]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/relocation.c
Merge tag 'drm-fixes-2019-04-24' of git://anongit.freedesktop.org/drm/drm
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / relocation.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "locking.h"
17 #include "btrfs_inode.h"
18 #include "async-thread.h"
19 #include "free-space-cache.h"
20 #include "inode-map.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23
24 /*
25 * backref_node, mapping_node and tree_block start with this
26 */
27 struct tree_entry {
28 struct rb_node rb_node;
29 u64 bytenr;
30 };
31
32 /*
33 * present a tree block in the backref cache
34 */
35 struct backref_node {
36 struct rb_node rb_node;
37 u64 bytenr;
38
39 u64 new_bytenr;
40 /* objectid of tree block owner, can be not uptodate */
41 u64 owner;
42 /* link to pending, changed or detached list */
43 struct list_head list;
44 /* list of upper level blocks reference this block */
45 struct list_head upper;
46 /* list of child blocks in the cache */
47 struct list_head lower;
48 /* NULL if this node is not tree root */
49 struct btrfs_root *root;
50 /* extent buffer got by COW the block */
51 struct extent_buffer *eb;
52 /* level of tree block */
53 unsigned int level:8;
54 /* is the block in non-reference counted tree */
55 unsigned int cowonly:1;
56 /* 1 if no child node in the cache */
57 unsigned int lowest:1;
58 /* is the extent buffer locked */
59 unsigned int locked:1;
60 /* has the block been processed */
61 unsigned int processed:1;
62 /* have backrefs of this block been checked */
63 unsigned int checked:1;
64 /*
65 * 1 if corresponding block has been cowed but some upper
66 * level block pointers may not point to the new location
67 */
68 unsigned int pending:1;
69 /*
70 * 1 if the backref node isn't connected to any other
71 * backref node.
72 */
73 unsigned int detached:1;
74 };
75
76 /*
77 * present a block pointer in the backref cache
78 */
79 struct backref_edge {
80 struct list_head list[2];
81 struct backref_node *node[2];
82 };
83
84 #define LOWER 0
85 #define UPPER 1
86 #define RELOCATION_RESERVED_NODES 256
87
88 struct backref_cache {
89 /* red black tree of all backref nodes in the cache */
90 struct rb_root rb_root;
91 /* for passing backref nodes to btrfs_reloc_cow_block */
92 struct backref_node *path[BTRFS_MAX_LEVEL];
93 /*
94 * list of blocks that have been cowed but some block
95 * pointers in upper level blocks may not reflect the
96 * new location
97 */
98 struct list_head pending[BTRFS_MAX_LEVEL];
99 /* list of backref nodes with no child node */
100 struct list_head leaves;
101 /* list of blocks that have been cowed in current transaction */
102 struct list_head changed;
103 /* list of detached backref node. */
104 struct list_head detached;
105
106 u64 last_trans;
107
108 int nr_nodes;
109 int nr_edges;
110 };
111
112 /*
113 * map address of tree root to tree
114 */
115 struct mapping_node {
116 struct rb_node rb_node;
117 u64 bytenr;
118 void *data;
119 };
120
121 struct mapping_tree {
122 struct rb_root rb_root;
123 spinlock_t lock;
124 };
125
126 /*
127 * present a tree block to process
128 */
129 struct tree_block {
130 struct rb_node rb_node;
131 u64 bytenr;
132 struct btrfs_key key;
133 unsigned int level:8;
134 unsigned int key_ready:1;
135 };
136
137 #define MAX_EXTENTS 128
138
139 struct file_extent_cluster {
140 u64 start;
141 u64 end;
142 u64 boundary[MAX_EXTENTS];
143 unsigned int nr;
144 };
145
146 struct reloc_control {
147 /* block group to relocate */
148 struct btrfs_block_group_cache *block_group;
149 /* extent tree */
150 struct btrfs_root *extent_root;
151 /* inode for moving data */
152 struct inode *data_inode;
153
154 struct btrfs_block_rsv *block_rsv;
155
156 struct backref_cache backref_cache;
157
158 struct file_extent_cluster cluster;
159 /* tree blocks have been processed */
160 struct extent_io_tree processed_blocks;
161 /* map start of tree root to corresponding reloc tree */
162 struct mapping_tree reloc_root_tree;
163 /* list of reloc trees */
164 struct list_head reloc_roots;
165 /* list of subvolume trees that get relocated */
166 struct list_head dirty_subvol_roots;
167 /* size of metadata reservation for merging reloc trees */
168 u64 merging_rsv_size;
169 /* size of relocated tree nodes */
170 u64 nodes_relocated;
171 /* reserved size for block group relocation*/
172 u64 reserved_bytes;
173
174 u64 search_start;
175 u64 extents_found;
176
177 unsigned int stage:8;
178 unsigned int create_reloc_tree:1;
179 unsigned int merge_reloc_tree:1;
180 unsigned int found_file_extent:1;
181 };
182
183 /* stages of data relocation */
184 #define MOVE_DATA_EXTENTS 0
185 #define UPDATE_DATA_PTRS 1
186
187 static void remove_backref_node(struct backref_cache *cache,
188 struct backref_node *node);
189 static void __mark_block_processed(struct reloc_control *rc,
190 struct backref_node *node);
191
192 static void mapping_tree_init(struct mapping_tree *tree)
193 {
194 tree->rb_root = RB_ROOT;
195 spin_lock_init(&tree->lock);
196 }
197
198 static void backref_cache_init(struct backref_cache *cache)
199 {
200 int i;
201 cache->rb_root = RB_ROOT;
202 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
203 INIT_LIST_HEAD(&cache->pending[i]);
204 INIT_LIST_HEAD(&cache->changed);
205 INIT_LIST_HEAD(&cache->detached);
206 INIT_LIST_HEAD(&cache->leaves);
207 }
208
209 static void backref_cache_cleanup(struct backref_cache *cache)
210 {
211 struct backref_node *node;
212 int i;
213
214 while (!list_empty(&cache->detached)) {
215 node = list_entry(cache->detached.next,
216 struct backref_node, list);
217 remove_backref_node(cache, node);
218 }
219
220 while (!list_empty(&cache->leaves)) {
221 node = list_entry(cache->leaves.next,
222 struct backref_node, lower);
223 remove_backref_node(cache, node);
224 }
225
226 cache->last_trans = 0;
227
228 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
229 ASSERT(list_empty(&cache->pending[i]));
230 ASSERT(list_empty(&cache->changed));
231 ASSERT(list_empty(&cache->detached));
232 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
233 ASSERT(!cache->nr_nodes);
234 ASSERT(!cache->nr_edges);
235 }
236
237 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
238 {
239 struct backref_node *node;
240
241 node = kzalloc(sizeof(*node), GFP_NOFS);
242 if (node) {
243 INIT_LIST_HEAD(&node->list);
244 INIT_LIST_HEAD(&node->upper);
245 INIT_LIST_HEAD(&node->lower);
246 RB_CLEAR_NODE(&node->rb_node);
247 cache->nr_nodes++;
248 }
249 return node;
250 }
251
252 static void free_backref_node(struct backref_cache *cache,
253 struct backref_node *node)
254 {
255 if (node) {
256 cache->nr_nodes--;
257 kfree(node);
258 }
259 }
260
261 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
262 {
263 struct backref_edge *edge;
264
265 edge = kzalloc(sizeof(*edge), GFP_NOFS);
266 if (edge)
267 cache->nr_edges++;
268 return edge;
269 }
270
271 static void free_backref_edge(struct backref_cache *cache,
272 struct backref_edge *edge)
273 {
274 if (edge) {
275 cache->nr_edges--;
276 kfree(edge);
277 }
278 }
279
280 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
281 struct rb_node *node)
282 {
283 struct rb_node **p = &root->rb_node;
284 struct rb_node *parent = NULL;
285 struct tree_entry *entry;
286
287 while (*p) {
288 parent = *p;
289 entry = rb_entry(parent, struct tree_entry, rb_node);
290
291 if (bytenr < entry->bytenr)
292 p = &(*p)->rb_left;
293 else if (bytenr > entry->bytenr)
294 p = &(*p)->rb_right;
295 else
296 return parent;
297 }
298
299 rb_link_node(node, parent, p);
300 rb_insert_color(node, root);
301 return NULL;
302 }
303
304 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
305 {
306 struct rb_node *n = root->rb_node;
307 struct tree_entry *entry;
308
309 while (n) {
310 entry = rb_entry(n, struct tree_entry, rb_node);
311
312 if (bytenr < entry->bytenr)
313 n = n->rb_left;
314 else if (bytenr > entry->bytenr)
315 n = n->rb_right;
316 else
317 return n;
318 }
319 return NULL;
320 }
321
322 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
323 {
324
325 struct btrfs_fs_info *fs_info = NULL;
326 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
327 rb_node);
328 if (bnode->root)
329 fs_info = bnode->root->fs_info;
330 btrfs_panic(fs_info, errno,
331 "Inconsistency in backref cache found at offset %llu",
332 bytenr);
333 }
334
335 /*
336 * walk up backref nodes until reach node presents tree root
337 */
338 static struct backref_node *walk_up_backref(struct backref_node *node,
339 struct backref_edge *edges[],
340 int *index)
341 {
342 struct backref_edge *edge;
343 int idx = *index;
344
345 while (!list_empty(&node->upper)) {
346 edge = list_entry(node->upper.next,
347 struct backref_edge, list[LOWER]);
348 edges[idx++] = edge;
349 node = edge->node[UPPER];
350 }
351 BUG_ON(node->detached);
352 *index = idx;
353 return node;
354 }
355
356 /*
357 * walk down backref nodes to find start of next reference path
358 */
359 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
360 int *index)
361 {
362 struct backref_edge *edge;
363 struct backref_node *lower;
364 int idx = *index;
365
366 while (idx > 0) {
367 edge = edges[idx - 1];
368 lower = edge->node[LOWER];
369 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
370 idx--;
371 continue;
372 }
373 edge = list_entry(edge->list[LOWER].next,
374 struct backref_edge, list[LOWER]);
375 edges[idx - 1] = edge;
376 *index = idx;
377 return edge->node[UPPER];
378 }
379 *index = 0;
380 return NULL;
381 }
382
383 static void unlock_node_buffer(struct backref_node *node)
384 {
385 if (node->locked) {
386 btrfs_tree_unlock(node->eb);
387 node->locked = 0;
388 }
389 }
390
391 static void drop_node_buffer(struct backref_node *node)
392 {
393 if (node->eb) {
394 unlock_node_buffer(node);
395 free_extent_buffer(node->eb);
396 node->eb = NULL;
397 }
398 }
399
400 static void drop_backref_node(struct backref_cache *tree,
401 struct backref_node *node)
402 {
403 BUG_ON(!list_empty(&node->upper));
404
405 drop_node_buffer(node);
406 list_del(&node->list);
407 list_del(&node->lower);
408 if (!RB_EMPTY_NODE(&node->rb_node))
409 rb_erase(&node->rb_node, &tree->rb_root);
410 free_backref_node(tree, node);
411 }
412
413 /*
414 * remove a backref node from the backref cache
415 */
416 static void remove_backref_node(struct backref_cache *cache,
417 struct backref_node *node)
418 {
419 struct backref_node *upper;
420 struct backref_edge *edge;
421
422 if (!node)
423 return;
424
425 BUG_ON(!node->lowest && !node->detached);
426 while (!list_empty(&node->upper)) {
427 edge = list_entry(node->upper.next, struct backref_edge,
428 list[LOWER]);
429 upper = edge->node[UPPER];
430 list_del(&edge->list[LOWER]);
431 list_del(&edge->list[UPPER]);
432 free_backref_edge(cache, edge);
433
434 if (RB_EMPTY_NODE(&upper->rb_node)) {
435 BUG_ON(!list_empty(&node->upper));
436 drop_backref_node(cache, node);
437 node = upper;
438 node->lowest = 1;
439 continue;
440 }
441 /*
442 * add the node to leaf node list if no other
443 * child block cached.
444 */
445 if (list_empty(&upper->lower)) {
446 list_add_tail(&upper->lower, &cache->leaves);
447 upper->lowest = 1;
448 }
449 }
450
451 drop_backref_node(cache, node);
452 }
453
454 static void update_backref_node(struct backref_cache *cache,
455 struct backref_node *node, u64 bytenr)
456 {
457 struct rb_node *rb_node;
458 rb_erase(&node->rb_node, &cache->rb_root);
459 node->bytenr = bytenr;
460 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
461 if (rb_node)
462 backref_tree_panic(rb_node, -EEXIST, bytenr);
463 }
464
465 /*
466 * update backref cache after a transaction commit
467 */
468 static int update_backref_cache(struct btrfs_trans_handle *trans,
469 struct backref_cache *cache)
470 {
471 struct backref_node *node;
472 int level = 0;
473
474 if (cache->last_trans == 0) {
475 cache->last_trans = trans->transid;
476 return 0;
477 }
478
479 if (cache->last_trans == trans->transid)
480 return 0;
481
482 /*
483 * detached nodes are used to avoid unnecessary backref
484 * lookup. transaction commit changes the extent tree.
485 * so the detached nodes are no longer useful.
486 */
487 while (!list_empty(&cache->detached)) {
488 node = list_entry(cache->detached.next,
489 struct backref_node, list);
490 remove_backref_node(cache, node);
491 }
492
493 while (!list_empty(&cache->changed)) {
494 node = list_entry(cache->changed.next,
495 struct backref_node, list);
496 list_del_init(&node->list);
497 BUG_ON(node->pending);
498 update_backref_node(cache, node, node->new_bytenr);
499 }
500
501 /*
502 * some nodes can be left in the pending list if there were
503 * errors during processing the pending nodes.
504 */
505 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
506 list_for_each_entry(node, &cache->pending[level], list) {
507 BUG_ON(!node->pending);
508 if (node->bytenr == node->new_bytenr)
509 continue;
510 update_backref_node(cache, node, node->new_bytenr);
511 }
512 }
513
514 cache->last_trans = 0;
515 return 1;
516 }
517
518
519 static int should_ignore_root(struct btrfs_root *root)
520 {
521 struct btrfs_root *reloc_root;
522
523 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
524 return 0;
525
526 reloc_root = root->reloc_root;
527 if (!reloc_root)
528 return 0;
529
530 if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
531 root->fs_info->running_transaction->transid - 1)
532 return 0;
533 /*
534 * if there is reloc tree and it was created in previous
535 * transaction backref lookup can find the reloc tree,
536 * so backref node for the fs tree root is useless for
537 * relocation.
538 */
539 return 1;
540 }
541 /*
542 * find reloc tree by address of tree root
543 */
544 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
545 u64 bytenr)
546 {
547 struct rb_node *rb_node;
548 struct mapping_node *node;
549 struct btrfs_root *root = NULL;
550
551 spin_lock(&rc->reloc_root_tree.lock);
552 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
553 if (rb_node) {
554 node = rb_entry(rb_node, struct mapping_node, rb_node);
555 root = (struct btrfs_root *)node->data;
556 }
557 spin_unlock(&rc->reloc_root_tree.lock);
558 return root;
559 }
560
561 static int is_cowonly_root(u64 root_objectid)
562 {
563 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
564 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
565 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
566 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
567 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
568 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
569 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
570 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
571 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
572 return 1;
573 return 0;
574 }
575
576 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
577 u64 root_objectid)
578 {
579 struct btrfs_key key;
580
581 key.objectid = root_objectid;
582 key.type = BTRFS_ROOT_ITEM_KEY;
583 if (is_cowonly_root(root_objectid))
584 key.offset = 0;
585 else
586 key.offset = (u64)-1;
587
588 return btrfs_get_fs_root(fs_info, &key, false);
589 }
590
591 static noinline_for_stack
592 int find_inline_backref(struct extent_buffer *leaf, int slot,
593 unsigned long *ptr, unsigned long *end)
594 {
595 struct btrfs_key key;
596 struct btrfs_extent_item *ei;
597 struct btrfs_tree_block_info *bi;
598 u32 item_size;
599
600 btrfs_item_key_to_cpu(leaf, &key, slot);
601
602 item_size = btrfs_item_size_nr(leaf, slot);
603 if (item_size < sizeof(*ei)) {
604 btrfs_print_v0_err(leaf->fs_info);
605 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
606 return 1;
607 }
608 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
609 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
610 BTRFS_EXTENT_FLAG_TREE_BLOCK));
611
612 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
613 item_size <= sizeof(*ei) + sizeof(*bi)) {
614 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
615 return 1;
616 }
617 if (key.type == BTRFS_METADATA_ITEM_KEY &&
618 item_size <= sizeof(*ei)) {
619 WARN_ON(item_size < sizeof(*ei));
620 return 1;
621 }
622
623 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
624 bi = (struct btrfs_tree_block_info *)(ei + 1);
625 *ptr = (unsigned long)(bi + 1);
626 } else {
627 *ptr = (unsigned long)(ei + 1);
628 }
629 *end = (unsigned long)ei + item_size;
630 return 0;
631 }
632
633 /*
634 * build backref tree for a given tree block. root of the backref tree
635 * corresponds the tree block, leaves of the backref tree correspond
636 * roots of b-trees that reference the tree block.
