]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/send.c
70272e1d2b1e2757f9183f55f391a76d89465c27
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / send.c
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37
38 static int g_verbose = 0;
39
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41
42 /*
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
48 */
49 struct fs_path {
50 union {
51 struct {
52 char *start;
53 char *end;
54 char *prepared;
55
56 char *buf;
57 int buf_len;
58 unsigned int reversed:1;
59 unsigned int virtual_mem:1;
60 char inline_buf[];
61 };
62 char pad[PAGE_SIZE];
63 };
64 };
65 #define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67
68
69 /* reused for each extent */
70 struct clone_root {
71 struct btrfs_root *root;
72 u64 ino;
73 u64 offset;
74
75 u64 found_refs;
76 };
77
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80
81 struct send_ctx {
82 struct file *send_filp;
83 loff_t send_off;
84 char *send_buf;
85 u32 send_size;
86 u32 send_max_size;
87 u64 total_send_size;
88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
90
91 struct btrfs_root *send_root;
92 struct btrfs_root *parent_root;
93 struct clone_root *clone_roots;
94 int clone_roots_cnt;
95
96 /* current state of the compare_tree call */
97 struct btrfs_path *left_path;
98 struct btrfs_path *right_path;
99 struct btrfs_key *cmp_key;
100
101 /*
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
104 */
105 u64 cur_ino;
106 u64 cur_inode_gen;
107 int cur_inode_new;
108 int cur_inode_new_gen;
109 int cur_inode_deleted;
110 u64 cur_inode_size;
111 u64 cur_inode_mode;
112 u64 cur_inode_last_extent;
113
114 u64 send_progress;
115
116 struct list_head new_refs;
117 struct list_head deleted_refs;
118
119 struct radix_tree_root name_cache;
120 struct list_head name_cache_list;
121 int name_cache_size;
122
123 char *read_buf;
124
125 /*
126 * We process inodes by their increasing order, so if before an
127 * incremental send we reverse the parent/child relationship of
128 * directories such that a directory with a lower inode number was
129 * the parent of a directory with a higher inode number, and the one
130 * becoming the new parent got renamed too, we can't rename/move the
131 * directory with lower inode number when we finish processing it - we
132 * must process the directory with higher inode number first, then
133 * rename/move it and then rename/move the directory with lower inode
134 * number. Example follows.
135 *
136 * Tree state when the first send was performed:
137 *
138 * .
139 * |-- a (ino 257)
140 * |-- b (ino 258)
141 * |
142 * |
143 * |-- c (ino 259)
144 * | |-- d (ino 260)
145 * |
146 * |-- c2 (ino 261)
147 *
148 * Tree state when the second (incremental) send is performed:
149 *
150 * .
151 * |-- a (ino 257)
152 * |-- b (ino 258)
153 * |-- c2 (ino 261)
154 * |-- d2 (ino 260)
155 * |-- cc (ino 259)
156 *
157 * The sequence of steps that lead to the second state was:
158 *
159 * mv /a/b/c/d /a/b/c2/d2
160 * mv /a/b/c /a/b/c2/d2/cc
161 *
162 * "c" has lower inode number, but we can't move it (2nd mv operation)
163 * before we move "d", which has higher inode number.
164 *
165 * So we just memorize which move/rename operations must be performed
166 * later when their respective parent is processed and moved/renamed.
167 */
168
169 /* Indexed by parent directory inode number. */
170 struct rb_root pending_dir_moves;
171
172 /*
173 * Reverse index, indexed by the inode number of a directory that
174 * is waiting for the move/rename of its immediate parent before its
175 * own move/rename can be performed.
176 */
177 struct rb_root waiting_dir_moves;
178 };
179
180 struct pending_dir_move {
181 struct rb_node node;
182 struct list_head list;
183 u64 parent_ino;
184 u64 ino;
185 u64 gen;
186 struct list_head update_refs;
187 };
188
189 struct waiting_dir_move {
190 struct rb_node node;
191 u64 ino;
192 };
193
194 struct name_cache_entry {
195 struct list_head list;
196 /*
197 * radix_tree has only 32bit entries but we need to handle 64bit inums.
198 * We use the lower 32bit of the 64bit inum to store it in the tree. If
199 * more then one inum would fall into the same entry, we use radix_list
200 * to store the additional entries. radix_list is also used to store
201 * entries where two entries have the same inum but different
202 * generations.
203 */
204 struct list_head radix_list;
205 u64 ino;
206 u64 gen;
207 u64 parent_ino;
208 u64 parent_gen;
209 int ret;
210 int need_later_update;
211 int name_len;
212 char name[];
213 };
214
215 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
216
217 static int need_send_hole(struct send_ctx *sctx)
218 {
219 return (sctx->parent_root && !sctx->cur_inode_new &&
220 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
221 S_ISREG(sctx->cur_inode_mode));
222 }
223
224 static void fs_path_reset(struct fs_path *p)
225 {
226 if (p->reversed) {
227 p->start = p->buf + p->buf_len - 1;
228 p->end = p->start;
229 *p->start = 0;
230 } else {
231 p->start = p->buf;
232 p->end = p->start;
233 *p->start = 0;
234 }
235 }
236
237 static struct fs_path *fs_path_alloc(void)
238 {
239 struct fs_path *p;
240
241 p = kmalloc(sizeof(*p), GFP_NOFS);
242 if (!p)
243 return NULL;
244 p->reversed = 0;
245 p->virtual_mem = 0;
246 p->buf = p->inline_buf;
247 p->buf_len = FS_PATH_INLINE_SIZE;
248 fs_path_reset(p);
249 return p;
250 }
251
252 static struct fs_path *fs_path_alloc_reversed(void)
253 {
254 struct fs_path *p;
255
256 p = fs_path_alloc();
257 if (!p)
258 return NULL;
259 p->reversed = 1;
260 fs_path_reset(p);
261 return p;
262 }
263
264 static void fs_path_free(struct fs_path *p)
265 {
266 if (!p)
267 return;
268 if (p->buf != p->inline_buf) {
269 if (p->virtual_mem)
270 vfree(p->buf);
271 else
272 kfree(p->buf);
273 }
274 kfree(p);
275 }
276
277 static int fs_path_len(struct fs_path *p)
278 {
279 return p->end - p->start;
280 }
281
282 static int fs_path_ensure_buf(struct fs_path *p, int len)
283 {
284 char *tmp_buf;
285 int path_len;
286 int old_buf_len;
287
288 len++;
289
290 if (p->buf_len >= len)
291 return 0;
292
293 path_len = p->end - p->start;
294 old_buf_len = p->buf_len;
295 len = PAGE_ALIGN(len);
296
297 if (p->buf == p->inline_buf) {
298 tmp_buf = kmalloc(len, GFP_NOFS | __GFP_NOWARN);
299 if (!tmp_buf) {
300 tmp_buf = vmalloc(len);
301 if (!tmp_buf)
302 return -ENOMEM;
303 p->virtual_mem = 1;
304 }
305 memcpy(tmp_buf, p->buf, p->buf_len);
306 p->buf = tmp_buf;
307 p->buf_len = len;
308 } else {
309 if (p->virtual_mem) {
310 tmp_buf = vmalloc(len);
311 if (!tmp_buf)
312 return -ENOMEM;
313 memcpy(tmp_buf, p->buf, p->buf_len);
314 vfree(p->buf);
315 } else {
316 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
317 if (!tmp_buf) {
318 tmp_buf = vmalloc(len);
319 if (!tmp_buf)
320 return -ENOMEM;
321 memcpy(tmp_buf, p->buf, p->buf_len);
322 kfree(p->buf);
323 p->virtual_mem = 1;
324 }
325 }
326 p->buf = tmp_buf;
327 p->buf_len = len;
328 }
329 if (p->reversed) {
330 tmp_buf = p->buf + old_buf_len - path_len - 1;
331 p->end = p->buf + p->buf_len - 1;
332 p->start = p->end - path_len;
333 memmove(p->start, tmp_buf, path_len + 1);
334 } else {
335 p->start = p->buf;
336 p->end = p->start + path_len;
337 }
338 return 0;
339 }
340
341 static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
342 {
343 int ret;
344 int new_len;
345
346 new_len = p->end - p->start + name_len;
347 if (p->start != p->end)
348 new_len++;
349 ret = fs_path_ensure_buf(p, new_len);
350 if (ret < 0)
351 goto out;
352
353 if (p->reversed) {
354 if (p->start != p->end)
355 *--p->start = '/';
356 p->start -= name_len;
357 p->prepared = p->start;
358 } else {
359 if (p->start != p->end)
360 *p->end++ = '/';
361 p->prepared = p->end;
362 p->end += name_len;
363 *p->end = 0;
364 }
365
366 out:
367 return ret;
368 }
369
370 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
371 {
372 int ret;
373
374 ret = fs_path_prepare_for_add(p, name_len);
375 if (ret < 0)
376 goto out;
377 memcpy(p->prepared, name, name_len);
378 p->prepared = NULL;
379
380 out:
381 return ret;
382 }
383
384 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
385 {
386 int ret;
387
388 ret = fs_path_prepare_for_add(p, p2->end - p2->start);
389 if (ret < 0)
390 goto out;
391 memcpy(p->prepared, p2->start, p2->end - p2->start);
392 p->prepared = NULL;
393
394 out:
395 return ret;
396 }
397
398 static int fs_path_add_from_extent_buffer(struct fs_path *p,
399 struct extent_buffer *eb,
400 unsigned long off, int len)
401 {
402 int ret;
403
404 ret = fs_path_prepare_for_add(p, len);
405 if (ret < 0)
406 goto out;
407
408 read_extent_buffer(eb, p->prepared, off, len);
409 p->prepared = NULL;
410
411 out:
412 return ret;
413 }
414
415 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
416 {
417 int ret;
418
419 p->reversed = from->reversed;
420 fs_path_reset(p);
421
422 ret = fs_path_add_path(p, from);
423
424 return ret;
425 }
426
427
428 static void fs_path_unreverse(struct fs_path *p)
429 {
430 char *tmp;
431 int len;
432
433 if (!p->reversed)
434 return;
435
436 tmp = p->start;
437 len = p->end - p->start;
438 p->start = p->buf;
439 p->end = p->start + len;
440 memmove(p->start, tmp, len + 1);
441 p->reversed = 0;
442 }
443
444 static struct btrfs_path *alloc_path_for_send(void)
445 {
446 struct btrfs_path *path;
447
448 path = btrfs_alloc_path();
449 if (!path)
450 return NULL;
451 path->search_commit_root = 1;
452 path->skip_locking = 1;
453 return path;
454 }
455
456 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
457 {
458 int ret;
459 mm_segment_t old_fs;
460 u32 pos = 0;
461
462 old_fs = get_fs();
463 set_fs(KERNEL_DS);
464
465 while (pos < len) {
466 ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
467 /* TODO handle that correctly */
468 /*if (ret == -ERESTARTSYS) {
469 continue;
470 }*/
471 if (ret < 0)
472 goto out;
473 if (ret == 0) {
474 ret = -EIO;
475 goto out;
476 }
477 pos += ret;
478 }
479
480 ret = 0;
481
482 out:
483 set_fs(old_fs);
484 return ret;
485 }
486
487 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
488 {
489 struct btrfs_tlv_header *hdr;
490 int total_len = sizeof(*hdr) + len;
491 int left = sctx->send_max_size - sctx->send_size;
492
493 if (unlikely(left < total_len))
494 return -EOVERFLOW;
495
496 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
497 hdr->tlv_type = cpu_to_le16(attr);
498 hdr->tlv_len = cpu_to_le16(len);
499 memcpy(hdr + 1, data, len);
500 sctx->send_size += total_len;
501
502 return 0;
503 }
504
505 #define TLV_PUT_DEFINE_INT(bits) \
506 static int tlv_put_u##bits(struct send_ctx *sctx, \
507 u##bits attr, u##bits value) \
508 { \
509 __le##bits __tmp = cpu_to_le##bits(value); \
510 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
511 }
512
513 TLV_PUT_DEFINE_INT(64)
514
515 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
516 const char *str, int len)
517 {
518 if (len == -1)
519 len = strlen(str);
520 return tlv_put(sctx, attr, str, len);
521 }
522
523 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
524 const u8 *uuid)
525 {
526 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
527 }
528
529 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
530 struct extent_buffer *eb,
531 struct btrfs_timespec *ts)
532 {
533 struct btrfs_timespec bts;
534 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
535 return tlv_put(sctx, attr, &bts, sizeof(bts));
536 }
537
538
539 #define TLV_PUT(sctx, attrtype, attrlen, data) \
540 do { \
541 ret = tlv_put(sctx, attrtype, attrlen, data); \
542 if (ret < 0) \
543 goto tlv_put_failure; \
544 } while (0)
545
546 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
547 do { \
548 ret = tlv_put_u##bits(sctx, attrtype, value); \
549 if (ret < 0) \
550 goto tlv_put_failure; \
551 } while (0)
552
553 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
554 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
555 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
556 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
557 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
558 do { \
559 ret = tlv_put_string(sctx, attrtype, str, len); \
560 if (ret < 0) \
561 goto tlv_put_failure; \
562 } while (0)
563 #define TLV_PUT_PATH(sctx, attrtype, p) \
564 do { \
565 ret = tlv_put_string(sctx, attrtype, p->start, \
566 p->end - p->start); \
567 if (ret < 0) \
568 goto tlv_put_failure; \
569 } while(0)
570 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
571 do { \
572 ret = tlv_put_uuid(sctx, attrtype, uuid); \
573 if (ret < 0) \
574 goto tlv_put_failure; \
575 } while (0)
576 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
577 do { \
578 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
579 if (ret < 0) \
580 goto tlv_put_failure; \
581 } while (0)
582
583 static int send_header(struct send_ctx *sctx)
584 {
585 struct btrfs_stream_header hdr;
586
587 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
588 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
589
590 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
591 &sctx->send_off);
592 }
593
594 /*
595 * For each command/item we want to send to userspace, we call this function.
