]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/scrub.c
Merge tag 'nfsd-4.15' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / scrub.c
1 /*
2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include <linux/sched/mm.h>
22 #include "ctree.h"
23 #include "volumes.h"
24 #include "disk-io.h"
25 #include "ordered-data.h"
26 #include "transaction.h"
27 #include "backref.h"
28 #include "extent_io.h"
29 #include "dev-replace.h"
30 #include "check-integrity.h"
31 #include "rcu-string.h"
32 #include "raid56.h"
33
34 /*
35 * This is only the first step towards a full-features scrub. It reads all
36 * extent and super block and verifies the checksums. In case a bad checksum
37 * is found or the extent cannot be read, good data will be written back if
38 * any can be found.
39 *
40 * Future enhancements:
41 * - In case an unrepairable extent is encountered, track which files are
42 * affected and report them
43 * - track and record media errors, throw out bad devices
44 * - add a mode to also read unallocated space
45 */
46
47 struct scrub_block;
48 struct scrub_ctx;
49
50 /*
51 * the following three values only influence the performance.
52 * The last one configures the number of parallel and outstanding I/O
53 * operations. The first two values configure an upper limit for the number
54 * of (dynamically allocated) pages that are added to a bio.
55 */
56 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
57 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
58 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
59
60 /*
61 * the following value times PAGE_SIZE needs to be large enough to match the
62 * largest node/leaf/sector size that shall be supported.
63 * Values larger than BTRFS_STRIPE_LEN are not supported.
64 */
65 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
66
67 struct scrub_recover {
68 refcount_t refs;
69 struct btrfs_bio *bbio;
70 u64 map_length;
71 };
72
73 struct scrub_page {
74 struct scrub_block *sblock;
75 struct page *page;
76 struct btrfs_device *dev;
77 struct list_head list;
78 u64 flags; /* extent flags */
79 u64 generation;
80 u64 logical;
81 u64 physical;
82 u64 physical_for_dev_replace;
83 atomic_t refs;
84 struct {
85 unsigned int mirror_num:8;
86 unsigned int have_csum:1;
87 unsigned int io_error:1;
88 };
89 u8 csum[BTRFS_CSUM_SIZE];
90
91 struct scrub_recover *recover;
92 };
93
94 struct scrub_bio {
95 int index;
96 struct scrub_ctx *sctx;
97 struct btrfs_device *dev;
98 struct bio *bio;
99 blk_status_t status;
100 u64 logical;
101 u64 physical;
102 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
103 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
104 #else
105 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
106 #endif
107 int page_count;
108 int next_free;
109 struct btrfs_work work;
110 };
111
112 struct scrub_block {
113 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
114 int page_count;
115 atomic_t outstanding_pages;
116 refcount_t refs; /* free mem on transition to zero */
117 struct scrub_ctx *sctx;
118 struct scrub_parity *sparity;
119 struct {
120 unsigned int header_error:1;
121 unsigned int checksum_error:1;
122 unsigned int no_io_error_seen:1;
123 unsigned int generation_error:1; /* also sets header_error */
124
125 /* The following is for the data used to check parity */
126 /* It is for the data with checksum */
127 unsigned int data_corrected:1;
128 };
129 struct btrfs_work work;
130 };
131
132 /* Used for the chunks with parity stripe such RAID5/6 */
133 struct scrub_parity {
134 struct scrub_ctx *sctx;
135
136 struct btrfs_device *scrub_dev;
137
138 u64 logic_start;
139
140 u64 logic_end;
141
142 int nsectors;
143
144 u64 stripe_len;
145
146 refcount_t refs;
147
148 struct list_head spages;
149
150 /* Work of parity check and repair */
151 struct btrfs_work work;
152
153 /* Mark the parity blocks which have data */
154 unsigned long *dbitmap;
155
156 /*
157 * Mark the parity blocks which have data, but errors happen when
158 * read data or check data
159 */
160 unsigned long *ebitmap;
161
162 unsigned long bitmap[0];
163 };
164
165 struct scrub_ctx {
166 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
167 struct btrfs_fs_info *fs_info;
168 int first_free;
169 int curr;
170 atomic_t bios_in_flight;
171 atomic_t workers_pending;
172 spinlock_t list_lock;
173 wait_queue_head_t list_wait;
174 u16 csum_size;
175 struct list_head csum_list;
176 atomic_t cancel_req;
177 int readonly;
178 int pages_per_rd_bio;
179
180 int is_dev_replace;
181
182 struct scrub_bio *wr_curr_bio;
183 struct mutex wr_lock;
184 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
185 struct btrfs_device *wr_tgtdev;
186 bool flush_all_writes;
187
188 /*
189 * statistics
190 */
191 struct btrfs_scrub_progress stat;
192 spinlock_t stat_lock;
193
194 /*
195 * Use a ref counter to avoid use-after-free issues. Scrub workers
196 * decrement bios_in_flight and workers_pending and then do a wakeup
197 * on the list_wait wait queue. We must ensure the main scrub task
198 * doesn't free the scrub context before or while the workers are
199 * doing the wakeup() call.
200 */
201 refcount_t refs;
202 };
203
204 struct scrub_fixup_nodatasum {
205 struct scrub_ctx *sctx;
206 struct btrfs_device *dev;
207 u64 logical;
208 struct btrfs_root *root;
209 struct btrfs_work work;
210 int mirror_num;
211 };
212
213 struct scrub_nocow_inode {
214 u64 inum;
215 u64 offset;
216 u64 root;
217 struct list_head list;
218 };
219
220 struct scrub_copy_nocow_ctx {
221 struct scrub_ctx *sctx;
222 u64 logical;
223 u64 len;
224 int mirror_num;
225 u64 physical_for_dev_replace;
226 struct list_head inodes;
227 struct btrfs_work work;
228 };
229
230 struct scrub_warning {
231 struct btrfs_path *path;
232 u64 extent_item_size;
233 const char *errstr;
234 u64 physical;
235 u64 logical;
236 struct btrfs_device *dev;
237 };
238
239 struct full_stripe_lock {
240 struct rb_node node;
241 u64 logical;
242 u64 refs;
243 struct mutex mutex;
244 };
245
246 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
247 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
248 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
249 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
250 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
251 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
252 struct scrub_block *sblocks_for_recheck);
253 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
254 struct scrub_block *sblock,
255 int retry_failed_mirror);
256 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
257 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
258 struct scrub_block *sblock_good);
259 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
260 struct scrub_block *sblock_good,
261 int page_num, int force_write);
262 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
263 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
264 int page_num);
265 static int scrub_checksum_data(struct scrub_block *sblock);
266 static int scrub_checksum_tree_block(struct scrub_block *sblock);
267 static int scrub_checksum_super(struct scrub_block *sblock);
268 static void scrub_block_get(struct scrub_block *sblock);
269 static void scrub_block_put(struct scrub_block *sblock);
270 static void scrub_page_get(struct scrub_page *spage);
271 static void scrub_page_put(struct scrub_page *spage);
272 static void scrub_parity_get(struct scrub_parity *sparity);
273 static void scrub_parity_put(struct scrub_parity *sparity);
274 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
275 struct scrub_page *spage);
276 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
277 u64 physical, struct btrfs_device *dev, u64 flags,
278 u64 gen, int mirror_num, u8 *csum, int force,
279 u64 physical_for_dev_replace);
280 static void scrub_bio_end_io(struct bio *bio);
281 static void scrub_bio_end_io_worker(struct btrfs_work *work);
282 static void scrub_block_complete(struct scrub_block *sblock);
283 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
284 u64 extent_logical, u64 extent_len,
285 u64 *extent_physical,
286 struct btrfs_device **extent_dev,
287 int *extent_mirror_num);
288 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
289 struct scrub_page *spage);
290 static void scrub_wr_submit(struct scrub_ctx *sctx);
291 static void scrub_wr_bio_end_io(struct bio *bio);
292 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
293 static int write_page_nocow(struct scrub_ctx *sctx,
294 u64 physical_for_dev_replace, struct page *page);
295 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
296 struct scrub_copy_nocow_ctx *ctx);
297 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
298 int mirror_num, u64 physical_for_dev_replace);
299 static void copy_nocow_pages_worker(struct btrfs_work *work);
300 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
302 static void scrub_put_ctx(struct scrub_ctx *sctx);
303
304
305 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
306 {
307 refcount_inc(&sctx->refs);
308 atomic_inc(&sctx->bios_in_flight);
309 }
310
311 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
312 {
313 atomic_dec(&sctx->bios_in_flight);
314 wake_up(&sctx->list_wait);
315 scrub_put_ctx(sctx);
316 }
317
318 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
319 {
320 while (atomic_read(&fs_info->scrub_pause_req)) {
321 mutex_unlock(&fs_info->scrub_lock);
322 wait_event(fs_info->scrub_pause_wait,
323 atomic_read(&fs_info->scrub_pause_req) == 0);
324 mutex_lock(&fs_info->scrub_lock);
325 }
326 }
327
328 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
329 {
330 atomic_inc(&fs_info->scrubs_paused);
331 wake_up(&fs_info->scrub_pause_wait);
332 }
333
334 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
335 {
336 mutex_lock(&fs_info->scrub_lock);
337 __scrub_blocked_if_needed(fs_info);
338 atomic_dec(&fs_info->scrubs_paused);
339 mutex_unlock(&fs_info->scrub_lock);
340
341 wake_up(&fs_info->scrub_pause_wait);
342 }
343
344 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
345 {
346 scrub_pause_on(fs_info);
347 scrub_pause_off(fs_info);
348 }
349
350 /*
351 * Insert new full stripe lock into full stripe locks tree
352 *
353 * Return pointer to existing or newly inserted full_stripe_lock structure if
354 * everything works well.
355 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
356 *
357 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
358 * function
359 */
360 static struct full_stripe_lock *insert_full_stripe_lock(
361 struct btrfs_full_stripe_locks_tree *locks_root,
362 u64 fstripe_logical)
363 {
364 struct rb_node **p;
365 struct rb_node *parent = NULL;
366 struct full_stripe_lock *entry;
367 struct full_stripe_lock *ret;
368
369 WARN_ON(!mutex_is_locked(&locks_root->lock));
370
371 p = &locks_root->root.rb_node;
372 while (*p) {
373 parent = *p;
374 entry = rb_entry(parent, struct full_stripe_lock, node);
375 if (fstripe_logical < entry->logical) {
376 p = &(*p)->rb_left;
377 } else if (fstripe_logical > entry->logical) {
378 p = &(*p)->rb_right;
379 } else {
380 entry->refs++;
381 return entry;
382 }
383 }
384
385 /* Insert new lock */
386 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
387 if (!ret)
388 return ERR_PTR(-ENOMEM);
389 ret->logical = fstripe_logical;
390 ret->refs = 1;
391 mutex_init(&ret->mutex);
392
393 rb_link_node(&ret->node, parent, p);
394 rb_insert_color(&ret->node, &locks_root->root);
395 return ret;
396 }
397
398 /*
399 * Search for a full stripe lock of a block group
400 *
401 * Return pointer to existing full stripe lock if found
402 * Return NULL if not found
403 */
404 static struct full_stripe_lock *search_full_stripe_lock(
405 struct btrfs_full_stripe_locks_tree *locks_root,
406 u64 fstripe_logical)
407 {
408 struct rb_node *node;
409 struct full_stripe_lock *entry;
410
411 WARN_ON(!mutex_is_locked(&locks_root->lock));
412
413 node = locks_root->root.rb_node;
414 while (node) {
415 entry = rb_entry(node, struct full_stripe_lock, node);
416 if (fstripe_logical < entry->logical)
417 node = node->rb_left;
418 else if (fstripe_logical > entry->logical)
419 node = node->rb_right;
420 else
421 return entry;
422 }
423 return NULL;
424 }
425
426 /*
427 * Helper to get full stripe logical from a normal bytenr.
428 *
429 * Caller must ensure @cache is a RAID56 block group.
430 */
431 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
432 u64 bytenr)
433 {
434 u64 ret;
435
436 /*
437 * Due to chunk item size limit, full stripe length should not be
438 * larger than U32_MAX. Just a sanity check here.
439 */
440 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
441
442 /*
443 * round_down() can only handle power of 2, while RAID56 full
444 * stripe length can be 64KiB * n, so we need to manually round down.
445 */
446 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
447 cache->full_stripe_len + cache->key.objectid;
448 return ret;
449 }
450
451 /*
452 * Lock a full stripe to avoid concurrency of recovery and read
453 *
454 * It's only used for profiles with parities (RAID5/6), for other profiles it
455 * does nothing.
456 *
457 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
458 * So caller must call unlock_full_stripe() at the same context.
459 *
460 * Return <0 if encounters error.
461 */
462 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
463 bool *locked_ret)
464 {
465 struct btrfs_block_group_cache *bg_cache;
466 struct btrfs_full_stripe_locks_tree *locks_root;
467 struct full_stripe_lock *existing;
468 u64 fstripe_start;
469 int ret = 0;
470
471 *locked_ret = false;
472 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
473 if (!bg_cache) {
474 ASSERT(0);
475 return -ENOENT;
476 }
477
478 /* Profiles not based on parity don't need full stripe lock */
479 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
480 goto out;
481 locks_root = &bg_cache->full_stripe_locks_root;
482
483 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
484
485 /* Now insert the full stripe lock */
486 mutex_lock(&locks_root->lock);
487 existing = insert_full_stripe_lock(locks_root, fstripe_start);
488 mutex_unlock(&locks_root->lock);
489 if (IS_ERR(existing)) {
490 ret = PTR_ERR(existing);
491 goto out;
492 }
493 mutex_lock(&existing->mutex);
494 *locked_ret = true;
495 out:
496 btrfs_put_block_group(bg_cache);
497 return ret;
498 }
499
500 /*
501 * Unlock a full stripe.
502 *
503 * NOTE: Caller must ensure it's the same context calling corresponding
504 * lock_full_stripe().
505 *
506 * Return 0 if we unlock full stripe without problem.
507 * Return <0 for error
508 */
509 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
510 bool locked)
511 {
512 struct btrfs_block_group_cache *bg_cache;
513 struct btrfs_full_stripe_locks_tree *locks_root;
514 struct full_stripe_lock *fstripe_lock;
515 u64 fstripe_start;
516 bool freeit = false;
517 int ret = 0;
518
519 /* If we didn't acquire full stripe lock, no need to continue */
520 if (!locked)
521 return 0;
522
523 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
524 if (!bg_cache) {
525 ASSERT(0);
526 return -ENOENT;
527 }
528 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
529 goto out;
530
531 locks_root = &bg_cache->full_stripe_locks_root;
532 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
533
534 mutex_lock(&locks_root->lock);
535 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
536 /* Unpaired unlock_full_stripe() detected */
537 if (!fstripe_lock) {
538 WARN_ON(1);
539 ret = -ENOENT;
540 mutex_unlock(&locks_root->lock);
541 goto out;
542 }
543
544 if (fstripe_lock->refs == 0) {
545 WARN_ON(1);
546 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
547 fstripe_lock->logical);
548 } else {
549 fstripe_lock->refs--;
550 }
551
552 if (fstripe_lock->refs == 0) {
553 rb_erase(&fstripe_lock->node, &locks_root->root);
554 freeit = true;
555 }
556 mutex_unlock(&locks_root->lock);
557
558 mutex_unlock(&fstripe_lock->mutex);
559 if (freeit)
560 kfree(fstripe_lock);
561 out:
562 btrfs_put_block_group(bg_cache);
563 return ret;
564 }
565
566 /*
567 * used for workers that require transaction commits (i.e., for the
568 * NOCOW case)
569 */
570 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
571 {
572 struct btrfs_fs_info *fs_info = sctx->fs_info;
573
574 refcount_inc(&sctx->refs);
575 /*
576 * increment scrubs_running to prevent cancel requests from
577 * completing as long as a worker is running. we must also
578 * increment scrubs_paused to prevent deadlocking on pause
579 * requests used for transactions commits (as the worker uses a
580 * transaction context). it is safe to regard the worker
581 * as paused for all matters practical. effectively, we only
582 * avoid cancellation requests from completing.
583 */
584 mutex_lock(&fs_info->scrub_lock);
585 atomic_inc(&fs_info->scrubs_running);
586 atomic_inc(&fs_info->scrubs_paused);
587 mutex_unlock(&fs_info->scrub_lock);
588
589 /*
590 * check if @scrubs_running=@scrubs_paused condition
591 * inside wait_event() is not an atomic operation.
592 * which means we may inc/dec @scrub_running/paused
593 * at any time. Let's wake up @scrub_pause_wait as
594 * much as we can to let commit transaction blocked less.
