]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/scrub.c
mm: vmalloc: show number of vmalloc pages in /proc/meminfo
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / scrub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "disk-io.h"
12 #include "ordered-data.h"
13 #include "transaction.h"
14 #include "backref.h"
15 #include "extent_io.h"
16 #include "dev-replace.h"
17 #include "check-integrity.h"
18 #include "rcu-string.h"
19 #include "raid56.h"
20
21 /*
22 * This is only the first step towards a full-features scrub. It reads all
23 * extent and super block and verifies the checksums. In case a bad checksum
24 * is found or the extent cannot be read, good data will be written back if
25 * any can be found.
26 *
27 * Future enhancements:
28 * - In case an unrepairable extent is encountered, track which files are
29 * affected and report them
30 * - track and record media errors, throw out bad devices
31 * - add a mode to also read unallocated space
32 */
33
34 struct scrub_block;
35 struct scrub_ctx;
36
37 /*
38 * the following three values only influence the performance.
39 * The last one configures the number of parallel and outstanding I/O
40 * operations. The first two values configure an upper limit for the number
41 * of (dynamically allocated) pages that are added to a bio.
42 */
43 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
44 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
45 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
46
47 /*
48 * the following value times PAGE_SIZE needs to be large enough to match the
49 * largest node/leaf/sector size that shall be supported.
50 * Values larger than BTRFS_STRIPE_LEN are not supported.
51 */
52 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
53
54 struct scrub_recover {
55 refcount_t refs;
56 struct btrfs_bio *bbio;
57 u64 map_length;
58 };
59
60 struct scrub_page {
61 struct scrub_block *sblock;
62 struct page *page;
63 struct btrfs_device *dev;
64 struct list_head list;
65 u64 flags; /* extent flags */
66 u64 generation;
67 u64 logical;
68 u64 physical;
69 u64 physical_for_dev_replace;
70 atomic_t refs;
71 struct {
72 unsigned int mirror_num:8;
73 unsigned int have_csum:1;
74 unsigned int io_error:1;
75 };
76 u8 csum[BTRFS_CSUM_SIZE];
77
78 struct scrub_recover *recover;
79 };
80
81 struct scrub_bio {
82 int index;
83 struct scrub_ctx *sctx;
84 struct btrfs_device *dev;
85 struct bio *bio;
86 blk_status_t status;
87 u64 logical;
88 u64 physical;
89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
91 #else
92 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
93 #endif
94 int page_count;
95 int next_free;
96 struct btrfs_work work;
97 };
98
99 struct scrub_block {
100 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
101 int page_count;
102 atomic_t outstanding_pages;
103 refcount_t refs; /* free mem on transition to zero */
104 struct scrub_ctx *sctx;
105 struct scrub_parity *sparity;
106 struct {
107 unsigned int header_error:1;
108 unsigned int checksum_error:1;
109 unsigned int no_io_error_seen:1;
110 unsigned int generation_error:1; /* also sets header_error */
111
112 /* The following is for the data used to check parity */
113 /* It is for the data with checksum */
114 unsigned int data_corrected:1;
115 };
116 struct btrfs_work work;
117 };
118
119 /* Used for the chunks with parity stripe such RAID5/6 */
120 struct scrub_parity {
121 struct scrub_ctx *sctx;
122
123 struct btrfs_device *scrub_dev;
124
125 u64 logic_start;
126
127 u64 logic_end;
128
129 int nsectors;
130
131 u64 stripe_len;
132
133 refcount_t refs;
134
135 struct list_head spages;
136
137 /* Work of parity check and repair */
138 struct btrfs_work work;
139
140 /* Mark the parity blocks which have data */
141 unsigned long *dbitmap;
142
143 /*
144 * Mark the parity blocks which have data, but errors happen when
145 * read data or check data
146 */
147 unsigned long *ebitmap;
148
149 unsigned long bitmap[0];
150 };
151
152 struct scrub_ctx {
153 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
154 struct btrfs_fs_info *fs_info;
155 int first_free;
156 int curr;
157 atomic_t bios_in_flight;
158 atomic_t workers_pending;
159 spinlock_t list_lock;
160 wait_queue_head_t list_wait;
161 u16 csum_size;
162 struct list_head csum_list;
163 atomic_t cancel_req;
164 int readonly;
165 int pages_per_rd_bio;
166
167 int is_dev_replace;
168
169 struct scrub_bio *wr_curr_bio;
170 struct mutex wr_lock;
171 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
172 struct btrfs_device *wr_tgtdev;
173 bool flush_all_writes;
174
175 /*
176 * statistics
177 */
178 struct btrfs_scrub_progress stat;
179 spinlock_t stat_lock;
180
181 /*
182 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 * decrement bios_in_flight and workers_pending and then do a wakeup
184 * on the list_wait wait queue. We must ensure the main scrub task
185 * doesn't free the scrub context before or while the workers are
186 * doing the wakeup() call.
187 */
188 refcount_t refs;
189 };
190
191 struct scrub_warning {
192 struct btrfs_path *path;
193 u64 extent_item_size;
194 const char *errstr;
195 u64 physical;
196 u64 logical;
197 struct btrfs_device *dev;
198 };
199
200 struct full_stripe_lock {
201 struct rb_node node;
202 u64 logical;
203 u64 refs;
204 struct mutex mutex;
205 };
206
207 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
208 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
209 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
210 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
211 struct scrub_block *sblocks_for_recheck);
212 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
213 struct scrub_block *sblock,
214 int retry_failed_mirror);
215 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
216 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
217 struct scrub_block *sblock_good);
218 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
219 struct scrub_block *sblock_good,
220 int page_num, int force_write);
221 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
222 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
223 int page_num);
224 static int scrub_checksum_data(struct scrub_block *sblock);
225 static int scrub_checksum_tree_block(struct scrub_block *sblock);
226 static int scrub_checksum_super(struct scrub_block *sblock);
227 static void scrub_block_get(struct scrub_block *sblock);
228 static void scrub_block_put(struct scrub_block *sblock);
229 static void scrub_page_get(struct scrub_page *spage);
230 static void scrub_page_put(struct scrub_page *spage);
231 static void scrub_parity_get(struct scrub_parity *sparity);
232 static void scrub_parity_put(struct scrub_parity *sparity);
233 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
234 struct scrub_page *spage);
235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
236 u64 physical, struct btrfs_device *dev, u64 flags,
237 u64 gen, int mirror_num, u8 *csum, int force,
238 u64 physical_for_dev_replace);
239 static void scrub_bio_end_io(struct bio *bio);
240 static void scrub_bio_end_io_worker(struct btrfs_work *work);
241 static void scrub_block_complete(struct scrub_block *sblock);
242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
243 u64 extent_logical, u64 extent_len,
244 u64 *extent_physical,
245 struct btrfs_device **extent_dev,
246 int *extent_mirror_num);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
253 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254 static void scrub_put_ctx(struct scrub_ctx *sctx);
255
256 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
257 {
258 return page->recover &&
259 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
260 }
261
262 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
263 {
264 refcount_inc(&sctx->refs);
265 atomic_inc(&sctx->bios_in_flight);
266 }
267
268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269 {
270 atomic_dec(&sctx->bios_in_flight);
271 wake_up(&sctx->list_wait);
272 scrub_put_ctx(sctx);
273 }
274
275 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
276 {
277 while (atomic_read(&fs_info->scrub_pause_req)) {
278 mutex_unlock(&fs_info->scrub_lock);
279 wait_event(fs_info->scrub_pause_wait,
280 atomic_read(&fs_info->scrub_pause_req) == 0);
281 mutex_lock(&fs_info->scrub_lock);
282 }
283 }
284
285 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
286 {
287 atomic_inc(&fs_info->scrubs_paused);
288 wake_up(&fs_info->scrub_pause_wait);
289 }
290
291 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
292 {
293 mutex_lock(&fs_info->scrub_lock);
294 __scrub_blocked_if_needed(fs_info);
295 atomic_dec(&fs_info->scrubs_paused);
296 mutex_unlock(&fs_info->scrub_lock);
297
298 wake_up(&fs_info->scrub_pause_wait);
299 }
300
301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
302 {
303 scrub_pause_on(fs_info);
304 scrub_pause_off(fs_info);
305 }
306
307 /*
308 * Insert new full stripe lock into full stripe locks tree
309 *
310 * Return pointer to existing or newly inserted full_stripe_lock structure if
311 * everything works well.
312 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
313 *
314 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
315 * function
316 */
317 static struct full_stripe_lock *insert_full_stripe_lock(
318 struct btrfs_full_stripe_locks_tree *locks_root,
319 u64 fstripe_logical)
320 {
321 struct rb_node **p;
322 struct rb_node *parent = NULL;
323 struct full_stripe_lock *entry;
324 struct full_stripe_lock *ret;
325
326 lockdep_assert_held(&locks_root->lock);
327
328 p = &locks_root->root.rb_node;
329 while (*p) {
330 parent = *p;
331 entry = rb_entry(parent, struct full_stripe_lock, node);
332 if (fstripe_logical < entry->logical) {
333 p = &(*p)->rb_left;
334 } else if (fstripe_logical > entry->logical) {
335 p = &(*p)->rb_right;
336 } else {
337 entry->refs++;
338 return entry;
339 }
340 }
341
342 /*
343 * Insert new lock.
344 */
345 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
346 if (!ret)
347 return ERR_PTR(-ENOMEM);
348 ret->logical = fstripe_logical;
349 ret->refs = 1;
350 mutex_init(&ret->mutex);
351
352 rb_link_node(&ret->node, parent, p);
353 rb_insert_color(&ret->node, &locks_root->root);
354 return ret;
355 }
356
357 /*
358 * Search for a full stripe lock of a block group
359 *
360 * Return pointer to existing full stripe lock if found
361 * Return NULL if not found
362 */
363 static struct full_stripe_lock *search_full_stripe_lock(
364 struct btrfs_full_stripe_locks_tree *locks_root,
365 u64 fstripe_logical)
366 {
367 struct rb_node *node;
368 struct full_stripe_lock *entry;
369
370 lockdep_assert_held(&locks_root->lock);
371
372 node = locks_root->root.rb_node;
373 while (node) {
374 entry = rb_entry(node, struct full_stripe_lock, node);
375 if (fstripe_logical < entry->logical)
376 node = node->rb_left;
377 else if (fstripe_logical > entry->logical)
378 node = node->rb_right;
379 else
380 return entry;
381 }
382 return NULL;
383 }
384
385 /*
386 * Helper to get full stripe logical from a normal bytenr.
387 *
388 * Caller must ensure @cache is a RAID56 block group.
389 */
390 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
391 u64 bytenr)
392 {
393 u64 ret;
394
395 /*
396 * Due to chunk item size limit, full stripe length should not be
397 * larger than U32_MAX. Just a sanity check here.
398 */
399 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
400
401 /*
402 * round_down() can only handle power of 2, while RAID56 full
403 * stripe length can be 64KiB * n, so we need to manually round down.
404 */
405 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
406 cache->full_stripe_len + cache->key.objectid;
407 return ret;
408 }
409
410 /*
411 * Lock a full stripe to avoid concurrency of recovery and read
412 *
413 * It's only used for profiles with parities (RAID5/6), for other profiles it
414 * does nothing.
415 *
416 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
417 * So caller must call unlock_full_stripe() at the same context.
418 *
419 * Return <0 if encounters error.
420 */
421 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
422 bool *locked_ret)
423 {
424 struct btrfs_block_group_cache *bg_cache;
425 struct btrfs_full_stripe_locks_tree *locks_root;
426 struct full_stripe_lock *existing;
427 u64 fstripe_start;
428 int ret = 0;
429
430 *locked_ret = false;
431 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
432 if (!bg_cache) {
433 ASSERT(0);
434 return -ENOENT;
435 }
436
437 /* Profiles not based on parity don't need full stripe lock */
438 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
439 goto out;
440 locks_root = &bg_cache->full_stripe_locks_root;
441
442 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
443
444 /* Now insert the full stripe lock */
445 mutex_lock(&locks_root->lock);
446 existing = insert_full_stripe_lock(locks_root, fstripe_start);
447 mutex_unlock(&locks_root->lock);
448 if (IS_ERR(existing)) {
449 ret = PTR_ERR(existing);
450 goto out;
451 }
452 mutex_lock(&existing->mutex);
453 *locked_ret = true;
454 out:
455 btrfs_put_block_group(bg_cache);
456 return ret;
457 }
458
459 /*
460 * Unlock a full stripe.
461 *
462 * NOTE: Caller must ensure it's the same context calling corresponding
463 * lock_full_stripe().
464 *
465 * Return 0 if we unlock full stripe without problem.
