2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
24 #include "ordered-data.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
66 struct scrub_recover
{
68 struct btrfs_bio
*bbio
;
73 struct scrub_block
*sblock
;
75 struct btrfs_device
*dev
;
76 struct list_head list
;
77 u64 flags
; /* extent flags */
81 u64 physical_for_dev_replace
;
84 unsigned int mirror_num
:8;
85 unsigned int have_csum
:1;
86 unsigned int io_error
:1;
88 u8 csum
[BTRFS_CSUM_SIZE
];
90 struct scrub_recover
*recover
;
95 struct scrub_ctx
*sctx
;
96 struct btrfs_device
*dev
;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 struct scrub_page
*pagev
[SCRUB_PAGES_PER_WR_BIO
];
104 struct scrub_page
*pagev
[SCRUB_PAGES_PER_RD_BIO
];
108 struct btrfs_work work
;
112 struct scrub_page
*pagev
[SCRUB_MAX_PAGES_PER_BLOCK
];
114 atomic_t outstanding_pages
;
115 atomic_t refs
; /* free mem on transition to zero */
116 struct scrub_ctx
*sctx
;
117 struct scrub_parity
*sparity
;
119 unsigned int header_error
:1;
120 unsigned int checksum_error
:1;
121 unsigned int no_io_error_seen
:1;
122 unsigned int generation_error
:1; /* also sets header_error */
124 /* The following is for the data used to check parity */
125 /* It is for the data with checksum */
126 unsigned int data_corrected
:1;
128 struct btrfs_work work
;
131 /* Used for the chunks with parity stripe such RAID5/6 */
132 struct scrub_parity
{
133 struct scrub_ctx
*sctx
;
135 struct btrfs_device
*scrub_dev
;
147 struct list_head spages
;
149 /* Work of parity check and repair */
150 struct btrfs_work work
;
152 /* Mark the parity blocks which have data */
153 unsigned long *dbitmap
;
156 * Mark the parity blocks which have data, but errors happen when
157 * read data or check data
159 unsigned long *ebitmap
;
161 unsigned long bitmap
[0];
164 struct scrub_wr_ctx
{
165 struct scrub_bio
*wr_curr_bio
;
166 struct btrfs_device
*tgtdev
;
167 int pages_per_wr_bio
; /* <= SCRUB_PAGES_PER_WR_BIO */
168 atomic_t flush_all_writes
;
169 struct mutex wr_lock
;
173 struct scrub_bio
*bios
[SCRUB_BIOS_PER_SCTX
];
174 struct btrfs_fs_info
*fs_info
;
177 atomic_t bios_in_flight
;
178 atomic_t workers_pending
;
179 spinlock_t list_lock
;
180 wait_queue_head_t list_wait
;
182 struct list_head csum_list
;
185 int pages_per_rd_bio
;
190 struct scrub_wr_ctx wr_ctx
;
195 struct btrfs_scrub_progress stat
;
196 spinlock_t stat_lock
;
199 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 * decrement bios_in_flight and workers_pending and then do a wakeup
201 * on the list_wait wait queue. We must ensure the main scrub task
202 * doesn't free the scrub context before or while the workers are
203 * doing the wakeup() call.
208 struct scrub_fixup_nodatasum
{
209 struct scrub_ctx
*sctx
;
210 struct btrfs_device
*dev
;
212 struct btrfs_root
*root
;
213 struct btrfs_work work
;
217 struct scrub_nocow_inode
{
221 struct list_head list
;
224 struct scrub_copy_nocow_ctx
{
225 struct scrub_ctx
*sctx
;
229 u64 physical_for_dev_replace
;
230 struct list_head inodes
;
231 struct btrfs_work work
;
234 struct scrub_warning
{
235 struct btrfs_path
*path
;
236 u64 extent_item_size
;
240 struct btrfs_device
*dev
;
243 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
);
244 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
);
245 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
);
246 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
);
247 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
);
248 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
249 struct scrub_block
*sblocks_for_recheck
);
250 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
251 struct scrub_block
*sblock
,
252 int retry_failed_mirror
);
253 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
);
254 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
255 struct scrub_block
*sblock_good
);
256 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
257 struct scrub_block
*sblock_good
,
258 int page_num
, int force_write
);
259 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
);
260 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
262 static int scrub_checksum_data(struct scrub_block
*sblock
);
263 static int scrub_checksum_tree_block(struct scrub_block
*sblock
);
264 static int scrub_checksum_super(struct scrub_block
*sblock
);
265 static void scrub_block_get(struct scrub_block
*sblock
);
266 static void scrub_block_put(struct scrub_block
*sblock
);
267 static void scrub_page_get(struct scrub_page
*spage
);
268 static void scrub_page_put(struct scrub_page
*spage
);
269 static void scrub_parity_get(struct scrub_parity
*sparity
);
270 static void scrub_parity_put(struct scrub_parity
*sparity
);
271 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
272 struct scrub_page
*spage
);
273 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
274 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
275 u64 gen
, int mirror_num
, u8
*csum
, int force
,
276 u64 physical_for_dev_replace
);
277 static void scrub_bio_end_io(struct bio
*bio
);
278 static void scrub_bio_end_io_worker(struct btrfs_work
*work
);
279 static void scrub_block_complete(struct scrub_block
*sblock
);
280 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
281 u64 extent_logical
, u64 extent_len
,
282 u64
*extent_physical
,
283 struct btrfs_device
**extent_dev
,
284 int *extent_mirror_num
);
285 static int scrub_setup_wr_ctx(struct scrub_wr_ctx
*wr_ctx
,
286 struct btrfs_device
*dev
,
288 static void scrub_free_wr_ctx(struct scrub_wr_ctx
*wr_ctx
);
289 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
290 struct scrub_page
*spage
);
291 static void scrub_wr_submit(struct scrub_ctx
*sctx
);
292 static void scrub_wr_bio_end_io(struct bio
*bio
);
293 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
);
294 static int write_page_nocow(struct scrub_ctx
*sctx
,
295 u64 physical_for_dev_replace
, struct page
*page
);
296 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
297 struct scrub_copy_nocow_ctx
*ctx
);
298 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
299 int mirror_num
, u64 physical_for_dev_replace
);
300 static void copy_nocow_pages_worker(struct btrfs_work
*work
);
301 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
302 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
303 static void scrub_put_ctx(struct scrub_ctx
*sctx
);
306 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
)
308 atomic_inc(&sctx
->refs
);
309 atomic_inc(&sctx
->bios_in_flight
);
312 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
)
314 atomic_dec(&sctx
->bios_in_flight
);
315 wake_up(&sctx
->list_wait
);
319 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
321 while (atomic_read(&fs_info
->scrub_pause_req
)) {
322 mutex_unlock(&fs_info
->scrub_lock
);
323 wait_event(fs_info
->scrub_pause_wait
,
324 atomic_read(&fs_info
->scrub_pause_req
) == 0);
325 mutex_lock(&fs_info
->scrub_lock
);
329 static void scrub_pause_on(struct btrfs_fs_info
*fs_info
)
331 atomic_inc(&fs_info
->scrubs_paused
);
332 wake_up(&fs_info
->scrub_pause_wait
);
335 static void scrub_pause_off(struct btrfs_fs_info
*fs_info
)
337 mutex_lock(&fs_info
->scrub_lock
);
338 __scrub_blocked_if_needed(fs_info
);
339 atomic_dec(&fs_info
->scrubs_paused
);
340 mutex_unlock(&fs_info
->scrub_lock
);
342 wake_up(&fs_info
->scrub_pause_wait
);
345 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
347 scrub_pause_on(fs_info
);
348 scrub_pause_off(fs_info
);
352 * used for workers that require transaction commits (i.e., for the
355 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
)
357 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
359 atomic_inc(&sctx
->refs
);
361 * increment scrubs_running to prevent cancel requests from
362 * completing as long as a worker is running. we must also
363 * increment scrubs_paused to prevent deadlocking on pause
364 * requests used for transactions commits (as the worker uses a
365 * transaction context). it is safe to regard the worker
366 * as paused for all matters practical. effectively, we only
367 * avoid cancellation requests from completing.
369 mutex_lock(&fs_info
->scrub_lock
);
370 atomic_inc(&fs_info
->scrubs_running
);
371 atomic_inc(&fs_info
->scrubs_paused
);
372 mutex_unlock(&fs_info
->scrub_lock
);
375 * check if @scrubs_running=@scrubs_paused condition
376 * inside wait_event() is not an atomic operation.
377 * which means we may inc/dec @scrub_running/paused
378 * at any time. Let's wake up @scrub_pause_wait as
379 * much as we can to let commit transaction blocked less.
381 wake_up(&fs_info
->scrub_pause_wait
);
383 atomic_inc(&sctx
->workers_pending
);
386 /* used for workers that require transaction commits */
387 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
)
389 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
392 * see scrub_pending_trans_workers_inc() why we're pretending
393 * to be paused in the scrub counters
395 mutex_lock(&fs_info
->scrub_lock
);
396 atomic_dec(&fs_info
->scrubs_running
);
397 atomic_dec(&fs_info
->scrubs_paused
);
398 mutex_unlock(&fs_info
->scrub_lock
);
399 atomic_dec(&sctx
->workers_pending
);
400 wake_up(&fs_info
->scrub_pause_wait
);
401 wake_up(&sctx
->list_wait
);
405 static void scrub_free_csums(struct scrub_ctx
*sctx
)
407 while (!list_empty(&sctx
->csum_list
)) {
408 struct btrfs_ordered_sum
*sum
;
409 sum
= list_first_entry(&sctx
->csum_list
,
410 struct btrfs_ordered_sum
, list
);
411 list_del(&sum
->list
);
416 static noinline_for_stack
void scrub_free_ctx(struct scrub_ctx
*sctx
)
423 scrub_free_wr_ctx(&sctx
->wr_ctx
);
425 /* this can happen when scrub is cancelled */
426 if (sctx
->curr
!= -1) {
427 struct scrub_bio
*sbio
= sctx
->bios
[sctx
->curr
];
429 for (i
= 0; i
< sbio
->page_count
; i
++) {
430 WARN_ON(!sbio
->pagev
[i
]->page
);
431 scrub_block_put(sbio
->pagev
[i
]->sblock
);
436 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
437 struct scrub_bio
*sbio
= sctx
->bios
[i
];
444 scrub_free_csums(sctx
);
448 static void scrub_put_ctx(struct scrub_ctx
*sctx
)
450 if (atomic_dec_and_test(&sctx
->refs
))
451 scrub_free_ctx(sctx
);
454 static noinline_for_stack
455 struct scrub_ctx
*scrub_setup_ctx(struct btrfs_device
*dev
, int is_dev_replace
)
457 struct scrub_ctx
*sctx
;
459 struct btrfs_fs_info
*fs_info
= dev
->fs_info
;
462 sctx
= kzalloc(sizeof(*sctx
), GFP_KERNEL
);
465 atomic_set(&sctx
->refs
, 1);
466 sctx
->is_dev_replace
= is_dev_replace
;
467 sctx
->pages_per_rd_bio
= SCRUB_PAGES_PER_RD_BIO
;
469 sctx
->fs_info
= dev
->fs_info
;
470 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
471 struct scrub_bio
*sbio
;
473 sbio
= kzalloc(sizeof(*sbio
), GFP_KERNEL
);
476 sctx
->bios
[i
] = sbio
;
480 sbio
->page_count
= 0;
481 btrfs_init_work(&sbio
->work
, btrfs_scrub_helper
,
482 scrub_bio_end_io_worker
, NULL
, NULL
);
484 if (i
!= SCRUB_BIOS_PER_SCTX
- 1)
485 sctx
->bios
[i
]->next_free
= i
+ 1;
487 sctx
->bios
[i
]->next_free
= -1;
489 sctx
->first_free
= 0;
490 sctx
->nodesize
= fs_info
->nodesize
;
491 sctx
->sectorsize
= fs_info
->sectorsize
;
492 atomic_set(&sctx
->bios_in_flight
, 0);
493 atomic_set(&sctx
->workers_pending
, 0);
494 atomic_set(&sctx
->cancel_req
, 0);
495 sctx
->csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
496 INIT_LIST_HEAD(&sctx
->csum_list
);
498 spin_lock_init(&sctx
->list_lock
);
499 spin_lock_init(&sctx
->stat_lock
);
500 init_waitqueue_head(&sctx
->list_wait
);
502 ret
= scrub_setup_wr_ctx(&sctx
->wr_ctx
,
503 fs_info
->dev_replace
.tgtdev
, is_dev_replace
);
505 scrub_free_ctx(sctx
);
511 scrub_free_ctx(sctx
);
512 return ERR_PTR(-ENOMEM
);
515 static int scrub_print_warning_inode(u64 inum
, u64 offset
, u64 root
,
522 struct extent_buffer
*eb
;
523 struct btrfs_inode_item
*inode_item
;
524 struct scrub_warning
*swarn
= warn_ctx
;
525 struct btrfs_fs_info
*fs_info
= swarn
->dev
->fs_info
;
526 struct inode_fs_paths
*ipath
= NULL
;
527 struct btrfs_root
*local_root
;
528 struct btrfs_key root_key
;
529 struct btrfs_key key
;
531 root_key
.objectid
= root
;
532 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
533 root_key
.offset
= (u64
)-1;
534 local_root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
535 if (IS_ERR(local_root
)) {
536 ret
= PTR_ERR(local_root
);
541 * this makes the path point to (inum INODE_ITEM ioff)
544 key
.type
= BTRFS_INODE_ITEM_KEY
;
547 ret
= btrfs_search_slot(NULL
, local_root
, &key
, swarn
->path
, 0, 0);
549 btrfs_release_path(swarn
->path
);
553 eb
= swarn
->path
->nodes
[0];
554 inode_item
= btrfs_item_ptr(eb
, swarn
->path
->slots
[0],
555 struct btrfs_inode_item
);
556 isize
= btrfs_inode_size(eb
, inode_item
);
557 nlink
= btrfs_inode_nlink(eb
, inode_item
);
558 btrfs_release_path(swarn
->path
);
560 ipath
= init_ipath(4096, local_root
, swarn
->path
);
562 ret
= PTR_ERR(ipath
);
566 ret
= paths_from_inode(inum
, ipath
);
572 * we deliberately ignore the bit ipath might have been too small to
573 * hold all of the paths here
575 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
)
576 btrfs_warn_in_rcu(fs_info
,
577 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
578 swarn
->errstr
, swarn
->logical
,
579 rcu_str_deref(swarn
->dev
->name
),
580 (unsigned long long)swarn
->sector
,
582 min(isize
- offset
, (u64
)PAGE_SIZE
), nlink
,
583 (char *)(unsigned long)ipath
->fspath
->val
[i
]);
589 btrfs_warn_in_rcu(fs_info
,
590 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
591 swarn
->errstr
, swarn
->logical
,
592 rcu_str_deref(swarn
->dev
->name
),
593 (unsigned long long)swarn
->sector
,
594 root
, inum
, offset
, ret
);
600 static void scrub_print_warning(const char *errstr
, struct scrub_block
*sblock
)
602 struct btrfs_device
*dev
;
603 struct btrfs_fs_info
*fs_info
;
604 struct btrfs_path
*path
;
605 struct btrfs_key found_key
;
606 struct extent_buffer
*eb
;
607 struct btrfs_extent_item
*ei
;
608 struct scrub_warning swarn
;
609 unsigned long ptr
= 0;
617 WARN_ON(sblock
->page_count
< 1);
618 dev
= sblock
->pagev
[0]->dev
;
619 fs_info
= sblock
->sctx
->fs_info
;
621 path
= btrfs_alloc_path();
625 swarn
.sector
= (sblock
->pagev
[0]->physical
) >> 9;
626 swarn
.logical
= sblock
->pagev
[0]->logical
;
627 swarn
.errstr
= errstr
;
630 ret
= extent_from_logical(fs_info
, swarn
.logical
, path
, &found_key
,
635 extent_item_pos
= swarn
.logical
- found_key
.objectid
;
636 swarn
.extent_item_size
= found_key
.offset
;
639 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
640 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
642 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
644 ret
= tree_backref_for_extent(&ptr
, eb
, &found_key
, ei
,
645 item_size
, &ref_root
,
647 btrfs_warn_in_rcu(fs_info
,
648 "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
649 errstr
, swarn
.logical
,
650 rcu_str_deref(dev
->name
),
651 (unsigned long long)swarn
.sector
,
652 ref_level
? "node" : "leaf",
653 ret
< 0 ? -1 : ref_level
,
654 ret
< 0 ? -1 : ref_root
);
656 btrfs_release_path(path
);
658 btrfs_release_path(path
);
661 iterate_extent_inodes(fs_info
, found_key
.objectid
,
663 scrub_print_warning_inode
, &swarn
);
667 btrfs_free_path(path
);
670 static int scrub_fixup_readpage(u64 inum
, u64 offset
, u64 root
, void *fixup_ctx
)
672 struct page
*page
= NULL
;
674 struct scrub_fixup_nodatasum
*fixup
= fixup_ctx
;
677 struct btrfs_key key
;
678 struct inode
*inode
= NULL
;
679 struct btrfs_fs_info
*fs_info
;
680 u64 end
= offset
+ PAGE_SIZE
- 1;
681 struct btrfs_root
*local_root
;
685 key
.type
= BTRFS_ROOT_ITEM_KEY
;
686 key
.offset
= (u64
)-1;
688 fs_info
= fixup
->root
->fs_info
;
689 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
691 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
692 if (IS_ERR(local_root
)) {
693 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
694 return PTR_ERR(local_root
);
697 key
.type
= BTRFS_INODE_ITEM_KEY
;
700 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
701 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
703 return PTR_ERR(inode
);
705 index
= offset
>> PAGE_SHIFT
;
707 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
713 if (PageUptodate(page
)) {
714 if (PageDirty(page
)) {
716 * we need to write the data to the defect sector. the
717 * data that was in that sector is not in memory,
718 * because the page was modified. we must not write the
719 * modified page to that sector.
