]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/scrub.c
c09a494be8c68f7a5157fbe64f791dc59c654842
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / scrub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
21 #include "raid56.h"
22 #include "block-group.h"
23 #include "zoned.h"
24
25 /*
26 * This is only the first step towards a full-features scrub. It reads all
27 * extent and super block and verifies the checksums. In case a bad checksum
28 * is found or the extent cannot be read, good data will be written back if
29 * any can be found.
30 *
31 * Future enhancements:
32 * - In case an unrepairable extent is encountered, track which files are
33 * affected and report them
34 * - track and record media errors, throw out bad devices
35 * - add a mode to also read unallocated space
36 */
37
38 struct scrub_block;
39 struct scrub_ctx;
40
41 /*
42 * the following three values only influence the performance.
43 * The last one configures the number of parallel and outstanding I/O
44 * operations. The first two values configure an upper limit for the number
45 * of (dynamically allocated) pages that are added to a bio.
46 */
47 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
48 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
49 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
50
51 /*
52 * the following value times PAGE_SIZE needs to be large enough to match the
53 * largest node/leaf/sector size that shall be supported.
54 * Values larger than BTRFS_STRIPE_LEN are not supported.
55 */
56 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
57
58 struct scrub_recover {
59 refcount_t refs;
60 struct btrfs_bio *bbio;
61 u64 map_length;
62 };
63
64 struct scrub_page {
65 struct scrub_block *sblock;
66 struct page *page;
67 struct btrfs_device *dev;
68 struct list_head list;
69 u64 flags; /* extent flags */
70 u64 generation;
71 u64 logical;
72 u64 physical;
73 u64 physical_for_dev_replace;
74 atomic_t refs;
75 u8 mirror_num;
76 int have_csum:1;
77 int io_error:1;
78 u8 csum[BTRFS_CSUM_SIZE];
79
80 struct scrub_recover *recover;
81 };
82
83 struct scrub_bio {
84 int index;
85 struct scrub_ctx *sctx;
86 struct btrfs_device *dev;
87 struct bio *bio;
88 blk_status_t status;
89 u64 logical;
90 u64 physical;
91 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
92 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
93 #else
94 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
95 #endif
96 int page_count;
97 int next_free;
98 struct btrfs_work work;
99 };
100
101 struct scrub_block {
102 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 int page_count;
104 atomic_t outstanding_pages;
105 refcount_t refs; /* free mem on transition to zero */
106 struct scrub_ctx *sctx;
107 struct scrub_parity *sparity;
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
112 unsigned int generation_error:1; /* also sets header_error */
113
114 /* The following is for the data used to check parity */
115 /* It is for the data with checksum */
116 unsigned int data_corrected:1;
117 };
118 struct btrfs_work work;
119 };
120
121 /* Used for the chunks with parity stripe such RAID5/6 */
122 struct scrub_parity {
123 struct scrub_ctx *sctx;
124
125 struct btrfs_device *scrub_dev;
126
127 u64 logic_start;
128
129 u64 logic_end;
130
131 int nsectors;
132
133 u32 stripe_len;
134
135 refcount_t refs;
136
137 struct list_head spages;
138
139 /* Work of parity check and repair */
140 struct btrfs_work work;
141
142 /* Mark the parity blocks which have data */
143 unsigned long *dbitmap;
144
145 /*
146 * Mark the parity blocks which have data, but errors happen when
147 * read data or check data
148 */
149 unsigned long *ebitmap;
150
151 unsigned long bitmap[];
152 };
153
154 struct scrub_ctx {
155 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
156 struct btrfs_fs_info *fs_info;
157 int first_free;
158 int curr;
159 atomic_t bios_in_flight;
160 atomic_t workers_pending;
161 spinlock_t list_lock;
162 wait_queue_head_t list_wait;
163 struct list_head csum_list;
164 atomic_t cancel_req;
165 int readonly;
166 int pages_per_rd_bio;
167
168 int is_dev_replace;
169
170 struct scrub_bio *wr_curr_bio;
171 struct mutex wr_lock;
172 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
173 struct btrfs_device *wr_tgtdev;
174 bool flush_all_writes;
175
176 /*
177 * statistics
178 */
179 struct btrfs_scrub_progress stat;
180 spinlock_t stat_lock;
181
182 /*
183 * Use a ref counter to avoid use-after-free issues. Scrub workers
184 * decrement bios_in_flight and workers_pending and then do a wakeup
185 * on the list_wait wait queue. We must ensure the main scrub task
186 * doesn't free the scrub context before or while the workers are
187 * doing the wakeup() call.
188 */
189 refcount_t refs;
190 };
191
192 struct scrub_warning {
193 struct btrfs_path *path;
194 u64 extent_item_size;
195 const char *errstr;
196 u64 physical;
197 u64 logical;
198 struct btrfs_device *dev;
199 };
200
201 struct full_stripe_lock {
202 struct rb_node node;
203 u64 logical;
204 u64 refs;
205 struct mutex mutex;
206 };
207
208 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
209 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
210 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
211 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
212 struct scrub_block *sblocks_for_recheck);
213 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
214 struct scrub_block *sblock,
215 int retry_failed_mirror);
216 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
217 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
218 struct scrub_block *sblock_good);
219 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
220 struct scrub_block *sblock_good,
221 int page_num, int force_write);
222 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
223 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
224 int page_num);
225 static int scrub_checksum_data(struct scrub_block *sblock);
226 static int scrub_checksum_tree_block(struct scrub_block *sblock);
227 static int scrub_checksum_super(struct scrub_block *sblock);
228 static void scrub_block_get(struct scrub_block *sblock);
229 static void scrub_block_put(struct scrub_block *sblock);
230 static void scrub_page_get(struct scrub_page *spage);
231 static void scrub_page_put(struct scrub_page *spage);
232 static void scrub_parity_get(struct scrub_parity *sparity);
233 static void scrub_parity_put(struct scrub_parity *sparity);
234 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
235 struct scrub_page *spage);
236 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
237 u64 physical, struct btrfs_device *dev, u64 flags,
238 u64 gen, int mirror_num, u8 *csum,
239 u64 physical_for_dev_replace);
240 static void scrub_bio_end_io(struct bio *bio);
241 static void scrub_bio_end_io_worker(struct btrfs_work *work);
242 static void scrub_block_complete(struct scrub_block *sblock);
243 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
244 u64 extent_logical, u32 extent_len,
245 u64 *extent_physical,
246 struct btrfs_device **extent_dev,
247 int *extent_mirror_num);
248 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
249 struct scrub_page *spage);
250 static void scrub_wr_submit(struct scrub_ctx *sctx);
251 static void scrub_wr_bio_end_io(struct bio *bio);
252 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
253 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
255 static void scrub_put_ctx(struct scrub_ctx *sctx);
256
257 static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
258 {
259 return spage->recover &&
260 (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
261 }
262
263 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264 {
265 refcount_inc(&sctx->refs);
266 atomic_inc(&sctx->bios_in_flight);
267 }
268
269 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
270 {
271 atomic_dec(&sctx->bios_in_flight);
272 wake_up(&sctx->list_wait);
273 scrub_put_ctx(sctx);
274 }
275
276 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
277 {
278 while (atomic_read(&fs_info->scrub_pause_req)) {
279 mutex_unlock(&fs_info->scrub_lock);
280 wait_event(fs_info->scrub_pause_wait,
281 atomic_read(&fs_info->scrub_pause_req) == 0);
282 mutex_lock(&fs_info->scrub_lock);
283 }
284 }
285
286 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
287 {
288 atomic_inc(&fs_info->scrubs_paused);
289 wake_up(&fs_info->scrub_pause_wait);
290 }
291
292 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
293 {
294 mutex_lock(&fs_info->scrub_lock);
295 __scrub_blocked_if_needed(fs_info);
296 atomic_dec(&fs_info->scrubs_paused);
297 mutex_unlock(&fs_info->scrub_lock);
298
299 wake_up(&fs_info->scrub_pause_wait);
300 }
301
302 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
303 {
304 scrub_pause_on(fs_info);
305 scrub_pause_off(fs_info);
306 }
307
308 /*
309 * Insert new full stripe lock into full stripe locks tree
310 *
311 * Return pointer to existing or newly inserted full_stripe_lock structure if
312 * everything works well.
313 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
314 *
315 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
316 * function
317 */
318 static struct full_stripe_lock *insert_full_stripe_lock(
319 struct btrfs_full_stripe_locks_tree *locks_root,
320 u64 fstripe_logical)
321 {
322 struct rb_node **p;
323 struct rb_node *parent = NULL;
324 struct full_stripe_lock *entry;
325 struct full_stripe_lock *ret;
326
327 lockdep_assert_held(&locks_root->lock);
328
329 p = &locks_root->root.rb_node;
330 while (*p) {
331 parent = *p;
332 entry = rb_entry(parent, struct full_stripe_lock, node);
333 if (fstripe_logical < entry->logical) {
334 p = &(*p)->rb_left;
335 } else if (fstripe_logical > entry->logical) {
336 p = &(*p)->rb_right;
337 } else {
338 entry->refs++;
339 return entry;
340 }
341 }
342
343 /*
344 * Insert new lock.
345 */
346 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
347 if (!ret)
348 return ERR_PTR(-ENOMEM);
349 ret->logical = fstripe_logical;
350 ret->refs = 1;
351 mutex_init(&ret->mutex);
352
353 rb_link_node(&ret->node, parent, p);
354 rb_insert_color(&ret->node, &locks_root->root);
355 return ret;
356 }
357
358 /*
359 * Search for a full stripe lock of a block group
360 *
361 * Return pointer to existing full stripe lock if found
362 * Return NULL if not found
363 */
364 static struct full_stripe_lock *search_full_stripe_lock(
365 struct btrfs_full_stripe_locks_tree *locks_root,
366 u64 fstripe_logical)
367 {
368 struct rb_node *node;
369 struct full_stripe_lock *entry;
370
371 lockdep_assert_held(&locks_root->lock);
372
373 node = locks_root->root.rb_node;
374 while (node) {
375 entry = rb_entry(node, struct full_stripe_lock, node);
376 if (fstripe_logical < entry->logical)
377 node = node->rb_left;
378 else if (fstripe_logical > entry->logical)
379 node = node->rb_right;
380 else
381 return entry;
382 }
383 return NULL;
384 }
385
386 /*
387 * Helper to get full stripe logical from a normal bytenr.
388 *
389 * Caller must ensure @cache is a RAID56 block group.
390 */
391 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
392 {
393 u64 ret;
394
395 /*
396 * Due to chunk item size limit, full stripe length should not be
397 * larger than U32_MAX. Just a sanity check here.
398 */
399 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
400
401 /*
402 * round_down() can only handle power of 2, while RAID56 full
403 * stripe length can be 64KiB * n, so we need to manually round down.
404 */
405 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
406 cache->full_stripe_len + cache->start;
407 return ret;
408 }
409
410 /*
411 * Lock a full stripe to avoid concurrency of recovery and read
412 *
413 * It's only used for profiles with parities (RAID5/6), for other profiles it
414 * does nothing.
415 *
416 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
417 * So caller must call unlock_full_stripe() at the same context.
418 *
419 * Return <0 if encounters error.
420 */
421 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
422 bool *locked_ret)
423 {
424 struct btrfs_block_group *bg_cache;
425 struct btrfs_full_stripe_locks_tree *locks_root;
426 struct full_stripe_lock *existing;
427 u64 fstripe_start;
428 int ret = 0;
429
430 *locked_ret = false;
431 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
432 if (!bg_cache) {
433 ASSERT(0);
434 return -ENOENT;
435 }
436
437 /* Profiles not based on parity don't need full stripe lock */
438 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
439 goto out;
440 locks_root = &bg_cache->full_stripe_locks_root;
441
442 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
443
444 /* Now insert the full stripe lock */
445 mutex_lock(&locks_root->lock);
446 existing = insert_full_stripe_lock(locks_root, fstripe_start);
447 mutex_unlock(&locks_root->lock);
448 if (IS_ERR(existing)) {
449 ret = PTR_ERR(existing);
450 goto out;
451 }
452 mutex_lock(&existing->mutex);
453 *locked_ret = true;
454 out:
455 btrfs_put_block_group(bg_cache);
456 return ret;
457 }
458
459 /*
460 * Unlock a full stripe.
461 *
462 * NOTE: Caller must ensure it's the same context calling corresponding
463 * lock_full_stripe().
464 *
465 * Return 0 if we unlock full stripe without problem.
466 * Return <0 for error
467 */
468 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
469 bool locked)
470 {
471 struct btrfs_block_group *bg_cache;
472 struct btrfs_full_stripe_locks_tree *locks_root;
473 struct full_stripe_lock *fstripe_lock;
474 u64 fstripe_start;
475 bool freeit = false;
476 int ret = 0;
477
478 /* If we didn't acquire full stripe lock, no need to continue */
479 if (!locked)
480 return 0;
481
482 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
483 if (!bg_cache) {
484 ASSERT(0);
485 return -ENOENT;
486 }
487 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
488 goto out;
489
490 locks_root = &bg_cache->full_stripe_locks_root;
491 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
492
493 mutex_lock(&locks_root->lock);
494 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
495 /* Unpaired unlock_full_stripe() detected */
496 if (!fstripe_lock) {
497 WARN_ON(1);
498 ret = -ENOENT;
499 mutex_unlock(&locks_root->lock);
500 goto out;
501 }
502
503 if (fstripe_lock->refs == 0) {
504 WARN_ON(1);
505 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
506 fstripe_lock->logical);
507 } else {
508 fstripe_lock->refs--;
509 }
510
511 if (fstripe_lock->refs == 0) {
512 rb_erase(&fstripe_lock->node, &locks_root->root);
513 freeit = true;
514 }
515 mutex_unlock(&locks_root->lock);
516
517 mutex_unlock(&fstripe_lock->mutex);
518 if (freeit)
519 kfree(fstripe_lock);
520 out:
521 btrfs_put_block_group(bg_cache);
522 return ret;
523 }
524
525 static void scrub_free_csums(struct scrub_ctx *sctx)
526 {
527 while (!list_empty(&sctx->csum_list)) {
528 struct btrfs_ordered_sum *sum;
529 sum = list_first_entry(&sctx->csum_list,
530 struct btrfs_ordered_sum, list);
531 list_del(&sum->list);
532 kfree(sum);
533 }
534 }
535
536 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
537 {
538 int i;
539
540 if (!sctx)
541 return;
542
543 /* this can happen when scrub is cancelled */
544 if (sctx->curr != -1) {
545 struct scrub_bio *sbio = sctx->bios[sctx->curr];
546
547 for (i = 0; i < sbio->page_count; i++) {
548 WARN_ON(!sbio->pagev[i]->page);
549 scrub_block_put(sbio->pagev[i]->sblock);
550 }
551 bio_put(sbio->bio);
552 }
553
554 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
555 struct scrub_bio *sbio = sctx->bios[i];
556
557 if (!sbio)
558 break;
559 kfree(sbio);
560 }
561
562 kfree(sctx->wr_curr_bio);
563 scrub_free_csums(sctx);
564 kfree(sctx);
565 }
566
567 static void scrub_put_ctx(struct scrub_ctx *sctx)
568 {
569 if (refcount_dec_and_test(&sctx->refs))
570 scrub_free_ctx(sctx);
571 }
572
573 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
574 struct btrfs_fs_info *fs_info, int is_dev_replace)
575 {
576 struct scrub_ctx *sctx;
577 int i;
578
579 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
580 if (!sctx)
581 goto nomem;
582 refcount_set(&sctx->refs, 1);
583 sctx->is_dev_replace = is_dev_replace;
584 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
585 sctx->curr = -1;
586 sctx->fs_info = fs_info;
587 INIT_LIST_HEAD(&sctx->csum_list);
588 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
589 struct scrub_bio *sbio;
590
591 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
592 if (!sbio)
593 goto nomem;
594 sctx->bios[i] = sbio;
595
596 sbio->index = i;
597 sbio->sctx = sctx;
598 sbio->page_count = 0;
599 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
600 NULL);
601
602 if (i != SCRUB_BIOS_PER_SCTX - 1)
603 sctx->bios[i]->next_free = i + 1;
604 else
605 sctx->bios[i]->next_free = -1;
606 }
607 sctx->first_free = 0;
608 atomic_set(&sctx->bios_in_flight, 0);
609 atomic_set(&sctx->workers_pending, 0);
610 atomic_set(&sctx->cancel_req, 0);
611
612 spin_lock_init(&sctx->list_lock);
613 spin_lock_init(&sctx->stat_lock);
614 init_waitqueue_head(&sctx->list_wait);
615
616 WARN_ON(sctx->wr_curr_bio != NULL);
617 mutex_init(&sctx->wr_lock);
618 sctx->wr_curr_bio = NULL;
619 if (is_dev_replace) {
620 WARN_ON(!fs_info->dev_replace.tgtdev);
621 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
622 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
623 sctx->flush_all_writes = false;
624 }
625
626 return sctx;
627
628 nomem:
629 scrub_free_ctx(sctx);
630 return ERR_PTR(-ENOMEM);
631 }
632
633 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
634 void *warn_ctx)
635 {
636 u64 isize;
637 u32 nlink;
638 int ret;
639 int i;
640 unsigned nofs_flag;
641 struct extent_buffer *eb;
642 struct btrfs_inode_item *inode_item;
643 struct scrub_warning *swarn = warn_ctx;
644 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
645 struct inode_fs_paths *ipath = NULL;
646 struct btrfs_root *local_root;
647 struct btrfs_key key;
648
649 local_root = btrfs_get_fs_root(fs_info, root, true);
650 if (IS_ERR(local_root)) {
651 ret = PTR_ERR(local_root);
652 goto err;
653 }
654
655 /*
656 * this makes the path point to (inum INODE_ITEM ioff)
657 */
658 key.objectid = inum;
659 key.type = BTRFS_INODE_ITEM_KEY;
660 key.offset = 0;
661
662 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
663 if (ret) {
664 btrfs_put_root(local_root);
665 btrfs_release_path(swarn->path);
666 goto err;
667 }
668
669 eb = swarn->path->nodes[0];
670 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
671 struct btrfs_inode_item);
672 isize = btrfs_inode_size(eb, inode_item);
673 nlink = btrfs_inode_nlink(eb, inode_item);
674 btrfs_release_path(swarn->path);
675
676 /*
677 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
678 * uses GFP_NOFS in this context, so we keep it consistent but it does
679 * not seem to be strictly necessary.