466 * Return <0 for error
467 */
468 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
469 bool locked)
470 {
471 struct btrfs_block_group_cache *bg_cache;
472 struct btrfs_full_stripe_locks_tree *locks_root;
473 struct full_stripe_lock *fstripe_lock;
474 u64 fstripe_start;
475 bool freeit = false;
476 int ret = 0;
477
478 /* If we didn't acquire full stripe lock, no need to continue */
479 if (!locked)
480 return 0;
481
482 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
483 if (!bg_cache) {
484 ASSERT(0);
485 return -ENOENT;
486 }
487 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
488 goto out;
489
490 locks_root = &bg_cache->full_stripe_locks_root;
491 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
492
493 mutex_lock(&locks_root->lock);
494 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
495 /* Unpaired unlock_full_stripe() detected */
496 if (!fstripe_lock) {
497 WARN_ON(1);
498 ret = -ENOENT;
499 mutex_unlock(&locks_root->lock);
500 goto out;
501 }
502
503 if (fstripe_lock->refs == 0) {
504 WARN_ON(1);
505 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
506 fstripe_lock->logical);
507 } else {
508 fstripe_lock->refs--;
509 }
510
511 if (fstripe_lock->refs == 0) {
512 rb_erase(&fstripe_lock->node, &locks_root->root);
513 freeit = true;
514 }
515 mutex_unlock(&locks_root->lock);
516
517 mutex_unlock(&fstripe_lock->mutex);
518 if (freeit)
519 kfree(fstripe_lock);
520 out:
521 btrfs_put_block_group(bg_cache);
522 return ret;
523 }
524
525 static void scrub_free_csums(struct scrub_ctx *sctx)
526 {
527 while (!list_empty(&sctx->csum_list)) {
528 struct btrfs_ordered_sum *sum;
529 sum = list_first_entry(&sctx->csum_list,
530 struct btrfs_ordered_sum, list);
531 list_del(&sum->list);
532 kfree(sum);
533 }
534 }
535
536 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
537 {
538 int i;
539
540 if (!sctx)
541 return;
542
543 /* this can happen when scrub is cancelled */
544 if (sctx->curr != -1) {
545 struct scrub_bio *sbio = sctx->bios[sctx->curr];
546
547 for (i = 0; i < sbio->page_count; i++) {
548 WARN_ON(!sbio->pagev[i]->page);
549 scrub_block_put(sbio->pagev[i]->sblock);
550 }
551 bio_put(sbio->bio);
552 }
553
554 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
555 struct scrub_bio *sbio = sctx->bios[i];
556
557 if (!sbio)
558 break;
559 kfree(sbio);
560 }
561
562 kfree(sctx->wr_curr_bio);
563 scrub_free_csums(sctx);
564 kfree(sctx);
565 }
566
567 static void scrub_put_ctx(struct scrub_ctx *sctx)
568 {
569 if (refcount_dec_and_test(&sctx->refs))
570 scrub_free_ctx(sctx);
571 }
572
573 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
574 struct btrfs_fs_info *fs_info, int is_dev_replace)
575 {
576 struct scrub_ctx *sctx;
577 int i;
578
579 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
580 if (!sctx)
581 goto nomem;
582 refcount_set(&sctx->refs, 1);
583 sctx->is_dev_replace = is_dev_replace;
584 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
585 sctx->curr = -1;
586 sctx->fs_info = fs_info;
587 INIT_LIST_HEAD(&sctx->csum_list);
588 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
589 struct scrub_bio *sbio;
590
591 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
592 if (!sbio)
593 goto nomem;
594 sctx->bios[i] = sbio;
595
596 sbio->index = i;
597 sbio->sctx = sctx;
598 sbio->page_count = 0;
599 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
600 scrub_bio_end_io_worker, NULL, NULL);
601
602 if (i != SCRUB_BIOS_PER_SCTX - 1)
603 sctx->bios[i]->next_free = i + 1;
604 else
605 sctx->bios[i]->next_free = -1;
606 }
607 sctx->first_free = 0;
608 atomic_set(&sctx->bios_in_flight, 0);
609 atomic_set(&sctx->workers_pending, 0);
610 atomic_set(&sctx->cancel_req, 0);
611 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
612
613 spin_lock_init(&sctx->list_lock);
614 spin_lock_init(&sctx->stat_lock);
615 init_waitqueue_head(&sctx->list_wait);
616
617 WARN_ON(sctx->wr_curr_bio != NULL);
618 mutex_init(&sctx->wr_lock);
619 sctx->wr_curr_bio = NULL;
620 if (is_dev_replace) {
621 WARN_ON(!fs_info->dev_replace.tgtdev);
622 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
623 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
624 sctx->flush_all_writes = false;
625 }
626
627 return sctx;
628
629 nomem:
630 scrub_free_ctx(sctx);
631 return ERR_PTR(-ENOMEM);
632 }
633
634 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
635 void *warn_ctx)
636 {
637 u64 isize;
638 u32 nlink;
639 int ret;
640 int i;
641 unsigned nofs_flag;
642 struct extent_buffer *eb;
643 struct btrfs_inode_item *inode_item;
644 struct scrub_warning *swarn = warn_ctx;
645 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
646 struct inode_fs_paths *ipath = NULL;
647 struct btrfs_root *local_root;
648 struct btrfs_key root_key;
649 struct btrfs_key key;
650
651 root_key.objectid = root;
652 root_key.type = BTRFS_ROOT_ITEM_KEY;
653 root_key.offset = (u64)-1;
654 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
655 if (IS_ERR(local_root)) {
656 ret = PTR_ERR(local_root);
657 goto err;
658 }
659
660 /*
661 * this makes the path point to (inum INODE_ITEM ioff)
662 */
663 key.objectid = inum;
664 key.type = BTRFS_INODE_ITEM_KEY;
665 key.offset = 0;
666
667 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
668 if (ret) {
669 btrfs_release_path(swarn->path);
670 goto err;
671 }
672
673 eb = swarn->path->nodes[0];
674 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
675 struct btrfs_inode_item);
676 isize = btrfs_inode_size(eb, inode_item);
677 nlink = btrfs_inode_nlink(eb, inode_item);
678 btrfs_release_path(swarn->path);
679
680 /*
681 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
682 * uses GFP_NOFS in this context, so we keep it consistent but it does
683 * not seem to be strictly necessary.
684 */
685 nofs_flag = memalloc_nofs_save();
686 ipath = init_ipath(4096, local_root, swarn->path);
687 memalloc_nofs_restore(nofs_flag);
688 if (IS_ERR(ipath)) {
689 ret = PTR_ERR(ipath);
690 ipath = NULL;
691 goto err;
692 }
693 ret = paths_from_inode(inum, ipath);
694
695 if (ret < 0)
696 goto err;
697
698 /*
699 * we deliberately ignore the bit ipath might have been too small to
700 * hold all of the paths here
701 */
702 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
703 btrfs_warn_in_rcu(fs_info,
704 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
705 swarn->errstr, swarn->logical,
706 rcu_str_deref(swarn->dev->name),
707 swarn->physical,
708 root, inum, offset,
709 min(isize - offset, (u64)PAGE_SIZE), nlink,
710 (char *)(unsigned long)ipath->fspath->val[i]);
711
712 free_ipath(ipath);
713 return 0;
714
715 err:
716 btrfs_warn_in_rcu(fs_info,
717 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
718 swarn->errstr, swarn->logical,
719 rcu_str_deref(swarn->dev->name),
720 swarn->physical,
721 root, inum, offset, ret);
722
723 free_ipath(ipath);
724 return 0;
725 }
726
727 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
728 {
729 struct btrfs_device *dev;
730 struct btrfs_fs_info *fs_info;
731 struct btrfs_path *path;
732 struct btrfs_key found_key;
733 struct extent_buffer *eb;
734 struct btrfs_extent_item *ei;
735 struct scrub_warning swarn;
736 unsigned long ptr = 0;
737 u64 extent_item_pos;
738 u64 flags = 0;
739 u64 ref_root;
740 u32 item_size;
741 u8 ref_level = 0;
742 int ret;
743
744 WARN_ON(sblock->page_count < 1);
745 dev = sblock->pagev[0]->dev;
746 fs_info = sblock->sctx->fs_info;
747
748 path = btrfs_alloc_path();
749 if (!path)
750 return;
751
752 swarn.physical = sblock->pagev[0]->physical;
753 swarn.logical = sblock->pagev[0]->logical;
754 swarn.errstr = errstr;
755 swarn.dev = NULL;
756
757 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
758 &flags);
759 if (ret < 0)
760 goto out;
761
762 extent_item_pos = swarn.logical - found_key.objectid;
763 swarn.extent_item_size = found_key.offset;
764
765 eb = path->nodes[0];
766 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
767 item_size = btrfs_item_size_nr(eb, path->slots[0]);
768
769 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
770 do {
771 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
772 item_size, &ref_root,
773 &ref_level);
774 btrfs_warn_in_rcu(fs_info,
775 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
776 errstr, swarn.logical,
777 rcu_str_deref(dev->name),
778 swarn.physical,
779 ref_level ? "node" : "leaf",
780 ret < 0 ? -1 : ref_level,
781 ret < 0 ? -1 : ref_root);
782 } while (ret != 1);
783 btrfs_release_path(path);
784 } else {
785 btrfs_release_path(path);
786 swarn.path = path;
787 swarn.dev = dev;
788 iterate_extent_inodes(fs_info, found_key.objectid,
789 extent_item_pos, 1,
790 scrub_print_warning_inode, &swarn, false);
791 }
792
793 out:
794 btrfs_free_path(path);
795 }
796
797 static inline void scrub_get_recover(struct scrub_recover *recover)
798 {
799 refcount_inc(&recover->refs);
800 }
801
802 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
803 struct scrub_recover *recover)
804 {
805 if (refcount_dec_and_test(&recover->refs)) {
806 btrfs_bio_counter_dec(fs_info);
807 btrfs_put_bbio(recover->bbio);
808 kfree(recover);
809 }
810 }
811
812 /*
813 * scrub_handle_errored_block gets called when either verification of the
814 * pages failed or the bio failed to read, e.g. with EIO. In the latter
815 * case, this function handles all pages in the bio, even though only one
816 * may be bad.
817 * The goal of this function is to repair the errored block by using the
818 * contents of one of the mirrors.
819 */
820 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
821 {
822 struct scrub_ctx *sctx = sblock_to_check->sctx;
823 struct btrfs_device *dev;
824 struct btrfs_fs_info *fs_info;
825 u64 logical;
826 unsigned int failed_mirror_index;
827 unsigned int is_metadata;
828 unsigned int have_csum;
829 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
830 struct scrub_block *sblock_bad;
831 int ret;
832 int mirror_index;
833 int page_num;
834 int success;
835 bool full_stripe_locked;
836 unsigned int nofs_flag;
837 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
838 DEFAULT_RATELIMIT_BURST);
839
840 BUG_ON(sblock_to_check->page_count < 1);
841 fs_info = sctx->fs_info;
842 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
843 /*
844 * if we find an error in a super block, we just report it.
845 * They will get written with the next transaction commit
846 * anyway
847 */
848 spin_lock(&sctx->stat_lock);
849 ++sctx->stat.super_errors;
850 spin_unlock(&sctx->stat_lock);
851 return 0;
852 }
853 logical = sblock_to_check->pagev[0]->logical;
854 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
855 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
856 is_metadata = !(sblock_to_check->pagev[0]->flags &
857 BTRFS_EXTENT_FLAG_DATA);
858 have_csum = sblock_to_check->pagev[0]->have_csum;
859 dev = sblock_to_check->pagev[0]->dev;
860
861 /*
862 * We must use GFP_NOFS because the scrub task might be waiting for a
863 * worker task executing this function and in turn a transaction commit
864 * might be waiting the scrub task to pause (which needs to wait for all
865 * the worker tasks to complete before pausing).
866 * We do allocations in the workers through insert_full_stripe_lock()
867 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
868 * this function.
869 */
870 nofs_flag = memalloc_nofs_save();
871 /*
872 * For RAID5/6, race can happen for a different device scrub thread.
873 * For data corruption, Parity and Data threads will both try
874 * to recovery the data.
875 * Race can lead to doubly added csum error, or even unrecoverable
876 * error.
877 */
878 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
879 if (ret < 0) {
880 memalloc_nofs_restore(nofs_flag);
881 spin_lock(&sctx->stat_lock);
882 if (ret == -ENOMEM)
883 sctx->stat.malloc_errors++;
884 sctx->stat.read_errors++;
885 sctx->stat.uncorrectable_errors++;
886 spin_unlock(&sctx->stat_lock);
887 return ret;
888 }
889
890 /*
891 * read all mirrors one after the other. This includes to
892 * re-read the extent or metadata block that failed (that was
893 * the cause that this fixup code is called) another time,
894 * page by page this time in order to know which pages
895 * caused I/O errors and which ones are good (for all mirrors).
896 * It is the goal to handle the situation when more than one
897 * mirror contains I/O errors, but the errors do not
898 * overlap, i.e. the data can be repaired by selecting the
899 * pages from those mirrors without I/O error on the
900 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
901 * would be that mirror #1 has an I/O error on the first page,
902 * the second page is good, and mirror #2 has an I/O error on
903 * the second page, but the first page is good.
904 * Then the first page of the first mirror can be repaired by
905 * taking the first page of the second mirror, and the
906 * second page of the second mirror can be repaired by
907 * copying the contents of the 2nd page of the 1st mirror.
908 * One more note: if the pages of one mirror contain I/O
909 * errors, the checksum cannot be verified. In order to get
910 * the best data for repairing, the first attempt is to find
911 * a mirror without I/O errors and with a validated checksum.
912 * Only if this is not possible, the pages are picked from
913 * mirrors with I/O errors without considering the checksum.
914 * If the latter is the case, at the end, the checksum of the
915 * repaired area is verified in order to correctly maintain
916 * the statistics.
917 */
918
919 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
920 sizeof(*sblocks_for_recheck), GFP_KERNEL);
921 if (!sblocks_for_recheck) {
922 spin_lock(&sctx->stat_lock);
923 sctx->stat.malloc_errors++;
924 sctx->stat.read_errors++;
925 sctx->stat.uncorrectable_errors++;
926 spin_unlock(&sctx->stat_lock);
927 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
928 goto out;
929 }
930
931 /* setup the context, map the logical blocks and alloc the pages */
932 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
933 if (ret) {
934 spin_lock(&sctx->stat_lock);
935 sctx->stat.read_errors++;
936 sctx->stat.uncorrectable_errors++;
937 spin_unlock(&sctx->stat_lock);
938 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
939 goto out;
940 }
941 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
942 sblock_bad = sblocks_for_recheck + failed_mirror_index;
943
944 /* build and submit the bios for the failed mirror, check checksums */
945 scrub_recheck_block(fs_info, sblock_bad, 1);
946
947 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
948 sblock_bad->no_io_error_seen) {
949 /*
950 * the error disappeared after reading page by page, or
951 * the area was part of a huge bio and other parts of the
952 * bio caused I/O errors, or the block layer merged several
953 * read requests into one and the error is caused by a
954 * different bio (usually one of the two latter cases is
955 * the cause)
956 */
957 spin_lock(&sctx->stat_lock);
958 sctx->stat.unverified_errors++;
959 sblock_to_check->data_corrected = 1;
960 spin_unlock(&sctx->stat_lock);
961
962 if (sctx->is_dev_replace)
963 scrub_write_block_to_dev_replace(sblock_bad);
964 goto out;
965 }
966
967 if (!sblock_bad->no_io_error_seen) {
968 spin_lock(&sctx->stat_lock);
969 sctx->stat.read_errors++;
970 spin_unlock(&sctx->stat_lock);
971 if (__ratelimit(&_rs))
972 scrub_print_warning("i/o error", sblock_to_check);
973 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
974 } else if (sblock_bad->checksum_error) {
975 spin_lock(&sctx->stat_lock);
976 sctx->stat.csum_errors++;
977 spin_unlock(&sctx->stat_lock);
978 if (__ratelimit(&_rs))
979 scrub_print_warning("checksum error", sblock_to_check);
980 btrfs_dev_stat_inc_and_print(dev,
981 BTRFS_DEV_STAT_CORRUPTION_ERRS);
982 } else if (sblock_bad->header_error) {
983 spin_lock(&sctx->stat_lock);
984 sctx->stat.verify_errors++;
985 spin_unlock(&sctx->stat_lock);
986 if (__ratelimit(&_rs))
987 scrub_print_warning("checksum/header error",
988 sblock_to_check);
989 if (sblock_bad->generation_error)
990 btrfs_dev_stat_inc_and_print(dev,
991 BTRFS_DEV_STAT_GENERATION_ERRS);
992 else
993 btrfs_dev_stat_inc_and_print(dev,
994 BTRFS_DEV_STAT_CORRUPTION_ERRS);
995 }
996
997 if (sctx->readonly) {
998 ASSERT(!sctx->is_dev_replace);
999 goto out;
1000 }
1001
1002 /*
1003 * now build and submit the bios for the other mirrors, check
1004 * checksums.
1005 * First try to pick the mirror which is completely without I/O
1006 * errors and also does not have a checksum error.
1007 * If one is found, and if a checksum is present, the full block
1008 * that is known to contain an error is rewritten. Afterwards
1009 * the block is known to be corrected.
1010 * If a mirror is found which is completely correct, and no
1011 * checksum is present, only those pages are rewritten that had
1012 * an I/O error in the block to be repaired, since it cannot be
1013 * determined, which copy of the other pages is better (and it
1014 * could happen otherwise that a correct page would be
1015 * overwritten by a bad one).
1016 */
1017 for (mirror_index = 0; ;mirror_index++) {
1018 struct scrub_block *sblock_other;
1019
1020 if (mirror_index == failed_mirror_index)
1021 continue;
1022
1023 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1024 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1025 if (mirror_index >= BTRFS_MAX_MIRRORS)
1026 break;
1027 if (!sblocks_for_recheck[mirror_index].page_count)
1028 break;
1029
1030 sblock_other = sblocks_for_recheck + mirror_index;
1031 } else {
1032 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1033 int max_allowed = r->bbio->num_stripes -
1034 r->bbio->num_tgtdevs;
1035
1036 if (mirror_index >= max_allowed)
1037 break;
1038 if (!sblocks_for_recheck[1].page_count)
1039 break;
1040
1041 ASSERT(failed_mirror_index == 0);
1042 sblock_other = sblocks_for_recheck + 1;
1043 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1044 }
1045
1046 /* build and submit the bios, check checksums */
1047 scrub_recheck_block(fs_info, sblock_other, 0);
1048
1049 if (!sblock_other->header_error &&
1050 !sblock_other->checksum_error &&
1051 sblock_other->no_io_error_seen) {
1052 if (sctx->is_dev_replace) {
1053 scrub_write_block_to_dev_replace(sblock_other);
1054 goto corrected_error;
1055 } else {
1056 ret = scrub_repair_block_from_good_copy(
1057 sblock_bad, sblock_other);
1058 if (!ret)
1059 goto corrected_error;
1060 }
1061 }
1062 }
1063
1064 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1065 goto did_not_correct_error;
1066
1067 /*
1068 * In case of I/O errors in the area that is supposed to be
1069 * repaired, continue by picking good copies of those pages.