721 * TODO: what could be done here: wait for the delalloc
722 * runner to write out that page (might involve
723 * COW) and see whether the sector is still
724 * referenced afterwards.
726 * For the meantime, we'll treat this error
727 * incorrectable, although there is a chance that a
728 * later scrub will find the bad sector again and that
729 * there's no dirty page in memory, then.
734 ret
= repair_io_failure(inode
, offset
, PAGE_SIZE
,
735 fixup
->logical
, page
,
736 offset
- page_offset(page
),
742 * we need to get good data first. the general readpage path
743 * will call repair_io_failure for us, we just have to make
744 * sure we read the bad mirror.
746 ret
= set_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
749 /* set_extent_bits should give proper error */
756 ret
= extent_read_full_page(&BTRFS_I(inode
)->io_tree
, page
,
759 wait_on_page_locked(page
);
761 corrected
= !test_range_bit(&BTRFS_I(inode
)->io_tree
, offset
,
762 end
, EXTENT_DAMAGED
, 0, NULL
);
764 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
777 if (ret
== 0 && corrected
) {
779 * we only need to call readpage for one of the inodes belonging
780 * to this extent. so make iterate_extent_inodes stop
788 static void scrub_fixup_nodatasum(struct btrfs_work
*work
)
790 struct btrfs_fs_info
*fs_info
;
792 struct scrub_fixup_nodatasum
*fixup
;
793 struct scrub_ctx
*sctx
;
794 struct btrfs_trans_handle
*trans
= NULL
;
795 struct btrfs_path
*path
;
796 int uncorrectable
= 0;
798 fixup
= container_of(work
, struct scrub_fixup_nodatasum
, work
);
800 fs_info
= fixup
->root
->fs_info
;
802 path
= btrfs_alloc_path();
804 spin_lock(&sctx
->stat_lock
);
805 ++sctx
->stat
.malloc_errors
;
806 spin_unlock(&sctx
->stat_lock
);
811 trans
= btrfs_join_transaction(fixup
->root
);
818 * the idea is to trigger a regular read through the standard path. we
819 * read a page from the (failed) logical address by specifying the
820 * corresponding copynum of the failed sector. thus, that readpage is
822 * that is the point where on-the-fly error correction will kick in
823 * (once it's finished) and rewrite the failed sector if a good copy
826 ret
= iterate_inodes_from_logical(fixup
->logical
, fs_info
, path
,
827 scrub_fixup_readpage
, fixup
);
834 spin_lock(&sctx
->stat_lock
);
835 ++sctx
->stat
.corrected_errors
;
836 spin_unlock(&sctx
->stat_lock
);
839 if (trans
&& !IS_ERR(trans
))
840 btrfs_end_transaction(trans
);
842 spin_lock(&sctx
->stat_lock
);
843 ++sctx
->stat
.uncorrectable_errors
;
844 spin_unlock(&sctx
->stat_lock
);
845 btrfs_dev_replace_stats_inc(
846 &fs_info
->dev_replace
.num_uncorrectable_read_errors
);
847 btrfs_err_rl_in_rcu(fs_info
,
848 "unable to fixup (nodatasum) error at logical %llu on dev %s",
849 fixup
->logical
, rcu_str_deref(fixup
->dev
->name
));
852 btrfs_free_path(path
);
855 scrub_pending_trans_workers_dec(sctx
);
858 static inline void scrub_get_recover(struct scrub_recover
*recover
)
860 atomic_inc(&recover
->refs
);
863 static inline void scrub_put_recover(struct scrub_recover
*recover
)
865 if (atomic_dec_and_test(&recover
->refs
)) {
866 btrfs_put_bbio(recover
->bbio
);
872 * scrub_handle_errored_block gets called when either verification of the
873 * pages failed or the bio failed to read, e.g. with EIO. In the latter
874 * case, this function handles all pages in the bio, even though only one
876 * The goal of this function is to repair the errored block by using the
877 * contents of one of the mirrors.
879 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
)
881 struct scrub_ctx
*sctx
= sblock_to_check
->sctx
;
882 struct btrfs_device
*dev
;
883 struct btrfs_fs_info
*fs_info
;
886 unsigned int failed_mirror_index
;
887 unsigned int is_metadata
;
888 unsigned int have_csum
;
889 struct scrub_block
*sblocks_for_recheck
; /* holds one for each mirror */
890 struct scrub_block
*sblock_bad
;
895 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
896 DEFAULT_RATELIMIT_BURST
);
898 BUG_ON(sblock_to_check
->page_count
< 1);
899 fs_info
= sctx
->fs_info
;
900 if (sblock_to_check
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_SUPER
) {
902 * if we find an error in a super block, we just report it.
903 * They will get written with the next transaction commit
906 spin_lock(&sctx
->stat_lock
);
907 ++sctx
->stat
.super_errors
;
908 spin_unlock(&sctx
->stat_lock
);
911 length
= sblock_to_check
->page_count
* PAGE_SIZE
;
912 logical
= sblock_to_check
->pagev
[0]->logical
;
913 BUG_ON(sblock_to_check
->pagev
[0]->mirror_num
< 1);
914 failed_mirror_index
= sblock_to_check
->pagev
[0]->mirror_num
- 1;
915 is_metadata
= !(sblock_to_check
->pagev
[0]->flags
&
916 BTRFS_EXTENT_FLAG_DATA
);
917 have_csum
= sblock_to_check
->pagev
[0]->have_csum
;
918 dev
= sblock_to_check
->pagev
[0]->dev
;
920 if (sctx
->is_dev_replace
&& !is_metadata
&& !have_csum
) {
921 sblocks_for_recheck
= NULL
;
926 * read all mirrors one after the other. This includes to
927 * re-read the extent or metadata block that failed (that was
928 * the cause that this fixup code is called) another time,
929 * page by page this time in order to know which pages
930 * caused I/O errors and which ones are good (for all mirrors).
931 * It is the goal to handle the situation when more than one
932 * mirror contains I/O errors, but the errors do not
933 * overlap, i.e. the data can be repaired by selecting the
934 * pages from those mirrors without I/O error on the
935 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
936 * would be that mirror #1 has an I/O error on the first page,
937 * the second page is good, and mirror #2 has an I/O error on
938 * the second page, but the first page is good.
939 * Then the first page of the first mirror can be repaired by
940 * taking the first page of the second mirror, and the
941 * second page of the second mirror can be repaired by
942 * copying the contents of the 2nd page of the 1st mirror.
943 * One more note: if the pages of one mirror contain I/O
944 * errors, the checksum cannot be verified. In order to get
945 * the best data for repairing, the first attempt is to find
946 * a mirror without I/O errors and with a validated checksum.
947 * Only if this is not possible, the pages are picked from
948 * mirrors with I/O errors without considering the checksum.
949 * If the latter is the case, at the end, the checksum of the
950 * repaired area is verified in order to correctly maintain
954 sblocks_for_recheck
= kcalloc(BTRFS_MAX_MIRRORS
,
955 sizeof(*sblocks_for_recheck
), GFP_NOFS
);
956 if (!sblocks_for_recheck
) {
957 spin_lock(&sctx
->stat_lock
);
958 sctx
->stat
.malloc_errors
++;
959 sctx
->stat
.read_errors
++;
960 sctx
->stat
.uncorrectable_errors
++;
961 spin_unlock(&sctx
->stat_lock
);
962 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
966 /* setup the context, map the logical blocks and alloc the pages */
967 ret
= scrub_setup_recheck_block(sblock_to_check
, sblocks_for_recheck
);
969 spin_lock(&sctx
->stat_lock
);
970 sctx
->stat
.read_errors
++;
971 sctx
->stat
.uncorrectable_errors
++;
972 spin_unlock(&sctx
->stat_lock
);
973 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
976 BUG_ON(failed_mirror_index
>= BTRFS_MAX_MIRRORS
);
977 sblock_bad
= sblocks_for_recheck
+ failed_mirror_index
;
979 /* build and submit the bios for the failed mirror, check checksums */
980 scrub_recheck_block(fs_info
, sblock_bad
, 1);
982 if (!sblock_bad
->header_error
&& !sblock_bad
->checksum_error
&&
983 sblock_bad
->no_io_error_seen
) {
985 * the error disappeared after reading page by page, or
986 * the area was part of a huge bio and other parts of the
987 * bio caused I/O errors, or the block layer merged several
988 * read requests into one and the error is caused by a
989 * different bio (usually one of the two latter cases is
992 spin_lock(&sctx
->stat_lock
);
993 sctx
->stat
.unverified_errors
++;
994 sblock_to_check
->data_corrected
= 1;
995 spin_unlock(&sctx
->stat_lock
);
997 if (sctx
->is_dev_replace
)
998 scrub_write_block_to_dev_replace(sblock_bad
);
1002 if (!sblock_bad
->no_io_error_seen
) {
1003 spin_lock(&sctx
->stat_lock
);
1004 sctx
->stat
.read_errors
++;
1005 spin_unlock(&sctx
->stat_lock
);
1006 if (__ratelimit(&_rs
))
1007 scrub_print_warning("i/o error", sblock_to_check
);
1008 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
1009 } else if (sblock_bad
->checksum_error
) {
1010 spin_lock(&sctx
->stat_lock
);
1011 sctx
->stat
.csum_errors
++;
1012 spin_unlock(&sctx
->stat_lock
);
1013 if (__ratelimit(&_rs
))
1014 scrub_print_warning("checksum error", sblock_to_check
);
1015 btrfs_dev_stat_inc_and_print(dev
,
1016 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1017 } else if (sblock_bad
->header_error
) {
1018 spin_lock(&sctx
->stat_lock
);
1019 sctx
->stat
.verify_errors
++;
1020 spin_unlock(&sctx
->stat_lock
);
1021 if (__ratelimit(&_rs
))
1022 scrub_print_warning("checksum/header error",
1024 if (sblock_bad
->generation_error
)
1025 btrfs_dev_stat_inc_and_print(dev
,
1026 BTRFS_DEV_STAT_GENERATION_ERRS
);
1028 btrfs_dev_stat_inc_and_print(dev
,
1029 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1032 if (sctx
->readonly
) {
1033 ASSERT(!sctx
->is_dev_replace
);
1037 if (!is_metadata
&& !have_csum
) {
1038 struct scrub_fixup_nodatasum
*fixup_nodatasum
;
1040 WARN_ON(sctx
->is_dev_replace
);
1045 * !is_metadata and !have_csum, this means that the data
1046 * might not be COWed, that it might be modified
1047 * concurrently. The general strategy to work on the
1048 * commit root does not help in the case when COW is not
1051 fixup_nodatasum
= kzalloc(sizeof(*fixup_nodatasum
), GFP_NOFS
);
1052 if (!fixup_nodatasum
)
1053 goto did_not_correct_error
;
1054 fixup_nodatasum
->sctx
= sctx
;
1055 fixup_nodatasum
->dev
= dev
;
1056 fixup_nodatasum
->logical
= logical
;
1057 fixup_nodatasum
->root
= fs_info
->extent_root
;
1058 fixup_nodatasum
->mirror_num
= failed_mirror_index
+ 1;
1059 scrub_pending_trans_workers_inc(sctx
);
1060 btrfs_init_work(&fixup_nodatasum
->work
, btrfs_scrub_helper
,
1061 scrub_fixup_nodatasum
, NULL
, NULL
);
1062 btrfs_queue_work(fs_info
->scrub_workers
,
1063 &fixup_nodatasum
->work
);
1068 * now build and submit the bios for the other mirrors, check
1070 * First try to pick the mirror which is completely without I/O
1071 * errors and also does not have a checksum error.
1072 * If one is found, and if a checksum is present, the full block
1073 * that is known to contain an error is rewritten. Afterwards
1074 * the block is known to be corrected.
1075 * If a mirror is found which is completely correct, and no
1076 * checksum is present, only those pages are rewritten that had
1077 * an I/O error in the block to be repaired, since it cannot be
1078 * determined, which copy of the other pages is better (and it
1079 * could happen otherwise that a correct page would be
1080 * overwritten by a bad one).
1082 for (mirror_index
= 0;
1083 mirror_index
< BTRFS_MAX_MIRRORS
&&
1084 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1086 struct scrub_block
*sblock_other
;
1088 if (mirror_index
== failed_mirror_index
)
1090 sblock_other
= sblocks_for_recheck
+ mirror_index
;
1092 /* build and submit the bios, check checksums */
1093 scrub_recheck_block(fs_info
, sblock_other
, 0);
1095 if (!sblock_other
->header_error
&&
1096 !sblock_other
->checksum_error
&&
1097 sblock_other
->no_io_error_seen
) {
1098 if (sctx
->is_dev_replace
) {
1099 scrub_write_block_to_dev_replace(sblock_other
);
1100 goto corrected_error
;
1102 ret
= scrub_repair_block_from_good_copy(
1103 sblock_bad
, sblock_other
);
1105 goto corrected_error
;
1110 if (sblock_bad
->no_io_error_seen
&& !sctx
->is_dev_replace
)
1111 goto did_not_correct_error
;
1114 * In case of I/O errors in the area that is supposed to be
1115 * repaired, continue by picking good copies of those pages.