680 */
681 nofs_flag = memalloc_nofs_save();
682 ipath = init_ipath(4096, local_root, swarn->path);
683 memalloc_nofs_restore(nofs_flag);
684 if (IS_ERR(ipath)) {
685 btrfs_put_root(local_root);
686 ret = PTR_ERR(ipath);
687 ipath = NULL;
688 goto err;
689 }
690 ret = paths_from_inode(inum, ipath);
691
692 if (ret < 0)
693 goto err;
694
695 /*
696 * we deliberately ignore the bit ipath might have been too small to
697 * hold all of the paths here
698 */
699 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
700 btrfs_warn_in_rcu(fs_info,
701 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
702 swarn->errstr, swarn->logical,
703 rcu_str_deref(swarn->dev->name),
704 swarn->physical,
705 root, inum, offset,
706 min(isize - offset, (u64)PAGE_SIZE), nlink,
707 (char *)(unsigned long)ipath->fspath->val[i]);
708
709 btrfs_put_root(local_root);
710 free_ipath(ipath);
711 return 0;
712
713 err:
714 btrfs_warn_in_rcu(fs_info,
715 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
716 swarn->errstr, swarn->logical,
717 rcu_str_deref(swarn->dev->name),
718 swarn->physical,
719 root, inum, offset, ret);
720
721 free_ipath(ipath);
722 return 0;
723 }
724
725 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
726 {
727 struct btrfs_device *dev;
728 struct btrfs_fs_info *fs_info;
729 struct btrfs_path *path;
730 struct btrfs_key found_key;
731 struct extent_buffer *eb;
732 struct btrfs_extent_item *ei;
733 struct scrub_warning swarn;
734 unsigned long ptr = 0;
735 u64 extent_item_pos;
736 u64 flags = 0;
737 u64 ref_root;
738 u32 item_size;
739 u8 ref_level = 0;
740 int ret;
741
742 WARN_ON(sblock->page_count < 1);
743 dev = sblock->pagev[0]->dev;
744 fs_info = sblock->sctx->fs_info;
745
746 path = btrfs_alloc_path();
747 if (!path)
748 return;
749
750 swarn.physical = sblock->pagev[0]->physical;
751 swarn.logical = sblock->pagev[0]->logical;
752 swarn.errstr = errstr;
753 swarn.dev = NULL;
754
755 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
756 &flags);
757 if (ret < 0)
758 goto out;
759
760 extent_item_pos = swarn.logical - found_key.objectid;
761 swarn.extent_item_size = found_key.offset;
762
763 eb = path->nodes[0];
764 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
765 item_size = btrfs_item_size_nr(eb, path->slots[0]);
766
767 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
768 do {
769 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
770 item_size, &ref_root,
771 &ref_level);
772 btrfs_warn_in_rcu(fs_info,
773 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
774 errstr, swarn.logical,
775 rcu_str_deref(dev->name),
776 swarn.physical,
777 ref_level ? "node" : "leaf",
778 ret < 0 ? -1 : ref_level,
779 ret < 0 ? -1 : ref_root);
780 } while (ret != 1);
781 btrfs_release_path(path);
782 } else {
783 btrfs_release_path(path);
784 swarn.path = path;
785 swarn.dev = dev;
786 iterate_extent_inodes(fs_info, found_key.objectid,
787 extent_item_pos, 1,
788 scrub_print_warning_inode, &swarn, false);
789 }
790
791 out:
792 btrfs_free_path(path);
793 }
794
795 static inline void scrub_get_recover(struct scrub_recover *recover)
796 {
797 refcount_inc(&recover->refs);
798 }
799
800 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
801 struct scrub_recover *recover)
802 {
803 if (refcount_dec_and_test(&recover->refs)) {
804 btrfs_bio_counter_dec(fs_info);
805 btrfs_put_bbio(recover->bbio);
806 kfree(recover);
807 }
808 }
809
810 /*
811 * scrub_handle_errored_block gets called when either verification of the
812 * pages failed or the bio failed to read, e.g. with EIO. In the latter
813 * case, this function handles all pages in the bio, even though only one
814 * may be bad.
815 * The goal of this function is to repair the errored block by using the
816 * contents of one of the mirrors.
817 */
818 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
819 {
820 struct scrub_ctx *sctx = sblock_to_check->sctx;
821 struct btrfs_device *dev;
822 struct btrfs_fs_info *fs_info;
823 u64 logical;
824 unsigned int failed_mirror_index;
825 unsigned int is_metadata;
826 unsigned int have_csum;
827 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
828 struct scrub_block *sblock_bad;
829 int ret;
830 int mirror_index;
831 int page_num;
832 int success;
833 bool full_stripe_locked;
834 unsigned int nofs_flag;
835 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
836 DEFAULT_RATELIMIT_BURST);
837
838 BUG_ON(sblock_to_check->page_count < 1);
839 fs_info = sctx->fs_info;
840 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
841 /*
842 * if we find an error in a super block, we just report it.
843 * They will get written with the next transaction commit
844 * anyway
845 */
846 spin_lock(&sctx->stat_lock);
847 ++sctx->stat.super_errors;
848 spin_unlock(&sctx->stat_lock);
849 return 0;
850 }
851 logical = sblock_to_check->pagev[0]->logical;
852 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
853 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
854 is_metadata = !(sblock_to_check->pagev[0]->flags &
855 BTRFS_EXTENT_FLAG_DATA);
856 have_csum = sblock_to_check->pagev[0]->have_csum;
857 dev = sblock_to_check->pagev[0]->dev;
858
859 /*
860 * We must use GFP_NOFS because the scrub task might be waiting for a
861 * worker task executing this function and in turn a transaction commit
862 * might be waiting the scrub task to pause (which needs to wait for all
863 * the worker tasks to complete before pausing).
864 * We do allocations in the workers through insert_full_stripe_lock()
865 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
866 * this function.
867 */
868 nofs_flag = memalloc_nofs_save();
869 /*
870 * For RAID5/6, race can happen for a different device scrub thread.
871 * For data corruption, Parity and Data threads will both try
872 * to recovery the data.
873 * Race can lead to doubly added csum error, or even unrecoverable
874 * error.
875 */
876 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
877 if (ret < 0) {
878 memalloc_nofs_restore(nofs_flag);
879 spin_lock(&sctx->stat_lock);
880 if (ret == -ENOMEM)
881 sctx->stat.malloc_errors++;
882 sctx->stat.read_errors++;
883 sctx->stat.uncorrectable_errors++;
884 spin_unlock(&sctx->stat_lock);
885 return ret;
886 }
887
888 /*
889 * read all mirrors one after the other. This includes to
890 * re-read the extent or metadata block that failed (that was
891 * the cause that this fixup code is called) another time,
892 * page by page this time in order to know which pages
893 * caused I/O errors and which ones are good (for all mirrors).
894 * It is the goal to handle the situation when more than one
895 * mirror contains I/O errors, but the errors do not
896 * overlap, i.e. the data can be repaired by selecting the
897 * pages from those mirrors without I/O error on the
898 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
899 * would be that mirror #1 has an I/O error on the first page,
900 * the second page is good, and mirror #2 has an I/O error on
901 * the second page, but the first page is good.
902 * Then the first page of the first mirror can be repaired by
903 * taking the first page of the second mirror, and the
904 * second page of the second mirror can be repaired by
905 * copying the contents of the 2nd page of the 1st mirror.
906 * One more note: if the pages of one mirror contain I/O
907 * errors, the checksum cannot be verified. In order to get
908 * the best data for repairing, the first attempt is to find
909 * a mirror without I/O errors and with a validated checksum.
910 * Only if this is not possible, the pages are picked from
911 * mirrors with I/O errors without considering the checksum.
912 * If the latter is the case, at the end, the checksum of the
913 * repaired area is verified in order to correctly maintain
914 * the statistics.
915 */
916
917 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
918 sizeof(*sblocks_for_recheck), GFP_KERNEL);
919 if (!sblocks_for_recheck) {
920 spin_lock(&sctx->stat_lock);
921 sctx->stat.malloc_errors++;
922 sctx->stat.read_errors++;
923 sctx->stat.uncorrectable_errors++;
924 spin_unlock(&sctx->stat_lock);
925 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
926 goto out;
927 }
928
929 /* setup the context, map the logical blocks and alloc the pages */
930 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
931 if (ret) {
932 spin_lock(&sctx->stat_lock);
933 sctx->stat.read_errors++;
934 sctx->stat.uncorrectable_errors++;
935 spin_unlock(&sctx->stat_lock);
936 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
937 goto out;
938 }
939 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
940 sblock_bad = sblocks_for_recheck + failed_mirror_index;
941
942 /* build and submit the bios for the failed mirror, check checksums */
943 scrub_recheck_block(fs_info, sblock_bad, 1);
944
945 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
946 sblock_bad->no_io_error_seen) {
947 /*
948 * the error disappeared after reading page by page, or
949 * the area was part of a huge bio and other parts of the
950 * bio caused I/O errors, or the block layer merged several
951 * read requests into one and the error is caused by a
952 * different bio (usually one of the two latter cases is
953 * the cause)
954 */
955 spin_lock(&sctx->stat_lock);
956 sctx->stat.unverified_errors++;
957 sblock_to_check->data_corrected = 1;
958 spin_unlock(&sctx->stat_lock);
959
960 if (sctx->is_dev_replace)
961 scrub_write_block_to_dev_replace(sblock_bad);
962 goto out;
963 }
964
965 if (!sblock_bad->no_io_error_seen) {
966 spin_lock(&sctx->stat_lock);
967 sctx->stat.read_errors++;
968 spin_unlock(&sctx->stat_lock);
969 if (__ratelimit(&rs))
970 scrub_print_warning("i/o error", sblock_to_check);
971 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
972 } else if (sblock_bad->checksum_error) {
973 spin_lock(&sctx->stat_lock);
974 sctx->stat.csum_errors++;
975 spin_unlock(&sctx->stat_lock);
976 if (__ratelimit(&rs))
977 scrub_print_warning("checksum error", sblock_to_check);
978 btrfs_dev_stat_inc_and_print(dev,
979 BTRFS_DEV_STAT_CORRUPTION_ERRS);
980 } else if (sblock_bad->header_error) {
981 spin_lock(&sctx->stat_lock);
982 sctx->stat.verify_errors++;
983 spin_unlock(&sctx->stat_lock);
984 if (__ratelimit(&rs))
985 scrub_print_warning("checksum/header error",
986 sblock_to_check);
987 if (sblock_bad->generation_error)
988 btrfs_dev_stat_inc_and_print(dev,
989 BTRFS_DEV_STAT_GENERATION_ERRS);
990 else
991 btrfs_dev_stat_inc_and_print(dev,
992 BTRFS_DEV_STAT_CORRUPTION_ERRS);
993 }
994
995 if (sctx->readonly) {
996 ASSERT(!sctx->is_dev_replace);
997 goto out;
998 }
999
1000 /*
1001 * now build and submit the bios for the other mirrors, check
1002 * checksums.
1003 * First try to pick the mirror which is completely without I/O
1004 * errors and also does not have a checksum error.
1005 * If one is found, and if a checksum is present, the full block
1006 * that is known to contain an error is rewritten. Afterwards
1007 * the block is known to be corrected.
1008 * If a mirror is found which is completely correct, and no
1009 * checksum is present, only those pages are rewritten that had
1010 * an I/O error in the block to be repaired, since it cannot be
1011 * determined, which copy of the other pages is better (and it
1012 * could happen otherwise that a correct page would be
1013 * overwritten by a bad one).
1014 */
1015 for (mirror_index = 0; ;mirror_index++) {
1016 struct scrub_block *sblock_other;
1017
1018 if (mirror_index == failed_mirror_index)
1019 continue;
1020
1021 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1022 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1023 if (mirror_index >= BTRFS_MAX_MIRRORS)
1024 break;
1025 if (!sblocks_for_recheck[mirror_index].page_count)
1026 break;
1027
1028 sblock_other = sblocks_for_recheck + mirror_index;
1029 } else {
1030 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1031 int max_allowed = r->bbio->num_stripes -
1032 r->bbio->num_tgtdevs;
1033
1034 if (mirror_index >= max_allowed)
1035 break;
1036 if (!sblocks_for_recheck[1].page_count)
1037 break;
1038
1039 ASSERT(failed_mirror_index == 0);
1040 sblock_other = sblocks_for_recheck + 1;
1041 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1042 }
1043
1044 /* build and submit the bios, check checksums */
1045 scrub_recheck_block(fs_info, sblock_other, 0);
1046
1047 if (!sblock_other->header_error &&
1048 !sblock_other->checksum_error &&
1049 sblock_other->no_io_error_seen) {
1050 if (sctx->is_dev_replace) {
1051 scrub_write_block_to_dev_replace(sblock_other);
1052 goto corrected_error;
1053 } else {
1054 ret = scrub_repair_block_from_good_copy(
1055 sblock_bad, sblock_other);
1056 if (!ret)
1057 goto corrected_error;
1058 }
1059 }
1060 }
1061
1062 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1063 goto did_not_correct_error;
1064
1065 /*
1066 * In case of I/O errors in the area that is supposed to be
1067 * repaired, continue by picking good copies of those pages.
1068 * Select the good pages from mirrors to rewrite bad pages from
1069 * the area to fix. Afterwards verify the checksum of the block
1070 * that is supposed to be repaired. This verification step is
1071 * only done for the purpose of statistic counting and for the
1072 * final scrub report, whether errors remain.
1073 * A perfect algorithm could make use of the checksum and try
1074 * all possible combinations of pages from the different mirrors
1075 * until the checksum verification succeeds. For example, when
1076 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1077 * of mirror #2 is readable but the final checksum test fails,
1078 * then the 2nd page of mirror #3 could be tried, whether now
1079 * the final checksum succeeds. But this would be a rare
1080 * exception and is therefore not implemented. At least it is
1081 * avoided that the good copy is overwritten.