596 */
597 static int begin_cmd(struct send_ctx *sctx, int cmd)
598 {
599 struct btrfs_cmd_header *hdr;
600
601 if (WARN_ON(!sctx->send_buf))
602 return -EINVAL;
603
604 BUG_ON(sctx->send_size);
605
606 sctx->send_size += sizeof(*hdr);
607 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
608 hdr->cmd = cpu_to_le16(cmd);
609
610 return 0;
611 }
612
613 static int send_cmd(struct send_ctx *sctx)
614 {
615 int ret;
616 struct btrfs_cmd_header *hdr;
617 u32 crc;
618
619 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
620 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
621 hdr->crc = 0;
622
623 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
624 hdr->crc = cpu_to_le32(crc);
625
626 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
627 &sctx->send_off);
628
629 sctx->total_send_size += sctx->send_size;
630 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
631 sctx->send_size = 0;
632
633 return ret;
634 }
635
636 /*
637 * Sends a move instruction to user space
638 */
639 static int send_rename(struct send_ctx *sctx,
640 struct fs_path *from, struct fs_path *to)
641 {
642 int ret;
643
644 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
645
646 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
647 if (ret < 0)
648 goto out;
649
650 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
651 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
652
653 ret = send_cmd(sctx);
654
655 tlv_put_failure:
656 out:
657 return ret;
658 }
659
660 /*
661 * Sends a link instruction to user space
662 */
663 static int send_link(struct send_ctx *sctx,
664 struct fs_path *path, struct fs_path *lnk)
665 {
666 int ret;
667
668 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
669
670 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
671 if (ret < 0)
672 goto out;
673
674 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
675 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
676
677 ret = send_cmd(sctx);
678
679 tlv_put_failure:
680 out:
681 return ret;
682 }
683
684 /*
685 * Sends an unlink instruction to user space
686 */
687 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
688 {
689 int ret;
690
691 verbose_printk("btrfs: send_unlink %s\n", path->start);
692
693 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
694 if (ret < 0)
695 goto out;
696
697 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
698
699 ret = send_cmd(sctx);
700
701 tlv_put_failure:
702 out:
703 return ret;
704 }
705
706 /*
707 * Sends a rmdir instruction to user space
708 */
709 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
710 {
711 int ret;
712
713 verbose_printk("btrfs: send_rmdir %s\n", path->start);
714
715 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
716 if (ret < 0)
717 goto out;
718
719 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
720
721 ret = send_cmd(sctx);
722
723 tlv_put_failure:
724 out:
725 return ret;
726 }
727
728 /*
729 * Helper function to retrieve some fields from an inode item.
730 */
731 static int get_inode_info(struct btrfs_root *root,
732 u64 ino, u64 *size, u64 *gen,
733 u64 *mode, u64 *uid, u64 *gid,
734 u64 *rdev)
735 {
736 int ret;
737 struct btrfs_inode_item *ii;
738 struct btrfs_key key;
739 struct btrfs_path *path;
740
741 path = alloc_path_for_send();
742 if (!path)
743 return -ENOMEM;
744
745 key.objectid = ino;
746 key.type = BTRFS_INODE_ITEM_KEY;
747 key.offset = 0;
748 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
749 if (ret < 0)
750 goto out;
751 if (ret) {
752 ret = -ENOENT;
753 goto out;
754 }
755
756 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
757 struct btrfs_inode_item);
758 if (size)
759 *size = btrfs_inode_size(path->nodes[0], ii);
760 if (gen)
761 *gen = btrfs_inode_generation(path->nodes[0], ii);
762 if (mode)
763 *mode = btrfs_inode_mode(path->nodes[0], ii);
764 if (uid)
765 *uid = btrfs_inode_uid(path->nodes[0], ii);
766 if (gid)
767 *gid = btrfs_inode_gid(path->nodes[0], ii);
768 if (rdev)
769 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
770
771 out:
772 btrfs_free_path(path);
773 return ret;
774 }
775
776 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
777 struct fs_path *p,
778 void *ctx);
779
780 /*
781 * Helper function to iterate the entries in ONE btrfs_inode_ref or
782 * btrfs_inode_extref.
783 * The iterate callback may return a non zero value to stop iteration. This can
784 * be a negative value for error codes or 1 to simply stop it.
785 *
786 * path must point to the INODE_REF or INODE_EXTREF when called.
787 */
788 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
789 struct btrfs_key *found_key, int resolve,
790 iterate_inode_ref_t iterate, void *ctx)
791 {
792 struct extent_buffer *eb = path->nodes[0];
793 struct btrfs_item *item;
794 struct btrfs_inode_ref *iref;
795 struct btrfs_inode_extref *extref;
796 struct btrfs_path *tmp_path;
797 struct fs_path *p;
798 u32 cur = 0;
799 u32 total;
800 int slot = path->slots[0];
801 u32 name_len;
802 char *start;
803 int ret = 0;
804 int num = 0;
805 int index;
806 u64 dir;
807 unsigned long name_off;
808 unsigned long elem_size;
809 unsigned long ptr;
810
811 p = fs_path_alloc_reversed();
812 if (!p)
813 return -ENOMEM;
814
815 tmp_path = alloc_path_for_send();
816 if (!tmp_path) {
817 fs_path_free(p);
818 return -ENOMEM;
819 }
820
821
822 if (found_key->type == BTRFS_INODE_REF_KEY) {
823 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
824 struct btrfs_inode_ref);
825 item = btrfs_item_nr(slot);
826 total = btrfs_item_size(eb, item);
827 elem_size = sizeof(*iref);
828 } else {
829 ptr = btrfs_item_ptr_offset(eb, slot);
830 total = btrfs_item_size_nr(eb, slot);
831 elem_size = sizeof(*extref);
832 }
833
834 while (cur < total) {
835 fs_path_reset(p);
836
837 if (found_key->type == BTRFS_INODE_REF_KEY) {
838 iref = (struct btrfs_inode_ref *)(ptr + cur);
839 name_len = btrfs_inode_ref_name_len(eb, iref);
840 name_off = (unsigned long)(iref + 1);
841 index = btrfs_inode_ref_index(eb, iref);
842 dir = found_key->offset;
843 } else {
844 extref = (struct btrfs_inode_extref *)(ptr + cur);
845 name_len = btrfs_inode_extref_name_len(eb, extref);
846 name_off = (unsigned long)&extref->name;
847 index = btrfs_inode_extref_index(eb, extref);
848 dir = btrfs_inode_extref_parent(eb, extref);
849 }
850
851 if (resolve) {
852 start = btrfs_ref_to_path(root, tmp_path, name_len,
853 name_off, eb, dir,
854 p->buf, p->buf_len);
855 if (IS_ERR(start)) {
856 ret = PTR_ERR(start);
857 goto out;
858 }
859 if (start < p->buf) {
860 /* overflow , try again with larger buffer */
861 ret = fs_path_ensure_buf(p,
862 p->buf_len + p->buf - start);
863 if (ret < 0)
864 goto out;
865 start = btrfs_ref_to_path(root, tmp_path,
866 name_len, name_off,
867 eb, dir,
868 p->buf, p->buf_len);
869 if (IS_ERR(start)) {
870 ret = PTR_ERR(start);
871 goto out;
872 }
873 BUG_ON(start < p->buf);
874 }
875 p->start = start;
876 } else {
877 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
878 name_len);
879 if (ret < 0)
880 goto out;
881 }
882
883 cur += elem_size + name_len;
884 ret = iterate(num, dir, index, p, ctx);
885 if (ret)
886 goto out;
887 num++;
888 }
889
890 out:
891 btrfs_free_path(tmp_path);
892 fs_path_free(p);
893 return ret;
894 }
895
896 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
897 const char *name, int name_len,
898 const char *data, int data_len,
899 u8 type, void *ctx);
900
901 /*
902 * Helper function to iterate the entries in ONE btrfs_dir_item.
903 * The iterate callback may return a non zero value to stop iteration. This can
904 * be a negative value for error codes or 1 to simply stop it.