1116 * Select the good pages from mirrors to rewrite bad pages from
1117 * the area to fix. Afterwards verify the checksum of the block
1118 * that is supposed to be repaired. This verification step is
1119 * only done for the purpose of statistic counting and for the
1120 * final scrub report, whether errors remain.
1121 * A perfect algorithm could make use of the checksum and try
1122 * all possible combinations of pages from the different mirrors
1123 * until the checksum verification succeeds. For example, when
1124 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1125 * of mirror #2 is readable but the final checksum test fails,
1126 * then the 2nd page of mirror #3 could be tried, whether now
1127 * the final checksum succeeds. But this would be a rare
1128 * exception and is therefore not implemented. At least it is
1129 * avoided that the good copy is overwritten.
1130 * A more useful improvement would be to pick the sectors
1131 * without I/O error based on sector sizes (512 bytes on legacy
1132 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1133 * mirror could be repaired by taking 512 byte of a different
1134 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1135 * area are unreadable.
1138 for (page_num
= 0; page_num
< sblock_bad
->page_count
;
1140 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1141 struct scrub_block
*sblock_other
= NULL
;
1143 /* skip no-io-error page in scrub */
1144 if (!page_bad
->io_error
&& !sctx
->is_dev_replace
)
1147 /* try to find no-io-error page in mirrors */
1148 if (page_bad
->io_error
) {
1149 for (mirror_index
= 0;
1150 mirror_index
< BTRFS_MAX_MIRRORS
&&
1151 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1153 if (!sblocks_for_recheck
[mirror_index
].
1154 pagev
[page_num
]->io_error
) {
1155 sblock_other
= sblocks_for_recheck
+
1164 if (sctx
->is_dev_replace
) {
1166 * did not find a mirror to fetch the page
1167 * from. scrub_write_page_to_dev_replace()
1168 * handles this case (page->io_error), by
1169 * filling the block with zeros before
1170 * submitting the write request
1173 sblock_other
= sblock_bad
;
1175 if (scrub_write_page_to_dev_replace(sblock_other
,
1177 btrfs_dev_replace_stats_inc(
1178 &fs_info
->dev_replace
.num_write_errors
);
1181 } else if (sblock_other
) {
1182 ret
= scrub_repair_page_from_good_copy(sblock_bad
,
1186 page_bad
->io_error
= 0;
1192 if (success
&& !sctx
->is_dev_replace
) {
1193 if (is_metadata
|| have_csum
) {
1195 * need to verify the checksum now that all
1196 * sectors on disk are repaired (the write
1197 * request for data to be repaired is on its way).
1198 * Just be lazy and use scrub_recheck_block()
1199 * which re-reads the data before the checksum
1200 * is verified, but most likely the data comes out
1201 * of the page cache.
1203 scrub_recheck_block(fs_info
, sblock_bad
, 1);
1204 if (!sblock_bad
->header_error
&&
1205 !sblock_bad
->checksum_error
&&
1206 sblock_bad
->no_io_error_seen
)
1207 goto corrected_error
;
1209 goto did_not_correct_error
;
1212 spin_lock(&sctx
->stat_lock
);
1213 sctx
->stat
.corrected_errors
++;
1214 sblock_to_check
->data_corrected
= 1;
1215 spin_unlock(&sctx
->stat_lock
);
1216 btrfs_err_rl_in_rcu(fs_info
,
1217 "fixed up error at logical %llu on dev %s",
1218 logical
, rcu_str_deref(dev
->name
));
1221 did_not_correct_error
:
1222 spin_lock(&sctx
->stat_lock
);
1223 sctx
->stat
.uncorrectable_errors
++;
1224 spin_unlock(&sctx
->stat_lock
);
1225 btrfs_err_rl_in_rcu(fs_info
,
1226 "unable to fixup (regular) error at logical %llu on dev %s",
1227 logical
, rcu_str_deref(dev
->name
));
1231 if (sblocks_for_recheck
) {
1232 for (mirror_index
= 0; mirror_index
< BTRFS_MAX_MIRRORS
;
1234 struct scrub_block
*sblock
= sblocks_for_recheck
+
1236 struct scrub_recover
*recover
;
1239 for (page_index
= 0; page_index
< sblock
->page_count
;
1241 sblock
->pagev
[page_index
]->sblock
= NULL
;
1242 recover
= sblock
->pagev
[page_index
]->recover
;
1244 scrub_put_recover(recover
);
1245 sblock
->pagev
[page_index
]->recover
=
1248 scrub_page_put(sblock
->pagev
[page_index
]);
1251 kfree(sblocks_for_recheck
);
1257 static inline int scrub_nr_raid_mirrors(struct btrfs_bio
*bbio
)
1259 if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID5
)
1261 else if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID6
)
1264 return (int)bbio
->num_stripes
;
1267 static inline void scrub_stripe_index_and_offset(u64 logical
, u64 map_type
,
1270 int nstripes
, int mirror
,
1276 if (map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
1278 for (i
= 0; i
< nstripes
; i
++) {
1279 if (raid_map
[i
] == RAID6_Q_STRIPE
||
1280 raid_map
[i
] == RAID5_P_STRIPE
)
1283 if (logical
>= raid_map
[i
] &&
1284 logical
< raid_map
[i
] + mapped_length
)
1289 *stripe_offset
= logical
- raid_map
[i
];
1291 /* The other RAID type */
1292 *stripe_index
= mirror
;
1297 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
1298 struct scrub_block
*sblocks_for_recheck
)
1300 struct scrub_ctx
*sctx
= original_sblock
->sctx
;
1301 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
1302 u64 length
= original_sblock
->page_count
* PAGE_SIZE
;
1303 u64 logical
= original_sblock
->pagev
[0]->logical
;
1304 u64 generation
= original_sblock
->pagev
[0]->generation
;
1305 u64 flags
= original_sblock
->pagev
[0]->flags
;
1306 u64 have_csum
= original_sblock
->pagev
[0]->have_csum
;
1307 struct scrub_recover
*recover
;
1308 struct btrfs_bio
*bbio
;
1319 * note: the two members refs and outstanding_pages
1320 * are not used (and not set) in the blocks that are used for
1321 * the recheck procedure
1324 while (length
> 0) {
1325 sublen
= min_t(u64
, length
, PAGE_SIZE
);
1326 mapped_length
= sublen
;
1330 * with a length of PAGE_SIZE, each returned stripe
1331 * represents one mirror
1333 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
1334 logical
, &mapped_length
, &bbio
, 0, 1);
1335 if (ret
|| !bbio
|| mapped_length
< sublen
) {
1336 btrfs_put_bbio(bbio
);
1340 recover
= kzalloc(sizeof(struct scrub_recover
), GFP_NOFS
);
1342 btrfs_put_bbio(bbio
);
1346 atomic_set(&recover
->refs
, 1);
1347 recover
->bbio
= bbio
;
1348 recover
->map_length
= mapped_length
;
1350 BUG_ON(page_index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
1352 nmirrors
= min(scrub_nr_raid_mirrors(bbio
), BTRFS_MAX_MIRRORS
);
1354 for (mirror_index
= 0; mirror_index
< nmirrors
;
1356 struct scrub_block
*sblock
;
1357 struct scrub_page
*page
;
1359 sblock
= sblocks_for_recheck
+ mirror_index
;
1360 sblock
->sctx
= sctx
;
1362 page
= kzalloc(sizeof(*page
), GFP_NOFS
);
1365 spin_lock(&sctx
->stat_lock
);
1366 sctx
->stat
.malloc_errors
++;
1367 spin_unlock(&sctx
->stat_lock
);
1368 scrub_put_recover(recover
);
1371 scrub_page_get(page
);
1372 sblock
->pagev
[page_index
] = page
;
1373 page
->sblock
= sblock
;
1374 page
->flags
= flags
;
1375 page
->generation
= generation
;
1376 page
->logical
= logical
;
1377 page
->have_csum
= have_csum
;
1380 original_sblock
->pagev
[0]->csum
,
1383 scrub_stripe_index_and_offset(logical
,
1392 page
->physical
= bbio
->stripes
[stripe_index
].physical
+
1394 page
->dev
= bbio
->stripes
[stripe_index
].dev
;
1396 BUG_ON(page_index
>= original_sblock
->page_count
);
1397 page
->physical_for_dev_replace
=
1398 original_sblock
->pagev
[page_index
]->
1399 physical_for_dev_replace
;
1400 /* for missing devices, dev->bdev is NULL */
1401 page
->mirror_num
= mirror_index
+ 1;
1402 sblock
->page_count
++;
1403 page
->page
= alloc_page(GFP_NOFS
);
1407 scrub_get_recover(recover
);
1408 page
->recover
= recover
;
1410 scrub_put_recover(recover
);
1419 struct scrub_bio_ret
{
1420 struct completion event
;
1424 static void scrub_bio_wait_endio(struct bio
*bio
)
1426 struct scrub_bio_ret
*ret
= bio
->bi_private
;
1428 ret
->error
= bio
->bi_error
;
1429 complete(&ret
->event
);
1432 static inline int scrub_is_page_on_raid56(struct scrub_page
*page
)
1434 return page
->recover
&&
1435 (page
->recover
->bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
);
1438 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info
*fs_info
,
1440 struct scrub_page
*page
)
1442 struct scrub_bio_ret done
;
1445 init_completion(&done
.event
);
1447 bio
->bi_iter
.bi_sector
= page
->logical
>> 9;
1448 bio
->bi_private
= &done
;
1449 bio
->bi_end_io
= scrub_bio_wait_endio
;
1451 ret
= raid56_parity_recover(fs_info
, bio
, page
->recover
->bbio
,
1452 page
->recover
->map_length
,
1453 page
->mirror_num
, 0);
1457 wait_for_completion(&done
.event
);
1465 * this function will check the on disk data for checksum errors, header
1466 * errors and read I/O errors. If any I/O errors happen, the exact pages
1467 * which are errored are marked as being bad. The goal is to enable scrub
1468 * to take those pages that are not errored from all the mirrors so that
1469 * the pages that are errored in the just handled mirror can be repaired.
1471 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
1472 struct scrub_block
*sblock
,
1473 int retry_failed_mirror
)
1477 sblock
->no_io_error_seen
= 1;
1479 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1481 struct scrub_page
*page
= sblock
->pagev
[page_num
];
1483 if (page
->dev
->bdev
== NULL
) {
1485 sblock
->no_io_error_seen
= 0;
1489 WARN_ON(!page
->page
);
1490 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
1493 sblock
->no_io_error_seen
= 0;
1496 bio
->bi_bdev
= page
->dev
->bdev
;
1498 bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1499 if (!retry_failed_mirror
&& scrub_is_page_on_raid56(page
)) {
1500 if (scrub_submit_raid56_bio_wait(fs_info
, bio
, page
))
1501 sblock
->no_io_error_seen
= 0;
1503 bio
->bi_iter
.bi_sector
= page
->physical
>> 9;
1504 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
1506 if (btrfsic_submit_bio_wait(bio
))
1507 sblock
->no_io_error_seen
= 0;
1513 if (sblock
->no_io_error_seen
)
1514 scrub_recheck_block_checksum(sblock
);
1517 static inline int scrub_check_fsid(u8 fsid
[],
1518 struct scrub_page
*spage
)
1520 struct btrfs_fs_devices
*fs_devices
= spage
->dev
->fs_devices
;
1523 ret
= memcmp(fsid
, fs_devices
->fsid
, BTRFS_UUID_SIZE
);
1527 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
)
1529 sblock
->header_error
= 0;
1530 sblock
->checksum_error
= 0;
1531 sblock
->generation_error
= 0;
1533 if (sblock
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_DATA
)
1534 scrub_checksum_data(sblock
);
1536 scrub_checksum_tree_block(sblock
);
1539 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
1540 struct scrub_block
*sblock_good
)
1545 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1548 ret_sub
= scrub_repair_page_from_good_copy(sblock_bad
,
1558 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
1559 struct scrub_block
*sblock_good
,
1560 int page_num
, int force_write
)
1562 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1563 struct scrub_page
*page_good
= sblock_good
->pagev
[page_num
];
1564 struct btrfs_fs_info
*fs_info
= sblock_bad
->sctx
->fs_info
;
1566 BUG_ON(page_bad
->page
== NULL
);
1567 BUG_ON(page_good
->page
== NULL
);
1568 if (force_write
|| sblock_bad
->header_error
||
1569 sblock_bad
->checksum_error
|| page_bad
->io_error
) {
1573 if (!page_bad
->dev
->bdev
) {
1574 btrfs_warn_rl(fs_info
,
1575 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1579 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
1582 bio
->bi_bdev
= page_bad
->dev
->bdev
;
1583 bio
->bi_iter
.bi_sector
= page_bad
->physical
>> 9;
1584 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1586 ret
= bio_add_page(bio
, page_good
->page
, PAGE_SIZE
, 0);
1587 if (PAGE_SIZE
!= ret
) {
1592 if (btrfsic_submit_bio_wait(bio
)) {
1593 btrfs_dev_stat_inc_and_print(page_bad
->dev
,
1594 BTRFS_DEV_STAT_WRITE_ERRS
);
1595 btrfs_dev_replace_stats_inc(
1596 &fs_info
->dev_replace
.num_write_errors
);
1606 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
)
1608 struct btrfs_fs_info
*fs_info
= sblock
->sctx
->fs_info
;
1612 * This block is used for the check of the parity on the source device,
1613 * so the data needn't be written into the destination device.