1070 * Select the good pages from mirrors to rewrite bad pages from
1071 * the area to fix. Afterwards verify the checksum of the block
1072 * that is supposed to be repaired. This verification step is
1073 * only done for the purpose of statistic counting and for the
1074 * final scrub report, whether errors remain.
1075 * A perfect algorithm could make use of the checksum and try
1076 * all possible combinations of pages from the different mirrors
1077 * until the checksum verification succeeds. For example, when
1078 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1079 * of mirror #2 is readable but the final checksum test fails,
1080 * then the 2nd page of mirror #3 could be tried, whether now
1081 * the final checksum succeeds. But this would be a rare
1082 * exception and is therefore not implemented. At least it is
1083 * avoided that the good copy is overwritten.
1084 * A more useful improvement would be to pick the sectors
1085 * without I/O error based on sector sizes (512 bytes on legacy
1086 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1087 * mirror could be repaired by taking 512 byte of a different
1088 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1089 * area are unreadable.
1090 */
1091 success = 1;
1092 for (page_num = 0; page_num < sblock_bad->page_count;
1093 page_num++) {
1094 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1095 struct scrub_block *sblock_other = NULL;
1096
1097 /* skip no-io-error page in scrub */
1098 if (!page_bad->io_error && !sctx->is_dev_replace)
1099 continue;
1100
1101 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1102 /*
1103 * In case of dev replace, if raid56 rebuild process
1104 * didn't work out correct data, then copy the content
1105 * in sblock_bad to make sure target device is identical
1106 * to source device, instead of writing garbage data in
1107 * sblock_for_recheck array to target device.
1108 */
1109 sblock_other = NULL;
1110 } else if (page_bad->io_error) {
1111 /* try to find no-io-error page in mirrors */
1112 for (mirror_index = 0;
1113 mirror_index < BTRFS_MAX_MIRRORS &&
1114 sblocks_for_recheck[mirror_index].page_count > 0;
1115 mirror_index++) {
1116 if (!sblocks_for_recheck[mirror_index].
1117 pagev[page_num]->io_error) {
1118 sblock_other = sblocks_for_recheck +
1119 mirror_index;
1120 break;
1121 }
1122 }
1123 if (!sblock_other)
1124 success = 0;
1125 }
1126
1127 if (sctx->is_dev_replace) {
1128 /*
1129 * did not find a mirror to fetch the page
1130 * from. scrub_write_page_to_dev_replace()
1131 * handles this case (page->io_error), by
1132 * filling the block with zeros before
1133 * submitting the write request
1134 */
1135 if (!sblock_other)
1136 sblock_other = sblock_bad;
1137
1138 if (scrub_write_page_to_dev_replace(sblock_other,
1139 page_num) != 0) {
1140 atomic64_inc(
1141 &fs_info->dev_replace.num_write_errors);
1142 success = 0;
1143 }
1144 } else if (sblock_other) {
1145 ret = scrub_repair_page_from_good_copy(sblock_bad,
1146 sblock_other,
1147 page_num, 0);
1148 if (0 == ret)
1149 page_bad->io_error = 0;
1150 else
1151 success = 0;
1152 }
1153 }
1154
1155 if (success && !sctx->is_dev_replace) {
1156 if (is_metadata || have_csum) {
1157 /*
1158 * need to verify the checksum now that all
1159 * sectors on disk are repaired (the write
1160 * request for data to be repaired is on its way).
1161 * Just be lazy and use scrub_recheck_block()
1162 * which re-reads the data before the checksum
1163 * is verified, but most likely the data comes out
1164 * of the page cache.
1165 */
1166 scrub_recheck_block(fs_info, sblock_bad, 1);
1167 if (!sblock_bad->header_error &&
1168 !sblock_bad->checksum_error &&
1169 sblock_bad->no_io_error_seen)
1170 goto corrected_error;
1171 else
1172 goto did_not_correct_error;
1173 } else {
1174 corrected_error:
1175 spin_lock(&sctx->stat_lock);
1176 sctx->stat.corrected_errors++;
1177 sblock_to_check->data_corrected = 1;
1178 spin_unlock(&sctx->stat_lock);
1179 btrfs_err_rl_in_rcu(fs_info,
1180 "fixed up error at logical %llu on dev %s",
1181 logical, rcu_str_deref(dev->name));
1182 }
1183 } else {
1184 did_not_correct_error:
1185 spin_lock(&sctx->stat_lock);
1186 sctx->stat.uncorrectable_errors++;
1187 spin_unlock(&sctx->stat_lock);
1188 btrfs_err_rl_in_rcu(fs_info,
1189 "unable to fixup (regular) error at logical %llu on dev %s",
1190 logical, rcu_str_deref(dev->name));
1191 }
1192
1193 out:
1194 if (sblocks_for_recheck) {
1195 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1196 mirror_index++) {
1197 struct scrub_block *sblock = sblocks_for_recheck +
1198 mirror_index;
1199 struct scrub_recover *recover;
1200 int page_index;
1201
1202 for (page_index = 0; page_index < sblock->page_count;
1203 page_index++) {
1204 sblock->pagev[page_index]->sblock = NULL;
1205 recover = sblock->pagev[page_index]->recover;
1206 if (recover) {
1207 scrub_put_recover(fs_info, recover);
1208 sblock->pagev[page_index]->recover =
1209 NULL;
1210 }
1211 scrub_page_put(sblock->pagev[page_index]);
1212 }
1213 }
1214 kfree(sblocks_for_recheck);
1215 }
1216
1217 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1218 memalloc_nofs_restore(nofs_flag);
1219 if (ret < 0)
1220 return ret;
1221 return 0;
1222 }
1223
1224 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1225 {
1226 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1227 return 2;
1228 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1229 return 3;
1230 else
1231 return (int)bbio->num_stripes;
1232 }
1233
1234 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1235 u64 *raid_map,
1236 u64 mapped_length,
1237 int nstripes, int mirror,
1238 int *stripe_index,
1239 u64 *stripe_offset)
1240 {
1241 int i;
1242
1243 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1244 /* RAID5/6 */
1245 for (i = 0; i < nstripes; i++) {
1246 if (raid_map[i] == RAID6_Q_STRIPE ||
1247 raid_map[i] == RAID5_P_STRIPE)
1248 continue;
1249
1250 if (logical >= raid_map[i] &&
1251 logical < raid_map[i] + mapped_length)
1252 break;
1253 }
1254
1255 *stripe_index = i;
1256 *stripe_offset = logical - raid_map[i];
1257 } else {
1258 /* The other RAID type */
1259 *stripe_index = mirror;
1260 *stripe_offset = 0;
1261 }
1262 }
1263
1264 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1265 struct scrub_block *sblocks_for_recheck)
1266 {
1267 struct scrub_ctx *sctx = original_sblock->sctx;
1268 struct btrfs_fs_info *fs_info = sctx->fs_info;
1269 u64 length = original_sblock->page_count * PAGE_SIZE;
1270 u64 logical = original_sblock->pagev[0]->logical;
1271 u64 generation = original_sblock->pagev[0]->generation;
1272 u64 flags = original_sblock->pagev[0]->flags;
1273 u64 have_csum = original_sblock->pagev[0]->have_csum;
1274 struct scrub_recover *recover;
1275 struct btrfs_bio *bbio;
1276 u64 sublen;
1277 u64 mapped_length;
1278 u64 stripe_offset;
1279 int stripe_index;
1280 int page_index = 0;
1281 int mirror_index;
1282 int nmirrors;
1283 int ret;
1284
1285 /*
1286 * note: the two members refs and outstanding_pages
1287 * are not used (and not set) in the blocks that are used for
1288 * the recheck procedure
1289 */
1290
1291 while (length > 0) {
1292 sublen = min_t(u64, length, PAGE_SIZE);
1293 mapped_length = sublen;
1294 bbio = NULL;
1295
1296 /*
1297 * with a length of PAGE_SIZE, each returned stripe
1298 * represents one mirror
1299 */
1300 btrfs_bio_counter_inc_blocked(fs_info);
1301 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1302 logical, &mapped_length, &bbio);
1303 if (ret || !bbio || mapped_length < sublen) {
1304 btrfs_put_bbio(bbio);
1305 btrfs_bio_counter_dec(fs_info);
1306 return -EIO;
1307 }
1308
1309 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1310 if (!recover) {
1311 btrfs_put_bbio(bbio);
1312 btrfs_bio_counter_dec(fs_info);
1313 return -ENOMEM;
1314 }
1315
1316 refcount_set(&recover->refs, 1);
1317 recover->bbio = bbio;
1318 recover->map_length = mapped_length;
1319
1320 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1321
1322 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1323
1324 for (mirror_index = 0; mirror_index < nmirrors;
1325 mirror_index++) {
1326 struct scrub_block *sblock;
1327 struct scrub_page *page;
1328
1329 sblock = sblocks_for_recheck + mirror_index;
1330 sblock->sctx = sctx;
1331
1332 page = kzalloc(sizeof(*page), GFP_NOFS);
1333 if (!page) {
1334 leave_nomem:
1335 spin_lock(&sctx->stat_lock);
1336 sctx->stat.malloc_errors++;
1337 spin_unlock(&sctx->stat_lock);
1338 scrub_put_recover(fs_info, recover);
1339 return -ENOMEM;
1340 }
1341 scrub_page_get(page);
1342 sblock->pagev[page_index] = page;
1343 page->sblock = sblock;
1344 page->flags = flags;
1345 page->generation = generation;
1346 page->logical = logical;
1347 page->have_csum = have_csum;
1348 if (have_csum)
1349 memcpy(page->csum,
1350 original_sblock->pagev[0]->csum,
1351 sctx->csum_size);
1352
1353 scrub_stripe_index_and_offset(logical,
1354 bbio->map_type,
1355 bbio->raid_map,
1356 mapped_length,
1357 bbio->num_stripes -
1358 bbio->num_tgtdevs,
1359 mirror_index,
1360 &stripe_index,
1361 &stripe_offset);
1362 page->physical = bbio->stripes[stripe_index].physical +
1363 stripe_offset;
1364 page->dev = bbio->stripes[stripe_index].dev;
1365
1366 BUG_ON(page_index >= original_sblock->page_count);
1367 page->physical_for_dev_replace =
1368 original_sblock->pagev[page_index]->
1369 physical_for_dev_replace;
1370 /* for missing devices, dev->bdev is NULL */
1371 page->mirror_num = mirror_index + 1;
1372 sblock->page_count++;
1373 page->page = alloc_page(GFP_NOFS);
1374 if (!page->page)
1375 goto leave_nomem;
1376
1377 scrub_get_recover(recover);
1378 page->recover = recover;
1379 }
1380 scrub_put_recover(fs_info, recover);
1381 length -= sublen;
1382 logical += sublen;
1383 page_index++;
1384 }
1385
1386 return 0;
1387 }
1388
1389 static void scrub_bio_wait_endio(struct bio *bio)
1390 {
1391 complete(bio->bi_private);
1392 }
1393
1394 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1395 struct bio *bio,
1396 struct scrub_page *page)
1397 {
1398 DECLARE_COMPLETION_ONSTACK(done);
1399 int ret;
1400 int mirror_num;
1401
1402 bio->bi_iter.bi_sector = page->logical >> 9;
1403 bio->bi_private = &done;
1404 bio->bi_end_io = scrub_bio_wait_endio;
1405
1406 mirror_num = page->sblock->pagev[0]->mirror_num;
1407 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1408 page->recover->map_length,
1409 mirror_num, 0);
1410 if (ret)
1411 return ret;
1412
1413 wait_for_completion_io(&done);
1414 return blk_status_to_errno(bio->bi_status);
1415 }
1416
1417 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1418 struct scrub_block *sblock)
1419 {
1420 struct scrub_page *first_page = sblock->pagev[0];
1421 struct bio *bio;
1422 int page_num;
1423
1424 /* All pages in sblock belong to the same stripe on the same device. */
1425 ASSERT(first_page->dev);
1426 if (!first_page->dev->bdev)
1427 goto out;
1428
1429 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1430 bio_set_dev(bio, first_page->dev->bdev);
1431
1432 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1433 struct scrub_page *page = sblock->pagev[page_num];
1434
1435 WARN_ON(!page->page);
1436 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1437 }
1438
1439 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1440 bio_put(bio);
1441 goto out;
1442 }
1443
1444 bio_put(bio);
1445
1446 scrub_recheck_block_checksum(sblock);
1447
1448 return;
1449 out:
1450 for (page_num = 0; page_num < sblock->page_count; page_num++)
1451 sblock->pagev[page_num]->io_error = 1;
1452
1453 sblock->no_io_error_seen = 0;
1454 }
1455
1456 /*
1457 * this function will check the on disk data for checksum errors, header
1458 * errors and read I/O errors. If any I/O errors happen, the exact pages
1459 * which are errored are marked as being bad. The goal is to enable scrub
1460 * to take those pages that are not errored from all the mirrors so that
1461 * the pages that are errored in the just handled mirror can be repaired.
1462 */
1463 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1464 struct scrub_block *sblock,
1465 int retry_failed_mirror)
1466 {
1467 int page_num;
1468
1469 sblock->no_io_error_seen = 1;
1470
1471 /* short cut for raid56 */
1472 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1473 return scrub_recheck_block_on_raid56(fs_info, sblock);
1474
1475 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1476 struct bio *bio;
1477 struct scrub_page *page = sblock->pagev[page_num];
1478
1479 if (page->dev->bdev == NULL) {
1480 page->io_error = 1;
1481 sblock->no_io_error_seen = 0;
1482 continue;
1483 }
1484
1485 WARN_ON(!page->page);
1486 bio = btrfs_io_bio_alloc(1);
1487 bio_set_dev(bio, page->dev->bdev);
1488
1489 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1490 bio->bi_iter.bi_sector = page->physical >> 9;
1491 bio->bi_opf = REQ_OP_READ;
1492
1493 if (btrfsic_submit_bio_wait(bio)) {
1494 page->io_error = 1;
1495 sblock->no_io_error_seen = 0;
1496 }
1497
1498 bio_put(bio);
1499 }
1500
1501 if (sblock->no_io_error_seen)
1502 scrub_recheck_block_checksum(sblock);
1503 }
1504
1505 static inline int scrub_check_fsid(u8 fsid[],
1506 struct scrub_page *spage)
1507 {
1508 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1509 int ret;
1510
1511 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1512 return !ret;
1513 }
1514
1515 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1516 {
1517 sblock->header_error = 0;
1518 sblock->checksum_error = 0;
1519 sblock->generation_error = 0;
1520
1521 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1522 scrub_checksum_data(sblock);
1523 else
1524 scrub_checksum_tree_block(sblock);
1525 }
1526
1527 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1528 struct scrub_block *sblock_good)
1529 {
1530 int page_num;
1531 int ret = 0;
1532
1533 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1534 int ret_sub;
1535
1536 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1537 sblock_good,
1538 page_num, 1);
1539 if (ret_sub)
1540 ret = ret_sub;
1541 }
1542
1543 return ret;
1544 }
1545
1546 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1547 struct scrub_block *sblock_good,
1548 int page_num, int force_write)
1549 {
1550 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1551 struct scrub_page *page_good = sblock_good->pagev[page_num];
1552 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1553
1554 BUG_ON(page_bad->page == NULL);
1555 BUG_ON(page_good->page == NULL);
1556 if (force_write || sblock_bad->header_error ||
1557 sblock_bad->checksum_error || page_bad->io_error) {
1558 struct bio *bio;
1559 int ret;
1560
1561 if (!page_bad->dev->bdev) {
1562 btrfs_warn_rl(fs_info,
1563 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1564 return -EIO;
1565 }
1566
1567 bio = btrfs_io_bio_alloc(1);
1568 bio_set_dev(bio, page_bad->dev->bdev);
1569 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1570 bio->bi_opf = REQ_OP_WRITE;
1571
1572 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1573 if (PAGE_SIZE != ret) {
1574 bio_put(bio);
1575 return -EIO;
1576 }
1577
1578 if (btrfsic_submit_bio_wait(bio)) {
1579 btrfs_dev_stat_inc_and_print(page_bad->dev,
1580 BTRFS_DEV_STAT_WRITE_ERRS);
1581 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1582 bio_put(bio);
1583 return -EIO;
1584 }
1585 bio_put(bio);
1586 }
1587
1588 return 0;
1589 }
1590
1591 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1592 {
1593 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1594 int page_num;
1595
1596 /*
1597 * This block is used for the check of the parity on the source device,
1598 * so the data needn't be written into the destination device.