1082 * A more useful improvement would be to pick the sectors
1083 * without I/O error based on sector sizes (512 bytes on legacy
1084 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1085 * mirror could be repaired by taking 512 byte of a different
1086 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1087 * area are unreadable.
1088 */
1089 success = 1;
1090 for (page_num = 0; page_num < sblock_bad->page_count;
1091 page_num++) {
1092 struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1093 struct scrub_block *sblock_other = NULL;
1094
1095 /* skip no-io-error page in scrub */
1096 if (!spage_bad->io_error && !sctx->is_dev_replace)
1097 continue;
1098
1099 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1100 /*
1101 * In case of dev replace, if raid56 rebuild process
1102 * didn't work out correct data, then copy the content
1103 * in sblock_bad to make sure target device is identical
1104 * to source device, instead of writing garbage data in
1105 * sblock_for_recheck array to target device.
1106 */
1107 sblock_other = NULL;
1108 } else if (spage_bad->io_error) {
1109 /* try to find no-io-error page in mirrors */
1110 for (mirror_index = 0;
1111 mirror_index < BTRFS_MAX_MIRRORS &&
1112 sblocks_for_recheck[mirror_index].page_count > 0;
1113 mirror_index++) {
1114 if (!sblocks_for_recheck[mirror_index].
1115 pagev[page_num]->io_error) {
1116 sblock_other = sblocks_for_recheck +
1117 mirror_index;
1118 break;
1119 }
1120 }
1121 if (!sblock_other)
1122 success = 0;
1123 }
1124
1125 if (sctx->is_dev_replace) {
1126 /*
1127 * did not find a mirror to fetch the page
1128 * from. scrub_write_page_to_dev_replace()
1129 * handles this case (page->io_error), by
1130 * filling the block with zeros before
1131 * submitting the write request
1132 */
1133 if (!sblock_other)
1134 sblock_other = sblock_bad;
1135
1136 if (scrub_write_page_to_dev_replace(sblock_other,
1137 page_num) != 0) {
1138 atomic64_inc(
1139 &fs_info->dev_replace.num_write_errors);
1140 success = 0;
1141 }
1142 } else if (sblock_other) {
1143 ret = scrub_repair_page_from_good_copy(sblock_bad,
1144 sblock_other,
1145 page_num, 0);
1146 if (0 == ret)
1147 spage_bad->io_error = 0;
1148 else
1149 success = 0;
1150 }
1151 }
1152
1153 if (success && !sctx->is_dev_replace) {
1154 if (is_metadata || have_csum) {
1155 /*
1156 * need to verify the checksum now that all
1157 * sectors on disk are repaired (the write
1158 * request for data to be repaired is on its way).
1159 * Just be lazy and use scrub_recheck_block()
1160 * which re-reads the data before the checksum
1161 * is verified, but most likely the data comes out
1162 * of the page cache.
1163 */
1164 scrub_recheck_block(fs_info, sblock_bad, 1);
1165 if (!sblock_bad->header_error &&
1166 !sblock_bad->checksum_error &&
1167 sblock_bad->no_io_error_seen)
1168 goto corrected_error;
1169 else
1170 goto did_not_correct_error;
1171 } else {
1172 corrected_error:
1173 spin_lock(&sctx->stat_lock);
1174 sctx->stat.corrected_errors++;
1175 sblock_to_check->data_corrected = 1;
1176 spin_unlock(&sctx->stat_lock);
1177 btrfs_err_rl_in_rcu(fs_info,
1178 "fixed up error at logical %llu on dev %s",
1179 logical, rcu_str_deref(dev->name));
1180 }
1181 } else {
1182 did_not_correct_error:
1183 spin_lock(&sctx->stat_lock);
1184 sctx->stat.uncorrectable_errors++;
1185 spin_unlock(&sctx->stat_lock);
1186 btrfs_err_rl_in_rcu(fs_info,
1187 "unable to fixup (regular) error at logical %llu on dev %s",
1188 logical, rcu_str_deref(dev->name));
1189 }
1190
1191 out:
1192 if (sblocks_for_recheck) {
1193 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1194 mirror_index++) {
1195 struct scrub_block *sblock = sblocks_for_recheck +
1196 mirror_index;
1197 struct scrub_recover *recover;
1198 int page_index;
1199
1200 for (page_index = 0; page_index < sblock->page_count;
1201 page_index++) {
1202 sblock->pagev[page_index]->sblock = NULL;
1203 recover = sblock->pagev[page_index]->recover;
1204 if (recover) {
1205 scrub_put_recover(fs_info, recover);
1206 sblock->pagev[page_index]->recover =
1207 NULL;
1208 }
1209 scrub_page_put(sblock->pagev[page_index]);
1210 }
1211 }
1212 kfree(sblocks_for_recheck);
1213 }
1214
1215 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1216 memalloc_nofs_restore(nofs_flag);
1217 if (ret < 0)
1218 return ret;
1219 return 0;
1220 }
1221
1222 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1223 {
1224 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1225 return 2;
1226 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1227 return 3;
1228 else
1229 return (int)bbio->num_stripes;
1230 }
1231
1232 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1233 u64 *raid_map,
1234 u64 mapped_length,
1235 int nstripes, int mirror,
1236 int *stripe_index,
1237 u64 *stripe_offset)
1238 {
1239 int i;
1240
1241 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1242 /* RAID5/6 */
1243 for (i = 0; i < nstripes; i++) {
1244 if (raid_map[i] == RAID6_Q_STRIPE ||
1245 raid_map[i] == RAID5_P_STRIPE)
1246 continue;
1247
1248 if (logical >= raid_map[i] &&
1249 logical < raid_map[i] + mapped_length)
1250 break;
1251 }
1252
1253 *stripe_index = i;
1254 *stripe_offset = logical - raid_map[i];
1255 } else {
1256 /* The other RAID type */
1257 *stripe_index = mirror;
1258 *stripe_offset = 0;
1259 }
1260 }
1261
1262 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1263 struct scrub_block *sblocks_for_recheck)
1264 {
1265 struct scrub_ctx *sctx = original_sblock->sctx;
1266 struct btrfs_fs_info *fs_info = sctx->fs_info;
1267 u64 length = original_sblock->page_count * PAGE_SIZE;
1268 u64 logical = original_sblock->pagev[0]->logical;
1269 u64 generation = original_sblock->pagev[0]->generation;
1270 u64 flags = original_sblock->pagev[0]->flags;
1271 u64 have_csum = original_sblock->pagev[0]->have_csum;
1272 struct scrub_recover *recover;
1273 struct btrfs_bio *bbio;
1274 u64 sublen;
1275 u64 mapped_length;
1276 u64 stripe_offset;
1277 int stripe_index;
1278 int page_index = 0;
1279 int mirror_index;
1280 int nmirrors;
1281 int ret;
1282
1283 /*
1284 * note: the two members refs and outstanding_pages
1285 * are not used (and not set) in the blocks that are used for
1286 * the recheck procedure
1287 */
1288
1289 while (length > 0) {
1290 sublen = min_t(u64, length, PAGE_SIZE);
1291 mapped_length = sublen;
1292 bbio = NULL;
1293
1294 /*
1295 * with a length of PAGE_SIZE, each returned stripe
1296 * represents one mirror
1297 */
1298 btrfs_bio_counter_inc_blocked(fs_info);
1299 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1300 logical, &mapped_length, &bbio);
1301 if (ret || !bbio || mapped_length < sublen) {
1302 btrfs_put_bbio(bbio);
1303 btrfs_bio_counter_dec(fs_info);
1304 return -EIO;
1305 }
1306
1307 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1308 if (!recover) {
1309 btrfs_put_bbio(bbio);
1310 btrfs_bio_counter_dec(fs_info);
1311 return -ENOMEM;
1312 }
1313
1314 refcount_set(&recover->refs, 1);
1315 recover->bbio = bbio;
1316 recover->map_length = mapped_length;
1317
1318 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1319
1320 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1321
1322 for (mirror_index = 0; mirror_index < nmirrors;
1323 mirror_index++) {
1324 struct scrub_block *sblock;
1325 struct scrub_page *spage;
1326
1327 sblock = sblocks_for_recheck + mirror_index;
1328 sblock->sctx = sctx;
1329
1330 spage = kzalloc(sizeof(*spage), GFP_NOFS);
1331 if (!spage) {
1332 leave_nomem:
1333 spin_lock(&sctx->stat_lock);
1334 sctx->stat.malloc_errors++;
1335 spin_unlock(&sctx->stat_lock);
1336 scrub_put_recover(fs_info, recover);
1337 return -ENOMEM;
1338 }
1339 scrub_page_get(spage);
1340 sblock->pagev[page_index] = spage;
1341 spage->sblock = sblock;
1342 spage->flags = flags;
1343 spage->generation = generation;
1344 spage->logical = logical;
1345 spage->have_csum = have_csum;
1346 if (have_csum)
1347 memcpy(spage->csum,
1348 original_sblock->pagev[0]->csum,
1349 sctx->fs_info->csum_size);
1350
1351 scrub_stripe_index_and_offset(logical,
1352 bbio->map_type,
1353 bbio->raid_map,
1354 mapped_length,
1355 bbio->num_stripes -
1356 bbio->num_tgtdevs,
1357 mirror_index,
1358 &stripe_index,
1359 &stripe_offset);
1360 spage->physical = bbio->stripes[stripe_index].physical +
1361 stripe_offset;
1362 spage->dev = bbio->stripes[stripe_index].dev;
1363
1364 BUG_ON(page_index >= original_sblock->page_count);
1365 spage->physical_for_dev_replace =
1366 original_sblock->pagev[page_index]->
1367 physical_for_dev_replace;
1368 /* for missing devices, dev->bdev is NULL */
1369 spage->mirror_num = mirror_index + 1;
1370 sblock->page_count++;
1371 spage->page = alloc_page(GFP_NOFS);
1372 if (!spage->page)
1373 goto leave_nomem;
1374
1375 scrub_get_recover(recover);
1376 spage->recover = recover;
1377 }
1378 scrub_put_recover(fs_info, recover);
1379 length -= sublen;
1380 logical += sublen;
1381 page_index++;
1382 }
1383
1384 return 0;
1385 }
1386
1387 static void scrub_bio_wait_endio(struct bio *bio)
1388 {
1389 complete(bio->bi_private);
1390 }
1391
1392 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1393 struct bio *bio,
1394 struct scrub_page *spage)
1395 {
1396 DECLARE_COMPLETION_ONSTACK(done);
1397 int ret;
1398 int mirror_num;
1399
1400 bio->bi_iter.bi_sector = spage->logical >> 9;
1401 bio->bi_private = &done;
1402 bio->bi_end_io = scrub_bio_wait_endio;
1403
1404 mirror_num = spage->sblock->pagev[0]->mirror_num;
1405 ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio,
1406 spage->recover->map_length,
1407 mirror_num, 0);
1408 if (ret)
1409 return ret;
1410
1411 wait_for_completion_io(&done);
1412 return blk_status_to_errno(bio->bi_status);
1413 }
1414
1415 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1416 struct scrub_block *sblock)
1417 {
1418 struct scrub_page *first_page = sblock->pagev[0];
1419 struct bio *bio;
1420 int page_num;
1421
1422 /* All pages in sblock belong to the same stripe on the same device. */
1423 ASSERT(first_page->dev);
1424 if (!first_page->dev->bdev)
1425 goto out;
1426
1427 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1428 bio_set_dev(bio, first_page->dev->bdev);
1429
1430 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1431 struct scrub_page *spage = sblock->pagev[page_num];
1432
1433 WARN_ON(!spage->page);
1434 bio_add_page(bio, spage->page, PAGE_SIZE, 0);
1435 }
1436
1437 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1438 bio_put(bio);
1439 goto out;
1440 }
1441
1442 bio_put(bio);
1443
1444 scrub_recheck_block_checksum(sblock);
1445
1446 return;
1447 out:
1448 for (page_num = 0; page_num < sblock->page_count; page_num++)
1449 sblock->pagev[page_num]->io_error = 1;
1450
1451 sblock->no_io_error_seen = 0;
1452 }
1453
1454 /*
1455 * this function will check the on disk data for checksum errors, header
1456 * errors and read I/O errors. If any I/O errors happen, the exact pages
1457 * which are errored are marked as being bad. The goal is to enable scrub
1458 * to take those pages that are not errored from all the mirrors so that
1459 * the pages that are errored in the just handled mirror can be repaired.
1460 */
1461 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1462 struct scrub_block *sblock,
1463 int retry_failed_mirror)
1464 {
1465 int page_num;
1466
1467 sblock->no_io_error_seen = 1;
1468
1469 /* short cut for raid56 */
1470 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1471 return scrub_recheck_block_on_raid56(fs_info, sblock);
1472
1473 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1474 struct bio *bio;
1475 struct scrub_page *spage = sblock->pagev[page_num];
1476
1477 if (spage->dev->bdev == NULL) {
1478 spage->io_error = 1;
1479 sblock->no_io_error_seen = 0;
1480 continue;
1481 }
1482
1483 WARN_ON(!spage->page);
1484 bio = btrfs_io_bio_alloc(1);
1485 bio_set_dev(bio, spage->dev->bdev);
1486
1487 bio_add_page(bio, spage->page, PAGE_SIZE, 0);
1488 bio->bi_iter.bi_sector = spage->physical >> 9;
1489 bio->bi_opf = REQ_OP_READ;
1490
1491 if (btrfsic_submit_bio_wait(bio)) {
1492 spage->io_error = 1;
1493 sblock->no_io_error_seen = 0;
1494 }
1495
1496 bio_put(bio);
1497 }
1498
1499 if (sblock->no_io_error_seen)
1500 scrub_recheck_block_checksum(sblock);
1501 }
1502
1503 static inline int scrub_check_fsid(u8 fsid[],
1504 struct scrub_page *spage)
1505 {
1506 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1507 int ret;
1508
1509 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1510 return !ret;
1511 }
1512
1513 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1514 {
1515 sblock->header_error = 0;
1516 sblock->checksum_error = 0;
1517 sblock->generation_error = 0;
1518
1519 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1520 scrub_checksum_data(sblock);
1521 else
1522 scrub_checksum_tree_block(sblock);
1523 }
1524
1525 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1526 struct scrub_block *sblock_good)
1527 {
1528 int page_num;
1529 int ret = 0;
1530
1531 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1532 int ret_sub;
1533
1534 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1535 sblock_good,
1536 page_num, 1);
1537 if (ret_sub)
1538 ret = ret_sub;
1539 }
1540
1541 return ret;
1542 }
1543
1544 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1545 struct scrub_block *sblock_good,
1546 int page_num, int force_write)
1547 {
1548 struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1549 struct scrub_page *spage_good = sblock_good->pagev[page_num];
1550 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1551
1552 BUG_ON(spage_bad->page == NULL);
1553 BUG_ON(spage_good->page == NULL);
1554 if (force_write || sblock_bad->header_error ||
1555 sblock_bad->checksum_error || spage_bad->io_error) {
1556 struct bio *bio;
1557 int ret;
1558
1559 if (!spage_bad->dev->bdev) {
1560 btrfs_warn_rl(fs_info,
1561 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1562 return -EIO;
1563 }
1564
1565 bio = btrfs_io_bio_alloc(1);
1566 bio_set_dev(bio, spage_bad->dev->bdev);
1567 bio->bi_iter.bi_sector = spage_bad->physical >> 9;
1568 bio->bi_opf = REQ_OP_WRITE;
1569
1570 ret = bio_add_page(bio, spage_good->page, PAGE_SIZE, 0);
1571 if (PAGE_SIZE != ret) {
1572 bio_put(bio);
1573 return -EIO;
1574 }
1575
1576 if (btrfsic_submit_bio_wait(bio)) {
1577 btrfs_dev_stat_inc_and_print(spage_bad->dev,
1578 BTRFS_DEV_STAT_WRITE_ERRS);
1579 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1580 bio_put(bio);
1581 return -EIO;
1582 }
1583 bio_put(bio);
1584 }
1585
1586 return 0;
1587 }
1588
1589 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1590 {
1591 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1592 int page_num;
1593
1594 /*
1595 * This block is used for the check of the parity on the source device,
1596 * so the data needn't be written into the destination device.
