end_transaction_throttle(trans);
1763 trans = NULL;
1764
1765 btrfs_btree_balance_dirty(fs_info);
1766
1767 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1768 invalidate_extent_cache(root, &key, &next_key);
1769 }
1770
1771 /*
1772 * handle the case only one block in the fs tree need to be
1773 * relocated and the block is tree root.
1774 */
1775 leaf = btrfs_lock_root_node(root);
1776 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
1777 btrfs_tree_unlock(leaf);
1778 free_extent_buffer(leaf);
1779 if (ret < 0)
1780 err = ret;
1781 out:
1782 btrfs_free_path(path);
1783
1784 if (err == 0)
1785 insert_dirty_subvol(trans, rc, root);
1786
1787 if (trans)
1788 btrfs_end_transaction_throttle(trans);
1789
1790 btrfs_btree_balance_dirty(fs_info);
1791
1792 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1793 invalidate_extent_cache(root, &key, &next_key);
1794
1795 return err;
1796 }
1797
1798 static noinline_for_stack
1799 int prepare_to_merge(struct reloc_control *rc, int err)
1800 {
1801 struct btrfs_root *root = rc->extent_root;
1802 struct btrfs_fs_info *fs_info = root->fs_info;
1803 struct btrfs_root *reloc_root;
1804 struct btrfs_trans_handle *trans;
1805 LIST_HEAD(reloc_roots);
1806 u64 num_bytes = 0;
1807 int ret;
1808
1809 mutex_lock(&fs_info->reloc_mutex);
1810 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1811 rc->merging_rsv_size += rc->nodes_relocated * 2;
1812 mutex_unlock(&fs_info->reloc_mutex);
1813
1814 again:
1815 if (!err) {
1816 num_bytes = rc->merging_rsv_size;
1817 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1818 BTRFS_RESERVE_FLUSH_ALL);
1819 if (ret)
1820 err = ret;
1821 }
1822
1823 trans = btrfs_join_transaction(rc->extent_root);
1824 if (IS_ERR(trans)) {
1825 if (!err)
1826 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1827 num_bytes, NULL);
1828 return PTR_ERR(trans);
1829 }
1830
1831 if (!err) {
1832 if (num_bytes != rc->merging_rsv_size) {
1833 btrfs_end_transaction(trans);
1834 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1835 num_bytes, NULL);
1836 goto again;
1837 }
1838 }
1839
1840 rc->merge_reloc_tree = 1;
1841
1842 while (!list_empty(&rc->reloc_roots)) {
1843 reloc_root = list_entry(rc->reloc_roots.next,
1844 struct btrfs_root, root_list);
1845 list_del_init(&reloc_root->root_list);
1846
1847 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1848 false);
1849 BUG_ON(IS_ERR(root));
1850 BUG_ON(root->reloc_root != reloc_root);
1851
1852 /*
1853 * set reference count to 1, so btrfs_recover_relocation
1854 * knows it should resumes merging
1855 */
1856 if (!err)
1857 btrfs_set_root_refs(&reloc_root->root_item, 1);
1858 btrfs_update_reloc_root(trans, root);
1859
1860 list_add(&reloc_root->root_list, &reloc_roots);
1861 btrfs_put_root(root);
1862 }
1863
1864 list_splice(&reloc_roots, &rc->reloc_roots);
1865
1866 if (!err)
1867 btrfs_commit_transaction(trans);
1868 else
1869 btrfs_end_transaction(trans);
1870 return err;
1871 }
1872
1873 static noinline_for_stack
1874 void free_reloc_roots(struct list_head *list)
1875 {
1876 struct btrfs_root *reloc_root, *tmp;
1877
1878 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1879 __del_reloc_root(reloc_root);
1880 }
1881
1882 static noinline_for_stack
1883 void merge_reloc_roots(struct reloc_control *rc)
1884 {
1885 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1886 struct btrfs_root *root;
1887 struct btrfs_root *reloc_root;
1888 LIST_HEAD(reloc_roots);
1889 int found = 0;
1890 int ret = 0;
1891 again:
1892 root = rc->extent_root;
1893
1894 /*
1895 * this serializes us with btrfs_record_root_in_transaction,
1896 * we have to make sure nobody is in the middle of
1897 * adding their roots to the list while we are
1898 * doing this splice
1899 */
1900 mutex_lock(&fs_info->reloc_mutex);
1901 list_splice_init(&rc->reloc_roots, &reloc_roots);
1902 mutex_unlock(&fs_info->reloc_mutex);
1903
1904 while (!list_empty(&reloc_roots)) {
1905 found = 1;
1906 reloc_root = list_entry(reloc_roots.next,
1907 struct btrfs_root, root_list);
1908
1909 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1910 false);
1911 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1912 BUG_ON(IS_ERR(root));
1913 BUG_ON(root->reloc_root != reloc_root);
1914 ret = merge_reloc_root(rc, root);
1915 btrfs_put_root(root);
1916 if (ret) {
1917 if (list_empty(&reloc_root->root_list))
1918 list_add_tail(&reloc_root->root_list,
1919 &reloc_roots);
1920 goto out;
1921 }
1922 } else {
1923 if (!IS_ERR(root)) {
1924 if (root->reloc_root == reloc_root) {
1925 root->reloc_root = NULL;
1926 btrfs_put_root(reloc_root);
1927 }
1928 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1929 &root->state);
1930 btrfs_put_root(root);
1931 }
1932
1933 list_del_init(&reloc_root->root_list);
1934 /* Don't forget to queue this reloc root for cleanup */
1935 list_add_tail(&reloc_root->reloc_dirty_list,
1936 &rc->dirty_subvol_roots);
1937 }
1938 }
1939
1940 if (found) {
1941 found = 0;
1942 goto again;
1943 }
1944 out:
1945 if (ret) {
1946 btrfs_handle_fs_error(fs_info, ret, NULL);
1947 free_reloc_roots(&reloc_roots);
1948
1949 /* new reloc root may be added */
1950 mutex_lock(&fs_info->reloc_mutex);
1951 list_splice_init(&rc->reloc_roots, &reloc_roots);
1952 mutex_unlock(&fs_info->reloc_mutex);
1953 free_reloc_roots(&reloc_roots);
1954 }
1955
1956 /*
1957 * We used to have
1958 *
1959 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1960 *
1961 * here, but it's wrong. If we fail to start the transaction in
1962 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1963 * have actually been removed from the reloc_root_tree rb tree. This is
1964 * fine because we're bailing here, and we hold a reference on the root
1965 * for the list that holds it, so these roots will be cleaned up when we
1966 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
1967 * will be cleaned up on unmount.
1968 *
1969 * The remaining nodes will be cleaned up by free_reloc_control.
1970 */
1971 }
1972
1973 static void free_block_list(struct rb_root *blocks)
1974 {
1975 struct tree_block *block;
1976 struct rb_node *rb_node;
1977 while ((rb_node = rb_first(blocks))) {
1978 block = rb_entry(rb_node, struct tree_block, rb_node);
1979 rb_erase(rb_node, blocks);
1980 kfree(block);
1981 }
1982 }
1983
1984 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1985 struct btrfs_root *reloc_root)
1986 {
1987 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1988 struct btrfs_root *root;
1989 int ret;
1990
1991 if (reloc_root->last_trans == trans->transid)
1992 return 0;
1993
1994 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1995 BUG_ON(IS_ERR(root));
1996 BUG_ON(root->reloc_root != reloc_root);
1997 ret = btrfs_record_root_in_trans(trans, root);
1998 btrfs_put_root(root);
1999
2000 return ret;
2001 }
2002
2003 static noinline_for_stack
2004 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2005 struct reloc_control *rc,
2006 struct btrfs_backref_node *node,
2007 struct btrfs_backref_edge *edges[])
2008 {
2009 struct btrfs_backref_node *next;
2010 struct btrfs_root *root;
2011 int index = 0;
2012
2013 next = node;
2014 while (1) {
2015 cond_resched();
2016 next = walk_up_backref(next, edges, &index);
2017 root = next->root;
2018 BUG_ON(!root);
2019 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2020
2021 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2022 record_reloc_root_in_trans(trans, root);
2023 break;
2024 }
2025
2026 btrfs_record_root_in_trans(trans, root);
2027 root = root->reloc_root;
2028
2029 if (next->new_bytenr != root->node->start) {
2030 BUG_ON(next->new_bytenr);
2031 BUG_ON(!list_empty(&next->list));
2032 next->new_bytenr = root->node->start;
2033 btrfs_put_root(next->root);
2034 next->root = btrfs_grab_root(root);
2035 ASSERT(next->root);
2036 list_add_tail(&next->list,
2037 &rc->backref_cache.changed);
2038 mark_block_processed(rc, next);
2039 break;
2040 }
2041
2042 WARN_ON(1);
2043 root = NULL;
2044 next = walk_down_backref(edges, &index);
2045 if (!next || next->level <= node->level)
2046 break;
2047 }
2048 if (!root)
2049 return NULL;
2050
2051 next = node;
2052 /* setup backref node path for btrfs_reloc_cow_block */
2053 while (1) {
2054 rc->backref_cache.path[next->level] = next;
2055 if (--index < 0)
2056 break;
2057 next = edges[index]->node[UPPER];
2058 }
2059 return root;
2060 }
2061
2062 /*
2063 * Select a tree root for relocation.