1615 if (sblock
->sparity
)
1618 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1621 ret
= scrub_write_page_to_dev_replace(sblock
, page_num
);
1623 btrfs_dev_replace_stats_inc(
1624 &fs_info
->dev_replace
.num_write_errors
);
1628 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
1631 struct scrub_page
*spage
= sblock
->pagev
[page_num
];
1633 BUG_ON(spage
->page
== NULL
);
1634 if (spage
->io_error
) {
1635 void *mapped_buffer
= kmap_atomic(spage
->page
);
1637 memset(mapped_buffer
, 0, PAGE_SIZE
);
1638 flush_dcache_page(spage
->page
);
1639 kunmap_atomic(mapped_buffer
);
1641 return scrub_add_page_to_wr_bio(sblock
->sctx
, spage
);
1644 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
1645 struct scrub_page
*spage
)
1647 struct scrub_wr_ctx
*wr_ctx
= &sctx
->wr_ctx
;
1648 struct scrub_bio
*sbio
;
1651 mutex_lock(&wr_ctx
->wr_lock
);
1653 if (!wr_ctx
->wr_curr_bio
) {
1654 wr_ctx
->wr_curr_bio
= kzalloc(sizeof(*wr_ctx
->wr_curr_bio
),
1656 if (!wr_ctx
->wr_curr_bio
) {
1657 mutex_unlock(&wr_ctx
->wr_lock
);
1660 wr_ctx
->wr_curr_bio
->sctx
= sctx
;
1661 wr_ctx
->wr_curr_bio
->page_count
= 0;
1663 sbio
= wr_ctx
->wr_curr_bio
;
1664 if (sbio
->page_count
== 0) {
1667 sbio
->physical
= spage
->physical_for_dev_replace
;
1668 sbio
->logical
= spage
->logical
;
1669 sbio
->dev
= wr_ctx
->tgtdev
;
1672 bio
= btrfs_io_bio_alloc(GFP_KERNEL
,
1673 wr_ctx
->pages_per_wr_bio
);
1675 mutex_unlock(&wr_ctx
->wr_lock
);
1681 bio
->bi_private
= sbio
;
1682 bio
->bi_end_io
= scrub_wr_bio_end_io
;
1683 bio
->bi_bdev
= sbio
->dev
->bdev
;
1684 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
1685 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1687 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1688 spage
->physical_for_dev_replace
||
1689 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1691 scrub_wr_submit(sctx
);
1695 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1696 if (ret
!= PAGE_SIZE
) {
1697 if (sbio
->page_count
< 1) {
1700 mutex_unlock(&wr_ctx
->wr_lock
);
1703 scrub_wr_submit(sctx
);
1707 sbio
->pagev
[sbio
->page_count
] = spage
;
1708 scrub_page_get(spage
);
1710 if (sbio
->page_count
== wr_ctx
->pages_per_wr_bio
)
1711 scrub_wr_submit(sctx
);
1712 mutex_unlock(&wr_ctx
->wr_lock
);
1717 static void scrub_wr_submit(struct scrub_ctx
*sctx
)
1719 struct scrub_wr_ctx
*wr_ctx
= &sctx
->wr_ctx
;
1720 struct scrub_bio
*sbio
;
1722 if (!wr_ctx
->wr_curr_bio
)
1725 sbio
= wr_ctx
->wr_curr_bio
;
1726 wr_ctx
->wr_curr_bio
= NULL
;
1727 WARN_ON(!sbio
->bio
->bi_bdev
);
1728 scrub_pending_bio_inc(sctx
);
1729 /* process all writes in a single worker thread. Then the block layer
1730 * orders the requests before sending them to the driver which
1731 * doubled the write performance on spinning disks when measured
1733 btrfsic_submit_bio(sbio
->bio
);
1736 static void scrub_wr_bio_end_io(struct bio
*bio
)
1738 struct scrub_bio
*sbio
= bio
->bi_private
;
1739 struct btrfs_fs_info
*fs_info
= sbio
->dev
->fs_info
;
1741 sbio
->err
= bio
->bi_error
;
1744 btrfs_init_work(&sbio
->work
, btrfs_scrubwrc_helper
,
1745 scrub_wr_bio_end_io_worker
, NULL
, NULL
);
1746 btrfs_queue_work(fs_info
->scrub_wr_completion_workers
, &sbio
->work
);
1749 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
)
1751 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
1752 struct scrub_ctx
*sctx
= sbio
->sctx
;
1755 WARN_ON(sbio
->page_count
> SCRUB_PAGES_PER_WR_BIO
);
1757 struct btrfs_dev_replace
*dev_replace
=
1758 &sbio
->sctx
->fs_info
->dev_replace
;
1760 for (i
= 0; i
< sbio
->page_count
; i
++) {
1761 struct scrub_page
*spage
= sbio
->pagev
[i
];
1763 spage
->io_error
= 1;
1764 btrfs_dev_replace_stats_inc(&dev_replace
->
1769 for (i
= 0; i
< sbio
->page_count
; i
++)
1770 scrub_page_put(sbio
->pagev
[i
]);
1774 scrub_pending_bio_dec(sctx
);
1777 static int scrub_checksum(struct scrub_block
*sblock
)
1783 * No need to initialize these stats currently,
1784 * because this function only use return value
1785 * instead of these stats value.
1790 sblock
->header_error
= 0;
1791 sblock
->generation_error
= 0;
1792 sblock
->checksum_error
= 0;
1794 WARN_ON(sblock
->page_count
< 1);
1795 flags
= sblock
->pagev
[0]->flags
;
1797 if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1798 ret
= scrub_checksum_data(sblock
);
1799 else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1800 ret
= scrub_checksum_tree_block(sblock
);
1801 else if (flags
& BTRFS_EXTENT_FLAG_SUPER
)
1802 (void)scrub_checksum_super(sblock
);
1806 scrub_handle_errored_block(sblock
);
1811 static int scrub_checksum_data(struct scrub_block
*sblock
)
1813 struct scrub_ctx
*sctx
= sblock
->sctx
;
1814 u8 csum
[BTRFS_CSUM_SIZE
];
1822 BUG_ON(sblock
->page_count
< 1);
1823 if (!sblock
->pagev
[0]->have_csum
)
1826 on_disk_csum
= sblock
->pagev
[0]->csum
;
1827 page
= sblock
->pagev
[0]->page
;
1828 buffer
= kmap_atomic(page
);
1830 len
= sctx
->sectorsize
;
1833 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
1835 crc
= btrfs_csum_data(buffer
, crc
, l
);
1836 kunmap_atomic(buffer
);
1841 BUG_ON(index
>= sblock
->page_count
);
1842 BUG_ON(!sblock
->pagev
[index
]->page
);
1843 page
= sblock
->pagev
[index
]->page
;
1844 buffer
= kmap_atomic(page
);
1847 btrfs_csum_final(crc
, csum
);
1848 if (memcmp(csum
, on_disk_csum
, sctx
->csum_size
))
1849 sblock
->checksum_error
= 1;
1851 return sblock
->checksum_error
;
1854 static int scrub_checksum_tree_block(struct scrub_block
*sblock
)
1856 struct scrub_ctx
*sctx
= sblock
->sctx
;
1857 struct btrfs_header
*h
;
1858 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
1859 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1860 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1862 void *mapped_buffer
;
1869 BUG_ON(sblock
->page_count
< 1);
1870 page
= sblock
->pagev
[0]->page
;
1871 mapped_buffer
= kmap_atomic(page
);
1872 h
= (struct btrfs_header
*)mapped_buffer
;
1873 memcpy(on_disk_csum
, h
->csum
, sctx
->csum_size
);
1876 * we don't use the getter functions here, as we
1877 * a) don't have an extent buffer and
1878 * b) the page is already kmapped
1880 if (sblock
->pagev
[0]->logical
!= btrfs_stack_header_bytenr(h
))
1881 sblock
->header_error
= 1;
1883 if (sblock
->pagev
[0]->generation
!= btrfs_stack_header_generation(h
)) {
1884 sblock
->header_error
= 1;
1885 sblock
->generation_error
= 1;
1888 if (!scrub_check_fsid(h
->fsid
, sblock
->pagev
[0]))
1889 sblock
->header_error
= 1;
1891 if (memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
1893 sblock
->header_error
= 1;
1895 len
= sctx
->nodesize
- BTRFS_CSUM_SIZE
;
1896 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1897 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1900 u64 l
= min_t(u64
, len
, mapped_size
);
1902 crc
= btrfs_csum_data(p
, crc
, l
);
1903 kunmap_atomic(mapped_buffer
);
1908 BUG_ON(index
>= sblock
->page_count
);
1909 BUG_ON(!sblock
->pagev
[index
]->page
);
1910 page
= sblock
->pagev
[index
]->page
;
1911 mapped_buffer
= kmap_atomic(page
);
1912 mapped_size
= PAGE_SIZE
;
1916 btrfs_csum_final(crc
, calculated_csum
);
1917 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1918 sblock
->checksum_error
= 1;
1920 return sblock
->header_error
|| sblock
->checksum_error
;
1923 static int scrub_checksum_super(struct scrub_block
*sblock
)
1925 struct btrfs_super_block
*s
;
1926 struct scrub_ctx
*sctx
= sblock
->sctx
;
1927 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1928 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1930 void *mapped_buffer
;
1939 BUG_ON(sblock
->page_count
< 1);
1940 page
= sblock
->pagev
[0]->page
;
1941 mapped_buffer
= kmap_atomic(page
);
1942 s
= (struct btrfs_super_block
*)mapped_buffer
;
1943 memcpy(on_disk_csum
, s
->csum
, sctx
->csum_size
);
1945 if (sblock
->pagev
[0]->logical
!= btrfs_super_bytenr(s
))
1948 if (sblock
->pagev
[0]->generation
!= btrfs_super_generation(s
))
1951 if (!scrub_check_fsid(s
->fsid
, sblock
->pagev
[0]))
1954 len
= BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
;
1955 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1956 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1959 u64 l
= min_t(u64
, len
, mapped_size
);
1961 crc
= btrfs_csum_data(p
, crc
, l
);
1962 kunmap_atomic(mapped_buffer
);
1967 BUG_ON(index
>= sblock
->page_count
);
1968 BUG_ON(!sblock
->pagev
[index
]->page
);
1969 page
= sblock
->pagev
[index
]->page
;
1970 mapped_buffer
= kmap_atomic(page
);
1971 mapped_size
= PAGE_SIZE
;
1975 btrfs_csum_final(crc
, calculated_csum
);
1976 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1979 if (fail_cor
+ fail_gen
) {
1981 * if we find an error in a super block, we just report it.
1982 * They will get written with the next transaction commit
1985 spin_lock(&sctx
->stat_lock
);
1986 ++sctx
->stat
.super_errors
;
1987 spin_unlock(&sctx
->stat_lock
);
1989 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1990 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1992 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1993 BTRFS_DEV_STAT_GENERATION_ERRS
);
1996 return fail_cor
+ fail_gen
;
1999 static void scrub_block_get(struct scrub_block
*sblock
)
2001 atomic_inc(&sblock
->refs
);
2004 static void scrub_block_put(struct scrub_block
*sblock
)
2006 if (atomic_dec_and_test(&sblock
->refs
)) {
2009 if (sblock
->sparity
)
2010 scrub_parity_put(sblock
->sparity
);
2012 for (i
= 0; i
< sblock
->page_count
; i
++)
2013 scrub_page_put(sblock
->pagev
[i
]);
2018 static void scrub_page_get(struct scrub_page
*spage
)
2020 atomic_inc(&spage
->refs
);
2023 static void scrub_page_put(struct scrub_page
*spage
)
2025 if (atomic_dec_and_test(&spage
->refs
)) {
2027 __free_page(spage
->page
);
2032 static void scrub_submit(struct scrub_ctx
*sctx
)
2034 struct scrub_bio
*sbio
;
2036 if (sctx
->curr
== -1)
2039 sbio
= sctx
->bios
[sctx
->curr
];
2041 scrub_pending_bio_inc(sctx
);
2042 btrfsic_submit_bio(sbio
->bio
);
2045 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
2046 struct scrub_page
*spage
)
2048 struct scrub_block
*sblock
= spage
->sblock
;
2049 struct scrub_bio
*sbio
;
2054 * grab a fresh bio or wait for one to become available
2056 while (sctx
->curr
== -1) {
2057 spin_lock(&sctx
->list_lock
);
2058 sctx
->curr
= sctx
->first_free
;
2059 if (sctx
->curr
!= -1) {
2060 sctx
->first_free
= sctx
->bios
[sctx
->curr
]->next_free
;
2061 sctx
->bios
[sctx
->curr
]->next_free
= -1;
2062 sctx
->bios
[sctx
->curr
]->page_count
= 0;
2063 spin_unlock(&sctx
->list_lock
);
2065 spin_unlock(&sctx
->list_lock
);
2066 wait_event(sctx
->list_wait
, sctx
->first_free
!= -1);
2069 sbio
= sctx
->bios
[sctx
->curr
];
2070 if (sbio
->page_count
== 0) {
2073 sbio
->physical
= spage
->physical
;
2074 sbio
->logical
= spage
->logical
;
2075 sbio
->dev
= spage
->dev
;
2078 bio
= btrfs_io_bio_alloc(GFP_KERNEL
,
2079 sctx
->pages_per_rd_bio
);
2085 bio
->bi_private
= sbio
;
2086 bio
->bi_end_io
= scrub_bio_end_io
;
2087 bio
->bi_bdev
= sbio
->dev
->bdev
;
2088 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
2089 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2091 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
2093 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
2095 sbio
->dev
!= spage
->dev
) {
2100 sbio
->pagev
[sbio
->page_count
] = spage
;
2101 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
2102 if (ret
!= PAGE_SIZE
) {
2103 if (sbio
->page_count
< 1) {
2112 scrub_block_get(sblock
); /* one for the page added to the bio */
2113 atomic_inc(&sblock
->outstanding_pages
);
2115 if (sbio
->page_count
== sctx
->pages_per_rd_bio
)
2121 static void scrub_missing_raid56_end_io(struct bio
*bio
)
2123 struct scrub_block
*sblock
= bio
->bi_private
;
2124 struct btrfs_fs_info
*fs_info
= sblock
->sctx
->fs_info
;
2127 sblock
->no_io_error_seen
= 0;
2131 btrfs_queue_work(fs_info
->scrub_workers
, &sblock
->work
);
2134 static void scrub_missing_raid56_worker(struct btrfs_work
*work
)
2136 struct scrub_block
*sblock
= container_of(work
, struct scrub_block
, work
);
2137 struct scrub_ctx
*sctx
= sblock
->sctx
;
2138 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2140 struct btrfs_device
*dev
;
2142 logical
= sblock
->pagev
[0]->logical
;
2143 dev
= sblock
->pagev
[0]->dev
;
2145 if (sblock
->no_io_error_seen
)
2146 scrub_recheck_block_checksum(sblock
);
2148 if (!sblock
->no_io_error_seen
) {
2149 spin_lock(&sctx
->stat_lock
);
2150 sctx
->stat
.read_errors
++;
2151 spin_unlock(&sctx
->stat_lock
);
2152 btrfs_err_rl_in_rcu(fs_info
,
2153 "IO error rebuilding logical %llu for dev %s",
2154 logical
, rcu_str_deref(dev
->name
));
2155 } else if (sblock
->header_error
|| sblock
->checksum_error
) {
2156 spin_lock(&sctx
->stat_lock
);
2157 sctx
->stat
.uncorrectable_errors
++;
2158 spin_unlock(&sctx
->stat_lock
);
2159 btrfs_err_rl_in_rcu(fs_info
,
2160 "failed to rebuild valid logical %llu for dev %s",
2161 logical
, rcu_str_deref(dev
->name
));
2163 scrub_write_block_to_dev_replace(sblock
);
2166 scrub_block_put(sblock
);
2168 if (sctx
->is_dev_replace
&&
2169 atomic_read(&sctx
->wr_ctx
.flush_all_writes
)) {
2170 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2171 scrub_wr_submit(sctx
);
2172 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2175 scrub_pending_bio_dec(sctx
);
2178 static void scrub_missing_raid56_pages(struct scrub_block
*sblock
)
2180 struct scrub_ctx
*sctx
= sblock
->sctx
;
2181 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2182 u64 length
= sblock
->page_count
* PAGE_SIZE
;
2183 u64 logical
= sblock
->pagev
[0]->logical
;
2184 struct btrfs_bio
*bbio
= NULL
;
2186 struct btrfs_raid_bio
*rbio
;
2190 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
, logical
,
2191 &length
, &bbio
, 0, 1);
2192 if (ret
|| !bbio
|| !bbio
->raid_map
)
2195 if (WARN_ON(!sctx
->is_dev_replace
||
2196 !(bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))) {
2198 * We shouldn't be scrubbing a missing device. Even for dev
2199 * replace, we should only get here for RAID 5/6. We either
2200 * managed to mount something with no mirrors remaining or
2201 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2206 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
2210 bio
->bi_iter
.bi_sector
= logical
>> 9;
2211 bio
->bi_private
= sblock
;
2212 bio
->bi_end_io
= scrub_missing_raid56_end_io
;
2214 rbio
= raid56_alloc_missing_rbio(fs_info
, bio
, bbio
, length
);
2218 for (i
= 0; i
< sblock
->page_count
; i
++) {
2219 struct scrub_page
*spage
= sblock
->pagev
[i
];
2221 raid56_add_scrub_pages(rbio
, spage
->page
, spage
->logical
);
2224 btrfs_init_work(&sblock
->work
, btrfs_scrub_helper
,
2225 scrub_missing_raid56_worker
, NULL
, NULL
);
2226 scrub_block_get(sblock
);
2227 scrub_pending_bio_inc(sctx
);
2228 raid56_submit_missing_rbio(rbio
);
2234 btrfs_put_bbio(bbio
);
2235 spin_lock(&sctx
->stat_lock
);
2236 sctx
->stat
.malloc_errors
++;
2237 spin_unlock(&sctx
->stat_lock
);
2240 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2241 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2242 u64 gen
, int mirror_num
, u8
*csum
, int force
,
2243 u64 physical_for_dev_replace
)
2245 struct scrub_block
*sblock
;
2248 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2250 spin_lock(&sctx
->stat_lock
);
2251 sctx
->stat
.malloc_errors
++;
2252 spin_unlock(&sctx
->stat_lock
);
2256 /* one ref inside this function, plus one for each page added to
2258 atomic_set(&sblock
->refs
, 1);
2259 sblock
->sctx
= sctx
;
2260 sblock
->no_io_error_seen
= 1;
2262 for (index
= 0; len
> 0; index
++) {
2263 struct scrub_page
*spage
;
2264 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2266 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2269 spin_lock(&sctx
->stat_lock
);
2270 sctx
->stat
.malloc_errors
++;
2271 spin_unlock(&sctx
->stat_lock
);
2272 scrub_block_put(sblock
);
2275 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2276 scrub_page_get(spage
);
2277 sblock
->pagev
[index
] = spage
;
2278 spage
->sblock
= sblock
;
2280 spage
->flags
= flags
;
2281 spage
->generation
= gen
;
2282 spage
->logical
= logical
;
2283 spage
->physical
= physical
;
2284 spage
->physical_for_dev_replace
= physical_for_dev_replace
;
2285 spage
->mirror_num
= mirror_num
;
2287 spage
->have_csum
= 1;
2288 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2290 spage
->have_csum
= 0;
2292 sblock
->page_count
++;
2293 spage
->page
= alloc_page(GFP_KERNEL
);
2299 physical_for_dev_replace
+= l
;
2302 WARN_ON(sblock
->page_count
== 0);
2305 * This case should only be hit for RAID 5/6 device replace. See
2306 * the comment in scrub_missing_raid56_pages() for details.