1599 */
1600 if (sblock->sparity)
1601 return;
1602
1603 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1604 int ret;
1605
1606 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1607 if (ret)
1608 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1609 }
1610 }
1611
1612 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1613 int page_num)
1614 {
1615 struct scrub_page *spage = sblock->pagev[page_num];
1616
1617 BUG_ON(spage->page == NULL);
1618 if (spage->io_error) {
1619 void *mapped_buffer = kmap_atomic(spage->page);
1620
1621 clear_page(mapped_buffer);
1622 flush_dcache_page(spage->page);
1623 kunmap_atomic(mapped_buffer);
1624 }
1625 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1626 }
1627
1628 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1629 struct scrub_page *spage)
1630 {
1631 struct scrub_bio *sbio;
1632 int ret;
1633
1634 mutex_lock(&sctx->wr_lock);
1635 again:
1636 if (!sctx->wr_curr_bio) {
1637 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1638 GFP_KERNEL);
1639 if (!sctx->wr_curr_bio) {
1640 mutex_unlock(&sctx->wr_lock);
1641 return -ENOMEM;
1642 }
1643 sctx->wr_curr_bio->sctx = sctx;
1644 sctx->wr_curr_bio->page_count = 0;
1645 }
1646 sbio = sctx->wr_curr_bio;
1647 if (sbio->page_count == 0) {
1648 struct bio *bio;
1649
1650 sbio->physical = spage->physical_for_dev_replace;
1651 sbio->logical = spage->logical;
1652 sbio->dev = sctx->wr_tgtdev;
1653 bio = sbio->bio;
1654 if (!bio) {
1655 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1656 sbio->bio = bio;
1657 }
1658
1659 bio->bi_private = sbio;
1660 bio->bi_end_io = scrub_wr_bio_end_io;
1661 bio_set_dev(bio, sbio->dev->bdev);
1662 bio->bi_iter.bi_sector = sbio->physical >> 9;
1663 bio->bi_opf = REQ_OP_WRITE;
1664 sbio->status = 0;
1665 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1666 spage->physical_for_dev_replace ||
1667 sbio->logical + sbio->page_count * PAGE_SIZE !=
1668 spage->logical) {
1669 scrub_wr_submit(sctx);
1670 goto again;
1671 }
1672
1673 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1674 if (ret != PAGE_SIZE) {
1675 if (sbio->page_count < 1) {
1676 bio_put(sbio->bio);
1677 sbio->bio = NULL;
1678 mutex_unlock(&sctx->wr_lock);
1679 return -EIO;
1680 }
1681 scrub_wr_submit(sctx);
1682 goto again;
1683 }
1684
1685 sbio->pagev[sbio->page_count] = spage;
1686 scrub_page_get(spage);
1687 sbio->page_count++;
1688 if (sbio->page_count == sctx->pages_per_wr_bio)
1689 scrub_wr_submit(sctx);
1690 mutex_unlock(&sctx->wr_lock);
1691
1692 return 0;
1693 }
1694
1695 static void scrub_wr_submit(struct scrub_ctx *sctx)
1696 {
1697 struct scrub_bio *sbio;
1698
1699 if (!sctx->wr_curr_bio)
1700 return;
1701
1702 sbio = sctx->wr_curr_bio;
1703 sctx->wr_curr_bio = NULL;
1704 WARN_ON(!sbio->bio->bi_disk);
1705 scrub_pending_bio_inc(sctx);
1706 /* process all writes in a single worker thread. Then the block layer
1707 * orders the requests before sending them to the driver which
1708 * doubled the write performance on spinning disks when measured
1709 * with Linux 3.5 */
1710 btrfsic_submit_bio(sbio->bio);
1711 }
1712
1713 static void scrub_wr_bio_end_io(struct bio *bio)
1714 {
1715 struct scrub_bio *sbio = bio->bi_private;
1716 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1717
1718 sbio->status = bio->bi_status;
1719 sbio->bio = bio;
1720
1721 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1722 scrub_wr_bio_end_io_worker, NULL, NULL);
1723 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1724 }
1725
1726 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1727 {
1728 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1729 struct scrub_ctx *sctx = sbio->sctx;
1730 int i;
1731
1732 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1733 if (sbio->status) {
1734 struct btrfs_dev_replace *dev_replace =
1735 &sbio->sctx->fs_info->dev_replace;
1736
1737 for (i = 0; i < sbio->page_count; i++) {
1738 struct scrub_page *spage = sbio->pagev[i];
1739
1740 spage->io_error = 1;
1741 atomic64_inc(&dev_replace->num_write_errors);
1742 }
1743 }
1744
1745 for (i = 0; i < sbio->page_count; i++)
1746 scrub_page_put(sbio->pagev[i]);
1747
1748 bio_put(sbio->bio);
1749 kfree(sbio);
1750 scrub_pending_bio_dec(sctx);
1751 }
1752
1753 static int scrub_checksum(struct scrub_block *sblock)
1754 {
1755 u64 flags;
1756 int ret;
1757
1758 /*
1759 * No need to initialize these stats currently,
1760 * because this function only use return value
1761 * instead of these stats value.
1762 *
1763 * Todo:
1764 * always use stats
1765 */
1766 sblock->header_error = 0;
1767 sblock->generation_error = 0;
1768 sblock->checksum_error = 0;
1769
1770 WARN_ON(sblock->page_count < 1);
1771 flags = sblock->pagev[0]->flags;
1772 ret = 0;
1773 if (flags & BTRFS_EXTENT_FLAG_DATA)
1774 ret = scrub_checksum_data(sblock);
1775 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1776 ret = scrub_checksum_tree_block(sblock);
1777 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1778 (void)scrub_checksum_super(sblock);
1779 else
1780 WARN_ON(1);
1781 if (ret)
1782 scrub_handle_errored_block(sblock);
1783
1784 return ret;
1785 }
1786
1787 static int scrub_checksum_data(struct scrub_block *sblock)
1788 {
1789 struct scrub_ctx *sctx = sblock->sctx;
1790 u8 csum[BTRFS_CSUM_SIZE];
1791 u8 *on_disk_csum;
1792 struct page *page;
1793 void *buffer;
1794 u32 crc = ~(u32)0;
1795 u64 len;
1796 int index;
1797
1798 BUG_ON(sblock->page_count < 1);
1799 if (!sblock->pagev[0]->have_csum)
1800 return 0;
1801
1802 on_disk_csum = sblock->pagev[0]->csum;
1803 page = sblock->pagev[0]->page;
1804 buffer = kmap_atomic(page);
1805
1806 len = sctx->fs_info->sectorsize;
1807 index = 0;
1808 for (;;) {
1809 u64 l = min_t(u64, len, PAGE_SIZE);
1810
1811 crc = btrfs_csum_data(buffer, crc, l);
1812 kunmap_atomic(buffer);
1813 len -= l;
1814 if (len == 0)
1815 break;
1816 index++;
1817 BUG_ON(index >= sblock->page_count);
1818 BUG_ON(!sblock->pagev[index]->page);
1819 page = sblock->pagev[index]->page;
1820 buffer = kmap_atomic(page);
1821 }
1822
1823 btrfs_csum_final(crc, csum);
1824 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1825 sblock->checksum_error = 1;
1826
1827 return sblock->checksum_error;
1828 }
1829
1830 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1831 {
1832 struct scrub_ctx *sctx = sblock->sctx;
1833 struct btrfs_header *h;
1834 struct btrfs_fs_info *fs_info = sctx->fs_info;
1835 u8 calculated_csum[BTRFS_CSUM_SIZE];
1836 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1837 struct page *page;
1838 void *mapped_buffer;
1839 u64 mapped_size;
1840 void *p;
1841 u32 crc = ~(u32)0;
1842 u64 len;
1843 int index;
1844
1845 BUG_ON(sblock->page_count < 1);
1846 page = sblock->pagev[0]->page;
1847 mapped_buffer = kmap_atomic(page);
1848 h = (struct btrfs_header *)mapped_buffer;
1849 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1850
1851 /*
1852 * we don't use the getter functions here, as we
1853 * a) don't have an extent buffer and
1854 * b) the page is already kmapped
1855 */
1856 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1857 sblock->header_error = 1;
1858
1859 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1860 sblock->header_error = 1;
1861 sblock->generation_error = 1;
1862 }
1863
1864 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1865 sblock->header_error = 1;
1866
1867 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1868 BTRFS_UUID_SIZE))
1869 sblock->header_error = 1;
1870
1871 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1872 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1873 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1874 index = 0;
1875 for (;;) {
1876 u64 l = min_t(u64, len, mapped_size);
1877
1878 crc = btrfs_csum_data(p, crc, l);
1879 kunmap_atomic(mapped_buffer);
1880 len -= l;
1881 if (len == 0)
1882 break;
1883 index++;
1884 BUG_ON(index >= sblock->page_count);
1885 BUG_ON(!sblock->pagev[index]->page);
1886 page = sblock->pagev[index]->page;
1887 mapped_buffer = kmap_atomic(page);
1888 mapped_size = PAGE_SIZE;
1889 p = mapped_buffer;
1890 }
1891
1892 btrfs_csum_final(crc, calculated_csum);
1893 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1894 sblock->checksum_error = 1;
1895
1896 return sblock->header_error || sblock->checksum_error;
1897 }
1898
1899 static int scrub_checksum_super(struct scrub_block *sblock)
1900 {
1901 struct btrfs_super_block *s;
1902 struct scrub_ctx *sctx = sblock->sctx;
1903 u8 calculated_csum[BTRFS_CSUM_SIZE];
1904 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1905 struct page *page;
1906 void *mapped_buffer;
1907 u64 mapped_size;
1908 void *p;
1909 u32 crc = ~(u32)0;
1910 int fail_gen = 0;
1911 int fail_cor = 0;
1912 u64 len;
1913 int index;
1914
1915 BUG_ON(sblock->page_count < 1);
1916 page = sblock->pagev[0]->page;
1917 mapped_buffer = kmap_atomic(page);
1918 s = (struct btrfs_super_block *)mapped_buffer;
1919 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1920
1921 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1922 ++fail_cor;
1923
1924 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1925 ++fail_gen;
1926
1927 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1928 ++fail_cor;
1929
1930 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1931 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1932 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1933 index = 0;
1934 for (;;) {
1935 u64 l = min_t(u64, len, mapped_size);
1936
1937 crc = btrfs_csum_data(p, crc, l);
1938 kunmap_atomic(mapped_buffer);
1939 len -= l;
1940 if (len == 0)
1941 break;
1942 index++;
1943 BUG_ON(index >= sblock->page_count);
1944 BUG_ON(!sblock->pagev[index]->page);
1945 page = sblock->pagev[index]->page;
1946 mapped_buffer = kmap_atomic(page);
1947 mapped_size = PAGE_SIZE;
1948 p = mapped_buffer;
1949 }
1950
1951 btrfs_csum_final(crc, calculated_csum);
1952 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1953 ++fail_cor;
1954
1955 if (fail_cor + fail_gen) {
1956 /*
1957 * if we find an error in a super block, we just report it.