595 */
596 wake_up(&fs_info->scrub_pause_wait);
597
598 atomic_inc(&sctx->workers_pending);
599 }
600
601 /* used for workers that require transaction commits */
602 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
603 {
604 struct btrfs_fs_info *fs_info = sctx->fs_info;
605
606 /*
607 * see scrub_pending_trans_workers_inc() why we're pretending
608 * to be paused in the scrub counters
609 */
610 mutex_lock(&fs_info->scrub_lock);
611 atomic_dec(&fs_info->scrubs_running);
612 atomic_dec(&fs_info->scrubs_paused);
613 mutex_unlock(&fs_info->scrub_lock);
614 atomic_dec(&sctx->workers_pending);
615 wake_up(&fs_info->scrub_pause_wait);
616 wake_up(&sctx->list_wait);
617 scrub_put_ctx(sctx);
618 }
619
620 static void scrub_free_csums(struct scrub_ctx *sctx)
621 {
622 while (!list_empty(&sctx->csum_list)) {
623 struct btrfs_ordered_sum *sum;
624 sum = list_first_entry(&sctx->csum_list,
625 struct btrfs_ordered_sum, list);
626 list_del(&sum->list);
627 kfree(sum);
628 }
629 }
630
631 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
632 {
633 int i;
634
635 if (!sctx)
636 return;
637
638 /* this can happen when scrub is cancelled */
639 if (sctx->curr != -1) {
640 struct scrub_bio *sbio = sctx->bios[sctx->curr];
641
642 for (i = 0; i < sbio->page_count; i++) {
643 WARN_ON(!sbio->pagev[i]->page);
644 scrub_block_put(sbio->pagev[i]->sblock);
645 }
646 bio_put(sbio->bio);
647 }
648
649 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
650 struct scrub_bio *sbio = sctx->bios[i];
651
652 if (!sbio)
653 break;
654 kfree(sbio);
655 }
656
657 kfree(sctx->wr_curr_bio);
658 scrub_free_csums(sctx);
659 kfree(sctx);
660 }
661
662 static void scrub_put_ctx(struct scrub_ctx *sctx)
663 {
664 if (refcount_dec_and_test(&sctx->refs))
665 scrub_free_ctx(sctx);
666 }
667
668 static noinline_for_stack
669 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
670 {
671 struct scrub_ctx *sctx;
672 int i;
673 struct btrfs_fs_info *fs_info = dev->fs_info;
674
675 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
676 if (!sctx)
677 goto nomem;
678 refcount_set(&sctx->refs, 1);
679 sctx->is_dev_replace = is_dev_replace;
680 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
681 sctx->curr = -1;
682 sctx->fs_info = dev->fs_info;
683 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
684 struct scrub_bio *sbio;
685
686 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
687 if (!sbio)
688 goto nomem;
689 sctx->bios[i] = sbio;
690
691 sbio->index = i;
692 sbio->sctx = sctx;
693 sbio->page_count = 0;
694 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
695 scrub_bio_end_io_worker, NULL, NULL);
696
697 if (i != SCRUB_BIOS_PER_SCTX - 1)
698 sctx->bios[i]->next_free = i + 1;
699 else
700 sctx->bios[i]->next_free = -1;
701 }
702 sctx->first_free = 0;
703 atomic_set(&sctx->bios_in_flight, 0);
704 atomic_set(&sctx->workers_pending, 0);
705 atomic_set(&sctx->cancel_req, 0);
706 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
707 INIT_LIST_HEAD(&sctx->csum_list);
708
709 spin_lock_init(&sctx->list_lock);
710 spin_lock_init(&sctx->stat_lock);
711 init_waitqueue_head(&sctx->list_wait);
712
713 WARN_ON(sctx->wr_curr_bio != NULL);
714 mutex_init(&sctx->wr_lock);
715 sctx->wr_curr_bio = NULL;
716 if (is_dev_replace) {
717 WARN_ON(!fs_info->dev_replace.tgtdev);
718 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
719 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
720 sctx->flush_all_writes = false;
721 }
722
723 return sctx;
724
725 nomem:
726 scrub_free_ctx(sctx);
727 return ERR_PTR(-ENOMEM);
728 }
729
730 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
731 void *warn_ctx)
732 {
733 u64 isize;
734 u32 nlink;
735 int ret;
736 int i;
737 unsigned nofs_flag;
738 struct extent_buffer *eb;
739 struct btrfs_inode_item *inode_item;
740 struct scrub_warning *swarn = warn_ctx;
741 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
742 struct inode_fs_paths *ipath = NULL;
743 struct btrfs_root *local_root;
744 struct btrfs_key root_key;
745 struct btrfs_key key;
746
747 root_key.objectid = root;
748 root_key.type = BTRFS_ROOT_ITEM_KEY;
749 root_key.offset = (u64)-1;
750 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
751 if (IS_ERR(local_root)) {
752 ret = PTR_ERR(local_root);
753 goto err;
754 }
755
756 /*
757 * this makes the path point to (inum INODE_ITEM ioff)
758 */
759 key.objectid = inum;
760 key.type = BTRFS_INODE_ITEM_KEY;
761 key.offset = 0;
762
763 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
764 if (ret) {
765 btrfs_release_path(swarn->path);
766 goto err;
767 }
768
769 eb = swarn->path->nodes[0];
770 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
771 struct btrfs_inode_item);
772 isize = btrfs_inode_size(eb, inode_item);
773 nlink = btrfs_inode_nlink(eb, inode_item);
774 btrfs_release_path(swarn->path);
775
776 /*
777 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
778 * uses GFP_NOFS in this context, so we keep it consistent but it does
779 * not seem to be strictly necessary.
780 */
781 nofs_flag = memalloc_nofs_save();
782 ipath = init_ipath(4096, local_root, swarn->path);
783 memalloc_nofs_restore(nofs_flag);
784 if (IS_ERR(ipath)) {
785 ret = PTR_ERR(ipath);
786 ipath = NULL;
787 goto err;
788 }
789 ret = paths_from_inode(inum, ipath);
790
791 if (ret < 0)
792 goto err;
793
794 /*
795 * we deliberately ignore the bit ipath might have been too small to
796 * hold all of the paths here
797 */
798 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
799 btrfs_warn_in_rcu(fs_info,
800 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
801 swarn->errstr, swarn->logical,
802 rcu_str_deref(swarn->dev->name),
803 swarn->physical,
804 root, inum, offset,
805 min(isize - offset, (u64)PAGE_SIZE), nlink,
806 (char *)(unsigned long)ipath->fspath->val[i]);
807
808 free_ipath(ipath);
809 return 0;
810
811 err:
812 btrfs_warn_in_rcu(fs_info,
813 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
814 swarn->errstr, swarn->logical,
815 rcu_str_deref(swarn->dev->name),
816 swarn->physical,
817 root, inum, offset, ret);
818
819 free_ipath(ipath);
820 return 0;
821 }
822
823 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
824 {
825 struct btrfs_device *dev;
826 struct btrfs_fs_info *fs_info;
827 struct btrfs_path *path;
828 struct btrfs_key found_key;
829 struct extent_buffer *eb;
830 struct btrfs_extent_item *ei;
831 struct scrub_warning swarn;
832 unsigned long ptr = 0;
833 u64 extent_item_pos;
834 u64 flags = 0;
835 u64 ref_root;
836 u32 item_size;
837 u8 ref_level = 0;
838 int ret;
839
840 WARN_ON(sblock->page_count < 1);
841 dev = sblock->pagev[0]->dev;
842 fs_info = sblock->sctx->fs_info;
843
844 path = btrfs_alloc_path();
845 if (!path)
846 return;
847
848 swarn.physical = sblock->pagev[0]->physical;
849 swarn.logical = sblock->pagev[0]->logical;
850 swarn.errstr = errstr;
851 swarn.dev = NULL;
852
853 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
854 &flags);
855 if (ret < 0)
856 goto out;
857
858 extent_item_pos = swarn.logical - found_key.objectid;
859 swarn.extent_item_size = found_key.offset;
860
861 eb = path->nodes[0];
862 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
863 item_size = btrfs_item_size_nr(eb, path->slots[0]);
864
865 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
866 do {
867 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
868 item_size, &ref_root,
869 &ref_level);
870 btrfs_warn_in_rcu(fs_info,
871 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
872 errstr, swarn.logical,
873 rcu_str_deref(dev->name),
874 swarn.physical,
875 ref_level ? "node" : "leaf",
876 ret < 0 ? -1 : ref_level,
877 ret < 0 ? -1 : ref_root);
878 } while (ret != 1);
879 btrfs_release_path(path);
880 } else {
881 btrfs_release_path(path);
882 swarn.path = path;
883 swarn.dev = dev;
884 iterate_extent_inodes(fs_info, found_key.objectid,
885 extent_item_pos, 1,
886 scrub_print_warning_inode, &swarn, false);
887 }
888
889 out:
890 btrfs_free_path(path);
891 }
892
893 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
894 {
895 struct page *page = NULL;
896 unsigned long index;
897 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
898 int ret;
899 int corrected = 0;
900 struct btrfs_key key;
901 struct inode *inode = NULL;
902 struct btrfs_fs_info *fs_info;
903 u64 end = offset + PAGE_SIZE - 1;
904 struct btrfs_root *local_root;
905 int srcu_index;
906
907 key.objectid = root;
908 key.type = BTRFS_ROOT_ITEM_KEY;
909 key.offset = (u64)-1;
910
911 fs_info = fixup->root->fs_info;
912 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
913
914 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
915 if (IS_ERR(local_root)) {
916 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
917 return PTR_ERR(local_root);
918 }
919
920 key.type = BTRFS_INODE_ITEM_KEY;
921 key.objectid = inum;
922 key.offset = 0;
923 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
924 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
925 if (IS_ERR(inode))
926 return PTR_ERR(inode);
927
928 index = offset >> PAGE_SHIFT;
929
930 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
931 if (!page) {
932 ret = -ENOMEM;
933 goto out;
934 }
935
936 if (PageUptodate(page)) {
937 if (PageDirty(page)) {
938 /*
939 * we need to write the data to the defect sector. the
940 * data that was in that sector is not in memory,
941 * because the page was modified. we must not write the
942 * modified page to that sector.
943 *
944 * TODO: what could be done here: wait for the delalloc
945 * runner to write out that page (might involve
946 * COW) and see whether the sector is still
947 * referenced afterwards.
948 *
949 * For the meantime, we'll treat this error
950 * incorrectable, although there is a chance that a
951 * later scrub will find the bad sector again and that
952 * there's no dirty page in memory, then.
953 */
954 ret = -EIO;
955 goto out;
956 }
957 ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
958 fixup->logical, page,
959 offset - page_offset(page),
960 fixup->mirror_num);
961 unlock_page(page);
962 corrected = !ret;
963 } else {
964 /*
965 * we need to get good data first. the general readpage path
966 * will call repair_io_failure for us, we just have to make
967 * sure we read the bad mirror.
968 */
969 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
970 EXTENT_DAMAGED);
971 if (ret) {
972 /* set_extent_bits should give proper error */
973 WARN_ON(ret > 0);
974 if (ret > 0)
975 ret = -EFAULT;
976 goto out;
977 }
978
979 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
980 btrfs_get_extent,
981 fixup->mirror_num);
982 wait_on_page_locked(page);
983
984 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
985 end, EXTENT_DAMAGED, 0, NULL);
986 if (!corrected)
987 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
988 EXTENT_DAMAGED);
989 }
990
991 out:
992 if (page)
993 put_page(page);
994
995 iput(inode);
996
997 if (ret < 0)
998 return ret;
999
1000 if (ret == 0 && corrected) {
1001 /*
1002 * we only need to call readpage for one of the inodes belonging
1003 * to this extent. so make iterate_extent_inodes stop
1004 */
1005 return 1;
1006 }
1007
1008 return -EIO;
1009 }
1010
1011 static void scrub_fixup_nodatasum(struct btrfs_work *work)
1012 {
1013 struct btrfs_fs_info *fs_info;
1014 int ret;
1015 struct scrub_fixup_nodatasum *fixup;
1016 struct scrub_ctx *sctx;
1017 struct btrfs_trans_handle *trans = NULL;
1018 struct btrfs_path *path;
1019 int uncorrectable = 0;
1020
1021 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1022 sctx = fixup->sctx;
1023 fs_info = fixup->root->fs_info;
1024
1025 path = btrfs_alloc_path();
1026 if (!path) {
1027 spin_lock(&sctx->stat_lock);
1028 ++sctx->stat.malloc_errors;
1029 spin_unlock(&sctx->stat_lock);
1030 uncorrectable = 1;
1031 goto out;
1032 }
1033
1034 trans = btrfs_join_transaction(fixup->root);
1035 if (IS_ERR(trans)) {
1036 uncorrectable = 1;
1037 goto out;
1038 }
1039
1040 /*
1041 * the idea is to trigger a regular read through the standard path. we
1042 * read a page from the (failed) logical address by specifying the
1043 * corresponding copynum of the failed sector. thus, that readpage is
1044 * expected to fail.
1045 * that is the point where on-the-fly error correction will kick in
1046 * (once it's finished) and rewrite the failed sector if a good copy
1047 * can be found.
1048 */
1049 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1050 scrub_fixup_readpage, fixup, false);
1051 if (ret < 0) {
1052 uncorrectable = 1;
1053 goto out;
1054 }
1055 WARN_ON(ret != 1);
1056
1057 spin_lock(&sctx->stat_lock);
1058 ++sctx->stat.corrected_errors;
1059 spin_unlock(&sctx->stat_lock);
1060
1061 out:
1062 if (trans && !IS_ERR(trans))
1063 btrfs_end_transaction(trans);
1064 if (uncorrectable) {
1065 spin_lock(&sctx->stat_lock);
1066 ++sctx->stat.uncorrectable_errors;
1067 spin_unlock(&sctx->stat_lock);
1068 btrfs_dev_replace_stats_inc(
1069 &fs_info->dev_replace.num_uncorrectable_read_errors);
1070 btrfs_err_rl_in_rcu(fs_info,
1071 "unable to fixup (nodatasum) error at logical %llu on dev %s",
1072 fixup->logical, rcu_str_deref(fixup->dev->name));
1073 }
1074
1075 btrfs_free_path(path);
1076 kfree(fixup);
1077
1078 scrub_pending_trans_workers_dec(sctx);
1079 }
1080
1081 static inline void scrub_get_recover(struct scrub_recover *recover)
1082 {
1083 refcount_inc(&recover->refs);
1084 }
1085
1086 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1087 struct scrub_recover *recover)
1088 {
1089 if (refcount_dec_and_test(&recover->refs)) {
1090 btrfs_bio_counter_dec(fs_info);
1091 btrfs_put_bbio(recover->bbio);
1092 kfree(recover);
1093 }
1094 }
1095
1096 /*
1097 * scrub_handle_errored_block gets called when either verification of the
1098 * pages failed or the bio failed to read, e.g. with EIO. In the latter
1099 * case, this function handles all pages in the bio, even though only one
1100 * may be bad.
1101 * The goal of this function is to repair the errored block by using the
1102 * contents of one of the mirrors.
1103 */
1104 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1105 {
1106 struct scrub_ctx *sctx = sblock_to_check->sctx;
1107 struct btrfs_device *dev;
1108 struct btrfs_fs_info *fs_info;
1109 u64 length;
1110 u64 logical;
1111 unsigned int failed_mirror_index;
1112 unsigned int is_metadata;
1113 unsigned int have_csum;
1114 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1115 struct scrub_block *sblock_bad;
1116 int ret;
1117 int mirror_index;
1118 int page_num;
1119 int success;
1120 bool full_stripe_locked;
1121 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1122 DEFAULT_RATELIMIT_BURST);
1123
1124 BUG_ON(sblock_to_check->page_count < 1);
1125 fs_info = sctx->fs_info;
1126 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1127 /*
1128 * if we find an error in a super block, we just report it.
1129 * They will get written with the next transaction commit
1130 * anyway
1131 */
1132 spin_lock(&sctx->stat_lock);
1133 ++sctx->stat.super_errors;
1134 spin_unlock(&sctx->stat_lock);
1135 return 0;
1136 }
1137 length = sblock_to_check->page_count * PAGE_SIZE;
1138 logical = sblock_to_check->pagev[0]->logical;
1139 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1140 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1141 is_metadata = !(sblock_to_check->pagev[0]->flags &
1142 BTRFS_EXTENT_FLAG_DATA);
1143 have_csum = sblock_to_check->pagev[0]->have_csum;
1144 dev = sblock_to_check->pagev[0]->dev;
1145
1146 /*
1147 * For RAID5/6, race can happen for a different device scrub thread.
1148 * For data corruption, Parity and Data threads will both try
1149 * to recovery the data.
1150 * Race can lead to doubly added csum error, or even unrecoverable
1151 * error.
1152 */
1153 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1154 if (ret < 0) {
1155 spin_lock(&sctx->stat_lock);
1156 if (ret == -ENOMEM)
1157 sctx->stat.malloc_errors++;
1158 sctx->stat.read_errors++;
1159 sctx->stat.uncorrectable_errors++;
1160 spin_unlock(&sctx->stat_lock);
1161 return ret;
1162 }
1163
1164 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
1165 sblocks_for_recheck = NULL;
1166 goto nodatasum_case;
1167 }
1168
1169 /*
1170 * read all mirrors one after the other. This includes to
1171 * re-read the extent or metadata block that failed (that was
1172 * the cause that this fixup code is called) another time,
1173 * page by page this time in order to know which pages
1174 * caused I/O errors and which ones are good (for all mirrors).
1175 * It is the goal to handle the situation when more than one
1176 * mirror contains I/O errors, but the errors do not
1177 * overlap, i.e. the data can be repaired by selecting the
1178 * pages from those mirrors without I/O error on the
1179 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1180 * would be that mirror #1 has an I/O error on the first page,
1181 * the second page is good, and mirror #2 has an I/O error on
1182 * the second page, but the first page is good.
1183 * Then the first page of the first mirror can be repaired by
1184 * taking the first page of the second mirror, and the
1185 * second page of the second mirror can be repaired by
1186 * copying the contents of the 2nd page of the 1st mirror.
1187 * One more note: if the pages of one mirror contain I/O
1188 * errors, the checksum cannot be verified. In order to get
1189 * the best data for repairing, the first attempt is to find
1190 * a mirror without I/O errors and with a validated checksum.
1191 * Only if this is not possible, the pages are picked from
1192 * mirrors with I/O errors without considering the checksum.
1193 * If the latter is the case, at the end, the checksum of the
1194 * repaired area is verified in order to correctly maintain
1195 * the statistics.