637 *
638 * the basic idea of this function is check backrefs of a given block
639 * to find upper level blocks that reference the block, and then check
640 * backrefs of these upper level blocks recursively. the recursion stop
641 * when tree root is reached or backrefs for the block is cached.
642 *
643 * NOTE: if we find backrefs for a block are cached, we know backrefs
644 * for all upper level blocks that directly/indirectly reference the
645 * block are also cached.
646 */
647 static noinline_for_stack
648 struct backref_node *build_backref_tree(struct reloc_control *rc,
649 struct btrfs_key *node_key,
650 int level, u64 bytenr)
651 {
652 struct backref_cache *cache = &rc->backref_cache;
653 struct btrfs_path *path1; /* For searching extent root */
654 struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
655 struct extent_buffer *eb;
656 struct btrfs_root *root;
657 struct backref_node *cur;
658 struct backref_node *upper;
659 struct backref_node *lower;
660 struct backref_node *node = NULL;
661 struct backref_node *exist = NULL;
662 struct backref_edge *edge;
663 struct rb_node *rb_node;
664 struct btrfs_key key;
665 unsigned long end;
666 unsigned long ptr;
667 LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
668 LIST_HEAD(useless);
669 int cowonly;
670 int ret;
671 int err = 0;
672 bool need_check = true;
673
674 path1 = btrfs_alloc_path();
675 path2 = btrfs_alloc_path();
676 if (!path1 || !path2) {
677 err = -ENOMEM;
678 goto out;
679 }
680 path1->reada = READA_FORWARD;
681 path2->reada = READA_FORWARD;
682
683 node = alloc_backref_node(cache);
684 if (!node) {
685 err = -ENOMEM;
686 goto out;
687 }
688
689 node->bytenr = bytenr;
690 node->level = level;
691 node->lowest = 1;
692 cur = node;
693 again:
694 end = 0;
695 ptr = 0;
696 key.objectid = cur->bytenr;
697 key.type = BTRFS_METADATA_ITEM_KEY;
698 key.offset = (u64)-1;
699
700 path1->search_commit_root = 1;
701 path1->skip_locking = 1;
702 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
703 0, 0);
704 if (ret < 0) {
705 err = ret;
706 goto out;
707 }
708 ASSERT(ret);
709 ASSERT(path1->slots[0]);
710
711 path1->slots[0]--;
712
713 WARN_ON(cur->checked);
714 if (!list_empty(&cur->upper)) {
715 /*
716 * the backref was added previously when processing
717 * backref of type BTRFS_TREE_BLOCK_REF_KEY
718 */
719 ASSERT(list_is_singular(&cur->upper));
720 edge = list_entry(cur->upper.next, struct backref_edge,
721 list[LOWER]);
722 ASSERT(list_empty(&edge->list[UPPER]));
723 exist = edge->node[UPPER];
724 /*
725 * add the upper level block to pending list if we need
726 * check its backrefs
727 */
728 if (!exist->checked)
729 list_add_tail(&edge->list[UPPER], &list);
730 } else {
731 exist = NULL;
732 }
733
734 while (1) {
735 cond_resched();
736 eb = path1->nodes[0];
737
738 if (ptr >= end) {
739 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
740 ret = btrfs_next_leaf(rc->extent_root, path1);
741 if (ret < 0) {
742 err = ret;
743 goto out;
744 }
745 if (ret > 0)
746 break;
747 eb = path1->nodes[0];
748 }
749
750 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
751 if (key.objectid != cur->bytenr) {
752 WARN_ON(exist);
753 break;
754 }
755
756 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
757 key.type == BTRFS_METADATA_ITEM_KEY) {
758 ret = find_inline_backref(eb, path1->slots[0],
759 &ptr, &end);
760 if (ret)
761 goto next;
762 }
763 }
764
765 if (ptr < end) {
766 /* update key for inline back ref */
767 struct btrfs_extent_inline_ref *iref;
768 int type;
769 iref = (struct btrfs_extent_inline_ref *)ptr;
770 type = btrfs_get_extent_inline_ref_type(eb, iref,
771 BTRFS_REF_TYPE_BLOCK);
772 if (type == BTRFS_REF_TYPE_INVALID) {
773 err = -EUCLEAN;
774 goto out;
775 }
776 key.type = type;
777 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
778
779 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
780 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
781 }
782
783 /*
784 * Parent node found and matches current inline ref, no need to
785 * rebuild this node for this inline ref.
786 */
787 if (exist &&
788 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
789 exist->owner == key.offset) ||
790 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
791 exist->bytenr == key.offset))) {
792 exist = NULL;
793 goto next;
794 }
795
796 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
797 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
798 if (key.objectid == key.offset) {
799 /*
800 * Only root blocks of reloc trees use backref
801 * pointing to itself.
802 */
803 root = find_reloc_root(rc, cur->bytenr);
804 ASSERT(root);
805 cur->root = root;
806 break;
807 }
808
809 edge = alloc_backref_edge(cache);
810 if (!edge) {
811 err = -ENOMEM;
812 goto out;
813 }
814 rb_node = tree_search(&cache->rb_root, key.offset);
815 if (!rb_node) {
816 upper = alloc_backref_node(cache);
817 if (!upper) {
818 free_backref_edge(cache, edge);
819 err = -ENOMEM;
820 goto out;
821 }
822 upper->bytenr = key.offset;
823 upper->level = cur->level + 1;
824 /*
825 * backrefs for the upper level block isn't
826 * cached, add the block to pending list
827 */
828 list_add_tail(&edge->list[UPPER], &list);
829 } else {
830 upper = rb_entry(rb_node, struct backref_node,
831 rb_node);
832 ASSERT(upper->checked);
833 INIT_LIST_HEAD(&edge->list[UPPER]);
834 }
835 list_add_tail(&edge->list[LOWER], &cur->upper);
836 edge->node[LOWER] = cur;
837 edge->node[UPPER] = upper;
838
839 goto next;
840 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
841 err = -EINVAL;
842 btrfs_print_v0_err(rc->extent_root->fs_info);
843 btrfs_handle_fs_error(rc->extent_root->fs_info, err,
844 NULL);
845 goto out;
846 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
847 goto next;
848 }
849
850 /*
851 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
852 * means the root objectid. We need to search the tree to get
853 * its parent bytenr.
854 */
855 root = read_fs_root(rc->extent_root->fs_info, key.offset);
856 if (IS_ERR(root)) {
857 err = PTR_ERR(root);
858 goto out;
859 }
860
861 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
862 cur->cowonly = 1;
863
864 if (btrfs_root_level(&root->root_item) == cur->level) {
865 /* tree root */
866 ASSERT(btrfs_root_bytenr(&root->root_item) ==
867 cur->bytenr);
868 if (should_ignore_root(root))
869 list_add(&cur->list, &useless);
870 else
871 cur->root = root;
872 break;
873 }
874
875 level = cur->level + 1;
876
877 /* Search the tree to find parent blocks referring the block. */
878 path2->search_commit_root = 1;
879 path2->skip_locking = 1;
880 path2->lowest_level = level;
881 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
882 path2->lowest_level = 0;
883 if (ret < 0) {
884 err = ret;
885 goto out;
886 }
887 if (ret > 0 && path2->slots[level] > 0)
888 path2->slots[level]--;
889
890 eb = path2->nodes[level];
891 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
892 cur->bytenr) {
893 btrfs_err(root->fs_info,
894 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
895 cur->bytenr, level - 1,
896 root->root_key.objectid,
897 node_key->objectid, node_key->type,
898 node_key->offset);
899 err = -ENOENT;
900 goto out;
901 }
902 lower = cur;
903 need_check = true;
904
905 /* Add all nodes and edges in the path */
906 for (; level < BTRFS_MAX_LEVEL; level++) {
907 if (!path2->nodes[level]) {
908 ASSERT(btrfs_root_bytenr(&root->root_item) ==
909 lower->bytenr);
910 if (should_ignore_root(root))
911 list_add(&lower->list, &useless);
912 else
913 lower->root = root;
914 break;
915 }
916
917 edge = alloc_backref_edge(cache);
918 if (!edge) {
919 err = -ENOMEM;
920 goto out;
921 }
922
923 eb = path2->nodes[level];
924 rb_node = tree_search(&cache->rb_root, eb->start);
925 if (!rb_node) {
926 upper = alloc_backref_node(cache);
927 if (!upper) {
928 free_backref_edge(cache, edge);
929 err = -ENOMEM;
930 goto out;
931 }
932 upper->bytenr = eb->start;
933 upper->owner = btrfs_header_owner(eb);
934 upper->level = lower->level + 1;
935 if (!test_bit(BTRFS_ROOT_REF_COWS,
936 &root->state))
937 upper->cowonly = 1;
938
939 /*
940 * if we know the block isn't shared
941 * we can void checking its backrefs.
942 */
943 if (btrfs_block_can_be_shared(root, eb))
944 upper->checked = 0;
945 else
946 upper->checked = 1;
947
948 /*
949 * add the block to pending list if we
950 * need check its backrefs, we only do this once
951 * while walking up a tree as we will catch
952 * anything else later on.
953 */
954 if (!upper->checked && need_check) {
955 need_check = false;
956 list_add_tail(&edge->list[UPPER],
957 &list);
958 } else {
959 if (upper->checked)
960 need_check = true;
961 INIT_LIST_HEAD(&edge->list[UPPER]);
962 }
963 } else {
964 upper = rb_entry(rb_node, struct backref_node,
965 rb_node);
966 ASSERT(upper->checked);
967 INIT_LIST_HEAD(&edge->list[UPPER]);
968 if (!upper->owner)
969 upper->owner = btrfs_header_owner(eb);
970 }
971 list_add_tail(&edge->list[LOWER], &lower->upper);
972 edge->node[LOWER] = lower;
973 edge->node[UPPER] = upper;
974
975 if (rb_node)
976 break;
977 lower = upper;
978 upper = NULL;
979 }
980 btrfs_release_path(path2);
981 next:
982 if (ptr < end) {
983 ptr += btrfs_extent_inline_ref_size(key.type);
984 if (ptr >= end) {
985 WARN_ON(ptr > end);
986 ptr = 0;
987 end = 0;
988 }
989 }
990 if (ptr >= end)
991 path1->slots[0]++;
992 }
993 btrfs_release_path(path1);
994
995 cur->checked = 1;
996 WARN_ON(exist);
997
998 /* the pending list isn't empty, take the first block to process */
999 if (!list_empty(&list)) {
1000 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1001 list_del_init(&edge->list[UPPER]);
1002 cur = edge->node[UPPER];
1003 goto again;
1004 }
1005
1006 /*
1007 * everything goes well, connect backref nodes and insert backref nodes
1008 * into the cache.
1009 */
1010 ASSERT(node->checked);
1011 cowonly = node->cowonly;
1012 if (!cowonly) {
1013 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1014 &node->rb_node);
1015 if (rb_node)
1016 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1017 list_add_tail(&node->lower, &cache->leaves);
1018 }
1019
1020 list_for_each_entry(edge, &node->upper, list[LOWER])
1021 list_add_tail(&edge->list[UPPER], &list);
1022
1023 while (!list_empty(&list)) {
1024 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1025 list_del_init(&edge->list[UPPER]);
1026 upper = edge->node[UPPER];
1027 if (upper->detached) {
1028 list_del(&edge->list[LOWER]);
1029 lower = edge->node[LOWER];
1030 free_backref_edge(cache, edge);
1031 if (list_empty(&lower->upper))
1032 list_add(&lower->list, &useless);
1033 continue;
1034 }
1035
1036 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1037 if (upper->lowest) {
1038 list_del_init(&upper->lower);
1039 upper->lowest = 0;
1040 }
1041
1042 list_add_tail(&edge->list[UPPER], &upper->lower);
1043 continue;
1044 }
1045
1046 if (!upper->checked) {
1047 /*
1048 * Still want to blow up for developers since this is a
1049 * logic bug.
1050 */
1051 ASSERT(0);
1052 err = -EINVAL;
1053 goto out;
1054 }
1055 if (cowonly != upper->cowonly) {
1056 ASSERT(0);
1057 err = -EINVAL;
1058 goto out;
1059 }
1060
1061 if (!cowonly) {
1062 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1063 &upper->rb_node);
1064 if (rb_node)
1065 backref_tree_panic(rb_node, -EEXIST,
1066 upper->bytenr);
1067 }
1068
1069 list_add_tail(&edge->list[UPPER], &upper->lower);
1070
1071 list_for_each_entry(edge, &upper->upper, list[LOWER])
1072 list_add_tail(&edge->list[UPPER], &list);
1073 }
1074 /*
1075 * process useless backref nodes. backref nodes for tree leaves
1076 * are deleted from the cache. backref nodes for upper level
1077 * tree blocks are left in the cache to avoid unnecessary backref
1078 * lookup.
1079 */
1080 while (!list_empty(&useless)) {
1081 upper = list_entry(useless.next, struct backref_node, list);
1082 list_del_init(&upper->list);
1083 ASSERT(list_empty(&upper->upper));
1084 if (upper == node)
1085 node = NULL;
1086 if (upper->lowest) {
1087 list_del_init(&upper->lower);
1088 upper->lowest = 0;
1089 }
1090 while (!list_empty(&upper->lower)) {
1091 edge = list_entry(upper->lower.next,
1092 struct backref_edge, list[UPPER]);
1093 list_del(&edge->list[UPPER]);
1094 list_del(&edge->list[LOWER]);
1095 lower = edge->node[LOWER];
1096 free_backref_edge(cache, edge);
1097
1098 if (list_empty(&lower->upper))
1099 list_add(&lower->list, &useless);
1100 }
1101 __mark_block_processed(rc, upper);
1102 if (upper->level > 0) {
1103 list_add(&upper->list, &cache->detached);
1104 upper->detached = 1;
1105 } else {
1106 rb_erase(&upper->rb_node, &cache->rb_root);
1107 free_backref_node(cache, upper);
1108 }
1109 }
1110 out:
1111 btrfs_free_path(path1);
1112 btrfs_free_path(path2);
1113 if (err) {
1114 while (!list_empty(&useless)) {
1115 lower = list_entry(useless.next,
1116 struct backref_node, list);
1117 list_del_init(&lower->list);
1118 }
1119 while (!list_empty(&list)) {
1120 edge = list_first_entry(&list, struct backref_edge,
1121 list[UPPER]);
1122 list_del(&edge->list[UPPER]);
1123 list_del(&edge->list[LOWER]);
1124 lower = edge->node[LOWER];
1125 upper = edge->node[UPPER];
1126 free_backref_edge(cache, edge);
1127
1128 /*
1129 * Lower is no longer linked to any upper backref nodes
1130 * and isn't in the cache, we can free it ourselves.
1131 */
1132 if (list_empty(&lower->upper) &&
1133 RB_EMPTY_NODE(&lower->rb_node))
1134 list_add(&lower->list, &useless);
1135
1136 if (!RB_EMPTY_NODE(&upper->rb_node))
1137 continue;
1138
1139 /* Add this guy's upper edges to the list to process */
1140 list_for_each_entry(edge, &upper->upper, list[LOWER])
1141 list_add_tail(&edge->list[UPPER], &list);
1142 if (list_empty(&upper->upper))
1143 list_add(&upper->list, &useless);
1144 }
1145
1146 while (!list_empty(&useless)) {
1147 lower = list_entry(useless.next,
1148 struct backref_node, list);
1149 list_del_init(&lower->list);
1150 if (lower == node)
1151 node = NULL;
1152 free_backref_node(cache, lower);
1153 }
1154
1155 free_backref_node(cache, node);
1156 return ERR_PTR(err);
1157 }
1158 ASSERT(!node || !node->detached);
1159 return node;
1160 }
1161
1162 /*
1163 * helper to add backref node for the newly created snapshot.