1958 * They will get written with the next transaction commit
1959 * anyway
1960 */
1961 spin_lock(&sctx->stat_lock);
1962 ++sctx->stat.super_errors;
1963 spin_unlock(&sctx->stat_lock);
1964 if (fail_cor)
1965 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1966 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1967 else
1968 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1969 BTRFS_DEV_STAT_GENERATION_ERRS);
1970 }
1971
1972 return fail_cor + fail_gen;
1973 }
1974
1975 static void scrub_block_get(struct scrub_block *sblock)
1976 {
1977 refcount_inc(&sblock->refs);
1978 }
1979
1980 static void scrub_block_put(struct scrub_block *sblock)
1981 {
1982 if (refcount_dec_and_test(&sblock->refs)) {
1983 int i;
1984
1985 if (sblock->sparity)
1986 scrub_parity_put(sblock->sparity);
1987
1988 for (i = 0; i < sblock->page_count; i++)
1989 scrub_page_put(sblock->pagev[i]);
1990 kfree(sblock);
1991 }
1992 }
1993
1994 static void scrub_page_get(struct scrub_page *spage)
1995 {
1996 atomic_inc(&spage->refs);
1997 }
1998
1999 static void scrub_page_put(struct scrub_page *spage)
2000 {
2001 if (atomic_dec_and_test(&spage->refs)) {
2002 if (spage->page)
2003 __free_page(spage->page);
2004 kfree(spage);
2005 }
2006 }
2007
2008 static void scrub_submit(struct scrub_ctx *sctx)
2009 {
2010 struct scrub_bio *sbio;
2011
2012 if (sctx->curr == -1)
2013 return;
2014
2015 sbio = sctx->bios[sctx->curr];
2016 sctx->curr = -1;
2017 scrub_pending_bio_inc(sctx);
2018 btrfsic_submit_bio(sbio->bio);
2019 }
2020
2021 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2022 struct scrub_page *spage)
2023 {
2024 struct scrub_block *sblock = spage->sblock;
2025 struct scrub_bio *sbio;
2026 int ret;
2027
2028 again:
2029 /*
2030 * grab a fresh bio or wait for one to become available
2031 */
2032 while (sctx->curr == -1) {
2033 spin_lock(&sctx->list_lock);
2034 sctx->curr = sctx->first_free;
2035 if (sctx->curr != -1) {
2036 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2037 sctx->bios[sctx->curr]->next_free = -1;
2038 sctx->bios[sctx->curr]->page_count = 0;
2039 spin_unlock(&sctx->list_lock);
2040 } else {
2041 spin_unlock(&sctx->list_lock);
2042 wait_event(sctx->list_wait, sctx->first_free != -1);
2043 }
2044 }
2045 sbio = sctx->bios[sctx->curr];
2046 if (sbio->page_count == 0) {
2047 struct bio *bio;
2048
2049 sbio->physical = spage->physical;
2050 sbio->logical = spage->logical;
2051 sbio->dev = spage->dev;
2052 bio = sbio->bio;
2053 if (!bio) {
2054 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2055 sbio->bio = bio;
2056 }
2057
2058 bio->bi_private = sbio;
2059 bio->bi_end_io = scrub_bio_end_io;
2060 bio_set_dev(bio, sbio->dev->bdev);
2061 bio->bi_iter.bi_sector = sbio->physical >> 9;
2062 bio->bi_opf = REQ_OP_READ;
2063 sbio->status = 0;
2064 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2065 spage->physical ||
2066 sbio->logical + sbio->page_count * PAGE_SIZE !=
2067 spage->logical ||
2068 sbio->dev != spage->dev) {
2069 scrub_submit(sctx);
2070 goto again;
2071 }
2072
2073 sbio->pagev[sbio->page_count] = spage;
2074 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2075 if (ret != PAGE_SIZE) {
2076 if (sbio->page_count < 1) {
2077 bio_put(sbio->bio);
2078 sbio->bio = NULL;
2079 return -EIO;
2080 }
2081 scrub_submit(sctx);
2082 goto again;
2083 }
2084
2085 scrub_block_get(sblock); /* one for the page added to the bio */
2086 atomic_inc(&sblock->outstanding_pages);
2087 sbio->page_count++;
2088 if (sbio->page_count == sctx->pages_per_rd_bio)
2089 scrub_submit(sctx);
2090
2091 return 0;
2092 }
2093
2094 static void scrub_missing_raid56_end_io(struct bio *bio)
2095 {
2096 struct scrub_block *sblock = bio->bi_private;
2097 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2098
2099 if (bio->bi_status)
2100 sblock->no_io_error_seen = 0;
2101
2102 bio_put(bio);
2103
2104 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2105 }
2106
2107 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2108 {
2109 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2110 struct scrub_ctx *sctx = sblock->sctx;
2111 struct btrfs_fs_info *fs_info = sctx->fs_info;
2112 u64 logical;
2113 struct btrfs_device *dev;
2114
2115 logical = sblock->pagev[0]->logical;
2116 dev = sblock->pagev[0]->dev;
2117
2118 if (sblock->no_io_error_seen)
2119 scrub_recheck_block_checksum(sblock);
2120
2121 if (!sblock->no_io_error_seen) {
2122 spin_lock(&sctx->stat_lock);
2123 sctx->stat.read_errors++;
2124 spin_unlock(&sctx->stat_lock);
2125 btrfs_err_rl_in_rcu(fs_info,
2126 "IO error rebuilding logical %llu for dev %s",
2127 logical, rcu_str_deref(dev->name));
2128 } else if (sblock->header_error || sblock->checksum_error) {
2129 spin_lock(&sctx->stat_lock);
2130 sctx->stat.uncorrectable_errors++;
2131 spin_unlock(&sctx->stat_lock);
2132 btrfs_err_rl_in_rcu(fs_info,
2133 "failed to rebuild valid logical %llu for dev %s",
2134 logical, rcu_str_deref(dev->name));
2135 } else {
2136 scrub_write_block_to_dev_replace(sblock);
2137 }
2138
2139 scrub_block_put(sblock);
2140
2141 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2142 mutex_lock(&sctx->wr_lock);
2143 scrub_wr_submit(sctx);
2144 mutex_unlock(&sctx->wr_lock);
2145 }
2146
2147 scrub_pending_bio_dec(sctx);
2148 }
2149
2150 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2151 {
2152 struct scrub_ctx *sctx = sblock->sctx;
2153 struct btrfs_fs_info *fs_info = sctx->fs_info;
2154 u64 length = sblock->page_count * PAGE_SIZE;
2155 u64 logical = sblock->pagev[0]->logical;
2156 struct btrfs_bio *bbio = NULL;
2157 struct bio *bio;
2158 struct btrfs_raid_bio *rbio;
2159 int ret;
2160 int i;
2161
2162 btrfs_bio_counter_inc_blocked(fs_info);
2163 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2164 &length, &bbio);
2165 if (ret || !bbio || !bbio->raid_map)
2166 goto bbio_out;
2167
2168 if (WARN_ON(!sctx->is_dev_replace ||
2169 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2170 /*
2171 * We shouldn't be scrubbing a missing device. Even for dev
2172 * replace, we should only get here for RAID 5/6. We either
2173 * managed to mount something with no mirrors remaining or
2174 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2175 */
2176 goto bbio_out;
2177 }
2178
2179 bio = btrfs_io_bio_alloc(0);
2180 bio->bi_iter.bi_sector = logical >> 9;
2181 bio->bi_private = sblock;
2182 bio->bi_end_io = scrub_missing_raid56_end_io;
2183
2184 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2185 if (!rbio)
2186 goto rbio_out;
2187
2188 for (i = 0; i < sblock->page_count; i++) {
2189 struct scrub_page *spage = sblock->pagev[i];
2190
2191 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2192 }
2193
2194 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2195 scrub_missing_raid56_worker, NULL, NULL);
2196 scrub_block_get(sblock);
2197 scrub_pending_bio_inc(sctx);
2198 raid56_submit_missing_rbio(rbio);
2199 return;
2200
2201 rbio_out:
2202 bio_put(bio);
2203 bbio_out:
2204 btrfs_bio_counter_dec(fs_info);
2205 btrfs_put_bbio(bbio);
2206 spin_lock(&sctx->stat_lock);
2207 sctx->stat.malloc_errors++;
2208 spin_unlock(&sctx->stat_lock);
2209 }
2210
2211 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2212 u64 physical, struct btrfs_device *dev, u64 flags,
2213 u64 gen, int mirror_num, u8 *csum, int force,
2214 u64 physical_for_dev_replace)
2215 {
2216 struct scrub_block *sblock;
2217 int index;
2218
2219 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2220 if (!sblock) {
2221 spin_lock(&sctx->stat_lock);
2222 sctx->stat.malloc_errors++;
2223 spin_unlock(&sctx->stat_lock);
2224 return -ENOMEM;
2225 }
2226
2227 /* one ref inside this function, plus one for each page added to
2228 * a bio later on */
2229 refcount_set(&sblock->refs, 1);
2230 sblock->sctx = sctx;
2231 sblock->no_io_error_seen = 1;
2232
2233 for (index = 0; len > 0; index++) {
2234 struct scrub_page *spage;
2235 u64 l = min_t(u64, len, PAGE_SIZE);
2236
2237 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2238 if (!spage) {
2239 leave_nomem:
2240 spin_lock(&sctx->stat_lock);
2241 sctx->stat.malloc_errors++;
2242 spin_unlock(&sctx->stat_lock);
2243 scrub_block_put(sblock);
2244 return -ENOMEM;
2245 }
2246 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2247 scrub_page_get(spage);
2248 sblock->pagev[index] = spage;
2249 spage->sblock = sblock;
2250 spage->dev = dev;
2251 spage->flags = flags;
2252 spage->generation = gen;
2253 spage->logical = logical;
2254 spage->physical = physical;
2255 spage->physical_for_dev_replace = physical_for_dev_replace;
2256 spage->mirror_num = mirror_num;
2257 if (csum) {
2258 spage->have_csum = 1;
2259 memcpy(spage->csum, csum, sctx->csum_size);
2260 } else {
2261 spage->have_csum = 0;
2262 }
2263 sblock->page_count++;
2264 spage->page = alloc_page(GFP_KERNEL);
2265 if (!spage->page)
2266 goto leave_nomem;
2267 len -= l;
2268 logical += l;
2269 physical += l;
2270 physical_for_dev_replace += l;
2271 }
2272
2273 WARN_ON(sblock->page_count == 0);
2274 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2275 /*
2276 * This case should only be hit for RAID 5/6 device replace. See
2277 * the comment in scrub_missing_raid56_pages() for details.
2278 */
2279 scrub_missing_raid56_pages(sblock);
2280 } else {
2281 for (index = 0; index < sblock->page_count; index++) {
2282 struct scrub_page *spage = sblock->pagev[index];
2283 int ret;
2284
2285 ret = scrub_add_page_to_rd_bio(sctx, spage);
2286 if (ret) {
2287 scrub_block_put(sblock);
2288 return ret;
2289 }
2290 }
2291
2292 if (force)
2293 scrub_submit(sctx);
2294 }
2295
2296 /* last one frees, either here or in bio completion for last page */
2297 scrub_block_put(sblock);
2298 return 0;
2299 }
2300
2301 static void scrub_bio_end_io(struct bio *bio)
2302 {
2303 struct scrub_bio *sbio = bio->bi_private;
2304 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2305
2306 sbio->status = bio->bi_status;
2307 sbio->bio = bio;
2308
2309 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2310 }
2311
2312 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2313 {
2314 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2315 struct scrub_ctx *sctx = sbio->sctx;
2316 int i;
2317
2318 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2319 if (sbio->status) {
2320 for (i = 0; i < sbio->page_count; i++) {
2321 struct scrub_page *spage = sbio->pagev[i];
2322
2323 spage->io_error = 1;
2324 spage->sblock->no_io_error_seen = 0;
2325 }
2326 }
2327
2328 /* now complete the scrub_block items that have all pages completed */
2329 for (i = 0; i < sbio->page_count; i++) {
2330 struct scrub_page *spage = sbio->pagev[i];
2331 struct scrub_block *sblock = spage->sblock;
2332
2333 if (atomic_dec_and_test(&sblock->outstanding_pages))
2334 scrub_block_complete(sblock);
2335 scrub_block_put(sblock);
2336 }
2337
2338 bio_put(sbio->bio);
2339 sbio->bio = NULL;
2340 spin_lock(&sctx->list_lock);
2341 sbio->next_free = sctx->first_free;
2342 sctx->first_free = sbio->index;
2343 spin_unlock(&sctx->list_lock);
2344
2345 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2346 mutex_lock(&sctx->wr_lock);
2347 scrub_wr_submit(sctx);
2348 mutex_unlock(&sctx->wr_lock);
2349 }
2350
2351 scrub_pending_bio_dec(sctx);
2352 }
2353
2354 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2355 unsigned long *bitmap,
2356 u64 start, u64 len)
2357 {
2358 u64 offset;
2359 u64 nsectors64;
2360 u32 nsectors;
2361 int sectorsize = sparity->sctx->fs_info->sectorsize;
2362
2363 if (len >= sparity->stripe_len) {
2364 bitmap_set(bitmap, 0, sparity->nsectors);
2365 return;
2366 }
2367
2368 start -= sparity->logic_start;
2369 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2370 offset = div_u64(offset, sectorsize);
2371 nsectors64 = div_u64(len, sectorsize);
2372
2373 ASSERT(nsectors64 < UINT_MAX);
2374 nsectors = (u32)nsectors64;
2375
2376 if (offset + nsectors <= sparity->nsectors) {
2377 bitmap_set(bitmap, offset, nsectors);
2378 return;
2379 }
2380
2381 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2382 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2383 }
2384
2385 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2386 u64 start, u64 len)
2387 {
2388 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2389 }
2390
2391 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2392 u64 start, u64 len)
2393 {
2394 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2395 }
2396
2397 static void scrub_block_complete(struct scrub_block *sblock)
2398 {
2399 int corrupted = 0;
2400
2401 if (!sblock->no_io_error_seen) {
2402 corrupted = 1;
2403 scrub_handle_errored_block(sblock);
2404 } else {
2405 /*
2406 * if has checksum error, write via repair mechanism in
2407 * dev replace case, otherwise write here in dev replace
2408 * case.
2409 */
2410 corrupted = scrub_checksum(sblock);
2411 if (!corrupted && sblock->sctx->is_dev_replace)
2412 scrub_write_block_to_dev_replace(sblock);
2413 }
2414
2415 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2416 u64 start = sblock->pagev[0]->logical;
2417 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2418 PAGE_SIZE;
2419
2420 scrub_parity_mark_sectors_error(sblock->sparity,
2421 start, end - start);
2422 }
2423 }
2424
2425 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2426 {
2427 struct btrfs_ordered_sum *sum = NULL;
2428 unsigned long index;
2429 unsigned long num_sectors;
2430
2431 while (!list_empty(&sctx->csum_list)) {
2432 sum = list_first_entry(&sctx->csum_list,
2433 struct btrfs_ordered_sum, list);
2434 if (sum->bytenr > logical)
2435 return 0;
2436 if (sum->bytenr + sum->len > logical)
2437 break;
2438
2439 ++sctx->stat.csum_discards;
2440 list_del(&sum->list);
2441 kfree(sum);
2442 sum = NULL;
2443 }
2444 if (!sum)
2445 return 0;
2446
2447 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2448 ASSERT(index < UINT_MAX);
2449
2450 num_sectors = sum->len / sctx->fs_info->sectorsize;
2451 memcpy(csum, sum->sums + index, sctx->csum_size);
2452 if (index == num_sectors - 1) {
2453 list_del(&sum->list);
2454 kfree(sum);
2455 }
2456 return 1;
2457 }
2458
2459 /* scrub extent tries to collect up to 64 kB for each bio */
2460 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2461 u64 logical, u64 len,
2462 u64 physical, struct btrfs_device *dev, u64 flags,
2463 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2464 {
2465 int ret;
2466 u8 csum[BTRFS_CSUM_SIZE];
2467 u32 blocksize;
2468
2469 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2470 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2471 blocksize = map->stripe_len;
2472 else
2473 blocksize = sctx->fs_info->sectorsize;
2474 spin_lock(&sctx->stat_lock);
2475 sctx->stat.data_extents_scrubbed++;
2476 sctx->stat.data_bytes_scrubbed += len;
2477 spin_unlock(&sctx->stat_lock);
2478 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2479 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2480 blocksize = map->stripe_len;
2481 else
2482 blocksize = sctx->fs_info->nodesize;
2483 spin_lock(&sctx->stat_lock);
2484 sctx->stat.tree_extents_scrubbed++;
2485 sctx->stat.tree_bytes_scrubbed += len;
2486 spin_unlock(&sctx->stat_lock);
2487 } else {
2488 blocksize = sctx->fs_info->sectorsize;
2489 WARN_ON(1);
2490 }
2491
2492 while (len) {
2493 u64 l = min_t(u64, len, blocksize);
2494 int have_csum = 0;
2495
2496 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2497 /* push csums to sbio */
2498 have_csum = scrub_find_csum(sctx, logical, csum);
2499 if (have_csum == 0)
2500 ++sctx->stat.no_csum;
2501 }
2502 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2503 mirror_num, have_csum ? csum : NULL, 0,
2504 physical_for_dev_replace);
2505 if (ret)
2506 return ret;
2507 len -= l;
2508 logical += l;
2509 physical += l;
2510 physical_for_dev_replace += l;
2511 }
2512 return 0;
2513 }
2514
2515 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2516 u64 logical, u64 len,
2517 u64 physical, struct btrfs_device *dev,
2518 u64 flags, u64 gen, int mirror_num, u8 *csum)
2519 {
2520 struct scrub_ctx *sctx = sparity->sctx;
2521 struct scrub_block *sblock;
2522 int index;
2523
2524 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2525 if (!sblock) {
2526 spin_lock(&sctx->stat_lock);
2527 sctx->stat.malloc_errors++;
2528 spin_unlock(&sctx->stat_lock);
2529 return -ENOMEM;
2530 }
2531
2532 /* one ref inside this function, plus one for each page added to
2533 * a bio later on */
2534 refcount_set(&sblock->refs, 1);
2535 sblock->sctx = sctx;
2536 sblock->no_io_error_seen = 1;
2537 sblock->sparity = sparity;
2538 scrub_parity_get(sparity);
2539
2540 for (index = 0; len > 0; index++) {
2541 struct scrub_page *spage;
2542 u64 l = min_t(u64, len, PAGE_SIZE);
2543
2544 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2545 if (!spage) {
2546 leave_nomem:
2547 spin_lock(&sctx->stat_lock);
2548 sctx->stat.malloc_errors++;
2549 spin_unlock(&sctx->stat_lock);
2550 scrub_block_put(sblock);
2551 return -ENOMEM;
2552 }
2553 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2554 /* For scrub block */
2555 scrub_page_get(spage);
2556 sblock->pagev[index] = spage;
2557 /* For scrub parity */
2558 scrub_page_get(spage);
2559 list_add_tail(&spage->list, &sparity->spages);
2560 spage->sblock = sblock;
2561 spage->dev = dev;
2562 spage->flags = flags;
2563 spage->generation = gen;
2564 spage->logical = logical;
2565 spage->physical = physical;
2566 spage->mirror_num = mirror_num;
2567 if (csum) {
2568 spage->have_csum = 1;
2569 memcpy(spage->csum, csum, sctx->csum_size);
2570 } else {
2571 spage->have_csum = 0;
2572 }
2573 sblock->page_count++;
2574 spage->page = alloc_page(GFP_KERNEL);
2575 if (!spage->page)
2576 goto leave_nomem;
2577 len -= l;
2578 logical += l;
2579 physical += l;
2580 }
2581
2582 WARN_ON(sblock->page_count == 0);
2583 for (index = 0; index < sblock->page_count; index++) {
2584 struct scrub_page *spage = sblock->pagev[index];
2585 int ret;
2586
2587 ret = scrub_add_page_to_rd_bio(sctx, spage);
2588 if (ret) {
2589 scrub_block_put(sblock);
2590 return ret;
2591 }
2592 }
2593
2594 /* last one frees, either here or in bio completion for last page */
2595 scrub_block_put(sblock);
2596 return 0;
2597 }
2598
2599 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2600 u64 logical, u64 len,
2601 u64 physical, struct btrfs_device *dev,
2602 u64 flags, u64 gen, int mirror_num)
2603 {
2604 struct scrub_ctx *sctx = sparity->sctx;
2605 int ret;
2606 u8 csum[BTRFS_CSUM_SIZE];
2607 u32 blocksize;
2608
2609 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2610 scrub_parity_mark_sectors_error(sparity, logical, len);
2611 return 0;
2612 }
2613
2614 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2615 blocksize = sparity->stripe_len;
2616 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2617 blocksize = sparity->stripe_len;
2618 } else {
2619 blocksize = sctx->fs_info->sectorsize;
2620 WARN_ON(1);
2621 }
2622
2623 while (len) {
2624 u64 l = min_t(u64, len, blocksize);
2625 int have_csum = 0;
2626
2627 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2628 /* push csums to sbio */
2629 have_csum = scrub_find_csum(sctx, logical, csum);
2630 if (have_csum == 0)
2631 goto skip;
2632 }
2633 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2634 flags, gen, mirror_num,
2635 have_csum ? csum : NULL);
2636 if (ret)
2637 return ret;
2638 skip:
2639 len -= l;
2640 logical += l;
2641 physical += l;
2642 }
2643 return 0;
2644 }
2645
2646 /*
2647 * Given a physical address, this will calculate it's
2648 * logical offset. if this is a parity stripe, it will return
2649 * the most left data stripe's logical offset.