2064 *
2065 * Return NULL if the block is not shareable. We should use do_relocation() in
2066 * this case.
2067 *
2068 * Return a tree root pointer if the block is shareable.
2069 * Return -ENOENT if the block is root of reloc tree.
2070 */
2071 static noinline_for_stack
2072 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2073 {
2074 struct btrfs_backref_node *next;
2075 struct btrfs_root *root;
2076 struct btrfs_root *fs_root = NULL;
2077 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2078 int index = 0;
2079
2080 next = node;
2081 while (1) {
2082 cond_resched();
2083 next = walk_up_backref(next, edges, &index);
2084 root = next->root;
2085 BUG_ON(!root);
2086
2087 /* No other choice for non-shareable tree */
2088 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2089 return root;
2090
2091 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2092 fs_root = root;
2093
2094 if (next != node)
2095 return NULL;
2096
2097 next = walk_down_backref(edges, &index);
2098 if (!next || next->level <= node->level)
2099 break;
2100 }
2101
2102 if (!fs_root)
2103 return ERR_PTR(-ENOENT);
2104 return fs_root;
2105 }
2106
2107 static noinline_for_stack
2108 u64 calcu_metadata_size(struct reloc_control *rc,
2109 struct btrfs_backref_node *node, int reserve)
2110 {
2111 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2112 struct btrfs_backref_node *next = node;
2113 struct btrfs_backref_edge *edge;
2114 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2115 u64 num_bytes = 0;
2116 int index = 0;
2117
2118 BUG_ON(reserve && node->processed);
2119
2120 while (next) {
2121 cond_resched();
2122 while (1) {
2123 if (next->processed && (reserve || next != node))
2124 break;
2125
2126 num_bytes += fs_info->nodesize;
2127
2128 if (list_empty(&next->upper))
2129 break;
2130
2131 edge = list_entry(next->upper.next,
2132 struct btrfs_backref_edge, list[LOWER]);
2133 edges[index++] = edge;
2134 next = edge->node[UPPER];
2135 }
2136 next = walk_down_backref(edges, &index);
2137 }
2138 return num_bytes;
2139 }
2140
2141 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2142 struct reloc_control *rc,
2143 struct btrfs_backref_node *node)
2144 {
2145 struct btrfs_root *root = rc->extent_root;
2146 struct btrfs_fs_info *fs_info = root->fs_info;
2147 u64 num_bytes;
2148 int ret;
2149 u64 tmp;
2150
2151 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2152
2153 trans->block_rsv = rc->block_rsv;
2154 rc->reserved_bytes += num_bytes;
2155
2156 /*
2157 * We are under a transaction here so we can only do limited flushing.
2158 * If we get an enospc just kick back -EAGAIN so we know to drop the
2159 * transaction and try to refill when we can flush all the things.
2160 */
2161 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2162 BTRFS_RESERVE_FLUSH_LIMIT);
2163 if (ret) {
2164 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2165 while (tmp <= rc->reserved_bytes)
2166 tmp <<= 1;
2167 /*
2168 * only one thread can access block_rsv at this point,
2169 * so we don't need hold lock to protect block_rsv.
2170 * we expand more reservation size here to allow enough
2171 * space for relocation and we will return earlier in
2172 * enospc case.
2173 */
2174 rc->block_rsv->size = tmp + fs_info->nodesize *
2175 RELOCATION_RESERVED_NODES;
2176 return -EAGAIN;
2177 }
2178
2179 return 0;
2180 }
2181
2182 /*
2183 * relocate a block tree, and then update pointers in upper level
2184 * blocks that reference the block to point to the new location.
2185 *
2186 * if called by link_to_upper, the block has already been relocated.
2187 * in that case this function just updates pointers.
2188 */
2189 static int do_relocation(struct btrfs_trans_handle *trans,
2190 struct reloc_control *rc,
2191 struct btrfs_backref_node *node,
2192 struct btrfs_key *key,
2193 struct btrfs_path *path, int lowest)
2194 {
2195 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2196 struct btrfs_backref_node *upper;
2197 struct btrfs_backref_edge *edge;
2198 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2199 struct btrfs_root *root;
2200 struct extent_buffer *eb;
2201 u32 blocksize;
2202 u64 bytenr;
2203 u64 generation;
2204 int slot;
2205 int ret;
2206 int err = 0;
2207
2208 BUG_ON(lowest && node->eb);
2209
2210 path->lowest_level = node->level + 1;
2211 rc->backref_cache.path[node->level] = node;
2212 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2213 struct btrfs_key first_key;
2214 struct btrfs_ref ref = { 0 };
2215
2216 cond_resched();
2217
2218 upper = edge->node[UPPER];
2219 root = select_reloc_root(trans, rc, upper, edges);
2220 BUG_ON(!root);
2221
2222 if (upper->eb && !upper->locked) {
2223 if (!lowest) {
2224 ret = btrfs_bin_search(upper->eb, key, &slot);
2225 if (ret < 0) {
2226 err = ret;
2227 goto next;
2228 }
2229 BUG_ON(ret);
2230 bytenr = btrfs_node_blockptr(upper->eb, slot);
2231 if (node->eb->start == bytenr)
2232 goto next;
2233 }
2234 btrfs_backref_drop_node_buffer(upper);
2235 }
2236
2237 if (!upper->eb) {
2238 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2239 if (ret) {
2240 if (ret < 0)
2241 err = ret;
2242 else
2243 err = -ENOENT;
2244
2245 btrfs_release_path(path);
2246 break;
2247 }
2248
2249 if (!upper->eb) {
2250 upper->eb = path->nodes[upper->level];
2251 path->nodes[upper->level] = NULL;
2252 } else {
2253 BUG_ON(upper->eb != path->nodes[upper->level]);
2254 }
2255
2256 upper->locked = 1;
2257 path->locks[upper->level] = 0;
2258
2259 slot = path->slots[upper->level];
2260 btrfs_release_path(path);
2261 } else {
2262 ret = btrfs_bin_search(upper->eb, key, &slot);
2263 if (ret < 0) {
2264 err = ret;
2265 goto next;
2266 }
2267 BUG_ON(ret);
2268 }
2269
2270 bytenr = btrfs_node_blockptr(upper->eb, slot);
2271 if (lowest) {
2272 if (bytenr != node->bytenr) {
2273 btrfs_err(root->fs_info,
2274 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2275 bytenr, node->bytenr, slot,
2276 upper->eb->start);
2277 err = -EIO;
2278 goto next;
2279 }
2280 } else {
2281 if (node->eb->start == bytenr)
2282 goto next;
2283 }
2284
2285 blocksize = root->fs_info->nodesize;
2286 generation = btrfs_node_ptr_generation(upper->eb, slot);
2287 btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2288 eb = read_tree_block(fs_info, bytenr, generation,
2289 upper->level - 1, &first_key);
2290 if (IS_ERR(eb)) {
2291 err = PTR_ERR(eb);
2292 goto next;
2293 } else if (!extent_buffer_uptodate(eb)) {
2294 free_extent_buffer(eb);
2295 err = -EIO;
2296 goto next;
2297 }
2298 btrfs_tree_lock(eb);
2299 btrfs_set_lock_blocking_write(eb);
2300
2301 if (!node->eb) {
2302 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2303 slot, &eb);
2304 btrfs_tree_unlock(eb);
2305 free_extent_buffer(eb);
2306 if (ret < 0) {
2307 err = ret;
2308 goto next;
2309 }
2310 BUG_ON(node->eb != eb);
2311 } else {
2312 btrfs_set_node_blockptr(upper->eb, slot,
2313 node->eb->start);
2314 btrfs_set_node_ptr_generation(upper->eb, slot,
2315 trans->transid);
2316 btrfs_mark_buffer_dirty(upper->eb);
2317
2318 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2319 node->eb->start, blocksize,
2320 upper->eb->start);
2321 ref.real_root = root->root_key.objectid;
2322 btrfs_init_tree_ref(&ref, node->level,
2323 btrfs_header_owner(upper->eb));
2324 ret = btrfs_inc_extent_ref(trans, &ref);
2325 BUG_ON(ret);
2326
2327 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2328 BUG_ON(ret);
2329 }
2330 next:
2331 if (!upper->pending)
2332 btrfs_backref_drop_node_buffer(upper);
2333 else
2334 btrfs_backref_unlock_node_buffer(upper);
2335 if (err)
2336 break;
2337 }
2338
2339 if (!err && node->pending) {
2340 btrfs_backref_drop_node_buffer(node);
2341 list_move_tail(&node->list, &rc->backref_cache.changed);
2342 node->pending = 0;
2343 }
2344
2345 path->lowest_level = 0;
2346 BUG_ON(err == -ENOSPC);
2347 return err;
2348 }
2349
2350 static int link_to_upper(struct btrfs_trans_handle *trans,
2351 struct reloc_control *rc,
2352 struct btrfs_backref_node *node,
2353 struct btrfs_path *path)
2354 {
2355 struct btrfs_key key;
2356
2357 btrfs_node_key_to_cpu(node->eb, &key, 0);
2358 return do_relocation(trans, rc, node, &key, path, 0);
2359 }
2360
2361 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2362 struct reloc_control *rc,
2363 struct btrfs_path *path, int err)
2364 {
2365 LIST_HEAD(list);
2366 struct btrfs_backref_cache *cache = &rc->backref_cache;
2367 struct btrfs_backref_node *node;
2368 int level;
2369 int ret;
2370
2371 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2372 while (!list_empty(&cache->pending[level])) {
2373 node = list_entry(cache->pending[level].next,
2374 struct btrfs_backref_node, list);
2375 list_move_tail(&node->list, &list);
2376 BUG_ON(!node->pending);
2377
2378 if (!err) {
2379 ret = link_to_upper(trans, rc, node, path);
2380 if (ret < 0)
2381 err = ret;
2382 }
2383 }
2384 list_splice_init(&list, &cache->pending[level]);
2385 }
2386 return err;
2387 }
2388
2389 /*
2390 * mark a block and all blocks directly/indirectly reference the block
2391 * as processed.