1164 * the backref node is created by cloning backref node that
1165 * corresponds to root of source tree
1166 */
1167 static int clone_backref_node(struct btrfs_trans_handle *trans,
1168 struct reloc_control *rc,
1169 struct btrfs_root *src,
1170 struct btrfs_root *dest)
1171 {
1172 struct btrfs_root *reloc_root = src->reloc_root;
1173 struct backref_cache *cache = &rc->backref_cache;
1174 struct backref_node *node = NULL;
1175 struct backref_node *new_node;
1176 struct backref_edge *edge;
1177 struct backref_edge *new_edge;
1178 struct rb_node *rb_node;
1179
1180 if (cache->last_trans > 0)
1181 update_backref_cache(trans, cache);
1182
1183 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1184 if (rb_node) {
1185 node = rb_entry(rb_node, struct backref_node, rb_node);
1186 if (node->detached)
1187 node = NULL;
1188 else
1189 BUG_ON(node->new_bytenr != reloc_root->node->start);
1190 }
1191
1192 if (!node) {
1193 rb_node = tree_search(&cache->rb_root,
1194 reloc_root->commit_root->start);
1195 if (rb_node) {
1196 node = rb_entry(rb_node, struct backref_node,
1197 rb_node);
1198 BUG_ON(node->detached);
1199 }
1200 }
1201
1202 if (!node)
1203 return 0;
1204
1205 new_node = alloc_backref_node(cache);
1206 if (!new_node)
1207 return -ENOMEM;
1208
1209 new_node->bytenr = dest->node->start;
1210 new_node->level = node->level;
1211 new_node->lowest = node->lowest;
1212 new_node->checked = 1;
1213 new_node->root = dest;
1214
1215 if (!node->lowest) {
1216 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1217 new_edge = alloc_backref_edge(cache);
1218 if (!new_edge)
1219 goto fail;
1220
1221 new_edge->node[UPPER] = new_node;
1222 new_edge->node[LOWER] = edge->node[LOWER];
1223 list_add_tail(&new_edge->list[UPPER],
1224 &new_node->lower);
1225 }
1226 } else {
1227 list_add_tail(&new_node->lower, &cache->leaves);
1228 }
1229
1230 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1231 &new_node->rb_node);
1232 if (rb_node)
1233 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1234
1235 if (!new_node->lowest) {
1236 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1237 list_add_tail(&new_edge->list[LOWER],
1238 &new_edge->node[LOWER]->upper);
1239 }
1240 }
1241 return 0;
1242 fail:
1243 while (!list_empty(&new_node->lower)) {
1244 new_edge = list_entry(new_node->lower.next,
1245 struct backref_edge, list[UPPER]);
1246 list_del(&new_edge->list[UPPER]);
1247 free_backref_edge(cache, new_edge);
1248 }
1249 free_backref_node(cache, new_node);
1250 return -ENOMEM;
1251 }
1252
1253 /*
1254 * helper to add 'address of tree root -> reloc tree' mapping
1255 */
1256 static int __must_check __add_reloc_root(struct btrfs_root *root)
1257 {
1258 struct btrfs_fs_info *fs_info = root->fs_info;
1259 struct rb_node *rb_node;
1260 struct mapping_node *node;
1261 struct reloc_control *rc = fs_info->reloc_ctl;
1262
1263 node = kmalloc(sizeof(*node), GFP_NOFS);
1264 if (!node)
1265 return -ENOMEM;
1266
1267 node->bytenr = root->node->start;
1268 node->data = root;
1269
1270 spin_lock(&rc->reloc_root_tree.lock);
1271 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1272 node->bytenr, &node->rb_node);
1273 spin_unlock(&rc->reloc_root_tree.lock);
1274 if (rb_node) {
1275 btrfs_panic(fs_info, -EEXIST,
1276 "Duplicate root found for start=%llu while inserting into relocation tree",
1277 node->bytenr);
1278 }
1279
1280 list_add_tail(&root->root_list, &rc->reloc_roots);
1281 return 0;
1282 }
1283
1284 /*
1285 * helper to delete the 'address of tree root -> reloc tree'
1286 * mapping
1287 */
1288 static void __del_reloc_root(struct btrfs_root *root)
1289 {
1290 struct btrfs_fs_info *fs_info = root->fs_info;
1291 struct rb_node *rb_node;
1292 struct mapping_node *node = NULL;
1293 struct reloc_control *rc = fs_info->reloc_ctl;
1294
1295 if (rc && root->node) {
1296 spin_lock(&rc->reloc_root_tree.lock);
1297 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1298 root->node->start);
1299 if (rb_node) {
1300 node = rb_entry(rb_node, struct mapping_node, rb_node);
1301 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1302 }
1303 spin_unlock(&rc->reloc_root_tree.lock);
1304 if (!node)
1305 return;
1306 BUG_ON((struct btrfs_root *)node->data != root);
1307 }
1308
1309 spin_lock(&fs_info->trans_lock);
1310 list_del_init(&root->root_list);
1311 spin_unlock(&fs_info->trans_lock);
1312 kfree(node);
1313 }
1314
1315 /*
1316 * helper to update the 'address of tree root -> reloc tree'
1317 * mapping
1318 */
1319 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1320 {
1321 struct btrfs_fs_info *fs_info = root->fs_info;
1322 struct rb_node *rb_node;
1323 struct mapping_node *node = NULL;
1324 struct reloc_control *rc = fs_info->reloc_ctl;
1325
1326 spin_lock(&rc->reloc_root_tree.lock);
1327 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1328 root->node->start);
1329 if (rb_node) {
1330 node = rb_entry(rb_node, struct mapping_node, rb_node);
1331 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1332 }
1333 spin_unlock(&rc->reloc_root_tree.lock);
1334
1335 if (!node)
1336 return 0;
1337 BUG_ON((struct btrfs_root *)node->data != root);
1338
1339 spin_lock(&rc->reloc_root_tree.lock);
1340 node->bytenr = new_bytenr;
1341 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1342 node->bytenr, &node->rb_node);
1343 spin_unlock(&rc->reloc_root_tree.lock);
1344 if (rb_node)
1345 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1346 return 0;
1347 }
1348
1349 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1350 struct btrfs_root *root, u64 objectid)
1351 {
1352 struct btrfs_fs_info *fs_info = root->fs_info;
1353 struct btrfs_root *reloc_root;
1354 struct extent_buffer *eb;
1355 struct btrfs_root_item *root_item;
1356 struct btrfs_key root_key;
1357 int ret;
1358
1359 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1360 BUG_ON(!root_item);
1361
1362 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1363 root_key.type = BTRFS_ROOT_ITEM_KEY;
1364 root_key.offset = objectid;
1365
1366 if (root->root_key.objectid == objectid) {
1367 u64 commit_root_gen;
1368
1369 /* called by btrfs_init_reloc_root */
1370 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1371 BTRFS_TREE_RELOC_OBJECTID);
1372 BUG_ON(ret);
1373 /*
1374 * Set the last_snapshot field to the generation of the commit
1375 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1376 * correctly (returns true) when the relocation root is created
1377 * either inside the critical section of a transaction commit
1378 * (through transaction.c:qgroup_account_snapshot()) and when
1379 * it's created before the transaction commit is started.
1380 */
1381 commit_root_gen = btrfs_header_generation(root->commit_root);
1382 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1383 } else {
1384 /*
1385 * called by btrfs_reloc_post_snapshot_hook.
1386 * the source tree is a reloc tree, all tree blocks
1387 * modified after it was created have RELOC flag
1388 * set in their headers. so it's OK to not update
1389 * the 'last_snapshot'.
1390 */
1391 ret = btrfs_copy_root(trans, root, root->node, &eb,
1392 BTRFS_TREE_RELOC_OBJECTID);
1393 BUG_ON(ret);
1394 }
1395
1396 memcpy(root_item, &root->root_item, sizeof(*root_item));
1397 btrfs_set_root_bytenr(root_item, eb->start);
1398 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1399 btrfs_set_root_generation(root_item, trans->transid);
1400
1401 if (root->root_key.objectid == objectid) {
1402 btrfs_set_root_refs(root_item, 0);
1403 memset(&root_item->drop_progress, 0,
1404 sizeof(struct btrfs_disk_key));
1405 root_item->drop_level = 0;
1406 }
1407
1408 btrfs_tree_unlock(eb);
1409 free_extent_buffer(eb);
1410
1411 ret = btrfs_insert_root(trans, fs_info->tree_root,
1412 &root_key, root_item);
1413 BUG_ON(ret);
1414 kfree(root_item);
1415
1416 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1417 BUG_ON(IS_ERR(reloc_root));
1418 reloc_root->last_trans = trans->transid;
1419 return reloc_root;
1420 }
1421
1422 /*
1423 * create reloc tree for a given fs tree. reloc tree is just a
1424 * snapshot of the fs tree with special root objectid.
1425 */
1426 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1427 struct btrfs_root *root)
1428 {
1429 struct btrfs_fs_info *fs_info = root->fs_info;
1430 struct btrfs_root *reloc_root;
1431 struct reloc_control *rc = fs_info->reloc_ctl;
1432 struct btrfs_block_rsv *rsv;
1433 int clear_rsv = 0;
1434 int ret;
1435
1436 if (root->reloc_root) {
1437 reloc_root = root->reloc_root;
1438 reloc_root->last_trans = trans->transid;
1439 return 0;
1440 }
1441
1442 if (!rc || !rc->create_reloc_tree ||
1443 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1444 return 0;
1445
1446 if (!trans->reloc_reserved) {
1447 rsv = trans->block_rsv;
1448 trans->block_rsv = rc->block_rsv;
1449 clear_rsv = 1;
1450 }
1451 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1452 if (clear_rsv)
1453 trans->block_rsv = rsv;
1454
1455 ret = __add_reloc_root(reloc_root);
1456 BUG_ON(ret < 0);
1457 root->reloc_root = reloc_root;
1458 return 0;
1459 }
1460
1461 /*
1462 * update root item of reloc tree
1463 */
1464 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1465 struct btrfs_root *root)
1466 {
1467 struct btrfs_fs_info *fs_info = root->fs_info;
1468 struct btrfs_root *reloc_root;
1469 struct btrfs_root_item *root_item;
1470 int ret;
1471
1472 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) ||
1473 !root->reloc_root)
1474 goto out;
1475
1476 reloc_root = root->reloc_root;
1477 root_item = &reloc_root->root_item;
1478
1479 /* root->reloc_root will stay until current relocation finished */
1480 if (fs_info->reloc_ctl->merge_reloc_tree &&
1481 btrfs_root_refs(root_item) == 0) {
1482 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1483 __del_reloc_root(reloc_root);
1484 }
1485
1486 if (reloc_root->commit_root != reloc_root->node) {
1487 btrfs_set_root_node(root_item, reloc_root->node);
1488 free_extent_buffer(reloc_root->commit_root);
1489 reloc_root->commit_root = btrfs_root_node(reloc_root);
1490 }
1491
1492 ret = btrfs_update_root(trans, fs_info->tree_root,
1493 &reloc_root->root_key, root_item);
1494 BUG_ON(ret);
1495
1496 out:
1497 return 0;
1498 }
1499
1500 /*
1501 * helper to find first cached inode with inode number >= objectid
1502 * in a subvolume
1503 */
1504 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1505 {
1506 struct rb_node *node;
1507 struct rb_node *prev;
1508 struct btrfs_inode *entry;
1509 struct inode *inode;
1510
1511 spin_lock(&root->inode_lock);
1512 again:
1513 node = root->inode_tree.rb_node;
1514 prev = NULL;
1515 while (node) {
1516 prev = node;
1517 entry = rb_entry(node, struct btrfs_inode, rb_node);
1518
1519 if (objectid < btrfs_ino(entry))
1520 node = node->rb_left;
1521 else if (objectid > btrfs_ino(entry))
1522 node = node->rb_right;
1523 else
1524 break;
1525 }
1526 if (!node) {
1527 while (prev) {
1528 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1529 if (objectid <= btrfs_ino(entry)) {
1530 node = prev;
1531 break;
1532 }
1533 prev = rb_next(prev);
1534 }
1535 }
1536 while (node) {
1537 entry = rb_entry(node, struct btrfs_inode, rb_node);
1538 inode = igrab(&entry->vfs_inode);
1539 if (inode) {
1540 spin_unlock(&root->inode_lock);
1541 return inode;
1542 }
1543
1544 objectid = btrfs_ino(entry) + 1;
1545 if (cond_resched_lock(&root->inode_lock))
1546 goto again;
1547
1548 node = rb_next(node);
1549 }
1550 spin_unlock(&root->inode_lock);
1551 return NULL;
1552 }
1553
1554 static int in_block_group(u64 bytenr,
1555 struct btrfs_block_group_cache *block_group)
1556 {
1557 if (bytenr >= block_group->key.objectid &&
1558 bytenr < block_group->key.objectid + block_group->key.offset)
1559 return 1;
1560 return 0;
1561 }
1562
1563 /*
1564 * get new location of data
1565 */
1566 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1567 u64 bytenr, u64 num_bytes)
1568 {
1569 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1570 struct btrfs_path *path;
1571 struct btrfs_file_extent_item *fi;
1572 struct extent_buffer *leaf;
1573 int ret;
1574
1575 path = btrfs_alloc_path();
1576 if (!path)
1577 return -ENOMEM;
1578
1579 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1580 ret = btrfs_lookup_file_extent(NULL, root, path,
1581 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1582 if (ret < 0)
1583 goto out;
1584 if (ret > 0) {
1585 ret = -ENOENT;
1586 goto out;
1587 }
1588
1589 leaf = path->nodes[0];
1590 fi = btrfs_item_ptr(leaf, path->slots[0],
1591 struct btrfs_file_extent_item);
1592
1593 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1594 btrfs_file_extent_compression(leaf, fi) ||
1595 btrfs_file_extent_encryption(leaf, fi) ||
1596 btrfs_file_extent_other_encoding(leaf, fi));
1597
1598 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1599 ret = -EINVAL;
1600 goto out;
1601 }
1602
1603 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1604 ret = 0;
1605 out:
1606 btrfs_free_path(path);
1607 return ret;
1608 }
1609
1610 /*
1611 * update file extent items in the tree leaf to point to
1612 * the new locations.
1613 */
1614 static noinline_for_stack
1615 int replace_file_extents(struct btrfs_trans_handle *trans,
1616 struct reloc_control *rc,
1617 struct btrfs_root *root,
1618 struct extent_buffer *leaf)
1619 {
1620 struct btrfs_fs_info *fs_info = root->fs_info;
1621 struct btrfs_key key;
1622 struct btrfs_file_extent_item *fi;
1623 struct inode *inode = NULL;
1624 u64 parent;
1625 u64 bytenr;
1626 u64 new_bytenr = 0;
1627 u64 num_bytes;
1628 u64 end;
1629 u32 nritems;
1630 u32 i;
1631 int ret = 0;
1632 int first = 1;
1633 int dirty = 0;
1634
1635 if (rc->stage != UPDATE_DATA_PTRS)
1636 return 0;
1637
1638 /* reloc trees always use full backref */
1639 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1640 parent = leaf->start;
1641 else
1642 parent = 0;
1643
1644 nritems = btrfs_header_nritems(leaf);
1645 for (i = 0; i < nritems; i++) {
1646 cond_resched();
1647 btrfs_item_key_to_cpu(leaf, &key, i);
1648 if (key.type != BTRFS_EXTENT_DATA_KEY)
1649 continue;
1650 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1651 if (btrfs_file_extent_type(leaf, fi) ==
1652 BTRFS_FILE_EXTENT_INLINE)
1653 continue;
1654 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1655 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1656 if (bytenr == 0)
1657 continue;
1658 if (!in_block_group(bytenr, rc->block_group))
1659 continue;
1660
1661 /*
1662 * if we are modifying block in fs tree, wait for readpage
1663 * to complete and drop the extent cache
1664 */
1665 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1666 if (first) {
1667 inode = find_next_inode(root, key.objectid);
1668 first = 0;
1669 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1670 btrfs_add_delayed_iput(inode);
1671 inode = find_next_inode(root, key.objectid);
1672 }
1673 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1674 end = key.offset +
1675 btrfs_file_extent_num_bytes(leaf, fi);
1676 WARN_ON(!IS_ALIGNED(key.offset,
1677 fs_info->sectorsize));
1678 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1679 end--;
1680 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1681 key.offset, end);
1682 if (!ret)
1683 continue;
1684
1685 btrfs_drop_extent_cache(BTRFS_I(inode),
1686 key.offset, end, 1);
1687 unlock_extent(&BTRFS_I(inode)->io_tree,
1688 key.offset, end);
1689 }
1690 }
1691
1692 ret = get_new_location(rc->data_inode, &new_bytenr,
1693 bytenr, num_bytes);
1694 if (ret) {
1695 /*
1696 * Don't have to abort since we've not changed anything
1697 * in the file extent yet.
1698 */
1699 break;
1700 }
1701
1702 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1703 dirty = 1;
1704
1705 key.offset -= btrfs_file_extent_offset(leaf, fi);
1706 ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1707 num_bytes, parent,
1708 btrfs_header_owner(leaf),
1709 key.objectid, key.offset);
1710 if (ret) {
1711 btrfs_abort_transaction(trans, ret);
1712 break;
1713 }
1714
1715 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1716 parent, btrfs_header_owner(leaf),
1717 key.objectid, key.offset);
1718 if (ret) {
1719 btrfs_abort_transaction(trans, ret);
1720 break;
1721 }
1722 }
1723 if (dirty)
1724 btrfs_mark_buffer_dirty(leaf);
1725 if (inode)
1726 btrfs_add_delayed_iput(inode);
1727 return ret;
1728 }
1729
1730 static noinline_for_stack
1731 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1732 struct btrfs_path *path, int level)
1733 {
1734 struct btrfs_disk_key key1;
1735 struct btrfs_disk_key key2;
1736 btrfs_node_key(eb, &key1, slot);
1737 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1738 return memcmp(&key1, &key2, sizeof(key1));
1739 }
1740
1741 /*
1742 * try to replace tree blocks in fs tree with the new blocks
1743 * in reloc tree. tree blocks haven't been modified since the
1744 * reloc tree was create can be replaced.
1745 *
1746 * if a block was replaced, level of the block + 1 is returned.
1747 * if no block got replaced, 0 is returned. if there are other
1748 * errors, a negative error number is returned.