905 *
906 * path must point to the dir item when called.
907 */
908 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
909 struct btrfs_key *found_key,
910 iterate_dir_item_t iterate, void *ctx)
911 {
912 int ret = 0;
913 struct extent_buffer *eb;
914 struct btrfs_item *item;
915 struct btrfs_dir_item *di;
916 struct btrfs_key di_key;
917 char *buf = NULL;
918 char *buf2 = NULL;
919 int buf_len;
920 int buf_virtual = 0;
921 u32 name_len;
922 u32 data_len;
923 u32 cur;
924 u32 len;
925 u32 total;
926 int slot;
927 int num;
928 u8 type;
929
930 buf_len = PAGE_SIZE;
931 buf = kmalloc(buf_len, GFP_NOFS);
932 if (!buf) {
933 ret = -ENOMEM;
934 goto out;
935 }
936
937 eb = path->nodes[0];
938 slot = path->slots[0];
939 item = btrfs_item_nr(slot);
940 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
941 cur = 0;
942 len = 0;
943 total = btrfs_item_size(eb, item);
944
945 num = 0;
946 while (cur < total) {
947 name_len = btrfs_dir_name_len(eb, di);
948 data_len = btrfs_dir_data_len(eb, di);
949 type = btrfs_dir_type(eb, di);
950 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
951
952 if (name_len + data_len > buf_len) {
953 buf_len = PAGE_ALIGN(name_len + data_len);
954 if (buf_virtual) {
955 buf2 = vmalloc(buf_len);
956 if (!buf2) {
957 ret = -ENOMEM;
958 goto out;
959 }
960 vfree(buf);
961 } else {
962 buf2 = krealloc(buf, buf_len, GFP_NOFS);
963 if (!buf2) {
964 buf2 = vmalloc(buf_len);
965 if (!buf2) {
966 ret = -ENOMEM;
967 goto out;
968 }
969 kfree(buf);
970 buf_virtual = 1;
971 }
972 }
973
974 buf = buf2;
975 buf2 = NULL;
976 }
977
978 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
979 name_len + data_len);
980
981 len = sizeof(*di) + name_len + data_len;
982 di = (struct btrfs_dir_item *)((char *)di + len);
983 cur += len;
984
985 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
986 data_len, type, ctx);
987 if (ret < 0)
988 goto out;
989 if (ret) {
990 ret = 0;
991 goto out;
992 }
993
994 num++;
995 }
996
997 out:
998 if (buf_virtual)
999 vfree(buf);
1000 else
1001 kfree(buf);
1002 return ret;
1003 }
1004
1005 static int __copy_first_ref(int num, u64 dir, int index,
1006 struct fs_path *p, void *ctx)
1007 {
1008 int ret;
1009 struct fs_path *pt = ctx;
1010
1011 ret = fs_path_copy(pt, p);
1012 if (ret < 0)
1013 return ret;
1014
1015 /* we want the first only */
1016 return 1;
1017 }
1018
1019 /*
1020 * Retrieve the first path of an inode. If an inode has more then one
1021 * ref/hardlink, this is ignored.
1022 */
1023 static int get_inode_path(struct btrfs_root *root,
1024 u64 ino, struct fs_path *path)
1025 {
1026 int ret;
1027 struct btrfs_key key, found_key;
1028 struct btrfs_path *p;
1029
1030 p = alloc_path_for_send();
1031 if (!p)
1032 return -ENOMEM;
1033
1034 fs_path_reset(path);
1035
1036 key.objectid = ino;
1037 key.type = BTRFS_INODE_REF_KEY;
1038 key.offset = 0;
1039
1040 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1041 if (ret < 0)
1042 goto out;
1043 if (ret) {
1044 ret = 1;
1045 goto out;
1046 }
1047 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1048 if (found_key.objectid != ino ||
1049 (found_key.type != BTRFS_INODE_REF_KEY &&
1050 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1051 ret = -ENOENT;
1052 goto out;
1053 }
1054
1055 ret = iterate_inode_ref(root, p, &found_key, 1,
1056 __copy_first_ref, path);
1057 if (ret < 0)
1058 goto out;
1059 ret = 0;
1060
1061 out:
1062 btrfs_free_path(p);
1063 return ret;
1064 }
1065
1066 struct backref_ctx {
1067 struct send_ctx *sctx;
1068
1069 /* number of total found references */
1070 u64 found;
1071
1072 /*
1073 * used for clones found in send_root. clones found behind cur_objectid
1074 * and cur_offset are not considered as allowed clones.
1075 */
1076 u64 cur_objectid;
1077 u64 cur_offset;
1078
1079 /* may be truncated in case it's the last extent in a file */
1080 u64 extent_len;
1081
1082 /* Just to check for bugs in backref resolving */
1083 int found_itself;
1084 };
1085
1086 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1087 {
1088 u64 root = (u64)(uintptr_t)key;
1089 struct clone_root *cr = (struct clone_root *)elt;
1090
1091 if (root < cr->root->objectid)
1092 return -1;
1093 if (root > cr->root->objectid)
1094 return 1;
1095 return 0;
1096 }
1097
1098 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1099 {
1100 struct clone_root *cr1 = (struct clone_root *)e1;
1101 struct clone_root *cr2 = (struct clone_root *)e2;
1102
1103 if (cr1->root->objectid < cr2->root->objectid)
1104 return -1;
1105 if (cr1->root->objectid > cr2->root->objectid)
1106 return 1;
1107 return 0;
1108 }
1109
1110 /*
1111 * Called for every backref that is found for the current extent.
1112 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1113 */
1114 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1115 {
1116 struct backref_ctx *bctx = ctx_;
1117 struct clone_root *found;
1118 int ret;
1119 u64 i_size;
1120
1121 /* First check if the root is in the list of accepted clone sources */
1122 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1123 bctx->sctx->clone_roots_cnt,
1124 sizeof(struct clone_root),
1125 __clone_root_cmp_bsearch);
1126 if (!found)
1127 return 0;
1128
1129 if (found->root == bctx->sctx->send_root &&
1130 ino == bctx->cur_objectid &&
1131 offset == bctx->cur_offset) {
1132 bctx->found_itself = 1;
1133 }
1134
1135 /*
1136 * There are inodes that have extents that lie behind its i_size. Don't
1137 * accept clones from these extents.
1138 */
1139 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1140 NULL);
1141 if (ret < 0)
1142 return ret;
1143
1144 if (offset + bctx->extent_len > i_size)
1145 return 0;
1146
1147 /*
1148 * Make sure we don't consider clones from send_root that are
1149 * behind the current inode/offset.
1150 */
1151 if (found->root == bctx->sctx->send_root) {
1152 /*
1153 * TODO for the moment we don't accept clones from the inode
1154 * that is currently send. We may change this when
1155 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1156 * file.
1157 */
1158 if (ino >= bctx->cur_objectid)
1159 return 0;
1160 #if 0
1161 if (ino > bctx->cur_objectid)
1162 return 0;
1163 if (offset + bctx->extent_len > bctx->cur_offset)
1164 return 0;
1165 #endif
1166 }
1167
1168 bctx->found++;
1169 found->found_refs++;
1170 if (ino < found->ino) {
1171 found->ino = ino;
1172 found->offset = offset;
1173 } else if (found->ino == ino) {
1174 /*
1175 * same extent found more then once in the same file.
1176 */
1177 if (found->offset > offset + bctx->extent_len)
1178 found->offset = offset;
1179 }
1180
1181 return 0;
1182 }
1183
1184 /*
1185 * Given an inode, offset and extent item, it finds a good clone for a clone
1186 * instruction. Returns -ENOENT when none could be found. The function makes
1187 * sure that the returned clone is usable at the point where sending is at the
1188 * moment. This means, that no clones are accepted which lie behind the current
1189 * inode+offset.
1190 *
1191 * path must point to the extent item when called.
1192 */
1193 static int find_extent_clone(struct send_ctx *sctx,
1194 struct btrfs_path *path,
1195 u64 ino, u64 data_offset,
1196 u64 ino_size,
1197 struct clone_root **found)
1198 {
1199 int ret;
1200 int extent_type;
1201 u64 logical;
1202 u64 disk_byte;
1203 u64 num_bytes;
1204 u64 extent_item_pos;
1205 u64 flags = 0;
1206 struct btrfs_file_extent_item *fi;
1207 struct extent_buffer *eb = path->nodes[0];
1208 struct backref_ctx *backref_ctx = NULL;
1209 struct clone_root *cur_clone_root;
1210 struct btrfs_key found_key;
1211 struct btrfs_path *tmp_path;
1212 int compressed;
1213 u32 i;
1214
1215 tmp_path = alloc_path_for_send();
1216 if (!tmp_path)
1217 return -ENOMEM;
1218
1219 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1220 if (!backref_ctx) {
1221 ret = -ENOMEM;
1222 goto out;
1223 }
1224
1225 if (data_offset >= ino_size) {
1226 /*
1227 * There may be extents that lie behind the file's size.
1228 * I at least had this in combination with snapshotting while
1229 * writing large files.
1230 */
1231 ret = 0;
1232 goto out;
1233 }
1234
1235 fi = btrfs_item_ptr(eb, path->slots[0],
1236 struct btrfs_file_extent_item);
1237 extent_type = btrfs_file_extent_type(eb, fi);
1238 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1239 ret = -ENOENT;
1240 goto out;
1241 }
1242 compressed = btrfs_file_extent_compression(eb, fi);
1243
1244 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1245 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1246 if (disk_byte == 0) {
1247 ret = -ENOENT;
1248 goto out;
1249 }
1250 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1251
1252 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1253 &found_key, &flags);
1254 btrfs_release_path(tmp_path);
1255
1256 if (ret < 0)
1257 goto out;
1258 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1259 ret = -EIO;
1260 goto out;
1261 }
1262
1263 /*
1264 * Setup the clone roots.
1265 */
1266 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1267 cur_clone_root = sctx->clone_roots + i;
1268 cur_clone_root->ino = (u64)-1;
1269 cur_clone_root->offset = 0;
1270 cur_clone_root->found_refs = 0;
1271 }
1272
1273 backref_ctx->sctx = sctx;
1274 backref_ctx->found = 0;
1275 backref_ctx->cur_objectid = ino;
1276 backref_ctx->cur_offset = data_offset;
1277 backref_ctx->found_itself = 0;
1278 backref_ctx->extent_len = num_bytes;
1279
1280 /*
1281 * The last extent of a file may be too large due to page alignment.
1282 * We need to adjust extent_len in this case so that the checks in
1283 * __iterate_backrefs work.
1284 */
1285 if (data_offset + num_bytes >= ino_size)
1286 backref_ctx->extent_len = ino_size - data_offset;
1287
1288 /*
1289 * Now collect all backrefs.