2392 */
2393 static void update_processed_blocks(struct reloc_control *rc,
2394 struct btrfs_backref_node *node)
2395 {
2396 struct btrfs_backref_node *next = node;
2397 struct btrfs_backref_edge *edge;
2398 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2399 int index = 0;
2400
2401 while (next) {
2402 cond_resched();
2403 while (1) {
2404 if (next->processed)
2405 break;
2406
2407 mark_block_processed(rc, next);
2408
2409 if (list_empty(&next->upper))
2410 break;
2411
2412 edge = list_entry(next->upper.next,
2413 struct btrfs_backref_edge, list[LOWER]);
2414 edges[index++] = edge;
2415 next = edge->node[UPPER];
2416 }
2417 next = walk_down_backref(edges, &index);
2418 }
2419 }
2420
2421 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2422 {
2423 u32 blocksize = rc->extent_root->fs_info->nodesize;
2424
2425 if (test_range_bit(&rc->processed_blocks, bytenr,
2426 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2427 return 1;
2428 return 0;
2429 }
2430
2431 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2432 struct tree_block *block)
2433 {
2434 struct extent_buffer *eb;
2435
2436 eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2437 block->level, NULL);
2438 if (IS_ERR(eb)) {
2439 return PTR_ERR(eb);
2440 } else if (!extent_buffer_uptodate(eb)) {
2441 free_extent_buffer(eb);
2442 return -EIO;
2443 }
2444 if (block->level == 0)
2445 btrfs_item_key_to_cpu(eb, &block->key, 0);
2446 else
2447 btrfs_node_key_to_cpu(eb, &block->key, 0);
2448 free_extent_buffer(eb);
2449 block->key_ready = 1;
2450 return 0;
2451 }
2452
2453 /*
2454 * helper function to relocate a tree block
2455 */
2456 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2457 struct reloc_control *rc,
2458 struct btrfs_backref_node *node,
2459 struct btrfs_key *key,
2460 struct btrfs_path *path)
2461 {
2462 struct btrfs_root *root;
2463 int ret = 0;
2464
2465 if (!node)
2466 return 0;
2467
2468 /*
2469 * If we fail here we want to drop our backref_node because we are going
2470 * to start over and regenerate the tree for it.
2471 */
2472 ret = reserve_metadata_space(trans, rc, node);
2473 if (ret)
2474 goto out;
2475
2476 BUG_ON(node->processed);
2477 root = select_one_root(node);
2478 if (root == ERR_PTR(-ENOENT)) {
2479 update_processed_blocks(rc, node);
2480 goto out;
2481 }
2482
2483 if (root) {
2484 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2485 BUG_ON(node->new_bytenr);
2486 BUG_ON(!list_empty(&node->list));
2487 btrfs_record_root_in_trans(trans, root);
2488 root = root->reloc_root;
2489 node->new_bytenr = root->node->start;
2490 btrfs_put_root(node->root);
2491 node->root = btrfs_grab_root(root);
2492 ASSERT(node->root);
2493 list_add_tail(&node->list, &rc->backref_cache.changed);
2494 } else {
2495 path->lowest_level = node->level;
2496 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2497 btrfs_release_path(path);
2498 if (ret > 0)
2499 ret = 0;
2500 }
2501 if (!ret)
2502 update_processed_blocks(rc, node);
2503 } else {
2504 ret = do_relocation(trans, rc, node, key, path, 1);
2505 }
2506 out:
2507 if (ret || node->level == 0 || node->cowonly)
2508 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2509 return ret;
2510 }
2511
2512 /*
2513 * relocate a list of blocks
2514 */
2515 static noinline_for_stack
2516 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2517 struct reloc_control *rc, struct rb_root *blocks)
2518 {
2519 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2520 struct btrfs_backref_node *node;
2521 struct btrfs_path *path;
2522 struct tree_block *block;
2523 struct tree_block *next;
2524 int ret;
2525 int err = 0;
2526
2527 path = btrfs_alloc_path();
2528 if (!path) {
2529 err = -ENOMEM;
2530 goto out_free_blocks;
2531 }
2532
2533 /* Kick in readahead for tree blocks with missing keys */
2534 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2535 if (!block->key_ready)
2536 readahead_tree_block(fs_info, block->bytenr);
2537 }
2538
2539 /* Get first keys */
2540 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2541 if (!block->key_ready) {
2542 err = get_tree_block_key(fs_info, block);
2543 if (err)
2544 goto out_free_path;
2545 }
2546 }
2547
2548 /* Do tree relocation */
2549 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2550 node = build_backref_tree(rc, &block->key,
2551 block->level, block->bytenr);
2552 if (IS_ERR(node)) {
2553 err = PTR_ERR(node);
2554 goto out;
2555 }
2556
2557 ret = relocate_tree_block(trans, rc, node, &block->key,
2558 path);
2559 if (ret < 0) {
2560 err = ret;
2561 break;
2562 }
2563 }
2564 out:
2565 err = finish_pending_nodes(trans, rc, path, err);
2566
2567 out_free_path:
2568 btrfs_free_path(path);
2569 out_free_blocks:
2570 free_block_list(blocks);
2571 return err;
2572 }
2573
2574 static noinline_for_stack
2575 int prealloc_file_extent_cluster(struct inode *inode,
2576 struct file_extent_cluster *cluster)
2577 {
2578 u64 alloc_hint = 0;
2579 u64 start;
2580 u64 end;
2581 u64 offset = BTRFS_I(inode)->index_cnt;
2582 u64 num_bytes;
2583 int nr = 0;
2584 int ret = 0;
2585 u64 prealloc_start = cluster->start - offset;
2586 u64 prealloc_end = cluster->end - offset;
2587 u64 cur_offset;
2588 struct extent_changeset *data_reserved = NULL;
2589
2590 BUG_ON(cluster->start != cluster->boundary[0]);
2591 inode_lock(inode);
2592
2593 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
2594 prealloc_end + 1 - prealloc_start);
2595 if (ret)
2596 goto out;
2597
2598 cur_offset = prealloc_start;
2599 while (nr < cluster->nr) {
2600 start = cluster->boundary[nr] - offset;
2601 if (nr + 1 < cluster->nr)
2602 end = cluster->boundary[nr + 1] - 1 - offset;
2603 else
2604 end = cluster->end - offset;
2605
2606 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2607 num_bytes = end + 1 - start;
2608 if (cur_offset < start)
2609 btrfs_free_reserved_data_space(inode, data_reserved,
2610 cur_offset, start - cur_offset);