2308 scrub_missing_raid56_pages(sblock
);
2310 for (index
= 0; index
< sblock
->page_count
; index
++) {
2311 struct scrub_page
*spage
= sblock
->pagev
[index
];
2314 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2316 scrub_block_put(sblock
);
2325 /* last one frees, either here or in bio completion for last page */
2326 scrub_block_put(sblock
);
2330 static void scrub_bio_end_io(struct bio
*bio
)
2332 struct scrub_bio
*sbio
= bio
->bi_private
;
2333 struct btrfs_fs_info
*fs_info
= sbio
->dev
->fs_info
;
2335 sbio
->err
= bio
->bi_error
;
2338 btrfs_queue_work(fs_info
->scrub_workers
, &sbio
->work
);
2341 static void scrub_bio_end_io_worker(struct btrfs_work
*work
)
2343 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
2344 struct scrub_ctx
*sctx
= sbio
->sctx
;
2347 BUG_ON(sbio
->page_count
> SCRUB_PAGES_PER_RD_BIO
);
2349 for (i
= 0; i
< sbio
->page_count
; i
++) {
2350 struct scrub_page
*spage
= sbio
->pagev
[i
];
2352 spage
->io_error
= 1;
2353 spage
->sblock
->no_io_error_seen
= 0;
2357 /* now complete the scrub_block items that have all pages completed */
2358 for (i
= 0; i
< sbio
->page_count
; i
++) {
2359 struct scrub_page
*spage
= sbio
->pagev
[i
];
2360 struct scrub_block
*sblock
= spage
->sblock
;
2362 if (atomic_dec_and_test(&sblock
->outstanding_pages
))
2363 scrub_block_complete(sblock
);
2364 scrub_block_put(sblock
);
2369 spin_lock(&sctx
->list_lock
);
2370 sbio
->next_free
= sctx
->first_free
;
2371 sctx
->first_free
= sbio
->index
;
2372 spin_unlock(&sctx
->list_lock
);
2374 if (sctx
->is_dev_replace
&&
2375 atomic_read(&sctx
->wr_ctx
.flush_all_writes
)) {
2376 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2377 scrub_wr_submit(sctx
);
2378 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2381 scrub_pending_bio_dec(sctx
);
2384 static inline void __scrub_mark_bitmap(struct scrub_parity
*sparity
,
2385 unsigned long *bitmap
,
2390 int sectorsize
= sparity
->sctx
->fs_info
->sectorsize
;
2392 if (len
>= sparity
->stripe_len
) {
2393 bitmap_set(bitmap
, 0, sparity
->nsectors
);
2397 start
-= sparity
->logic_start
;
2398 start
= div_u64_rem(start
, sparity
->stripe_len
, &offset
);
2399 offset
/= sectorsize
;
2400 nsectors
= (int)len
/ sectorsize
;
2402 if (offset
+ nsectors
<= sparity
->nsectors
) {
2403 bitmap_set(bitmap
, offset
, nsectors
);
2407 bitmap_set(bitmap
, offset
, sparity
->nsectors
- offset
);
2408 bitmap_set(bitmap
, 0, nsectors
- (sparity
->nsectors
- offset
));
2411 static inline void scrub_parity_mark_sectors_error(struct scrub_parity
*sparity
,
2414 __scrub_mark_bitmap(sparity
, sparity
->ebitmap
, start
, len
);
2417 static inline void scrub_parity_mark_sectors_data(struct scrub_parity
*sparity
,
2420 __scrub_mark_bitmap(sparity
, sparity
->dbitmap
, start
, len
);
2423 static void scrub_block_complete(struct scrub_block
*sblock
)
2427 if (!sblock
->no_io_error_seen
) {
2429 scrub_handle_errored_block(sblock
);
2432 * if has checksum error, write via repair mechanism in
2433 * dev replace case, otherwise write here in dev replace
2436 corrupted
= scrub_checksum(sblock
);
2437 if (!corrupted
&& sblock
->sctx
->is_dev_replace
)
2438 scrub_write_block_to_dev_replace(sblock
);
2441 if (sblock
->sparity
&& corrupted
&& !sblock
->data_corrected
) {
2442 u64 start
= sblock
->pagev
[0]->logical
;
2443 u64 end
= sblock
->pagev
[sblock
->page_count
- 1]->logical
+
2446 scrub_parity_mark_sectors_error(sblock
->sparity
,
2447 start
, end
- start
);
2451 static int scrub_find_csum(struct scrub_ctx
*sctx
, u64 logical
, u8
*csum
)
2453 struct btrfs_ordered_sum
*sum
= NULL
;
2454 unsigned long index
;
2455 unsigned long num_sectors
;
2457 while (!list_empty(&sctx
->csum_list
)) {
2458 sum
= list_first_entry(&sctx
->csum_list
,
2459 struct btrfs_ordered_sum
, list
);
2460 if (sum
->bytenr
> logical
)
2462 if (sum
->bytenr
+ sum
->len
> logical
)
2465 ++sctx
->stat
.csum_discards
;
2466 list_del(&sum
->list
);
2473 index
= ((u32
)(logical
- sum
->bytenr
)) / sctx
->sectorsize
;
2474 num_sectors
= sum
->len
/ sctx
->sectorsize
;
2475 memcpy(csum
, sum
->sums
+ index
, sctx
->csum_size
);
2476 if (index
== num_sectors
- 1) {
2477 list_del(&sum
->list
);
2483 /* scrub extent tries to collect up to 64 kB for each bio */
2484 static int scrub_extent(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2485 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2486 u64 gen
, int mirror_num
, u64 physical_for_dev_replace
)
2489 u8 csum
[BTRFS_CSUM_SIZE
];
2492 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2493 blocksize
= sctx
->sectorsize
;
2494 spin_lock(&sctx
->stat_lock
);
2495 sctx
->stat
.data_extents_scrubbed
++;
2496 sctx
->stat
.data_bytes_scrubbed
+= len
;
2497 spin_unlock(&sctx
->stat_lock
);
2498 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2499 blocksize
= sctx
->nodesize
;
2500 spin_lock(&sctx
->stat_lock
);
2501 sctx
->stat
.tree_extents_scrubbed
++;
2502 sctx
->stat
.tree_bytes_scrubbed
+= len
;
2503 spin_unlock(&sctx
->stat_lock
);
2505 blocksize
= sctx
->sectorsize
;
2510 u64 l
= min_t(u64
, len
, blocksize
);
2513 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2514 /* push csums to sbio */
2515 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2517 ++sctx
->stat
.no_csum
;
2518 if (sctx
->is_dev_replace
&& !have_csum
) {
2519 ret
= copy_nocow_pages(sctx
, logical
, l
,
2521 physical_for_dev_replace
);
2522 goto behind_scrub_pages
;
2525 ret
= scrub_pages(sctx
, logical
, l
, physical
, dev
, flags
, gen
,
2526 mirror_num
, have_csum
? csum
: NULL
, 0,
2527 physical_for_dev_replace
);
2534 physical_for_dev_replace
+= l
;
2539 static int scrub_pages_for_parity(struct scrub_parity
*sparity
,
2540 u64 logical
, u64 len
,
2541 u64 physical
, struct btrfs_device
*dev
,
2542 u64 flags
, u64 gen
, int mirror_num
, u8
*csum
)
2544 struct scrub_ctx
*sctx
= sparity
->sctx
;
2545 struct scrub_block
*sblock
;
2548 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2550 spin_lock(&sctx
->stat_lock
);
2551 sctx
->stat
.malloc_errors
++;
2552 spin_unlock(&sctx
->stat_lock
);
2556 /* one ref inside this function, plus one for each page added to
2558 atomic_set(&sblock
->refs
, 1);
2559 sblock
->sctx
= sctx
;
2560 sblock
->no_io_error_seen
= 1;
2561 sblock
->sparity
= sparity
;
2562 scrub_parity_get(sparity
);
2564 for (index
= 0; len
> 0; index
++) {
2565 struct scrub_page
*spage
;
2566 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2568 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2571 spin_lock(&sctx
->stat_lock
);
2572 sctx
->stat
.malloc_errors
++;
2573 spin_unlock(&sctx
->stat_lock
);
2574 scrub_block_put(sblock
);
2577 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2578 /* For scrub block */
2579 scrub_page_get(spage
);
2580 sblock
->pagev
[index
] = spage
;
2581 /* For scrub parity */
2582 scrub_page_get(spage
);
2583 list_add_tail(&spage
->list
, &sparity
->spages
);
2584 spage
->sblock
= sblock
;
2586 spage
->flags
= flags
;
2587 spage
->generation
= gen
;
2588 spage
->logical
= logical
;
2589 spage
->physical
= physical
;
2590 spage
->mirror_num
= mirror_num
;
2592 spage
->have_csum
= 1;
2593 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2595 spage
->have_csum
= 0;
2597 sblock
->page_count
++;
2598 spage
->page
= alloc_page(GFP_KERNEL
);
2606 WARN_ON(sblock
->page_count
== 0);
2607 for (index
= 0; index
< sblock
->page_count
; index
++) {
2608 struct scrub_page
*spage
= sblock
->pagev
[index
];
2611 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2613 scrub_block_put(sblock
);
2618 /* last one frees, either here or in bio completion for last page */
2619 scrub_block_put(sblock
);
2623 static int scrub_extent_for_parity(struct scrub_parity
*sparity
,
2624 u64 logical
, u64 len
,
2625 u64 physical
, struct btrfs_device
*dev
,
2626 u64 flags
, u64 gen
, int mirror_num
)
2628 struct scrub_ctx
*sctx
= sparity
->sctx
;
2630 u8 csum
[BTRFS_CSUM_SIZE
];
2634 scrub_parity_mark_sectors_error(sparity
, logical
, len
);
2638 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2639 blocksize
= sctx
->sectorsize
;
2640 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2641 blocksize
= sctx
->nodesize
;
2643 blocksize
= sctx
->sectorsize
;
2648 u64 l
= min_t(u64
, len
, blocksize
);
2651 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2652 /* push csums to sbio */
2653 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2657 ret
= scrub_pages_for_parity(sparity
, logical
, l
, physical
, dev
,
2658 flags
, gen
, mirror_num
,
2659 have_csum
? csum
: NULL
);
2671 * Given a physical address, this will calculate it's
2672 * logical offset. if this is a parity stripe, it will return
2673 * the most left data stripe's logical offset.
2675 * return 0 if it is a data stripe, 1 means parity stripe.