1749 */
1750 static noinline_for_stack
1751 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1752 struct btrfs_root *dest, struct btrfs_root *src,
1753 struct btrfs_path *path, struct btrfs_key *next_key,
1754 int lowest_level, int max_level)
1755 {
1756 struct btrfs_fs_info *fs_info = dest->fs_info;
1757 struct extent_buffer *eb;
1758 struct extent_buffer *parent;
1759 struct btrfs_key key;
1760 u64 old_bytenr;
1761 u64 new_bytenr;
1762 u64 old_ptr_gen;
1763 u64 new_ptr_gen;
1764 u64 last_snapshot;
1765 u32 blocksize;
1766 int cow = 0;
1767 int level;
1768 int ret;
1769 int slot;
1770
1771 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1772 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1773
1774 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1775 again:
1776 slot = path->slots[lowest_level];
1777 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1778
1779 eb = btrfs_lock_root_node(dest);
1780 btrfs_set_lock_blocking_write(eb);
1781 level = btrfs_header_level(eb);
1782
1783 if (level < lowest_level) {
1784 btrfs_tree_unlock(eb);
1785 free_extent_buffer(eb);
1786 return 0;
1787 }
1788
1789 if (cow) {
1790 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1791 BUG_ON(ret);
1792 }
1793 btrfs_set_lock_blocking_write(eb);
1794
1795 if (next_key) {
1796 next_key->objectid = (u64)-1;
1797 next_key->type = (u8)-1;
1798 next_key->offset = (u64)-1;
1799 }
1800
1801 parent = eb;
1802 while (1) {
1803 struct btrfs_key first_key;
1804
1805 level = btrfs_header_level(parent);
1806 BUG_ON(level < lowest_level);
1807
1808 ret = btrfs_bin_search(parent, &key, level, &slot);
1809 if (ret < 0)
1810 break;
1811 if (ret && slot > 0)
1812 slot--;
1813
1814 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1815 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1816
1817 old_bytenr = btrfs_node_blockptr(parent, slot);
1818 blocksize = fs_info->nodesize;
1819 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1820 btrfs_node_key_to_cpu(parent, &first_key, slot);
1821
1822 if (level <= max_level) {
1823 eb = path->nodes[level];
1824 new_bytenr = btrfs_node_blockptr(eb,
1825 path->slots[level]);
1826 new_ptr_gen = btrfs_node_ptr_generation(eb,
1827 path->slots[level]);
1828 } else {
1829 new_bytenr = 0;
1830 new_ptr_gen = 0;
1831 }
1832
1833 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1834 ret = level;
1835 break;
1836 }
1837
1838 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1839 memcmp_node_keys(parent, slot, path, level)) {
1840 if (level <= lowest_level) {
1841 ret = 0;
1842 break;
1843 }
1844
1845 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1846 level - 1, &first_key);
1847 if (IS_ERR(eb)) {
1848 ret = PTR_ERR(eb);
1849 break;
1850 } else if (!extent_buffer_uptodate(eb)) {
1851 ret = -EIO;
1852 free_extent_buffer(eb);
1853 break;
1854 }
1855 btrfs_tree_lock(eb);
1856 if (cow) {
1857 ret = btrfs_cow_block(trans, dest, eb, parent,
1858 slot, &eb);
1859 BUG_ON(ret);
1860 }
1861 btrfs_set_lock_blocking_write(eb);
1862
1863 btrfs_tree_unlock(parent);
1864 free_extent_buffer(parent);
1865
1866 parent = eb;
1867 continue;
1868 }
1869
1870 if (!cow) {
1871 btrfs_tree_unlock(parent);
1872 free_extent_buffer(parent);
1873 cow = 1;
1874 goto again;
1875 }
1876
1877 btrfs_node_key_to_cpu(path->nodes[level], &key,
1878 path->slots[level]);
1879 btrfs_release_path(path);
1880
1881 path->lowest_level = level;
1882 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1883 path->lowest_level = 0;
1884 BUG_ON(ret);
1885
1886 /*
1887 * Info qgroup to trace both subtrees.
1888 *
1889 * We must trace both trees.
1890 * 1) Tree reloc subtree
1891 * If not traced, we will leak data numbers
1892 * 2) Fs subtree
1893 * If not traced, we will double count old data
1894 *
1895 * We don't scan the subtree right now, but only record
1896 * the swapped tree blocks.
1897 * The real subtree rescan is delayed until we have new
1898 * CoW on the subtree root node before transaction commit.
1899 */
1900 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1901 rc->block_group, parent, slot,
1902 path->nodes[level], path->slots[level],
1903 last_snapshot);
1904 if (ret < 0)
1905 break;
1906 /*
1907 * swap blocks in fs tree and reloc tree.
1908 */
1909 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1910 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1911 btrfs_mark_buffer_dirty(parent);
1912
1913 btrfs_set_node_blockptr(path->nodes[level],
1914 path->slots[level], old_bytenr);
1915 btrfs_set_node_ptr_generation(path->nodes[level],
1916 path->slots[level], old_ptr_gen);
1917 btrfs_mark_buffer_dirty(path->nodes[level]);
1918
1919 ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
1920 blocksize, path->nodes[level]->start,
1921 src->root_key.objectid, level - 1, 0);
1922 BUG_ON(ret);
1923 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
1924 blocksize, 0, dest->root_key.objectid,
1925 level - 1, 0);
1926 BUG_ON(ret);
1927
1928 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1929 path->nodes[level]->start,
1930 src->root_key.objectid, level - 1, 0);
1931 BUG_ON(ret);
1932
1933 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1934 0, dest->root_key.objectid, level - 1,
1935 0);
1936 BUG_ON(ret);
1937
1938 btrfs_unlock_up_safe(path, 0);
1939
1940 ret = level;
1941 break;
1942 }
1943 btrfs_tree_unlock(parent);
1944 free_extent_buffer(parent);
1945 return ret;
1946 }
1947
1948 /*
1949 * helper to find next relocated block in reloc tree
1950 */
1951 static noinline_for_stack
1952 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1953 int *level)
1954 {
1955 struct extent_buffer *eb;
1956 int i;
1957 u64 last_snapshot;
1958 u32 nritems;
1959
1960 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1961
1962 for (i = 0; i < *level; i++) {
1963 free_extent_buffer(path->nodes[i]);
1964 path->nodes[i] = NULL;
1965 }
1966
1967 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1968 eb = path->nodes[i];
1969 nritems = btrfs_header_nritems(eb);
1970 while (path->slots[i] + 1 < nritems) {
1971 path->slots[i]++;
1972 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1973 last_snapshot)
1974 continue;
1975
1976 *level = i;
1977 return 0;
1978 }
1979 free_extent_buffer(path->nodes[i]);
1980 path->nodes[i] = NULL;
1981 }
1982 return 1;
1983 }
1984
1985 /*
1986 * walk down reloc tree to find relocated block of lowest level
1987 */
1988 static noinline_for_stack
1989 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1990 int *level)
1991 {
1992 struct btrfs_fs_info *fs_info = root->fs_info;
1993 struct extent_buffer *eb = NULL;
1994 int i;
1995 u64 bytenr;
1996 u64 ptr_gen = 0;
1997 u64 last_snapshot;
1998 u32 nritems;
1999
2000 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2001
2002 for (i = *level; i > 0; i--) {
2003 struct btrfs_key first_key;
2004
2005 eb = path->nodes[i];
2006 nritems = btrfs_header_nritems(eb);
2007 while (path->slots[i] < nritems) {
2008 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2009 if (ptr_gen > last_snapshot)
2010 break;
2011 path->slots[i]++;
2012 }
2013 if (path->slots[i] >= nritems) {
2014 if (i == *level)
2015 break;
2016 *level = i + 1;
2017 return 0;
2018 }
2019 if (i == 1) {
2020 *level = i;
2021 return 0;
2022 }
2023
2024 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2025 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2026 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2027 &first_key);
2028 if (IS_ERR(eb)) {
2029 return PTR_ERR(eb);
2030 } else if (!extent_buffer_uptodate(eb)) {
2031 free_extent_buffer(eb);
2032 return -EIO;
2033 }
2034 BUG_ON(btrfs_header_level(eb) != i - 1);
2035 path->nodes[i - 1] = eb;
2036 path->slots[i - 1] = 0;
2037 }
2038 return 1;
2039 }
2040
2041 /*
2042 * invalidate extent cache for file extents whose key in range of
2043 * [min_key, max_key)
2044 */
2045 static int invalidate_extent_cache(struct btrfs_root *root,
2046 struct btrfs_key *min_key,
2047 struct btrfs_key *max_key)
2048 {
2049 struct btrfs_fs_info *fs_info = root->fs_info;
2050 struct inode *inode = NULL;
2051 u64 objectid;
2052 u64 start, end;
2053 u64 ino;
2054
2055 objectid = min_key->objectid;
2056 while (1) {
2057 cond_resched();
2058 iput(inode);
2059
2060 if (objectid > max_key->objectid)
2061 break;
2062
2063 inode = find_next_inode(root, objectid);
2064 if (!inode)
2065 break;
2066 ino = btrfs_ino(BTRFS_I(inode));
2067
2068 if (ino > max_key->objectid) {
2069 iput(inode);
2070 break;
2071 }
2072
2073 objectid = ino + 1;
2074 if (!S_ISREG(inode->i_mode))
2075 continue;
2076
2077 if (unlikely(min_key->objectid == ino)) {
2078 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2079 continue;
2080 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2081 start = 0;
2082 else {
2083 start = min_key->offset;
2084 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2085 }
2086 } else {
2087 start = 0;
2088 }
2089
2090 if (unlikely(max_key->objectid == ino)) {
2091 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2092 continue;
2093 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2094 end = (u64)-1;
2095 } else {
2096 if (max_key->offset == 0)
2097 continue;
2098 end = max_key->offset;
2099 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2100 end--;
2101 }
2102 } else {
2103 end = (u64)-1;
2104 }
2105
2106 /* the lock_extent waits for readpage to complete */
2107 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2108 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2109 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2110 }
2111 return 0;
2112 }
2113
2114 static int find_next_key(struct btrfs_path *path, int level,
2115 struct btrfs_key *key)
2116
2117 {
2118 while (level < BTRFS_MAX_LEVEL) {
2119 if (!path->nodes[level])
2120 break;
2121 if (path->slots[level] + 1 <
2122 btrfs_header_nritems(path->nodes[level])) {
2123 btrfs_node_key_to_cpu(path->nodes[level], key,
2124 path->slots[level] + 1);
2125 return 0;
2126 }
2127 level++;
2128 }
2129 return 1;
2130 }
2131
2132 /*
2133 * Insert current subvolume into reloc_control::dirty_subvol_roots
2134 */
2135 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
2136 struct reloc_control *rc,
2137 struct btrfs_root *root)
2138 {
2139 struct btrfs_root *reloc_root = root->reloc_root;
2140 struct btrfs_root_item *reloc_root_item;
2141
2142 /* @root must be a subvolume tree root with a valid reloc tree */
2143 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
2144 ASSERT(reloc_root);
2145
2146 reloc_root_item = &reloc_root->root_item;
2147 memset(&reloc_root_item->drop_progress, 0,
2148 sizeof(reloc_root_item->drop_progress));
2149 reloc_root_item->drop_level = 0;
2150 btrfs_set_root_refs(reloc_root_item, 0);
2151 btrfs_update_reloc_root(trans, root);
2152
2153 if (list_empty(&root->reloc_dirty_list)) {
2154 btrfs_grab_fs_root(root);
2155 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
2156 }
2157 }
2158
2159 static int clean_dirty_subvols(struct reloc_control *rc)
2160 {
2161 struct btrfs_root *root;
2162 struct btrfs_root *next;
2163 int ret = 0;
2164
2165 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
2166 reloc_dirty_list) {
2167 struct btrfs_root *reloc_root = root->reloc_root;
2168
2169 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2170 list_del_init(&root->reloc_dirty_list);
2171 root->reloc_root = NULL;
2172 if (reloc_root) {
2173 int ret2;
2174
2175 ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1);
2176 if (ret2 < 0 && !ret)
2177 ret = ret2;
2178 }
2179 btrfs_put_fs_root(root);
2180 }
2181 return ret;
2182 }
2183
2184 /*
2185 * merge the relocated tree blocks in reloc tree with corresponding
2186 * fs tree.
2187 */
2188 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2189 struct btrfs_root *root)
2190 {
2191 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2192 struct btrfs_key key;
2193 struct btrfs_key next_key;
2194 struct btrfs_trans_handle *trans = NULL;
2195 struct btrfs_root *reloc_root;
2196 struct btrfs_root_item *root_item;
2197 struct btrfs_path *path;
2198 struct extent_buffer *leaf;
2199 int level;
2200 int max_level;
2201 int replaced = 0;
2202 int ret;
2203 int err = 0;
2204 u32 min_reserved;
2205
2206 path = btrfs_alloc_path();
2207 if (!path)
2208 return -ENOMEM;
2209 path->reada = READA_FORWARD;
2210
2211 reloc_root = root->reloc_root;
2212 root_item = &reloc_root->root_item;
2213
2214 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2215 level = btrfs_root_level(root_item);
2216 extent_buffer_get(reloc_root->node);
2217 path->nodes[level] = reloc_root->node;
2218 path->slots[level] = 0;
2219 } else {
2220 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2221
2222 level = root_item->drop_level;
2223 BUG_ON(level == 0);
2224 path->lowest_level = level;
2225 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2226 path->lowest_level = 0;
2227 if (ret < 0) {
2228 btrfs_free_path(path);
2229 return ret;
2230 }
2231
2232 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2233 path->slots[level]);
2234 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2235
2236 btrfs_unlock_up_safe(path, 0);
2237 }
2238
2239 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2240 memset(&next_key, 0, sizeof(next_key));
2241
2242 while (1) {
2243 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2244 BTRFS_RESERVE_FLUSH_ALL);
2245 if (ret) {
2246 err = ret;
2247 goto out;
2248 }
2249 trans = btrfs_start_transaction(root, 0);
2250 if (IS_ERR(trans)) {
2251 err = PTR_ERR(trans);
2252 trans = NULL;
2253 goto out;
2254 }
2255 trans->block_rsv = rc->block_rsv;
2256
2257 replaced = 0;
2258 max_level = level;
2259
2260 ret = walk_down_reloc_tree(reloc_root, path, &level);
2261 if (ret < 0) {
2262 err = ret;
2263 goto out;
2264 }
2265 if (ret > 0)
2266 break;
2267
2268 if (!find_next_key(path, level, &key) &&
2269 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2270 ret = 0;
2271 } else {
2272 ret = replace_path(trans, rc, root, reloc_root, path,
2273 &next_key, level, max_level);
2274 }
2275 if (ret < 0) {
2276 err = ret;
2277 goto out;
2278 }
2279
2280 if (ret > 0) {
2281 level = ret;
2282 btrfs_node_key_to_cpu(path->nodes[level], &key,
2283 path->slots[level]);
2284 replaced = 1;
2285 }
2286
2287 ret = walk_up_reloc_tree(reloc_root, path, &level);
2288 if (ret > 0)
2289 break;
2290
2291 BUG_ON(level == 0);
2292 /*
2293 * save the merging progress in the drop_progress.
2294 * this is OK since root refs == 1 in this case.
2295 */
2296 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2297 path->slots[level]);
2298 root_item->drop_level = level;
2299
2300 btrfs_end_transaction_throttle(trans);
2301 trans = NULL;
2302
2303 btrfs_btree_balance_dirty(fs_info);
2304
2305 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2306 invalidate_extent_cache(root, &key, &next_key);
2307 }
2308
2309 /*
2310 * handle the case only one block in the fs tree need to be
2311 * relocated and the block is tree root.