1290 */
1291 if (compressed == BTRFS_COMPRESS_NONE)
1292 extent_item_pos = logical - found_key.objectid;
1293 else
1294 extent_item_pos = 0;
1295
1296 extent_item_pos = logical - found_key.objectid;
1297 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1298 found_key.objectid, extent_item_pos, 1,
1299 __iterate_backrefs, backref_ctx);
1300
1301 if (ret < 0)
1302 goto out;
1303
1304 if (!backref_ctx->found_itself) {
1305 /* found a bug in backref code? */
1306 ret = -EIO;
1307 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1308 "send_root. inode=%llu, offset=%llu, "
1309 "disk_byte=%llu found extent=%llu\n",
1310 ino, data_offset, disk_byte, found_key.objectid);
1311 goto out;
1312 }
1313
1314 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1315 "ino=%llu, "
1316 "num_bytes=%llu, logical=%llu\n",
1317 data_offset, ino, num_bytes, logical);
1318
1319 if (!backref_ctx->found)
1320 verbose_printk("btrfs: no clones found\n");
1321
1322 cur_clone_root = NULL;
1323 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1324 if (sctx->clone_roots[i].found_refs) {
1325 if (!cur_clone_root)
1326 cur_clone_root = sctx->clone_roots + i;
1327 else if (sctx->clone_roots[i].root == sctx->send_root)
1328 /* prefer clones from send_root over others */
1329 cur_clone_root = sctx->clone_roots + i;
1330 }
1331
1332 }
1333
1334 if (cur_clone_root) {
1335 if (compressed != BTRFS_COMPRESS_NONE) {
1336 /*
1337 * Offsets given by iterate_extent_inodes() are relative
1338 * to the start of the extent, we need to add logical
1339 * offset from the file extent item.
1340 * (See why at backref.c:check_extent_in_eb())
1341 */
1342 cur_clone_root->offset += btrfs_file_extent_offset(eb,
1343 fi);
1344 }
1345 *found = cur_clone_root;
1346 ret = 0;
1347 } else {
1348 ret = -ENOENT;
1349 }
1350
1351 out:
1352 btrfs_free_path(tmp_path);
1353 kfree(backref_ctx);
1354 return ret;
1355 }
1356
1357 static int read_symlink(struct btrfs_root *root,
1358 u64 ino,
1359 struct fs_path *dest)
1360 {
1361 int ret;
1362 struct btrfs_path *path;
1363 struct btrfs_key key;
1364 struct btrfs_file_extent_item *ei;
1365 u8 type;
1366 u8 compression;
1367 unsigned long off;
1368 int len;
1369
1370 path = alloc_path_for_send();
1371 if (!path)
1372 return -ENOMEM;
1373
1374 key.objectid = ino;
1375 key.type = BTRFS_EXTENT_DATA_KEY;
1376 key.offset = 0;
1377 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1378 if (ret < 0)
1379 goto out;
1380 BUG_ON(ret);
1381
1382 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1383 struct btrfs_file_extent_item);
1384 type = btrfs_file_extent_type(path->nodes[0], ei);
1385 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1386 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1387 BUG_ON(compression);
1388
1389 off = btrfs_file_extent_inline_start(ei);
1390 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1391
1392 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1393
1394 out:
1395 btrfs_free_path(path);
1396 return ret;
1397 }
1398
1399 /*
1400 * Helper function to generate a file name that is unique in the root of
1401 * send_root and parent_root. This is used to generate names for orphan inodes.
1402 */
1403 static int gen_unique_name(struct send_ctx *sctx,
1404 u64 ino, u64 gen,
1405 struct fs_path *dest)
1406 {
1407 int ret = 0;
1408 struct btrfs_path *path;
1409 struct btrfs_dir_item *di;
1410 char tmp[64];
1411 int len;
1412 u64 idx = 0;
1413
1414 path = alloc_path_for_send();
1415 if (!path)
1416 return -ENOMEM;
1417
1418 while (1) {
1419 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1420 ino, gen, idx);
1421 if (len >= sizeof(tmp)) {
1422 /* should really not happen */
1423 ret = -EOVERFLOW;
1424 goto out;
1425 }
1426
1427 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1428 path, BTRFS_FIRST_FREE_OBJECTID,
1429 tmp, strlen(tmp), 0);
1430 btrfs_release_path(path);
1431 if (IS_ERR(di)) {
1432 ret = PTR_ERR(di);
1433 goto out;
1434 }
1435 if (di) {
1436 /* not unique, try again */
1437 idx++;
1438 continue;
1439 }
1440
1441 if (!sctx->parent_root) {
1442 /* unique */
1443 ret = 0;
1444 break;
1445 }
1446
1447 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1448 path, BTRFS_FIRST_FREE_OBJECTID,
1449 tmp, strlen(tmp), 0);
1450 btrfs_release_path(path);
1451 if (IS_ERR(di)) {
1452 ret = PTR_ERR(di);
1453 goto out;
1454 }
1455 if (di) {
1456 /* not unique, try again */
1457 idx++;
1458 continue;
1459 }
1460 /* unique */
1461 break;
1462 }
1463
1464 ret = fs_path_add(dest, tmp, strlen(tmp));
1465
1466 out:
1467 btrfs_free_path(path);
1468 return ret;
1469 }
1470
1471 enum inode_state {
1472 inode_state_no_change,
1473 inode_state_will_create,
1474 inode_state_did_create,
1475 inode_state_will_delete,
1476 inode_state_did_delete,
1477 };
1478
1479 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1480 {
1481 int ret;
1482 int left_ret;
1483 int right_ret;
1484 u64 left_gen;
1485 u64 right_gen;
1486
1487 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1488 NULL, NULL);
1489 if (ret < 0 && ret != -ENOENT)
1490 goto out;
1491 left_ret = ret;
1492
1493 if (!sctx->parent_root) {
1494 right_ret = -ENOENT;
1495 } else {
1496 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1497 NULL, NULL, NULL, NULL);
1498 if (ret < 0 && ret != -ENOENT)
1499 goto out;
1500 right_ret = ret;
1501 }
1502
1503 if (!left_ret && !right_ret) {
1504 if (left_gen == gen && right_gen == gen) {
1505 ret = inode_state_no_change;
1506 } else if (left_gen == gen) {
1507 if (ino < sctx->send_progress)
1508 ret = inode_state_did_create;
1509 else
1510 ret = inode_state_will_create;
1511 } else if (right_gen == gen) {
1512 if (ino < sctx->send_progress)
1513 ret = inode_state_did_delete;
1514 else
1515 ret = inode_state_will_delete;
1516 } else {
1517 ret = -ENOENT;
1518 }
1519 } else if (!left_ret) {
1520 if (left_gen == gen) {
1521 if (ino < sctx->send_progress)
1522 ret = inode_state_did_create;
1523 else
1524 ret = inode_state_will_create;
1525 } else {
1526 ret = -ENOENT;
1527 }
1528 } else if (!right_ret) {
1529 if (right_gen == gen) {
1530 if (ino < sctx->send_progress)
1531 ret = inode_state_did_delete;
1532 else
1533 ret = inode_state_will_delete;
1534 } else {
1535 ret = -ENOENT;
1536 }
1537 } else {
1538 ret = -ENOENT;
1539 }
1540
1541 out:
1542 return ret;
1543 }
1544
1545 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1546 {
1547 int ret;
1548
1549 ret = get_cur_inode_state(sctx, ino, gen);
1550 if (ret < 0)
1551 goto out;
1552
1553 if (ret == inode_state_no_change ||
1554 ret == inode_state_did_create ||
1555 ret == inode_state_will_delete)
1556 ret = 1;
1557 else
1558 ret = 0;
1559
1560 out:
1561 return ret;
1562 }
1563
1564 /*
1565 * Helper function to lookup a dir item in a dir.
1566 */
1567 static int lookup_dir_item_inode(struct btrfs_root *root,
1568 u64 dir, const char *name, int name_len,
1569 u64 *found_inode,
1570 u8 *found_type)
1571 {
1572 int ret = 0;
1573 struct btrfs_dir_item *di;
1574 struct btrfs_key key;
1575 struct btrfs_path *path;
1576
1577 path = alloc_path_for_send();
1578 if (!path)
1579 return -ENOMEM;
1580
1581 di = btrfs_lookup_dir_item(NULL, root, path,
1582 dir, name, name_len, 0);
1583 if (!di) {
1584 ret = -ENOENT;
1585 goto out;
1586 }
1587 if (IS_ERR(di)) {
1588 ret = PTR_ERR(di);
1589 goto out;
1590 }
1591 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1592 *found_inode = key.objectid;
1593 *found_type = btrfs_dir_type(path->nodes[0], di);
1594
1595 out:
1596 btrfs_free_path(path);
1597 return ret;
1598 }
1599
1600 /*
1601 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1602 * generation of the parent dir and the name of the dir entry.
1603 */
1604 static int get_first_ref(struct btrfs_root *root, u64 ino,
1605 u64 *dir, u64 *dir_gen, struct fs_path *name)
1606 {
1607 int ret;
1608 struct btrfs_key key;
1609 struct btrfs_key found_key;
1610 struct btrfs_path *path;
1611 int len;
1612 u64 parent_dir;
1613
1614 path = alloc_path_for_send();
1615 if (!path)
1616 return -ENOMEM;
1617
1618 key.objectid = ino;
1619 key.type = BTRFS_INODE_REF_KEY;
1620 key.offset = 0;
1621
1622 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1623 if (ret < 0)
1624 goto out;
1625 if (!ret)
1626 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1627 path->slots[0]);
1628 if (ret || found_key.objectid != ino ||
1629 (found_key.type != BTRFS_INODE_REF_KEY &&
1630 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1631 ret = -ENOENT;
1632 goto out;
1633 }
1634
1635 if (key.type == BTRFS_INODE_REF_KEY) {
1636 struct btrfs_inode_ref *iref;
1637 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1638 struct btrfs_inode_ref);
1639 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1640 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1641 (unsigned long)(iref + 1),
1642 len);
1643 parent_dir = found_key.offset;
1644 } else {
1645 struct btrfs_inode_extref *extref;
1646 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1647 struct btrfs_inode_extref);
1648 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1649 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1650 (unsigned long)&extref->name, len);
1651 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1652 }
1653 if (ret < 0)
1654 goto out;
1655 btrfs_release_path(path);
1656
1657 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
1658 NULL, NULL);
1659 if (ret < 0)
1660 goto out;
1661
1662 *dir = parent_dir;
1663
1664 out:
1665 btrfs_free_path(path);
1666 return ret;
1667 }
1668
1669 static int is_first_ref(struct btrfs_root *root,
1670 u64 ino, u64 dir,
1671 const char *name, int name_len)
1672 {
1673 int ret;
1674 struct fs_path *tmp_name;
1675 u64 tmp_dir;
1676 u64 tmp_dir_gen;
1677
1678 tmp_name = fs_path_alloc();
1679 if (!tmp_name)
1680 return -ENOMEM;
1681
1682 ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1683 if (ret < 0)
1684 goto out;
1685
1686 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1687 ret = 0;
1688 goto out;
1689 }
1690
1691 ret = !memcmp(tmp_name->start, name, name_len);
1692
1693 out:
1694 fs_path_free(tmp_name);
1695 return ret;
1696 }
1697
1698 /*
1699 * Used by process_recorded_refs to determine if a new ref would overwrite an
1700 * already existing ref. In case it detects an overwrite, it returns the
1701 * inode/gen in who_ino/who_gen.