2677 static int get_raid56_logic_offset(u64 physical
, int num
,
2678 struct map_lookup
*map
, u64
*offset
,
2688 last_offset
= (physical
- map
->stripes
[num
].physical
) *
2689 nr_data_stripes(map
);
2691 *stripe_start
= last_offset
;
2693 *offset
= last_offset
;
2694 for (i
= 0; i
< nr_data_stripes(map
); i
++) {
2695 *offset
= last_offset
+ i
* map
->stripe_len
;
2697 stripe_nr
= div_u64(*offset
, map
->stripe_len
);
2698 stripe_nr
= div_u64(stripe_nr
, nr_data_stripes(map
));
2700 /* Work out the disk rotation on this stripe-set */
2701 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
, &rot
);
2702 /* calculate which stripe this data locates */
2704 stripe_index
= rot
% map
->num_stripes
;
2705 if (stripe_index
== num
)
2707 if (stripe_index
< num
)
2710 *offset
= last_offset
+ j
* map
->stripe_len
;
2714 static void scrub_free_parity(struct scrub_parity
*sparity
)
2716 struct scrub_ctx
*sctx
= sparity
->sctx
;
2717 struct scrub_page
*curr
, *next
;
2720 nbits
= bitmap_weight(sparity
->ebitmap
, sparity
->nsectors
);
2722 spin_lock(&sctx
->stat_lock
);
2723 sctx
->stat
.read_errors
+= nbits
;
2724 sctx
->stat
.uncorrectable_errors
+= nbits
;
2725 spin_unlock(&sctx
->stat_lock
);
2728 list_for_each_entry_safe(curr
, next
, &sparity
->spages
, list
) {
2729 list_del_init(&curr
->list
);
2730 scrub_page_put(curr
);
2736 static void scrub_parity_bio_endio_worker(struct btrfs_work
*work
)
2738 struct scrub_parity
*sparity
= container_of(work
, struct scrub_parity
,
2740 struct scrub_ctx
*sctx
= sparity
->sctx
;
2742 scrub_free_parity(sparity
);
2743 scrub_pending_bio_dec(sctx
);
2746 static void scrub_parity_bio_endio(struct bio
*bio
)
2748 struct scrub_parity
*sparity
= (struct scrub_parity
*)bio
->bi_private
;
2749 struct btrfs_fs_info
*fs_info
= sparity
->sctx
->fs_info
;
2752 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
2757 btrfs_init_work(&sparity
->work
, btrfs_scrubparity_helper
,
2758 scrub_parity_bio_endio_worker
, NULL
, NULL
);
2759 btrfs_queue_work(fs_info
->scrub_parity_workers
, &sparity
->work
);
2762 static void scrub_parity_check_and_repair(struct scrub_parity
*sparity
)
2764 struct scrub_ctx
*sctx
= sparity
->sctx
;
2765 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2767 struct btrfs_raid_bio
*rbio
;
2768 struct scrub_page
*spage
;
2769 struct btrfs_bio
*bbio
= NULL
;
2773 if (!bitmap_andnot(sparity
->dbitmap
, sparity
->dbitmap
, sparity
->ebitmap
,
2777 length
= sparity
->logic_end
- sparity
->logic_start
;
2778 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_WRITE
, sparity
->logic_start
,
2779 &length
, &bbio
, 0, 1);
2780 if (ret
|| !bbio
|| !bbio
->raid_map
)
2783 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
2787 bio
->bi_iter
.bi_sector
= sparity
->logic_start
>> 9;
2788 bio
->bi_private
= sparity
;
2789 bio
->bi_end_io
= scrub_parity_bio_endio
;
2791 rbio
= raid56_parity_alloc_scrub_rbio(fs_info
, bio
, bbio
,
2792 length
, sparity
->scrub_dev
,
2798 list_for_each_entry(spage
, &sparity
->spages
, list
)
2799 raid56_add_scrub_pages(rbio
, spage
->page
, spage
->logical
);
2801 scrub_pending_bio_inc(sctx
);
2802 raid56_parity_submit_scrub_rbio(rbio
);
2808 btrfs_put_bbio(bbio
);
2809 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
2811 spin_lock(&sctx
->stat_lock
);
2812 sctx
->stat
.malloc_errors
++;
2813 spin_unlock(&sctx
->stat_lock
);
2815 scrub_free_parity(sparity
);
2818 static inline int scrub_calc_parity_bitmap_len(int nsectors
)
2820 return DIV_ROUND_UP(nsectors
, BITS_PER_LONG
) * sizeof(long);
2823 static void scrub_parity_get(struct scrub_parity
*sparity
)
2825 atomic_inc(&sparity
->refs
);
2828 static void scrub_parity_put(struct scrub_parity
*sparity
)
2830 if (!atomic_dec_and_test(&sparity
->refs
))
2833 scrub_parity_check_and_repair(sparity
);
2836 static noinline_for_stack
int scrub_raid56_parity(struct scrub_ctx
*sctx
,
2837 struct map_lookup
*map
,
2838 struct btrfs_device
*sdev
,
2839 struct btrfs_path
*path
,
2843 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2844 struct btrfs_root
*root
= fs_info
->extent_root
;
2845 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
2846 struct btrfs_extent_item
*extent
;
2847 struct btrfs_bio
*bbio
= NULL
;
2851 struct extent_buffer
*l
;
2852 struct btrfs_key key
;
2855 u64 extent_physical
;
2858 struct btrfs_device
*extent_dev
;
2859 struct scrub_parity
*sparity
;
2862 int extent_mirror_num
;
2865 nsectors
= div_u64(map
->stripe_len
, fs_info
->sectorsize
);
2866 bitmap_len
= scrub_calc_parity_bitmap_len(nsectors
);
2867 sparity
= kzalloc(sizeof(struct scrub_parity
) + 2 * bitmap_len
,
2870 spin_lock(&sctx
->stat_lock
);
2871 sctx
->stat
.malloc_errors
++;
2872 spin_unlock(&sctx
->stat_lock
);
2876 sparity
->stripe_len
= map
->stripe_len
;
2877 sparity
->nsectors
= nsectors
;
2878 sparity
->sctx
= sctx
;
2879 sparity
->scrub_dev
= sdev
;
2880 sparity
->logic_start
= logic_start
;
2881 sparity
->logic_end
= logic_end
;
2882 atomic_set(&sparity
->refs
, 1);
2883 INIT_LIST_HEAD(&sparity
->spages
);
2884 sparity
->dbitmap
= sparity
->bitmap
;
2885 sparity
->ebitmap
= (void *)sparity
->bitmap
+ bitmap_len
;
2888 while (logic_start
< logic_end
) {
2889 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2890 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2892 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2893 key
.objectid
= logic_start
;
2894 key
.offset
= (u64
)-1;
2896 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2901 ret
= btrfs_previous_extent_item(root
, path
, 0);
2905 btrfs_release_path(path
);
2906 ret
= btrfs_search_slot(NULL
, root
, &key
,
2918 slot
= path
->slots
[0];
2919 if (slot
>= btrfs_header_nritems(l
)) {
2920 ret
= btrfs_next_leaf(root
, path
);
2929 btrfs_item_key_to_cpu(l
, &key
, slot
);
2931 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
2932 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
2935 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
2936 bytes
= fs_info
->nodesize
;
2940 if (key
.objectid
+ bytes
<= logic_start
)
2943 if (key
.objectid
>= logic_end
) {
2948 while (key
.objectid
>= logic_start
+ map
->stripe_len
)
2949 logic_start
+= map
->stripe_len
;
2951 extent
= btrfs_item_ptr(l
, slot
,
2952 struct btrfs_extent_item
);
2953 flags
= btrfs_extent_flags(l
, extent
);
2954 generation
= btrfs_extent_generation(l
, extent
);
2956 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
2957 (key
.objectid
< logic_start
||
2958 key
.objectid
+ bytes
>
2959 logic_start
+ map
->stripe_len
)) {
2961 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2962 key
.objectid
, logic_start
);
2963 spin_lock(&sctx
->stat_lock
);
2964 sctx
->stat
.uncorrectable_errors
++;
2965 spin_unlock(&sctx
->stat_lock
);
2969 extent_logical
= key
.objectid
;
2972 if (extent_logical
< logic_start
) {
2973 extent_len
-= logic_start
- extent_logical
;
2974 extent_logical
= logic_start
;
2977 if (extent_logical
+ extent_len
>
2978 logic_start
+ map
->stripe_len
)
2979 extent_len
= logic_start
+ map
->stripe_len
-
2982 scrub_parity_mark_sectors_data(sparity
, extent_logical
,
2985 mapped_length
= extent_len
;
2987 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
,
2988 extent_logical
, &mapped_length
, &bbio
,
2991 if (!bbio
|| mapped_length
< extent_len
)
2995 btrfs_put_bbio(bbio
);
2998 extent_physical
= bbio
->stripes
[0].physical
;
2999 extent_mirror_num
= bbio
->mirror_num
;
3000 extent_dev
= bbio
->stripes
[0].dev
;
3001 btrfs_put_bbio(bbio
);
3003 ret
= btrfs_lookup_csums_range(csum_root
,
3005 extent_logical
+ extent_len
- 1,
3006 &sctx
->csum_list
, 1);
3010 ret
= scrub_extent_for_parity(sparity
, extent_logical
,
3017 scrub_free_csums(sctx
);
3022 if (extent_logical
+ extent_len
<
3023 key
.objectid
+ bytes
) {
3024 logic_start
+= map
->stripe_len
;
3026 if (logic_start
>= logic_end
) {
3031 if (logic_start
< key
.objectid
+ bytes
) {
3040 btrfs_release_path(path
);
3045 logic_start
+= map
->stripe_len
;
3049 scrub_parity_mark_sectors_error(sparity
, logic_start
,
3050 logic_end
- logic_start
);
3051 scrub_parity_put(sparity
);
3053 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
3054 scrub_wr_submit(sctx
);
3055 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
3057 btrfs_release_path(path
);
3058 return ret
< 0 ? ret
: 0;
3061 static noinline_for_stack
int scrub_stripe(struct scrub_ctx
*sctx
,
3062 struct map_lookup
*map
,
3063 struct btrfs_device
*scrub_dev
,
3064 int num
, u64 base
, u64 length
,
3067 struct btrfs_path
*path
, *ppath
;
3068 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3069 struct btrfs_root
*root
= fs_info
->extent_root
;
3070 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
3071 struct btrfs_extent_item
*extent
;
3072 struct blk_plug plug
;
3077 struct extent_buffer
*l
;
3084 struct reada_control
*reada1
;
3085 struct reada_control
*reada2
;
3086 struct btrfs_key key
;
3087 struct btrfs_key key_end
;
3088 u64 increment
= map
->stripe_len
;
3091 u64 extent_physical
;
3095 struct btrfs_device
*extent_dev
;
3096 int extent_mirror_num
;
3099 physical
= map
->stripes
[num
].physical
;
3101 nstripes
= div_u64(length
, map
->stripe_len
);
3102 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
3103 offset
= map
->stripe_len
* num
;
3104 increment
= map
->stripe_len
* map
->num_stripes
;
3106 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
3107 int factor
= map
->num_stripes
/ map
->sub_stripes
;
3108 offset
= map
->stripe_len
* (num
/ map
->sub_stripes
);
3109 increment
= map
->stripe_len
* factor
;
3110 mirror_num
= num
% map
->sub_stripes
+ 1;
3111 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
3112 increment
= map
->stripe_len
;
3113 mirror_num
= num
% map
->num_stripes
+ 1;
3114 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
3115 increment
= map
->stripe_len
;
3116 mirror_num
= num
% map
->num_stripes
+ 1;
3117 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3118 get_raid56_logic_offset(physical
, num
, map
, &offset
, NULL
);
3119 increment
= map
->stripe_len
* nr_data_stripes(map
);
3122 increment
= map
->stripe_len
;
3126 path
= btrfs_alloc_path();
3130 ppath
= btrfs_alloc_path();
3132 btrfs_free_path(path
);
3137 * work on commit root. The related disk blocks are static as
3138 * long as COW is applied. This means, it is save to rewrite
3139 * them to repair disk errors without any race conditions
3141 path
->search_commit_root
= 1;
3142 path
->skip_locking
= 1;
3144 ppath
->search_commit_root
= 1;
3145 ppath
->skip_locking
= 1;
3147 * trigger the readahead for extent tree csum tree and wait for
3148 * completion. During readahead, the scrub is officially paused
3149 * to not hold off transaction commits
3151 logical
= base
+ offset
;
3152 physical_end
= physical
+ nstripes
* map
->stripe_len
;
3153 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3154 get_raid56_logic_offset(physical_end
, num
,
3155 map
, &logic_end
, NULL
);
3158 logic_end
= logical
+ increment
* nstripes
;
3160 wait_event(sctx
->list_wait
,
3161 atomic_read(&sctx
->bios_in_flight
) == 0);
3162 scrub_blocked_if_needed(fs_info
);
3164 /* FIXME it might be better to start readahead at commit root */
3165 key
.objectid
= logical
;
3166 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3167 key
.offset
= (u64
)0;
3168 key_end
.objectid
= logic_end
;
3169 key_end
.type
= BTRFS_METADATA_ITEM_KEY
;
3170 key_end
.offset
= (u64
)-1;
3171 reada1
= btrfs_reada_add(root
, &key
, &key_end
);
3173 key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3174 key
.type
= BTRFS_EXTENT_CSUM_KEY
;
3175 key
.offset
= logical
;
3176 key_end
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3177 key_end
.type
= BTRFS_EXTENT_CSUM_KEY
;
3178 key_end
.offset
= logic_end
;
3179 reada2
= btrfs_reada_add(csum_root
, &key
, &key_end
);
3181 if (!IS_ERR(reada1
))
3182 btrfs_reada_wait(reada1
);
3183 if (!IS_ERR(reada2
))
3184 btrfs_reada_wait(reada2
);
3188 * collect all data csums for the stripe to avoid seeking during
3189 * the scrub. This might currently (crc32) end up to be about 1MB
3191 blk_start_plug(&plug
);
3194 * now find all extents for each stripe and scrub them
3197 while (physical
< physical_end
) {
3201 if (atomic_read(&fs_info
->scrub_cancel_req
) ||
3202 atomic_read(&sctx
->cancel_req
)) {
3207 * check to see if we have to pause
3209 if (atomic_read(&fs_info
->scrub_pause_req
)) {
3210 /* push queued extents */
3211 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 1);
3213 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
3214 scrub_wr_submit(sctx
);
3215 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
3216 wait_event(sctx
->list_wait
,
3217 atomic_read(&sctx
->bios_in_flight
) == 0);
3218 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 0);
3219 scrub_blocked_if_needed(fs_info
);
3222 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3223 ret
= get_raid56_logic_offset(physical
, num
, map
,
3228 /* it is parity strip */
3229 stripe_logical
+= base
;
3230 stripe_end
= stripe_logical
+ increment
;
3231 ret
= scrub_raid56_parity(sctx
, map
, scrub_dev
,
3232 ppath
, stripe_logical
,
3240 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
3241 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3243 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3244 key
.objectid
= logical
;
3245 key
.offset
= (u64
)-1;
3247 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3252 ret
= btrfs_previous_extent_item(root
, path
, 0);
3256 /* there's no smaller item, so stick with the
3258 btrfs_release_path(path
);
3259 ret
= btrfs_search_slot(NULL
, root
, &key
,
3271 slot
= path
->slots
[0];
3272 if (slot
>= btrfs_header_nritems(l
)) {
3273 ret
= btrfs_next_leaf(root
, path
);
3282 btrfs_item_key_to_cpu(l
, &key
, slot
);
3284 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3285 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
3288 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
3289 bytes
= fs_info
->nodesize
;
3293 if (key
.objectid
+ bytes
<= logical
)
3296 if (key
.objectid
>= logical
+ map
->stripe_len
) {
3297 /* out of this device extent */
3298 if (key
.objectid
>= logic_end
)
3303 extent
= btrfs_item_ptr(l
, slot
,
3304 struct btrfs_extent_item
);
3305 flags
= btrfs_extent_flags(l
, extent
);
3306 generation
= btrfs_extent_generation(l
, extent
);
3308 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
3309 (key
.objectid
< logical
||
3310 key
.objectid
+ bytes
>
3311 logical
+ map
->stripe_len
)) {
3313 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3314 key
.objectid
, logical
);
3315 spin_lock(&sctx
->stat_lock
);
3316 sctx
->stat
.uncorrectable_errors
++;
3317 spin_unlock(&sctx
->stat_lock
);
3322 extent_logical
= key
.objectid
;
3326 * trim extent to this stripe
3328 if (extent_logical
< logical
) {
3329 extent_len
-= logical
- extent_logical
;
3330 extent_logical
= logical
;
3332 if (extent_logical
+ extent_len
>
3333 logical
+ map
->stripe_len
) {
3334 extent_len
= logical
+ map
->stripe_len
-
3338 extent_physical
= extent_logical
- logical
+ physical
;
3339 extent_dev
= scrub_dev
;
3340 extent_mirror_num
= mirror_num
;
3342 scrub_remap_extent(fs_info
, extent_logical
,
3343 extent_len
, &extent_physical
,
3345 &extent_mirror_num
);
3347 ret
= btrfs_lookup_csums_range(csum_root
,
3351 &sctx
->csum_list
, 1);
3355 ret
= scrub_extent(sctx
, extent_logical
, extent_len
,
3356 extent_physical
, extent_dev
, flags
,
3357 generation
, extent_mirror_num
,
3358 extent_logical
- logical
+ physical
);
3360 scrub_free_csums(sctx
);
3365 if (extent_logical
+ extent_len
<
3366 key
.objectid
+ bytes
) {
3367 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3369 * loop until we find next data stripe
3370 * or we have finished all stripes.