2312 */
2313 leaf = btrfs_lock_root_node(root);
2314 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2315 btrfs_tree_unlock(leaf);
2316 free_extent_buffer(leaf);
2317 if (ret < 0)
2318 err = ret;
2319 out:
2320 btrfs_free_path(path);
2321
2322 if (err == 0)
2323 insert_dirty_subvol(trans, rc, root);
2324
2325 if (trans)
2326 btrfs_end_transaction_throttle(trans);
2327
2328 btrfs_btree_balance_dirty(fs_info);
2329
2330 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2331 invalidate_extent_cache(root, &key, &next_key);
2332
2333 return err;
2334 }
2335
2336 static noinline_for_stack
2337 int prepare_to_merge(struct reloc_control *rc, int err)
2338 {
2339 struct btrfs_root *root = rc->extent_root;
2340 struct btrfs_fs_info *fs_info = root->fs_info;
2341 struct btrfs_root *reloc_root;
2342 struct btrfs_trans_handle *trans;
2343 LIST_HEAD(reloc_roots);
2344 u64 num_bytes = 0;
2345 int ret;
2346
2347 mutex_lock(&fs_info->reloc_mutex);
2348 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2349 rc->merging_rsv_size += rc->nodes_relocated * 2;
2350 mutex_unlock(&fs_info->reloc_mutex);
2351
2352 again:
2353 if (!err) {
2354 num_bytes = rc->merging_rsv_size;
2355 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2356 BTRFS_RESERVE_FLUSH_ALL);
2357 if (ret)
2358 err = ret;
2359 }
2360
2361 trans = btrfs_join_transaction(rc->extent_root);
2362 if (IS_ERR(trans)) {
2363 if (!err)
2364 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2365 num_bytes);
2366 return PTR_ERR(trans);
2367 }
2368
2369 if (!err) {
2370 if (num_bytes != rc->merging_rsv_size) {
2371 btrfs_end_transaction(trans);
2372 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2373 num_bytes);
2374 goto again;
2375 }
2376 }
2377
2378 rc->merge_reloc_tree = 1;
2379
2380 while (!list_empty(&rc->reloc_roots)) {
2381 reloc_root = list_entry(rc->reloc_roots.next,
2382 struct btrfs_root, root_list);
2383 list_del_init(&reloc_root->root_list);
2384
2385 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2386 BUG_ON(IS_ERR(root));
2387 BUG_ON(root->reloc_root != reloc_root);
2388
2389 /*
2390 * set reference count to 1, so btrfs_recover_relocation
2391 * knows it should resumes merging
2392 */
2393 if (!err)
2394 btrfs_set_root_refs(&reloc_root->root_item, 1);
2395 btrfs_update_reloc_root(trans, root);
2396
2397 list_add(&reloc_root->root_list, &reloc_roots);
2398 }
2399
2400 list_splice(&reloc_roots, &rc->reloc_roots);
2401
2402 if (!err)
2403 btrfs_commit_transaction(trans);
2404 else
2405 btrfs_end_transaction(trans);
2406 return err;
2407 }
2408
2409 static noinline_for_stack
2410 void free_reloc_roots(struct list_head *list)
2411 {
2412 struct btrfs_root *reloc_root;
2413
2414 while (!list_empty(list)) {
2415 reloc_root = list_entry(list->next, struct btrfs_root,
2416 root_list);
2417 __del_reloc_root(reloc_root);
2418 free_extent_buffer(reloc_root->node);
2419 free_extent_buffer(reloc_root->commit_root);
2420 reloc_root->node = NULL;
2421 reloc_root->commit_root = NULL;
2422 }
2423 }
2424
2425 static noinline_for_stack
2426 void merge_reloc_roots(struct reloc_control *rc)
2427 {
2428 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2429 struct btrfs_root *root;
2430 struct btrfs_root *reloc_root;
2431 LIST_HEAD(reloc_roots);
2432 int found = 0;
2433 int ret = 0;
2434 again:
2435 root = rc->extent_root;
2436
2437 /*
2438 * this serializes us with btrfs_record_root_in_transaction,
2439 * we have to make sure nobody is in the middle of
2440 * adding their roots to the list while we are
2441 * doing this splice
2442 */
2443 mutex_lock(&fs_info->reloc_mutex);
2444 list_splice_init(&rc->reloc_roots, &reloc_roots);
2445 mutex_unlock(&fs_info->reloc_mutex);
2446
2447 while (!list_empty(&reloc_roots)) {
2448 found = 1;
2449 reloc_root = list_entry(reloc_roots.next,
2450 struct btrfs_root, root_list);
2451
2452 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2453 root = read_fs_root(fs_info,
2454 reloc_root->root_key.offset);
2455 BUG_ON(IS_ERR(root));
2456 BUG_ON(root->reloc_root != reloc_root);
2457
2458 ret = merge_reloc_root(rc, root);
2459 if (ret) {
2460 if (list_empty(&reloc_root->root_list))
2461 list_add_tail(&reloc_root->root_list,
2462 &reloc_roots);
2463 goto out;
2464 }
2465 } else {
2466 list_del_init(&reloc_root->root_list);
2467 }
2468 }
2469
2470 if (found) {
2471 found = 0;
2472 goto again;
2473 }
2474 out:
2475 if (ret) {
2476 btrfs_handle_fs_error(fs_info, ret, NULL);
2477 if (!list_empty(&reloc_roots))
2478 free_reloc_roots(&reloc_roots);
2479
2480 /* new reloc root may be added */
2481 mutex_lock(&fs_info->reloc_mutex);
2482 list_splice_init(&rc->reloc_roots, &reloc_roots);
2483 mutex_unlock(&fs_info->reloc_mutex);
2484 if (!list_empty(&reloc_roots))
2485 free_reloc_roots(&reloc_roots);
2486 }
2487
2488 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2489 }
2490
2491 static void free_block_list(struct rb_root *blocks)
2492 {
2493 struct tree_block *block;
2494 struct rb_node *rb_node;
2495 while ((rb_node = rb_first(blocks))) {
2496 block = rb_entry(rb_node, struct tree_block, rb_node);
2497 rb_erase(rb_node, blocks);
2498 kfree(block);
2499 }
2500 }
2501
2502 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2503 struct btrfs_root *reloc_root)
2504 {
2505 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2506 struct btrfs_root *root;
2507
2508 if (reloc_root->last_trans == trans->transid)
2509 return 0;
2510
2511 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2512 BUG_ON(IS_ERR(root));
2513 BUG_ON(root->reloc_root != reloc_root);
2514
2515 return btrfs_record_root_in_trans(trans, root);
2516 }
2517
2518 static noinline_for_stack
2519 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2520 struct reloc_control *rc,
2521 struct backref_node *node,
2522 struct backref_edge *edges[])
2523 {
2524 struct backref_node *next;
2525 struct btrfs_root *root;
2526 int index = 0;
2527
2528 next = node;
2529 while (1) {
2530 cond_resched();
2531 next = walk_up_backref(next, edges, &index);
2532 root = next->root;
2533 BUG_ON(!root);
2534 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2535
2536 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2537 record_reloc_root_in_trans(trans, root);
2538 break;
2539 }
2540
2541 btrfs_record_root_in_trans(trans, root);
2542 root = root->reloc_root;
2543
2544 if (next->new_bytenr != root->node->start) {
2545 BUG_ON(next->new_bytenr);
2546 BUG_ON(!list_empty(&next->list));
2547 next->new_bytenr = root->node->start;
2548 next->root = root;
2549 list_add_tail(&next->list,
2550 &rc->backref_cache.changed);
2551 __mark_block_processed(rc, next);
2552 break;
2553 }
2554
2555 WARN_ON(1);
2556 root = NULL;
2557 next = walk_down_backref(edges, &index);
2558 if (!next || next->level <= node->level)
2559 break;
2560 }
2561 if (!root)
2562 return NULL;
2563
2564 next = node;
2565 /* setup backref node path for btrfs_reloc_cow_block */
2566 while (1) {
2567 rc->backref_cache.path[next->level] = next;
2568 if (--index < 0)
2569 break;
2570 next = edges[index]->node[UPPER];
2571 }
2572 return root;
2573 }
2574
2575 /*
2576 * select a tree root for relocation. return NULL if the block
2577 * is reference counted. we should use do_relocation() in this
2578 * case. return a tree root pointer if the block isn't reference
2579 * counted. return -ENOENT if the block is root of reloc tree.
2580 */
2581 static noinline_for_stack
2582 struct btrfs_root *select_one_root(struct backref_node *node)
2583 {
2584 struct backref_node *next;
2585 struct btrfs_root *root;
2586 struct btrfs_root *fs_root = NULL;
2587 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2588 int index = 0;
2589
2590 next = node;
2591 while (1) {
2592 cond_resched();
2593 next = walk_up_backref(next, edges, &index);
2594 root = next->root;
2595 BUG_ON(!root);
2596
2597 /* no other choice for non-references counted tree */
2598 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2599 return root;
2600
2601 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2602 fs_root = root;
2603
2604 if (next != node)
2605 return NULL;
2606
2607 next = walk_down_backref(edges, &index);
2608 if (!next || next->level <= node->level)
2609 break;
2610 }
2611
2612 if (!fs_root)
2613 return ERR_PTR(-ENOENT);
2614 return fs_root;
2615 }
2616
2617 static noinline_for_stack
2618 u64 calcu_metadata_size(struct reloc_control *rc,
2619 struct backref_node *node, int reserve)
2620 {
2621 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2622 struct backref_node *next = node;
2623 struct backref_edge *edge;
2624 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2625 u64 num_bytes = 0;
2626 int index = 0;
2627
2628 BUG_ON(reserve && node->processed);
2629
2630 while (next) {
2631 cond_resched();
2632 while (1) {
2633 if (next->processed && (reserve || next != node))
2634 break;
2635
2636 num_bytes += fs_info->nodesize;
2637
2638 if (list_empty(&next->upper))
2639 break;
2640
2641 edge = list_entry(next->upper.next,
2642 struct backref_edge, list[LOWER]);
2643 edges[index++] = edge;
2644 next = edge->node[UPPER];
2645 }
2646 next = walk_down_backref(edges, &index);
2647 }
2648 return num_bytes;
2649 }
2650
2651 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2652 struct reloc_control *rc,
2653 struct backref_node *node)
2654 {
2655 struct btrfs_root *root = rc->extent_root;
2656 struct btrfs_fs_info *fs_info = root->fs_info;
2657 u64 num_bytes;
2658 int ret;
2659 u64 tmp;
2660
2661 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2662
2663 trans->block_rsv = rc->block_rsv;
2664 rc->reserved_bytes += num_bytes;
2665
2666 /*
2667 * We are under a transaction here so we can only do limited flushing.
2668 * If we get an enospc just kick back -EAGAIN so we know to drop the
2669 * transaction and try to refill when we can flush all the things.
2670 */
2671 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2672 BTRFS_RESERVE_FLUSH_LIMIT);
2673 if (ret) {
2674 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2675 while (tmp <= rc->reserved_bytes)
2676 tmp <<= 1;
2677 /*
2678 * only one thread can access block_rsv at this point,
2679 * so we don't need hold lock to protect block_rsv.
2680 * we expand more reservation size here to allow enough
2681 * space for relocation and we will return earlier in
2682 * enospc case.
2683 */
2684 rc->block_rsv->size = tmp + fs_info->nodesize *
2685 RELOCATION_RESERVED_NODES;
2686 return -EAGAIN;
2687 }
2688
2689 return 0;
2690 }
2691
2692 /*
2693 * relocate a block tree, and then update pointers in upper level
2694 * blocks that reference the block to point to the new location.
2695 *
2696 * if called by link_to_upper, the block has already been relocated.
2697 * in that case this function just updates pointers.
2698 */
2699 static int do_relocation(struct btrfs_trans_handle *trans,
2700 struct reloc_control *rc,
2701 struct backref_node *node,
2702 struct btrfs_key *key,
2703 struct btrfs_path *path, int lowest)
2704 {
2705 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2706 struct backref_node *upper;
2707 struct backref_edge *edge;
2708 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2709 struct btrfs_root *root;
2710 struct extent_buffer *eb;
2711 u32 blocksize;
2712 u64 bytenr;
2713 u64 generation;
2714 int slot;
2715 int ret;
2716 int err = 0;
2717
2718 BUG_ON(lowest && node->eb);
2719
2720 path->lowest_level = node->level + 1;
2721 rc->backref_cache.path[node->level] = node;
2722 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2723 struct btrfs_key first_key;
2724
2725 cond_resched();
2726
2727 upper = edge->node[UPPER];
2728 root = select_reloc_root(trans, rc, upper, edges);
2729 BUG_ON(!root);
2730
2731 if (upper->eb && !upper->locked) {
2732 if (!lowest) {
2733 ret = btrfs_bin_search(upper->eb, key,
2734 upper->level, &slot);
2735 if (ret < 0) {
2736 err = ret;
2737 goto next;
2738 }
2739 BUG_ON(ret);
2740 bytenr = btrfs_node_blockptr(upper->eb, slot);
2741 if (node->eb->start == bytenr)
2742 goto next;
2743 }
2744 drop_node_buffer(upper);
2745 }
2746
2747 if (!upper->eb) {
2748 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2749 if (ret) {
2750 if (ret < 0)
2751 err = ret;
2752 else
2753 err = -ENOENT;
2754
2755 btrfs_release_path(path);
2756 break;
2757 }
2758
2759 if (!upper->eb) {
2760 upper->eb = path->nodes[upper->level];
2761 path->nodes[upper->level] = NULL;
2762 } else {
2763 BUG_ON(upper->eb != path->nodes[upper->level]);
2764 }
2765
2766 upper->locked = 1;
2767 path->locks[upper->level] = 0;
2768
2769 slot = path->slots[upper->level];
2770 btrfs_release_path(path);
2771 } else {
2772 ret = btrfs_bin_search(upper->eb, key, upper->level,
2773 &slot);
2774 if (ret < 0) {
2775 err = ret;
2776 goto next;
2777 }
2778 BUG_ON(ret);
2779 }
2780
2781 bytenr = btrfs_node_blockptr(upper->eb, slot);
2782 if (lowest) {
2783 if (bytenr != node->bytenr) {
2784 btrfs_err(root->fs_info,
2785 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2786 bytenr, node->bytenr, slot,
2787 upper->eb->start);
2788 err = -EIO;
2789 goto next;
2790 }
2791 } else {
2792 if (node->eb->start == bytenr)
2793 goto next;
2794 }
2795
2796 blocksize = root->fs_info->nodesize;
2797 generation = btrfs_node_ptr_generation(upper->eb, slot);
2798 btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2799 eb = read_tree_block(fs_info, bytenr, generation,
2800 upper->level - 1, &first_key);
2801 if (IS_ERR(eb)) {
2802 err = PTR_ERR(eb);
2803 goto next;
2804 } else if (!extent_buffer_uptodate(eb)) {
2805 free_extent_buffer(eb);
2806 err = -EIO;
2807 goto next;
2808 }
2809 btrfs_tree_lock(eb);
2810 btrfs_set_lock_blocking_write(eb);
2811
2812 if (!node->eb) {
2813 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2814 slot, &eb);
2815 btrfs_tree_unlock(eb);
2816 free_extent_buffer(eb);
2817 if (ret < 0) {
2818 err = ret;
2819 goto next;
2820 }
2821 BUG_ON(node->eb != eb);
2822 } else {
2823 btrfs_set_node_blockptr(upper->eb, slot,
2824 node->eb->start);
2825 btrfs_set_node_ptr_generation(upper->eb, slot,
2826 trans->transid);
2827 btrfs_mark_buffer_dirty(upper->eb);
2828
2829 ret = btrfs_inc_extent_ref(trans, root,
2830 node->eb->start, blocksize,
2831 upper->eb->start,
2832 btrfs_header_owner(upper->eb),
2833 node->level, 0);
2834 BUG_ON(ret);
2835
2836 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2837 BUG_ON(ret);
2838 }
2839 next:
2840 if (!upper->pending)
2841 drop_node_buffer(upper);
2842 else
2843 unlock_node_buffer(upper);
2844 if (err)
2845 break;
2846 }
2847
2848 if (!err && node->pending) {
2849 drop_node_buffer(node);
2850 list_move_tail(&node->list, &rc->backref_cache.changed);
2851 node->pending = 0;
2852 }
2853
2854 path->lowest_level = 0;
2855 BUG_ON(err == -ENOSPC);
2856 return err;
2857 }
2858
2859 static int link_to_upper(struct btrfs_trans_handle *trans,
2860 struct reloc_control *rc,
2861 struct backref_node *node,
2862 struct btrfs_path *path)
2863 {
2864 struct btrfs_key key;
2865
2866 btrfs_node_key_to_cpu(node->eb, &key, 0);
2867 return do_relocation(trans, rc, node, &key, path, 0);
2868 }
2869
2870 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2871 struct reloc_control *rc,
2872 struct btrfs_path *path, int err)
2873 {
2874 LIST_HEAD(list);
2875 struct backref_cache *cache = &rc->backref_cache;
2876 struct backref_node *node;
2877 int level;
2878 int ret;
2879
2880 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2881 while (!list_empty(&cache->pending[level])) {
2882 node = list_entry(cache->pending[level].next,
2883 struct backref_node, list);
2884 list_move_tail(&node->list, &list);
2885 BUG_ON(!node->pending);
2886
2887 if (!err) {
2888 ret = link_to_upper(trans, rc, node, path);
2889 if (ret < 0)
2890 err = ret;
2891 }
2892 }
2893 list_splice_init(&list, &cache->pending[level]);
2894 }
2895 return err;
2896 }
2897
2898 static void mark_block_processed(struct reloc_control *rc,
2899 u64 bytenr, u32 blocksize)
2900 {
2901 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2902 EXTENT_DIRTY);
2903 }
2904
2905 static void __mark_block_processed(struct reloc_control *rc,
2906 struct backref_node *node)
2907 {
2908 u32 blocksize;
2909 if (node->level == 0 ||
2910 in_block_group(node->bytenr, rc->block_group)) {
2911 blocksize = rc->extent_root->fs_info->nodesize;
2912 mark_block_processed(rc, node->bytenr, blocksize);
2913 }
2914 node->processed = 1;
2915 }
2916
2917 /*
2918 * mark a block and all blocks directly/indirectly reference the block
2919 * as processed.