1702 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1703 * to make sure later references to the overwritten inode are possible.
1704 * Orphanizing is however only required for the first ref of an inode.
1705 * process_recorded_refs does an additional is_first_ref check to see if
1706 * orphanizing is really required.
1707 */
1708 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1709 const char *name, int name_len,
1710 u64 *who_ino, u64 *who_gen)
1711 {
1712 int ret = 0;
1713 u64 gen;
1714 u64 other_inode = 0;
1715 u8 other_type = 0;
1716
1717 if (!sctx->parent_root)
1718 goto out;
1719
1720 ret = is_inode_existent(sctx, dir, dir_gen);
1721 if (ret <= 0)
1722 goto out;
1723
1724 /*
1725 * If we have a parent root we need to verify that the parent dir was
1726 * not delted and then re-created, if it was then we have no overwrite
1727 * and we can just unlink this entry.
1728 */
1729 if (sctx->parent_root) {
1730 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1731 NULL, NULL, NULL);
1732 if (ret < 0 && ret != -ENOENT)
1733 goto out;
1734 if (ret) {
1735 ret = 0;
1736 goto out;
1737 }
1738 if (gen != dir_gen)
1739 goto out;
1740 }
1741
1742 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1743 &other_inode, &other_type);
1744 if (ret < 0 && ret != -ENOENT)
1745 goto out;
1746 if (ret) {
1747 ret = 0;
1748 goto out;
1749 }
1750
1751 /*
1752 * Check if the overwritten ref was already processed. If yes, the ref
1753 * was already unlinked/moved, so we can safely assume that we will not
1754 * overwrite anything at this point in time.
1755 */
1756 if (other_inode > sctx->send_progress) {
1757 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1758 who_gen, NULL, NULL, NULL, NULL);
1759 if (ret < 0)
1760 goto out;
1761
1762 ret = 1;
1763 *who_ino = other_inode;
1764 } else {
1765 ret = 0;
1766 }
1767
1768 out:
1769 return ret;
1770 }
1771
1772 /*
1773 * Checks if the ref was overwritten by an already processed inode. This is
1774 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1775 * thus the orphan name needs be used.
1776 * process_recorded_refs also uses it to avoid unlinking of refs that were
1777 * overwritten.
1778 */
1779 static int did_overwrite_ref(struct send_ctx *sctx,
1780 u64 dir, u64 dir_gen,
1781 u64 ino, u64 ino_gen,
1782 const char *name, int name_len)
1783 {
1784 int ret = 0;
1785 u64 gen;
1786 u64 ow_inode;
1787 u8 other_type;
1788
1789 if (!sctx->parent_root)
1790 goto out;
1791
1792 ret = is_inode_existent(sctx, dir, dir_gen);
1793 if (ret <= 0)
1794 goto out;
1795
1796 /* check if the ref was overwritten by another ref */
1797 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1798 &ow_inode, &other_type);
1799 if (ret < 0 && ret != -ENOENT)
1800 goto out;
1801 if (ret) {
1802 /* was never and will never be overwritten */
1803 ret = 0;
1804 goto out;
1805 }
1806
1807 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1808 NULL, NULL);
1809 if (ret < 0)
1810 goto out;
1811
1812 if (ow_inode == ino && gen == ino_gen) {
1813 ret = 0;
1814 goto out;
1815 }
1816
1817 /* we know that it is or will be overwritten. check this now */
1818 if (ow_inode < sctx->send_progress)
1819 ret = 1;
1820 else
1821 ret = 0;
1822
1823 out:
1824 return ret;
1825 }
1826
1827 /*
1828 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1829 * that got overwritten. This is used by process_recorded_refs to determine
1830 * if it has to use the path as returned by get_cur_path or the orphan name.
1831 */
1832 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1833 {
1834 int ret = 0;
1835 struct fs_path *name = NULL;
1836 u64 dir;
1837 u64 dir_gen;
1838
1839 if (!sctx->parent_root)
1840 goto out;
1841
1842 name = fs_path_alloc();
1843 if (!name)
1844 return -ENOMEM;
1845
1846 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1847 if (ret < 0)
1848 goto out;
1849
1850 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1851 name->start, fs_path_len(name));
1852
1853 out:
1854 fs_path_free(name);
1855 return ret;
1856 }
1857
1858 /*
1859 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1860 * so we need to do some special handling in case we have clashes. This function
1861 * takes care of this with the help of name_cache_entry::radix_list.
1862 * In case of error, nce is kfreed.
1863 */
1864 static int name_cache_insert(struct send_ctx *sctx,
1865 struct name_cache_entry *nce)
1866 {
1867 int ret = 0;
1868 struct list_head *nce_head;
1869
1870 nce_head = radix_tree_lookup(&sctx->name_cache,
1871 (unsigned long)nce->ino);
1872 if (!nce_head) {
1873 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1874 if (!nce_head) {
1875 kfree(nce);
1876 return -ENOMEM;
1877 }
1878 INIT_LIST_HEAD(nce_head);
1879
1880 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1881 if (ret < 0) {
1882 kfree(nce_head);
1883 kfree(nce);
1884 return ret;
1885 }
1886 }
1887 list_add_tail(&nce->radix_list, nce_head);
1888 list_add_tail(&nce->list, &sctx->name_cache_list);
1889 sctx->name_cache_size++;
1890
1891 return ret;
1892 }
1893
1894 static void name_cache_delete(struct send_ctx *sctx,
1895 struct name_cache_entry *nce)
1896 {
1897 struct list_head *nce_head;
1898
1899 nce_head = radix_tree_lookup(&sctx->name_cache,
1900 (unsigned long)nce->ino);
1901 BUG_ON(!nce_head);
1902
1903 list_del(&nce->radix_list);
1904 list_del(&nce->list);
1905 sctx->name_cache_size--;
1906
1907 if (list_empty(nce_head)) {
1908 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1909 kfree(nce_head);
1910 }
1911 }
1912
1913 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1914 u64 ino, u64 gen)
1915 {
1916 struct list_head *nce_head;
1917 struct name_cache_entry *cur;
1918
1919 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1920 if (!nce_head)
1921 return NULL;
1922
1923 list_for_each_entry(cur, nce_head, radix_list) {
1924 if (cur->ino == ino && cur->gen == gen)
1925 return cur;
1926 }
1927 return NULL;
1928 }
1929
1930 /*
1931 * Removes the entry from the list and adds it back to the end. This marks the
1932 * entry as recently used so that name_cache_clean_unused does not remove it.
1933 */
1934 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1935 {
1936 list_del(&nce->list);
1937 list_add_tail(&nce->list, &sctx->name_cache_list);
1938 }
1939
1940 /*
1941 * Remove some entries from the beginning of name_cache_list.
1942 */
1943 static void name_cache_clean_unused(struct send_ctx *sctx)
1944 {
1945 struct name_cache_entry *nce;
1946
1947 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1948 return;
1949
1950 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1951 nce = list_entry(sctx->name_cache_list.next,
1952 struct name_cache_entry, list);
1953 name_cache_delete(sctx, nce);
1954 kfree(nce);
1955 }
1956 }
1957
1958 static void name_cache_free(struct send_ctx *sctx)
1959 {
1960 struct name_cache_entry *nce;
1961
1962 while (!list_empty(&sctx->name_cache_list)) {
1963 nce = list_entry(sctx->name_cache_list.next,
1964 struct name_cache_entry, list);
1965 name_cache_delete(sctx, nce);
1966 kfree(nce);
1967 }
1968 }
1969
1970 /*
1971 * Used by get_cur_path for each ref up to the root.
1972 * Returns 0 if it succeeded.
1973 * Returns 1 if the inode is not existent or got overwritten. In that case, the
1974 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1975 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1976 * Returns <0 in case of error.
1977 */
1978 static int __get_cur_name_and_parent(struct send_ctx *sctx,
1979 u64 ino, u64 gen,
1980 int skip_name_cache,
1981 u64 *parent_ino,
1982 u64 *parent_gen,
1983 struct fs_path *dest)
1984 {
1985 int ret;
1986 int nce_ret;
1987 struct btrfs_path *path = NULL;
1988 struct name_cache_entry *nce = NULL;
1989
1990 if (skip_name_cache)
1991 goto get_ref;
1992 /*
1993 * First check if we already did a call to this function with the same
1994 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1995 * return the cached result.
1996 */
1997 nce = name_cache_search(sctx, ino, gen);
1998 if (nce) {
1999 if (ino < sctx->send_progress && nce->need_later_update) {
2000 name_cache_delete(sctx, nce);
2001 kfree(nce);
2002 nce = NULL;
2003 } else {
2004 name_cache_used(sctx, nce);
2005 *parent_ino = nce->parent_ino;
2006 *parent_gen = nce->parent_gen;
2007 ret = fs_path_add(dest, nce->name, nce->name_len);
2008 if (ret < 0)
2009 goto out;
2010 ret = nce->ret;
2011 goto out;
2012 }
2013 }
2014
2015 path = alloc_path_for_send();
2016 if (!path)
2017 return -ENOMEM;
2018
2019 /*
2020 * If the inode is not existent yet, add the orphan name and return 1.
2021 * This should only happen for the parent dir that we determine in
2022 * __record_new_ref
2023 */
2024 ret = is_inode_existent(sctx, ino, gen);
2025 if (ret < 0)
2026 goto out;
2027
2028 if (!ret) {
2029 ret = gen_unique_name(sctx, ino, gen, dest);
2030 if (ret < 0)
2031 goto out;
2032 ret = 1;
2033 goto out_cache;
2034 }
2035
2036 get_ref:
2037 /*
2038 * Depending on whether the inode was already processed or not, use
2039 * send_root or parent_root for ref lookup.
2040 */
2041 if (ino < sctx->send_progress && !skip_name_cache)
2042 ret = get_first_ref(sctx->send_root, ino,
2043 parent_ino, parent_gen, dest);
2044 else
2045 ret = get_first_ref(sctx->parent_root, ino,
2046 parent_ino, parent_gen, dest);
2047 if (ret < 0)
2048 goto out;
2049
2050 /*
2051 * Check if the ref was overwritten by an inode's ref that was processed
2052 * earlier. If yes, treat as orphan and return 1.
2053 */
2054 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2055 dest->start, dest->end - dest->start);
2056 if (ret < 0)
2057 goto out;
2058 if (ret) {
2059 fs_path_reset(dest);
2060 ret = gen_unique_name(sctx, ino, gen, dest);
2061 if (ret < 0)
2062 goto out;
2063 ret = 1;
2064 }
2065 if (skip_name_cache)
2066 goto out;
2067
2068 out_cache:
2069 /*
2070 * Store the result of the lookup in the name cache.