1196 */
1197
1198 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1199 sizeof(*sblocks_for_recheck), GFP_NOFS);
1200 if (!sblocks_for_recheck) {
1201 spin_lock(&sctx->stat_lock);
1202 sctx->stat.malloc_errors++;
1203 sctx->stat.read_errors++;
1204 sctx->stat.uncorrectable_errors++;
1205 spin_unlock(&sctx->stat_lock);
1206 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1207 goto out;
1208 }
1209
1210 /* setup the context, map the logical blocks and alloc the pages */
1211 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1212 if (ret) {
1213 spin_lock(&sctx->stat_lock);
1214 sctx->stat.read_errors++;
1215 sctx->stat.uncorrectable_errors++;
1216 spin_unlock(&sctx->stat_lock);
1217 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1218 goto out;
1219 }
1220 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1221 sblock_bad = sblocks_for_recheck + failed_mirror_index;
1222
1223 /* build and submit the bios for the failed mirror, check checksums */
1224 scrub_recheck_block(fs_info, sblock_bad, 1);
1225
1226 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1227 sblock_bad->no_io_error_seen) {
1228 /*
1229 * the error disappeared after reading page by page, or
1230 * the area was part of a huge bio and other parts of the
1231 * bio caused I/O errors, or the block layer merged several
1232 * read requests into one and the error is caused by a
1233 * different bio (usually one of the two latter cases is
1234 * the cause)
1235 */
1236 spin_lock(&sctx->stat_lock);
1237 sctx->stat.unverified_errors++;
1238 sblock_to_check->data_corrected = 1;
1239 spin_unlock(&sctx->stat_lock);
1240
1241 if (sctx->is_dev_replace)
1242 scrub_write_block_to_dev_replace(sblock_bad);
1243 goto out;
1244 }
1245
1246 if (!sblock_bad->no_io_error_seen) {
1247 spin_lock(&sctx->stat_lock);
1248 sctx->stat.read_errors++;
1249 spin_unlock(&sctx->stat_lock);
1250 if (__ratelimit(&_rs))
1251 scrub_print_warning("i/o error", sblock_to_check);
1252 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1253 } else if (sblock_bad->checksum_error) {
1254 spin_lock(&sctx->stat_lock);
1255 sctx->stat.csum_errors++;
1256 spin_unlock(&sctx->stat_lock);
1257 if (__ratelimit(&_rs))
1258 scrub_print_warning("checksum error", sblock_to_check);
1259 btrfs_dev_stat_inc_and_print(dev,
1260 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1261 } else if (sblock_bad->header_error) {
1262 spin_lock(&sctx->stat_lock);
1263 sctx->stat.verify_errors++;
1264 spin_unlock(&sctx->stat_lock);
1265 if (__ratelimit(&_rs))
1266 scrub_print_warning("checksum/header error",
1267 sblock_to_check);
1268 if (sblock_bad->generation_error)
1269 btrfs_dev_stat_inc_and_print(dev,
1270 BTRFS_DEV_STAT_GENERATION_ERRS);
1271 else
1272 btrfs_dev_stat_inc_and_print(dev,
1273 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1274 }
1275
1276 if (sctx->readonly) {
1277 ASSERT(!sctx->is_dev_replace);
1278 goto out;
1279 }
1280
1281 if (!is_metadata && !have_csum) {
1282 struct scrub_fixup_nodatasum *fixup_nodatasum;
1283
1284 WARN_ON(sctx->is_dev_replace);
1285
1286 nodatasum_case:
1287
1288 /*
1289 * !is_metadata and !have_csum, this means that the data
1290 * might not be COWed, that it might be modified
1291 * concurrently. The general strategy to work on the
1292 * commit root does not help in the case when COW is not
1293 * used.
1294 */
1295 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1296 if (!fixup_nodatasum)
1297 goto did_not_correct_error;
1298 fixup_nodatasum->sctx = sctx;
1299 fixup_nodatasum->dev = dev;
1300 fixup_nodatasum->logical = logical;
1301 fixup_nodatasum->root = fs_info->extent_root;
1302 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1303 scrub_pending_trans_workers_inc(sctx);
1304 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1305 scrub_fixup_nodatasum, NULL, NULL);
1306 btrfs_queue_work(fs_info->scrub_workers,
1307 &fixup_nodatasum->work);
1308 goto out;
1309 }
1310
1311 /*
1312 * now build and submit the bios for the other mirrors, check
1313 * checksums.
1314 * First try to pick the mirror which is completely without I/O
1315 * errors and also does not have a checksum error.
1316 * If one is found, and if a checksum is present, the full block
1317 * that is known to contain an error is rewritten. Afterwards
1318 * the block is known to be corrected.
1319 * If a mirror is found which is completely correct, and no
1320 * checksum is present, only those pages are rewritten that had
1321 * an I/O error in the block to be repaired, since it cannot be
1322 * determined, which copy of the other pages is better (and it
1323 * could happen otherwise that a correct page would be
1324 * overwritten by a bad one).
1325 */
1326 for (mirror_index = 0;
1327 mirror_index < BTRFS_MAX_MIRRORS &&
1328 sblocks_for_recheck[mirror_index].page_count > 0;
1329 mirror_index++) {
1330 struct scrub_block *sblock_other;
1331
1332 if (mirror_index == failed_mirror_index)
1333 continue;
1334 sblock_other = sblocks_for_recheck + mirror_index;
1335
1336 /* build and submit the bios, check checksums */
1337 scrub_recheck_block(fs_info, sblock_other, 0);
1338
1339 if (!sblock_other->header_error &&
1340 !sblock_other->checksum_error &&
1341 sblock_other->no_io_error_seen) {
1342 if (sctx->is_dev_replace) {
1343 scrub_write_block_to_dev_replace(sblock_other);
1344 goto corrected_error;
1345 } else {
1346 ret = scrub_repair_block_from_good_copy(
1347 sblock_bad, sblock_other);
1348 if (!ret)
1349 goto corrected_error;
1350 }
1351 }
1352 }
1353
1354 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1355 goto did_not_correct_error;
1356
1357 /*
1358 * In case of I/O errors in the area that is supposed to be
1359 * repaired, continue by picking good copies of those pages.
1360 * Select the good pages from mirrors to rewrite bad pages from
1361 * the area to fix. Afterwards verify the checksum of the block
1362 * that is supposed to be repaired. This verification step is
1363 * only done for the purpose of statistic counting and for the
1364 * final scrub report, whether errors remain.
1365 * A perfect algorithm could make use of the checksum and try
1366 * all possible combinations of pages from the different mirrors
1367 * until the checksum verification succeeds. For example, when
1368 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1369 * of mirror #2 is readable but the final checksum test fails,
1370 * then the 2nd page of mirror #3 could be tried, whether now
1371 * the final checksum succeeds. But this would be a rare
1372 * exception and is therefore not implemented. At least it is
1373 * avoided that the good copy is overwritten.
1374 * A more useful improvement would be to pick the sectors
1375 * without I/O error based on sector sizes (512 bytes on legacy
1376 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1377 * mirror could be repaired by taking 512 byte of a different
1378 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1379 * area are unreadable.
1380 */
1381 success = 1;
1382 for (page_num = 0; page_num < sblock_bad->page_count;
1383 page_num++) {
1384 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1385 struct scrub_block *sblock_other = NULL;
1386
1387 /* skip no-io-error page in scrub */
1388 if (!page_bad->io_error && !sctx->is_dev_replace)
1389 continue;
1390
1391 /* try to find no-io-error page in mirrors */
1392 if (page_bad->io_error) {
1393 for (mirror_index = 0;
1394 mirror_index < BTRFS_MAX_MIRRORS &&
1395 sblocks_for_recheck[mirror_index].page_count > 0;
1396 mirror_index++) {
1397 if (!sblocks_for_recheck[mirror_index].
1398 pagev[page_num]->io_error) {
1399 sblock_other = sblocks_for_recheck +
1400 mirror_index;
1401 break;
1402 }
1403 }
1404 if (!sblock_other)
1405 success = 0;
1406 }
1407
1408 if (sctx->is_dev_replace) {
1409 /*
1410 * did not find a mirror to fetch the page
1411 * from. scrub_write_page_to_dev_replace()
1412 * handles this case (page->io_error), by
1413 * filling the block with zeros before
1414 * submitting the write request
1415 */
1416 if (!sblock_other)
1417 sblock_other = sblock_bad;
1418
1419 if (scrub_write_page_to_dev_replace(sblock_other,
1420 page_num) != 0) {
1421 btrfs_dev_replace_stats_inc(
1422 &fs_info->dev_replace.num_write_errors);
1423 success = 0;
1424 }
1425 } else if (sblock_other) {
1426 ret = scrub_repair_page_from_good_copy(sblock_bad,
1427 sblock_other,
1428 page_num, 0);
1429 if (0 == ret)
1430 page_bad->io_error = 0;
1431 else
1432 success = 0;
1433 }
1434 }
1435
1436 if (success && !sctx->is_dev_replace) {
1437 if (is_metadata || have_csum) {
1438 /*
1439 * need to verify the checksum now that all
1440 * sectors on disk are repaired (the write
1441 * request for data to be repaired is on its way).
1442 * Just be lazy and use scrub_recheck_block()
1443 * which re-reads the data before the checksum
1444 * is verified, but most likely the data comes out
1445 * of the page cache.
1446 */
1447 scrub_recheck_block(fs_info, sblock_bad, 1);
1448 if (!sblock_bad->header_error &&
1449 !sblock_bad->checksum_error &&
1450 sblock_bad->no_io_error_seen)
1451 goto corrected_error;
1452 else
1453 goto did_not_correct_error;
1454 } else {
1455 corrected_error:
1456 spin_lock(&sctx->stat_lock);
1457 sctx->stat.corrected_errors++;
1458 sblock_to_check->data_corrected = 1;
1459 spin_unlock(&sctx->stat_lock);
1460 btrfs_err_rl_in_rcu(fs_info,
1461 "fixed up error at logical %llu on dev %s",
1462 logical, rcu_str_deref(dev->name));
1463 }
1464 } else {
1465 did_not_correct_error:
1466 spin_lock(&sctx->stat_lock);
1467 sctx->stat.uncorrectable_errors++;
1468 spin_unlock(&sctx->stat_lock);
1469 btrfs_err_rl_in_rcu(fs_info,
1470 "unable to fixup (regular) error at logical %llu on dev %s",
1471 logical, rcu_str_deref(dev->name));
1472 }
1473
1474 out:
1475 if (sblocks_for_recheck) {
1476 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1477 mirror_index++) {
1478 struct scrub_block *sblock = sblocks_for_recheck +
1479 mirror_index;
1480 struct scrub_recover *recover;
1481 int page_index;
1482
1483 for (page_index = 0; page_index < sblock->page_count;
1484 page_index++) {
1485 sblock->pagev[page_index]->sblock = NULL;
1486 recover = sblock->pagev[page_index]->recover;
1487 if (recover) {
1488 scrub_put_recover(fs_info, recover);
1489 sblock->pagev[page_index]->recover =
1490 NULL;
1491 }
1492 scrub_page_put(sblock->pagev[page_index]);
1493 }
1494 }
1495 kfree(sblocks_for_recheck);
1496 }
1497
1498 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1499 if (ret < 0)
1500 return ret;
1501 return 0;
1502 }
1503
1504 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1505 {
1506 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1507 return 2;
1508 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1509 return 3;
1510 else
1511 return (int)bbio->num_stripes;
1512 }
1513
1514 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1515 u64 *raid_map,
1516 u64 mapped_length,
1517 int nstripes, int mirror,
1518 int *stripe_index,
1519 u64 *stripe_offset)
1520 {
1521 int i;
1522
1523 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1524 /* RAID5/6 */
1525 for (i = 0; i < nstripes; i++) {
1526 if (raid_map[i] == RAID6_Q_STRIPE ||
1527 raid_map[i] == RAID5_P_STRIPE)
1528 continue;
1529
1530 if (logical >= raid_map[i] &&
1531 logical < raid_map[i] + mapped_length)
1532 break;
1533 }
1534
1535 *stripe_index = i;
1536 *stripe_offset = logical - raid_map[i];
1537 } else {
1538 /* The other RAID type */
1539 *stripe_index = mirror;
1540 *stripe_offset = 0;
1541 }
1542 }
1543
1544 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1545 struct scrub_block *sblocks_for_recheck)
1546 {
1547 struct scrub_ctx *sctx = original_sblock->sctx;
1548 struct btrfs_fs_info *fs_info = sctx->fs_info;
1549 u64 length = original_sblock->page_count * PAGE_SIZE;
1550 u64 logical = original_sblock->pagev[0]->logical;
1551 u64 generation = original_sblock->pagev[0]->generation;
1552 u64 flags = original_sblock->pagev[0]->flags;
1553 u64 have_csum = original_sblock->pagev[0]->have_csum;
1554 struct scrub_recover *recover;
1555 struct btrfs_bio *bbio;
1556 u64 sublen;
1557 u64 mapped_length;
1558 u64 stripe_offset;
1559 int stripe_index;
1560 int page_index = 0;
1561 int mirror_index;
1562 int nmirrors;
1563 int ret;
1564
1565 /*
1566 * note: the two members refs and outstanding_pages
1567 * are not used (and not set) in the blocks that are used for
1568 * the recheck procedure
1569 */
1570
1571 while (length > 0) {
1572 sublen = min_t(u64, length, PAGE_SIZE);
1573 mapped_length = sublen;
1574 bbio = NULL;
1575
1576 /*
1577 * with a length of PAGE_SIZE, each returned stripe
1578 * represents one mirror
1579 */
1580 btrfs_bio_counter_inc_blocked(fs_info);
1581 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1582 logical, &mapped_length, &bbio);
1583 if (ret || !bbio || mapped_length < sublen) {
1584 btrfs_put_bbio(bbio);
1585 btrfs_bio_counter_dec(fs_info);
1586 return -EIO;
1587 }
1588
1589 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1590 if (!recover) {
1591 btrfs_put_bbio(bbio);
1592 btrfs_bio_counter_dec(fs_info);
1593 return -ENOMEM;
1594 }
1595
1596 refcount_set(&recover->refs, 1);
1597 recover->bbio = bbio;
1598 recover->map_length = mapped_length;
1599
1600 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1601
1602 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1603
1604 for (mirror_index = 0; mirror_index < nmirrors;
1605 mirror_index++) {
1606 struct scrub_block *sblock;
1607 struct scrub_page *page;
1608
1609 sblock = sblocks_for_recheck + mirror_index;
1610 sblock->sctx = sctx;
1611
1612 page = kzalloc(sizeof(*page), GFP_NOFS);
1613 if (!page) {
1614 leave_nomem:
1615 spin_lock(&sctx->stat_lock);
1616 sctx->stat.malloc_errors++;
1617 spin_unlock(&sctx->stat_lock);
1618 scrub_put_recover(fs_info, recover);
1619 return -ENOMEM;
1620 }
1621 scrub_page_get(page);
1622 sblock->pagev[page_index] = page;
1623 page->sblock = sblock;
1624 page->flags = flags;
1625 page->generation = generation;
1626 page->logical = logical;
1627 page->have_csum = have_csum;
1628 if (have_csum)
1629 memcpy(page->csum,
1630 original_sblock->pagev[0]->csum,
1631 sctx->csum_size);
1632
1633 scrub_stripe_index_and_offset(logical,
1634 bbio->map_type,
1635 bbio->raid_map,
1636 mapped_length,
1637 bbio->num_stripes -
1638 bbio->num_tgtdevs,
1639 mirror_index,
1640 &stripe_index,
1641 &stripe_offset);
1642 page->physical = bbio->stripes[stripe_index].physical +
1643 stripe_offset;
1644 page->dev = bbio->stripes[stripe_index].dev;
1645
1646 BUG_ON(page_index >= original_sblock->page_count);
1647 page->physical_for_dev_replace =
1648 original_sblock->pagev[page_index]->
1649 physical_for_dev_replace;
1650 /* for missing devices, dev->bdev is NULL */
1651 page->mirror_num = mirror_index + 1;
1652 sblock->page_count++;
1653 page->page = alloc_page(GFP_NOFS);
1654 if (!page->page)
1655 goto leave_nomem;
1656
1657 scrub_get_recover(recover);
1658 page->recover = recover;
1659 }
1660 scrub_put_recover(fs_info, recover);
1661 length -= sublen;
1662 logical += sublen;
1663 page_index++;
1664 }
1665
1666 return 0;
1667 }
1668
1669 struct scrub_bio_ret {
1670 struct completion event;
1671 blk_status_t status;
1672 };
1673
1674 static void scrub_bio_wait_endio(struct bio *bio)
1675 {
1676 struct scrub_bio_ret *ret = bio->bi_private;
1677
1678 ret->status = bio->bi_status;
1679 complete(&ret->event);
1680 }
1681
1682 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1683 {
1684 return page->recover &&
1685 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1686 }
1687
1688 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1689 struct bio *bio,
1690 struct scrub_page *page)
1691 {
1692 struct scrub_bio_ret done;
1693 int ret;
1694
1695 init_completion(&done.event);
1696 done.status = 0;
1697 bio->bi_iter.bi_sector = page->logical >> 9;
1698 bio->bi_private = &done;
1699 bio->bi_end_io = scrub_bio_wait_endio;
1700
1701 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1702 page->recover->map_length,
1703 page->mirror_num, 0);
1704 if (ret)
1705 return ret;
1706
1707 wait_for_completion_io(&done.event);
1708 if (done.status)
1709 return -EIO;
1710
1711 return 0;
1712 }
1713
1714 /*
1715 * this function will check the on disk data for checksum errors, header
1716 * errors and read I/O errors. If any I/O errors happen, the exact pages
1717 * which are errored are marked as being bad. The goal is to enable scrub
1718 * to take those pages that are not errored from all the mirrors so that
1719 * the pages that are errored in the just handled mirror can be repaired.