2611 ret = btrfs_prealloc_file_range(inode, 0, start,
2612 num_bytes, num_bytes,
2613 end + 1, &alloc_hint);
2614 cur_offset = end + 1;
2615 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2616 if (ret)
2617 break;
2618 nr++;
2619 }
2620 if (cur_offset < prealloc_end)
2621 btrfs_free_reserved_data_space(inode, data_reserved,
2622 cur_offset, prealloc_end + 1 - cur_offset);
2623 out:
2624 inode_unlock(inode);
2625 extent_changeset_free(data_reserved);
2626 return ret;
2627 }
2628
2629 static noinline_for_stack
2630 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2631 u64 block_start)
2632 {
2633 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2634 struct extent_map *em;
2635 int ret = 0;
2636
2637 em = alloc_extent_map();
2638 if (!em)
2639 return -ENOMEM;
2640
2641 em->start = start;
2642 em->len = end + 1 - start;
2643 em->block_len = em->len;
2644 em->block_start = block_start;
2645 set_bit(EXTENT_FLAG_PINNED, &em->flags);
2646
2647 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2648 while (1) {
2649 write_lock(&em_tree->lock);
2650 ret = add_extent_mapping(em_tree, em, 0);
2651 write_unlock(&em_tree->lock);
2652 if (ret != -EEXIST) {
2653 free_extent_map(em);
2654 break;
2655 }
2656 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2657 }
2658 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2659 return ret;
2660 }
2661
2662 /*
2663 * Allow error injection to test balance cancellation
2664 */
2665 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2666 {
2667 return atomic_read(&fs_info->balance_cancel_req);
2668 }
2669 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2670
2671 static int relocate_file_extent_cluster(struct inode *inode,
2672 struct file_extent_cluster *cluster)
2673 {
2674 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2675 u64 page_start;
2676 u64 page_end;
2677 u64 offset = BTRFS_I(inode)->index_cnt;
2678 unsigned long index;
2679 unsigned long last_index;
2680 struct page *page;
2681 struct file_ra_state *ra;
2682 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2683 int nr = 0;
2684 int ret = 0;
2685
2686 if (!cluster->nr)
2687 return 0;
2688
2689 ra = kzalloc(sizeof(*ra), GFP_NOFS);
2690 if (!ra)
2691 return -ENOMEM;
2692
2693 ret = prealloc_file_extent_cluster(inode, cluster);
2694 if (ret)
2695 goto out;
2696
2697 file_ra_state_init(ra, inode->i_mapping);
2698
2699 ret = setup_extent_mapping(inode, cluster->start - offset,
2700 cluster->end - offset, cluster->start);
2701 if (ret)
2702 goto out;
2703
2704 index = (cluster->start - offset) >> PAGE_SHIFT;
2705 last_index = (cluster->end - offset) >> PAGE_SHIFT;
2706 while (index <= last_index) {
2707 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2708 PAGE_SIZE);
2709 if (ret)
2710 goto out;
2711
2712 page = find_lock_page(inode->i_mapping, index);
2713 if (!page) {
2714 page_cache_sync_readahead(inode->i_mapping,
2715 ra, NULL, index,
2716 last_index + 1 - index);
2717 page = find_or_create_page(inode->i_mapping, index,
2718 mask);
2719 if (!page) {
2720 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2721 PAGE_SIZE, true);
2722 btrfs_delalloc_release_extents(BTRFS_I(inode),
2723 PAGE_SIZE);
2724 ret = -ENOMEM;
2725 goto out;
2726 }
2727 }
2728
2729 if (PageReadahead(page)) {
2730 page_cache_async_readahead(inode->i_mapping,
2731 ra, NULL, page, index,
2732 last_index + 1 - index);
2733 }
2734
2735 if (!PageUptodate(page)) {
2736 btrfs_readpage(NULL, page);
2737 lock_page(page);
2738 if (!PageUptodate(page)) {
2739 unlock_page(page);
2740 put_page(page);
2741 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2742 PAGE_SIZE, true);
2743 btrfs_delalloc_release_extents(BTRFS_I(inode),
2744 PAGE_SIZE);
2745 ret = -EIO;
2746 goto out;
2747 }
2748 }
2749
2750 page_start = page_offset(page);
2751 page_end = page_start + PAGE_SIZE - 1;
2752
2753 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2754
2755 set_page_extent_mapped(page);
2756
2757 if (nr < cluster->nr &&
2758 page_start + offset == cluster->boundary[nr]) {
2759 set_extent_bits(&BTRFS_I(inode)->io_tree,
2760 page_start, page_end,
2761 EXTENT_BOUNDARY);
2762 nr++;
2763 }
2764
2765 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2766 NULL);
2767 if (ret) {
2768 unlock_page(page);
2769 put_page(page);
2770 btrfs_delalloc_release_metadata(BTRFS_I(inode),
2771 PAGE_SIZE, true);
2772 btrfs_delalloc_release_extents(BTRFS_I(inode),
2773 PAGE_SIZE);
2774
2775 clear_extent_bits(&BTRFS_I(inode)->io_tree,
2776 page_start, page_end,
2777 EXTENT_LOCKED | EXTENT_BOUNDARY);
2778 goto out;
2779
2780 }
2781 set_page_dirty(page);
2782
2783 unlock_extent(&BTRFS_I(inode)->io_tree,
2784 page_start, page_end);
2785 unlock_page(page);
2786 put_page(page);
2787
2788 index++;
2789 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2790 balance_dirty_pages_ratelimited(inode->i_mapping);
2791 btrfs_throttle(fs_info);
2792 if (btrfs_should_cancel_balance(fs_info)) {
2793 ret = -ECANCELED;
2794 goto out;
2795 }
2796 }
2797 WARN_ON(nr != cluster->nr);
2798 out:
2799 kfree(ra);
2800 return ret;
2801 }
2802
2803 static noinline_for_stack
2804 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2805 struct file_extent_cluster *cluster)
2806 {
2807 int ret;
2808
2809 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2810 ret = relocate_file_extent_cluster(inode, cluster);
2811 if (ret)
2812 return ret;
2813 cluster->nr = 0;
2814 }
2815
2816 if (!cluster->nr)
2817 cluster->start = extent_key->objectid;
2818 else
2819 BUG_ON(cluster->nr >= MAX_EXTENTS);
2820 cluster->end = extent_key->objectid + extent_key->offset - 1;
2821 cluster->boundary[cluster->nr] = extent_key->objectid;
2822 cluster->nr++;
2823
2824 if (cluster->nr >= MAX_EXTENTS) {
2825 ret = relocate_file_extent_cluster(inode, cluster);
2826 if (ret)
2827 return ret;
2828 cluster->nr = 0;
2829 }
2830 return 0;
2831 }
2832
2833 /*
2834 * helper to add a tree block to the list.