1597 */
1598 if (sblock->sparity)
1599 return;
1600
1601 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1602 int ret;
1603
1604 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1605 if (ret)
1606 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1607 }
1608 }
1609
1610 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1611 int page_num)
1612 {
1613 struct scrub_page *spage = sblock->pagev[page_num];
1614
1615 BUG_ON(spage->page == NULL);
1616 if (spage->io_error)
1617 clear_page(page_address(spage->page));
1618
1619 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1620 }
1621
1622 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1623 struct scrub_page *spage)
1624 {
1625 struct scrub_bio *sbio;
1626 int ret;
1627
1628 mutex_lock(&sctx->wr_lock);
1629 again:
1630 if (!sctx->wr_curr_bio) {
1631 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1632 GFP_KERNEL);
1633 if (!sctx->wr_curr_bio) {
1634 mutex_unlock(&sctx->wr_lock);
1635 return -ENOMEM;
1636 }
1637 sctx->wr_curr_bio->sctx = sctx;
1638 sctx->wr_curr_bio->page_count = 0;
1639 }
1640 sbio = sctx->wr_curr_bio;
1641 if (sbio->page_count == 0) {
1642 struct bio *bio;
1643
1644 sbio->physical = spage->physical_for_dev_replace;
1645 sbio->logical = spage->logical;
1646 sbio->dev = sctx->wr_tgtdev;
1647 bio = sbio->bio;
1648 if (!bio) {
1649 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1650 sbio->bio = bio;
1651 }
1652
1653 bio->bi_private = sbio;
1654 bio->bi_end_io = scrub_wr_bio_end_io;
1655 bio_set_dev(bio, sbio->dev->bdev);
1656 bio->bi_iter.bi_sector = sbio->physical >> 9;
1657 bio->bi_opf = REQ_OP_WRITE;
1658 sbio->status = 0;
1659 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1660 spage->physical_for_dev_replace ||
1661 sbio->logical + sbio->page_count * PAGE_SIZE !=
1662 spage->logical) {
1663 scrub_wr_submit(sctx);
1664 goto again;
1665 }
1666
1667 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1668 if (ret != PAGE_SIZE) {
1669 if (sbio->page_count < 1) {
1670 bio_put(sbio->bio);
1671 sbio->bio = NULL;
1672 mutex_unlock(&sctx->wr_lock);
1673 return -EIO;
1674 }
1675 scrub_wr_submit(sctx);
1676 goto again;
1677 }
1678
1679 sbio->pagev[sbio->page_count] = spage;
1680 scrub_page_get(spage);
1681 sbio->page_count++;
1682 if (sbio->page_count == sctx->pages_per_wr_bio)
1683 scrub_wr_submit(sctx);
1684 mutex_unlock(&sctx->wr_lock);
1685
1686 return 0;
1687 }
1688
1689 static void scrub_wr_submit(struct scrub_ctx *sctx)
1690 {
1691 struct scrub_bio *sbio;
1692
1693 if (!sctx->wr_curr_bio)
1694 return;
1695
1696 sbio = sctx->wr_curr_bio;
1697 sctx->wr_curr_bio = NULL;
1698 WARN_ON(!sbio->bio->bi_disk);
1699 scrub_pending_bio_inc(sctx);
1700 /* process all writes in a single worker thread. Then the block layer
1701 * orders the requests before sending them to the driver which
1702 * doubled the write performance on spinning disks when measured
1703 * with Linux 3.5 */
1704 btrfsic_submit_bio(sbio->bio);
1705 }
1706
1707 static void scrub_wr_bio_end_io(struct bio *bio)
1708 {
1709 struct scrub_bio *sbio = bio->bi_private;
1710 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1711
1712 sbio->status = bio->bi_status;
1713 sbio->bio = bio;
1714
1715 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1716 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1717 }
1718
1719 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1720 {
1721 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1722 struct scrub_ctx *sctx = sbio->sctx;
1723 int i;
1724
1725 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1726 if (sbio->status) {
1727 struct btrfs_dev_replace *dev_replace =
1728 &sbio->sctx->fs_info->dev_replace;
1729
1730 for (i = 0; i < sbio->page_count; i++) {
1731 struct scrub_page *spage = sbio->pagev[i];
1732
1733 spage->io_error = 1;
1734 atomic64_inc(&dev_replace->num_write_errors);
1735 }
1736 }
1737
1738 for (i = 0; i < sbio->page_count; i++)
1739 scrub_page_put(sbio->pagev[i]);
1740
1741 bio_put(sbio->bio);
1742 kfree(sbio);
1743 scrub_pending_bio_dec(sctx);
1744 }
1745
1746 static int scrub_checksum(struct scrub_block *sblock)
1747 {
1748 u64 flags;
1749 int ret;
1750
1751 /*
1752 * No need to initialize these stats currently,
1753 * because this function only use return value
1754 * instead of these stats value.
1755 *
1756 * Todo:
1757 * always use stats
1758 */
1759 sblock->header_error = 0;
1760 sblock->generation_error = 0;
1761 sblock->checksum_error = 0;
1762
1763 WARN_ON(sblock->page_count < 1);
1764 flags = sblock->pagev[0]->flags;
1765 ret = 0;
1766 if (flags & BTRFS_EXTENT_FLAG_DATA)
1767 ret = scrub_checksum_data(sblock);
1768 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1769 ret = scrub_checksum_tree_block(sblock);
1770 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1771 (void)scrub_checksum_super(sblock);
1772 else
1773 WARN_ON(1);
1774 if (ret)
1775 scrub_handle_errored_block(sblock);
1776
1777 return ret;
1778 }
1779
1780 static int scrub_checksum_data(struct scrub_block *sblock)
1781 {
1782 struct scrub_ctx *sctx = sblock->sctx;
1783 struct btrfs_fs_info *fs_info = sctx->fs_info;
1784 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1785 u8 csum[BTRFS_CSUM_SIZE];
1786 struct scrub_page *spage;
1787 char *kaddr;
1788
1789 BUG_ON(sblock->page_count < 1);
1790 spage = sblock->pagev[0];
1791 if (!spage->have_csum)
1792 return 0;
1793
1794 kaddr = page_address(spage->page);
1795
1796 shash->tfm = fs_info->csum_shash;
1797 crypto_shash_init(shash);
1798
1799 /*
1800 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
1801 * only contains one sector of data.
1802 */
1803 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
1804
1805 if (memcmp(csum, spage->csum, fs_info->csum_size))
1806 sblock->checksum_error = 1;
1807 return sblock->checksum_error;
1808 }
1809
1810 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1811 {
1812 struct scrub_ctx *sctx = sblock->sctx;
1813 struct btrfs_header *h;
1814 struct btrfs_fs_info *fs_info = sctx->fs_info;
1815 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1816 u8 calculated_csum[BTRFS_CSUM_SIZE];
1817 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1818 /*
1819 * This is done in sectorsize steps even for metadata as there's a
1820 * constraint for nodesize to be aligned to sectorsize. This will need
1821 * to change so we don't misuse data and metadata units like that.
1822 */
1823 const u32 sectorsize = sctx->fs_info->sectorsize;
1824 const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1825 int i;
1826 struct scrub_page *spage;
1827 char *kaddr;
1828
1829 BUG_ON(sblock->page_count < 1);
1830
1831 /* Each member in pagev is just one block, not a full page */
1832 ASSERT(sblock->page_count == num_sectors);
1833
1834 spage = sblock->pagev[0];
1835 kaddr = page_address(spage->page);
1836 h = (struct btrfs_header *)kaddr;
1837 memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
1838
1839 /*
1840 * we don't use the getter functions here, as we
1841 * a) don't have an extent buffer and
1842 * b) the page is already kmapped
1843 */
1844 if (spage->logical != btrfs_stack_header_bytenr(h))
1845 sblock->header_error = 1;
1846
1847 if (spage->generation != btrfs_stack_header_generation(h)) {
1848 sblock->header_error = 1;
1849 sblock->generation_error = 1;
1850 }
1851
1852 if (!scrub_check_fsid(h->fsid, spage))
1853 sblock->header_error = 1;
1854
1855 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1856 BTRFS_UUID_SIZE))
1857 sblock->header_error = 1;
1858
1859 shash->tfm = fs_info->csum_shash;
1860 crypto_shash_init(shash);
1861 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1862 sectorsize - BTRFS_CSUM_SIZE);
1863
1864 for (i = 1; i < num_sectors; i++) {
1865 kaddr = page_address(sblock->pagev[i]->page);
1866 crypto_shash_update(shash, kaddr, sectorsize);
1867 }
1868
1869 crypto_shash_final(shash, calculated_csum);
1870 if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1871 sblock->checksum_error = 1;
1872
1873 return sblock->header_error || sblock->checksum_error;
1874 }
1875
1876 static int scrub_checksum_super(struct scrub_block *sblock)
1877 {
1878 struct btrfs_super_block *s;
1879 struct scrub_ctx *sctx = sblock->sctx;
1880 struct btrfs_fs_info *fs_info = sctx->fs_info;
1881 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1882 u8 calculated_csum[BTRFS_CSUM_SIZE];
1883 struct scrub_page *spage;
1884 char *kaddr;
1885 int fail_gen = 0;
1886 int fail_cor = 0;
1887
1888 BUG_ON(sblock->page_count < 1);
1889 spage = sblock->pagev[0];
1890 kaddr = page_address(spage->page);
1891 s = (struct btrfs_super_block *)kaddr;
1892
1893 if (spage->logical != btrfs_super_bytenr(s))
1894 ++fail_cor;
1895
1896 if (spage->generation != btrfs_super_generation(s))
1897 ++fail_gen;
1898
1899 if (!scrub_check_fsid(s->fsid, spage))
1900 ++fail_cor;
1901
1902 shash->tfm = fs_info->csum_shash;
1903 crypto_shash_init(shash);
1904 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1905 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1906
1907 if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1908 ++fail_cor;
1909
1910 if (fail_cor + fail_gen) {
1911 /*
1912 * if we find an error in a super block, we just report it.
1913 * They will get written with the next transaction commit
1914 * anyway
1915 */
1916 spin_lock(&sctx->stat_lock);
1917 ++sctx->stat.super_errors;
1918 spin_unlock(&sctx->stat_lock);
1919 if (fail_cor)
1920 btrfs_dev_stat_inc_and_print(spage->dev,
1921 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1922 else
1923 btrfs_dev_stat_inc_and_print(spage->dev,
1924 BTRFS_DEV_STAT_GENERATION_ERRS);
1925 }
1926
1927 return fail_cor + fail_gen;
1928 }
1929
1930 static void scrub_block_get(struct scrub_block *sblock)
1931 {
1932 refcount_inc(&sblock->refs);
1933 }
1934
1935 static void scrub_block_put(struct scrub_block *sblock)
1936 {
1937 if (refcount_dec_and_test(&sblock->refs)) {
1938 int i;
1939
1940 if (sblock->sparity)
1941 scrub_parity_put(sblock->sparity);
1942
1943 for (i = 0; i < sblock->page_count; i++)
1944 scrub_page_put(sblock->pagev[i]);
1945 kfree(sblock);
1946 }
1947 }
1948
1949 static void scrub_page_get(struct scrub_page *spage)
1950 {
1951 atomic_inc(&spage->refs);
1952 }
1953
1954 static void scrub_page_put(struct scrub_page *spage)
1955 {
1956 if (atomic_dec_and_test(&spage->refs)) {
1957 if (spage->page)
1958 __free_page(spage->page);
1959 kfree(spage);
1960 }
1961 }
1962
1963 static void scrub_submit(struct scrub_ctx *sctx)
1964 {
1965 struct scrub_bio *sbio;
1966
1967 if (sctx->curr == -1)
1968 return;
1969
1970 sbio = sctx->bios[sctx->curr];
1971 sctx->curr = -1;
1972 scrub_pending_bio_inc(sctx);
1973 btrfsic_submit_bio(sbio->bio);
1974 }
1975
1976 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1977 struct scrub_page *spage)
1978 {
1979 struct scrub_block *sblock = spage->sblock;
1980 struct scrub_bio *sbio;
1981 int ret;
1982
1983 again:
1984 /*
1985 * grab a fresh bio or wait for one to become available
1986 */
1987 while (sctx->curr == -1) {
1988 spin_lock(&sctx->list_lock);
1989 sctx->curr = sctx->first_free;
1990 if (sctx->curr != -1) {
1991 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1992 sctx->bios[sctx->curr]->next_free = -1;
1993 sctx->bios[sctx->curr]->page_count = 0;
1994 spin_unlock(&sctx->list_lock);
1995 } else {
1996 spin_unlock(&sctx->list_lock);
1997 wait_event(sctx->list_wait, sctx->first_free != -1);
1998 }
1999 }
2000 sbio = sctx->bios[sctx->curr];
2001 if (sbio->page_count == 0) {
2002 struct bio *bio;
2003
2004 sbio->physical = spage->physical;
2005 sbio->logical = spage->logical;
2006 sbio->dev = spage->dev;
2007 bio = sbio->bio;
2008 if (!bio) {
2009 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2010 sbio->bio = bio;
2011 }
2012
2013 bio->bi_private = sbio;
2014 bio->bi_end_io = scrub_bio_end_io;
2015 bio_set_dev(bio, sbio->dev->bdev);
2016 bio->bi_iter.bi_sector = sbio->physical >> 9;
2017 bio->bi_opf = REQ_OP_READ;
2018 sbio->status = 0;
2019 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2020 spage->physical ||
2021 sbio->logical + sbio->page_count * PAGE_SIZE !=
2022 spage->logical ||
2023 sbio->dev != spage->dev) {
2024 scrub_submit(sctx);
2025 goto again;
2026 }
2027
2028 sbio->pagev[sbio->page_count] = spage;
2029 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2030 if (ret != PAGE_SIZE) {
2031 if (sbio->page_count < 1) {
2032 bio_put(sbio->bio);
2033 sbio->bio = NULL;
2034 return -EIO;
2035 }
2036 scrub_submit(sctx);
2037 goto again;
2038 }
2039
2040 scrub_block_get(sblock); /* one for the page added to the bio */
2041 atomic_inc(&sblock->outstanding_pages);
2042 sbio->page_count++;
2043 if (sbio->page_count == sctx->pages_per_rd_bio)
2044 scrub_submit(sctx);
2045
2046 return 0;
2047 }
2048
2049 static void scrub_missing_raid56_end_io(struct bio *bio)
2050 {
2051 struct scrub_block *sblock = bio->bi_private;
2052 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2053
2054 if (bio->bi_status)
2055 sblock->no_io_error_seen = 0;
2056
2057 bio_put(bio);
2058
2059 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2060 }
2061
2062 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2063 {
2064 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2065 struct scrub_ctx *sctx = sblock->sctx;
2066 struct btrfs_fs_info *fs_info = sctx->fs_info;
2067 u64 logical;
2068 struct btrfs_device *dev;
2069
2070 logical = sblock->pagev[0]->logical;
2071 dev = sblock->pagev[0]->dev;
2072
2073 if (sblock->no_io_error_seen)
2074 scrub_recheck_block_checksum(sblock);
2075
2076 if (!sblock->no_io_error_seen) {
2077 spin_lock(&sctx->stat_lock);
2078 sctx->stat.read_errors++;
2079 spin_unlock(&sctx->stat_lock);
2080 btrfs_err_rl_in_rcu(fs_info,
2081 "IO error rebuilding logical %llu for dev %s",
2082 logical, rcu_str_deref(dev->name));
2083 } else if (sblock->header_error || sblock->checksum_error) {
2084 spin_lock(&sctx->stat_lock);
2085 sctx->stat.uncorrectable_errors++;
2086 spin_unlock(&sctx->stat_lock);
2087 btrfs_err_rl_in_rcu(fs_info,
2088 "failed to rebuild valid logical %llu for dev %s",
2089 logical, rcu_str_deref(dev->name));
2090 } else {
2091 scrub_write_block_to_dev_replace(sblock);
2092 }
2093
2094 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2095 mutex_lock(&sctx->wr_lock);
2096 scrub_wr_submit(sctx);
2097 mutex_unlock(&sctx->wr_lock);
2098 }
2099
2100 scrub_block_put(sblock);
2101 scrub_pending_bio_dec(sctx);
2102 }
2103
2104 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2105 {
2106 struct scrub_ctx *sctx = sblock->sctx;
2107 struct btrfs_fs_info *fs_info = sctx->fs_info;
2108 u64 length = sblock->page_count * PAGE_SIZE;
2109 u64 logical = sblock->pagev[0]->logical;
2110 struct btrfs_bio *bbio = NULL;
2111 struct bio *bio;
2112 struct btrfs_raid_bio *rbio;
2113 int ret;
2114 int i;
2115
2116 btrfs_bio_counter_inc_blocked(fs_info);
2117 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2118 &length, &bbio);
2119 if (ret || !bbio || !bbio->raid_map)
2120 goto bbio_out;
2121
2122 if (WARN_ON(!sctx->is_dev_replace ||
2123 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2124 /*
2125 * We shouldn't be scrubbing a missing device. Even for dev
2126 * replace, we should only get here for RAID 5/6. We either
2127 * managed to mount something with no mirrors remaining or
2128 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2129 */
2130 goto bbio_out;
2131 }
2132
2133 bio = btrfs_io_bio_alloc(0);
2134 bio->bi_iter.bi_sector = logical >> 9;
2135 bio->bi_private = sblock;
2136 bio->bi_end_io = scrub_missing_raid56_end_io;
2137
2138 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2139 if (!rbio)
2140 goto rbio_out;
2141
2142 for (i = 0; i < sblock->page_count; i++) {
2143 struct scrub_page *spage = sblock->pagev[i];
2144
2145 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2146 }
2147
2148 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2149 scrub_block_get(sblock);
2150 scrub_pending_bio_inc(sctx);
2151 raid56_submit_missing_rbio(rbio);
2152 return;
2153
2154 rbio_out:
2155 bio_put(bio);
2156 bbio_out:
2157 btrfs_bio_counter_dec(fs_info);
2158 btrfs_put_bbio(bbio);
2159 spin_lock(&sctx->stat_lock);
2160 sctx->stat.malloc_errors++;
2161 spin_unlock(&sctx->stat_lock);
2162 }
2163
2164 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2165 u64 physical, struct btrfs_device *dev, u64 flags,
2166 u64 gen, int mirror_num, u8 *csum,
2167 u64 physical_for_dev_replace)
2168 {
2169 struct scrub_block *sblock;
2170 const u32 sectorsize = sctx->fs_info->sectorsize;
2171 int index;
2172
2173 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2174 if (!sblock) {
2175 spin_lock(&sctx->stat_lock);
2176 sctx->stat.malloc_errors++;
2177 spin_unlock(&sctx->stat_lock);
2178 return -ENOMEM;
2179 }
2180
2181 /* one ref inside this function, plus one for each page added to
2182 * a bio later on */
2183 refcount_set(&sblock->refs, 1);
2184 sblock->sctx = sctx;
2185 sblock->no_io_error_seen = 1;
2186
2187 for (index = 0; len > 0; index++) {
2188 struct scrub_page *spage;
2189 /*
2190 * Here we will allocate one page for one sector to scrub.