3373 physical
+= map
->stripe_len
;
3374 ret
= get_raid56_logic_offset(physical
,
3379 if (ret
&& physical
< physical_end
) {
3380 stripe_logical
+= base
;
3381 stripe_end
= stripe_logical
+
3383 ret
= scrub_raid56_parity(sctx
,
3384 map
, scrub_dev
, ppath
,
3392 physical
+= map
->stripe_len
;
3393 logical
+= increment
;
3395 if (logical
< key
.objectid
+ bytes
) {
3400 if (physical
>= physical_end
) {
3408 btrfs_release_path(path
);
3410 logical
+= increment
;
3411 physical
+= map
->stripe_len
;
3412 spin_lock(&sctx
->stat_lock
);
3414 sctx
->stat
.last_physical
= map
->stripes
[num
].physical
+
3417 sctx
->stat
.last_physical
= physical
;
3418 spin_unlock(&sctx
->stat_lock
);
3423 /* push queued extents */
3425 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
3426 scrub_wr_submit(sctx
);
3427 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
3429 blk_finish_plug(&plug
);
3430 btrfs_free_path(path
);
3431 btrfs_free_path(ppath
);
3432 return ret
< 0 ? ret
: 0;
3435 static noinline_for_stack
int scrub_chunk(struct scrub_ctx
*sctx
,
3436 struct btrfs_device
*scrub_dev
,
3437 u64 chunk_offset
, u64 length
,
3439 struct btrfs_block_group_cache
*cache
,
3442 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3443 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
3444 struct map_lookup
*map
;
3445 struct extent_map
*em
;
3449 read_lock(&map_tree
->map_tree
.lock
);
3450 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
3451 read_unlock(&map_tree
->map_tree
.lock
);
3455 * Might have been an unused block group deleted by the cleaner
3456 * kthread or relocation.
3458 spin_lock(&cache
->lock
);
3459 if (!cache
->removed
)
3461 spin_unlock(&cache
->lock
);
3466 map
= em
->map_lookup
;
3467 if (em
->start
!= chunk_offset
)
3470 if (em
->len
< length
)
3473 for (i
= 0; i
< map
->num_stripes
; ++i
) {
3474 if (map
->stripes
[i
].dev
->bdev
== scrub_dev
->bdev
&&
3475 map
->stripes
[i
].physical
== dev_offset
) {
3476 ret
= scrub_stripe(sctx
, map
, scrub_dev
, i
,
3477 chunk_offset
, length
,
3484 free_extent_map(em
);
3489 static noinline_for_stack
3490 int scrub_enumerate_chunks(struct scrub_ctx
*sctx
,
3491 struct btrfs_device
*scrub_dev
, u64 start
, u64 end
,
3494 struct btrfs_dev_extent
*dev_extent
= NULL
;
3495 struct btrfs_path
*path
;
3496 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3497 struct btrfs_root
*root
= fs_info
->dev_root
;
3503 struct extent_buffer
*l
;
3504 struct btrfs_key key
;
3505 struct btrfs_key found_key
;
3506 struct btrfs_block_group_cache
*cache
;
3507 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
3509 path
= btrfs_alloc_path();
3513 path
->reada
= READA_FORWARD
;
3514 path
->search_commit_root
= 1;
3515 path
->skip_locking
= 1;
3517 key
.objectid
= scrub_dev
->devid
;
3519 key
.type
= BTRFS_DEV_EXTENT_KEY
;
3522 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3526 if (path
->slots
[0] >=
3527 btrfs_header_nritems(path
->nodes
[0])) {
3528 ret
= btrfs_next_leaf(root
, path
);
3541 slot
= path
->slots
[0];
3543 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
3545 if (found_key
.objectid
!= scrub_dev
->devid
)
3548 if (found_key
.type
!= BTRFS_DEV_EXTENT_KEY
)
3551 if (found_key
.offset
>= end
)
3554 if (found_key
.offset
< key
.offset
)
3557 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
3558 length
= btrfs_dev_extent_length(l
, dev_extent
);
3560 if (found_key
.offset
+ length
<= start
)
3563 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
3566 * get a reference on the corresponding block group to prevent
3567 * the chunk from going away while we scrub it
3569 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3571 /* some chunks are removed but not committed to disk yet,
3572 * continue scrubbing */
3577 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3578 * to avoid deadlock caused by:
3579 * btrfs_inc_block_group_ro()
3580 * -> btrfs_wait_for_commit()
3581 * -> btrfs_commit_transaction()
3582 * -> btrfs_scrub_pause()
3584 scrub_pause_on(fs_info
);
3585 ret
= btrfs_inc_block_group_ro(fs_info
, cache
);
3586 if (!ret
&& is_dev_replace
) {
3588 * If we are doing a device replace wait for any tasks
3589 * that started dellaloc right before we set the block
3590 * group to RO mode, as they might have just allocated
3591 * an extent from it or decided they could do a nocow
3592 * write. And if any such tasks did that, wait for their
3593 * ordered extents to complete and then commit the
3594 * current transaction, so that we can later see the new
3595 * extent items in the extent tree - the ordered extents
3596 * create delayed data references (for cow writes) when
3597 * they complete, which will be run and insert the
3598 * corresponding extent items into the extent tree when
3599 * we commit the transaction they used when running
3600 * inode.c:btrfs_finish_ordered_io(). We later use
3601 * the commit root of the extent tree to find extents
3602 * to copy from the srcdev into the tgtdev, and we don't
3603 * want to miss any new extents.
3605 btrfs_wait_block_group_reservations(cache
);
3606 btrfs_wait_nocow_writers(cache
);
3607 ret
= btrfs_wait_ordered_roots(fs_info
, -1,
3608 cache
->key
.objectid
,
3611 struct btrfs_trans_handle
*trans
;
3613 trans
= btrfs_join_transaction(root
);
3615 ret
= PTR_ERR(trans
);
3617 ret
= btrfs_commit_transaction(trans
);
3619 scrub_pause_off(fs_info
);
3620 btrfs_put_block_group(cache
);
3625 scrub_pause_off(fs_info
);
3629 } else if (ret
== -ENOSPC
) {
3631 * btrfs_inc_block_group_ro return -ENOSPC when it
3632 * failed in creating new chunk for metadata.
3633 * It is not a problem for scrub/replace, because
3634 * metadata are always cowed, and our scrub paused
3635 * commit_transactions.
3640 "failed setting block group ro, ret=%d\n",
3642 btrfs_put_block_group(cache
);
3646 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 1);
3647 dev_replace
->cursor_right
= found_key
.offset
+ length
;
3648 dev_replace
->cursor_left
= found_key
.offset
;
3649 dev_replace
->item_needs_writeback
= 1;
3650 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 1);
3651 ret
= scrub_chunk(sctx
, scrub_dev
, chunk_offset
, length
,
3652 found_key
.offset
, cache
, is_dev_replace
);
3655 * flush, submit all pending read and write bios, afterwards
3657 * Note that in the dev replace case, a read request causes
3658 * write requests that are submitted in the read completion
3659 * worker. Therefore in the current situation, it is required
3660 * that all write requests are flushed, so that all read and
3661 * write requests are really completed when bios_in_flight
3664 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 1);
3666 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
3667 scrub_wr_submit(sctx
);
3668 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
3670 wait_event(sctx
->list_wait
,
3671 atomic_read(&sctx
->bios_in_flight
) == 0);
3673 scrub_pause_on(fs_info
);
3676 * must be called before we decrease @scrub_paused.
3677 * make sure we don't block transaction commit while
3678 * we are waiting pending workers finished.
3680 wait_event(sctx
->list_wait
,
3681 atomic_read(&sctx
->workers_pending
) == 0);
3682 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 0);
3684 scrub_pause_off(fs_info
);
3686 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 1);
3687 dev_replace
->cursor_left
= dev_replace
->cursor_right
;
3688 dev_replace
->item_needs_writeback
= 1;
3689 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 1);
3692 btrfs_dec_block_group_ro(cache
);
3695 * We might have prevented the cleaner kthread from deleting
3696 * this block group if it was already unused because we raced
3697 * and set it to RO mode first. So add it back to the unused
3698 * list, otherwise it might not ever be deleted unless a manual
3699 * balance is triggered or it becomes used and unused again.
3701 spin_lock(&cache
->lock
);
3702 if (!cache
->removed
&& !cache
->ro
&& cache
->reserved
== 0 &&
3703 btrfs_block_group_used(&cache
->item
) == 0) {
3704 spin_unlock(&cache
->lock
);
3705 spin_lock(&fs_info
->unused_bgs_lock
);
3706 if (list_empty(&cache
->bg_list
)) {
3707 btrfs_get_block_group(cache
);
3708 list_add_tail(&cache
->bg_list
,
3709 &fs_info
->unused_bgs
);
3711 spin_unlock(&fs_info
->unused_bgs_lock
);
3713 spin_unlock(&cache
->lock
);
3716 btrfs_put_block_group(cache
);
3719 if (is_dev_replace
&&
3720 atomic64_read(&dev_replace
->num_write_errors
) > 0) {
3724 if (sctx
->stat
.malloc_errors
> 0) {
3729 key
.offset
= found_key
.offset
+ length
;
3730 btrfs_release_path(path
);
3733 btrfs_free_path(path
);
3738 static noinline_for_stack
int scrub_supers(struct scrub_ctx
*sctx
,
3739 struct btrfs_device
*scrub_dev
)
3745 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3747 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3750 /* Seed devices of a new filesystem has their own generation. */
3751 if (scrub_dev
->fs_devices
!= fs_info
->fs_devices
)
3752 gen
= scrub_dev
->generation
;
3754 gen
= fs_info
->last_trans_committed
;
3756 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
3757 bytenr
= btrfs_sb_offset(i
);
3758 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>
3759 scrub_dev
->commit_total_bytes
)
3762 ret
= scrub_pages(sctx
, bytenr
, BTRFS_SUPER_INFO_SIZE
, bytenr
,
3763 scrub_dev
, BTRFS_EXTENT_FLAG_SUPER
, gen
, i
,
3768 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
3774 * get a reference count on fs_info->scrub_workers. start worker if necessary
3776 static noinline_for_stack
int scrub_workers_get(struct btrfs_fs_info
*fs_info
,
3779 unsigned int flags
= WQ_FREEZABLE
| WQ_UNBOUND
;
3780 int max_active
= fs_info
->thread_pool_size
;
3782 if (fs_info
->scrub_workers_refcnt
== 0) {
3784 fs_info
->scrub_workers
=
3785 btrfs_alloc_workqueue(fs_info
, "scrub", flags
,
3788 fs_info
->scrub_workers
=
3789 btrfs_alloc_workqueue(fs_info
, "scrub", flags
,
3791 if (!fs_info
->scrub_workers
)
3792 goto fail_scrub_workers
;
3794 fs_info
->scrub_wr_completion_workers
=
3795 btrfs_alloc_workqueue(fs_info
, "scrubwrc", flags
,
3797 if (!fs_info
->scrub_wr_completion_workers
)
3798 goto fail_scrub_wr_completion_workers
;
3800 fs_info
->scrub_nocow_workers
=
3801 btrfs_alloc_workqueue(fs_info
, "scrubnc", flags
, 1, 0);
3802 if (!fs_info
->scrub_nocow_workers
)
3803 goto fail_scrub_nocow_workers
;
3804 fs_info
->scrub_parity_workers
=
3805 btrfs_alloc_workqueue(fs_info
, "scrubparity", flags
,
3807 if (!fs_info
->scrub_parity_workers
)
3808 goto fail_scrub_parity_workers
;
3810 ++fs_info
->scrub_workers_refcnt
;
3813 fail_scrub_parity_workers
:
3814 btrfs_destroy_workqueue(fs_info
->scrub_nocow_workers
);
3815 fail_scrub_nocow_workers
:
3816 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
3817 fail_scrub_wr_completion_workers
:
3818 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
3823 static noinline_for_stack
void scrub_workers_put(struct btrfs_fs_info
*fs_info
)
3825 if (--fs_info
->scrub_workers_refcnt
== 0) {
3826 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
3827 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
3828 btrfs_destroy_workqueue(fs_info
->scrub_nocow_workers
);
3829 btrfs_destroy_workqueue(fs_info
->scrub_parity_workers
);
3831 WARN_ON(fs_info
->scrub_workers_refcnt
< 0);
3834 int btrfs_scrub_dev(struct btrfs_fs_info
*fs_info
, u64 devid
, u64 start
,
3835 u64 end
, struct btrfs_scrub_progress
*progress
,
3836 int readonly
, int is_dev_replace
)
3838 struct scrub_ctx
*sctx
;
3840 struct btrfs_device
*dev
;
3841 struct rcu_string
*name
;
3843 if (btrfs_fs_closing(fs_info
))
3846 if (fs_info
->nodesize
> BTRFS_STRIPE_LEN
) {
3848 * in this case scrub is unable to calculate the checksum
3849 * the way scrub is implemented. Do not handle this
3850 * situation at all because it won't ever happen.
3853 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3859 if (fs_info
->sectorsize
!= PAGE_SIZE
) {
3860 /* not supported for data w/o checksums */
3861 btrfs_err_rl(fs_info
,
3862 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3863 fs_info
->sectorsize
, PAGE_SIZE
);
3867 if (fs_info
->nodesize
>
3868 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
||
3869 fs_info
->sectorsize
> PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
) {
3871 * would exhaust the array bounds of pagev member in
3872 * struct scrub_block
3875 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3877 SCRUB_MAX_PAGES_PER_BLOCK
,
3878 fs_info
->sectorsize
,
3879 SCRUB_MAX_PAGES_PER_BLOCK
);
3884 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3885 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
3886 if (!dev
|| (dev
->missing
&& !is_dev_replace
)) {
3887 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3891 if (!is_dev_replace
&& !readonly
&& !dev
->writeable
) {
3892 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3894 name
= rcu_dereference(dev
->name
);
3895 btrfs_err(fs_info
, "scrub: device %s is not writable",
3901 mutex_lock(&fs_info
->scrub_lock
);
3902 if (!dev
->in_fs_metadata
|| dev
->is_tgtdev_for_dev_replace
) {
3903 mutex_unlock(&fs_info
->scrub_lock
);
3904 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3908 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3909 if (dev
->scrub_device
||
3911 btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))) {
3912 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3913 mutex_unlock(&fs_info
->scrub_lock
);
3914 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3915 return -EINPROGRESS
;
3917 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3919 ret
= scrub_workers_get(fs_info
, is_dev_replace
);
3921 mutex_unlock(&fs_info
->scrub_lock
);
3922 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3926 sctx
= scrub_setup_ctx(dev
, is_dev_replace
);
3928 mutex_unlock(&fs_info
->scrub_lock
);
3929 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3930 scrub_workers_put(fs_info
);
3931 return PTR_ERR(sctx
);
3933 sctx
->readonly
= readonly
;
3934 dev
->scrub_device
= sctx
;
3935 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3938 * checking @scrub_pause_req here, we can avoid
3939 * race between committing transaction and scrubbing.