2835 * the major work is getting the generation and level of the block
2836 */
2837 static int add_tree_block(struct reloc_control *rc,
2838 struct btrfs_key *extent_key,
2839 struct btrfs_path *path,
2840 struct rb_root *blocks)
2841 {
2842 struct extent_buffer *eb;
2843 struct btrfs_extent_item *ei;
2844 struct btrfs_tree_block_info *bi;
2845 struct tree_block *block;
2846 struct rb_node *rb_node;
2847 u32 item_size;
2848 int level = -1;
2849 u64 generation;
2850
2851 eb = path->nodes[0];
2852 item_size = btrfs_item_size_nr(eb, path->slots[0]);
2853
2854 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2855 item_size >= sizeof(*ei) + sizeof(*bi)) {
2856 ei = btrfs_item_ptr(eb, path->slots[0],
2857 struct btrfs_extent_item);
2858 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2859 bi = (struct btrfs_tree_block_info *)(ei + 1);
2860 level = btrfs_tree_block_level(eb, bi);
2861 } else {
2862 level = (int)extent_key->offset;
2863 }
2864 generation = btrfs_extent_generation(eb, ei);
2865 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2866 btrfs_print_v0_err(eb->fs_info);
2867 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2868 return -EINVAL;
2869 } else {
2870 BUG();
2871 }
2872
2873 btrfs_release_path(path);
2874
2875 BUG_ON(level == -1);
2876
2877 block = kmalloc(sizeof(*block), GFP_NOFS);
2878 if (!block)
2879 return -ENOMEM;
2880
2881 block->bytenr = extent_key->objectid;
2882 block->key.objectid = rc->extent_root->fs_info->nodesize;
2883 block->key.offset = generation;
2884 block->level = level;
2885 block->key_ready = 0;
2886
2887 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2888 if (rb_node)
2889 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2890 -EEXIST);
2891
2892 return 0;
2893 }
2894
2895 /*
2896 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2897 */
2898 static int __add_tree_block(struct reloc_control *rc,
2899 u64 bytenr, u32 blocksize,
2900 struct rb_root *blocks)
2901 {
2902 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2903 struct btrfs_path *path;
2904 struct btrfs_key key;
2905 int ret;
2906 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2907
2908 if (tree_block_processed(bytenr, rc))
2909 return 0;
2910
2911 if (rb_simple_search(blocks, bytenr))
2912 return 0;
2913
2914 path = btrfs_alloc_path();
2915 if (!path)
2916 return -ENOMEM;
2917 again:
2918 key.objectid = bytenr;
2919 if (skinny) {
2920 key.type = BTRFS_METADATA_ITEM_KEY;
2921 key.offset = (u64)-1;
2922 } else {
2923 key.type = BTRFS_EXTENT_ITEM_KEY;
2924 key.offset = blocksize;
2925 }
2926
2927 path->search_commit_root = 1;
2928 path->skip_locking = 1;
2929 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2930 if (ret < 0)
2931 goto out;
2932
2933 if (ret > 0 && skinny) {
2934 if (path->slots[0]) {
2935 path->slots[0]--;
2936 btrfs_item_key_to_cpu(path->nodes[0], &key,
2937 path->slots[0]);
2938 if (key.objectid == bytenr &&
2939 (key.type == BTRFS_METADATA_ITEM_KEY ||
2940 (key.type == BTRFS_EXTENT_ITEM_KEY &&
2941 key.offset == blocksize)))
2942 ret = 0;
2943 }
2944
2945 if (ret) {
2946 skinny = false;
2947 btrfs_release_path(path);
2948 goto again;
2949 }
2950 }
2951 if (ret) {
2952 ASSERT(ret == 1);
2953 btrfs_print_leaf(path->nodes[0]);
2954 btrfs_err(fs_info,
2955 "tree block extent item (%llu) is not found in extent tree",
2956 bytenr);
2957 WARN_ON(1);
2958 ret = -EINVAL;
2959 goto out;
2960 }
2961
2962 ret = add_tree_block(rc, &key, path, blocks);
2963 out:
2964 btrfs_free_path(path);
2965 return ret;
2966 }
2967
2968 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2969 struct btrfs_block_group *block_group,
2970 struct inode *inode,
2971 u64 ino)
2972 {
2973 struct btrfs_root *root = fs_info->tree_root;
2974 struct btrfs_trans_handle *trans;
2975 int ret = 0;
2976
2977 if (inode)
2978 goto truncate;
2979
2980 inode = btrfs_iget(fs_info->sb, ino, root);
2981 if (IS_ERR(inode))
2982 return -ENOENT;
2983
2984 truncate:
2985 ret = btrfs_check_trunc_cache_free_space(fs_info,
2986 &fs_info->global_block_rsv);
2987 if (ret)
2988 goto out;
2989
2990 trans = btrfs_join_transaction(root);
2991 if (IS_ERR(trans)) {
2992 ret = PTR_ERR(trans);
2993 goto out;
2994 }
2995
2996 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
2997
2998 btrfs_end_transaction(trans);
2999 btrfs_btree_balance_dirty(fs_info);
3000 out:
3001 iput(inode);
3002 return ret;
3003 }
3004
3005 /*
3006 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3007 * cache inode, to avoid free space cache data extent blocking data relocation.
3008 */
3009 static int delete_v1_space_cache(struct extent_buffer *leaf,
3010 struct btrfs_block_group *block_group,
3011 u64 data_bytenr)
3012 {
3013 u64 space_cache_ino;
3014 struct btrfs_file_extent_item *ei;
3015 struct btrfs_key key;
3016 bool found = false;
3017 int i;
3018 int ret;
3019
3020 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3021 return 0;
3022
3023 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3024 btrfs_item_key_to_cpu(leaf, &key, i);
3025 if (key.type != BTRFS_EXTENT_DATA_KEY)
3026 continue;
3027 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3028 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
3029 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3030 found = true;
3031 space_cache_ino = key.objectid;
3032 break;
3033 }
3034 }
3035 if (!found)
3036 return -ENOENT;
3037 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3038 space_cache_ino);
3039 return ret;
3040 }
3041
3042 /*
3043 * helper to find all tree blocks that reference a given data extent
3044 */
3045 static noinline_for_stack
3046 int add_data_references(struct reloc_control *rc,
3047 struct btrfs_key *extent_key,
3048 struct btrfs_path *path,
3049 struct rb_root *blocks)
3050 {
3051 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3052 struct ulist *leaves = NULL;
3053 struct ulist_iterator leaf_uiter;
3054 struct ulist_node *ref_node = NULL;
3055 const u32 blocksize = fs_info->nodesize;
3056 int ret = 0;
3057
3058 btrfs_release_path(path);
3059 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3060 0, &leaves, NULL, true);
3061 if (ret < 0)
3062 return ret;
3063
3064 ULIST_ITER_INIT(&leaf_uiter);
3065 while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3066 struct extent_buffer *eb;
3067
3068 eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
3069 if (IS_ERR(eb)) {
3070 ret = PTR_ERR(eb);
3071 break;
3072 }
3073 ret = delete_v1_space_cache(eb, rc->block_group,
3074 extent_key->objectid);
3075 free_extent_buffer(eb);
3076 if (ret < 0)
3077 break;
3078 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3079 if (ret < 0)
3080 break;
3081 }
3082 if (ret < 0)
3083 free_block_list(blocks);
3084 ulist_free(leaves);
3085 return ret;
3086 }
3087
3088 /*
3089 * helper to find next unprocessed extent
3090 */
3091 static noinline_for_stack
3092 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3093 struct btrfs_key *extent_key)
3094 {
3095 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3096 struct btrfs_key key;
3097 struct extent_buffer *leaf;
3098 u64 start, end, last;
3099 int ret;
3100
3101 last = rc->block_group->start + rc->block_group->length;
3102 while (1) {
3103 cond_resched();
3104 if (rc->search_start >= last) {
3105 ret = 1;
3106 break;
3107 }
3108
3109 key.objectid = rc->search_start;
3110 key.type = BTRFS_EXTENT_ITEM_KEY;
3111 key.offset = 0;
3112
3113 path->search_commit_root = 1;
3114 path->skip_locking = 1;
3115 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3116 0, 0);
3117 if (ret < 0)
3118 break;
3119 next:
3120 leaf = path->nodes[0];
3121 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3122 ret = btrfs_next_leaf(rc->extent_root, path);
3123 if (ret != 0)
3124 break;
3125 leaf = path->nodes[0];
3126 }
3127
3128 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3129 if (key.objectid >= last) {
3130 ret = 1;
3131 break;
3132 }
3133
3134 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3135 key.type != BTRFS_METADATA_ITEM_KEY) {
3136 path->slots[0]++;
3137 goto next;
3138 }
3139
3140 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3141 key.objectid + key.offset <= rc->search_start) {
3142 path->slots[0]++;
3143 goto next;
3144 }
3145
3146 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3147 key.objectid + fs_info->nodesize <=
3148 rc->search_start) {
3149 path->slots[0]++;
3150 goto next;
3151 }
3152
3153 ret = find_first_extent_bit(&rc->processed_blocks,
3154 key.objectid, &start, &end,
3155 EXTENT_DIRTY, NULL);
3156
3157 if (ret == 0 && start <= key.objectid) {
3158 btrfs_release_path(path);
3159 rc->search_start = end + 1;
3160 } else {
3161 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3162 rc->search_start = key.objectid + key.offset;
3163 else
3164 rc->search_start = key.objectid +
3165 fs_info->nodesize;
3166 memcpy(extent_key, &key, sizeof(key));
3167 return 0;
3168 }
3169 }
3170 btrfs_release_path(path);
3171 return ret;
3172 }
3173
3174 static void set_reloc_control(struct reloc_control *rc)
3175 {
3176 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3177
3178 mutex_lock(&fs_info->reloc_mutex);
3179 fs_info->reloc_ctl = rc;
3180 mutex_unlock(&fs_info->reloc_mutex);
3181 }
3182
3183 static void unset_reloc_control(struct reloc_control *rc)
3184 {
3185 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3186
3187 mutex_lock(&fs_info->reloc_mutex);
3188 fs_info->reloc_ctl = NULL;
3189 mutex_unlock(&fs_info->reloc_mutex);
3190 }
3191
3192 static int check_extent_flags(u64 flags)
3193 {
3194 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3195 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3196 return 1;
3197 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3198 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3199 return 1;
3200 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3201 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3202 return 1;
3203 return 0;
3204 }
3205
3206 static noinline_for_stack
3207 int prepare_to_relocate(struct reloc_control *rc)
3208 {
3209 struct btrfs_trans_handle *trans;
3210 int ret;
3211
3212 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3213 BTRFS_BLOCK_RSV_TEMP);
3214 if (!rc->block_rsv)
3215 return -ENOMEM;
3216
3217 memset(&rc->cluster, 0, sizeof(rc->cluster));
3218 rc->search_start = rc->block_group->start;
3219 rc->extents_found = 0;
3220 rc->nodes_relocated = 0;
3221 rc->merging_rsv_size = 0;
3222 rc->reserved_bytes = 0;
3223 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3224 RELOCATION_RESERVED_NODES;
3225 ret = btrfs_block_rsv_refill(rc->extent_root,
3226 rc->block_rsv, rc->block_rsv->size,
3227 BTRFS_RESERVE_FLUSH_ALL);
3228 if (ret)
3229 return ret;
3230
3231 rc->create_reloc_tree = 1;
3232 set_reloc_control(rc);
3233
3234 trans = btrfs_join_transaction(rc->extent_root);
3235 if (IS_ERR(trans)) {
3236 unset_reloc_control(rc);
3237 /*
3238 * extent tree is not a ref_cow tree and has no reloc_root to
3239 * cleanup. And callers are responsible to free the above
3240 * block rsv.