2191 * This is fine if PAGE_SIZE == sectorsize, but will cost
2192 * more memory for PAGE_SIZE > sectorsize case.
2193 */
2194 u32 l = min(sectorsize, len);
2195
2196 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2197 if (!spage) {
2198 leave_nomem:
2199 spin_lock(&sctx->stat_lock);
2200 sctx->stat.malloc_errors++;
2201 spin_unlock(&sctx->stat_lock);
2202 scrub_block_put(sblock);
2203 return -ENOMEM;
2204 }
2205 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2206 scrub_page_get(spage);
2207 sblock->pagev[index] = spage;
2208 spage->sblock = sblock;
2209 spage->dev = dev;
2210 spage->flags = flags;
2211 spage->generation = gen;
2212 spage->logical = logical;
2213 spage->physical = physical;
2214 spage->physical_for_dev_replace = physical_for_dev_replace;
2215 spage->mirror_num = mirror_num;
2216 if (csum) {
2217 spage->have_csum = 1;
2218 memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2219 } else {
2220 spage->have_csum = 0;
2221 }
2222 sblock->page_count++;
2223 spage->page = alloc_page(GFP_KERNEL);
2224 if (!spage->page)
2225 goto leave_nomem;
2226 len -= l;
2227 logical += l;
2228 physical += l;
2229 physical_for_dev_replace += l;
2230 }
2231
2232 WARN_ON(sblock->page_count == 0);
2233 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2234 /*
2235 * This case should only be hit for RAID 5/6 device replace. See
2236 * the comment in scrub_missing_raid56_pages() for details.
2237 */
2238 scrub_missing_raid56_pages(sblock);
2239 } else {
2240 for (index = 0; index < sblock->page_count; index++) {
2241 struct scrub_page *spage = sblock->pagev[index];
2242 int ret;
2243
2244 ret = scrub_add_page_to_rd_bio(sctx, spage);
2245 if (ret) {
2246 scrub_block_put(sblock);
2247 return ret;
2248 }
2249 }
2250
2251 if (flags & BTRFS_EXTENT_FLAG_SUPER)
2252 scrub_submit(sctx);
2253 }
2254
2255 /* last one frees, either here or in bio completion for last page */
2256 scrub_block_put(sblock);
2257 return 0;
2258 }
2259
2260 static void scrub_bio_end_io(struct bio *bio)
2261 {
2262 struct scrub_bio *sbio = bio->bi_private;
2263 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2264
2265 sbio->status = bio->bi_status;
2266 sbio->bio = bio;
2267
2268 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2269 }
2270
2271 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2272 {
2273 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2274 struct scrub_ctx *sctx = sbio->sctx;
2275 int i;
2276
2277 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2278 if (sbio->status) {
2279 for (i = 0; i < sbio->page_count; i++) {
2280 struct scrub_page *spage = sbio->pagev[i];
2281
2282 spage->io_error = 1;
2283 spage->sblock->no_io_error_seen = 0;
2284 }
2285 }
2286
2287 /* now complete the scrub_block items that have all pages completed */
2288 for (i = 0; i < sbio->page_count; i++) {
2289 struct scrub_page *spage = sbio->pagev[i];
2290 struct scrub_block *sblock = spage->sblock;
2291
2292 if (atomic_dec_and_test(&sblock->outstanding_pages))
2293 scrub_block_complete(sblock);
2294 scrub_block_put(sblock);
2295 }
2296
2297 bio_put(sbio->bio);
2298 sbio->bio = NULL;
2299 spin_lock(&sctx->list_lock);
2300 sbio->next_free = sctx->first_free;
2301 sctx->first_free = sbio->index;
2302 spin_unlock(&sctx->list_lock);
2303
2304 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2305 mutex_lock(&sctx->wr_lock);
2306 scrub_wr_submit(sctx);
2307 mutex_unlock(&sctx->wr_lock);
2308 }
2309
2310 scrub_pending_bio_dec(sctx);
2311 }
2312
2313 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2314 unsigned long *bitmap,
2315 u64 start, u32 len)
2316 {
2317 u64 offset;
2318 u32 nsectors;
2319 u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2320
2321 if (len >= sparity->stripe_len) {
2322 bitmap_set(bitmap, 0, sparity->nsectors);
2323 return;
2324 }
2325
2326 start -= sparity->logic_start;
2327 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2328 offset = offset >> sectorsize_bits;
2329 nsectors = len >> sectorsize_bits;
2330
2331 if (offset + nsectors <= sparity->nsectors) {
2332 bitmap_set(bitmap, offset, nsectors);
2333 return;
2334 }
2335
2336 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2337 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2338 }
2339
2340 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2341 u64 start, u32 len)
2342 {
2343 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2344 }
2345
2346 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2347 u64 start, u32 len)
2348 {
2349 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2350 }
2351
2352 static void scrub_block_complete(struct scrub_block *sblock)
2353 {
2354 int corrupted = 0;
2355
2356 if (!sblock->no_io_error_seen) {
2357 corrupted = 1;
2358 scrub_handle_errored_block(sblock);
2359 } else {
2360 /*
2361 * if has checksum error, write via repair mechanism in
2362 * dev replace case, otherwise write here in dev replace
2363 * case.
2364 */
2365 corrupted = scrub_checksum(sblock);
2366 if (!corrupted && sblock->sctx->is_dev_replace)
2367 scrub_write_block_to_dev_replace(sblock);
2368 }
2369
2370 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2371 u64 start = sblock->pagev[0]->logical;
2372 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2373 PAGE_SIZE;
2374
2375 ASSERT(end - start <= U32_MAX);
2376 scrub_parity_mark_sectors_error(sblock->sparity,
2377 start, end - start);
2378 }
2379 }
2380
2381 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2382 {
2383 sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2384 list_del(&sum->list);
2385 kfree(sum);
2386 }
2387
2388 /*
2389 * Find the desired csum for range [logical, logical + sectorsize), and store
2390 * the csum into @csum.
2391 *
2392 * The search source is sctx->csum_list, which is a pre-populated list
2393 * storing bytenr ordered csum ranges. We're reponsible to cleanup any range
2394 * that is before @logical.
2395 *
2396 * Return 0 if there is no csum for the range.
2397 * Return 1 if there is csum for the range and copied to @csum.
2398 */
2399 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2400 {
2401 bool found = false;
2402
2403 while (!list_empty(&sctx->csum_list)) {
2404 struct btrfs_ordered_sum *sum = NULL;
2405 unsigned long index;
2406 unsigned long num_sectors;
2407
2408 sum = list_first_entry(&sctx->csum_list,
2409 struct btrfs_ordered_sum, list);
2410 /* The current csum range is beyond our range, no csum found */
2411 if (sum->bytenr > logical)
2412 break;
2413
2414 /*
2415 * The current sum is before our bytenr, since scrub is always
2416 * done in bytenr order, the csum will never be used anymore,
2417 * clean it up so that later calls won't bother with the range,
2418 * and continue search the next range.
2419 */
2420 if (sum->bytenr + sum->len <= logical) {
2421 drop_csum_range(sctx, sum);
2422 continue;
2423 }
2424
2425 /* Now the csum range covers our bytenr, copy the csum */
2426 found = true;
2427 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2428 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2429
2430 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2431 sctx->fs_info->csum_size);
2432
2433 /* Cleanup the range if we're at the end of the csum range */
2434 if (index == num_sectors - 1)
2435 drop_csum_range(sctx, sum);
2436 break;
2437 }
2438 if (!found)
2439 return 0;
2440 return 1;
2441 }
2442
2443 /* scrub extent tries to collect up to 64 kB for each bio */
2444 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2445 u64 logical, u32 len,
2446 u64 physical, struct btrfs_device *dev, u64 flags,
2447 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2448 {
2449 int ret;
2450 u8 csum[BTRFS_CSUM_SIZE];
2451 u32 blocksize;
2452
2453 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2454 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2455 blocksize = map->stripe_len;
2456 else
2457 blocksize = sctx->fs_info->sectorsize;
2458 spin_lock(&sctx->stat_lock);
2459 sctx->stat.data_extents_scrubbed++;
2460 sctx->stat.data_bytes_scrubbed += len;
2461 spin_unlock(&sctx->stat_lock);
2462 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2463 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2464 blocksize = map->stripe_len;
2465 else
2466 blocksize = sctx->fs_info->nodesize;
2467 spin_lock(&sctx->stat_lock);
2468 sctx->stat.tree_extents_scrubbed++;
2469 sctx->stat.tree_bytes_scrubbed += len;
2470 spin_unlock(&sctx->stat_lock);
2471 } else {
2472 blocksize = sctx->fs_info->sectorsize;
2473 WARN_ON(1);
2474 }
2475
2476 while (len) {
2477 u32 l = min(len, blocksize);
2478 int have_csum = 0;
2479
2480 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2481 /* push csums to sbio */
2482 have_csum = scrub_find_csum(sctx, logical, csum);
2483 if (have_csum == 0)
2484 ++sctx->stat.no_csum;
2485 }
2486 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2487 mirror_num, have_csum ? csum : NULL,
2488 physical_for_dev_replace);
2489 if (ret)
2490 return ret;
2491 len -= l;
2492 logical += l;
2493 physical += l;
2494 physical_for_dev_replace += l;
2495 }
2496 return 0;
2497 }
2498
2499 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2500 u64 logical, u32 len,
2501 u64 physical, struct btrfs_device *dev,
2502 u64 flags, u64 gen, int mirror_num, u8 *csum)
2503 {
2504 struct scrub_ctx *sctx = sparity->sctx;
2505 struct scrub_block *sblock;
2506 const u32 sectorsize = sctx->fs_info->sectorsize;
2507 int index;
2508
2509 ASSERT(IS_ALIGNED(len, sectorsize));
2510
2511 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2512 if (!sblock) {
2513 spin_lock(&sctx->stat_lock);
2514 sctx->stat.malloc_errors++;
2515 spin_unlock(&sctx->stat_lock);
2516 return -ENOMEM;
2517 }
2518
2519 /* one ref inside this function, plus one for each page added to
2520 * a bio later on */
2521 refcount_set(&sblock->refs, 1);
2522 sblock->sctx = sctx;
2523 sblock->no_io_error_seen = 1;
2524 sblock->sparity = sparity;
2525 scrub_parity_get(sparity);
2526
2527 for (index = 0; len > 0; index++) {
2528 struct scrub_page *spage;
2529
2530 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2531 if (!spage) {
2532 leave_nomem:
2533 spin_lock(&sctx->stat_lock);
2534 sctx->stat.malloc_errors++;
2535 spin_unlock(&sctx->stat_lock);
2536 scrub_block_put(sblock);
2537 return -ENOMEM;
2538 }
2539 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2540 /* For scrub block */
2541 scrub_page_get(spage);
2542 sblock->pagev[index] = spage;
2543 /* For scrub parity */
2544 scrub_page_get(spage);
2545 list_add_tail(&spage->list, &sparity->spages);
2546 spage->sblock = sblock;
2547 spage->dev = dev;
2548 spage->flags = flags;
2549 spage->generation = gen;
2550 spage->logical = logical;
2551 spage->physical = physical;
2552 spage->mirror_num = mirror_num;
2553 if (csum) {
2554 spage->have_csum = 1;
2555 memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2556 } else {
2557 spage->have_csum = 0;
2558 }
2559 sblock->page_count++;
2560 spage->page = alloc_page(GFP_KERNEL);
2561 if (!spage->page)
2562 goto leave_nomem;
2563
2564
2565 /* Iterate over the stripe range in sectorsize steps */
2566 len -= sectorsize;
2567 logical += sectorsize;
2568 physical += sectorsize;
2569 }
2570
2571 WARN_ON(sblock->page_count == 0);
2572 for (index = 0; index < sblock->page_count; index++) {
2573 struct scrub_page *spage = sblock->pagev[index];
2574 int ret;
2575
2576 ret = scrub_add_page_to_rd_bio(sctx, spage);
2577 if (ret) {
2578 scrub_block_put(sblock);
2579 return ret;
2580 }
2581 }
2582
2583 /* last one frees, either here or in bio completion for last page */
2584 scrub_block_put(sblock);
2585 return 0;
2586 }
2587
2588 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2589 u64 logical, u32 len,
2590 u64 physical, struct btrfs_device *dev,
2591 u64 flags, u64 gen, int mirror_num)
2592 {
2593 struct scrub_ctx *sctx = sparity->sctx;
2594 int ret;
2595 u8 csum[BTRFS_CSUM_SIZE];
2596 u32 blocksize;
2597
2598 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2599 scrub_parity_mark_sectors_error(sparity, logical, len);
2600 return 0;
2601 }
2602
2603 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2604 blocksize = sparity->stripe_len;
2605 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2606 blocksize = sparity->stripe_len;
2607 } else {
2608 blocksize = sctx->fs_info->sectorsize;
2609 WARN_ON(1);
2610 }
2611
2612 while (len) {
2613 u32 l = min(len, blocksize);
2614 int have_csum = 0;
2615
2616 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2617 /* push csums to sbio */
2618 have_csum = scrub_find_csum(sctx, logical, csum);
2619 if (have_csum == 0)
2620 goto skip;
2621 }
2622 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2623 flags, gen, mirror_num,
2624 have_csum ? csum : NULL);
2625 if (ret)
2626 return ret;
2627 skip:
2628 len -= l;
2629 logical += l;
2630 physical += l;
2631 }
2632 return 0;
2633 }
2634
2635 /*
2636 * Given a physical address, this will calculate it's
2637 * logical offset. if this is a parity stripe, it will return
2638 * the most left data stripe's logical offset.