2071 */
2072 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2073 if (!nce) {
2074 ret = -ENOMEM;
2075 goto out;
2076 }
2077
2078 nce->ino = ino;
2079 nce->gen = gen;
2080 nce->parent_ino = *parent_ino;
2081 nce->parent_gen = *parent_gen;
2082 nce->name_len = fs_path_len(dest);
2083 nce->ret = ret;
2084 strcpy(nce->name, dest->start);
2085
2086 if (ino < sctx->send_progress)
2087 nce->need_later_update = 0;
2088 else
2089 nce->need_later_update = 1;
2090
2091 nce_ret = name_cache_insert(sctx, nce);
2092 if (nce_ret < 0)
2093 ret = nce_ret;
2094 name_cache_clean_unused(sctx);
2095
2096 out:
2097 btrfs_free_path(path);
2098 return ret;
2099 }
2100
2101 /*
2102 * Magic happens here. This function returns the first ref to an inode as it
2103 * would look like while receiving the stream at this point in time.
2104 * We walk the path up to the root. For every inode in between, we check if it
2105 * was already processed/sent. If yes, we continue with the parent as found
2106 * in send_root. If not, we continue with the parent as found in parent_root.
2107 * If we encounter an inode that was deleted at this point in time, we use the
2108 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2109 * that were not created yet and overwritten inodes/refs.
2110 *
2111 * When do we have have orphan inodes:
2112 * 1. When an inode is freshly created and thus no valid refs are available yet
2113 * 2. When a directory lost all it's refs (deleted) but still has dir items
2114 * inside which were not processed yet (pending for move/delete). If anyone
2115 * tried to get the path to the dir items, it would get a path inside that
2116 * orphan directory.
2117 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2118 * of an unprocessed inode. If in that case the first ref would be
2119 * overwritten, the overwritten inode gets "orphanized". Later when we
2120 * process this overwritten inode, it is restored at a new place by moving
2121 * the orphan inode.
2122 *
2123 * sctx->send_progress tells this function at which point in time receiving
2124 * would be.
2125 */
2126 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2127 struct fs_path *dest)
2128 {
2129 int ret = 0;
2130 struct fs_path *name = NULL;
2131 u64 parent_inode = 0;
2132 u64 parent_gen = 0;
2133 int stop = 0;
2134 u64 start_ino = ino;
2135 u64 start_gen = gen;
2136 int skip_name_cache = 0;
2137
2138 name = fs_path_alloc();
2139 if (!name) {
2140 ret = -ENOMEM;
2141 goto out;
2142 }
2143
2144 if (is_waiting_for_move(sctx, ino))
2145 skip_name_cache = 1;
2146
2147 again:
2148 dest->reversed = 1;
2149 fs_path_reset(dest);
2150
2151 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2152 fs_path_reset(name);
2153
2154 ret = __get_cur_name_and_parent(sctx, ino, gen, skip_name_cache,
2155 &parent_inode, &parent_gen, name);
2156 if (ret < 0)
2157 goto out;
2158 if (ret)
2159 stop = 1;
2160
2161 if (!skip_name_cache &&
2162 is_waiting_for_move(sctx, parent_inode)) {
2163 ino = start_ino;
2164 gen = start_gen;
2165 stop = 0;
2166 skip_name_cache = 1;
2167 goto again;
2168 }
2169
2170 ret = fs_path_add_path(dest, name);
2171 if (ret < 0)
2172 goto out;
2173
2174 ino = parent_inode;
2175 gen = parent_gen;
2176 }
2177
2178 out:
2179 fs_path_free(name);
2180 if (!ret)
2181 fs_path_unreverse(dest);
2182 return ret;
2183 }
2184
2185 /*
2186 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2187 */
2188 static int send_subvol_begin(struct send_ctx *sctx)
2189 {
2190 int ret;
2191 struct btrfs_root *send_root = sctx->send_root;
2192 struct btrfs_root *parent_root = sctx->parent_root;
2193 struct btrfs_path *path;
2194 struct btrfs_key key;
2195 struct btrfs_root_ref *ref;
2196 struct extent_buffer *leaf;
2197 char *name = NULL;
2198 int namelen;
2199
2200 path = btrfs_alloc_path();
2201 if (!path)
2202 return -ENOMEM;
2203
2204 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2205 if (!name) {
2206 btrfs_free_path(path);
2207 return -ENOMEM;
2208 }
2209
2210 key.objectid = send_root->objectid;
2211 key.type = BTRFS_ROOT_BACKREF_KEY;
2212 key.offset = 0;
2213
2214 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2215 &key, path, 1, 0);
2216 if (ret < 0)
2217 goto out;
2218 if (ret) {
2219 ret = -ENOENT;
2220 goto out;
2221 }
2222
2223 leaf = path->nodes[0];
2224 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2225 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2226 key.objectid != send_root->objectid) {
2227 ret = -ENOENT;
2228 goto out;
2229 }
2230 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2231 namelen = btrfs_root_ref_name_len(leaf, ref);
2232 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2233 btrfs_release_path(path);
2234
2235 if (parent_root) {
2236 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2237 if (ret < 0)
2238 goto out;
2239 } else {
2240 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2241 if (ret < 0)
2242 goto out;
2243 }
2244
2245 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2246 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2247 sctx->send_root->root_item.uuid);
2248 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2249 le64_to_cpu(sctx->send_root->root_item.ctransid));
2250 if (parent_root) {
2251 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2252 sctx->parent_root->root_item.uuid);
2253 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2254 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2255 }
2256
2257 ret = send_cmd(sctx);
2258
2259 tlv_put_failure:
2260 out:
2261 btrfs_free_path(path);
2262 kfree(name);
2263 return ret;
2264 }
2265
2266 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2267 {
2268 int ret = 0;
2269 struct fs_path *p;
2270
2271 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2272
2273 p = fs_path_alloc();
2274 if (!p)
2275 return -ENOMEM;
2276
2277 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2278 if (ret < 0)
2279 goto out;
2280
2281 ret = get_cur_path(sctx, ino, gen, p);
2282 if (ret < 0)
2283 goto out;
2284 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2285 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2286
2287 ret = send_cmd(sctx);
2288
2289 tlv_put_failure:
2290 out:
2291 fs_path_free(p);
2292 return ret;
2293 }
2294
2295 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2296 {
2297 int ret = 0;
2298 struct fs_path *p;
2299
2300 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2301
2302 p = fs_path_alloc();
2303 if (!p)
2304 return -ENOMEM;
2305
2306 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2307 if (ret < 0)
2308 goto out;
2309
2310 ret = get_cur_path(sctx, ino, gen, p);
2311 if (ret < 0)
2312 goto out;
2313 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2314 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2315
2316 ret = send_cmd(sctx);
2317
2318 tlv_put_failure:
2319 out:
2320 fs_path_free(p);
2321 return ret;
2322 }
2323
2324 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2325 {
2326 int ret = 0;
2327 struct fs_path *p;
2328
2329 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2330
2331 p = fs_path_alloc();
2332 if (!p)
2333 return -ENOMEM;
2334
2335 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2336 if (ret < 0)
2337 goto out;
2338
2339 ret = get_cur_path(sctx, ino, gen, p);
2340 if (ret < 0)
2341 goto out;
2342 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2343 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2344 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2345
2346 ret = send_cmd(sctx);
2347
2348 tlv_put_failure:
2349 out:
2350 fs_path_free(p);
2351 return ret;
2352 }
2353
2354 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2355 {
2356 int ret = 0;
2357 struct fs_path *p = NULL;
2358 struct btrfs_inode_item *ii;
2359 struct btrfs_path *path = NULL;
2360 struct extent_buffer *eb;
2361 struct btrfs_key key;
2362 int slot;
2363
2364 verbose_printk("btrfs: send_utimes %llu\n", ino);
2365
2366 p = fs_path_alloc();
2367 if (!p)
2368 return -ENOMEM;
2369
2370 path = alloc_path_for_send();
2371 if (!path) {
2372 ret = -ENOMEM;
2373 goto out;
2374 }
2375
2376 key.objectid = ino;
2377 key.type = BTRFS_INODE_ITEM_KEY;
2378 key.offset = 0;
2379 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2380 if (ret < 0)
2381 goto out;
2382
2383 eb = path->nodes[0];
2384 slot = path->slots[0];
2385 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2386
2387 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2388 if (ret < 0)
2389 goto out;
2390
2391 ret = get_cur_path(sctx, ino, gen, p);
2392 if (ret < 0)
2393 goto out;
2394 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2395 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2396 btrfs_inode_atime(ii));
2397 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2398 btrfs_inode_mtime(ii));
2399 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2400 btrfs_inode_ctime(ii));
2401 /* TODO Add otime support when the otime patches get into upstream */
2402
2403 ret = send_cmd(sctx);
2404
2405 tlv_put_failure:
2406 out:
2407 fs_path_free(p);
2408 btrfs_free_path(path);
2409 return ret;
2410 }
2411
2412 /*
2413 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2414 * a valid path yet because we did not process the refs yet. So, the inode
2415 * is created as orphan.
2416 */
2417 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2418 {
2419 int ret = 0;
2420 struct fs_path *p;
2421 int cmd;
2422 u64 gen;
2423 u64 mode;
2424 u64 rdev;
2425
2426 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2427
2428 p = fs_path_alloc();
2429 if (!p)
2430 return -ENOMEM;
2431
2432 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2433 NULL, &rdev);
2434 if (ret < 0)
2435 goto out;
2436
2437 if (S_ISREG(mode)) {
2438 cmd = BTRFS_SEND_C_MKFILE;
2439 } else if (S_ISDIR(mode)) {
2440 cmd = BTRFS_SEND_C_MKDIR;
2441 } else if (S_ISLNK(mode)) {
2442 cmd = BTRFS_SEND_C_SYMLINK;
2443 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2444 cmd = BTRFS_SEND_C_MKNOD;
2445 } else if (S_ISFIFO(mode)) {
2446 cmd = BTRFS_SEND_C_MKFIFO;
2447 } else if (S_ISSOCK(mode)) {
2448 cmd = BTRFS_SEND_C_MKSOCK;
2449 } else {
2450 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2451 (int)(mode & S_IFMT));
2452 ret = -ENOTSUPP;
2453 goto out;
2454 }
2455
2456 ret = begin_cmd(sctx, cmd);
2457 if (ret < 0)
2458 goto out;
2459
2460 ret = gen_unique_name(sctx, ino, gen, p);
2461 if (ret < 0)
2462 goto out;
2463
2464 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2465 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2466
2467 if (S_ISLNK(mode)) {
2468 fs_path_reset(p);
2469 ret = read_symlink(sctx->send_root, ino, p);
2470 if (ret < 0)
2471 goto out;
2472 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2473 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2474 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2475 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2476 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2477 }
2478
2479 ret = send_cmd(sctx);
2480 if (ret < 0)
2481 goto out;
2482
2483
2484 tlv_put_failure:
2485 out:
2486 fs_path_free(p);
2487 return ret;
2488 }
2489
2490 /*
2491 * We need some special handling for inodes that get processed before the parent
2492 * directory got created. See process_recorded_refs for details.