2650 *
2651 * return 0 if it is a data stripe, 1 means parity stripe.
2652 */
2653 static int get_raid56_logic_offset(u64 physical, int num,
2654 struct map_lookup *map, u64 *offset,
2655 u64 *stripe_start)
2656 {
2657 int i;
2658 int j = 0;
2659 u64 stripe_nr;
2660 u64 last_offset;
2661 u32 stripe_index;
2662 u32 rot;
2663
2664 last_offset = (physical - map->stripes[num].physical) *
2665 nr_data_stripes(map);
2666 if (stripe_start)
2667 *stripe_start = last_offset;
2668
2669 *offset = last_offset;
2670 for (i = 0; i < nr_data_stripes(map); i++) {
2671 *offset = last_offset + i * map->stripe_len;
2672
2673 stripe_nr = div64_u64(*offset, map->stripe_len);
2674 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2675
2676 /* Work out the disk rotation on this stripe-set */
2677 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2678 /* calculate which stripe this data locates */
2679 rot += i;
2680 stripe_index = rot % map->num_stripes;
2681 if (stripe_index == num)
2682 return 0;
2683 if (stripe_index < num)
2684 j++;
2685 }
2686 *offset = last_offset + j * map->stripe_len;
2687 return 1;
2688 }
2689
2690 static void scrub_free_parity(struct scrub_parity *sparity)
2691 {
2692 struct scrub_ctx *sctx = sparity->sctx;
2693 struct scrub_page *curr, *next;
2694 int nbits;
2695
2696 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2697 if (nbits) {
2698 spin_lock(&sctx->stat_lock);
2699 sctx->stat.read_errors += nbits;
2700 sctx->stat.uncorrectable_errors += nbits;
2701 spin_unlock(&sctx->stat_lock);
2702 }
2703
2704 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2705 list_del_init(&curr->list);
2706 scrub_page_put(curr);
2707 }
2708
2709 kfree(sparity);
2710 }
2711
2712 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2713 {
2714 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2715 work);
2716 struct scrub_ctx *sctx = sparity->sctx;
2717
2718 scrub_free_parity(sparity);
2719 scrub_pending_bio_dec(sctx);
2720 }
2721
2722 static void scrub_parity_bio_endio(struct bio *bio)
2723 {
2724 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2725 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2726
2727 if (bio->bi_status)
2728 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2729 sparity->nsectors);
2730
2731 bio_put(bio);
2732
2733 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2734 scrub_parity_bio_endio_worker, NULL, NULL);
2735 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2736 }
2737
2738 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2739 {
2740 struct scrub_ctx *sctx = sparity->sctx;
2741 struct btrfs_fs_info *fs_info = sctx->fs_info;
2742 struct bio *bio;
2743 struct btrfs_raid_bio *rbio;
2744 struct btrfs_bio *bbio = NULL;
2745 u64 length;
2746 int ret;
2747
2748 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2749 sparity->nsectors))
2750 goto out;
2751
2752 length = sparity->logic_end - sparity->logic_start;
2753
2754 btrfs_bio_counter_inc_blocked(fs_info);
2755 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2756 &length, &bbio);
2757 if (ret || !bbio || !bbio->raid_map)
2758 goto bbio_out;
2759
2760 bio = btrfs_io_bio_alloc(0);
2761 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2762 bio->bi_private = sparity;
2763 bio->bi_end_io = scrub_parity_bio_endio;
2764
2765 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2766 length, sparity->scrub_dev,
2767 sparity->dbitmap,
2768 sparity->nsectors);
2769 if (!rbio)
2770 goto rbio_out;
2771
2772 scrub_pending_bio_inc(sctx);
2773 raid56_parity_submit_scrub_rbio(rbio);
2774 return;
2775
2776 rbio_out:
2777 bio_put(bio);
2778 bbio_out:
2779 btrfs_bio_counter_dec(fs_info);
2780 btrfs_put_bbio(bbio);
2781 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2782 sparity->nsectors);
2783 spin_lock(&sctx->stat_lock);
2784 sctx->stat.malloc_errors++;
2785 spin_unlock(&sctx->stat_lock);
2786 out:
2787 scrub_free_parity(sparity);
2788 }
2789
2790 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2791 {
2792 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2793 }
2794
2795 static void scrub_parity_get(struct scrub_parity *sparity)
2796 {
2797 refcount_inc(&sparity->refs);
2798 }
2799
2800 static void scrub_parity_put(struct scrub_parity *sparity)
2801 {
2802 if (!refcount_dec_and_test(&sparity->refs))
2803 return;
2804
2805 scrub_parity_check_and_repair(sparity);
2806 }
2807
2808 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2809 struct map_lookup *map,
2810 struct btrfs_device *sdev,
2811 struct btrfs_path *path,
2812 u64 logic_start,
2813 u64 logic_end)
2814 {
2815 struct btrfs_fs_info *fs_info = sctx->fs_info;
2816 struct btrfs_root *root = fs_info->extent_root;
2817 struct btrfs_root *csum_root = fs_info->csum_root;
2818 struct btrfs_extent_item *extent;
2819 struct btrfs_bio *bbio = NULL;
2820 u64 flags;
2821 int ret;
2822 int slot;
2823 struct extent_buffer *l;
2824 struct btrfs_key key;
2825 u64 generation;
2826 u64 extent_logical;
2827 u64 extent_physical;
2828 u64 extent_len;
2829 u64 mapped_length;
2830 struct btrfs_device *extent_dev;
2831 struct scrub_parity *sparity;
2832 int nsectors;
2833 int bitmap_len;
2834 int extent_mirror_num;
2835 int stop_loop = 0;
2836
2837 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2838 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2839 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2840 GFP_NOFS);
2841 if (!sparity) {
2842 spin_lock(&sctx->stat_lock);
2843 sctx->stat.malloc_errors++;
2844 spin_unlock(&sctx->stat_lock);
2845 return -ENOMEM;
2846 }
2847
2848 sparity->stripe_len = map->stripe_len;
2849 sparity->nsectors = nsectors;
2850 sparity->sctx = sctx;
2851 sparity->scrub_dev = sdev;
2852 sparity->logic_start = logic_start;
2853 sparity->logic_end = logic_end;
2854 refcount_set(&sparity->refs, 1);
2855 INIT_LIST_HEAD(&sparity->spages);
2856 sparity->dbitmap = sparity->bitmap;
2857 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2858
2859 ret = 0;
2860 while (logic_start < logic_end) {
2861 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2862 key.type = BTRFS_METADATA_ITEM_KEY;
2863 else
2864 key.type = BTRFS_EXTENT_ITEM_KEY;
2865 key.objectid = logic_start;
2866 key.offset = (u64)-1;
2867
2868 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2869 if (ret < 0)
2870 goto out;
2871
2872 if (ret > 0) {
2873 ret = btrfs_previous_extent_item(root, path, 0);
2874 if (ret < 0)
2875 goto out;
2876 if (ret > 0) {
2877 btrfs_release_path(path);
2878 ret = btrfs_search_slot(NULL, root, &key,
2879 path, 0, 0);
2880 if (ret < 0)
2881 goto out;
2882 }
2883 }
2884
2885 stop_loop = 0;
2886 while (1) {
2887 u64 bytes;
2888
2889 l = path->nodes[0];
2890 slot = path->slots[0];
2891 if (slot >= btrfs_header_nritems(l)) {
2892 ret = btrfs_next_leaf(root, path);
2893 if (ret == 0)
2894 continue;
2895 if (ret < 0)
2896 goto out;
2897
2898 stop_loop = 1;
2899 break;
2900 }
2901 btrfs_item_key_to_cpu(l, &key, slot);
2902
2903 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2904 key.type != BTRFS_METADATA_ITEM_KEY)
2905 goto next;
2906
2907 if (key.type == BTRFS_METADATA_ITEM_KEY)
2908 bytes = fs_info->nodesize;
2909 else
2910 bytes = key.offset;
2911
2912 if (key.objectid + bytes <= logic_start)
2913 goto next;
2914
2915 if (key.objectid >= logic_end) {
2916 stop_loop = 1;
2917 break;
2918 }
2919
2920 while (key.objectid >= logic_start + map->stripe_len)
2921 logic_start += map->stripe_len;
2922
2923 extent = btrfs_item_ptr(l, slot,
2924 struct btrfs_extent_item);
2925 flags = btrfs_extent_flags(l, extent);
2926 generation = btrfs_extent_generation(l, extent);
2927
2928 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2929 (key.objectid < logic_start ||
2930 key.objectid + bytes >
2931 logic_start + map->stripe_len)) {
2932 btrfs_err(fs_info,
2933 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2934 key.objectid, logic_start);
2935 spin_lock(&sctx->stat_lock);
2936 sctx->stat.uncorrectable_errors++;
2937 spin_unlock(&sctx->stat_lock);
2938 goto next;
2939 }
2940 again:
2941 extent_logical = key.objectid;
2942 extent_len = bytes;
2943
2944 if (extent_logical < logic_start) {
2945 extent_len -= logic_start - extent_logical;
2946 extent_logical = logic_start;
2947 }
2948
2949 if (extent_logical + extent_len >
2950 logic_start + map->stripe_len)
2951 extent_len = logic_start + map->stripe_len -
2952 extent_logical;
2953
2954 scrub_parity_mark_sectors_data(sparity, extent_logical,
2955 extent_len);
2956
2957 mapped_length = extent_len;
2958 bbio = NULL;
2959 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2960 extent_logical, &mapped_length, &bbio,
2961 0);
2962 if (!ret) {
2963 if (!bbio || mapped_length < extent_len)
2964 ret = -EIO;
2965 }
2966 if (ret) {
2967 btrfs_put_bbio(bbio);
2968 goto out;
2969 }
2970 extent_physical = bbio->stripes[0].physical;
2971 extent_mirror_num = bbio->mirror_num;
2972 extent_dev = bbio->stripes[0].dev;
2973 btrfs_put_bbio(bbio);
2974
2975 ret = btrfs_lookup_csums_range(csum_root,
2976 extent_logical,
2977 extent_logical + extent_len - 1,
2978 &sctx->csum_list, 1);
2979 if (ret)
2980 goto out;
2981
2982 ret = scrub_extent_for_parity(sparity, extent_logical,
2983 extent_len,
2984 extent_physical,
2985 extent_dev, flags,
2986 generation,
2987 extent_mirror_num);
2988
2989 scrub_free_csums(sctx);
2990
2991 if (ret)
2992 goto out;
2993
2994 if (extent_logical + extent_len <
2995 key.objectid + bytes) {
2996 logic_start += map->stripe_len;
2997
2998 if (logic_start >= logic_end) {
2999 stop_loop = 1;
3000 break;
3001 }
3002
3003 if (logic_start < key.objectid + bytes) {
3004 cond_resched();
3005 goto again;
3006 }
3007 }
3008 next:
3009 path->slots[0]++;
3010 }
3011
3012 btrfs_release_path(path);
3013
3014 if (stop_loop)
3015 break;
3016
3017 logic_start += map->stripe_len;
3018 }
3019 out:
3020 if (ret < 0)
3021 scrub_parity_mark_sectors_error(sparity, logic_start,
3022 logic_end - logic_start);
3023 scrub_parity_put(sparity);
3024 scrub_submit(sctx);
3025 mutex_lock(&sctx->wr_lock);
3026 scrub_wr_submit(sctx);
3027 mutex_unlock(&sctx->wr_lock);
3028
3029 btrfs_release_path(path);
3030 return ret < 0 ? ret : 0;
3031 }
3032
3033 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3034 struct map_lookup *map,
3035 struct btrfs_device *scrub_dev,
3036 int num, u64 base, u64 length)
3037 {
3038 struct btrfs_path *path, *ppath;
3039 struct btrfs_fs_info *fs_info = sctx->fs_info;
3040 struct btrfs_root *root = fs_info->extent_root;
3041 struct btrfs_root *csum_root = fs_info->csum_root;
3042 struct btrfs_extent_item *extent;
3043 struct blk_plug plug;
3044 u64 flags;
3045 int ret;
3046 int slot;
3047 u64 nstripes;
3048 struct extent_buffer *l;
3049 u64 physical;
3050 u64 logical;
3051 u64 logic_end;
3052 u64 physical_end;
3053 u64 generation;
3054 int mirror_num;
3055 struct reada_control *reada1;
3056 struct reada_control *reada2;
3057 struct btrfs_key key;
3058 struct btrfs_key key_end;
3059 u64 increment = map->stripe_len;
3060 u64 offset;
3061 u64 extent_logical;
3062 u64 extent_physical;
3063 u64 extent_len;
3064 u64 stripe_logical;
3065 u64 stripe_end;
3066 struct btrfs_device *extent_dev;
3067 int extent_mirror_num;
3068 int stop_loop = 0;
3069
3070 physical = map->stripes[num].physical;
3071 offset = 0;
3072 nstripes = div64_u64(length, map->stripe_len);
3073 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3074 offset = map->stripe_len * num;
3075 increment = map->stripe_len * map->num_stripes;
3076 mirror_num = 1;
3077 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3078 int factor = map->num_stripes / map->sub_stripes;
3079 offset = map->stripe_len * (num / map->sub_stripes);
3080 increment = map->stripe_len * factor;
3081 mirror_num = num % map->sub_stripes + 1;
3082 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3083 increment = map->stripe_len;
3084 mirror_num = num % map->num_stripes + 1;
3085 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3086 increment = map->stripe_len;
3087 mirror_num = num % map->num_stripes + 1;
3088 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3089 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3090 increment = map->stripe_len * nr_data_stripes(map);
3091 mirror_num = 1;
3092 } else {
3093 increment = map->stripe_len;
3094 mirror_num = 1;
3095 }
3096
3097 path = btrfs_alloc_path();
3098 if (!path)
3099 return -ENOMEM;
3100
3101 ppath = btrfs_alloc_path();
3102 if (!ppath) {
3103 btrfs_free_path(path);
3104 return -ENOMEM;
3105 }
3106
3107 /*
3108 * work on commit root. The related disk blocks are static as
3109 * long as COW is applied. This means, it is save to rewrite
3110 * them to repair disk errors without any race conditions
3111 */
3112 path->search_commit_root = 1;
3113 path->skip_locking = 1;
3114
3115 ppath->search_commit_root = 1;
3116 ppath->skip_locking = 1;
3117 /*
3118 * trigger the readahead for extent tree csum tree and wait for
3119 * completion. During readahead, the scrub is officially paused
3120 * to not hold off transaction commits
3121 */
3122 logical = base + offset;
3123 physical_end = physical + nstripes * map->stripe_len;
3124 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3125 get_raid56_logic_offset(physical_end, num,
3126 map, &logic_end, NULL);
3127 logic_end += base;
3128 } else {
3129 logic_end = logical + increment * nstripes;
3130 }
3131 wait_event(sctx->list_wait,
3132 atomic_read(&sctx->bios_in_flight) == 0);
3133 scrub_blocked_if_needed(fs_info);
3134
3135 /* FIXME it might be better to start readahead at commit root */
3136 key.objectid = logical;
3137 key.type = BTRFS_EXTENT_ITEM_KEY;
3138 key.offset = (u64)0;
3139 key_end.objectid = logic_end;
3140 key_end.type = BTRFS_METADATA_ITEM_KEY;
3141 key_end.offset = (u64)-1;
3142 reada1 = btrfs_reada_add(root, &key, &key_end);
3143
3144 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3145 key.type = BTRFS_EXTENT_CSUM_KEY;
3146 key.offset = logical;
3147 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3148 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3149 key_end.offset = logic_end;
3150 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3151
3152 if (!IS_ERR(reada1))
3153 btrfs_reada_wait(reada1);
3154 if (!IS_ERR(reada2))
3155 btrfs_reada_wait(reada2);
3156
3157
3158 /*
3159 * collect all data csums for the stripe to avoid seeking during
3160 * the scrub. This might currently (crc32) end up to be about 1MB
3161 */
3162 blk_start_plug(&plug);
3163
3164 /*
3165 * now find all extents for each stripe and scrub them
3166 */
3167 ret = 0;
3168 while (physical < physical_end) {
3169 /*
3170 * canceled?