2639 *
2640 * return 0 if it is a data stripe, 1 means parity stripe.
2641 */
2642 static int get_raid56_logic_offset(u64 physical, int num,
2643 struct map_lookup *map, u64 *offset,
2644 u64 *stripe_start)
2645 {
2646 int i;
2647 int j = 0;
2648 u64 stripe_nr;
2649 u64 last_offset;
2650 u32 stripe_index;
2651 u32 rot;
2652 const int data_stripes = nr_data_stripes(map);
2653
2654 last_offset = (physical - map->stripes[num].physical) * data_stripes;
2655 if (stripe_start)
2656 *stripe_start = last_offset;
2657
2658 *offset = last_offset;
2659 for (i = 0; i < data_stripes; i++) {
2660 *offset = last_offset + i * map->stripe_len;
2661
2662 stripe_nr = div64_u64(*offset, map->stripe_len);
2663 stripe_nr = div_u64(stripe_nr, data_stripes);
2664
2665 /* Work out the disk rotation on this stripe-set */
2666 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2667 /* calculate which stripe this data locates */
2668 rot += i;
2669 stripe_index = rot % map->num_stripes;
2670 if (stripe_index == num)
2671 return 0;
2672 if (stripe_index < num)
2673 j++;
2674 }
2675 *offset = last_offset + j * map->stripe_len;
2676 return 1;
2677 }
2678
2679 static void scrub_free_parity(struct scrub_parity *sparity)
2680 {
2681 struct scrub_ctx *sctx = sparity->sctx;
2682 struct scrub_page *curr, *next;
2683 int nbits;
2684
2685 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2686 if (nbits) {
2687 spin_lock(&sctx->stat_lock);
2688 sctx->stat.read_errors += nbits;
2689 sctx->stat.uncorrectable_errors += nbits;
2690 spin_unlock(&sctx->stat_lock);
2691 }
2692
2693 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2694 list_del_init(&curr->list);
2695 scrub_page_put(curr);
2696 }
2697
2698 kfree(sparity);
2699 }
2700
2701 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2702 {
2703 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2704 work);
2705 struct scrub_ctx *sctx = sparity->sctx;
2706
2707 scrub_free_parity(sparity);
2708 scrub_pending_bio_dec(sctx);
2709 }
2710
2711 static void scrub_parity_bio_endio(struct bio *bio)
2712 {
2713 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2714 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2715
2716 if (bio->bi_status)
2717 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2718 sparity->nsectors);
2719
2720 bio_put(bio);
2721
2722 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2723 NULL);
2724 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2725 }
2726
2727 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2728 {
2729 struct scrub_ctx *sctx = sparity->sctx;
2730 struct btrfs_fs_info *fs_info = sctx->fs_info;
2731 struct bio *bio;
2732 struct btrfs_raid_bio *rbio;
2733 struct btrfs_bio *bbio = NULL;
2734 u64 length;
2735 int ret;
2736
2737 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2738 sparity->nsectors))
2739 goto out;
2740
2741 length = sparity->logic_end - sparity->logic_start;
2742
2743 btrfs_bio_counter_inc_blocked(fs_info);
2744 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2745 &length, &bbio);
2746 if (ret || !bbio || !bbio->raid_map)
2747 goto bbio_out;
2748
2749 bio = btrfs_io_bio_alloc(0);
2750 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2751 bio->bi_private = sparity;
2752 bio->bi_end_io = scrub_parity_bio_endio;
2753
2754 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2755 length, sparity->scrub_dev,
2756 sparity->dbitmap,
2757 sparity->nsectors);
2758 if (!rbio)
2759 goto rbio_out;
2760
2761 scrub_pending_bio_inc(sctx);
2762 raid56_parity_submit_scrub_rbio(rbio);
2763 return;
2764
2765 rbio_out:
2766 bio_put(bio);
2767 bbio_out:
2768 btrfs_bio_counter_dec(fs_info);
2769 btrfs_put_bbio(bbio);
2770 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2771 sparity->nsectors);
2772 spin_lock(&sctx->stat_lock);
2773 sctx->stat.malloc_errors++;
2774 spin_unlock(&sctx->stat_lock);
2775 out:
2776 scrub_free_parity(sparity);
2777 }
2778
2779 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2780 {
2781 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2782 }
2783
2784 static void scrub_parity_get(struct scrub_parity *sparity)
2785 {
2786 refcount_inc(&sparity->refs);
2787 }
2788
2789 static void scrub_parity_put(struct scrub_parity *sparity)
2790 {
2791 if (!refcount_dec_and_test(&sparity->refs))
2792 return;
2793
2794 scrub_parity_check_and_repair(sparity);
2795 }
2796
2797 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2798 struct map_lookup *map,
2799 struct btrfs_device *sdev,
2800 struct btrfs_path *path,
2801 u64 logic_start,
2802 u64 logic_end)
2803 {
2804 struct btrfs_fs_info *fs_info = sctx->fs_info;
2805 struct btrfs_root *root = fs_info->extent_root;
2806 struct btrfs_root *csum_root = fs_info->csum_root;
2807 struct btrfs_extent_item *extent;
2808 struct btrfs_bio *bbio = NULL;
2809 u64 flags;
2810 int ret;
2811 int slot;
2812 struct extent_buffer *l;
2813 struct btrfs_key key;
2814 u64 generation;
2815 u64 extent_logical;
2816 u64 extent_physical;
2817 /* Check the comment in scrub_stripe() for why u32 is enough here */
2818 u32 extent_len;
2819 u64 mapped_length;
2820 struct btrfs_device *extent_dev;
2821 struct scrub_parity *sparity;
2822 int nsectors;
2823 int bitmap_len;
2824 int extent_mirror_num;
2825 int stop_loop = 0;
2826
2827 ASSERT(map->stripe_len <= U32_MAX);
2828 nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2829 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2830 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2831 GFP_NOFS);
2832 if (!sparity) {
2833 spin_lock(&sctx->stat_lock);
2834 sctx->stat.malloc_errors++;
2835 spin_unlock(&sctx->stat_lock);
2836 return -ENOMEM;
2837 }
2838
2839 ASSERT(map->stripe_len <= U32_MAX);
2840 sparity->stripe_len = map->stripe_len;
2841 sparity->nsectors = nsectors;
2842 sparity->sctx = sctx;
2843 sparity->scrub_dev = sdev;
2844 sparity->logic_start = logic_start;
2845 sparity->logic_end = logic_end;
2846 refcount_set(&sparity->refs, 1);
2847 INIT_LIST_HEAD(&sparity->spages);
2848 sparity->dbitmap = sparity->bitmap;
2849 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2850
2851 ret = 0;
2852 while (logic_start < logic_end) {
2853 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2854 key.type = BTRFS_METADATA_ITEM_KEY;
2855 else
2856 key.type = BTRFS_EXTENT_ITEM_KEY;
2857 key.objectid = logic_start;
2858 key.offset = (u64)-1;
2859
2860 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2861 if (ret < 0)
2862 goto out;
2863
2864 if (ret > 0) {
2865 ret = btrfs_previous_extent_item(root, path, 0);
2866 if (ret < 0)
2867 goto out;
2868 if (ret > 0) {
2869 btrfs_release_path(path);
2870 ret = btrfs_search_slot(NULL, root, &key,
2871 path, 0, 0);
2872 if (ret < 0)
2873 goto out;
2874 }
2875 }
2876
2877 stop_loop = 0;
2878 while (1) {
2879 u64 bytes;
2880
2881 l = path->nodes[0];
2882 slot = path->slots[0];
2883 if (slot >= btrfs_header_nritems(l)) {
2884 ret = btrfs_next_leaf(root, path);
2885 if (ret == 0)
2886 continue;
2887 if (ret < 0)
2888 goto out;
2889
2890 stop_loop = 1;
2891 break;
2892 }
2893 btrfs_item_key_to_cpu(l, &key, slot);
2894
2895 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2896 key.type != BTRFS_METADATA_ITEM_KEY)
2897 goto next;
2898
2899 if (key.type == BTRFS_METADATA_ITEM_KEY)
2900 bytes = fs_info->nodesize;
2901 else
2902 bytes = key.offset;
2903
2904 if (key.objectid + bytes <= logic_start)
2905 goto next;
2906
2907 if (key.objectid >= logic_end) {
2908 stop_loop = 1;
2909 break;
2910 }
2911
2912 while (key.objectid >= logic_start + map->stripe_len)
2913 logic_start += map->stripe_len;
2914
2915 extent = btrfs_item_ptr(l, slot,
2916 struct btrfs_extent_item);
2917 flags = btrfs_extent_flags(l, extent);
2918 generation = btrfs_extent_generation(l, extent);
2919
2920 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2921 (key.objectid < logic_start ||
2922 key.objectid + bytes >
2923 logic_start + map->stripe_len)) {
2924 btrfs_err(fs_info,
2925 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2926 key.objectid, logic_start);
2927 spin_lock(&sctx->stat_lock);
2928 sctx->stat.uncorrectable_errors++;
2929 spin_unlock(&sctx->stat_lock);
2930 goto next;
2931 }
2932 again:
2933 extent_logical = key.objectid;
2934 ASSERT(bytes <= U32_MAX);
2935 extent_len = bytes;
2936
2937 if (extent_logical < logic_start) {
2938 extent_len -= logic_start - extent_logical;
2939 extent_logical = logic_start;
2940 }
2941
2942 if (extent_logical + extent_len >
2943 logic_start + map->stripe_len)
2944 extent_len = logic_start + map->stripe_len -
2945 extent_logical;
2946
2947 scrub_parity_mark_sectors_data(sparity, extent_logical,
2948 extent_len);
2949
2950 mapped_length = extent_len;
2951 bbio = NULL;
2952 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2953 extent_logical, &mapped_length, &bbio,
2954 0);
2955 if (!ret) {
2956 if (!bbio || mapped_length < extent_len)
2957 ret = -EIO;
2958 }
2959 if (ret) {
2960 btrfs_put_bbio(bbio);
2961 goto out;
2962 }
2963 extent_physical = bbio->stripes[0].physical;
2964 extent_mirror_num = bbio->mirror_num;
2965 extent_dev = bbio->stripes[0].dev;
2966 btrfs_put_bbio(bbio);
2967
2968 ret = btrfs_lookup_csums_range(csum_root,
2969 extent_logical,
2970 extent_logical + extent_len - 1,
2971 &sctx->csum_list, 1);
2972 if (ret)
2973 goto out;
2974
2975 ret = scrub_extent_for_parity(sparity, extent_logical,
2976 extent_len,
2977 extent_physical,
2978 extent_dev, flags,
2979 generation,
2980 extent_mirror_num);
2981
2982 scrub_free_csums(sctx);
2983
2984 if (ret)
2985 goto out;
2986
2987 if (extent_logical + extent_len <
2988 key.objectid + bytes) {
2989 logic_start += map->stripe_len;
2990
2991 if (logic_start >= logic_end) {
2992 stop_loop = 1;
2993 break;
2994 }
2995
2996 if (logic_start < key.objectid + bytes) {
2997 cond_resched();
2998 goto again;
2999 }
3000 }
3001 next:
3002 path->slots[0]++;
3003 }
3004
3005 btrfs_release_path(path);
3006
3007 if (stop_loop)
3008 break;
3009
3010 logic_start += map->stripe_len;
3011 }
3012 out:
3013 if (ret < 0) {
3014 ASSERT(logic_end - logic_start <= U32_MAX);
3015 scrub_parity_mark_sectors_error(sparity, logic_start,
3016 logic_end - logic_start);
3017 }
3018 scrub_parity_put(sparity);
3019 scrub_submit(sctx);
3020 mutex_lock(&sctx->wr_lock);
3021 scrub_wr_submit(sctx);
3022 mutex_unlock(&sctx->wr_lock);
3023
3024 btrfs_release_path(path);
3025 return ret < 0 ? ret : 0;
3026 }
3027
3028 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3029 struct map_lookup *map,
3030 struct btrfs_device *scrub_dev,
3031 int num, u64 base, u64 length,
3032 struct btrfs_block_group *cache)
3033 {
3034 struct btrfs_path *path, *ppath;
3035 struct btrfs_fs_info *fs_info = sctx->fs_info;
3036 struct btrfs_root *root = fs_info->extent_root;
3037 struct btrfs_root *csum_root = fs_info->csum_root;
3038 struct btrfs_extent_item *extent;
3039 struct blk_plug plug;
3040 u64 flags;
3041 int ret;
3042 int slot;
3043 u64 nstripes;
3044 struct extent_buffer *l;
3045 u64 physical;
3046 u64 logical;
3047 u64 logic_end;
3048 u64 physical_end;
3049 u64 generation;
3050 int mirror_num;
3051 struct reada_control *reada1;
3052 struct reada_control *reada2;
3053 struct btrfs_key key;
3054 struct btrfs_key key_end;
3055 u64 increment = map->stripe_len;
3056 u64 offset;
3057 u64 extent_logical;
3058 u64 extent_physical;
3059 /*
3060 * Unlike chunk length, extent length should never go beyond
3061 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
3062 */
3063 u32 extent_len;
3064 u64 stripe_logical;
3065 u64 stripe_end;
3066 struct btrfs_device *extent_dev;
3067 int extent_mirror_num;
3068 int stop_loop = 0;
3069
3070 physical = map->stripes[num].physical;
3071 offset = 0;
3072 nstripes = div64_u64(length, map->stripe_len);
3073 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3074 offset = map->stripe_len * num;
3075 increment = map->stripe_len * map->num_stripes;
3076 mirror_num = 1;
3077 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3078 int factor = map->num_stripes / map->sub_stripes;
3079 offset = map->stripe_len * (num / map->sub_stripes);
3080 increment = map->stripe_len * factor;
3081 mirror_num = num % map->sub_stripes + 1;
3082 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
3083 increment = map->stripe_len;
3084 mirror_num = num % map->num_stripes + 1;
3085 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3086 increment = map->stripe_len;
3087 mirror_num = num % map->num_stripes + 1;
3088 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3089 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3090 increment = map->stripe_len * nr_data_stripes(map);
3091 mirror_num = 1;
3092 } else {
3093 increment = map->stripe_len;
3094 mirror_num = 1;
3095 }
3096
3097 path = btrfs_alloc_path();
3098 if (!path)
3099 return -ENOMEM;
3100
3101 ppath = btrfs_alloc_path();
3102 if (!ppath) {
3103 btrfs_free_path(path);
3104 return -ENOMEM;
3105 }
3106
3107 /*
3108 * work on commit root. The related disk blocks are static as
3109 * long as COW is applied. This means, it is save to rewrite
3110 * them to repair disk errors without any race conditions
3111 */
3112 path->search_commit_root = 1;
3113 path->skip_locking = 1;
3114
3115 ppath->search_commit_root = 1;
3116 ppath->skip_locking = 1;
3117 /*
3118 * trigger the readahead for extent tree csum tree and wait for
3119 * completion. During readahead, the scrub is officially paused
3120 * to not hold off transaction commits
3121 */
3122 logical = base + offset;
3123 physical_end = physical + nstripes * map->stripe_len;
3124 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3125 get_raid56_logic_offset(physical_end, num,
3126 map, &logic_end, NULL);
3127 logic_end += base;
3128 } else {
3129 logic_end = logical + increment * nstripes;
3130 }
3131 wait_event(sctx->list_wait,
3132 atomic_read(&sctx->bios_in_flight) == 0);
3133 scrub_blocked_if_needed(fs_info);
3134
3135 /* FIXME it might be better to start readahead at commit root */
3136 key.objectid = logical;
3137 key.type = BTRFS_EXTENT_ITEM_KEY;
3138 key.offset = (u64)0;
3139 key_end.objectid = logic_end;
3140 key_end.type = BTRFS_METADATA_ITEM_KEY;
3141 key_end.offset = (u64)-1;
3142 reada1 = btrfs_reada_add(root, &key, &key_end);
3143
3144 if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
3145 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3146 key.type = BTRFS_EXTENT_CSUM_KEY;
3147 key.offset = logical;
3148 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3149 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3150 key_end.offset = logic_end;
3151 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3152 } else {
3153 reada2 = NULL;
3154 }
3155
3156 if (!IS_ERR(reada1))
3157 btrfs_reada_wait(reada1);
3158 if (!IS_ERR_OR_NULL(reada2))
3159 btrfs_reada_wait(reada2);
3160
3161
3162 /*
3163 * collect all data csums for the stripe to avoid seeking during
3164 * the scrub. This might currently (crc32) end up to be about 1MB
3165 */
3166 blk_start_plug(&plug);
3167
3168 /*
3169 * now find all extents for each stripe and scrub them
3170 */
3171 ret = 0;
3172 while (physical < physical_end) {
3173 /*
3174 * canceled?