2493 * This function does the check if we already created the dir out of order.
2494 */
2495 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2496 {
2497 int ret = 0;
2498 struct btrfs_path *path = NULL;
2499 struct btrfs_key key;
2500 struct btrfs_key found_key;
2501 struct btrfs_key di_key;
2502 struct extent_buffer *eb;
2503 struct btrfs_dir_item *di;
2504 int slot;
2505
2506 path = alloc_path_for_send();
2507 if (!path) {
2508 ret = -ENOMEM;
2509 goto out;
2510 }
2511
2512 key.objectid = dir;
2513 key.type = BTRFS_DIR_INDEX_KEY;
2514 key.offset = 0;
2515 while (1) {
2516 ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2517 1, 0);
2518 if (ret < 0)
2519 goto out;
2520 if (!ret) {
2521 eb = path->nodes[0];
2522 slot = path->slots[0];
2523 btrfs_item_key_to_cpu(eb, &found_key, slot);
2524 }
2525 if (ret || found_key.objectid != key.objectid ||
2526 found_key.type != key.type) {
2527 ret = 0;
2528 goto out;
2529 }
2530
2531 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2532 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2533
2534 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2535 di_key.objectid < sctx->send_progress) {
2536 ret = 1;
2537 goto out;
2538 }
2539
2540 key.offset = found_key.offset + 1;
2541 btrfs_release_path(path);
2542 }
2543
2544 out:
2545 btrfs_free_path(path);
2546 return ret;
2547 }
2548
2549 /*
2550 * Only creates the inode if it is:
2551 * 1. Not a directory
2552 * 2. Or a directory which was not created already due to out of order
2553 * directories. See did_create_dir and process_recorded_refs for details.
2554 */
2555 static int send_create_inode_if_needed(struct send_ctx *sctx)
2556 {
2557 int ret;
2558
2559 if (S_ISDIR(sctx->cur_inode_mode)) {
2560 ret = did_create_dir(sctx, sctx->cur_ino);
2561 if (ret < 0)
2562 goto out;
2563 if (ret) {
2564 ret = 0;
2565 goto out;
2566 }
2567 }
2568
2569 ret = send_create_inode(sctx, sctx->cur_ino);
2570 if (ret < 0)
2571 goto out;
2572
2573 out:
2574 return ret;
2575 }
2576
2577 struct recorded_ref {
2578 struct list_head list;
2579 char *dir_path;
2580 char *name;
2581 struct fs_path *full_path;
2582 u64 dir;
2583 u64 dir_gen;
2584 int dir_path_len;
2585 int name_len;
2586 };
2587
2588 /*
2589 * We need to process new refs before deleted refs, but compare_tree gives us
2590 * everything mixed. So we first record all refs and later process them.
2591 * This function is a helper to record one ref.
2592 */
2593 static int record_ref(struct list_head *head, u64 dir,
2594 u64 dir_gen, struct fs_path *path)
2595 {
2596 struct recorded_ref *ref;
2597
2598 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2599 if (!ref)
2600 return -ENOMEM;
2601
2602 ref->dir = dir;
2603 ref->dir_gen = dir_gen;
2604 ref->full_path = path;
2605
2606 ref->name = (char *)kbasename(ref->full_path->start);
2607 ref->name_len = ref->full_path->end - ref->name;
2608 ref->dir_path = ref->full_path->start;
2609 if (ref->name == ref->full_path->start)
2610 ref->dir_path_len = 0;
2611 else
2612 ref->dir_path_len = ref->full_path->end -
2613 ref->full_path->start - 1 - ref->name_len;
2614
2615 list_add_tail(&ref->list, head);
2616 return 0;
2617 }
2618
2619 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2620 {
2621 struct recorded_ref *new;
2622
2623 new = kmalloc(sizeof(*ref), GFP_NOFS);
2624 if (!new)
2625 return -ENOMEM;
2626
2627 new->dir = ref->dir;
2628 new->dir_gen = ref->dir_gen;
2629 new->full_path = NULL;
2630 INIT_LIST_HEAD(&new->list);
2631 list_add_tail(&new->list, list);
2632 return 0;
2633 }
2634
2635 static void __free_recorded_refs(struct list_head *head)
2636 {
2637 struct recorded_ref *cur;
2638
2639 while (!list_empty(head)) {
2640 cur = list_entry(head->next, struct recorded_ref, list);
2641 fs_path_free(cur->full_path);
2642 list_del(&cur->list);
2643 kfree(cur);
2644 }
2645 }
2646
2647 static void free_recorded_refs(struct send_ctx *sctx)
2648 {
2649 __free_recorded_refs(&sctx->new_refs);
2650 __free_recorded_refs(&sctx->deleted_refs);
2651 }
2652
2653 /*
2654 * Renames/moves a file/dir to its orphan name. Used when the first
2655 * ref of an unprocessed inode gets overwritten and for all non empty
2656 * directories.
2657 */
2658 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2659 struct fs_path *path)
2660 {
2661 int ret;
2662 struct fs_path *orphan;
2663
2664 orphan = fs_path_alloc();
2665 if (!orphan)
2666 return -ENOMEM;
2667
2668 ret = gen_unique_name(sctx, ino, gen, orphan);
2669 if (ret < 0)
2670 goto out;
2671
2672 ret = send_rename(sctx, path, orphan);
2673
2674 out:
2675 fs_path_free(orphan);
2676 return ret;
2677 }
2678
2679 /*
2680 * Returns 1 if a directory can be removed at this point in time.
2681 * We check this by iterating all dir items and checking if the inode behind
2682 * the dir item was already processed.
2683 */
2684 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2685 {
2686 int ret = 0;
2687 struct btrfs_root *root = sctx->parent_root;
2688 struct btrfs_path *path;
2689 struct btrfs_key key;
2690 struct btrfs_key found_key;
2691 struct btrfs_key loc;
2692 struct btrfs_dir_item *di;
2693
2694 /*
2695 * Don't try to rmdir the top/root subvolume dir.
2696 */
2697 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2698 return 0;
2699
2700 path = alloc_path_for_send();
2701 if (!path)
2702 return -ENOMEM;
2703
2704 key.objectid = dir;
2705 key.type = BTRFS_DIR_INDEX_KEY;
2706 key.offset = 0;
2707
2708 while (1) {
2709 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2710 if (ret < 0)
2711 goto out;
2712 if (!ret) {
2713 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2714 path->slots[0]);
2715 }
2716 if (ret || found_key.objectid != key.objectid ||
2717 found_key.type != key.type) {
2718 break;
2719 }
2720
2721 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2722 struct btrfs_dir_item);
2723 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2724
2725 if (loc.objectid > send_progress) {
2726 ret = 0;
2727 goto out;
2728 }
2729
2730 btrfs_release_path(path);
2731 key.offset = found_key.offset + 1;
2732 }
2733
2734 ret = 1;
2735
2736 out:
2737 btrfs_free_path(path);
2738 return ret;
2739 }
2740
2741 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2742 {
2743 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2744 struct waiting_dir_move *entry;
2745
2746 while (n) {
2747 entry = rb_entry(n, struct waiting_dir_move, node);
2748 if (ino < entry->ino)
2749 n = n->rb_left;
2750 else if (ino > entry->ino)
2751 n = n->rb_right;
2752 else
2753 return 1;
2754 }
2755 return 0;
2756 }
2757
2758 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2759 {
2760 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2761 struct rb_node *parent = NULL;
2762 struct waiting_dir_move *entry, *dm;
2763
2764 dm = kmalloc(sizeof(*dm), GFP_NOFS);
2765 if (!dm)
2766 return -ENOMEM;
2767 dm->ino = ino;
2768
2769 while (*p) {
2770 parent = *p;
2771 entry = rb_entry(parent, struct waiting_dir_move, node);
2772 if (ino < entry->ino) {
2773 p = &(*p)->rb_left;
2774 } else if (ino > entry->ino) {
2775 p = &(*p)->rb_right;
2776 } else {
2777 kfree(dm);
2778 return -EEXIST;
2779 }
2780 }
2781
2782 rb_link_node(&dm->node, parent, p);
2783 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2784 return 0;
2785 }
2786
2787 static int del_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2788 {
2789 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2790 struct waiting_dir_move *entry;
2791
2792 while (n) {
2793 entry = rb_entry(n, struct waiting_dir_move, node);
2794 if (ino < entry->ino) {
2795 n = n->rb_left;
2796 } else if (ino > entry->ino) {
2797 n = n->rb_right;
2798 } else {
2799 rb_erase(&entry->node, &sctx->waiting_dir_moves);
2800 kfree(entry);
2801 return 0;
2802 }
2803 }
2804 return -ENOENT;
2805 }
2806
2807 static int add_pending_dir_move(struct send_ctx *sctx, u64 parent_ino)
2808 {
2809 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2810 struct rb_node *parent = NULL;
2811 struct pending_dir_move *entry, *pm;
2812 struct recorded_ref *cur;
2813 int exists = 0;
2814 int ret;
2815
2816 pm = kmalloc(sizeof(*pm), GFP_NOFS);
2817 if (!pm)
2818 return -ENOMEM;
2819 pm->parent_ino = parent_ino;
2820 pm->ino = sctx->cur_ino;
2821 pm->gen = sctx->cur_inode_gen;
2822 INIT_LIST_HEAD(&pm->list);
2823 INIT_LIST_HEAD(&pm->update_refs);
2824 RB_CLEAR_NODE(&pm->node);
2825
2826 while (*p) {
2827 parent = *p;
2828 entry = rb_entry(parent, struct pending_dir_move, node);
2829 if (parent_ino < entry->parent_ino) {
2830 p = &(*p)->rb_left;
2831 } else if (parent_ino > entry->parent_ino) {
2832 p = &(*p)->rb_right;
2833 } else {
2834 exists = 1;
2835 break;
2836 }
2837 }
2838
2839 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2840 ret = dup_ref(cur, &pm->update_refs);
2841 if (ret < 0)
2842 goto out;
2843 }
2844 list_for_each_entry(cur, &sctx->new_refs, list) {
2845 ret = dup_ref(cur, &pm->update_refs);
2846 if (ret < 0)
2847 goto out;
2848 }
2849
2850 ret = add_waiting_dir_move(sctx, pm->ino);
2851 if (ret)
2852 goto out;
2853
2854 if (exists) {
2855 list_add_tail(&pm->list, &entry->list);
2856 } else {
2857 rb_link_node(&pm->node, parent, p);
2858 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
2859 }
2860 ret = 0;
2861 out:
2862 if (ret) {
2863 __free_recorded_refs(&pm->update_refs);
2864 kfree(pm);
2865 }
2866 return ret;
2867 }
2868
2869 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
2870 u64 parent_ino)
2871 {
2872 struct rb_node *n = sctx->pending_dir_moves.rb_node;
2873 struct pending_dir_move *entry;
2874
2875 while (n) {
2876 entry = rb_entry(n, struct pending_dir_move, node);
2877 if (parent_ino < entry->parent_ino)
2878 n = n->rb_left;
2879 else if (parent_ino > entry->parent_ino)
2880 n = n->rb_right;
2881 else
2882 return entry;
2883 }
2884 return NULL;
2885 }
2886
2887 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
2888 {
2889 struct fs_path *from_path = NULL;
2890 struct fs_path *to_path = NULL;
2891 u64 orig_progress = sctx->send_progress;
2892 struct recorded_ref *cur;
2893 int ret;
2894
2895 from_path = fs_path_alloc();
2896 if (!from_path)
2897 return -ENOMEM;
2898
2899 sctx->send_progress = pm->ino;
2900 ret = get_cur_path(sctx, pm->ino, pm->gen, from_path);
2901 if (ret < 0)
2902 goto out;
2903
2904 to_path = fs_path_alloc();
2905 if (!to_path) {
2906 ret = -ENOMEM;
2907 goto out;
2908 }
2909
2910 sctx->send_progress = sctx->cur_ino + 1;
2911 ret = del_waiting_dir_move(sctx, pm->ino);
2912 ASSERT(ret == 0);
2913
2914 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
2915 if (ret < 0)
2916 goto out;
2917
2918 ret = send_rename(sctx, from_path, to_path);
2919 if (ret < 0)
2920 goto out;
2921
2922 ret = send_utimes(sctx, pm->ino, pm->gen);
2923 if (ret < 0)
2924 goto out;
2925
2926 /*
2927 * After rename/move, need to update the utimes of both new parent(s)
2928 * and old parent(s).