3171 */
3172 if (atomic_read(&fs_info->scrub_cancel_req) ||
3173 atomic_read(&sctx->cancel_req)) {
3174 ret = -ECANCELED;
3175 goto out;
3176 }
3177 /*
3178 * check to see if we have to pause
3179 */
3180 if (atomic_read(&fs_info->scrub_pause_req)) {
3181 /* push queued extents */
3182 sctx->flush_all_writes = true;
3183 scrub_submit(sctx);
3184 mutex_lock(&sctx->wr_lock);
3185 scrub_wr_submit(sctx);
3186 mutex_unlock(&sctx->wr_lock);
3187 wait_event(sctx->list_wait,
3188 atomic_read(&sctx->bios_in_flight) == 0);
3189 sctx->flush_all_writes = false;
3190 scrub_blocked_if_needed(fs_info);
3191 }
3192
3193 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3194 ret = get_raid56_logic_offset(physical, num, map,
3195 &logical,
3196 &stripe_logical);
3197 logical += base;
3198 if (ret) {
3199 /* it is parity strip */
3200 stripe_logical += base;
3201 stripe_end = stripe_logical + increment;
3202 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3203 ppath, stripe_logical,
3204 stripe_end);
3205 if (ret)
3206 goto out;
3207 goto skip;
3208 }
3209 }
3210
3211 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3212 key.type = BTRFS_METADATA_ITEM_KEY;
3213 else
3214 key.type = BTRFS_EXTENT_ITEM_KEY;
3215 key.objectid = logical;
3216 key.offset = (u64)-1;
3217
3218 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3219 if (ret < 0)
3220 goto out;
3221
3222 if (ret > 0) {
3223 ret = btrfs_previous_extent_item(root, path, 0);
3224 if (ret < 0)
3225 goto out;
3226 if (ret > 0) {
3227 /* there's no smaller item, so stick with the
3228 * larger one */
3229 btrfs_release_path(path);
3230 ret = btrfs_search_slot(NULL, root, &key,
3231 path, 0, 0);
3232 if (ret < 0)
3233 goto out;
3234 }
3235 }
3236
3237 stop_loop = 0;
3238 while (1) {
3239 u64 bytes;
3240
3241 l = path->nodes[0];
3242 slot = path->slots[0];
3243 if (slot >= btrfs_header_nritems(l)) {
3244 ret = btrfs_next_leaf(root, path);
3245 if (ret == 0)
3246 continue;
3247 if (ret < 0)
3248 goto out;
3249
3250 stop_loop = 1;
3251 break;
3252 }
3253 btrfs_item_key_to_cpu(l, &key, slot);
3254
3255 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3256 key.type != BTRFS_METADATA_ITEM_KEY)
3257 goto next;
3258
3259 if (key.type == BTRFS_METADATA_ITEM_KEY)
3260 bytes = fs_info->nodesize;
3261 else
3262 bytes = key.offset;
3263
3264 if (key.objectid + bytes <= logical)
3265 goto next;
3266
3267 if (key.objectid >= logical + map->stripe_len) {
3268 /* out of this device extent */
3269 if (key.objectid >= logic_end)
3270 stop_loop = 1;
3271 break;
3272 }
3273
3274 extent = btrfs_item_ptr(l, slot,
3275 struct btrfs_extent_item);
3276 flags = btrfs_extent_flags(l, extent);
3277 generation = btrfs_extent_generation(l, extent);
3278
3279 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3280 (key.objectid < logical ||
3281 key.objectid + bytes >
3282 logical + map->stripe_len)) {
3283 btrfs_err(fs_info,
3284 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3285 key.objectid, logical);
3286 spin_lock(&sctx->stat_lock);
3287 sctx->stat.uncorrectable_errors++;
3288 spin_unlock(&sctx->stat_lock);
3289 goto next;
3290 }
3291
3292 again:
3293 extent_logical = key.objectid;
3294 extent_len = bytes;
3295
3296 /*
3297 * trim extent to this stripe
3298 */
3299 if (extent_logical < logical) {
3300 extent_len -= logical - extent_logical;
3301 extent_logical = logical;
3302 }
3303 if (extent_logical + extent_len >
3304 logical + map->stripe_len) {
3305 extent_len = logical + map->stripe_len -
3306 extent_logical;
3307 }
3308
3309 extent_physical = extent_logical - logical + physical;
3310 extent_dev = scrub_dev;
3311 extent_mirror_num = mirror_num;
3312 if (sctx->is_dev_replace)
3313 scrub_remap_extent(fs_info, extent_logical,
3314 extent_len, &extent_physical,
3315 &extent_dev,
3316 &extent_mirror_num);
3317
3318 ret = btrfs_lookup_csums_range(csum_root,
3319 extent_logical,
3320 extent_logical +
3321 extent_len - 1,
3322 &sctx->csum_list, 1);
3323 if (ret)
3324 goto out;
3325
3326 ret = scrub_extent(sctx, map, extent_logical, extent_len,
3327 extent_physical, extent_dev, flags,
3328 generation, extent_mirror_num,
3329 extent_logical - logical + physical);
3330
3331 scrub_free_csums(sctx);
3332
3333 if (ret)
3334 goto out;
3335
3336 if (extent_logical + extent_len <
3337 key.objectid + bytes) {
3338 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3339 /*
3340 * loop until we find next data stripe
3341 * or we have finished all stripes.
3342 */
3343 loop:
3344 physical += map->stripe_len;
3345 ret = get_raid56_logic_offset(physical,
3346 num, map, &logical,
3347 &stripe_logical);
3348 logical += base;
3349
3350 if (ret && physical < physical_end) {
3351 stripe_logical += base;
3352 stripe_end = stripe_logical +
3353 increment;
3354 ret = scrub_raid56_parity(sctx,
3355 map, scrub_dev, ppath,
3356 stripe_logical,
3357 stripe_end);
3358 if (ret)
3359 goto out;
3360 goto loop;
3361 }
3362 } else {
3363 physical += map->stripe_len;
3364 logical += increment;
3365 }
3366 if (logical < key.objectid + bytes) {
3367 cond_resched();
3368 goto again;
3369 }
3370
3371 if (physical >= physical_end) {
3372 stop_loop = 1;
3373 break;
3374 }
3375 }
3376 next:
3377 path->slots[0]++;
3378 }
3379 btrfs_release_path(path);
3380 skip:
3381 logical += increment;
3382 physical += map->stripe_len;
3383 spin_lock(&sctx->stat_lock);
3384 if (stop_loop)
3385 sctx->stat.last_physical = map->stripes[num].physical +
3386 length;
3387 else
3388 sctx->stat.last_physical = physical;
3389 spin_unlock(&sctx->stat_lock);
3390 if (stop_loop)
3391 break;
3392 }
3393 out:
3394 /* push queued extents */
3395 scrub_submit(sctx);
3396 mutex_lock(&sctx->wr_lock);
3397 scrub_wr_submit(sctx);
3398 mutex_unlock(&sctx->wr_lock);
3399
3400 blk_finish_plug(&plug);
3401 btrfs_free_path(path);
3402 btrfs_free_path(ppath);
3403 return ret < 0 ? ret : 0;
3404 }
3405
3406 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3407 struct btrfs_device *scrub_dev,
3408 u64 chunk_offset, u64 length,
3409 u64 dev_offset,
3410 struct btrfs_block_group_cache *cache)
3411 {
3412 struct btrfs_fs_info *fs_info = sctx->fs_info;
3413 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3414 struct map_lookup *map;
3415 struct extent_map *em;
3416 int i;
3417 int ret = 0;
3418
3419 read_lock(&map_tree->map_tree.lock);
3420 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3421 read_unlock(&map_tree->map_tree.lock);
3422
3423 if (!em) {
3424 /*
3425 * Might have been an unused block group deleted by the cleaner
3426 * kthread or relocation.
3427 */
3428 spin_lock(&cache->lock);
3429 if (!cache->removed)
3430 ret = -EINVAL;
3431 spin_unlock(&cache->lock);
3432
3433 return ret;
3434 }
3435
3436 map = em->map_lookup;
3437 if (em->start != chunk_offset)
3438 goto out;
3439
3440 if (em->len < length)
3441 goto out;
3442
3443 for (i = 0; i < map->num_stripes; ++i) {
3444 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3445 map->stripes[i].physical == dev_offset) {
3446 ret = scrub_stripe(sctx, map, scrub_dev, i,
3447 chunk_offset, length);
3448 if (ret)
3449 goto out;
3450 }
3451 }
3452 out:
3453 free_extent_map(em);
3454
3455 return ret;
3456 }
3457
3458 static noinline_for_stack
3459 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3460 struct btrfs_device *scrub_dev, u64 start, u64 end)
3461 {
3462 struct btrfs_dev_extent *dev_extent = NULL;
3463 struct btrfs_path *path;
3464 struct btrfs_fs_info *fs_info = sctx->fs_info;
3465 struct btrfs_root *root = fs_info->dev_root;
3466 u64 length;
3467 u64 chunk_offset;
3468 int ret = 0;
3469 int ro_set;
3470 int slot;
3471 struct extent_buffer *l;
3472 struct btrfs_key key;
3473 struct btrfs_key found_key;
3474 struct btrfs_block_group_cache *cache;
3475 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3476
3477 path = btrfs_alloc_path();
3478 if (!path)
3479 return -ENOMEM;
3480
3481 path->reada = READA_FORWARD;
3482 path->search_commit_root = 1;
3483 path->skip_locking = 1;
3484
3485 key.objectid = scrub_dev->devid;
3486 key.offset = 0ull;
3487 key.type = BTRFS_DEV_EXTENT_KEY;
3488
3489 while (1) {
3490 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3491 if (ret < 0)
3492 break;
3493 if (ret > 0) {
3494 if (path->slots[0] >=
3495 btrfs_header_nritems(path->nodes[0])) {
3496 ret = btrfs_next_leaf(root, path);
3497 if (ret < 0)
3498 break;
3499 if (ret > 0) {
3500 ret = 0;
3501 break;
3502 }
3503 } else {
3504 ret = 0;
3505 }
3506 }
3507
3508 l = path->nodes[0];
3509 slot = path->slots[0];
3510
3511 btrfs_item_key_to_cpu(l, &found_key, slot);
3512
3513 if (found_key.objectid != scrub_dev->devid)
3514 break;
3515
3516 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3517 break;
3518
3519 if (found_key.offset >= end)
3520 break;
3521
3522 if (found_key.offset < key.offset)
3523 break;
3524
3525 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3526 length = btrfs_dev_extent_length(l, dev_extent);
3527
3528 if (found_key.offset + length <= start)
3529 goto skip;
3530
3531 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3532
3533 /*
3534 * get a reference on the corresponding block group to prevent
3535 * the chunk from going away while we scrub it
3536 */
3537 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3538
3539 /* some chunks are removed but not committed to disk yet,
3540 * continue scrubbing */
3541 if (!cache)
3542 goto skip;
3543
3544 /*
3545 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3546 * to avoid deadlock caused by:
3547 * btrfs_inc_block_group_ro()
3548 * -> btrfs_wait_for_commit()
3549 * -> btrfs_commit_transaction()
3550 * -> btrfs_scrub_pause()
3551 */
3552 scrub_pause_on(fs_info);
3553 ret = btrfs_inc_block_group_ro(cache);
3554 if (!ret && sctx->is_dev_replace) {
3555 /*
3556 * If we are doing a device replace wait for any tasks
3557 * that started delalloc right before we set the block
3558 * group to RO mode, as they might have just allocated
3559 * an extent from it or decided they could do a nocow
3560 * write. And if any such tasks did that, wait for their
3561 * ordered extents to complete and then commit the
3562 * current transaction, so that we can later see the new
3563 * extent items in the extent tree - the ordered extents
3564 * create delayed data references (for cow writes) when
3565 * they complete, which will be run and insert the
3566 * corresponding extent items into the extent tree when
3567 * we commit the transaction they used when running
3568 * inode.c:btrfs_finish_ordered_io(). We later use
3569 * the commit root of the extent tree to find extents
3570 * to copy from the srcdev into the tgtdev, and we don't
3571 * want to miss any new extents.