1720 */
1721 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1722 struct scrub_block *sblock,
1723 int retry_failed_mirror)
1724 {
1725 int page_num;
1726
1727 sblock->no_io_error_seen = 1;
1728
1729 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1730 struct bio *bio;
1731 struct scrub_page *page = sblock->pagev[page_num];
1732
1733 if (page->dev->bdev == NULL) {
1734 page->io_error = 1;
1735 sblock->no_io_error_seen = 0;
1736 continue;
1737 }
1738
1739 WARN_ON(!page->page);
1740 bio = btrfs_io_bio_alloc(1);
1741 bio_set_dev(bio, page->dev->bdev);
1742
1743 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1744 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1745 if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
1746 page->io_error = 1;
1747 sblock->no_io_error_seen = 0;
1748 }
1749 } else {
1750 bio->bi_iter.bi_sector = page->physical >> 9;
1751 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1752
1753 if (btrfsic_submit_bio_wait(bio)) {
1754 page->io_error = 1;
1755 sblock->no_io_error_seen = 0;
1756 }
1757 }
1758
1759 bio_put(bio);
1760 }
1761
1762 if (sblock->no_io_error_seen)
1763 scrub_recheck_block_checksum(sblock);
1764 }
1765
1766 static inline int scrub_check_fsid(u8 fsid[],
1767 struct scrub_page *spage)
1768 {
1769 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1770 int ret;
1771
1772 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1773 return !ret;
1774 }
1775
1776 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1777 {
1778 sblock->header_error = 0;
1779 sblock->checksum_error = 0;
1780 sblock->generation_error = 0;
1781
1782 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1783 scrub_checksum_data(sblock);
1784 else
1785 scrub_checksum_tree_block(sblock);
1786 }
1787
1788 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1789 struct scrub_block *sblock_good)
1790 {
1791 int page_num;
1792 int ret = 0;
1793
1794 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1795 int ret_sub;
1796
1797 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1798 sblock_good,
1799 page_num, 1);
1800 if (ret_sub)
1801 ret = ret_sub;
1802 }
1803
1804 return ret;
1805 }
1806
1807 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1808 struct scrub_block *sblock_good,
1809 int page_num, int force_write)
1810 {
1811 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1812 struct scrub_page *page_good = sblock_good->pagev[page_num];
1813 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1814
1815 BUG_ON(page_bad->page == NULL);
1816 BUG_ON(page_good->page == NULL);
1817 if (force_write || sblock_bad->header_error ||
1818 sblock_bad->checksum_error || page_bad->io_error) {
1819 struct bio *bio;
1820 int ret;
1821
1822 if (!page_bad->dev->bdev) {
1823 btrfs_warn_rl(fs_info,
1824 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1825 return -EIO;
1826 }
1827
1828 bio = btrfs_io_bio_alloc(1);
1829 bio_set_dev(bio, page_bad->dev->bdev);
1830 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1831 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1832
1833 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1834 if (PAGE_SIZE != ret) {
1835 bio_put(bio);
1836 return -EIO;
1837 }
1838
1839 if (btrfsic_submit_bio_wait(bio)) {
1840 btrfs_dev_stat_inc_and_print(page_bad->dev,
1841 BTRFS_DEV_STAT_WRITE_ERRS);
1842 btrfs_dev_replace_stats_inc(
1843 &fs_info->dev_replace.num_write_errors);
1844 bio_put(bio);
1845 return -EIO;
1846 }
1847 bio_put(bio);
1848 }
1849
1850 return 0;
1851 }
1852
1853 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1854 {
1855 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1856 int page_num;
1857
1858 /*
1859 * This block is used for the check of the parity on the source device,
1860 * so the data needn't be written into the destination device.
1861 */
1862 if (sblock->sparity)
1863 return;
1864
1865 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1866 int ret;
1867
1868 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1869 if (ret)
1870 btrfs_dev_replace_stats_inc(
1871 &fs_info->dev_replace.num_write_errors);
1872 }
1873 }
1874
1875 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1876 int page_num)
1877 {
1878 struct scrub_page *spage = sblock->pagev[page_num];
1879
1880 BUG_ON(spage->page == NULL);
1881 if (spage->io_error) {
1882 void *mapped_buffer = kmap_atomic(spage->page);
1883
1884 clear_page(mapped_buffer);
1885 flush_dcache_page(spage->page);
1886 kunmap_atomic(mapped_buffer);
1887 }
1888 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1889 }
1890
1891 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1892 struct scrub_page *spage)
1893 {
1894 struct scrub_bio *sbio;
1895 int ret;
1896
1897 mutex_lock(&sctx->wr_lock);
1898 again:
1899 if (!sctx->wr_curr_bio) {
1900 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1901 GFP_KERNEL);
1902 if (!sctx->wr_curr_bio) {
1903 mutex_unlock(&sctx->wr_lock);
1904 return -ENOMEM;
1905 }
1906 sctx->wr_curr_bio->sctx = sctx;
1907 sctx->wr_curr_bio->page_count = 0;
1908 }
1909 sbio = sctx->wr_curr_bio;
1910 if (sbio->page_count == 0) {
1911 struct bio *bio;
1912
1913 sbio->physical = spage->physical_for_dev_replace;
1914 sbio->logical = spage->logical;
1915 sbio->dev = sctx->wr_tgtdev;
1916 bio = sbio->bio;
1917 if (!bio) {
1918 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1919 sbio->bio = bio;
1920 }
1921
1922 bio->bi_private = sbio;
1923 bio->bi_end_io = scrub_wr_bio_end_io;
1924 bio_set_dev(bio, sbio->dev->bdev);
1925 bio->bi_iter.bi_sector = sbio->physical >> 9;
1926 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1927 sbio->status = 0;
1928 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1929 spage->physical_for_dev_replace ||
1930 sbio->logical + sbio->page_count * PAGE_SIZE !=
1931 spage->logical) {
1932 scrub_wr_submit(sctx);
1933 goto again;
1934 }
1935
1936 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1937 if (ret != PAGE_SIZE) {
1938 if (sbio->page_count < 1) {
1939 bio_put(sbio->bio);
1940 sbio->bio = NULL;
1941 mutex_unlock(&sctx->wr_lock);
1942 return -EIO;
1943 }
1944 scrub_wr_submit(sctx);
1945 goto again;
1946 }
1947
1948 sbio->pagev[sbio->page_count] = spage;
1949 scrub_page_get(spage);
1950 sbio->page_count++;
1951 if (sbio->page_count == sctx->pages_per_wr_bio)
1952 scrub_wr_submit(sctx);
1953 mutex_unlock(&sctx->wr_lock);
1954
1955 return 0;
1956 }
1957
1958 static void scrub_wr_submit(struct scrub_ctx *sctx)
1959 {
1960 struct scrub_bio *sbio;
1961
1962 if (!sctx->wr_curr_bio)
1963 return;
1964
1965 sbio = sctx->wr_curr_bio;
1966 sctx->wr_curr_bio = NULL;
1967 WARN_ON(!sbio->bio->bi_disk);
1968 scrub_pending_bio_inc(sctx);
1969 /* process all writes in a single worker thread. Then the block layer
1970 * orders the requests before sending them to the driver which
1971 * doubled the write performance on spinning disks when measured
1972 * with Linux 3.5 */
1973 btrfsic_submit_bio(sbio->bio);
1974 }
1975
1976 static void scrub_wr_bio_end_io(struct bio *bio)
1977 {
1978 struct scrub_bio *sbio = bio->bi_private;
1979 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1980
1981 sbio->status = bio->bi_status;
1982 sbio->bio = bio;
1983
1984 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1985 scrub_wr_bio_end_io_worker, NULL, NULL);
1986 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1987 }
1988
1989 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1990 {
1991 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1992 struct scrub_ctx *sctx = sbio->sctx;
1993 int i;
1994
1995 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1996 if (sbio->status) {
1997 struct btrfs_dev_replace *dev_replace =
1998 &sbio->sctx->fs_info->dev_replace;
1999
2000 for (i = 0; i < sbio->page_count; i++) {
2001 struct scrub_page *spage = sbio->pagev[i];
2002
2003 spage->io_error = 1;
2004 btrfs_dev_replace_stats_inc(&dev_replace->
2005 num_write_errors);
2006 }
2007 }
2008
2009 for (i = 0; i < sbio->page_count; i++)
2010 scrub_page_put(sbio->pagev[i]);
2011
2012 bio_put(sbio->bio);
2013 kfree(sbio);
2014 scrub_pending_bio_dec(sctx);
2015 }
2016
2017 static int scrub_checksum(struct scrub_block *sblock)
2018 {
2019 u64 flags;
2020 int ret;
2021
2022 /*
2023 * No need to initialize these stats currently,
2024 * because this function only use return value
2025 * instead of these stats value.
2026 *
2027 * Todo:
2028 * always use stats
2029 */
2030 sblock->header_error = 0;
2031 sblock->generation_error = 0;
2032 sblock->checksum_error = 0;
2033
2034 WARN_ON(sblock->page_count < 1);
2035 flags = sblock->pagev[0]->flags;
2036 ret = 0;
2037 if (flags & BTRFS_EXTENT_FLAG_DATA)
2038 ret = scrub_checksum_data(sblock);
2039 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2040 ret = scrub_checksum_tree_block(sblock);
2041 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2042 (void)scrub_checksum_super(sblock);
2043 else
2044 WARN_ON(1);
2045 if (ret)
2046 scrub_handle_errored_block(sblock);
2047
2048 return ret;
2049 }
2050
2051 static int scrub_checksum_data(struct scrub_block *sblock)
2052 {
2053 struct scrub_ctx *sctx = sblock->sctx;
2054 u8 csum[BTRFS_CSUM_SIZE];
2055 u8 *on_disk_csum;
2056 struct page *page;
2057 void *buffer;
2058 u32 crc = ~(u32)0;
2059 u64 len;
2060 int index;
2061
2062 BUG_ON(sblock->page_count < 1);
2063 if (!sblock->pagev[0]->have_csum)
2064 return 0;
2065
2066 on_disk_csum = sblock->pagev[0]->csum;
2067 page = sblock->pagev[0]->page;
2068 buffer = kmap_atomic(page);
2069
2070 len = sctx->fs_info->sectorsize;
2071 index = 0;
2072 for (;;) {
2073 u64 l = min_t(u64, len, PAGE_SIZE);
2074
2075 crc = btrfs_csum_data(buffer, crc, l);
2076 kunmap_atomic(buffer);
2077 len -= l;
2078 if (len == 0)
2079 break;
2080 index++;
2081 BUG_ON(index >= sblock->page_count);
2082 BUG_ON(!sblock->pagev[index]->page);
2083 page = sblock->pagev[index]->page;
2084 buffer = kmap_atomic(page);
2085 }
2086
2087 btrfs_csum_final(crc, csum);
2088 if (memcmp(csum, on_disk_csum, sctx->csum_size))
2089 sblock->checksum_error = 1;
2090
2091 return sblock->checksum_error;
2092 }
2093
2094 static int scrub_checksum_tree_block(struct scrub_block *sblock)
2095 {
2096 struct scrub_ctx *sctx = sblock->sctx;
2097 struct btrfs_header *h;
2098 struct btrfs_fs_info *fs_info = sctx->fs_info;
2099 u8 calculated_csum[BTRFS_CSUM_SIZE];
2100 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2101 struct page *page;
2102 void *mapped_buffer;
2103 u64 mapped_size;
2104 void *p;
2105 u32 crc = ~(u32)0;
2106 u64 len;
2107 int index;
2108
2109 BUG_ON(sblock->page_count < 1);
2110 page = sblock->pagev[0]->page;
2111 mapped_buffer = kmap_atomic(page);
2112 h = (struct btrfs_header *)mapped_buffer;
2113 memcpy(on_disk_csum, h->csum, sctx->csum_size);
2114
2115 /*
2116 * we don't use the getter functions here, as we
2117 * a) don't have an extent buffer and
2118 * b) the page is already kmapped
2119 */
2120 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2121 sblock->header_error = 1;
2122
2123 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2124 sblock->header_error = 1;
2125 sblock->generation_error = 1;
2126 }
2127
2128 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2129 sblock->header_error = 1;
2130
2131 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2132 BTRFS_UUID_SIZE))
2133 sblock->header_error = 1;
2134
2135 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2136 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2137 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2138 index = 0;
2139 for (;;) {
2140 u64 l = min_t(u64, len, mapped_size);
2141
2142 crc = btrfs_csum_data(p, crc, l);
2143 kunmap_atomic(mapped_buffer);
2144 len -= l;
2145 if (len == 0)
2146 break;
2147 index++;
2148 BUG_ON(index >= sblock->page_count);
2149 BUG_ON(!sblock->pagev[index]->page);
2150 page = sblock->pagev[index]->page;
2151 mapped_buffer = kmap_atomic(page);
2152 mapped_size = PAGE_SIZE;
2153 p = mapped_buffer;
2154 }
2155
2156 btrfs_csum_final(crc, calculated_csum);
2157 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2158 sblock->checksum_error = 1;
2159
2160 return sblock->header_error || sblock->checksum_error;
2161 }
2162
2163 static int scrub_checksum_super(struct scrub_block *sblock)
2164 {
2165 struct btrfs_super_block *s;
2166 struct scrub_ctx *sctx = sblock->sctx;
2167 u8 calculated_csum[BTRFS_CSUM_SIZE];
2168 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2169 struct page *page;
2170 void *mapped_buffer;
2171 u64 mapped_size;
2172 void *p;
2173 u32 crc = ~(u32)0;
2174 int fail_gen = 0;
2175 int fail_cor = 0;
2176 u64 len;
2177 int index;
2178
2179 BUG_ON(sblock->page_count < 1);
2180 page = sblock->pagev[0]->page;
2181 mapped_buffer = kmap_atomic(page);
2182 s = (struct btrfs_super_block *)mapped_buffer;
2183 memcpy(on_disk_csum, s->csum, sctx->csum_size);
2184
2185 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2186 ++fail_cor;
2187
2188 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2189 ++fail_gen;
2190
2191 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2192 ++fail_cor;
2193
2194 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2195 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2196 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2197 index = 0;
2198 for (;;) {
2199 u64 l = min_t(u64, len, mapped_size);
2200
2201 crc = btrfs_csum_data(p, crc, l);
2202 kunmap_atomic(mapped_buffer);
2203 len -= l;
2204 if (len == 0)
2205 break;
2206 index++;
2207 BUG_ON(index >= sblock->page_count);
2208 BUG_ON(!sblock->pagev[index]->page);
2209 page = sblock->pagev[index]->page;
2210 mapped_buffer = kmap_atomic(page);
2211 mapped_size = PAGE_SIZE;
2212 p = mapped_buffer;
2213 }
2214
2215 btrfs_csum_final(crc, calculated_csum);
2216 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2217 ++fail_cor;
2218
2219 if (fail_cor + fail_gen) {
2220 /*
2221 * if we find an error in a super block, we just report it.