2920 */
2921 static void update_processed_blocks(struct reloc_control *rc,
2922 struct backref_node *node)
2923 {
2924 struct backref_node *next = node;
2925 struct backref_edge *edge;
2926 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2927 int index = 0;
2928
2929 while (next) {
2930 cond_resched();
2931 while (1) {
2932 if (next->processed)
2933 break;
2934
2935 __mark_block_processed(rc, next);
2936
2937 if (list_empty(&next->upper))
2938 break;
2939
2940 edge = list_entry(next->upper.next,
2941 struct backref_edge, list[LOWER]);
2942 edges[index++] = edge;
2943 next = edge->node[UPPER];
2944 }
2945 next = walk_down_backref(edges, &index);
2946 }
2947 }
2948
2949 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2950 {
2951 u32 blocksize = rc->extent_root->fs_info->nodesize;
2952
2953 if (test_range_bit(&rc->processed_blocks, bytenr,
2954 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2955 return 1;
2956 return 0;
2957 }
2958
2959 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2960 struct tree_block *block)
2961 {
2962 struct extent_buffer *eb;
2963
2964 BUG_ON(block->key_ready);
2965 eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2966 block->level, NULL);
2967 if (IS_ERR(eb)) {
2968 return PTR_ERR(eb);
2969 } else if (!extent_buffer_uptodate(eb)) {
2970 free_extent_buffer(eb);
2971 return -EIO;
2972 }
2973 if (block->level == 0)
2974 btrfs_item_key_to_cpu(eb, &block->key, 0);
2975 else
2976 btrfs_node_key_to_cpu(eb, &block->key, 0);
2977 free_extent_buffer(eb);
2978 block->key_ready = 1;
2979 return 0;
2980 }
2981
2982 /*
2983 * helper function to relocate a tree block
2984 */
2985 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2986 struct reloc_control *rc,
2987 struct backref_node *node,
2988 struct btrfs_key *key,
2989 struct btrfs_path *path)
2990 {
2991 struct btrfs_root *root;
2992 int ret = 0;
2993
2994 if (!node)
2995 return 0;
2996
2997 BUG_ON(node->processed);
2998 root = select_one_root(node);
2999 if (root == ERR_PTR(-ENOENT)) {
3000 update_processed_blocks(rc, node);
3001 goto out;
3002 }
3003
3004 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3005 ret = reserve_metadata_space(trans, rc, node);
3006 if (ret)
3007 goto out;
3008 }
3009
3010 if (root) {
3011 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3012 BUG_ON(node->new_bytenr);
3013 BUG_ON(!list_empty(&node->list));
3014 btrfs_record_root_in_trans(trans, root);
3015 root = root->reloc_root;
3016 node->new_bytenr = root->node->start;
3017 node->root = root;
3018 list_add_tail(&node->list, &rc->backref_cache.changed);
3019 } else {
3020 path->lowest_level = node->level;
3021 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3022 btrfs_release_path(path);
3023 if (ret > 0)
3024 ret = 0;
3025 }
3026 if (!ret)
3027 update_processed_blocks(rc, node);
3028 } else {
3029 ret = do_relocation(trans, rc, node, key, path, 1);
3030 }
3031 out:
3032 if (ret || node->level == 0 || node->cowonly)
3033 remove_backref_node(&rc->backref_cache, node);
3034 return ret;
3035 }
3036
3037 /*
3038 * relocate a list of blocks
3039 */
3040 static noinline_for_stack
3041 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3042 struct reloc_control *rc, struct rb_root *blocks)
3043 {
3044 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3045 struct backref_node *node;
3046 struct btrfs_path *path;
3047 struct tree_block *block;
3048 struct tree_block *next;
3049 int ret;
3050 int err = 0;
3051
3052 path = btrfs_alloc_path();
3053 if (!path) {
3054 err = -ENOMEM;
3055 goto out_free_blocks;
3056 }
3057
3058 /* Kick in readahead for tree blocks with missing keys */
3059 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3060 if (!block->key_ready)
3061 readahead_tree_block(fs_info, block->bytenr);
3062 }
3063
3064 /* Get first keys */
3065 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3066 if (!block->key_ready) {
3067 err = get_tree_block_key(fs_info, block);
3068 if (err)
3069 goto out_free_path;
3070 }
3071 }
3072
3073 /* Do tree relocation */
3074 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3075 node = build_backref_tree(rc, &block->key,
3076 block->level, block->bytenr);
3077 if (IS_ERR(node)) {
3078 err = PTR_ERR(node);
3079 goto out;
3080 }
3081
3082 ret = relocate_tree_block(trans, rc, node, &block->key,
3083 path);
3084 if (ret < 0) {
3085 if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
3086 err = ret;
3087 goto out;
3088 }
3089 }
3090 out:
3091 err = finish_pending_nodes(trans, rc, path, err);
3092
3093 out_free_path:
3094 btrfs_free_path(path);
3095 out_free_blocks:
3096 free_block_list(blocks);
3097 return err;
3098 }
3099
3100 static noinline_for_stack
3101 int prealloc_file_extent_cluster(struct inode *inode,
3102 struct file_extent_cluster *cluster)
3103 {
3104 u64 alloc_hint = 0;
3105 u64 start;
3106 u64 end;
3107 u64 offset = BTRFS_I(inode)->index_cnt;
3108 u64 num_bytes;
3109 int nr = 0;
3110 int ret = 0;
3111 u64 prealloc_start = cluster->start - offset;
3112 u64 prealloc_end = cluster->end - offset;
3113 u64 cur_offset;
3114 struct extent_changeset *data_reserved = NULL;
3115
3116 BUG_ON(cluster->start != cluster->boundary[0]);
3117 inode_lock(inode);
3118
3119 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3120 prealloc_end + 1 - prealloc_start);
3121 if (ret)
3122 goto out;
3123
3124 cur_offset = prealloc_start;
3125 while (nr < cluster->nr) {
3126 start = cluster->boundary[nr] - offset;
3127 if (nr + 1 < cluster->nr)
3128 end = cluster->boundary[nr + 1] - 1 - offset;
3129 else
3130 end = cluster->end - offset;
3131
3132 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3133 num_bytes = end + 1 - start;
3134 if (cur_offset < start)
3135 btrfs_free_reserved_data_space(inode, data_reserved,
3136 cur_offset, start - cur_offset);
3137 ret = btrfs_prealloc_file_range(inode, 0, start,
3138 num_bytes, num_bytes,
3139 end + 1, &alloc_hint);
3140 cur_offset = end + 1;
3141 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3142 if (ret)
3143 break;
3144 nr++;
3145 }
3146 if (cur_offset < prealloc_end)
3147 btrfs_free_reserved_data_space(inode, data_reserved,
3148 cur_offset, prealloc_end + 1 - cur_offset);
3149 out:
3150 inode_unlock(inode);
3151 extent_changeset_free(data_reserved);
3152 return ret;
3153 }
3154
3155 static noinline_for_stack
3156 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3157 u64 block_start)
3158 {
3159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3160 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3161 struct extent_map *em;
3162 int ret = 0;
3163
3164 em = alloc_extent_map();
3165 if (!em)
3166 return -ENOMEM;
3167
3168 em->start = start;
3169 em->len = end + 1 - start;
3170 em->block_len = em->len;
3171 em->block_start = block_start;
3172 em->bdev = fs_info->fs_devices->latest_bdev;
3173 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3174
3175 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3176 while (1) {
3177 write_lock(&em_tree->lock);
3178 ret = add_extent_mapping(em_tree, em, 0);
3179 write_unlock(&em_tree->lock);
3180 if (ret != -EEXIST) {
3181 free_extent_map(em);
3182 break;
3183 }
3184 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3185 }
3186 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3187 return ret;
3188 }
3189
3190 static int relocate_file_extent_cluster(struct inode *inode,
3191 struct file_extent_cluster *cluster)
3192 {
3193 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3194 u64 page_start;
3195 u64 page_end;
3196 u64 offset = BTRFS_I(inode)->index_cnt;
3197 unsigned long index;
3198 unsigned long last_index;
3199 struct page *page;
3200 struct file_ra_state *ra;
3201 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3202 int nr = 0;
3203 int ret = 0;
3204
3205 if (!cluster->nr)
3206 return 0;
3207
3208 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3209 if (!ra)
3210 return -ENOMEM;
3211
3212 ret = prealloc_file_extent_cluster(inode, cluster);
3213 if (ret)
3214 goto out;
3215
3216 file_ra_state_init(ra, inode->i_mapping);
3217
3218 ret = setup_extent_mapping(inode, cluster->start - offset,
3219 cluster->end - offset, cluster->start);
3220 if (ret)
3221 goto out;
3222
3223 index = (cluster->start - offset) >> PAGE_SHIFT;
3224 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3225 while (index <= last_index) {
3226 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3227 PAGE_SIZE);
3228 if (ret)
3229 goto out;
3230
3231 page = find_lock_page(inode->i_mapping, index);
3232 if (!page) {
3233 page_cache_sync_readahead(inode->i_mapping,
3234 ra, NULL, index,
3235 last_index + 1 - index);
3236 page = find_or_create_page(inode->i_mapping, index,
3237 mask);
3238 if (!page) {
3239 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3240 PAGE_SIZE, true);
3241 ret = -ENOMEM;
3242 goto out;
3243 }
3244 }
3245
3246 if (PageReadahead(page)) {
3247 page_cache_async_readahead(inode->i_mapping,
3248 ra, NULL, page, index,
3249 last_index + 1 - index);
3250 }
3251
3252 if (!PageUptodate(page)) {
3253 btrfs_readpage(NULL, page);
3254 lock_page(page);
3255 if (!PageUptodate(page)) {
3256 unlock_page(page);
3257 put_page(page);
3258 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3259 PAGE_SIZE, true);
3260 btrfs_delalloc_release_extents(BTRFS_I(inode),
3261 PAGE_SIZE, true);
3262 ret = -EIO;
3263 goto out;
3264 }
3265 }
3266
3267 page_start = page_offset(page);
3268 page_end = page_start + PAGE_SIZE - 1;
3269
3270 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3271
3272 set_page_extent_mapped(page);
3273
3274 if (nr < cluster->nr &&
3275 page_start + offset == cluster->boundary[nr]) {
3276 set_extent_bits(&BTRFS_I(inode)->io_tree,
3277 page_start, page_end,
3278 EXTENT_BOUNDARY);
3279 nr++;
3280 }
3281
3282 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3283 NULL, 0);
3284 if (ret) {
3285 unlock_page(page);
3286 put_page(page);
3287 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3288 PAGE_SIZE, true);
3289 btrfs_delalloc_release_extents(BTRFS_I(inode),
3290 PAGE_SIZE, true);
3291
3292 clear_extent_bits(&BTRFS_I(inode)->io_tree,
3293 page_start, page_end,
3294 EXTENT_LOCKED | EXTENT_BOUNDARY);
3295 goto out;
3296
3297 }
3298 set_page_dirty(page);
3299
3300 unlock_extent(&BTRFS_I(inode)->io_tree,
3301 page_start, page_end);
3302 unlock_page(page);
3303 put_page(page);
3304
3305 index++;
3306 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
3307 false);
3308 balance_dirty_pages_ratelimited(inode->i_mapping);
3309 btrfs_throttle(fs_info);
3310 }
3311 WARN_ON(nr != cluster->nr);
3312 out:
3313 kfree(ra);
3314 return ret;
3315 }
3316
3317 static noinline_for_stack
3318 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3319 struct file_extent_cluster *cluster)
3320 {
3321 int ret;
3322
3323 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3324 ret = relocate_file_extent_cluster(inode, cluster);
3325 if (ret)
3326 return ret;
3327 cluster->nr = 0;
3328 }
3329
3330 if (!cluster->nr)
3331 cluster->start = extent_key->objectid;
3332 else
3333 BUG_ON(cluster->nr >= MAX_EXTENTS);
3334 cluster->end = extent_key->objectid + extent_key->offset - 1;
3335 cluster->boundary[cluster->nr] = extent_key->objectid;
3336 cluster->nr++;
3337
3338 if (cluster->nr >= MAX_EXTENTS) {
3339 ret = relocate_file_extent_cluster(inode, cluster);
3340 if (ret)
3341 return ret;
3342 cluster->nr = 0;
3343 }
3344 return 0;
3345 }
3346
3347 /*
3348 * helper to add a tree block to the list.
3349 * the major work is getting the generation and level of the block
3350 */
3351 static int add_tree_block(struct reloc_control *rc,
3352 struct btrfs_key *extent_key,
3353 struct btrfs_path *path,
3354 struct rb_root *blocks)
3355 {
3356 struct extent_buffer *eb;
3357 struct btrfs_extent_item *ei;
3358 struct btrfs_tree_block_info *bi;
3359 struct tree_block *block;
3360 struct rb_node *rb_node;
3361 u32 item_size;
3362 int level = -1;
3363 u64 generation;
3364
3365 eb = path->nodes[0];
3366 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3367
3368 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3369 item_size >= sizeof(*ei) + sizeof(*bi)) {
3370 ei = btrfs_item_ptr(eb, path->slots[0],
3371 struct btrfs_extent_item);
3372 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3373 bi = (struct btrfs_tree_block_info *)(ei + 1);
3374 level = btrfs_tree_block_level(eb, bi);
3375 } else {
3376 level = (int)extent_key->offset;
3377 }
3378 generation = btrfs_extent_generation(eb, ei);
3379 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3380 btrfs_print_v0_err(eb->fs_info);
3381 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3382 return -EINVAL;
3383 } else {
3384 BUG();
3385 }
3386
3387 btrfs_release_path(path);
3388
3389 BUG_ON(level == -1);
3390
3391 block = kmalloc(sizeof(*block), GFP_NOFS);
3392 if (!block)
3393 return -ENOMEM;
3394
3395 block->bytenr = extent_key->objectid;
3396 block->key.objectid = rc->extent_root->fs_info->nodesize;
3397 block->key.offset = generation;
3398 block->level = level;
3399 block->key_ready = 0;
3400
3401 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3402 if (rb_node)
3403 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3404
3405 return 0;
3406 }
3407
3408 /*
3409 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3410 */
3411 static int __add_tree_block(struct reloc_control *rc,
3412 u64 bytenr, u32 blocksize,
3413 struct rb_root *blocks)
3414 {
3415 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3416 struct btrfs_path *path;
3417 struct btrfs_key key;
3418 int ret;
3419 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3420
3421 if (tree_block_processed(bytenr, rc))
3422 return 0;
3423
3424 if (tree_search(blocks, bytenr))
3425 return 0;
3426
3427 path = btrfs_alloc_path();
3428 if (!path)
3429 return -ENOMEM;
3430 again:
3431 key.objectid = bytenr;
3432 if (skinny) {
3433 key.type = BTRFS_METADATA_ITEM_KEY;
3434 key.offset = (u64)-1;
3435 } else {
3436 key.type = BTRFS_EXTENT_ITEM_KEY;
3437 key.offset = blocksize;
3438 }
3439
3440 path->search_commit_root = 1;
3441 path->skip_locking = 1;
3442 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3443 if (ret < 0)
3444 goto out;
3445
3446 if (ret > 0 && skinny) {
3447 if (path->slots[0]) {
3448 path->slots[0]--;
3449 btrfs_item_key_to_cpu(path->nodes[0], &key,
3450 path->slots[0]);
3451 if (key.objectid == bytenr &&
3452 (key.type == BTRFS_METADATA_ITEM_KEY ||
3453 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3454 key.offset == blocksize)))
3455 ret = 0;
3456 }
3457
3458 if (ret) {
3459 skinny = false;
3460 btrfs_release_path(path);
3461 goto again;
3462 }
3463 }
3464 if (ret) {
3465 ASSERT(ret == 1);
3466 btrfs_print_leaf(path->nodes[0]);
3467 btrfs_err(fs_info,
3468 "tree block extent item (%llu) is not found in extent tree",
3469 bytenr);
3470 WARN_ON(1);
3471 ret = -EINVAL;
3472 goto out;
3473 }
3474
3475 ret = add_tree_block(rc, &key, path, blocks);
3476 out:
3477 btrfs_free_path(path);
3478 return ret;
3479 }
3480
3481 /*
3482 * helper to check if the block use full backrefs for pointers in it
3483 */
3484 static int block_use_full_backref(struct reloc_control *rc,
3485 struct extent_buffer *eb)
3486 {
3487 u64 flags;
3488 int ret;
3489
3490 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3491 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3492 return 1;
3493
3494 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3495 eb->start, btrfs_header_level(eb), 1,
3496 NULL, &flags);
3497 BUG_ON(ret);
3498
3499 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3500 ret = 1;
3501 else
3502 ret = 0;
3503 return ret;
3504 }
3505
3506 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3507 struct btrfs_block_group_cache *block_group,
3508 struct inode *inode,
3509 u64 ino)
3510 {
3511 struct btrfs_key key;
3512 struct btrfs_root *root = fs_info->tree_root;
3513 struct btrfs_trans_handle *trans;
3514 int ret = 0;
3515
3516 if (inode)
3517 goto truncate;
3518
3519 key.objectid = ino;
3520 key.type = BTRFS_INODE_ITEM_KEY;
3521 key.offset = 0;
3522
3523 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3524 if (IS_ERR(inode))
3525 return -ENOENT;
3526
3527 truncate:
3528 ret = btrfs_check_trunc_cache_free_space(fs_info,
3529 &fs_info->global_block_rsv);
3530 if (ret)
3531 goto out;
3532
3533 trans = btrfs_join_transaction(root);
3534 if (IS_ERR(trans)) {
3535 ret = PTR_ERR(trans);
3536 goto out;
3537 }
3538
3539 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3540
3541 btrfs_end_transaction(trans);
3542 btrfs_btree_balance_dirty(fs_info);
3543 out:
3544 iput(inode);
3545 return ret;
3546 }
3547
3548 /*
3549 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3550 * this function scans fs tree to find blocks reference the data extent
3551 */
3552 static int find_data_references(struct reloc_control *rc,
3553 struct btrfs_key *extent_key,
3554 struct extent_buffer *leaf,
3555 struct btrfs_extent_data_ref *ref,
3556 struct rb_root *blocks)
3557 {
3558 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3559 struct btrfs_path *path;
3560 struct tree_block *block;
3561 struct btrfs_root *root;
3562 struct btrfs_file_extent_item *fi;
3563 struct rb_node *rb_node;
3564 struct btrfs_key key;
3565 u64 ref_root;
3566 u64 ref_objectid;
3567 u64 ref_offset;
3568 u32 ref_count;
3569 u32 nritems;
3570 int err = 0;
3571 int added = 0;
3572 int counted;
3573 int ret;
3574
3575 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3576 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3577 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3578 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3579
3580 /*
3581 * This is an extent belonging to the free space cache, lets just delete
3582 * it and redo the search.