3941 __scrub_blocked_if_needed(fs_info
);
3942 atomic_inc(&fs_info
->scrubs_running
);
3943 mutex_unlock(&fs_info
->scrub_lock
);
3945 if (!is_dev_replace
) {
3947 * by holding device list mutex, we can
3948 * kick off writing super in log tree sync.
3950 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3951 ret
= scrub_supers(sctx
, dev
);
3952 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3956 ret
= scrub_enumerate_chunks(sctx
, dev
, start
, end
,
3959 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
3960 atomic_dec(&fs_info
->scrubs_running
);
3961 wake_up(&fs_info
->scrub_pause_wait
);
3963 wait_event(sctx
->list_wait
, atomic_read(&sctx
->workers_pending
) == 0);
3966 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
3968 mutex_lock(&fs_info
->scrub_lock
);
3969 dev
->scrub_device
= NULL
;
3970 scrub_workers_put(fs_info
);
3971 mutex_unlock(&fs_info
->scrub_lock
);
3973 scrub_put_ctx(sctx
);
3978 void btrfs_scrub_pause(struct btrfs_fs_info
*fs_info
)
3980 mutex_lock(&fs_info
->scrub_lock
);
3981 atomic_inc(&fs_info
->scrub_pause_req
);
3982 while (atomic_read(&fs_info
->scrubs_paused
) !=
3983 atomic_read(&fs_info
->scrubs_running
)) {
3984 mutex_unlock(&fs_info
->scrub_lock
);
3985 wait_event(fs_info
->scrub_pause_wait
,
3986 atomic_read(&fs_info
->scrubs_paused
) ==
3987 atomic_read(&fs_info
->scrubs_running
));
3988 mutex_lock(&fs_info
->scrub_lock
);
3990 mutex_unlock(&fs_info
->scrub_lock
);
3993 void btrfs_scrub_continue(struct btrfs_fs_info
*fs_info
)
3995 atomic_dec(&fs_info
->scrub_pause_req
);
3996 wake_up(&fs_info
->scrub_pause_wait
);
3999 int btrfs_scrub_cancel(struct btrfs_fs_info
*fs_info
)
4001 mutex_lock(&fs_info
->scrub_lock
);
4002 if (!atomic_read(&fs_info
->scrubs_running
)) {
4003 mutex_unlock(&fs_info
->scrub_lock
);
4007 atomic_inc(&fs_info
->scrub_cancel_req
);
4008 while (atomic_read(&fs_info
->scrubs_running
)) {
4009 mutex_unlock(&fs_info
->scrub_lock
);
4010 wait_event(fs_info
->scrub_pause_wait
,
4011 atomic_read(&fs_info
->scrubs_running
) == 0);
4012 mutex_lock(&fs_info
->scrub_lock
);
4014 atomic_dec(&fs_info
->scrub_cancel_req
);
4015 mutex_unlock(&fs_info
->scrub_lock
);
4020 int btrfs_scrub_cancel_dev(struct btrfs_fs_info
*fs_info
,
4021 struct btrfs_device
*dev
)
4023 struct scrub_ctx
*sctx
;
4025 mutex_lock(&fs_info
->scrub_lock
);
4026 sctx
= dev
->scrub_device
;
4028 mutex_unlock(&fs_info
->scrub_lock
);
4031 atomic_inc(&sctx
->cancel_req
);
4032 while (dev
->scrub_device
) {
4033 mutex_unlock(&fs_info
->scrub_lock
);
4034 wait_event(fs_info
->scrub_pause_wait
,
4035 dev
->scrub_device
== NULL
);
4036 mutex_lock(&fs_info
->scrub_lock
);
4038 mutex_unlock(&fs_info
->scrub_lock
);
4043 int btrfs_scrub_progress(struct btrfs_fs_info
*fs_info
, u64 devid
,
4044 struct btrfs_scrub_progress
*progress
)
4046 struct btrfs_device
*dev
;
4047 struct scrub_ctx
*sctx
= NULL
;
4049 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4050 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
4052 sctx
= dev
->scrub_device
;
4054 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
4055 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4057 return dev
? (sctx
? 0 : -ENOTCONN
) : -ENODEV
;
4060 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
4061 u64 extent_logical
, u64 extent_len
,
4062 u64
*extent_physical
,
4063 struct btrfs_device
**extent_dev
,
4064 int *extent_mirror_num
)
4067 struct btrfs_bio
*bbio
= NULL
;
4070 mapped_length
= extent_len
;
4071 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
, extent_logical
,
4072 &mapped_length
, &bbio
, 0);
4073 if (ret
|| !bbio
|| mapped_length
< extent_len
||
4074 !bbio
->stripes
[0].dev
->bdev
) {
4075 btrfs_put_bbio(bbio
);
4079 *extent_physical
= bbio
->stripes
[0].physical
;
4080 *extent_mirror_num
= bbio
->mirror_num
;
4081 *extent_dev
= bbio
->stripes
[0].dev
;
4082 btrfs_put_bbio(bbio
);
4085 static int scrub_setup_wr_ctx(struct scrub_wr_ctx
*wr_ctx
,
4086 struct btrfs_device
*dev
,
4089 WARN_ON(wr_ctx
->wr_curr_bio
!= NULL
);
4091 mutex_init(&wr_ctx
->wr_lock
);
4092 wr_ctx
->wr_curr_bio
= NULL
;
4093 if (!is_dev_replace
)
4096 WARN_ON(!dev
->bdev
);
4097 wr_ctx
->pages_per_wr_bio
= SCRUB_PAGES_PER_WR_BIO
;
4098 wr_ctx
->tgtdev
= dev
;
4099 atomic_set(&wr_ctx
->flush_all_writes
, 0);
4103 static void scrub_free_wr_ctx(struct scrub_wr_ctx
*wr_ctx
)
4105 mutex_lock(&wr_ctx
->wr_lock
);
4106 kfree(wr_ctx
->wr_curr_bio
);
4107 wr_ctx
->wr_curr_bio
= NULL
;
4108 mutex_unlock(&wr_ctx
->wr_lock
);
4111 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
4112 int mirror_num
, u64 physical_for_dev_replace
)
4114 struct scrub_copy_nocow_ctx
*nocow_ctx
;
4115 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
4117 nocow_ctx
= kzalloc(sizeof(*nocow_ctx
), GFP_NOFS
);
4119 spin_lock(&sctx
->stat_lock
);
4120 sctx
->stat
.malloc_errors
++;
4121 spin_unlock(&sctx
->stat_lock
);
4125 scrub_pending_trans_workers_inc(sctx
);
4127 nocow_ctx
->sctx
= sctx
;
4128 nocow_ctx
->logical
= logical
;
4129 nocow_ctx
->len
= len
;
4130 nocow_ctx
->mirror_num
= mirror_num
;
4131 nocow_ctx
->physical_for_dev_replace
= physical_for_dev_replace
;
4132 btrfs_init_work(&nocow_ctx
->work
, btrfs_scrubnc_helper
,
4133 copy_nocow_pages_worker
, NULL
, NULL
);
4134 INIT_LIST_HEAD(&nocow_ctx
->inodes
);
4135 btrfs_queue_work(fs_info
->scrub_nocow_workers
,
4141 static int record_inode_for_nocow(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4143 struct scrub_copy_nocow_ctx
*nocow_ctx
= ctx
;
4144 struct scrub_nocow_inode
*nocow_inode
;
4146 nocow_inode
= kzalloc(sizeof(*nocow_inode
), GFP_NOFS
);
4149 nocow_inode
->inum
= inum
;
4150 nocow_inode
->offset
= offset
;
4151 nocow_inode
->root
= root
;
4152 list_add_tail(&nocow_inode
->list
, &nocow_ctx
->inodes
);
4156 #define COPY_COMPLETE 1
4158 static void copy_nocow_pages_worker(struct btrfs_work
*work
)
4160 struct scrub_copy_nocow_ctx
*nocow_ctx
=
4161 container_of(work
, struct scrub_copy_nocow_ctx
, work
);
4162 struct scrub_ctx
*sctx
= nocow_ctx
->sctx
;
4163 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
4164 struct btrfs_root
*root
= fs_info
->extent_root
;
4165 u64 logical
= nocow_ctx
->logical
;
4166 u64 len
= nocow_ctx
->len
;
4167 int mirror_num
= nocow_ctx
->mirror_num
;
4168 u64 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
4170 struct btrfs_trans_handle
*trans
= NULL
;
4171 struct btrfs_path
*path
;
4172 int not_written
= 0;
4174 path
= btrfs_alloc_path();
4176 spin_lock(&sctx
->stat_lock
);
4177 sctx
->stat
.malloc_errors
++;
4178 spin_unlock(&sctx
->stat_lock
);
4183 trans
= btrfs_join_transaction(root
);
4184 if (IS_ERR(trans
)) {
4189 ret
= iterate_inodes_from_logical(logical
, fs_info
, path
,
4190 record_inode_for_nocow
, nocow_ctx
);
4191 if (ret
!= 0 && ret
!= -ENOENT
) {
4193 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4194 logical
, physical_for_dev_replace
, len
, mirror_num
,
4200 btrfs_end_transaction(trans
);
4202 while (!list_empty(&nocow_ctx
->inodes
)) {
4203 struct scrub_nocow_inode
*entry
;
4204 entry
= list_first_entry(&nocow_ctx
->inodes
,
4205 struct scrub_nocow_inode
,
4207 list_del_init(&entry
->list
);
4208 ret
= copy_nocow_pages_for_inode(entry
->inum
, entry
->offset
,
4209 entry
->root
, nocow_ctx
);
4211 if (ret
== COPY_COMPLETE
) {
4219 while (!list_empty(&nocow_ctx
->inodes
)) {
4220 struct scrub_nocow_inode
*entry
;
4221 entry
= list_first_entry(&nocow_ctx
->inodes
,
4222 struct scrub_nocow_inode
,
4224 list_del_init(&entry
->list
);
4227 if (trans
&& !IS_ERR(trans
))
4228 btrfs_end_transaction(trans
);
4230 btrfs_dev_replace_stats_inc(&fs_info
->dev_replace
.
4231 num_uncorrectable_read_errors
);
4233 btrfs_free_path(path
);
4236 scrub_pending_trans_workers_dec(sctx
);
4239 static int check_extent_to_block(struct inode
*inode
, u64 start
, u64 len
,
4242 struct extent_state
*cached_state
= NULL
;
4243 struct btrfs_ordered_extent
*ordered
;
4244 struct extent_io_tree
*io_tree
;
4245 struct extent_map
*em
;
4246 u64 lockstart
= start
, lockend
= start
+ len
- 1;
4249 io_tree
= &BTRFS_I(inode
)->io_tree
;
4251 lock_extent_bits(io_tree
, lockstart
, lockend
, &cached_state
);
4252 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
, len
);
4254 btrfs_put_ordered_extent(ordered
);
4259 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
4266 * This extent does not actually cover the logical extent anymore,
4267 * move on to the next inode.
4269 if (em
->block_start
> logical
||
4270 em
->block_start
+ em
->block_len
< logical
+ len
) {
4271 free_extent_map(em
);
4275 free_extent_map(em
);
4278 unlock_extent_cached(io_tree
, lockstart
, lockend
, &cached_state
,
4283 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
4284 struct scrub_copy_nocow_ctx
*nocow_ctx
)
4286 struct btrfs_fs_info
*fs_info
= nocow_ctx
->sctx
->fs_info
;
4287 struct btrfs_key key
;
4288 struct inode
*inode
;
4290 struct btrfs_root
*local_root
;
4291 struct extent_io_tree
*io_tree
;
4292 u64 physical_for_dev_replace
;
4293 u64 nocow_ctx_logical
;
4294 u64 len
= nocow_ctx
->len
;
4295 unsigned long index
;
4300 key
.objectid
= root
;
4301 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4302 key
.offset
= (u64
)-1;
4304 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
4306 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4307 if (IS_ERR(local_root
)) {
4308 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
4309 return PTR_ERR(local_root
);
4312 key
.type
= BTRFS_INODE_ITEM_KEY
;
4313 key
.objectid
= inum
;
4315 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
4316 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
4318 return PTR_ERR(inode
);
4320 /* Avoid truncate/dio/punch hole.. */
4322 inode_dio_wait(inode
);
4324 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
4325 io_tree
= &BTRFS_I(inode
)->io_tree
;
4326 nocow_ctx_logical
= nocow_ctx
->logical
;
4328 ret
= check_extent_to_block(inode
, offset
, len
, nocow_ctx_logical
);
4330 ret
= ret
> 0 ? 0 : ret
;
4334 while (len
>= PAGE_SIZE
) {
4335 index
= offset
>> PAGE_SHIFT
;
4337 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
4339 btrfs_err(fs_info
, "find_or_create_page() failed");
4344 if (PageUptodate(page
)) {
4345 if (PageDirty(page
))
4348 ClearPageError(page
);
4349 err
= extent_read_full_page(io_tree
, page
,
4351 nocow_ctx
->mirror_num
);
4359 * If the page has been remove from the page cache,
4360 * the data on it is meaningless, because it may be
4361 * old one, the new data may be written into the new
4362 * page in the page cache.
4364 if (page
->mapping
!= inode
->i_mapping
) {
4369 if (!PageUptodate(page
)) {
4375 ret
= check_extent_to_block(inode
, offset
, len
,
4378 ret
= ret
> 0 ? 0 : ret
;
4382 err
= write_page_nocow(nocow_ctx
->sctx
,
4383 physical_for_dev_replace
, page
);
4393 offset
+= PAGE_SIZE
;
4394 physical_for_dev_replace
+= PAGE_SIZE
;
4395 nocow_ctx_logical
+= PAGE_SIZE
;
4398 ret
= COPY_COMPLETE
;
4400 inode_unlock(inode
);
4405 static int write_page_nocow(struct scrub_ctx
*sctx
,
4406 u64 physical_for_dev_replace
, struct page
*page
)
4409 struct btrfs_device
*dev
;
4412 dev
= sctx
->wr_ctx
.tgtdev
;
4416 btrfs_warn_rl(dev
->fs_info
,
4417 "scrub write_page_nocow(bdev == NULL) is unexpected");
4420 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
4422 spin_lock(&sctx
->stat_lock
);
4423 sctx
->stat
.malloc_errors
++;
4424 spin_unlock(&sctx
->stat_lock
);
4427 bio
->bi_iter
.bi_size
= 0;
4428 bio
->bi_iter
.bi_sector
= physical_for_dev_replace
>> 9;
4429 bio
->bi_bdev
= dev
->bdev
;
4430 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
;
4431 ret
= bio_add_page(bio
, page
, PAGE_SIZE
, 0);
4432 if (ret
!= PAGE_SIZE
) {
4435 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
4439 if (btrfsic_submit_bio_wait(bio
))
4440 goto leave_with_eio
;