3175 */
3176 if (atomic_read(&fs_info->scrub_cancel_req) ||
3177 atomic_read(&sctx->cancel_req)) {
3178 ret = -ECANCELED;
3179 goto out;
3180 }
3181 /*
3182 * check to see if we have to pause
3183 */
3184 if (atomic_read(&fs_info->scrub_pause_req)) {
3185 /* push queued extents */
3186 sctx->flush_all_writes = true;
3187 scrub_submit(sctx);
3188 mutex_lock(&sctx->wr_lock);
3189 scrub_wr_submit(sctx);
3190 mutex_unlock(&sctx->wr_lock);
3191 wait_event(sctx->list_wait,
3192 atomic_read(&sctx->bios_in_flight) == 0);
3193 sctx->flush_all_writes = false;
3194 scrub_blocked_if_needed(fs_info);
3195 }
3196
3197 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3198 ret = get_raid56_logic_offset(physical, num, map,
3199 &logical,
3200 &stripe_logical);
3201 logical += base;
3202 if (ret) {
3203 /* it is parity strip */
3204 stripe_logical += base;
3205 stripe_end = stripe_logical + increment;
3206 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3207 ppath, stripe_logical,
3208 stripe_end);
3209 if (ret)
3210 goto out;
3211 goto skip;
3212 }
3213 }
3214
3215 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3216 key.type = BTRFS_METADATA_ITEM_KEY;
3217 else
3218 key.type = BTRFS_EXTENT_ITEM_KEY;
3219 key.objectid = logical;
3220 key.offset = (u64)-1;
3221
3222 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3223 if (ret < 0)
3224 goto out;
3225
3226 if (ret > 0) {
3227 ret = btrfs_previous_extent_item(root, path, 0);
3228 if (ret < 0)
3229 goto out;
3230 if (ret > 0) {
3231 /* there's no smaller item, so stick with the
3232 * larger one */
3233 btrfs_release_path(path);
3234 ret = btrfs_search_slot(NULL, root, &key,
3235 path, 0, 0);
3236 if (ret < 0)
3237 goto out;
3238 }
3239 }
3240
3241 stop_loop = 0;
3242 while (1) {
3243 u64 bytes;
3244
3245 l = path->nodes[0];
3246 slot = path->slots[0];
3247 if (slot >= btrfs_header_nritems(l)) {
3248 ret = btrfs_next_leaf(root, path);
3249 if (ret == 0)
3250 continue;
3251 if (ret < 0)
3252 goto out;
3253
3254 stop_loop = 1;
3255 break;
3256 }
3257 btrfs_item_key_to_cpu(l, &key, slot);
3258
3259 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3260 key.type != BTRFS_METADATA_ITEM_KEY)
3261 goto next;
3262
3263 if (key.type == BTRFS_METADATA_ITEM_KEY)
3264 bytes = fs_info->nodesize;
3265 else
3266 bytes = key.offset;
3267
3268 if (key.objectid + bytes <= logical)
3269 goto next;
3270
3271 if (key.objectid >= logical + map->stripe_len) {
3272 /* out of this device extent */
3273 if (key.objectid >= logic_end)
3274 stop_loop = 1;
3275 break;
3276 }
3277
3278 /*
3279 * If our block group was removed in the meanwhile, just
3280 * stop scrubbing since there is no point in continuing.
3281 * Continuing would prevent reusing its device extents
3282 * for new block groups for a long time.
3283 */
3284 spin_lock(&cache->lock);
3285 if (cache->removed) {
3286 spin_unlock(&cache->lock);
3287 ret = 0;
3288 goto out;
3289 }
3290 spin_unlock(&cache->lock);
3291
3292 extent = btrfs_item_ptr(l, slot,
3293 struct btrfs_extent_item);
3294 flags = btrfs_extent_flags(l, extent);
3295 generation = btrfs_extent_generation(l, extent);
3296
3297 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3298 (key.objectid < logical ||
3299 key.objectid + bytes >
3300 logical + map->stripe_len)) {
3301 btrfs_err(fs_info,
3302 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3303 key.objectid, logical);
3304 spin_lock(&sctx->stat_lock);
3305 sctx->stat.uncorrectable_errors++;
3306 spin_unlock(&sctx->stat_lock);
3307 goto next;
3308 }
3309
3310 again:
3311 extent_logical = key.objectid;
3312 ASSERT(bytes <= U32_MAX);
3313 extent_len = bytes;
3314
3315 /*
3316 * trim extent to this stripe
3317 */
3318 if (extent_logical < logical) {
3319 extent_len -= logical - extent_logical;
3320 extent_logical = logical;
3321 }
3322 if (extent_logical + extent_len >
3323 logical + map->stripe_len) {
3324 extent_len = logical + map->stripe_len -
3325 extent_logical;
3326 }
3327
3328 extent_physical = extent_logical - logical + physical;
3329 extent_dev = scrub_dev;
3330 extent_mirror_num = mirror_num;
3331 if (sctx->is_dev_replace)
3332 scrub_remap_extent(fs_info, extent_logical,
3333 extent_len, &extent_physical,
3334 &extent_dev,
3335 &extent_mirror_num);
3336
3337 if (flags & BTRFS_EXTENT_FLAG_DATA) {
3338 ret = btrfs_lookup_csums_range(csum_root,
3339 extent_logical,
3340 extent_logical + extent_len - 1,
3341 &sctx->csum_list, 1);
3342 if (ret)
3343 goto out;
3344 }
3345
3346 ret = scrub_extent(sctx, map, extent_logical, extent_len,
3347 extent_physical, extent_dev, flags,
3348 generation, extent_mirror_num,
3349 extent_logical - logical + physical);
3350
3351 scrub_free_csums(sctx);
3352
3353 if (ret)
3354 goto out;
3355
3356 if (extent_logical + extent_len <
3357 key.objectid + bytes) {
3358 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3359 /*
3360 * loop until we find next data stripe
3361 * or we have finished all stripes.
3362 */
3363 loop:
3364 physical += map->stripe_len;
3365 ret = get_raid56_logic_offset(physical,
3366 num, map, &logical,
3367 &stripe_logical);
3368 logical += base;
3369
3370 if (ret && physical < physical_end) {
3371 stripe_logical += base;
3372 stripe_end = stripe_logical +
3373 increment;
3374 ret = scrub_raid56_parity(sctx,
3375 map, scrub_dev, ppath,
3376 stripe_logical,
3377 stripe_end);
3378 if (ret)
3379 goto out;
3380 goto loop;
3381 }
3382 } else {
3383 physical += map->stripe_len;
3384 logical += increment;
3385 }
3386 if (logical < key.objectid + bytes) {
3387 cond_resched();
3388 goto again;
3389 }
3390
3391 if (physical >= physical_end) {
3392 stop_loop = 1;
3393 break;
3394 }
3395 }
3396 next:
3397 path->slots[0]++;
3398 }
3399 btrfs_release_path(path);
3400 skip:
3401 logical += increment;
3402 physical += map->stripe_len;
3403 spin_lock(&sctx->stat_lock);
3404 if (stop_loop)
3405 sctx->stat.last_physical = map->stripes[num].physical +
3406 length;
3407 else
3408 sctx->stat.last_physical = physical;
3409 spin_unlock(&sctx->stat_lock);
3410 if (stop_loop)
3411 break;
3412 }
3413 out:
3414 /* push queued extents */
3415 scrub_submit(sctx);
3416 mutex_lock(&sctx->wr_lock);
3417 scrub_wr_submit(sctx);
3418 mutex_unlock(&sctx->wr_lock);
3419
3420 blk_finish_plug(&plug);
3421 btrfs_free_path(path);
3422 btrfs_free_path(ppath);
3423 return ret < 0 ? ret : 0;
3424 }
3425
3426 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3427 struct btrfs_device *scrub_dev,
3428 u64 chunk_offset, u64 length,
3429 u64 dev_offset,
3430 struct btrfs_block_group *cache)
3431 {
3432 struct btrfs_fs_info *fs_info = sctx->fs_info;
3433 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3434 struct map_lookup *map;
3435 struct extent_map *em;
3436 int i;
3437 int ret = 0;
3438
3439 read_lock(&map_tree->lock);
3440 em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3441 read_unlock(&map_tree->lock);
3442
3443 if (!em) {
3444 /*
3445 * Might have been an unused block group deleted by the cleaner
3446 * kthread or relocation.
3447 */
3448 spin_lock(&cache->lock);
3449 if (!cache->removed)
3450 ret = -EINVAL;
3451 spin_unlock(&cache->lock);
3452
3453 return ret;
3454 }
3455
3456 map = em->map_lookup;
3457 if (em->start != chunk_offset)
3458 goto out;
3459
3460 if (em->len < length)
3461 goto out;
3462
3463 for (i = 0; i < map->num_stripes; ++i) {
3464 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3465 map->stripes[i].physical == dev_offset) {
3466 ret = scrub_stripe(sctx, map, scrub_dev, i,
3467 chunk_offset, length, cache);
3468 if (ret)
3469 goto out;
3470 }
3471 }
3472 out:
3473 free_extent_map(em);
3474
3475 return ret;
3476 }
3477
3478 static noinline_for_stack
3479 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3480 struct btrfs_device *scrub_dev, u64 start, u64 end)
3481 {
3482 struct btrfs_dev_extent *dev_extent = NULL;
3483 struct btrfs_path *path;
3484 struct btrfs_fs_info *fs_info = sctx->fs_info;
3485 struct btrfs_root *root = fs_info->dev_root;
3486 u64 length;
3487 u64 chunk_offset;
3488 int ret = 0;
3489 int ro_set;
3490 int slot;
3491 struct extent_buffer *l;
3492 struct btrfs_key key;
3493 struct btrfs_key found_key;
3494 struct btrfs_block_group *cache;
3495 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3496
3497 path = btrfs_alloc_path();
3498 if (!path)
3499 return -ENOMEM;
3500
3501 path->reada = READA_FORWARD;
3502 path->search_commit_root = 1;
3503 path->skip_locking = 1;
3504
3505 key.objectid = scrub_dev->devid;
3506 key.offset = 0ull;
3507 key.type = BTRFS_DEV_EXTENT_KEY;
3508
3509 while (1) {
3510 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3511 if (ret < 0)
3512 break;
3513 if (ret > 0) {
3514 if (path->slots[0] >=
3515 btrfs_header_nritems(path->nodes[0])) {
3516 ret = btrfs_next_leaf(root, path);
3517 if (ret < 0)
3518 break;
3519 if (ret > 0) {
3520 ret = 0;
3521 break;
3522 }
3523 } else {
3524 ret = 0;
3525 }
3526 }
3527
3528 l = path->nodes[0];
3529 slot = path->slots[0];
3530
3531 btrfs_item_key_to_cpu(l, &found_key, slot);
3532
3533 if (found_key.objectid != scrub_dev->devid)
3534 break;
3535
3536 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3537 break;
3538
3539 if (found_key.offset >= end)
3540 break;
3541
3542 if (found_key.offset < key.offset)
3543 break;
3544
3545 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3546 length = btrfs_dev_extent_length(l, dev_extent);
3547
3548 if (found_key.offset + length <= start)
3549 goto skip;
3550
3551 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3552
3553 /*
3554 * get a reference on the corresponding block group to prevent
3555 * the chunk from going away while we scrub it
3556 */
3557 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3558
3559 /* some chunks are removed but not committed to disk yet,
3560 * continue scrubbing */
3561 if (!cache)
3562 goto skip;
3563
3564 /*
3565 * Make sure that while we are scrubbing the corresponding block
3566 * group doesn't get its logical address and its device extents
3567 * reused for another block group, which can possibly be of a
3568 * different type and different profile. We do this to prevent
3569 * false error detections and crashes due to bogus attempts to
3570 * repair extents.
3571 */
3572 spin_lock(&cache->lock);
3573 if (cache->removed) {
3574 spin_unlock(&cache->lock);
3575 btrfs_put_block_group(cache);
3576 goto skip;
3577 }
3578 btrfs_freeze_block_group(cache);
3579 spin_unlock(&cache->lock);
3580
3581 /*
3582 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3583 * to avoid deadlock caused by:
3584 * btrfs_inc_block_group_ro()
3585 * -> btrfs_wait_for_commit()
3586 * -> btrfs_commit_transaction()
3587 * -> btrfs_scrub_pause()
3588 */
3589 scrub_pause_on(fs_info);
3590
3591 /*
3592 * Don't do chunk preallocation for scrub.
3593 *
3594 * This is especially important for SYSTEM bgs, or we can hit
3595 * -EFBIG from btrfs_finish_chunk_alloc() like:
3596 * 1. The only SYSTEM bg is marked RO.
3597 * Since SYSTEM bg is small, that's pretty common.
3598 * 2. New SYSTEM bg will be allocated
3599 * Due to regular version will allocate new chunk.
3600 * 3. New SYSTEM bg is empty and will get cleaned up
3601 * Before cleanup really happens, it's marked RO again.
3602 * 4. Empty SYSTEM bg get scrubbed
3603 * We go back to 2.
3604 *
3605 * This can easily boost the amount of SYSTEM chunks if cleaner
3606 * thread can't be triggered fast enough, and use up all space
3607 * of btrfs_super_block::sys_chunk_array
3608 *
3609 * While for dev replace, we need to try our best to mark block
3610 * group RO, to prevent race between:
3611 * - Write duplication
3612 * Contains latest data
3613 * - Scrub copy
3614 * Contains data from commit tree
3615 *
3616 * If target block group is not marked RO, nocow writes can
3617 * be overwritten by scrub copy, causing data corruption.
3618 * So for dev-replace, it's not allowed to continue if a block
3619 * group is not RO.
3620 */
3621 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3622 if (ret == 0) {
3623 ro_set = 1;
3624 } else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3625 /*
3626 * btrfs_inc_block_group_ro return -ENOSPC when it
3627 * failed in creating new chunk for metadata.
3628 * It is not a problem for scrub, because
3629 * metadata are always cowed, and our scrub paused
3630 * commit_transactions.
3631 */
3632 ro_set = 0;
3633 } else if (ret == -ETXTBSY) {
3634 btrfs_warn(fs_info,
3635 "skipping scrub of block group %llu due to active swapfile",
3636 cache->start);
3637 scrub_pause_off(fs_info);
3638 ret = 0;
3639 goto skip_unfreeze;
3640 } else {
3641 btrfs_warn(fs_info,
3642 "failed setting block group ro: %d", ret);
3643 btrfs_unfreeze_block_group(cache);
3644 btrfs_put_block_group(cache);
3645 scrub_pause_off(fs_info);
3646 break;
3647 }
3648
3649 /*
3650 * Now the target block is marked RO, wait for nocow writes to
3651 * finish before dev-replace.