3241 */
3242 return PTR_ERR(trans);
3243 }
3244 btrfs_commit_transaction(trans);
3245 return 0;
3246 }
3247
3248 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3249 {
3250 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3251 struct rb_root blocks = RB_ROOT;
3252 struct btrfs_key key;
3253 struct btrfs_trans_handle *trans = NULL;
3254 struct btrfs_path *path;
3255 struct btrfs_extent_item *ei;
3256 u64 flags;
3257 u32 item_size;
3258 int ret;
3259 int err = 0;
3260 int progress = 0;
3261
3262 path = btrfs_alloc_path();
3263 if (!path)
3264 return -ENOMEM;
3265 path->reada = READA_FORWARD;
3266
3267 ret = prepare_to_relocate(rc);
3268 if (ret) {
3269 err = ret;
3270 goto out_free;
3271 }
3272
3273 while (1) {
3274 rc->reserved_bytes = 0;
3275 ret = btrfs_block_rsv_refill(rc->extent_root,
3276 rc->block_rsv, rc->block_rsv->size,
3277 BTRFS_RESERVE_FLUSH_ALL);
3278 if (ret) {
3279 err = ret;
3280 break;
3281 }
3282 progress++;
3283 trans = btrfs_start_transaction(rc->extent_root, 0);
3284 if (IS_ERR(trans)) {
3285 err = PTR_ERR(trans);
3286 trans = NULL;
3287 break;
3288 }
3289 restart:
3290 if (update_backref_cache(trans, &rc->backref_cache)) {
3291 btrfs_end_transaction(trans);
3292 trans = NULL;
3293 continue;
3294 }
3295
3296 ret = find_next_extent(rc, path, &key);
3297 if (ret < 0)
3298 err = ret;
3299 if (ret != 0)
3300 break;
3301
3302 rc->extents_found++;
3303
3304 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3305 struct btrfs_extent_item);
3306 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3307 if (item_size >= sizeof(*ei)) {
3308 flags = btrfs_extent_flags(path->nodes[0], ei);
3309 ret = check_extent_flags(flags);
3310 BUG_ON(ret);
3311 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3312 err = -EINVAL;
3313 btrfs_print_v0_err(trans->fs_info);
3314 btrfs_abort_transaction(trans, err);
3315 break;
3316 } else {
3317 BUG();
3318 }
3319
3320 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3321 ret = add_tree_block(rc, &key, path, &blocks);
3322 } else if (rc->stage == UPDATE_DATA_PTRS &&
3323 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3324 ret = add_data_references(rc, &key, path, &blocks);
3325 } else {
3326 btrfs_release_path(path);
3327 ret = 0;
3328 }
3329 if (ret < 0) {
3330 err = ret;
3331 break;
3332 }
3333
3334 if (!RB_EMPTY_ROOT(&blocks)) {
3335 ret = relocate_tree_blocks(trans, rc, &blocks);
3336 if (ret < 0) {
3337 if (ret != -EAGAIN) {
3338 err = ret;
3339 break;
3340 }
3341 rc->extents_found--;
3342 rc->search_start = key.objectid;
3343 }
3344 }
3345
3346 btrfs_end_transaction_throttle(trans);
3347 btrfs_btree_balance_dirty(fs_info);
3348 trans = NULL;
3349
3350 if (rc->stage == MOVE_DATA_EXTENTS &&
3351 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3352 rc->found_file_extent = 1;
3353 ret = relocate_data_extent(rc->data_inode,
3354 &key, &rc->cluster);
3355 if (ret < 0) {
3356 err = ret;
3357 break;
3358 }
3359 }
3360 if (btrfs_should_cancel_balance(fs_info)) {
3361 err = -ECANCELED;
3362 break;
3363 }
3364 }
3365 if (trans && progress && err == -ENOSPC) {
3366 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3367 if (ret == 1) {
3368 err = 0;
3369 progress = 0;
3370 goto restart;
3371 }
3372 }
3373
3374 btrfs_release_path(path);
3375 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3376
3377 if (trans) {
3378 btrfs_end_transaction_throttle(trans);
3379 btrfs_btree_balance_dirty(fs_info);
3380 }
3381
3382 if (!err) {
3383 ret = relocate_file_extent_cluster(rc->data_inode,
3384 &rc->cluster);
3385 if (ret < 0)
3386 err = ret;
3387 }
3388
3389 rc->create_reloc_tree = 0;
3390 set_reloc_control(rc);
3391
3392 btrfs_backref_release_cache(&rc->backref_cache);
3393 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3394
3395 /*
3396 * Even in the case when the relocation is cancelled, we should all go
3397 * through prepare_to_merge() and merge_reloc_roots().
3398 *
3399 * For error (including cancelled balance), prepare_to_merge() will
3400 * mark all reloc trees orphan, then queue them for cleanup in
3401 * merge_reloc_roots()
3402 */
3403 err = prepare_to_merge(rc, err);
3404
3405 merge_reloc_roots(rc);
3406
3407 rc->merge_reloc_tree = 0;
3408 unset_reloc_control(rc);
3409 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3410
3411 /* get rid of pinned extents */
3412 trans = btrfs_join_transaction(rc->extent_root);
3413 if (IS_ERR(trans)) {
3414 err = PTR_ERR(trans);
3415 goto out_free;
3416 }
3417 btrfs_commit_transaction(trans);
3418 out_free:
3419 ret = clean_dirty_subvols(rc);
3420 if (ret < 0 && !err)
3421 err = ret;
3422 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3423 btrfs_free_path(path);
3424 return err;
3425 }
3426
3427 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3428 struct btrfs_root *root, u64 objectid)
3429 {
3430 struct btrfs_path *path;
3431 struct btrfs_inode_item *item;
3432 struct extent_buffer *leaf;
3433 int ret;
3434
3435 path = btrfs_alloc_path();
3436 if (!path)
3437 return -ENOMEM;
3438
3439 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3440 if (ret)
3441 goto out;
3442
3443 leaf = path->nodes[0];
3444 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3445 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3446 btrfs_set_inode_generation(leaf, item, 1);
3447 btrfs_set_inode_size(leaf, item, 0);
3448 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3449 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3450 BTRFS_INODE_PREALLOC);
3451 btrfs_mark_buffer_dirty(leaf);
3452 out:
3453 btrfs_free_path(path);
3454 return ret;
3455 }
3456
3457 /*
3458 * helper to create inode for data relocation.