2222 * They will get written with the next transaction commit
2223 * anyway
2224 */
2225 spin_lock(&sctx->stat_lock);
2226 ++sctx->stat.super_errors;
2227 spin_unlock(&sctx->stat_lock);
2228 if (fail_cor)
2229 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2230 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2231 else
2232 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2233 BTRFS_DEV_STAT_GENERATION_ERRS);
2234 }
2235
2236 return fail_cor + fail_gen;
2237 }
2238
2239 static void scrub_block_get(struct scrub_block *sblock)
2240 {
2241 refcount_inc(&sblock->refs);
2242 }
2243
2244 static void scrub_block_put(struct scrub_block *sblock)
2245 {
2246 if (refcount_dec_and_test(&sblock->refs)) {
2247 int i;
2248
2249 if (sblock->sparity)
2250 scrub_parity_put(sblock->sparity);
2251
2252 for (i = 0; i < sblock->page_count; i++)
2253 scrub_page_put(sblock->pagev[i]);
2254 kfree(sblock);
2255 }
2256 }
2257
2258 static void scrub_page_get(struct scrub_page *spage)
2259 {
2260 atomic_inc(&spage->refs);
2261 }
2262
2263 static void scrub_page_put(struct scrub_page *spage)
2264 {
2265 if (atomic_dec_and_test(&spage->refs)) {
2266 if (spage->page)
2267 __free_page(spage->page);
2268 kfree(spage);
2269 }
2270 }
2271
2272 static void scrub_submit(struct scrub_ctx *sctx)
2273 {
2274 struct scrub_bio *sbio;
2275
2276 if (sctx->curr == -1)
2277 return;
2278
2279 sbio = sctx->bios[sctx->curr];
2280 sctx->curr = -1;
2281 scrub_pending_bio_inc(sctx);
2282 btrfsic_submit_bio(sbio->bio);
2283 }
2284
2285 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2286 struct scrub_page *spage)
2287 {
2288 struct scrub_block *sblock = spage->sblock;
2289 struct scrub_bio *sbio;
2290 int ret;
2291
2292 again:
2293 /*
2294 * grab a fresh bio or wait for one to become available
2295 */
2296 while (sctx->curr == -1) {
2297 spin_lock(&sctx->list_lock);
2298 sctx->curr = sctx->first_free;
2299 if (sctx->curr != -1) {
2300 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2301 sctx->bios[sctx->curr]->next_free = -1;
2302 sctx->bios[sctx->curr]->page_count = 0;
2303 spin_unlock(&sctx->list_lock);
2304 } else {
2305 spin_unlock(&sctx->list_lock);
2306 wait_event(sctx->list_wait, sctx->first_free != -1);
2307 }
2308 }
2309 sbio = sctx->bios[sctx->curr];
2310 if (sbio->page_count == 0) {
2311 struct bio *bio;
2312
2313 sbio->physical = spage->physical;
2314 sbio->logical = spage->logical;
2315 sbio->dev = spage->dev;
2316 bio = sbio->bio;
2317 if (!bio) {
2318 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2319 sbio->bio = bio;
2320 }
2321
2322 bio->bi_private = sbio;
2323 bio->bi_end_io = scrub_bio_end_io;
2324 bio_set_dev(bio, sbio->dev->bdev);
2325 bio->bi_iter.bi_sector = sbio->physical >> 9;
2326 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2327 sbio->status = 0;
2328 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2329 spage->physical ||
2330 sbio->logical + sbio->page_count * PAGE_SIZE !=
2331 spage->logical ||
2332 sbio->dev != spage->dev) {
2333 scrub_submit(sctx);
2334 goto again;
2335 }
2336
2337 sbio->pagev[sbio->page_count] = spage;
2338 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2339 if (ret != PAGE_SIZE) {
2340 if (sbio->page_count < 1) {
2341 bio_put(sbio->bio);
2342 sbio->bio = NULL;
2343 return -EIO;
2344 }
2345 scrub_submit(sctx);
2346 goto again;
2347 }
2348
2349 scrub_block_get(sblock); /* one for the page added to the bio */
2350 atomic_inc(&sblock->outstanding_pages);
2351 sbio->page_count++;
2352 if (sbio->page_count == sctx->pages_per_rd_bio)
2353 scrub_submit(sctx);
2354
2355 return 0;
2356 }
2357
2358 static void scrub_missing_raid56_end_io(struct bio *bio)
2359 {
2360 struct scrub_block *sblock = bio->bi_private;
2361 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2362
2363 if (bio->bi_status)
2364 sblock->no_io_error_seen = 0;
2365
2366 bio_put(bio);
2367
2368 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2369 }
2370
2371 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2372 {
2373 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2374 struct scrub_ctx *sctx = sblock->sctx;
2375 struct btrfs_fs_info *fs_info = sctx->fs_info;
2376 u64 logical;
2377 struct btrfs_device *dev;
2378
2379 logical = sblock->pagev[0]->logical;
2380 dev = sblock->pagev[0]->dev;
2381
2382 if (sblock->no_io_error_seen)
2383 scrub_recheck_block_checksum(sblock);
2384
2385 if (!sblock->no_io_error_seen) {
2386 spin_lock(&sctx->stat_lock);
2387 sctx->stat.read_errors++;
2388 spin_unlock(&sctx->stat_lock);
2389 btrfs_err_rl_in_rcu(fs_info,
2390 "IO error rebuilding logical %llu for dev %s",
2391 logical, rcu_str_deref(dev->name));
2392 } else if (sblock->header_error || sblock->checksum_error) {
2393 spin_lock(&sctx->stat_lock);
2394 sctx->stat.uncorrectable_errors++;
2395 spin_unlock(&sctx->stat_lock);
2396 btrfs_err_rl_in_rcu(fs_info,
2397 "failed to rebuild valid logical %llu for dev %s",
2398 logical, rcu_str_deref(dev->name));
2399 } else {
2400 scrub_write_block_to_dev_replace(sblock);
2401 }
2402
2403 scrub_block_put(sblock);
2404
2405 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2406 mutex_lock(&sctx->wr_lock);
2407 scrub_wr_submit(sctx);
2408 mutex_unlock(&sctx->wr_lock);
2409 }
2410
2411 scrub_pending_bio_dec(sctx);
2412 }
2413
2414 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2415 {
2416 struct scrub_ctx *sctx = sblock->sctx;
2417 struct btrfs_fs_info *fs_info = sctx->fs_info;
2418 u64 length = sblock->page_count * PAGE_SIZE;
2419 u64 logical = sblock->pagev[0]->logical;
2420 struct btrfs_bio *bbio = NULL;
2421 struct bio *bio;
2422 struct btrfs_raid_bio *rbio;
2423 int ret;
2424 int i;
2425
2426 btrfs_bio_counter_inc_blocked(fs_info);
2427 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2428 &length, &bbio);
2429 if (ret || !bbio || !bbio->raid_map)
2430 goto bbio_out;
2431
2432 if (WARN_ON(!sctx->is_dev_replace ||
2433 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2434 /*
2435 * We shouldn't be scrubbing a missing device. Even for dev
2436 * replace, we should only get here for RAID 5/6. We either
2437 * managed to mount something with no mirrors remaining or
2438 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2439 */
2440 goto bbio_out;
2441 }
2442
2443 bio = btrfs_io_bio_alloc(0);
2444 bio->bi_iter.bi_sector = logical >> 9;
2445 bio->bi_private = sblock;
2446 bio->bi_end_io = scrub_missing_raid56_end_io;
2447
2448 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2449 if (!rbio)
2450 goto rbio_out;
2451
2452 for (i = 0; i < sblock->page_count; i++) {
2453 struct scrub_page *spage = sblock->pagev[i];
2454
2455 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2456 }
2457
2458 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2459 scrub_missing_raid56_worker, NULL, NULL);
2460 scrub_block_get(sblock);
2461 scrub_pending_bio_inc(sctx);
2462 raid56_submit_missing_rbio(rbio);
2463 return;
2464
2465 rbio_out:
2466 bio_put(bio);
2467 bbio_out:
2468 btrfs_bio_counter_dec(fs_info);
2469 btrfs_put_bbio(bbio);
2470 spin_lock(&sctx->stat_lock);
2471 sctx->stat.malloc_errors++;
2472 spin_unlock(&sctx->stat_lock);
2473 }
2474
2475 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2476 u64 physical, struct btrfs_device *dev, u64 flags,
2477 u64 gen, int mirror_num, u8 *csum, int force,
2478 u64 physical_for_dev_replace)
2479 {
2480 struct scrub_block *sblock;
2481 int index;
2482
2483 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2484 if (!sblock) {
2485 spin_lock(&sctx->stat_lock);
2486 sctx->stat.malloc_errors++;
2487 spin_unlock(&sctx->stat_lock);
2488 return -ENOMEM;
2489 }
2490
2491 /* one ref inside this function, plus one for each page added to
2492 * a bio later on */
2493 refcount_set(&sblock->refs, 1);
2494 sblock->sctx = sctx;
2495 sblock->no_io_error_seen = 1;
2496
2497 for (index = 0; len > 0; index++) {
2498 struct scrub_page *spage;
2499 u64 l = min_t(u64, len, PAGE_SIZE);
2500
2501 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2502 if (!spage) {
2503 leave_nomem:
2504 spin_lock(&sctx->stat_lock);
2505 sctx->stat.malloc_errors++;
2506 spin_unlock(&sctx->stat_lock);
2507 scrub_block_put(sblock);
2508 return -ENOMEM;
2509 }
2510 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2511 scrub_page_get(spage);
2512 sblock->pagev[index] = spage;
2513 spage->sblock = sblock;
2514 spage->dev = dev;
2515 spage->flags = flags;
2516 spage->generation = gen;
2517 spage->logical = logical;
2518 spage->physical = physical;
2519 spage->physical_for_dev_replace = physical_for_dev_replace;
2520 spage->mirror_num = mirror_num;
2521 if (csum) {
2522 spage->have_csum = 1;
2523 memcpy(spage->csum, csum, sctx->csum_size);
2524 } else {
2525 spage->have_csum = 0;
2526 }
2527 sblock->page_count++;
2528 spage->page = alloc_page(GFP_KERNEL);
2529 if (!spage->page)
2530 goto leave_nomem;
2531 len -= l;
2532 logical += l;
2533 physical += l;
2534 physical_for_dev_replace += l;
2535 }
2536
2537 WARN_ON(sblock->page_count == 0);
2538 if (dev->missing) {
2539 /*
2540 * This case should only be hit for RAID 5/6 device replace. See
2541 * the comment in scrub_missing_raid56_pages() for details.
2542 */
2543 scrub_missing_raid56_pages(sblock);
2544 } else {
2545 for (index = 0; index < sblock->page_count; index++) {
2546 struct scrub_page *spage = sblock->pagev[index];
2547 int ret;
2548
2549 ret = scrub_add_page_to_rd_bio(sctx, spage);
2550 if (ret) {
2551 scrub_block_put(sblock);
2552 return ret;
2553 }
2554 }
2555
2556 if (force)
2557 scrub_submit(sctx);
2558 }
2559
2560 /* last one frees, either here or in bio completion for last page */
2561 scrub_block_put(sblock);
2562 return 0;
2563 }
2564
2565 static void scrub_bio_end_io(struct bio *bio)
2566 {
2567 struct scrub_bio *sbio = bio->bi_private;
2568 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2569
2570 sbio->status = bio->bi_status;
2571 sbio->bio = bio;
2572
2573 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2574 }
2575
2576 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2577 {
2578 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2579 struct scrub_ctx *sctx = sbio->sctx;
2580 int i;
2581
2582 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2583 if (sbio->status) {
2584 for (i = 0; i < sbio->page_count; i++) {
2585 struct scrub_page *spage = sbio->pagev[i];
2586
2587 spage->io_error = 1;
2588 spage->sblock->no_io_error_seen = 0;
2589 }
2590 }
2591
2592 /* now complete the scrub_block items that have all pages completed */
2593 for (i = 0; i < sbio->page_count; i++) {
2594 struct scrub_page *spage = sbio->pagev[i];
2595 struct scrub_block *sblock = spage->sblock;
2596
2597 if (atomic_dec_and_test(&sblock->outstanding_pages))
2598 scrub_block_complete(sblock);
2599 scrub_block_put(sblock);
2600 }
2601
2602 bio_put(sbio->bio);
2603 sbio->bio = NULL;
2604 spin_lock(&sctx->list_lock);
2605 sbio->next_free = sctx->first_free;
2606 sctx->first_free = sbio->index;
2607 spin_unlock(&sctx->list_lock);
2608
2609 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2610 mutex_lock(&sctx->wr_lock);
2611 scrub_wr_submit(sctx);
2612 mutex_unlock(&sctx->wr_lock);
2613 }
2614
2615 scrub_pending_bio_dec(sctx);
2616 }
2617
2618 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2619 unsigned long *bitmap,
2620 u64 start, u64 len)
2621 {
2622 u64 offset;
2623 u64 nsectors64;
2624 u32 nsectors;
2625 int sectorsize = sparity->sctx->fs_info->sectorsize;
2626
2627 if (len >= sparity->stripe_len) {
2628 bitmap_set(bitmap, 0, sparity->nsectors);
2629 return;
2630 }
2631
2632 start -= sparity->logic_start;
2633 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2634 offset = div_u64(offset, sectorsize);
2635 nsectors64 = div_u64(len, sectorsize);
2636
2637 ASSERT(nsectors64 < UINT_MAX);
2638 nsectors = (u32)nsectors64;
2639
2640 if (offset + nsectors <= sparity->nsectors) {
2641 bitmap_set(bitmap, offset, nsectors);
2642 return;
2643 }
2644
2645 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2646 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2647 }
2648
2649 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2650 u64 start, u64 len)
2651 {
2652 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2653 }
2654
2655 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2656 u64 start, u64 len)
2657 {
2658 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2659 }
2660
2661 static void scrub_block_complete(struct scrub_block *sblock)
2662 {
2663 int corrupted = 0;
2664
2665 if (!sblock->no_io_error_seen) {
2666 corrupted = 1;
2667 scrub_handle_errored_block(sblock);
2668 } else {
2669 /*
2670 * if has checksum error, write via repair mechanism in
2671 * dev replace case, otherwise write here in dev replace
2672 * case.
2673 */
2674 corrupted = scrub_checksum(sblock);
2675 if (!corrupted && sblock->sctx->is_dev_replace)
2676 scrub_write_block_to_dev_replace(sblock);
2677 }
2678
2679 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2680 u64 start = sblock->pagev[0]->logical;
2681 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2682 PAGE_SIZE;
2683
2684 scrub_parity_mark_sectors_error(sblock->sparity,
2685 start, end - start);
2686 }
2687 }
2688
2689 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2690 {
2691 struct btrfs_ordered_sum *sum = NULL;
2692 unsigned long index;
2693 unsigned long num_sectors;
2694
2695 while (!list_empty(&sctx->csum_list)) {
2696 sum = list_first_entry(&sctx->csum_list,
2697 struct btrfs_ordered_sum, list);
2698 if (sum->bytenr > logical)
2699 return 0;
2700 if (sum->bytenr + sum->len > logical)
2701 break;
2702
2703 ++sctx->stat.csum_discards;
2704 list_del(&sum->list);
2705 kfree(sum);
2706 sum = NULL;
2707 }
2708 if (!sum)
2709 return 0;
2710
2711 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2712 ASSERT(index < UINT_MAX);
2713
2714 num_sectors = sum->len / sctx->fs_info->sectorsize;
2715 memcpy(csum, sum->sums + index, sctx->csum_size);
2716 if (index == num_sectors - 1) {
2717 list_del(&sum->list);
2718 kfree(sum);
2719 }
2720 return 1;
2721 }
2722
2723 /* scrub extent tries to collect up to 64 kB for each bio */
2724 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2725 u64 physical, struct btrfs_device *dev, u64 flags,
2726 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2727 {
2728 int ret;
2729 u8 csum[BTRFS_CSUM_SIZE];
2730 u32 blocksize;
2731
2732 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2733 blocksize = sctx->fs_info->sectorsize;
2734 spin_lock(&sctx->stat_lock);
2735 sctx->stat.data_extents_scrubbed++;
2736 sctx->stat.data_bytes_scrubbed += len;
2737 spin_unlock(&sctx->stat_lock);
2738 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2739 blocksize = sctx->fs_info->nodesize;
2740 spin_lock(&sctx->stat_lock);
2741 sctx->stat.tree_extents_scrubbed++;
2742 sctx->stat.tree_bytes_scrubbed += len;
2743 spin_unlock(&sctx->stat_lock);
2744 } else {
2745 blocksize = sctx->fs_info->sectorsize;
2746 WARN_ON(1);
2747 }
2748
2749 while (len) {
2750 u64 l = min_t(u64, len, blocksize);
2751 int have_csum = 0;
2752
2753 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2754 /* push csums to sbio */
2755 have_csum = scrub_find_csum(sctx, logical, csum);
2756 if (have_csum == 0)
2757 ++sctx->stat.no_csum;
2758 if (sctx->is_dev_replace && !have_csum) {
2759 ret = copy_nocow_pages(sctx, logical, l,
2760 mirror_num,
2761 physical_for_dev_replace);
2762 goto behind_scrub_pages;
2763 }
2764 }
2765 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2766 mirror_num, have_csum ? csum : NULL, 0,
2767 physical_for_dev_replace);
2768 behind_scrub_pages:
2769 if (ret)
2770 return ret;
2771 len -= l;
2772 logical += l;
2773 physical += l;
2774 physical_for_dev_replace += l;
2775 }
2776 return 0;
2777 }
2778
2779 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2780 u64 logical, u64 len,
2781 u64 physical, struct btrfs_device *dev,
2782 u64 flags, u64 gen, int mirror_num, u8 *csum)
2783 {
2784 struct scrub_ctx *sctx = sparity->sctx;
2785 struct scrub_block *sblock;
2786 int index;
2787
2788 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2789 if (!sblock) {
2790 spin_lock(&sctx->stat_lock);
2791 sctx->stat.malloc_errors++;
2792 spin_unlock(&sctx->stat_lock);
2793 return -ENOMEM;
2794 }
2795
2796 /* one ref inside this function, plus one for each page added to
2797 * a bio later on */
2798 refcount_set(&sblock->refs, 1);
2799 sblock->sctx = sctx;
2800 sblock->no_io_error_seen = 1;
2801 sblock->sparity = sparity;
2802 scrub_parity_get(sparity);
2803
2804 for (index = 0; len > 0; index++) {
2805 struct scrub_page *spage;
2806 u64 l = min_t(u64, len, PAGE_SIZE);
2807
2808 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2809 if (!spage) {
2810 leave_nomem:
2811 spin_lock(&sctx->stat_lock);
2812 sctx->stat.malloc_errors++;
2813 spin_unlock(&sctx->stat_lock);
2814 scrub_block_put(sblock);
2815 return -ENOMEM;
2816 }
2817 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2818 /* For scrub block */
2819 scrub_page_get(spage);
2820 sblock->pagev[index] = spage;
2821 /* For scrub parity */
2822 scrub_page_get(spage);
2823 list_add_tail(&spage->list, &sparity->spages);
2824 spage->sblock = sblock;
2825 spage->dev = dev;
2826 spage->flags = flags;
2827 spage->generation = gen;
2828 spage->logical = logical;
2829 spage->physical = physical;
2830 spage->mirror_num = mirror_num;
2831 if (csum) {
2832 spage->have_csum = 1;
2833 memcpy(spage->csum, csum, sctx->csum_size);
2834 } else {
2835 spage->have_csum = 0;
2836 }
2837 sblock->page_count++;
2838 spage->page = alloc_page(GFP_KERNEL);
2839 if (!spage->page)
2840 goto leave_nomem;
2841 len -= l;
2842 logical += l;
2843 physical += l;
2844 }
2845
2846 WARN_ON(sblock->page_count == 0);
2847 for (index = 0; index < sblock->page_count; index++) {
2848 struct scrub_page *spage = sblock->pagev[index];
2849 int ret;
2850
2851 ret = scrub_add_page_to_rd_bio(sctx, spage);
2852 if (ret) {
2853 scrub_block_put(sblock);
2854 return ret;
2855 }
2856 }
2857
2858 /* last one frees, either here or in bio completion for last page */
2859 scrub_block_put(sblock);
2860 return 0;
2861 }
2862
2863 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2864 u64 logical, u64 len,
2865 u64 physical, struct btrfs_device *dev,
2866 u64 flags, u64 gen, int mirror_num)
2867 {
2868 struct scrub_ctx *sctx = sparity->sctx;
2869 int ret;
2870 u8 csum[BTRFS_CSUM_SIZE];
2871 u32 blocksize;
2872
2873 if (dev->missing) {
2874 scrub_parity_mark_sectors_error(sparity, logical, len);
2875 return 0;
2876 }
2877
2878 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2879 blocksize = sctx->fs_info->sectorsize;
2880 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2881 blocksize = sctx->fs_info->nodesize;
2882 } else {
2883 blocksize = sctx->fs_info->sectorsize;
2884 WARN_ON(1);
2885 }
2886
2887 while (len) {
2888 u64 l = min_t(u64, len, blocksize);
2889 int have_csum = 0;
2890
2891 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2892 /* push csums to sbio */
2893 have_csum = scrub_find_csum(sctx, logical, csum);
2894 if (have_csum == 0)
2895 goto skip;
2896 }
2897 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2898 flags, gen, mirror_num,
2899 have_csum ? csum : NULL);
2900 if (ret)
2901 return ret;
2902 skip:
2903 len -= l;
2904 logical += l;
2905 physical += l;
2906 }
2907 return 0;
2908 }
2909
2910 /*
2911 * Given a physical address, this will calculate it's
2912 * logical offset. if this is a parity stripe, it will return
2913 * the most left data stripe's logical offset.