3583 */
3584 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3585 ret = delete_block_group_cache(fs_info, rc->block_group,
3586 NULL, ref_objectid);
3587 if (ret != -ENOENT)
3588 return ret;
3589 ret = 0;
3590 }
3591
3592 path = btrfs_alloc_path();
3593 if (!path)
3594 return -ENOMEM;
3595 path->reada = READA_FORWARD;
3596
3597 root = read_fs_root(fs_info, ref_root);
3598 if (IS_ERR(root)) {
3599 err = PTR_ERR(root);
3600 goto out;
3601 }
3602
3603 key.objectid = ref_objectid;
3604 key.type = BTRFS_EXTENT_DATA_KEY;
3605 if (ref_offset > ((u64)-1 << 32))
3606 key.offset = 0;
3607 else
3608 key.offset = ref_offset;
3609
3610 path->search_commit_root = 1;
3611 path->skip_locking = 1;
3612 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3613 if (ret < 0) {
3614 err = ret;
3615 goto out;
3616 }
3617
3618 leaf = path->nodes[0];
3619 nritems = btrfs_header_nritems(leaf);
3620 /*
3621 * the references in tree blocks that use full backrefs
3622 * are not counted in
3623 */
3624 if (block_use_full_backref(rc, leaf))
3625 counted = 0;
3626 else
3627 counted = 1;
3628 rb_node = tree_search(blocks, leaf->start);
3629 if (rb_node) {
3630 if (counted)
3631 added = 1;
3632 else
3633 path->slots[0] = nritems;
3634 }
3635
3636 while (ref_count > 0) {
3637 while (path->slots[0] >= nritems) {
3638 ret = btrfs_next_leaf(root, path);
3639 if (ret < 0) {
3640 err = ret;
3641 goto out;
3642 }
3643 if (WARN_ON(ret > 0))
3644 goto out;
3645
3646 leaf = path->nodes[0];
3647 nritems = btrfs_header_nritems(leaf);
3648 added = 0;
3649
3650 if (block_use_full_backref(rc, leaf))
3651 counted = 0;
3652 else
3653 counted = 1;
3654 rb_node = tree_search(blocks, leaf->start);
3655 if (rb_node) {
3656 if (counted)
3657 added = 1;
3658 else
3659 path->slots[0] = nritems;
3660 }
3661 }
3662
3663 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3664 if (WARN_ON(key.objectid != ref_objectid ||
3665 key.type != BTRFS_EXTENT_DATA_KEY))
3666 break;
3667
3668 fi = btrfs_item_ptr(leaf, path->slots[0],
3669 struct btrfs_file_extent_item);
3670
3671 if (btrfs_file_extent_type(leaf, fi) ==
3672 BTRFS_FILE_EXTENT_INLINE)
3673 goto next;
3674
3675 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3676 extent_key->objectid)
3677 goto next;
3678
3679 key.offset -= btrfs_file_extent_offset(leaf, fi);
3680 if (key.offset != ref_offset)
3681 goto next;
3682
3683 if (counted)
3684 ref_count--;
3685 if (added)
3686 goto next;
3687
3688 if (!tree_block_processed(leaf->start, rc)) {
3689 block = kmalloc(sizeof(*block), GFP_NOFS);
3690 if (!block) {
3691 err = -ENOMEM;
3692 break;
3693 }
3694 block->bytenr = leaf->start;
3695 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3696 block->level = 0;
3697 block->key_ready = 1;
3698 rb_node = tree_insert(blocks, block->bytenr,
3699 &block->rb_node);
3700 if (rb_node)
3701 backref_tree_panic(rb_node, -EEXIST,
3702 block->bytenr);
3703 }
3704 if (counted)
3705 added = 1;
3706 else
3707 path->slots[0] = nritems;
3708 next:
3709 path->slots[0]++;
3710
3711 }
3712 out:
3713 btrfs_free_path(path);
3714 return err;
3715 }
3716
3717 /*
3718 * helper to find all tree blocks that reference a given data extent
3719 */
3720 static noinline_for_stack
3721 int add_data_references(struct reloc_control *rc,
3722 struct btrfs_key *extent_key,
3723 struct btrfs_path *path,
3724 struct rb_root *blocks)
3725 {
3726 struct btrfs_key key;
3727 struct extent_buffer *eb;
3728 struct btrfs_extent_data_ref *dref;
3729 struct btrfs_extent_inline_ref *iref;
3730 unsigned long ptr;
3731 unsigned long end;
3732 u32 blocksize = rc->extent_root->fs_info->nodesize;
3733 int ret = 0;
3734 int err = 0;
3735
3736 eb = path->nodes[0];
3737 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3738 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3739 ptr += sizeof(struct btrfs_extent_item);
3740
3741 while (ptr < end) {
3742 iref = (struct btrfs_extent_inline_ref *)ptr;
3743 key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3744 BTRFS_REF_TYPE_DATA);
3745 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3746 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3747 ret = __add_tree_block(rc, key.offset, blocksize,
3748 blocks);
3749 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3750 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3751 ret = find_data_references(rc, extent_key,
3752 eb, dref, blocks);
3753 } else {
3754 ret = -EUCLEAN;
3755 btrfs_err(rc->extent_root->fs_info,
3756 "extent %llu slot %d has an invalid inline ref type",
3757 eb->start, path->slots[0]);
3758 }
3759 if (ret) {
3760 err = ret;
3761 goto out;
3762 }
3763 ptr += btrfs_extent_inline_ref_size(key.type);
3764 }
3765 WARN_ON(ptr > end);
3766
3767 while (1) {
3768 cond_resched();
3769 eb = path->nodes[0];
3770 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3771 ret = btrfs_next_leaf(rc->extent_root, path);
3772 if (ret < 0) {
3773 err = ret;
3774 break;
3775 }
3776 if (ret > 0)
3777 break;
3778 eb = path->nodes[0];
3779 }
3780
3781 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3782 if (key.objectid != extent_key->objectid)
3783 break;
3784
3785 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3786 ret = __add_tree_block(rc, key.offset, blocksize,
3787 blocks);
3788 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3789 dref = btrfs_item_ptr(eb, path->slots[0],
3790 struct btrfs_extent_data_ref);
3791 ret = find_data_references(rc, extent_key,
3792 eb, dref, blocks);
3793 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3794 btrfs_print_v0_err(eb->fs_info);
3795 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3796 ret = -EINVAL;
3797 } else {
3798 ret = 0;
3799 }
3800 if (ret) {
3801 err = ret;
3802 break;
3803 }
3804 path->slots[0]++;
3805 }
3806 out:
3807 btrfs_release_path(path);
3808 if (err)
3809 free_block_list(blocks);
3810 return err;
3811 }
3812
3813 /*
3814 * helper to find next unprocessed extent
3815 */
3816 static noinline_for_stack
3817 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3818 struct btrfs_key *extent_key)
3819 {
3820 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3821 struct btrfs_key key;
3822 struct extent_buffer *leaf;
3823 u64 start, end, last;
3824 int ret;
3825
3826 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3827 while (1) {
3828 cond_resched();
3829 if (rc->search_start >= last) {
3830 ret = 1;
3831 break;
3832 }
3833
3834 key.objectid = rc->search_start;
3835 key.type = BTRFS_EXTENT_ITEM_KEY;
3836 key.offset = 0;
3837
3838 path->search_commit_root = 1;
3839 path->skip_locking = 1;
3840 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3841 0, 0);
3842 if (ret < 0)
3843 break;
3844 next:
3845 leaf = path->nodes[0];
3846 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3847 ret = btrfs_next_leaf(rc->extent_root, path);
3848 if (ret != 0)
3849 break;
3850 leaf = path->nodes[0];
3851 }
3852
3853 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3854 if (key.objectid >= last) {
3855 ret = 1;
3856 break;
3857 }
3858
3859 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3860 key.type != BTRFS_METADATA_ITEM_KEY) {
3861 path->slots[0]++;
3862 goto next;
3863 }
3864
3865 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3866 key.objectid + key.offset <= rc->search_start) {
3867 path->slots[0]++;
3868 goto next;
3869 }
3870
3871 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3872 key.objectid + fs_info->nodesize <=
3873 rc->search_start) {
3874 path->slots[0]++;
3875 goto next;
3876 }
3877
3878 ret = find_first_extent_bit(&rc->processed_blocks,
3879 key.objectid, &start, &end,
3880 EXTENT_DIRTY, NULL);
3881
3882 if (ret == 0 && start <= key.objectid) {
3883 btrfs_release_path(path);
3884 rc->search_start = end + 1;
3885 } else {
3886 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3887 rc->search_start = key.objectid + key.offset;
3888 else
3889 rc->search_start = key.objectid +
3890 fs_info->nodesize;
3891 memcpy(extent_key, &key, sizeof(key));
3892 return 0;
3893 }
3894 }
3895 btrfs_release_path(path);
3896 return ret;
3897 }
3898
3899 static void set_reloc_control(struct reloc_control *rc)
3900 {
3901 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3902
3903 mutex_lock(&fs_info->reloc_mutex);
3904 fs_info->reloc_ctl = rc;
3905 mutex_unlock(&fs_info->reloc_mutex);
3906 }
3907
3908 static void unset_reloc_control(struct reloc_control *rc)
3909 {
3910 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3911
3912 mutex_lock(&fs_info->reloc_mutex);
3913 fs_info->reloc_ctl = NULL;
3914 mutex_unlock(&fs_info->reloc_mutex);
3915 }
3916
3917 static int check_extent_flags(u64 flags)
3918 {
3919 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3920 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3921 return 1;
3922 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3923 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3924 return 1;
3925 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3926 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3927 return 1;
3928 return 0;
3929 }
3930
3931 static noinline_for_stack
3932 int prepare_to_relocate(struct reloc_control *rc)
3933 {
3934 struct btrfs_trans_handle *trans;
3935 int ret;
3936
3937 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3938 BTRFS_BLOCK_RSV_TEMP);
3939 if (!rc->block_rsv)
3940 return -ENOMEM;
3941
3942 memset(&rc->cluster, 0, sizeof(rc->cluster));
3943 rc->search_start = rc->block_group->key.objectid;
3944 rc->extents_found = 0;
3945 rc->nodes_relocated = 0;
3946 rc->merging_rsv_size = 0;
3947 rc->reserved_bytes = 0;
3948 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3949 RELOCATION_RESERVED_NODES;
3950 ret = btrfs_block_rsv_refill(rc->extent_root,
3951 rc->block_rsv, rc->block_rsv->size,
3952 BTRFS_RESERVE_FLUSH_ALL);
3953 if (ret)
3954 return ret;
3955
3956 rc->create_reloc_tree = 1;
3957 set_reloc_control(rc);
3958
3959 trans = btrfs_join_transaction(rc->extent_root);
3960 if (IS_ERR(trans)) {
3961 unset_reloc_control(rc);
3962 /*
3963 * extent tree is not a ref_cow tree and has no reloc_root to
3964 * cleanup. And callers are responsible to free the above
3965 * block rsv.
3966 */
3967 return PTR_ERR(trans);
3968 }
3969 btrfs_commit_transaction(trans);
3970 return 0;
3971 }
3972
3973 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3974 {
3975 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3976 struct rb_root blocks = RB_ROOT;
3977 struct btrfs_key key;
3978 struct btrfs_trans_handle *trans = NULL;
3979 struct btrfs_path *path;
3980 struct btrfs_extent_item *ei;
3981 u64 flags;
3982 u32 item_size;
3983 int ret;
3984 int err = 0;
3985 int progress = 0;
3986
3987 path = btrfs_alloc_path();
3988 if (!path)
3989 return -ENOMEM;
3990 path->reada = READA_FORWARD;
3991
3992 ret = prepare_to_relocate(rc);
3993 if (ret) {
3994 err = ret;
3995 goto out_free;
3996 }
3997
3998 while (1) {
3999 rc->reserved_bytes = 0;
4000 ret = btrfs_block_rsv_refill(rc->extent_root,
4001 rc->block_rsv, rc->block_rsv->size,
4002 BTRFS_RESERVE_FLUSH_ALL);
4003 if (ret) {
4004 err = ret;
4005 break;
4006 }
4007 progress++;
4008 trans = btrfs_start_transaction(rc->extent_root, 0);
4009 if (IS_ERR(trans)) {
4010 err = PTR_ERR(trans);
4011 trans = NULL;
4012 break;
4013 }
4014 restart:
4015 if (update_backref_cache(trans, &rc->backref_cache)) {
4016 btrfs_end_transaction(trans);
4017 trans = NULL;
4018 continue;
4019 }
4020
4021 ret = find_next_extent(rc, path, &key);
4022 if (ret < 0)
4023 err = ret;
4024 if (ret != 0)
4025 break;
4026
4027 rc->extents_found++;
4028
4029 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4030 struct btrfs_extent_item);
4031 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4032 if (item_size >= sizeof(*ei)) {
4033 flags = btrfs_extent_flags(path->nodes[0], ei);
4034 ret = check_extent_flags(flags);
4035 BUG_ON(ret);
4036 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4037 err = -EINVAL;
4038 btrfs_print_v0_err(trans->fs_info);
4039 btrfs_abort_transaction(trans, err);
4040 break;
4041 } else {
4042 BUG();
4043 }
4044
4045 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4046 ret = add_tree_block(rc, &key, path, &blocks);
4047 } else if (rc->stage == UPDATE_DATA_PTRS &&
4048 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4049 ret = add_data_references(rc, &key, path, &blocks);
4050 } else {
4051 btrfs_release_path(path);
4052 ret = 0;
4053 }
4054 if (ret < 0) {
4055 err = ret;
4056 break;
4057 }
4058
4059 if (!RB_EMPTY_ROOT(&blocks)) {
4060 ret = relocate_tree_blocks(trans, rc, &blocks);
4061 if (ret < 0) {
4062 /*
4063 * if we fail to relocate tree blocks, force to update
4064 * backref cache when committing transaction.
4065 */
4066 rc->backref_cache.last_trans = trans->transid - 1;
4067
4068 if (ret != -EAGAIN) {
4069 err = ret;
4070 break;
4071 }
4072 rc->extents_found--;
4073 rc->search_start = key.objectid;
4074 }
4075 }
4076
4077 btrfs_end_transaction_throttle(trans);
4078 btrfs_btree_balance_dirty(fs_info);
4079 trans = NULL;
4080
4081 if (rc->stage == MOVE_DATA_EXTENTS &&
4082 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4083 rc->found_file_extent = 1;
4084 ret = relocate_data_extent(rc->data_inode,
4085 &key, &rc->cluster);
4086 if (ret < 0) {
4087 err = ret;
4088 break;
4089 }
4090 }
4091 }
4092 if (trans && progress && err == -ENOSPC) {
4093 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4094 if (ret == 1) {
4095 err = 0;
4096 progress = 0;
4097 goto restart;
4098 }
4099 }
4100
4101 btrfs_release_path(path);
4102 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4103
4104 if (trans) {
4105 btrfs_end_transaction_throttle(trans);
4106 btrfs_btree_balance_dirty(fs_info);
4107 }
4108
4109 if (!err) {
4110 ret = relocate_file_extent_cluster(rc->data_inode,
4111 &rc->cluster);
4112 if (ret < 0)
4113 err = ret;
4114 }
4115
4116 rc->create_reloc_tree = 0;
4117 set_reloc_control(rc);
4118
4119 backref_cache_cleanup(&rc->backref_cache);
4120 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4121
4122 err = prepare_to_merge(rc, err);
4123
4124 merge_reloc_roots(rc);
4125
4126 rc->merge_reloc_tree = 0;
4127 unset_reloc_control(rc);
4128 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4129
4130 /* get rid of pinned extents */
4131 trans = btrfs_join_transaction(rc->extent_root);
4132 if (IS_ERR(trans)) {
4133 err = PTR_ERR(trans);
4134 goto out_free;
4135 }
4136 btrfs_commit_transaction(trans);
4137 ret = clean_dirty_subvols(rc);
4138 if (ret < 0 && !err)
4139 err = ret;
4140 out_free:
4141 btrfs_free_block_rsv(fs_info, rc->block_rsv);
4142 btrfs_free_path(path);
4143 return err;
4144 }
4145
4146 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4147 struct btrfs_root *root, u64 objectid)
4148 {
4149 struct btrfs_path *path;
4150 struct btrfs_inode_item *item;
4151 struct extent_buffer *leaf;
4152 int ret;
4153
4154 path = btrfs_alloc_path();
4155 if (!path)
4156 return -ENOMEM;
4157
4158 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4159 if (ret)
4160 goto out;
4161
4162 leaf = path->nodes[0];
4163 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4164 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4165 btrfs_set_inode_generation(leaf, item, 1);
4166 btrfs_set_inode_size(leaf, item, 0);
4167 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4168 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4169 BTRFS_INODE_PREALLOC);
4170 btrfs_mark_buffer_dirty(leaf);
4171 out:
4172 btrfs_free_path(path);
4173 return ret;
4174 }
4175
4176 /*
4177 * helper to create inode for data relocation.