3459 * the inode is in data relocation tree and its link count is 0
3460 */
3461 static noinline_for_stack
3462 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3463 struct btrfs_block_group *group)
3464 {
3465 struct inode *inode = NULL;
3466 struct btrfs_trans_handle *trans;
3467 struct btrfs_root *root;
3468 u64 objectid;
3469 int err = 0;
3470
3471 root = btrfs_grab_root(fs_info->data_reloc_root);
3472 trans = btrfs_start_transaction(root, 6);
3473 if (IS_ERR(trans)) {
3474 btrfs_put_root(root);
3475 return ERR_CAST(trans);
3476 }
3477
3478 err = btrfs_find_free_objectid(root, &objectid);
3479 if (err)
3480 goto out;
3481
3482 err = __insert_orphan_inode(trans, root, objectid);
3483 BUG_ON(err);
3484
3485 inode = btrfs_iget(fs_info->sb, objectid, root);
3486 BUG_ON(IS_ERR(inode));
3487 BTRFS_I(inode)->index_cnt = group->start;
3488
3489 err = btrfs_orphan_add(trans, BTRFS_I(inode));
3490 out:
3491 btrfs_put_root(root);
3492 btrfs_end_transaction(trans);
3493 btrfs_btree_balance_dirty(fs_info);
3494 if (err) {
3495 if (inode)
3496 iput(inode);
3497 inode = ERR_PTR(err);
3498 }
3499 return inode;
3500 }
3501
3502 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3503 {
3504 struct reloc_control *rc;
3505
3506 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3507 if (!rc)
3508 return NULL;
3509
3510 INIT_LIST_HEAD(&rc->reloc_roots);
3511 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3512 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3513 mapping_tree_init(&rc->reloc_root_tree);
3514 extent_io_tree_init(fs_info, &rc->processed_blocks,
3515 IO_TREE_RELOC_BLOCKS, NULL);
3516 return rc;
3517 }
3518
3519 static void free_reloc_control(struct reloc_control *rc)
3520 {
3521 struct mapping_node *node, *tmp;
3522
3523 free_reloc_roots(&rc->reloc_roots);
3524 rbtree_postorder_for_each_entry_safe(node, tmp,
3525 &rc->reloc_root_tree.rb_root, rb_node)
3526 kfree(node);
3527
3528 kfree(rc);
3529 }
3530
3531 /*
3532 * Print the block group being relocated
3533 */
3534 static void describe_relocation(struct btrfs_fs_info *fs_info,
3535 struct btrfs_block_group *block_group)
3536 {
3537 char buf[128] = {'\0'};
3538
3539 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3540
3541 btrfs_info(fs_info,
3542 "relocating block group %llu flags %s",
3543 block_group->start, buf);
3544 }
3545
3546 static const char *stage_to_string(int stage)
3547 {
3548 if (stage == MOVE_DATA_EXTENTS)
3549 return "move data extents";
3550 if (stage == UPDATE_DATA_PTRS)
3551 return "update data pointers";
3552 return "unknown";
3553 }
3554
3555 /*
3556 * function to relocate all extents in a block group.
3557 */
3558 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3559 {
3560 struct btrfs_block_group *bg;
3561 struct btrfs_root *extent_root = fs_info->extent_root;
3562 struct reloc_control *rc;
3563 struct inode *inode;
3564 struct btrfs_path *path;
3565 int ret;
3566 int rw = 0;
3567 int err = 0;
3568
3569 bg = btrfs_lookup_block_group(fs_info, group_start);
3570 if (!bg)
3571 return -ENOENT;
3572
3573 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3574 btrfs_put_block_group(bg);
3575 return -ETXTBSY;
3576 }
3577
3578 rc = alloc_reloc_control(fs_info);
3579 if (!rc) {
3580 btrfs_put_block_group(bg);
3581 return -ENOMEM;
3582 }
3583
3584 rc->extent_root = extent_root;
3585 rc->block_group = bg;
3586
3587 ret = btrfs_inc_block_group_ro(rc->block_group, true);
3588 if (ret) {
3589 err = ret;
3590 goto out;
3591 }
3592 rw = 1;
3593
3594 path = btrfs_alloc_path();
3595 if (!path) {
3596 err = -ENOMEM;
3597 goto out;
3598 }
3599
3600 inode = lookup_free_space_inode(rc->block_group, path);
3601 btrfs_free_path(path);
3602
3603 if (!IS_ERR(inode))
3604 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3605 else
3606 ret = PTR_ERR(inode);
3607
3608 if (ret && ret != -ENOENT) {
3609 err = ret;
3610 goto out;
3611 }
3612
3613 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3614 if (IS_ERR(rc->data_inode)) {
3615 err = PTR_ERR(rc->data_inode);
3616 rc->data_inode = NULL;
3617 goto out;
3618 }
3619
3620 describe_relocation(fs_info, rc->block_group);
3621
3622 btrfs_wait_block_group_reservations(rc->block_group);
3623 btrfs_wait_nocow_writers(rc->block_group);
3624 btrfs_wait_ordered_roots(fs_info, U64_MAX,
3625 rc->block_group->start,
3626 rc->block_group->length);
3627
3628 while (1) {
3629 int finishes_stage;
3630
3631 mutex_lock(&fs_info->cleaner_mutex);
3632 ret = relocate_block_group(rc);
3633 mutex_unlock(&fs_info->cleaner_mutex);
3634 if (ret < 0)
3635 err = ret;
3636
3637 finishes_stage = rc->stage;
3638 /*
3639 * We may have gotten ENOSPC after we already dirtied some
3640 * extents. If writeout happens while we're relocating a
3641 * different block group we could end up hitting the
3642 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3643 * btrfs_reloc_cow_block. Make sure we write everything out
3644 * properly so we don't trip over this problem, and then break
3645 * out of the loop if we hit an error.
3646 */
3647 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3648 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3649 (u64)-1);
3650 if (ret)
3651 err = ret;
3652 invalidate_mapping_pages(rc->data_inode->i_mapping,
3653 0, -1);
3654 rc->stage = UPDATE_DATA_PTRS;
3655 }
3656
3657 if (err < 0)
3658 goto out;
3659
3660 if (rc->extents_found == 0)
3661 break;
3662
3663 btrfs_info(fs_info, "found %llu extents, stage: %s",
3664 rc->extents_found, stage_to_string(finishes_stage));
3665 }
3666
3667 WARN_ON(rc->block_group->pinned > 0);
3668 WARN_ON(rc->block_group->reserved > 0);
3669 WARN_ON(rc->block_group->used > 0);
3670 out:
3671 if (err && rw)
3672 btrfs_dec_block_group_ro(rc->block_group);
3673 iput(rc->data_inode);
3674 btrfs_put_block_group(rc->block_group);
3675 free_reloc_control(rc);
3676 return err;
3677 }
3678
3679 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3680 {
3681 struct btrfs_fs_info *fs_info = root->fs_info;
3682 struct btrfs_trans_handle *trans;
3683 int ret, err;
3684
3685 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3686 if (IS_ERR(trans))
3687 return PTR_ERR(trans);
3688
3689 memset(&root->root_item.drop_progress, 0,
3690 sizeof(root->root_item.drop_progress));
3691 root->root_item.drop_level = 0;
3692 btrfs_set_root_refs(&root->root_item, 0);
3693 ret = btrfs_update_root(trans, fs_info->tree_root,
3694 &root->root_key, &root->root_item);
3695
3696 err = btrfs_end_transaction(trans);
3697 if (err)
3698 return err;
3699 return ret;
3700 }
3701
3702 /*
3703 * recover relocation interrupted by system crash.
3704 *
3705 * this function resumes merging reloc trees with corresponding fs trees.