2914 *
2915 * return 0 if it is a data stripe, 1 means parity stripe.
2916 */
2917 static int get_raid56_logic_offset(u64 physical, int num,
2918 struct map_lookup *map, u64 *offset,
2919 u64 *stripe_start)
2920 {
2921 int i;
2922 int j = 0;
2923 u64 stripe_nr;
2924 u64 last_offset;
2925 u32 stripe_index;
2926 u32 rot;
2927
2928 last_offset = (physical - map->stripes[num].physical) *
2929 nr_data_stripes(map);
2930 if (stripe_start)
2931 *stripe_start = last_offset;
2932
2933 *offset = last_offset;
2934 for (i = 0; i < nr_data_stripes(map); i++) {
2935 *offset = last_offset + i * map->stripe_len;
2936
2937 stripe_nr = div64_u64(*offset, map->stripe_len);
2938 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2939
2940 /* Work out the disk rotation on this stripe-set */
2941 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2942 /* calculate which stripe this data locates */
2943 rot += i;
2944 stripe_index = rot % map->num_stripes;
2945 if (stripe_index == num)
2946 return 0;
2947 if (stripe_index < num)
2948 j++;
2949 }
2950 *offset = last_offset + j * map->stripe_len;
2951 return 1;
2952 }
2953
2954 static void scrub_free_parity(struct scrub_parity *sparity)
2955 {
2956 struct scrub_ctx *sctx = sparity->sctx;
2957 struct scrub_page *curr, *next;
2958 int nbits;
2959
2960 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2961 if (nbits) {
2962 spin_lock(&sctx->stat_lock);
2963 sctx->stat.read_errors += nbits;
2964 sctx->stat.uncorrectable_errors += nbits;
2965 spin_unlock(&sctx->stat_lock);
2966 }
2967
2968 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2969 list_del_init(&curr->list);
2970 scrub_page_put(curr);
2971 }
2972
2973 kfree(sparity);
2974 }
2975
2976 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2977 {
2978 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2979 work);
2980 struct scrub_ctx *sctx = sparity->sctx;
2981
2982 scrub_free_parity(sparity);
2983 scrub_pending_bio_dec(sctx);
2984 }
2985
2986 static void scrub_parity_bio_endio(struct bio *bio)
2987 {
2988 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2989 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2990
2991 if (bio->bi_status)
2992 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2993 sparity->nsectors);
2994
2995 bio_put(bio);
2996
2997 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2998 scrub_parity_bio_endio_worker, NULL, NULL);
2999 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3000 }
3001
3002 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3003 {
3004 struct scrub_ctx *sctx = sparity->sctx;
3005 struct btrfs_fs_info *fs_info = sctx->fs_info;
3006 struct bio *bio;
3007 struct btrfs_raid_bio *rbio;
3008 struct btrfs_bio *bbio = NULL;
3009 u64 length;
3010 int ret;
3011
3012 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3013 sparity->nsectors))
3014 goto out;
3015
3016 length = sparity->logic_end - sparity->logic_start;
3017
3018 btrfs_bio_counter_inc_blocked(fs_info);
3019 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3020 &length, &bbio);
3021 if (ret || !bbio || !bbio->raid_map)
3022 goto bbio_out;
3023
3024 bio = btrfs_io_bio_alloc(0);
3025 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3026 bio->bi_private = sparity;
3027 bio->bi_end_io = scrub_parity_bio_endio;
3028
3029 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3030 length, sparity->scrub_dev,
3031 sparity->dbitmap,
3032 sparity->nsectors);
3033 if (!rbio)
3034 goto rbio_out;
3035
3036 scrub_pending_bio_inc(sctx);
3037 raid56_parity_submit_scrub_rbio(rbio);
3038 return;
3039
3040 rbio_out:
3041 bio_put(bio);
3042 bbio_out:
3043 btrfs_bio_counter_dec(fs_info);
3044 btrfs_put_bbio(bbio);
3045 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3046 sparity->nsectors);
3047 spin_lock(&sctx->stat_lock);
3048 sctx->stat.malloc_errors++;
3049 spin_unlock(&sctx->stat_lock);
3050 out:
3051 scrub_free_parity(sparity);
3052 }
3053
3054 static inline int scrub_calc_parity_bitmap_len(int nsectors)
3055 {
3056 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3057 }
3058
3059 static void scrub_parity_get(struct scrub_parity *sparity)
3060 {
3061 refcount_inc(&sparity->refs);
3062 }
3063
3064 static void scrub_parity_put(struct scrub_parity *sparity)
3065 {
3066 if (!refcount_dec_and_test(&sparity->refs))
3067 return;
3068
3069 scrub_parity_check_and_repair(sparity);
3070 }
3071
3072 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3073 struct map_lookup *map,
3074 struct btrfs_device *sdev,
3075 struct btrfs_path *path,
3076 u64 logic_start,
3077 u64 logic_end)
3078 {
3079 struct btrfs_fs_info *fs_info = sctx->fs_info;
3080 struct btrfs_root *root = fs_info->extent_root;
3081 struct btrfs_root *csum_root = fs_info->csum_root;
3082 struct btrfs_extent_item *extent;
3083 struct btrfs_bio *bbio = NULL;
3084 u64 flags;
3085 int ret;
3086 int slot;
3087 struct extent_buffer *l;
3088 struct btrfs_key key;
3089 u64 generation;
3090 u64 extent_logical;
3091 u64 extent_physical;
3092 u64 extent_len;
3093 u64 mapped_length;
3094 struct btrfs_device *extent_dev;
3095 struct scrub_parity *sparity;
3096 int nsectors;
3097 int bitmap_len;
3098 int extent_mirror_num;
3099 int stop_loop = 0;
3100
3101 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3102 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3103 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3104 GFP_NOFS);
3105 if (!sparity) {
3106 spin_lock(&sctx->stat_lock);
3107 sctx->stat.malloc_errors++;
3108 spin_unlock(&sctx->stat_lock);
3109 return -ENOMEM;
3110 }
3111
3112 sparity->stripe_len = map->stripe_len;
3113 sparity->nsectors = nsectors;
3114 sparity->sctx = sctx;
3115 sparity->scrub_dev = sdev;
3116 sparity->logic_start = logic_start;
3117 sparity->logic_end = logic_end;
3118 refcount_set(&sparity->refs, 1);
3119 INIT_LIST_HEAD(&sparity->spages);
3120 sparity->dbitmap = sparity->bitmap;
3121 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3122
3123 ret = 0;
3124 while (logic_start < logic_end) {
3125 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3126 key.type = BTRFS_METADATA_ITEM_KEY;
3127 else
3128 key.type = BTRFS_EXTENT_ITEM_KEY;
3129 key.objectid = logic_start;
3130 key.offset = (u64)-1;
3131
3132 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3133 if (ret < 0)
3134 goto out;
3135
3136 if (ret > 0) {
3137 ret = btrfs_previous_extent_item(root, path, 0);
3138 if (ret < 0)
3139 goto out;
3140 if (ret > 0) {
3141 btrfs_release_path(path);
3142 ret = btrfs_search_slot(NULL, root, &key,
3143 path, 0, 0);
3144 if (ret < 0)
3145 goto out;
3146 }
3147 }
3148
3149 stop_loop = 0;
3150 while (1) {
3151 u64 bytes;
3152
3153 l = path->nodes[0];
3154 slot = path->slots[0];
3155 if (slot >= btrfs_header_nritems(l)) {
3156 ret = btrfs_next_leaf(root, path);
3157 if (ret == 0)
3158 continue;
3159 if (ret < 0)
3160 goto out;
3161
3162 stop_loop = 1;
3163 break;
3164 }
3165 btrfs_item_key_to_cpu(l, &key, slot);
3166
3167 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3168 key.type != BTRFS_METADATA_ITEM_KEY)
3169 goto next;
3170
3171 if (key.type == BTRFS_METADATA_ITEM_KEY)
3172 bytes = fs_info->nodesize;
3173 else
3174 bytes = key.offset;
3175
3176 if (key.objectid + bytes <= logic_start)
3177 goto next;
3178
3179 if (key.objectid >= logic_end) {
3180 stop_loop = 1;
3181 break;
3182 }
3183
3184 while (key.objectid >= logic_start + map->stripe_len)
3185 logic_start += map->stripe_len;
3186
3187 extent = btrfs_item_ptr(l, slot,
3188 struct btrfs_extent_item);
3189 flags = btrfs_extent_flags(l, extent);
3190 generation = btrfs_extent_generation(l, extent);
3191
3192 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3193 (key.objectid < logic_start ||
3194 key.objectid + bytes >
3195 logic_start + map->stripe_len)) {
3196 btrfs_err(fs_info,
3197 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3198 key.objectid, logic_start);
3199 spin_lock(&sctx->stat_lock);
3200 sctx->stat.uncorrectable_errors++;
3201 spin_unlock(&sctx->stat_lock);
3202 goto next;
3203 }
3204 again:
3205 extent_logical = key.objectid;
3206 extent_len = bytes;
3207
3208 if (extent_logical < logic_start) {
3209 extent_len -= logic_start - extent_logical;
3210 extent_logical = logic_start;
3211 }
3212
3213 if (extent_logical + extent_len >
3214 logic_start + map->stripe_len)
3215 extent_len = logic_start + map->stripe_len -
3216 extent_logical;
3217
3218 scrub_parity_mark_sectors_data(sparity, extent_logical,
3219 extent_len);
3220
3221 mapped_length = extent_len;
3222 bbio = NULL;
3223 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3224 extent_logical, &mapped_length, &bbio,
3225 0);
3226 if (!ret) {
3227 if (!bbio || mapped_length < extent_len)
3228 ret = -EIO;
3229 }
3230 if (ret) {
3231 btrfs_put_bbio(bbio);
3232 goto out;
3233 }
3234 extent_physical = bbio->stripes[0].physical;
3235 extent_mirror_num = bbio->mirror_num;
3236 extent_dev = bbio->stripes[0].dev;
3237 btrfs_put_bbio(bbio);
3238
3239 ret = btrfs_lookup_csums_range(csum_root,
3240 extent_logical,
3241 extent_logical + extent_len - 1,
3242 &sctx->csum_list, 1);
3243 if (ret)
3244 goto out;
3245
3246 ret = scrub_extent_for_parity(sparity, extent_logical,
3247 extent_len,
3248 extent_physical,
3249 extent_dev, flags,
3250 generation,
3251 extent_mirror_num);
3252
3253 scrub_free_csums(sctx);
3254
3255 if (ret)
3256 goto out;
3257
3258 if (extent_logical + extent_len <
3259 key.objectid + bytes) {
3260 logic_start += map->stripe_len;
3261
3262 if (logic_start >= logic_end) {
3263 stop_loop = 1;
3264 break;
3265 }
3266
3267 if (logic_start < key.objectid + bytes) {
3268 cond_resched();
3269 goto again;
3270 }
3271 }
3272 next:
3273 path->slots[0]++;
3274 }
3275
3276 btrfs_release_path(path);
3277
3278 if (stop_loop)
3279 break;
3280
3281 logic_start += map->stripe_len;
3282 }
3283 out:
3284 if (ret < 0)
3285 scrub_parity_mark_sectors_error(sparity, logic_start,
3286 logic_end - logic_start);
3287 scrub_parity_put(sparity);
3288 scrub_submit(sctx);
3289 mutex_lock(&sctx->wr_lock);
3290 scrub_wr_submit(sctx);
3291 mutex_unlock(&sctx->wr_lock);
3292
3293 btrfs_release_path(path);
3294 return ret < 0 ? ret : 0;
3295 }
3296
3297 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3298 struct map_lookup *map,
3299 struct btrfs_device *scrub_dev,
3300 int num, u64 base, u64 length,
3301 int is_dev_replace)
3302 {
3303 struct btrfs_path *path, *ppath;
3304 struct btrfs_fs_info *fs_info = sctx->fs_info;
3305 struct btrfs_root *root = fs_info->extent_root;
3306 struct btrfs_root *csum_root = fs_info->csum_root;
3307 struct btrfs_extent_item *extent;
3308 struct blk_plug plug;
3309 u64 flags;
3310 int ret;
3311 int slot;
3312 u64 nstripes;
3313 struct extent_buffer *l;
3314 u64 physical;
3315 u64 logical;
3316 u64 logic_end;
3317 u64 physical_end;
3318 u64 generation;
3319 int mirror_num;
3320 struct reada_control *reada1;
3321 struct reada_control *reada2;
3322 struct btrfs_key key;
3323 struct btrfs_key key_end;
3324 u64 increment = map->stripe_len;
3325 u64 offset;
3326 u64 extent_logical;
3327 u64 extent_physical;
3328 u64 extent_len;
3329 u64 stripe_logical;
3330 u64 stripe_end;
3331 struct btrfs_device *extent_dev;
3332 int extent_mirror_num;
3333 int stop_loop = 0;
3334
3335 physical = map->stripes[num].physical;
3336 offset = 0;
3337 nstripes = div64_u64(length, map->stripe_len);
3338 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3339 offset = map->stripe_len * num;
3340 increment = map->stripe_len * map->num_stripes;
3341 mirror_num = 1;
3342 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3343 int factor = map->num_stripes / map->sub_stripes;
3344 offset = map->stripe_len * (num / map->sub_stripes);
3345 increment = map->stripe_len * factor;
3346 mirror_num = num % map->sub_stripes + 1;
3347 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3348 increment = map->stripe_len;
3349 mirror_num = num % map->num_stripes + 1;
3350 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3351 increment = map->stripe_len;
3352 mirror_num = num % map->num_stripes + 1;
3353 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3354 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3355 increment = map->stripe_len * nr_data_stripes(map);
3356 mirror_num = 1;
3357 } else {
3358 increment = map->stripe_len;
3359 mirror_num = 1;
3360 }
3361
3362 path = btrfs_alloc_path();
3363 if (!path)
3364 return -ENOMEM;
3365
3366 ppath = btrfs_alloc_path();
3367 if (!ppath) {
3368 btrfs_free_path(path);
3369 return -ENOMEM;
3370 }
3371
3372 /*
3373 * work on commit root. The related disk blocks are static as
3374 * long as COW is applied. This means, it is save to rewrite
3375 * them to repair disk errors without any race conditions
3376 */
3377 path->search_commit_root = 1;
3378 path->skip_locking = 1;
3379
3380 ppath->search_commit_root = 1;
3381 ppath->skip_locking = 1;
3382 /*
3383 * trigger the readahead for extent tree csum tree and wait for
3384 * completion. During readahead, the scrub is officially paused
3385 * to not hold off transaction commits
3386 */
3387 logical = base + offset;
3388 physical_end = physical + nstripes * map->stripe_len;
3389 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3390 get_raid56_logic_offset(physical_end, num,
3391 map, &logic_end, NULL);
3392 logic_end += base;
3393 } else {
3394 logic_end = logical + increment * nstripes;
3395 }
3396 wait_event(sctx->list_wait,
3397 atomic_read(&sctx->bios_in_flight) == 0);
3398 scrub_blocked_if_needed(fs_info);
3399
3400 /* FIXME it might be better to start readahead at commit root */
3401 key.objectid = logical;
3402 key.type = BTRFS_EXTENT_ITEM_KEY;
3403 key.offset = (u64)0;
3404 key_end.objectid = logic_end;
3405 key_end.type = BTRFS_METADATA_ITEM_KEY;
3406 key_end.offset = (u64)-1;
3407 reada1 = btrfs_reada_add(root, &key, &key_end);
3408
3409 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3410 key.type = BTRFS_EXTENT_CSUM_KEY;
3411 key.offset = logical;
3412 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3413 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3414 key_end.offset = logic_end;
3415 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3416
3417 if (!IS_ERR(reada1))
3418 btrfs_reada_wait(reada1);
3419 if (!IS_ERR(reada2))
3420 btrfs_reada_wait(reada2);
3421
3422
3423 /*
3424 * collect all data csums for the stripe to avoid seeking during
3425 * the scrub. This might currently (crc32) end up to be about 1MB
3426 */
3427 blk_start_plug(&plug);
3428
3429 /*
3430 * now find all extents for each stripe and scrub them
3431 */
3432 ret = 0;
3433 while (physical < physical_end) {
3434 /*
3435 * canceled?