4178 * the inode is in data relocation tree and its link count is 0
4179 */
4180 static noinline_for_stack
4181 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4182 struct btrfs_block_group_cache *group)
4183 {
4184 struct inode *inode = NULL;
4185 struct btrfs_trans_handle *trans;
4186 struct btrfs_root *root;
4187 struct btrfs_key key;
4188 u64 objectid;
4189 int err = 0;
4190
4191 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4192 if (IS_ERR(root))
4193 return ERR_CAST(root);
4194
4195 trans = btrfs_start_transaction(root, 6);
4196 if (IS_ERR(trans))
4197 return ERR_CAST(trans);
4198
4199 err = btrfs_find_free_objectid(root, &objectid);
4200 if (err)
4201 goto out;
4202
4203 err = __insert_orphan_inode(trans, root, objectid);
4204 BUG_ON(err);
4205
4206 key.objectid = objectid;
4207 key.type = BTRFS_INODE_ITEM_KEY;
4208 key.offset = 0;
4209 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4210 BUG_ON(IS_ERR(inode));
4211 BTRFS_I(inode)->index_cnt = group->key.objectid;
4212
4213 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4214 out:
4215 btrfs_end_transaction(trans);
4216 btrfs_btree_balance_dirty(fs_info);
4217 if (err) {
4218 if (inode)
4219 iput(inode);
4220 inode = ERR_PTR(err);
4221 }
4222 return inode;
4223 }
4224
4225 static struct reloc_control *alloc_reloc_control(void)
4226 {
4227 struct reloc_control *rc;
4228
4229 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4230 if (!rc)
4231 return NULL;
4232
4233 INIT_LIST_HEAD(&rc->reloc_roots);
4234 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4235 backref_cache_init(&rc->backref_cache);
4236 mapping_tree_init(&rc->reloc_root_tree);
4237 extent_io_tree_init(&rc->processed_blocks, NULL);
4238 return rc;
4239 }
4240
4241 /*
4242 * Print the block group being relocated
4243 */
4244 static void describe_relocation(struct btrfs_fs_info *fs_info,
4245 struct btrfs_block_group_cache *block_group)
4246 {
4247 char buf[128] = {'\0'};
4248
4249 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4250
4251 btrfs_info(fs_info,
4252 "relocating block group %llu flags %s",
4253 block_group->key.objectid, buf);
4254 }
4255
4256 /*
4257 * function to relocate all extents in a block group.
4258 */
4259 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4260 {
4261 struct btrfs_block_group_cache *bg;
4262 struct btrfs_root *extent_root = fs_info->extent_root;
4263 struct reloc_control *rc;
4264 struct inode *inode;
4265 struct btrfs_path *path;
4266 int ret;
4267 int rw = 0;
4268 int err = 0;
4269
4270 bg = btrfs_lookup_block_group(fs_info, group_start);
4271 if (!bg)
4272 return -ENOENT;
4273
4274 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4275 btrfs_put_block_group(bg);
4276 return -ETXTBSY;
4277 }
4278
4279 rc = alloc_reloc_control();
4280 if (!rc) {
4281 btrfs_put_block_group(bg);
4282 return -ENOMEM;
4283 }
4284
4285 rc->extent_root = extent_root;
4286 rc->block_group = bg;
4287
4288 ret = btrfs_inc_block_group_ro(rc->block_group);
4289 if (ret) {
4290 err = ret;
4291 goto out;
4292 }
4293 rw = 1;
4294
4295 path = btrfs_alloc_path();
4296 if (!path) {
4297 err = -ENOMEM;
4298 goto out;
4299 }
4300
4301 inode = lookup_free_space_inode(fs_info, rc->block_group, path);
4302 btrfs_free_path(path);
4303
4304 if (!IS_ERR(inode))
4305 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4306 else
4307 ret = PTR_ERR(inode);
4308
4309 if (ret && ret != -ENOENT) {
4310 err = ret;
4311 goto out;
4312 }
4313
4314 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4315 if (IS_ERR(rc->data_inode)) {
4316 err = PTR_ERR(rc->data_inode);
4317 rc->data_inode = NULL;
4318 goto out;
4319 }
4320
4321 describe_relocation(fs_info, rc->block_group);
4322
4323 btrfs_wait_block_group_reservations(rc->block_group);
4324 btrfs_wait_nocow_writers(rc->block_group);
4325 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4326 rc->block_group->key.objectid,
4327 rc->block_group->key.offset);
4328
4329 while (1) {
4330 mutex_lock(&fs_info->cleaner_mutex);
4331 ret = relocate_block_group(rc);
4332 mutex_unlock(&fs_info->cleaner_mutex);
4333 if (ret < 0) {
4334 err = ret;
4335 goto out;
4336 }
4337
4338 if (rc->extents_found == 0)
4339 break;
4340
4341 btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4342
4343 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4344 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4345 (u64)-1);
4346 if (ret) {
4347 err = ret;
4348 goto out;
4349 }
4350 invalidate_mapping_pages(rc->data_inode->i_mapping,
4351 0, -1);
4352 rc->stage = UPDATE_DATA_PTRS;
4353 }
4354 }
4355
4356 WARN_ON(rc->block_group->pinned > 0);
4357 WARN_ON(rc->block_group->reserved > 0);
4358 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4359 out:
4360 if (err && rw)
4361 btrfs_dec_block_group_ro(rc->block_group);
4362 iput(rc->data_inode);
4363 btrfs_put_block_group(rc->block_group);
4364 kfree(rc);
4365 return err;
4366 }
4367
4368 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4369 {
4370 struct btrfs_fs_info *fs_info = root->fs_info;
4371 struct btrfs_trans_handle *trans;
4372 int ret, err;
4373
4374 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4375 if (IS_ERR(trans))
4376 return PTR_ERR(trans);
4377
4378 memset(&root->root_item.drop_progress, 0,
4379 sizeof(root->root_item.drop_progress));
4380 root->root_item.drop_level = 0;
4381 btrfs_set_root_refs(&root->root_item, 0);
4382 ret = btrfs_update_root(trans, fs_info->tree_root,
4383 &root->root_key, &root->root_item);
4384
4385 err = btrfs_end_transaction(trans);
4386 if (err)
4387 return err;
4388 return ret;
4389 }
4390
4391 /*
4392 * recover relocation interrupted by system crash.
4393 *
4394 * this function resumes merging reloc trees with corresponding fs trees.
4395 * this is important for keeping the sharing of tree blocks
4396 */
4397 int btrfs_recover_relocation(struct btrfs_root *root)
4398 {
4399 struct btrfs_fs_info *fs_info = root->fs_info;
4400 LIST_HEAD(reloc_roots);
4401 struct btrfs_key key;
4402 struct btrfs_root *fs_root;
4403 struct btrfs_root *reloc_root;
4404 struct btrfs_path *path;
4405 struct extent_buffer *leaf;
4406 struct reloc_control *rc = NULL;
4407 struct btrfs_trans_handle *trans;
4408 int ret;
4409 int err = 0;
4410
4411 path = btrfs_alloc_path();
4412 if (!path)
4413 return -ENOMEM;
4414 path->reada = READA_BACK;
4415
4416 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4417 key.type = BTRFS_ROOT_ITEM_KEY;
4418 key.offset = (u64)-1;
4419
4420 while (1) {
4421 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4422 path, 0, 0);
4423 if (ret < 0) {
4424 err = ret;
4425 goto out;
4426 }
4427 if (ret > 0) {
4428 if (path->slots[0] == 0)
4429 break;
4430 path->slots[0]--;
4431 }
4432 leaf = path->nodes[0];
4433 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4434 btrfs_release_path(path);
4435
4436 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4437 key.type != BTRFS_ROOT_ITEM_KEY)
4438 break;
4439
4440 reloc_root = btrfs_read_fs_root(root, &key);
4441 if (IS_ERR(reloc_root)) {
4442 err = PTR_ERR(reloc_root);
4443 goto out;
4444 }
4445
4446 list_add(&reloc_root->root_list, &reloc_roots);
4447
4448 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4449 fs_root = read_fs_root(fs_info,
4450 reloc_root->root_key.offset);
4451 if (IS_ERR(fs_root)) {
4452 ret = PTR_ERR(fs_root);
4453 if (ret != -ENOENT) {
4454 err = ret;
4455 goto out;
4456 }
4457 ret = mark_garbage_root(reloc_root);
4458 if (ret < 0) {
4459 err = ret;
4460 goto out;
4461 }
4462 }
4463 }
4464
4465 if (key.offset == 0)
4466 break;
4467
4468 key.offset--;
4469 }
4470 btrfs_release_path(path);
4471
4472 if (list_empty(&reloc_roots))
4473 goto out;
4474
4475 rc = alloc_reloc_control();
4476 if (!rc) {
4477 err = -ENOMEM;
4478 goto out;
4479 }
4480
4481 rc->extent_root = fs_info->extent_root;
4482
4483 set_reloc_control(rc);
4484
4485 trans = btrfs_join_transaction(rc->extent_root);
4486 if (IS_ERR(trans)) {
4487 unset_reloc_control(rc);
4488 err = PTR_ERR(trans);
4489 goto out_free;
4490 }
4491
4492 rc->merge_reloc_tree = 1;
4493
4494 while (!list_empty(&reloc_roots)) {
4495 reloc_root = list_entry(reloc_roots.next,
4496 struct btrfs_root, root_list);
4497 list_del(&reloc_root->root_list);
4498
4499 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4500 list_add_tail(&reloc_root->root_list,
4501 &rc->reloc_roots);
4502 continue;
4503 }
4504
4505 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4506 if (IS_ERR(fs_root)) {
4507 err = PTR_ERR(fs_root);
4508 goto out_free;
4509 }
4510
4511 err = __add_reloc_root(reloc_root);
4512 BUG_ON(err < 0); /* -ENOMEM or logic error */
4513 fs_root->reloc_root = reloc_root;
4514 }
4515
4516 err = btrfs_commit_transaction(trans);
4517 if (err)
4518 goto out_free;
4519
4520 merge_reloc_roots(rc);
4521
4522 unset_reloc_control(rc);
4523
4524 trans = btrfs_join_transaction(rc->extent_root);
4525 if (IS_ERR(trans)) {
4526 err = PTR_ERR(trans);
4527 goto out_free;
4528 }
4529 err = btrfs_commit_transaction(trans);
4530
4531 ret = clean_dirty_subvols(rc);
4532 if (ret < 0 && !err)
4533 err = ret;
4534 out_free:
4535 kfree(rc);
4536 out:
4537 if (!list_empty(&reloc_roots))
4538 free_reloc_roots(&reloc_roots);
4539
4540 btrfs_free_path(path);
4541
4542 if (err == 0) {
4543 /* cleanup orphan inode in data relocation tree */
4544 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4545 if (IS_ERR(fs_root))
4546 err = PTR_ERR(fs_root);
4547 else
4548 err = btrfs_orphan_cleanup(fs_root);
4549 }
4550 return err;
4551 }
4552
4553 /*
4554 * helper to add ordered checksum for data relocation.
4555 *
4556 * cloning checksum properly handles the nodatasum extents.
4557 * it also saves CPU time to re-calculate the checksum.
4558 */
4559 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4560 {
4561 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4562 struct btrfs_ordered_sum *sums;
4563 struct btrfs_ordered_extent *ordered;
4564 int ret;
4565 u64 disk_bytenr;
4566 u64 new_bytenr;
4567 LIST_HEAD(list);
4568
4569 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4570 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4571
4572 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4573 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4574 disk_bytenr + len - 1, &list, 0);
4575 if (ret)
4576 goto out;
4577
4578 while (!list_empty(&list)) {
4579 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4580 list_del_init(&sums->list);
4581
4582 /*
4583 * We need to offset the new_bytenr based on where the csum is.
4584 * We need to do this because we will read in entire prealloc
4585 * extents but we may have written to say the middle of the
4586 * prealloc extent, so we need to make sure the csum goes with
4587 * the right disk offset.
4588 *
4589 * We can do this because the data reloc inode refers strictly
4590 * to the on disk bytes, so we don't have to worry about
4591 * disk_len vs real len like with real inodes since it's all
4592 * disk length.
4593 */
4594 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4595 sums->bytenr = new_bytenr;
4596
4597 btrfs_add_ordered_sum(inode, ordered, sums);
4598 }
4599 out:
4600 btrfs_put_ordered_extent(ordered);
4601 return ret;
4602 }
4603
4604 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4605 struct btrfs_root *root, struct extent_buffer *buf,
4606 struct extent_buffer *cow)
4607 {
4608 struct btrfs_fs_info *fs_info = root->fs_info;
4609 struct reloc_control *rc;
4610 struct backref_node *node;
4611 int first_cow = 0;
4612 int level;
4613 int ret = 0;
4614
4615 rc = fs_info->reloc_ctl;
4616 if (!rc)
4617 return 0;
4618
4619 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4620 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4621
4622 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4623 if (buf == root->node)
4624 __update_reloc_root(root, cow->start);
4625 }
4626
4627 level = btrfs_header_level(buf);
4628 if (btrfs_header_generation(buf) <=
4629 btrfs_root_last_snapshot(&root->root_item))
4630 first_cow = 1;
4631
4632 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4633 rc->create_reloc_tree) {
4634 WARN_ON(!first_cow && level == 0);
4635
4636 node = rc->backref_cache.path[level];
4637 BUG_ON(node->bytenr != buf->start &&
4638 node->new_bytenr != buf->start);
4639
4640 drop_node_buffer(node);
4641 extent_buffer_get(cow);
4642 node->eb = cow;
4643 node->new_bytenr = cow->start;
4644
4645 if (!node->pending) {
4646 list_move_tail(&node->list,
4647 &rc->backref_cache.pending[level]);
4648 node->pending = 1;
4649 }
4650
4651 if (first_cow)
4652 __mark_block_processed(rc, node);
4653
4654 if (first_cow && level > 0)
4655 rc->nodes_relocated += buf->len;
4656 }
4657
4658 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4659 ret = replace_file_extents(trans, rc, root, cow);
4660 return ret;
4661 }
4662
4663 /*
4664 * called before creating snapshot. it calculates metadata reservation
4665 * required for relocating tree blocks in the snapshot
4666 */
4667 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4668 u64 *bytes_to_reserve)
4669 {
4670 struct btrfs_root *root;
4671 struct reloc_control *rc;
4672
4673 root = pending->root;
4674 if (!root->reloc_root)
4675 return;
4676
4677 rc = root->fs_info->reloc_ctl;
4678 if (!rc->merge_reloc_tree)
4679 return;
4680
4681 root = root->reloc_root;
4682 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4683 /*
4684 * relocation is in the stage of merging trees. the space
4685 * used by merging a reloc tree is twice the size of
4686 * relocated tree nodes in the worst case. half for cowing
4687 * the reloc tree, half for cowing the fs tree. the space
4688 * used by cowing the reloc tree will be freed after the
4689 * tree is dropped. if we create snapshot, cowing the fs
4690 * tree may use more space than it frees. so we need
4691 * reserve extra space.
4692 */
4693 *bytes_to_reserve += rc->nodes_relocated;
4694 }
4695
4696 /*
4697 * called after snapshot is created. migrate block reservation
4698 * and create reloc root for the newly created snapshot
4699 */
4700 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4701 struct btrfs_pending_snapshot *pending)
4702 {
4703 struct btrfs_root *root = pending->root;
4704 struct btrfs_root *reloc_root;
4705 struct btrfs_root *new_root;
4706 struct reloc_control *rc;
4707 int ret;
4708
4709 if (!root->reloc_root)
4710 return 0;
4711
4712 rc = root->fs_info->reloc_ctl;
4713 rc->merging_rsv_size += rc->nodes_relocated;
4714
4715 if (rc->merge_reloc_tree) {
4716 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4717 rc->block_rsv,
4718 rc->nodes_relocated, true);
4719 if (ret)
4720 return ret;
4721 }
4722
4723 new_root = pending->snap;
4724 reloc_root = create_reloc_root(trans, root->reloc_root,
4725 new_root->root_key.objectid);
4726 if (IS_ERR(reloc_root))
4727 return PTR_ERR(reloc_root);
4728
4729 ret = __add_reloc_root(reloc_root);
4730 BUG_ON(ret < 0);
4731 new_root->reloc_root = reloc_root;
4732
4733 if (rc->create_reloc_tree)
4734 ret = clone_backref_node(trans, rc, root, reloc_root);
4735 return ret;
4736 }