3652 * COW is fine, as COW never overwrites extents in commit tree.
3653 */
3654 if (sctx->is_dev_replace) {
3655 btrfs_wait_nocow_writers(cache);
3656 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3657 cache->length);
3658 }
3659
3660 scrub_pause_off(fs_info);
3661 down_write(&dev_replace->rwsem);
3662 dev_replace->cursor_right = found_key.offset + length;
3663 dev_replace->cursor_left = found_key.offset;
3664 dev_replace->item_needs_writeback = 1;
3665 up_write(&dev_replace->rwsem);
3666
3667 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3668 found_key.offset, cache);
3669
3670 /*
3671 * flush, submit all pending read and write bios, afterwards
3672 * wait for them.
3673 * Note that in the dev replace case, a read request causes
3674 * write requests that are submitted in the read completion
3675 * worker. Therefore in the current situation, it is required
3676 * that all write requests are flushed, so that all read and
3677 * write requests are really completed when bios_in_flight
3678 * changes to 0.
3679 */
3680 sctx->flush_all_writes = true;
3681 scrub_submit(sctx);
3682 mutex_lock(&sctx->wr_lock);
3683 scrub_wr_submit(sctx);
3684 mutex_unlock(&sctx->wr_lock);
3685
3686 wait_event(sctx->list_wait,
3687 atomic_read(&sctx->bios_in_flight) == 0);
3688
3689 scrub_pause_on(fs_info);
3690
3691 /*
3692 * must be called before we decrease @scrub_paused.
3693 * make sure we don't block transaction commit while
3694 * we are waiting pending workers finished.
3695 */
3696 wait_event(sctx->list_wait,
3697 atomic_read(&sctx->workers_pending) == 0);
3698 sctx->flush_all_writes = false;
3699
3700 scrub_pause_off(fs_info);
3701
3702 down_write(&dev_replace->rwsem);
3703 dev_replace->cursor_left = dev_replace->cursor_right;
3704 dev_replace->item_needs_writeback = 1;
3705 up_write(&dev_replace->rwsem);
3706
3707 if (ro_set)
3708 btrfs_dec_block_group_ro(cache);
3709
3710 /*
3711 * We might have prevented the cleaner kthread from deleting
3712 * this block group if it was already unused because we raced
3713 * and set it to RO mode first. So add it back to the unused
3714 * list, otherwise it might not ever be deleted unless a manual
3715 * balance is triggered or it becomes used and unused again.
3716 */
3717 spin_lock(&cache->lock);
3718 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3719 cache->used == 0) {
3720 spin_unlock(&cache->lock);
3721 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3722 btrfs_discard_queue_work(&fs_info->discard_ctl,
3723 cache);
3724 else
3725 btrfs_mark_bg_unused(cache);
3726 } else {
3727 spin_unlock(&cache->lock);
3728 }
3729 skip_unfreeze:
3730 btrfs_unfreeze_block_group(cache);
3731 btrfs_put_block_group(cache);
3732 if (ret)
3733 break;
3734 if (sctx->is_dev_replace &&
3735 atomic64_read(&dev_replace->num_write_errors) > 0) {
3736 ret = -EIO;
3737 break;
3738 }
3739 if (sctx->stat.malloc_errors > 0) {
3740 ret = -ENOMEM;
3741 break;
3742 }
3743 skip:
3744 key.offset = found_key.offset + length;
3745 btrfs_release_path(path);
3746 }
3747
3748 btrfs_free_path(path);
3749
3750 return ret;
3751 }
3752
3753 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3754 struct btrfs_device *scrub_dev)
3755 {
3756 int i;
3757 u64 bytenr;
3758 u64 gen;
3759 int ret;
3760 struct btrfs_fs_info *fs_info = sctx->fs_info;
3761
3762 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3763 return -EROFS;
3764
3765 /* Seed devices of a new filesystem has their own generation. */
3766 if (scrub_dev->fs_devices != fs_info->fs_devices)
3767 gen = scrub_dev->generation;
3768 else
3769 gen = fs_info->last_trans_committed;
3770
3771 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3772 bytenr = btrfs_sb_offset(i);
3773 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3774 scrub_dev->commit_total_bytes)
3775 break;
3776 if (!btrfs_check_super_location(scrub_dev, bytenr))
3777 continue;
3778
3779 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3780 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3781 NULL, bytenr);
3782 if (ret)
3783 return ret;
3784 }
3785 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3786
3787 return 0;
3788 }
3789
3790 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3791 {
3792 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3793 &fs_info->scrub_lock)) {
3794 struct btrfs_workqueue *scrub_workers = NULL;
3795 struct btrfs_workqueue *scrub_wr_comp = NULL;
3796 struct btrfs_workqueue *scrub_parity = NULL;
3797
3798 scrub_workers = fs_info->scrub_workers;
3799 scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3800 scrub_parity = fs_info->scrub_parity_workers;
3801
3802 fs_info->scrub_workers = NULL;
3803 fs_info->scrub_wr_completion_workers = NULL;
3804 fs_info->scrub_parity_workers = NULL;
3805 mutex_unlock(&fs_info->scrub_lock);
3806
3807 btrfs_destroy_workqueue(scrub_workers);
3808 btrfs_destroy_workqueue(scrub_wr_comp);
3809 btrfs_destroy_workqueue(scrub_parity);
3810 }
3811 }
3812
3813 /*
3814 * get a reference count on fs_info->scrub_workers. start worker if necessary
3815 */
3816 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3817 int is_dev_replace)
3818 {
3819 struct btrfs_workqueue *scrub_workers = NULL;
3820 struct btrfs_workqueue *scrub_wr_comp = NULL;
3821 struct btrfs_workqueue *scrub_parity = NULL;
3822 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3823 int max_active = fs_info->thread_pool_size;
3824 int ret = -ENOMEM;
3825
3826 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
3827 return 0;
3828
3829 scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
3830 is_dev_replace ? 1 : max_active, 4);
3831 if (!scrub_workers)
3832 goto fail_scrub_workers;
3833
3834 scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3835 max_active, 2);
3836 if (!scrub_wr_comp)
3837 goto fail_scrub_wr_completion_workers;
3838
3839 scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3840 max_active, 2);
3841 if (!scrub_parity)
3842 goto fail_scrub_parity_workers;
3843
3844 mutex_lock(&fs_info->scrub_lock);
3845 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3846 ASSERT(fs_info->scrub_workers == NULL &&
3847 fs_info->scrub_wr_completion_workers == NULL &&
3848 fs_info->scrub_parity_workers == NULL);
3849 fs_info->scrub_workers = scrub_workers;
3850 fs_info->scrub_wr_completion_workers = scrub_wr_comp;
3851 fs_info->scrub_parity_workers = scrub_parity;
3852 refcount_set(&fs_info->scrub_workers_refcnt, 1);
3853 mutex_unlock(&fs_info->scrub_lock);
3854 return 0;
3855 }
3856 /* Other thread raced in and created the workers for us */
3857 refcount_inc(&fs_info->scrub_workers_refcnt);
3858 mutex_unlock(&fs_info->scrub_lock);
3859
3860 ret = 0;
3861 btrfs_destroy_workqueue(scrub_parity);
3862 fail_scrub_parity_workers:
3863 btrfs_destroy_workqueue(scrub_wr_comp);
3864 fail_scrub_wr_completion_workers:
3865 btrfs_destroy_workqueue(scrub_workers);
3866 fail_scrub_workers:
3867 return ret;
3868 }
3869
3870 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3871 u64 end, struct btrfs_scrub_progress *progress,
3872 int readonly, int is_dev_replace)
3873 {
3874 struct scrub_ctx *sctx;
3875 int ret;
3876 struct btrfs_device *dev;
3877 unsigned int nofs_flag;
3878
3879 if (btrfs_fs_closing(fs_info))
3880 return -EAGAIN;
3881
3882 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3883 /*
3884 * in this case scrub is unable to calculate the checksum
3885 * the way scrub is implemented. Do not handle this
3886 * situation at all because it won't ever happen.
3887 */
3888 btrfs_err(fs_info,
3889 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3890 fs_info->nodesize,
3891 BTRFS_STRIPE_LEN);
3892 return -EINVAL;
3893 }
3894
3895 if (fs_info->nodesize >
3896 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3897 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3898 /*
3899 * would exhaust the array bounds of pagev member in
3900 * struct scrub_block
3901 */
3902 btrfs_err(fs_info,
3903 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3904 fs_info->nodesize,
3905 SCRUB_MAX_PAGES_PER_BLOCK,
3906 fs_info->sectorsize,
3907 SCRUB_MAX_PAGES_PER_BLOCK);
3908 return -EINVAL;
3909 }
3910
3911 /* Allocate outside of device_list_mutex */
3912 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3913 if (IS_ERR(sctx))
3914 return PTR_ERR(sctx);
3915
3916 ret = scrub_workers_get(fs_info, is_dev_replace);
3917 if (ret)
3918 goto out_free_ctx;
3919
3920 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3921 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
3922 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3923 !is_dev_replace)) {
3924 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3925 ret = -ENODEV;
3926 goto out;
3927 }
3928
3929 if (!is_dev_replace && !readonly &&
3930 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3931 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3932 btrfs_err_in_rcu(fs_info,
3933 "scrub on devid %llu: filesystem on %s is not writable",
3934 devid, rcu_str_deref(dev->name));
3935 ret = -EROFS;
3936 goto out;
3937 }
3938
3939 mutex_lock(&fs_info->scrub_lock);
3940 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3941 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3942 mutex_unlock(&fs_info->scrub_lock);
3943 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3944 ret = -EIO;
3945 goto out;
3946 }
3947
3948 down_read(&fs_info->dev_replace.rwsem);
3949 if (dev->scrub_ctx ||
3950 (!is_dev_replace &&
3951 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3952 up_read(&fs_info->dev_replace.rwsem);
3953 mutex_unlock(&fs_info->scrub_lock);
3954 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3955 ret = -EINPROGRESS;
3956 goto out;
3957 }
3958 up_read(&fs_info->dev_replace.rwsem);
3959
3960 sctx->readonly = readonly;
3961 dev->scrub_ctx = sctx;
3962 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3963
3964 /*
3965 * checking @scrub_pause_req here, we can avoid
3966 * race between committing transaction and scrubbing.
3967 */
3968 __scrub_blocked_if_needed(fs_info);
3969 atomic_inc(&fs_info->scrubs_running);
3970 mutex_unlock(&fs_info->scrub_lock);
3971
3972 /*
3973 * In order to avoid deadlock with reclaim when there is a transaction
3974 * trying to pause scrub, make sure we use GFP_NOFS for all the
3975 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3976 * invoked by our callees. The pausing request is done when the
3977 * transaction commit starts, and it blocks the transaction until scrub
3978 * is paused (done at specific points at scrub_stripe() or right above
3979 * before incrementing fs_info->scrubs_running).
3980 */
3981 nofs_flag = memalloc_nofs_save();
3982 if (!is_dev_replace) {
3983 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3984 /*
3985 * by holding device list mutex, we can
3986 * kick off writing super in log tree sync.
3987 */
3988 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3989 ret = scrub_supers(sctx, dev);
3990 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3991 }
3992
3993 if (!ret)
3994 ret = scrub_enumerate_chunks(sctx, dev, start, end);
3995 memalloc_nofs_restore(nofs_flag);
3996
3997 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3998 atomic_dec(&fs_info->scrubs_running);
3999 wake_up(&fs_info->scrub_pause_wait);
4000
4001 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4002
4003 if (progress)
4004 memcpy(progress, &sctx->stat, sizeof(*progress));
4005
4006 if (!is_dev_replace)
4007 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4008 ret ? "not finished" : "finished", devid, ret);
4009
4010 mutex_lock(&fs_info->scrub_lock);
4011 dev->scrub_ctx = NULL;
4012 mutex_unlock(&fs_info->scrub_lock);
4013
4014 scrub_workers_put(fs_info);
4015 scrub_put_ctx(sctx);
4016
4017 return ret;
4018 out:
4019 scrub_workers_put(fs_info);
4020 out_free_ctx:
4021 scrub_free_ctx(sctx);
4022
4023 return ret;
4024 }
4025
4026 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4027 {
4028 mutex_lock(&fs_info->scrub_lock);
4029 atomic_inc(&fs_info->scrub_pause_req);
4030 while (atomic_read(&fs_info->scrubs_paused) !=
4031 atomic_read(&fs_info->scrubs_running)) {
4032 mutex_unlock(&fs_info->scrub_lock);
4033 wait_event(fs_info->scrub_pause_wait,
4034 atomic_read(&fs_info->scrubs_paused) ==
4035 atomic_read(&fs_info->scrubs_running));
4036 mutex_lock(&fs_info->scrub_lock);
4037 }
4038 mutex_unlock(&fs_info->scrub_lock);
4039 }
4040
4041 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4042 {
4043 atomic_dec(&fs_info->scrub_pause_req);
4044 wake_up(&fs_info->scrub_pause_wait);
4045 }
4046
4047 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4048 {
4049 mutex_lock(&fs_info->scrub_lock);
4050 if (!atomic_read(&fs_info->scrubs_running)) {
4051 mutex_unlock(&fs_info->scrub_lock);
4052 return -ENOTCONN;
4053 }
4054
4055 atomic_inc(&fs_info->scrub_cancel_req);
4056 while (atomic_read(&fs_info->scrubs_running)) {
4057 mutex_unlock(&fs_info->scrub_lock);
4058 wait_event(fs_info->scrub_pause_wait,
4059 atomic_read(&fs_info->scrubs_running) == 0);
4060 mutex_lock(&fs_info->scrub_lock);
4061 }
4062 atomic_dec(&fs_info->scrub_cancel_req);
4063 mutex_unlock(&fs_info->scrub_lock);
4064
4065 return 0;
4066 }
4067
4068 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4069 {
4070 struct btrfs_fs_info *fs_info = dev->fs_info;
4071 struct scrub_ctx *sctx;
4072
4073 mutex_lock(&fs_info->scrub_lock);
4074 sctx = dev->scrub_ctx;
4075 if (!sctx) {
4076 mutex_unlock(&fs_info->scrub_lock);
4077 return -ENOTCONN;
4078 }
4079 atomic_inc(&sctx->cancel_req);
4080 while (dev->scrub_ctx) {
4081 mutex_unlock(&fs_info->scrub_lock);
4082 wait_event(fs_info->scrub_pause_wait,
4083 dev->scrub_ctx == NULL);
4084 mutex_lock(&fs_info->scrub_lock);
4085 }
4086 mutex_unlock(&fs_info->scrub_lock);
4087
4088 return 0;
4089 }
4090
4091 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4092 struct btrfs_scrub_progress *progress)
4093 {
4094 struct btrfs_device *dev;
4095 struct scrub_ctx *sctx = NULL;
4096
4097 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4098 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4099 if (dev)
4100 sctx = dev->scrub_ctx;
4101 if (sctx)
4102 memcpy(progress, &sctx->stat, sizeof(*progress));
4103 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4104
4105 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4106 }
4107
4108 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4109 u64 extent_logical, u32 extent_len,
4110 u64 *extent_physical,
4111 struct btrfs_device **extent_dev,
4112 int *extent_mirror_num)
4113 {
4114 u64 mapped_length;
4115 struct btrfs_bio *bbio = NULL;
4116 int ret;
4117
4118 mapped_length = extent_len;
4119 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4120 &mapped_length, &bbio, 0);
4121 if (ret || !bbio || mapped_length < extent_len ||
4122 !bbio->stripes[0].dev->bdev) {
4123 btrfs_put_bbio(bbio);
4124 return;
4125 }
4126
4127 *extent_physical = bbio->stripes[0].physical;
4128 *extent_mirror_num = bbio->mirror_num;
4129 *extent_dev = bbio->stripes[0].dev;
4130 btrfs_put_bbio(bbio);
4131 }