3436 */
3437 if (atomic_read(&fs_info->scrub_cancel_req) ||
3438 atomic_read(&sctx->cancel_req)) {
3439 ret = -ECANCELED;
3440 goto out;
3441 }
3442 /*
3443 * check to see if we have to pause
3444 */
3445 if (atomic_read(&fs_info->scrub_pause_req)) {
3446 /* push queued extents */
3447 sctx->flush_all_writes = true;
3448 scrub_submit(sctx);
3449 mutex_lock(&sctx->wr_lock);
3450 scrub_wr_submit(sctx);
3451 mutex_unlock(&sctx->wr_lock);
3452 wait_event(sctx->list_wait,
3453 atomic_read(&sctx->bios_in_flight) == 0);
3454 sctx->flush_all_writes = false;
3455 scrub_blocked_if_needed(fs_info);
3456 }
3457
3458 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3459 ret = get_raid56_logic_offset(physical, num, map,
3460 &logical,
3461 &stripe_logical);
3462 logical += base;
3463 if (ret) {
3464 /* it is parity strip */
3465 stripe_logical += base;
3466 stripe_end = stripe_logical + increment;
3467 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3468 ppath, stripe_logical,
3469 stripe_end);
3470 if (ret)
3471 goto out;
3472 goto skip;
3473 }
3474 }
3475
3476 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3477 key.type = BTRFS_METADATA_ITEM_KEY;
3478 else
3479 key.type = BTRFS_EXTENT_ITEM_KEY;
3480 key.objectid = logical;
3481 key.offset = (u64)-1;
3482
3483 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3484 if (ret < 0)
3485 goto out;
3486
3487 if (ret > 0) {
3488 ret = btrfs_previous_extent_item(root, path, 0);
3489 if (ret < 0)
3490 goto out;
3491 if (ret > 0) {
3492 /* there's no smaller item, so stick with the
3493 * larger one */
3494 btrfs_release_path(path);
3495 ret = btrfs_search_slot(NULL, root, &key,
3496 path, 0, 0);
3497 if (ret < 0)
3498 goto out;
3499 }
3500 }
3501
3502 stop_loop = 0;
3503 while (1) {
3504 u64 bytes;
3505
3506 l = path->nodes[0];
3507 slot = path->slots[0];
3508 if (slot >= btrfs_header_nritems(l)) {
3509 ret = btrfs_next_leaf(root, path);
3510 if (ret == 0)
3511 continue;
3512 if (ret < 0)
3513 goto out;
3514
3515 stop_loop = 1;
3516 break;
3517 }
3518 btrfs_item_key_to_cpu(l, &key, slot);
3519
3520 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3521 key.type != BTRFS_METADATA_ITEM_KEY)
3522 goto next;
3523
3524 if (key.type == BTRFS_METADATA_ITEM_KEY)
3525 bytes = fs_info->nodesize;
3526 else
3527 bytes = key.offset;
3528
3529 if (key.objectid + bytes <= logical)
3530 goto next;
3531
3532 if (key.objectid >= logical + map->stripe_len) {
3533 /* out of this device extent */
3534 if (key.objectid >= logic_end)
3535 stop_loop = 1;
3536 break;
3537 }
3538
3539 extent = btrfs_item_ptr(l, slot,
3540 struct btrfs_extent_item);
3541 flags = btrfs_extent_flags(l, extent);
3542 generation = btrfs_extent_generation(l, extent);
3543
3544 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3545 (key.objectid < logical ||
3546 key.objectid + bytes >
3547 logical + map->stripe_len)) {
3548 btrfs_err(fs_info,
3549 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3550 key.objectid, logical);
3551 spin_lock(&sctx->stat_lock);
3552 sctx->stat.uncorrectable_errors++;
3553 spin_unlock(&sctx->stat_lock);
3554 goto next;
3555 }
3556
3557 again:
3558 extent_logical = key.objectid;
3559 extent_len = bytes;
3560
3561 /*
3562 * trim extent to this stripe
3563 */
3564 if (extent_logical < logical) {
3565 extent_len -= logical - extent_logical;
3566 extent_logical = logical;
3567 }
3568 if (extent_logical + extent_len >
3569 logical + map->stripe_len) {
3570 extent_len = logical + map->stripe_len -
3571 extent_logical;
3572 }
3573
3574 extent_physical = extent_logical - logical + physical;
3575 extent_dev = scrub_dev;
3576 extent_mirror_num = mirror_num;
3577 if (is_dev_replace)
3578 scrub_remap_extent(fs_info, extent_logical,
3579 extent_len, &extent_physical,
3580 &extent_dev,
3581 &extent_mirror_num);
3582
3583 ret = btrfs_lookup_csums_range(csum_root,
3584 extent_logical,
3585 extent_logical +
3586 extent_len - 1,
3587 &sctx->csum_list, 1);
3588 if (ret)
3589 goto out;
3590
3591 ret = scrub_extent(sctx, extent_logical, extent_len,
3592 extent_physical, extent_dev, flags,
3593 generation, extent_mirror_num,
3594 extent_logical - logical + physical);
3595
3596 scrub_free_csums(sctx);
3597
3598 if (ret)
3599 goto out;
3600
3601 if (extent_logical + extent_len <
3602 key.objectid + bytes) {
3603 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3604 /*
3605 * loop until we find next data stripe
3606 * or we have finished all stripes.
3607 */
3608 loop:
3609 physical += map->stripe_len;
3610 ret = get_raid56_logic_offset(physical,
3611 num, map, &logical,
3612 &stripe_logical);
3613 logical += base;
3614
3615 if (ret && physical < physical_end) {
3616 stripe_logical += base;
3617 stripe_end = stripe_logical +
3618 increment;
3619 ret = scrub_raid56_parity(sctx,
3620 map, scrub_dev, ppath,
3621 stripe_logical,
3622 stripe_end);
3623 if (ret)
3624 goto out;
3625 goto loop;
3626 }
3627 } else {
3628 physical += map->stripe_len;
3629 logical += increment;
3630 }
3631 if (logical < key.objectid + bytes) {
3632 cond_resched();
3633 goto again;
3634 }
3635
3636 if (physical >= physical_end) {
3637 stop_loop = 1;
3638 break;
3639 }
3640 }
3641 next:
3642 path->slots[0]++;
3643 }
3644 btrfs_release_path(path);
3645 skip:
3646 logical += increment;
3647 physical += map->stripe_len;
3648 spin_lock(&sctx->stat_lock);
3649 if (stop_loop)
3650 sctx->stat.last_physical = map->stripes[num].physical +
3651 length;
3652 else
3653 sctx->stat.last_physical = physical;
3654 spin_unlock(&sctx->stat_lock);
3655 if (stop_loop)
3656 break;
3657 }
3658 out:
3659 /* push queued extents */
3660 scrub_submit(sctx);
3661 mutex_lock(&sctx->wr_lock);
3662 scrub_wr_submit(sctx);
3663 mutex_unlock(&sctx->wr_lock);
3664
3665 blk_finish_plug(&plug);
3666 btrfs_free_path(path);
3667 btrfs_free_path(ppath);
3668 return ret < 0 ? ret : 0;
3669 }
3670
3671 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3672 struct btrfs_device *scrub_dev,
3673 u64 chunk_offset, u64 length,
3674 u64 dev_offset,
3675 struct btrfs_block_group_cache *cache,
3676 int is_dev_replace)
3677 {
3678 struct btrfs_fs_info *fs_info = sctx->fs_info;
3679 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3680 struct map_lookup *map;
3681 struct extent_map *em;
3682 int i;
3683 int ret = 0;
3684
3685 read_lock(&map_tree->map_tree.lock);
3686 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3687 read_unlock(&map_tree->map_tree.lock);
3688
3689 if (!em) {
3690 /*
3691 * Might have been an unused block group deleted by the cleaner
3692 * kthread or relocation.
3693 */
3694 spin_lock(&cache->lock);
3695 if (!cache->removed)
3696 ret = -EINVAL;
3697 spin_unlock(&cache->lock);
3698
3699 return ret;
3700 }
3701
3702 map = em->map_lookup;
3703 if (em->start != chunk_offset)
3704 goto out;
3705
3706 if (em->len < length)
3707 goto out;
3708
3709 for (i = 0; i < map->num_stripes; ++i) {
3710 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3711 map->stripes[i].physical == dev_offset) {
3712 ret = scrub_stripe(sctx, map, scrub_dev, i,
3713 chunk_offset, length,
3714 is_dev_replace);
3715 if (ret)
3716 goto out;
3717 }
3718 }
3719 out:
3720 free_extent_map(em);
3721
3722 return ret;
3723 }
3724
3725 static noinline_for_stack
3726 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3727 struct btrfs_device *scrub_dev, u64 start, u64 end,
3728 int is_dev_replace)
3729 {
3730 struct btrfs_dev_extent *dev_extent = NULL;
3731 struct btrfs_path *path;
3732 struct btrfs_fs_info *fs_info = sctx->fs_info;
3733 struct btrfs_root *root = fs_info->dev_root;
3734 u64 length;
3735 u64 chunk_offset;
3736 int ret = 0;
3737 int ro_set;
3738 int slot;
3739 struct extent_buffer *l;
3740 struct btrfs_key key;
3741 struct btrfs_key found_key;
3742 struct btrfs_block_group_cache *cache;
3743 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3744
3745 path = btrfs_alloc_path();
3746 if (!path)
3747 return -ENOMEM;
3748
3749 path->reada = READA_FORWARD;
3750 path->search_commit_root = 1;
3751 path->skip_locking = 1;
3752
3753 key.objectid = scrub_dev->devid;
3754 key.offset = 0ull;
3755 key.type = BTRFS_DEV_EXTENT_KEY;
3756
3757 while (1) {
3758 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3759 if (ret < 0)
3760 break;
3761 if (ret > 0) {
3762 if (path->slots[0] >=
3763 btrfs_header_nritems(path->nodes[0])) {
3764 ret = btrfs_next_leaf(root, path);
3765 if (ret < 0)
3766 break;
3767 if (ret > 0) {
3768 ret = 0;
3769 break;
3770 }
3771 } else {
3772 ret = 0;
3773 }
3774 }
3775
3776 l = path->nodes[0];
3777 slot = path->slots[0];
3778
3779 btrfs_item_key_to_cpu(l, &found_key, slot);
3780
3781 if (found_key.objectid != scrub_dev->devid)
3782 break;
3783
3784 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3785 break;
3786
3787 if (found_key.offset >= end)
3788 break;
3789
3790 if (found_key.offset < key.offset)
3791 break;
3792
3793 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3794 length = btrfs_dev_extent_length(l, dev_extent);
3795
3796 if (found_key.offset + length <= start)
3797 goto skip;
3798
3799 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3800
3801 /*
3802 * get a reference on the corresponding block group to prevent
3803 * the chunk from going away while we scrub it
3804 */
3805 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3806
3807 /* some chunks are removed but not committed to disk yet,
3808 * continue scrubbing */
3809 if (!cache)
3810 goto skip;
3811
3812 /*
3813 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3814 * to avoid deadlock caused by:
3815 * btrfs_inc_block_group_ro()
3816 * -> btrfs_wait_for_commit()
3817 * -> btrfs_commit_transaction()
3818 * -> btrfs_scrub_pause()
3819 */
3820 scrub_pause_on(fs_info);
3821 ret = btrfs_inc_block_group_ro(fs_info, cache);
3822 if (!ret && is_dev_replace) {
3823 /*
3824 * If we are doing a device replace wait for any tasks
3825 * that started dellaloc right before we set the block
3826 * group to RO mode, as they might have just allocated
3827 * an extent from it or decided they could do a nocow
3828 * write. And if any such tasks did that, wait for their
3829 * ordered extents to complete and then commit the
3830 * current transaction, so that we can later see the new
3831 * extent items in the extent tree - the ordered extents
3832 * create delayed data references (for cow writes) when
3833 * they complete, which will be run and insert the
3834 * corresponding extent items into the extent tree when
3835 * we commit the transaction they used when running
3836 * inode.c:btrfs_finish_ordered_io(). We later use
3837 * the commit root of the extent tree to find extents
3838 * to copy from the srcdev into the tgtdev, and we don't
3839 * want to miss any new extents.
3840 */
3841 btrfs_wait_block_group_reservations(cache);
3842 btrfs_wait_nocow_writers(cache);
3843 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3844 cache->key.objectid,
3845 cache->key.offset);
3846 if (ret > 0) {
3847 struct btrfs_trans_handle *trans;
3848
3849 trans = btrfs_join_transaction(root);
3850 if (IS_ERR(trans))
3851 ret = PTR_ERR(trans);
3852 else
3853 ret = btrfs_commit_transaction(trans);
3854 if (ret) {
3855 scrub_pause_off(fs_info);
3856 btrfs_put_block_group(cache);
3857 break;
3858 }
3859 }
3860 }
3861 scrub_pause_off(fs_info);
3862
3863 if (ret == 0) {
3864 ro_set = 1;
3865 } else if (ret == -ENOSPC) {
3866 /*
3867 * btrfs_inc_block_group_ro return -ENOSPC when it
3868 * failed in creating new chunk for metadata.
3869 * It is not a problem for scrub/replace, because
3870 * metadata are always cowed, and our scrub paused
3871 * commit_transactions.
3872 */
3873 ro_set = 0;
3874 } else {
3875 btrfs_warn(fs_info,
3876 "failed setting block group ro: %d", ret);
3877 btrfs_put_block_group(cache);
3878 break;
3879 }
3880
3881 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3882 dev_replace->cursor_right = found_key.offset + length;
3883 dev_replace->cursor_left = found_key.offset;
3884 dev_replace->item_needs_writeback = 1;
3885 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3886 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3887 found_key.offset, cache, is_dev_replace);
3888
3889 /*
3890 * flush, submit all pending read and write bios, afterwards
3891 * wait for them.
3892 * Note that in the dev replace case, a read request causes
3893 * write requests that are submitted in the read completion
3894 * worker. Therefore in the current situation, it is required
3895 * that all write requests are flushed, so that all read and
3896 * write requests are really completed when bios_in_flight
3897 * changes to 0.
3898 */
3899 sctx->flush_all_writes = true;
3900 scrub_submit(sctx);
3901 mutex_lock(&sctx->wr_lock);
3902 scrub_wr_submit(sctx);
3903 mutex_unlock(&sctx->wr_lock);
3904
3905 wait_event(sctx->list_wait,
3906 atomic_read(&sctx->bios_in_flight) == 0);
3907
3908 scrub_pause_on(fs_info);
3909
3910 /*
3911 * must be called before we decrease @scrub_paused.
3912 * make sure we don't block transaction commit while
3913 * we are waiting pending workers finished.
3914 */
3915 wait_event(sctx->list_wait,
3916 atomic_read(&sctx->workers_pending) == 0);
3917 sctx->flush_all_writes = false;
3918
3919 scrub_pause_off(fs_info);
3920
3921 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3922 dev_replace->cursor_left = dev_replace->cursor_right;
3923 dev_replace->item_needs_writeback = 1;
3924 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3925
3926 if (ro_set)
3927 btrfs_dec_block_group_ro(cache);
3928
3929 /*
3930 * We might have prevented the cleaner kthread from deleting
3931 * this block group if it was already unused because we raced
3932 * and set it to RO mode first. So add it back to the unused
3933 * list, otherwise it might not ever be deleted unless a manual
3934 * balance is triggered or it becomes used and unused again.
3935 */
3936 spin_lock(&cache->lock);
3937 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3938 btrfs_block_group_used(&cache->item) == 0) {
3939 spin_unlock(&cache->lock);
3940 spin_lock(&fs_info->unused_bgs_lock);
3941 if (list_empty(&cache->bg_list)) {
3942 btrfs_get_block_group(cache);
3943 list_add_tail(&cache->bg_list,
3944 &fs_info->unused_bgs);
3945 }
3946 spin_unlock(&fs_info->unused_bgs_lock);
3947 } else {
3948 spin_unlock(&cache->lock);
3949 }
3950
3951 btrfs_put_block_group(cache);
3952 if (ret)
3953 break;
3954 if (is_dev_replace &&
3955 atomic64_read(&dev_replace->num_write_errors) > 0) {
3956 ret = -EIO;
3957 break;
3958 }
3959 if (sctx->stat.malloc_errors > 0) {
3960 ret = -ENOMEM;
3961 break;
3962 }
3963 skip:
3964 key.offset = found_key.offset + length;
3965 btrfs_release_path(path);
3966 }
3967
3968 btrfs_free_path(path);
3969
3970 return ret;
3971 }
3972
3973 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3974 struct btrfs_device *scrub_dev)
3975 {
3976 int i;
3977 u64 bytenr;
3978 u64 gen;
3979 int ret;
3980 struct btrfs_fs_info *fs_info = sctx->fs_info;
3981
3982 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3983 return -EIO;
3984
3985 /* Seed devices of a new filesystem has their own generation. */
3986 if (scrub_dev->fs_devices != fs_info->fs_devices)
3987 gen = scrub_dev->generation;
3988 else
3989 gen = fs_info->last_trans_committed;
3990
3991 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3992 bytenr = btrfs_sb_offset(i);
3993 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3994 scrub_dev->commit_total_bytes)
3995 break;
3996
3997 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3998 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3999 NULL, 1, bytenr);
4000 if (ret)
4001 return ret;
4002 }
4003 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4004
4005 return 0;
4006 }
4007
4008 /*
4009 * get a reference count on fs_info->scrub_workers. start worker if necessary
4010 */
4011 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4012 int is_dev_replace)
4013 {
4014 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4015 int max_active = fs_info->thread_pool_size;
4016
4017 if (fs_info->scrub_workers_refcnt == 0) {
4018 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
4019 flags, is_dev_replace ? 1 : max_active, 4);
4020 if (!fs_info->scrub_workers)
4021 goto fail_scrub_workers;
4022
4023 fs_info->scrub_wr_completion_workers =
4024 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4025 max_active, 2);
4026 if (!fs_info->scrub_wr_completion_workers)
4027 goto fail_scrub_wr_completion_workers;
4028
4029 fs_info->scrub_nocow_workers =
4030 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4031 if (!fs_info->scrub_nocow_workers)
4032 goto fail_scrub_nocow_workers;
4033 fs_info->scrub_parity_workers =
4034 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4035 max_active, 2);
4036 if (!fs_info->scrub_parity_workers)
4037 goto fail_scrub_parity_workers;
4038 }
4039 ++fs_info->scrub_workers_refcnt;
4040 return 0;
4041
4042 fail_scrub_parity_workers:
4043 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4044 fail_scrub_nocow_workers:
4045 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4046 fail_scrub_wr_completion_workers:
4047 btrfs_destroy_workqueue(fs_info->scrub_workers);
4048 fail_scrub_workers:
4049 return -ENOMEM;
4050 }
4051
4052 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
4053 {
4054 if (--fs_info->scrub_workers_refcnt == 0) {
4055 btrfs_destroy_workqueue(fs_info->scrub_workers);
4056 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4057 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4058 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4059 }
4060 WARN_ON(fs_info->scrub_workers_refcnt < 0);
4061 }
4062
4063 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4064 u64 end, struct btrfs_scrub_progress *progress,
4065 int readonly, int is_dev_replace)
4066 {
4067 struct scrub_ctx *sctx;
4068 int ret;
4069 struct btrfs_device *dev;
4070 struct rcu_string *name;
4071
4072 if (btrfs_fs_closing(fs_info))
4073 return -EINVAL;
4074
4075 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4076 /*
4077 * in this case scrub is unable to calculate the checksum
4078 * the way scrub is implemented. Do not handle this
4079 * situation at all because it won't ever happen.