3572 */
3573 btrfs_wait_block_group_reservations(cache);
3574 btrfs_wait_nocow_writers(cache);
3575 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3576 cache->key.objectid,
3577 cache->key.offset);
3578 if (ret > 0) {
3579 struct btrfs_trans_handle *trans;
3580
3581 trans = btrfs_join_transaction(root);
3582 if (IS_ERR(trans))
3583 ret = PTR_ERR(trans);
3584 else
3585 ret = btrfs_commit_transaction(trans);
3586 if (ret) {
3587 scrub_pause_off(fs_info);
3588 btrfs_put_block_group(cache);
3589 break;
3590 }
3591 }
3592 }
3593 scrub_pause_off(fs_info);
3594
3595 if (ret == 0) {
3596 ro_set = 1;
3597 } else if (ret == -ENOSPC) {
3598 /*
3599 * btrfs_inc_block_group_ro return -ENOSPC when it
3600 * failed in creating new chunk for metadata.
3601 * It is not a problem for scrub/replace, because
3602 * metadata are always cowed, and our scrub paused
3603 * commit_transactions.
3604 */
3605 ro_set = 0;
3606 } else {
3607 btrfs_warn(fs_info,
3608 "failed setting block group ro: %d", ret);
3609 btrfs_put_block_group(cache);
3610 break;
3611 }
3612
3613 down_write(&fs_info->dev_replace.rwsem);
3614 dev_replace->cursor_right = found_key.offset + length;
3615 dev_replace->cursor_left = found_key.offset;
3616 dev_replace->item_needs_writeback = 1;
3617 up_write(&dev_replace->rwsem);
3618
3619 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3620 found_key.offset, cache);
3621
3622 /*
3623 * flush, submit all pending read and write bios, afterwards
3624 * wait for them.
3625 * Note that in the dev replace case, a read request causes
3626 * write requests that are submitted in the read completion
3627 * worker. Therefore in the current situation, it is required
3628 * that all write requests are flushed, so that all read and
3629 * write requests are really completed when bios_in_flight
3630 * changes to 0.
3631 */
3632 sctx->flush_all_writes = true;
3633 scrub_submit(sctx);
3634 mutex_lock(&sctx->wr_lock);
3635 scrub_wr_submit(sctx);
3636 mutex_unlock(&sctx->wr_lock);
3637
3638 wait_event(sctx->list_wait,
3639 atomic_read(&sctx->bios_in_flight) == 0);
3640
3641 scrub_pause_on(fs_info);
3642
3643 /*
3644 * must be called before we decrease @scrub_paused.
3645 * make sure we don't block transaction commit while
3646 * we are waiting pending workers finished.
3647 */
3648 wait_event(sctx->list_wait,
3649 atomic_read(&sctx->workers_pending) == 0);
3650 sctx->flush_all_writes = false;
3651
3652 scrub_pause_off(fs_info);
3653
3654 down_write(&fs_info->dev_replace.rwsem);
3655 dev_replace->cursor_left = dev_replace->cursor_right;
3656 dev_replace->item_needs_writeback = 1;
3657 up_write(&fs_info->dev_replace.rwsem);
3658
3659 if (ro_set)
3660 btrfs_dec_block_group_ro(cache);
3661
3662 /*
3663 * We might have prevented the cleaner kthread from deleting
3664 * this block group if it was already unused because we raced
3665 * and set it to RO mode first. So add it back to the unused
3666 * list, otherwise it might not ever be deleted unless a manual
3667 * balance is triggered or it becomes used and unused again.
3668 */
3669 spin_lock(&cache->lock);
3670 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3671 btrfs_block_group_used(&cache->item) == 0) {
3672 spin_unlock(&cache->lock);
3673 btrfs_mark_bg_unused(cache);
3674 } else {
3675 spin_unlock(&cache->lock);
3676 }
3677
3678 btrfs_put_block_group(cache);
3679 if (ret)
3680 break;
3681 if (sctx->is_dev_replace &&
3682 atomic64_read(&dev_replace->num_write_errors) > 0) {
3683 ret = -EIO;
3684 break;
3685 }
3686 if (sctx->stat.malloc_errors > 0) {
3687 ret = -ENOMEM;
3688 break;
3689 }
3690 skip:
3691 key.offset = found_key.offset + length;
3692 btrfs_release_path(path);
3693 }
3694
3695 btrfs_free_path(path);
3696
3697 return ret;
3698 }
3699
3700 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3701 struct btrfs_device *scrub_dev)
3702 {
3703 int i;
3704 u64 bytenr;
3705 u64 gen;
3706 int ret;
3707 struct btrfs_fs_info *fs_info = sctx->fs_info;
3708
3709 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3710 return -EIO;
3711
3712 /* Seed devices of a new filesystem has their own generation. */
3713 if (scrub_dev->fs_devices != fs_info->fs_devices)
3714 gen = scrub_dev->generation;
3715 else
3716 gen = fs_info->last_trans_committed;
3717
3718 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3719 bytenr = btrfs_sb_offset(i);
3720 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3721 scrub_dev->commit_total_bytes)
3722 break;
3723
3724 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3725 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3726 NULL, 1, bytenr);
3727 if (ret)
3728 return ret;
3729 }
3730 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3731
3732 return 0;
3733 }
3734
3735 /*
3736 * get a reference count on fs_info->scrub_workers. start worker if necessary
3737 */
3738 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3739 int is_dev_replace)
3740 {
3741 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3742 int max_active = fs_info->thread_pool_size;
3743
3744 lockdep_assert_held(&fs_info->scrub_lock);
3745
3746 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3747 ASSERT(fs_info->scrub_workers == NULL);
3748 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3749 flags, is_dev_replace ? 1 : max_active, 4);
3750 if (!fs_info->scrub_workers)
3751 goto fail_scrub_workers;
3752
3753 ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3754 fs_info->scrub_wr_completion_workers =
3755 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3756 max_active, 2);
3757 if (!fs_info->scrub_wr_completion_workers)
3758 goto fail_scrub_wr_completion_workers;
3759
3760 ASSERT(fs_info->scrub_parity_workers == NULL);
3761 fs_info->scrub_parity_workers =
3762 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3763 max_active, 2);
3764 if (!fs_info->scrub_parity_workers)
3765 goto fail_scrub_parity_workers;
3766
3767 refcount_set(&fs_info->scrub_workers_refcnt, 1);
3768 } else {
3769 refcount_inc(&fs_info->scrub_workers_refcnt);
3770 }
3771 return 0;
3772
3773 fail_scrub_parity_workers:
3774 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3775 fail_scrub_wr_completion_workers:
3776 btrfs_destroy_workqueue(fs_info->scrub_workers);
3777 fail_scrub_workers:
3778 return -ENOMEM;
3779 }
3780
3781 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3782 u64 end, struct btrfs_scrub_progress *progress,
3783 int readonly, int is_dev_replace)
3784 {
3785 struct scrub_ctx *sctx;
3786 int ret;
3787 struct btrfs_device *dev;
3788 unsigned int nofs_flag;
3789 struct btrfs_workqueue *scrub_workers = NULL;
3790 struct btrfs_workqueue *scrub_wr_comp = NULL;
3791 struct btrfs_workqueue *scrub_parity = NULL;
3792
3793 if (btrfs_fs_closing(fs_info))
3794 return -EAGAIN;
3795
3796 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3797 /*
3798 * in this case scrub is unable to calculate the checksum
3799 * the way scrub is implemented. Do not handle this
3800 * situation at all because it won't ever happen.
3801 */
3802 btrfs_err(fs_info,
3803 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3804 fs_info->nodesize,
3805 BTRFS_STRIPE_LEN);
3806 return -EINVAL;
3807 }
3808
3809 if (fs_info->sectorsize != PAGE_SIZE) {
3810 /* not supported for data w/o checksums */
3811 btrfs_err_rl(fs_info,
3812 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3813 fs_info->sectorsize, PAGE_SIZE);
3814 return -EINVAL;
3815 }
3816
3817 if (fs_info->nodesize >
3818 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3819 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3820 /*
3821 * would exhaust the array bounds of pagev member in
3822 * struct scrub_block
3823 */
3824 btrfs_err(fs_info,
3825 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3826 fs_info->nodesize,
3827 SCRUB_MAX_PAGES_PER_BLOCK,
3828 fs_info->sectorsize,
3829 SCRUB_MAX_PAGES_PER_BLOCK);
3830 return -EINVAL;
3831 }
3832
3833 /* Allocate outside of device_list_mutex */
3834 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3835 if (IS_ERR(sctx))
3836 return PTR_ERR(sctx);
3837
3838 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3839 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3840 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3841 !is_dev_replace)) {
3842 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3843 ret = -ENODEV;
3844 goto out_free_ctx;
3845 }
3846
3847 if (!is_dev_replace && !readonly &&
3848 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3849 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3850 btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3851 rcu_str_deref(dev->name));
3852 ret = -EROFS;
3853 goto out_free_ctx;
3854 }
3855
3856 mutex_lock(&fs_info->scrub_lock);
3857 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3858 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3859 mutex_unlock(&fs_info->scrub_lock);
3860 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3861 ret = -EIO;
3862 goto out_free_ctx;
3863 }
3864
3865 down_read(&fs_info->dev_replace.rwsem);
3866 if (dev->scrub_ctx ||
3867 (!is_dev_replace &&
3868 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3869 up_read(&fs_info->dev_replace.rwsem);
3870 mutex_unlock(&fs_info->scrub_lock);
3871 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3872 ret = -EINPROGRESS;
3873 goto out_free_ctx;
3874 }
3875 up_read(&fs_info->dev_replace.rwsem);
3876
3877 ret = scrub_workers_get(fs_info, is_dev_replace);
3878 if (ret) {
3879 mutex_unlock(&fs_info->scrub_lock);
3880 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3881 goto out_free_ctx;
3882 }
3883
3884 sctx->readonly = readonly;
3885 dev->scrub_ctx = sctx;
3886 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3887
3888 /*
3889 * checking @scrub_pause_req here, we can avoid
3890 * race between committing transaction and scrubbing.
3891 */
3892 __scrub_blocked_if_needed(fs_info);
3893 atomic_inc(&fs_info->scrubs_running);
3894 mutex_unlock(&fs_info->scrub_lock);
3895
3896 /*
3897 * In order to avoid deadlock with reclaim when there is a transaction
3898 * trying to pause scrub, make sure we use GFP_NOFS for all the
3899 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3900 * invoked by our callees. The pausing request is done when the
3901 * transaction commit starts, and it blocks the transaction until scrub
3902 * is paused (done at specific points at scrub_stripe() or right above
3903 * before incrementing fs_info->scrubs_running).
3904 */
3905 nofs_flag = memalloc_nofs_save();
3906 if (!is_dev_replace) {
3907 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3908 /*
3909 * by holding device list mutex, we can
3910 * kick off writing super in log tree sync.
3911 */
3912 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3913 ret = scrub_supers(sctx, dev);
3914 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3915 }
3916
3917 if (!ret)
3918 ret = scrub_enumerate_chunks(sctx, dev, start, end);
3919 memalloc_nofs_restore(nofs_flag);
3920
3921 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3922 atomic_dec(&fs_info->scrubs_running);
3923 wake_up(&fs_info->scrub_pause_wait);
3924
3925 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3926
3927 if (progress)
3928 memcpy(progress, &sctx->stat, sizeof(*progress));
3929
3930 if (!is_dev_replace)
3931 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3932 ret ? "not finished" : "finished", devid, ret);
3933
3934 mutex_lock(&fs_info->scrub_lock);
3935 dev->scrub_ctx = NULL;
3936 if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3937 scrub_workers = fs_info->scrub_workers;
3938 scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3939 scrub_parity = fs_info->scrub_parity_workers;
3940
3941 fs_info->scrub_workers = NULL;
3942 fs_info->scrub_wr_completion_workers = NULL;
3943 fs_info->scrub_parity_workers = NULL;
3944 }
3945 mutex_unlock(&fs_info->scrub_lock);
3946
3947 btrfs_destroy_workqueue(scrub_workers);
3948 btrfs_destroy_workqueue(scrub_wr_comp);
3949 btrfs_destroy_workqueue(scrub_parity);
3950 scrub_put_ctx(sctx);
3951
3952 return ret;
3953
3954 out_free_ctx:
3955 scrub_free_ctx(sctx);
3956
3957 return ret;
3958 }
3959
3960 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3961 {
3962 mutex_lock(&fs_info->scrub_lock);
3963 atomic_inc(&fs_info->scrub_pause_req);
3964 while (atomic_read(&fs_info->scrubs_paused) !=
3965 atomic_read(&fs_info->scrubs_running)) {
3966 mutex_unlock(&fs_info->scrub_lock);
3967 wait_event(fs_info->scrub_pause_wait,
3968 atomic_read(&fs_info->scrubs_paused) ==
3969 atomic_read(&fs_info->scrubs_running));
3970 mutex_lock(&fs_info->scrub_lock);
3971 }
3972 mutex_unlock(&fs_info->scrub_lock);
3973 }
3974
3975 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3976 {
3977 atomic_dec(&fs_info->scrub_pause_req);
3978 wake_up(&fs_info->scrub_pause_wait);
3979 }
3980
3981 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3982 {
3983 mutex_lock(&fs_info->scrub_lock);
3984 if (!atomic_read(&fs_info->scrubs_running)) {
3985 mutex_unlock(&fs_info->scrub_lock);
3986 return -ENOTCONN;
3987 }
3988
3989 atomic_inc(&fs_info->scrub_cancel_req);
3990 while (atomic_read(&fs_info->scrubs_running)) {
3991 mutex_unlock(&fs_info->scrub_lock);
3992 wait_event(fs_info->scrub_pause_wait,
3993 atomic_read(&fs_info->scrubs_running) == 0);
3994 mutex_lock(&fs_info->scrub_lock);
3995 }
3996 atomic_dec(&fs_info->scrub_cancel_req);
3997 mutex_unlock(&fs_info->scrub_lock);
3998
3999 return 0;
4000 }
4001
4002 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4003 {
4004 struct btrfs_fs_info *fs_info = dev->fs_info;
4005 struct scrub_ctx *sctx;
4006
4007 mutex_lock(&fs_info->scrub_lock);
4008 sctx = dev->scrub_ctx;
4009 if (!sctx) {
4010 mutex_unlock(&fs_info->scrub_lock);
4011 return -ENOTCONN;
4012 }
4013 atomic_inc(&sctx->cancel_req);
4014 while (dev->scrub_ctx) {
4015 mutex_unlock(&fs_info->scrub_lock);
4016 wait_event(fs_info->scrub_pause_wait,
4017 dev->scrub_ctx == NULL);
4018 mutex_lock(&fs_info->scrub_lock);
4019 }
4020 mutex_unlock(&fs_info->scrub_lock);
4021
4022 return 0;
4023 }
4024
4025 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4026 struct btrfs_scrub_progress *progress)
4027 {
4028 struct btrfs_device *dev;
4029 struct scrub_ctx *sctx = NULL;
4030
4031 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4032 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4033 if (dev)
4034 sctx = dev->scrub_ctx;
4035 if (sctx)
4036 memcpy(progress, &sctx->stat, sizeof(*progress));
4037 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4038
4039 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4040 }
4041
4042 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4043 u64 extent_logical, u64 extent_len,
4044 u64 *extent_physical,
4045 struct btrfs_device **extent_dev,
4046 int *extent_mirror_num)
4047 {
4048 u64 mapped_length;
4049 struct btrfs_bio *bbio = NULL;
4050 int ret;
4051
4052 mapped_length = extent_len;
4053 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4054 &mapped_length, &bbio, 0);
4055 if (ret || !bbio || mapped_length < extent_len ||
4056 !bbio->stripes[0].dev->bdev) {
4057 btrfs_put_bbio(bbio);
4058 return;
4059 }
4060
4061 *extent_physical = bbio->stripes[0].physical;
4062 *extent_mirror_num = bbio->mirror_num;
4063 *extent_dev = bbio->stripes[0].dev;
4064 btrfs_put_bbio(bbio);
4065 }