3706 * this is important for keeping the sharing of tree blocks
3707 */
3708 int btrfs_recover_relocation(struct btrfs_root *root)
3709 {
3710 struct btrfs_fs_info *fs_info = root->fs_info;
3711 LIST_HEAD(reloc_roots);
3712 struct btrfs_key key;
3713 struct btrfs_root *fs_root;
3714 struct btrfs_root *reloc_root;
3715 struct btrfs_path *path;
3716 struct extent_buffer *leaf;
3717 struct reloc_control *rc = NULL;
3718 struct btrfs_trans_handle *trans;
3719 int ret;
3720 int err = 0;
3721
3722 path = btrfs_alloc_path();
3723 if (!path)
3724 return -ENOMEM;
3725 path->reada = READA_BACK;
3726
3727 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3728 key.type = BTRFS_ROOT_ITEM_KEY;
3729 key.offset = (u64)-1;
3730
3731 while (1) {
3732 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3733 path, 0, 0);
3734 if (ret < 0) {
3735 err = ret;
3736 goto out;
3737 }
3738 if (ret > 0) {
3739 if (path->slots[0] == 0)
3740 break;
3741 path->slots[0]--;
3742 }
3743 leaf = path->nodes[0];
3744 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3745 btrfs_release_path(path);
3746
3747 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3748 key.type != BTRFS_ROOT_ITEM_KEY)
3749 break;
3750
3751 reloc_root = btrfs_read_tree_root(root, &key);
3752 if (IS_ERR(reloc_root)) {
3753 err = PTR_ERR(reloc_root);
3754 goto out;
3755 }
3756
3757 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3758 list_add(&reloc_root->root_list, &reloc_roots);
3759
3760 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3761 fs_root = btrfs_get_fs_root(fs_info,
3762 reloc_root->root_key.offset, false);
3763 if (IS_ERR(fs_root)) {
3764 ret = PTR_ERR(fs_root);
3765 if (ret != -ENOENT) {
3766 err = ret;
3767 goto out;
3768 }
3769 ret = mark_garbage_root(reloc_root);
3770 if (ret < 0) {
3771 err = ret;
3772 goto out;
3773 }
3774 } else {
3775 btrfs_put_root(fs_root);
3776 }
3777 }
3778
3779 if (key.offset == 0)
3780 break;
3781
3782 key.offset--;
3783 }
3784 btrfs_release_path(path);
3785
3786 if (list_empty(&reloc_roots))
3787 goto out;
3788
3789 rc = alloc_reloc_control(fs_info);
3790 if (!rc) {
3791 err = -ENOMEM;
3792 goto out;
3793 }
3794
3795 rc->extent_root = fs_info->extent_root;
3796
3797 set_reloc_control(rc);
3798
3799 trans = btrfs_join_transaction(rc->extent_root);
3800 if (IS_ERR(trans)) {
3801 err = PTR_ERR(trans);
3802 goto out_unset;
3803 }
3804
3805 rc->merge_reloc_tree = 1;
3806
3807 while (!list_empty(&reloc_roots)) {
3808 reloc_root = list_entry(reloc_roots.next,
3809 struct btrfs_root, root_list);
3810 list_del(&reloc_root->root_list);
3811
3812 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3813 list_add_tail(&reloc_root->root_list,
3814 &rc->reloc_roots);
3815 continue;
3816 }
3817
3818 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3819 false);
3820 if (IS_ERR(fs_root)) {
3821 err = PTR_ERR(fs_root);
3822 list_add_tail(&reloc_root->root_list, &reloc_roots);
3823 btrfs_end_transaction(trans);
3824 goto out_unset;
3825 }
3826
3827 err = __add_reloc_root(reloc_root);
3828 BUG_ON(err < 0); /* -ENOMEM or logic error */
3829 fs_root->reloc_root = btrfs_grab_root(reloc_root);
3830 btrfs_put_root(fs_root);
3831 }
3832
3833 err = btrfs_commit_transaction(trans);
3834 if (err)
3835 goto out_unset;
3836
3837 merge_reloc_roots(rc);
3838
3839 unset_reloc_control(rc);
3840
3841 trans = btrfs_join_transaction(rc->extent_root);
3842 if (IS_ERR(trans)) {
3843 err = PTR_ERR(trans);
3844 goto out_clean;
3845 }
3846 err = btrfs_commit_transaction(trans);
3847 out_clean:
3848 ret = clean_dirty_subvols(rc);
3849 if (ret < 0 && !err)
3850 err = ret;
3851 out_unset:
3852 unset_reloc_control(rc);
3853 free_reloc_control(rc);
3854 out:
3855 free_reloc_roots(&reloc_roots);
3856
3857 btrfs_free_path(path);
3858
3859 if (err == 0) {
3860 /* cleanup orphan inode in data relocation tree */
3861 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3862 ASSERT(fs_root);
3863 err = btrfs_orphan_cleanup(fs_root);
3864 btrfs_put_root(fs_root);
3865 }
3866 return err;
3867 }
3868
3869 /*
3870 * helper to add ordered checksum for data relocation.
3871 *
3872 * cloning checksum properly handles the nodatasum extents.
3873 * it also saves CPU time to re-calculate the checksum.
3874 */
3875 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
3876 {
3877 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3878 struct btrfs_ordered_sum *sums;
3879 struct btrfs_ordered_extent *ordered;
3880 int ret;
3881 u64 disk_bytenr;
3882 u64 new_bytenr;
3883 LIST_HEAD(list);
3884
3885 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3886 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3887
3888 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
3889 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3890 disk_bytenr + len - 1, &list, 0);
3891 if (ret)
3892 goto out;
3893
3894 while (!list_empty(&list)) {
3895 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3896 list_del_init(&sums->list);
3897
3898 /*
3899 * We need to offset the new_bytenr based on where the csum is.
3900 * We need to do this because we will read in entire prealloc
3901 * extents but we may have written to say the middle of the
3902 * prealloc extent, so we need to make sure the csum goes with
3903 * the right disk offset.
3904 *
3905 * We can do this because the data reloc inode refers strictly
3906 * to the on disk bytes, so we don't have to worry about
3907 * disk_len vs real len like with real inodes since it's all
3908 * disk length.
3909 */
3910 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3911 sums->bytenr = new_bytenr;
3912
3913 btrfs_add_ordered_sum(ordered, sums);
3914 }
3915 out:
3916 btrfs_put_ordered_extent(ordered);
3917 return ret;
3918 }
3919
3920 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3921 struct btrfs_root *root, struct extent_buffer *buf,
3922 struct extent_buffer *cow)
3923 {
3924 struct btrfs_fs_info *fs_info = root->fs_info;
3925 struct reloc_control *rc;
3926 struct btrfs_backref_node *node;
3927 int first_cow = 0;
3928 int level;
3929 int ret = 0;
3930
3931 rc = fs_info->reloc_ctl;
3932 if (!rc)
3933 return 0;
3934
3935 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3936 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3937
3938 level = btrfs_header_level(buf);
3939 if (btrfs_header_generation(buf) <=
3940 btrfs_root_last_snapshot(&root->root_item))
3941 first_cow = 1;
3942
3943 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3944 rc->create_reloc_tree) {
3945 WARN_ON(!first_cow && level == 0);
3946
3947 node = rc->backref_cache.path[level];
3948 BUG_ON(node->bytenr != buf->start &&
3949 node->new_bytenr != buf->start);
3950
3951 btrfs_backref_drop_node_buffer(node);
3952 atomic_inc(&cow->refs);
3953 node->eb = cow;
3954 node->new_bytenr = cow->start;
3955
3956 if (!node->pending) {
3957 list_move_tail(&node->list,
3958 &rc->backref_cache.pending[level]);
3959 node->pending = 1;
3960 }
3961
3962 if (first_cow)
3963 mark_block_processed(rc, node);
3964
3965 if (first_cow && level > 0)
3966 rc->nodes_relocated += buf->len;
3967 }
3968
3969 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3970 ret = replace_file_extents(trans, rc, root, cow);
3971 return ret;
3972 }
3973
3974 /*
3975 * called before creating snapshot. it calculates metadata reservation
3976 * required for relocating tree blocks in the snapshot
3977 */
3978 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3979 u64 *bytes_to_reserve)
3980 {
3981 struct btrfs_root *root = pending->root;
3982 struct reloc_control *rc = root->fs_info->reloc_ctl;
3983
3984 if (!rc || !have_reloc_root(root))
3985 return;
3986
3987 if (!rc->merge_reloc_tree)
3988 return;
3989
3990 root = root->reloc_root;
3991 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
3992 /*
3993 * relocation is in the stage of merging trees. the space
3994 * used by merging a reloc tree is twice the size of
3995 * relocated tree nodes in the worst case. half for cowing
3996 * the reloc tree, half for cowing the fs tree. the space
3997 * used by cowing the reloc tree will be freed after the
3998 * tree is dropped. if we create snapshot, cowing the fs
3999 * tree may use more space than it frees. so we need
4000 * reserve extra space.
4001 */
4002 *bytes_to_reserve += rc->nodes_relocated;
4003 }
4004
4005 /*
4006 * called after snapshot is created. migrate block reservation
4007 * and create reloc root for the newly created snapshot
4008 *
4009 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4010 * references held on the reloc_root, one for root->reloc_root and one for
4011 * rc->reloc_roots.
4012 */
4013 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4014 struct btrfs_pending_snapshot *pending)
4015 {
4016 struct btrfs_root *root = pending->root;
4017 struct btrfs_root *reloc_root;
4018 struct btrfs_root *new_root;
4019 struct reloc_control *rc = root->fs_info->reloc_ctl;
4020 int ret;
4021
4022 if (!rc || !have_reloc_root(root))
4023 return 0;
4024
4025 rc = root->fs_info->reloc_ctl;
4026 rc->merging_rsv_size += rc->nodes_relocated;
4027
4028 if (rc->merge_reloc_tree) {
4029 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4030 rc->block_rsv,
4031 rc->nodes_relocated, true);
4032 if (ret)
4033 return ret;
4034 }
4035
4036 new_root = pending->snap;
4037 reloc_root = create_reloc_root(trans, root->reloc_root,
4038 new_root->root_key.objectid);
4039 if (IS_ERR(reloc_root))
4040 return PTR_ERR(reloc_root);
4041
4042 ret = __add_reloc_root(reloc_root);
4043 BUG_ON(ret < 0);
4044 new_root->reloc_root = btrfs_grab_root(reloc_root);
4045
4046 if (rc->create_reloc_tree)
4047 ret = clone_backref_node(trans, rc, root, reloc_root);
4048 return ret;
4049 }