4080 */
4081 btrfs_err(fs_info,
4082 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4083 fs_info->nodesize,
4084 BTRFS_STRIPE_LEN);
4085 return -EINVAL;
4086 }
4087
4088 if (fs_info->sectorsize != PAGE_SIZE) {
4089 /* not supported for data w/o checksums */
4090 btrfs_err_rl(fs_info,
4091 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4092 fs_info->sectorsize, PAGE_SIZE);
4093 return -EINVAL;
4094 }
4095
4096 if (fs_info->nodesize >
4097 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4098 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4099 /*
4100 * would exhaust the array bounds of pagev member in
4101 * struct scrub_block
4102 */
4103 btrfs_err(fs_info,
4104 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4105 fs_info->nodesize,
4106 SCRUB_MAX_PAGES_PER_BLOCK,
4107 fs_info->sectorsize,
4108 SCRUB_MAX_PAGES_PER_BLOCK);
4109 return -EINVAL;
4110 }
4111
4112
4113 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4114 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4115 if (!dev || (dev->missing && !is_dev_replace)) {
4116 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4117 return -ENODEV;
4118 }
4119
4120 if (!is_dev_replace && !readonly && !dev->writeable) {
4121 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122 rcu_read_lock();
4123 name = rcu_dereference(dev->name);
4124 btrfs_err(fs_info, "scrub: device %s is not writable",
4125 name->str);
4126 rcu_read_unlock();
4127 return -EROFS;
4128 }
4129
4130 mutex_lock(&fs_info->scrub_lock);
4131 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
4132 mutex_unlock(&fs_info->scrub_lock);
4133 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4134 return -EIO;
4135 }
4136
4137 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
4138 if (dev->scrub_device ||
4139 (!is_dev_replace &&
4140 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4141 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4142 mutex_unlock(&fs_info->scrub_lock);
4143 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4144 return -EINPROGRESS;
4145 }
4146 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
4147
4148 ret = scrub_workers_get(fs_info, is_dev_replace);
4149 if (ret) {
4150 mutex_unlock(&fs_info->scrub_lock);
4151 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4152 return ret;
4153 }
4154
4155 sctx = scrub_setup_ctx(dev, is_dev_replace);
4156 if (IS_ERR(sctx)) {
4157 mutex_unlock(&fs_info->scrub_lock);
4158 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4159 scrub_workers_put(fs_info);
4160 return PTR_ERR(sctx);
4161 }
4162 sctx->readonly = readonly;
4163 dev->scrub_device = sctx;
4164 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4165
4166 /*
4167 * checking @scrub_pause_req here, we can avoid
4168 * race between committing transaction and scrubbing.
4169 */
4170 __scrub_blocked_if_needed(fs_info);
4171 atomic_inc(&fs_info->scrubs_running);
4172 mutex_unlock(&fs_info->scrub_lock);
4173
4174 if (!is_dev_replace) {
4175 /*
4176 * by holding device list mutex, we can
4177 * kick off writing super in log tree sync.
4178 */
4179 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4180 ret = scrub_supers(sctx, dev);
4181 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4182 }
4183
4184 if (!ret)
4185 ret = scrub_enumerate_chunks(sctx, dev, start, end,
4186 is_dev_replace);
4187
4188 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4189 atomic_dec(&fs_info->scrubs_running);
4190 wake_up(&fs_info->scrub_pause_wait);
4191
4192 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4193
4194 if (progress)
4195 memcpy(progress, &sctx->stat, sizeof(*progress));
4196
4197 mutex_lock(&fs_info->scrub_lock);
4198 dev->scrub_device = NULL;
4199 scrub_workers_put(fs_info);
4200 mutex_unlock(&fs_info->scrub_lock);
4201
4202 scrub_put_ctx(sctx);
4203
4204 return ret;
4205 }
4206
4207 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4208 {
4209 mutex_lock(&fs_info->scrub_lock);
4210 atomic_inc(&fs_info->scrub_pause_req);
4211 while (atomic_read(&fs_info->scrubs_paused) !=
4212 atomic_read(&fs_info->scrubs_running)) {
4213 mutex_unlock(&fs_info->scrub_lock);
4214 wait_event(fs_info->scrub_pause_wait,
4215 atomic_read(&fs_info->scrubs_paused) ==
4216 atomic_read(&fs_info->scrubs_running));
4217 mutex_lock(&fs_info->scrub_lock);
4218 }
4219 mutex_unlock(&fs_info->scrub_lock);
4220 }
4221
4222 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4223 {
4224 atomic_dec(&fs_info->scrub_pause_req);
4225 wake_up(&fs_info->scrub_pause_wait);
4226 }
4227
4228 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4229 {
4230 mutex_lock(&fs_info->scrub_lock);
4231 if (!atomic_read(&fs_info->scrubs_running)) {
4232 mutex_unlock(&fs_info->scrub_lock);
4233 return -ENOTCONN;
4234 }
4235
4236 atomic_inc(&fs_info->scrub_cancel_req);
4237 while (atomic_read(&fs_info->scrubs_running)) {
4238 mutex_unlock(&fs_info->scrub_lock);
4239 wait_event(fs_info->scrub_pause_wait,
4240 atomic_read(&fs_info->scrubs_running) == 0);
4241 mutex_lock(&fs_info->scrub_lock);
4242 }
4243 atomic_dec(&fs_info->scrub_cancel_req);
4244 mutex_unlock(&fs_info->scrub_lock);
4245
4246 return 0;
4247 }
4248
4249 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4250 struct btrfs_device *dev)
4251 {
4252 struct scrub_ctx *sctx;
4253
4254 mutex_lock(&fs_info->scrub_lock);
4255 sctx = dev->scrub_device;
4256 if (!sctx) {
4257 mutex_unlock(&fs_info->scrub_lock);
4258 return -ENOTCONN;
4259 }
4260 atomic_inc(&sctx->cancel_req);
4261 while (dev->scrub_device) {
4262 mutex_unlock(&fs_info->scrub_lock);
4263 wait_event(fs_info->scrub_pause_wait,
4264 dev->scrub_device == NULL);
4265 mutex_lock(&fs_info->scrub_lock);
4266 }
4267 mutex_unlock(&fs_info->scrub_lock);
4268
4269 return 0;
4270 }
4271
4272 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4273 struct btrfs_scrub_progress *progress)
4274 {
4275 struct btrfs_device *dev;
4276 struct scrub_ctx *sctx = NULL;
4277
4278 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4279 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4280 if (dev)
4281 sctx = dev->scrub_device;
4282 if (sctx)
4283 memcpy(progress, &sctx->stat, sizeof(*progress));
4284 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4285
4286 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4287 }
4288
4289 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4290 u64 extent_logical, u64 extent_len,
4291 u64 *extent_physical,
4292 struct btrfs_device **extent_dev,
4293 int *extent_mirror_num)
4294 {
4295 u64 mapped_length;
4296 struct btrfs_bio *bbio = NULL;
4297 int ret;
4298
4299 mapped_length = extent_len;
4300 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4301 &mapped_length, &bbio, 0);
4302 if (ret || !bbio || mapped_length < extent_len ||
4303 !bbio->stripes[0].dev->bdev) {
4304 btrfs_put_bbio(bbio);
4305 return;
4306 }
4307
4308 *extent_physical = bbio->stripes[0].physical;
4309 *extent_mirror_num = bbio->mirror_num;
4310 *extent_dev = bbio->stripes[0].dev;
4311 btrfs_put_bbio(bbio);
4312 }
4313
4314 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4315 int mirror_num, u64 physical_for_dev_replace)
4316 {
4317 struct scrub_copy_nocow_ctx *nocow_ctx;
4318 struct btrfs_fs_info *fs_info = sctx->fs_info;
4319
4320 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4321 if (!nocow_ctx) {
4322 spin_lock(&sctx->stat_lock);
4323 sctx->stat.malloc_errors++;
4324 spin_unlock(&sctx->stat_lock);
4325 return -ENOMEM;
4326 }
4327
4328 scrub_pending_trans_workers_inc(sctx);
4329
4330 nocow_ctx->sctx = sctx;
4331 nocow_ctx->logical = logical;
4332 nocow_ctx->len = len;
4333 nocow_ctx->mirror_num = mirror_num;
4334 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4335 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4336 copy_nocow_pages_worker, NULL, NULL);
4337 INIT_LIST_HEAD(&nocow_ctx->inodes);
4338 btrfs_queue_work(fs_info->scrub_nocow_workers,
4339 &nocow_ctx->work);
4340
4341 return 0;
4342 }
4343
4344 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4345 {
4346 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4347 struct scrub_nocow_inode *nocow_inode;
4348
4349 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4350 if (!nocow_inode)
4351 return -ENOMEM;
4352 nocow_inode->inum = inum;
4353 nocow_inode->offset = offset;
4354 nocow_inode->root = root;
4355 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4356 return 0;
4357 }
4358
4359 #define COPY_COMPLETE 1
4360
4361 static void copy_nocow_pages_worker(struct btrfs_work *work)
4362 {
4363 struct scrub_copy_nocow_ctx *nocow_ctx =
4364 container_of(work, struct scrub_copy_nocow_ctx, work);
4365 struct scrub_ctx *sctx = nocow_ctx->sctx;
4366 struct btrfs_fs_info *fs_info = sctx->fs_info;
4367 struct btrfs_root *root = fs_info->extent_root;
4368 u64 logical = nocow_ctx->logical;
4369 u64 len = nocow_ctx->len;
4370 int mirror_num = nocow_ctx->mirror_num;
4371 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4372 int ret;
4373 struct btrfs_trans_handle *trans = NULL;
4374 struct btrfs_path *path;
4375 int not_written = 0;
4376
4377 path = btrfs_alloc_path();
4378 if (!path) {
4379 spin_lock(&sctx->stat_lock);
4380 sctx->stat.malloc_errors++;
4381 spin_unlock(&sctx->stat_lock);
4382 not_written = 1;
4383 goto out;
4384 }
4385
4386 trans = btrfs_join_transaction(root);
4387 if (IS_ERR(trans)) {
4388 not_written = 1;
4389 goto out;
4390 }
4391
4392 ret = iterate_inodes_from_logical(logical, fs_info, path,
4393 record_inode_for_nocow, nocow_ctx, false);
4394 if (ret != 0 && ret != -ENOENT) {
4395 btrfs_warn(fs_info,
4396 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4397 logical, physical_for_dev_replace, len, mirror_num,
4398 ret);
4399 not_written = 1;
4400 goto out;
4401 }
4402
4403 btrfs_end_transaction(trans);
4404 trans = NULL;
4405 while (!list_empty(&nocow_ctx->inodes)) {
4406 struct scrub_nocow_inode *entry;
4407 entry = list_first_entry(&nocow_ctx->inodes,
4408 struct scrub_nocow_inode,
4409 list);
4410 list_del_init(&entry->list);
4411 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4412 entry->root, nocow_ctx);
4413 kfree(entry);
4414 if (ret == COPY_COMPLETE) {
4415 ret = 0;
4416 break;
4417 } else if (ret) {
4418 break;
4419 }
4420 }
4421 out:
4422 while (!list_empty(&nocow_ctx->inodes)) {
4423 struct scrub_nocow_inode *entry;
4424 entry = list_first_entry(&nocow_ctx->inodes,
4425 struct scrub_nocow_inode,
4426 list);
4427 list_del_init(&entry->list);
4428 kfree(entry);
4429 }
4430 if (trans && !IS_ERR(trans))
4431 btrfs_end_transaction(trans);
4432 if (not_written)
4433 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4434 num_uncorrectable_read_errors);
4435
4436 btrfs_free_path(path);
4437 kfree(nocow_ctx);
4438
4439 scrub_pending_trans_workers_dec(sctx);
4440 }
4441
4442 static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4443 u64 logical)
4444 {
4445 struct extent_state *cached_state = NULL;
4446 struct btrfs_ordered_extent *ordered;
4447 struct extent_io_tree *io_tree;
4448 struct extent_map *em;
4449 u64 lockstart = start, lockend = start + len - 1;
4450 int ret = 0;
4451
4452 io_tree = &inode->io_tree;
4453
4454 lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4455 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4456 if (ordered) {
4457 btrfs_put_ordered_extent(ordered);
4458 ret = 1;
4459 goto out_unlock;
4460 }
4461
4462 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4463 if (IS_ERR(em)) {
4464 ret = PTR_ERR(em);
4465 goto out_unlock;
4466 }
4467
4468 /*
4469 * This extent does not actually cover the logical extent anymore,
4470 * move on to the next inode.
4471 */
4472 if (em->block_start > logical ||
4473 em->block_start + em->block_len < logical + len) {
4474 free_extent_map(em);
4475 ret = 1;
4476 goto out_unlock;
4477 }
4478 free_extent_map(em);
4479
4480 out_unlock:
4481 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4482 GFP_NOFS);
4483 return ret;
4484 }
4485
4486 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4487 struct scrub_copy_nocow_ctx *nocow_ctx)
4488 {
4489 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4490 struct btrfs_key key;
4491 struct inode *inode;
4492 struct page *page;
4493 struct btrfs_root *local_root;
4494 struct extent_io_tree *io_tree;
4495 u64 physical_for_dev_replace;
4496 u64 nocow_ctx_logical;
4497 u64 len = nocow_ctx->len;
4498 unsigned long index;
4499 int srcu_index;
4500 int ret = 0;
4501 int err = 0;
4502
4503 key.objectid = root;
4504 key.type = BTRFS_ROOT_ITEM_KEY;
4505 key.offset = (u64)-1;
4506
4507 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4508
4509 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4510 if (IS_ERR(local_root)) {
4511 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4512 return PTR_ERR(local_root);
4513 }
4514
4515 key.type = BTRFS_INODE_ITEM_KEY;
4516 key.objectid = inum;
4517 key.offset = 0;
4518 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4519 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4520 if (IS_ERR(inode))
4521 return PTR_ERR(inode);
4522
4523 /* Avoid truncate/dio/punch hole.. */
4524 inode_lock(inode);
4525 inode_dio_wait(inode);
4526
4527 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4528 io_tree = &BTRFS_I(inode)->io_tree;
4529 nocow_ctx_logical = nocow_ctx->logical;
4530
4531 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4532 nocow_ctx_logical);
4533 if (ret) {
4534 ret = ret > 0 ? 0 : ret;
4535 goto out;
4536 }
4537
4538 while (len >= PAGE_SIZE) {
4539 index = offset >> PAGE_SHIFT;
4540 again:
4541 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4542 if (!page) {
4543 btrfs_err(fs_info, "find_or_create_page() failed");
4544 ret = -ENOMEM;
4545 goto out;
4546 }
4547
4548 if (PageUptodate(page)) {
4549 if (PageDirty(page))
4550 goto next_page;
4551 } else {
4552 ClearPageError(page);
4553 err = extent_read_full_page(io_tree, page,
4554 btrfs_get_extent,
4555 nocow_ctx->mirror_num);
4556 if (err) {
4557 ret = err;
4558 goto next_page;
4559 }
4560
4561 lock_page(page);
4562 /*
4563 * If the page has been remove from the page cache,
4564 * the data on it is meaningless, because it may be
4565 * old one, the new data may be written into the new
4566 * page in the page cache.
4567 */
4568 if (page->mapping != inode->i_mapping) {
4569 unlock_page(page);
4570 put_page(page);
4571 goto again;
4572 }
4573 if (!PageUptodate(page)) {
4574 ret = -EIO;
4575 goto next_page;
4576 }
4577 }
4578
4579 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4580 nocow_ctx_logical);
4581 if (ret) {
4582 ret = ret > 0 ? 0 : ret;
4583 goto next_page;
4584 }
4585
4586 err = write_page_nocow(nocow_ctx->sctx,
4587 physical_for_dev_replace, page);
4588 if (err)
4589 ret = err;
4590 next_page:
4591 unlock_page(page);
4592 put_page(page);
4593
4594 if (ret)
4595 break;
4596
4597 offset += PAGE_SIZE;
4598 physical_for_dev_replace += PAGE_SIZE;
4599 nocow_ctx_logical += PAGE_SIZE;
4600 len -= PAGE_SIZE;
4601 }
4602 ret = COPY_COMPLETE;
4603 out:
4604 inode_unlock(inode);
4605 iput(inode);
4606 return ret;
4607 }
4608
4609 static int write_page_nocow(struct scrub_ctx *sctx,
4610 u64 physical_for_dev_replace, struct page *page)
4611 {
4612 struct bio *bio;
4613 struct btrfs_device *dev;
4614 int ret;
4615
4616 dev = sctx->wr_tgtdev;
4617 if (!dev)
4618 return -EIO;
4619 if (!dev->bdev) {
4620 btrfs_warn_rl(dev->fs_info,
4621 "scrub write_page_nocow(bdev == NULL) is unexpected");
4622 return -EIO;
4623 }
4624 bio = btrfs_io_bio_alloc(1);
4625 bio->bi_iter.bi_size = 0;
4626 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4627 bio_set_dev(bio, dev->bdev);
4628 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4629 ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4630 if (ret != PAGE_SIZE) {
4631 leave_with_eio:
4632 bio_put(bio);
4633 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4634 return -EIO;
4635 }
4636
4637 if (btrfsic_submit_bio_wait(bio))
4638 goto leave_with_eio;
4639
4640 bio_put(bio);
4641 return 0;
4642 }