2929 */
2930 list_for_each_entry(cur, &pm->update_refs, list) {
2931 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
2932 if (ret < 0)
2933 goto out;
2934 }
2935
2936 out:
2937 fs_path_free(from_path);
2938 fs_path_free(to_path);
2939 sctx->send_progress = orig_progress;
2940
2941 return ret;
2942 }
2943
2944 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
2945 {
2946 if (!list_empty(&m->list))
2947 list_del(&m->list);
2948 if (!RB_EMPTY_NODE(&m->node))
2949 rb_erase(&m->node, &sctx->pending_dir_moves);
2950 __free_recorded_refs(&m->update_refs);
2951 kfree(m);
2952 }
2953
2954 static void tail_append_pending_moves(struct pending_dir_move *moves,
2955 struct list_head *stack)
2956 {
2957 if (list_empty(&moves->list)) {
2958 list_add_tail(&moves->list, stack);
2959 } else {
2960 LIST_HEAD(list);
2961 list_splice_init(&moves->list, &list);
2962 list_add_tail(&moves->list, stack);
2963 list_splice_tail(&list, stack);
2964 }
2965 }
2966
2967 static int apply_children_dir_moves(struct send_ctx *sctx)
2968 {
2969 struct pending_dir_move *pm;
2970 struct list_head stack;
2971 u64 parent_ino = sctx->cur_ino;
2972 int ret = 0;
2973
2974 pm = get_pending_dir_moves(sctx, parent_ino);
2975 if (!pm)
2976 return 0;
2977
2978 INIT_LIST_HEAD(&stack);
2979 tail_append_pending_moves(pm, &stack);
2980
2981 while (!list_empty(&stack)) {
2982 pm = list_first_entry(&stack, struct pending_dir_move, list);
2983 parent_ino = pm->ino;
2984 ret = apply_dir_move(sctx, pm);
2985 free_pending_move(sctx, pm);
2986 if (ret)
2987 goto out;
2988 pm = get_pending_dir_moves(sctx, parent_ino);
2989 if (pm)
2990 tail_append_pending_moves(pm, &stack);
2991 }
2992 return 0;
2993
2994 out:
2995 while (!list_empty(&stack)) {
2996 pm = list_first_entry(&stack, struct pending_dir_move, list);
2997 free_pending_move(sctx, pm);
2998 }
2999 return ret;
3000 }
3001
3002 static int wait_for_parent_move(struct send_ctx *sctx,
3003 struct recorded_ref *parent_ref)
3004 {
3005 int ret;
3006 u64 ino = parent_ref->dir;
3007 u64 parent_ino_before, parent_ino_after;
3008 u64 new_gen, old_gen;
3009 struct fs_path *path_before = NULL;
3010 struct fs_path *path_after = NULL;
3011 int len1, len2;
3012
3013 if (parent_ref->dir <= sctx->cur_ino)
3014 return 0;
3015
3016 if (is_waiting_for_move(sctx, ino))
3017 return 1;
3018
3019 ret = get_inode_info(sctx->parent_root, ino, NULL, &old_gen,
3020 NULL, NULL, NULL, NULL);
3021 if (ret == -ENOENT)
3022 return 0;
3023 else if (ret < 0)
3024 return ret;
3025
3026 ret = get_inode_info(sctx->send_root, ino, NULL, &new_gen,
3027 NULL, NULL, NULL, NULL);
3028 if (ret < 0)
3029 return ret;
3030
3031 if (new_gen != old_gen)
3032 return 0;
3033
3034 path_before = fs_path_alloc();
3035 if (!path_before)
3036 return -ENOMEM;
3037
3038 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3039 NULL, path_before);
3040 if (ret == -ENOENT) {
3041 ret = 0;
3042 goto out;
3043 } else if (ret < 0) {
3044 goto out;
3045 }
3046
3047 path_after = fs_path_alloc();
3048 if (!path_after) {
3049 ret = -ENOMEM;
3050 goto out;
3051 }
3052
3053 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3054 NULL, path_after);
3055 if (ret == -ENOENT) {
3056 ret = 0;
3057 goto out;
3058 } else if (ret < 0) {
3059 goto out;
3060 }
3061
3062 len1 = fs_path_len(path_before);
3063 len2 = fs_path_len(path_after);
3064 if ((parent_ino_before != parent_ino_after) && (len1 != len2 ||
3065 memcmp(path_before->start, path_after->start, len1))) {
3066 ret = 1;
3067 goto out;
3068 }
3069 ret = 0;
3070
3071 out:
3072 fs_path_free(path_before);
3073 fs_path_free(path_after);
3074
3075 return ret;
3076 }
3077
3078 /*
3079 * This does all the move/link/unlink/rmdir magic.
3080 */
3081 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3082 {
3083 int ret = 0;
3084 struct recorded_ref *cur;
3085 struct recorded_ref *cur2;
3086 struct list_head check_dirs;
3087 struct fs_path *valid_path = NULL;
3088 u64 ow_inode = 0;
3089 u64 ow_gen;
3090 int did_overwrite = 0;
3091 int is_orphan = 0;
3092
3093 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3094
3095 /*
3096 * This should never happen as the root dir always has the same ref
3097 * which is always '..'
3098 */
3099 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3100 INIT_LIST_HEAD(&check_dirs);
3101
3102 valid_path = fs_path_alloc();
3103 if (!valid_path) {
3104 ret = -ENOMEM;
3105 goto out;
3106 }
3107
3108 /*
3109 * First, check if the first ref of the current inode was overwritten
3110 * before. If yes, we know that the current inode was already orphanized
3111 * and thus use the orphan name. If not, we can use get_cur_path to
3112 * get the path of the first ref as it would like while receiving at
3113 * this point in time.
3114 * New inodes are always orphan at the beginning, so force to use the
3115 * orphan name in this case.
3116 * The first ref is stored in valid_path and will be updated if it
3117 * gets moved around.
3118 */
3119 if (!sctx->cur_inode_new) {
3120 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3121 sctx->cur_inode_gen);
3122 if (ret < 0)
3123 goto out;
3124 if (ret)
3125 did_overwrite = 1;
3126 }
3127 if (sctx->cur_inode_new || did_overwrite) {
3128 ret = gen_unique_name(sctx, sctx->cur_ino,
3129 sctx->cur_inode_gen, valid_path);
3130 if (ret < 0)
3131 goto out;
3132 is_orphan = 1;
3133 } else {
3134 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3135 valid_path);
3136 if (ret < 0)
3137 goto out;
3138 }
3139
3140 list_for_each_entry(cur, &sctx->new_refs, list) {
3141 /*
3142 * We may have refs where the parent directory does not exist
3143 * yet. This happens if the parent directories inum is higher
3144 * the the current inum. To handle this case, we create the
3145 * parent directory out of order. But we need to check if this
3146 * did already happen before due to other refs in the same dir.
3147 */
3148 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3149 if (ret < 0)
3150 goto out;
3151 if (ret == inode_state_will_create) {
3152 ret = 0;
3153 /*
3154 * First check if any of the current inodes refs did
3155 * already create the dir.
3156 */
3157 list_for_each_entry(cur2, &sctx->new_refs, list) {
3158 if (cur == cur2)
3159 break;
3160 if (cur2->dir == cur->dir) {
3161 ret = 1;
3162 break;
3163 }
3164 }
3165
3166 /*
3167 * If that did not happen, check if a previous inode
3168 * did already create the dir.
3169 */
3170 if (!ret)
3171 ret = did_create_dir(sctx, cur->dir);
3172 if (ret < 0)
3173 goto out;
3174 if (!ret) {
3175 ret = send_create_inode(sctx, cur->dir);
3176 if (ret < 0)
3177 goto out;
3178 }
3179 }
3180
3181 /*
3182 * Check if this new ref would overwrite the first ref of
3183 * another unprocessed inode. If yes, orphanize the
3184 * overwritten inode. If we find an overwritten ref that is
3185 * not the first ref, simply unlink it.
3186 */
3187 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3188 cur->name, cur->name_len,
3189 &ow_inode, &ow_gen);
3190 if (ret < 0)
3191 goto out;
3192 if (ret) {
3193 ret = is_first_ref(sctx->parent_root,
3194 ow_inode, cur->dir, cur->name,
3195 cur->name_len);
3196 if (ret < 0)
3197 goto out;
3198 if (ret) {
3199 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3200 cur->full_path);
3201 if (ret < 0)
3202 goto out;
3203 } else {
3204 ret = send_unlink(sctx, cur->full_path);
3205 if (ret < 0)
3206 goto out;
3207 }
3208 }
3209
3210 /*
3211 * link/move the ref to the new place. If we have an orphan
3212 * inode, move it and update valid_path. If not, link or move
3213 * it depending on the inode mode.
3214 */
3215 if (is_orphan) {
3216 ret = send_rename(sctx, valid_path, cur->full_path);
3217 if (ret < 0)
3218 goto out;
3219 is_orphan = 0;
3220 ret = fs_path_copy(valid_path, cur->full_path);
3221 if (ret < 0)
3222 goto out;
3223 } else {
3224 if (S_ISDIR(sctx->cur_inode_mode)) {
3225 /*
3226 * Dirs can't be linked, so move it. For moved
3227 * dirs, we always have one new and one deleted
3228 * ref. The deleted ref is ignored later.
3229 */
3230 ret = wait_for_parent_move(sctx, cur);
3231 if (ret < 0)
3232 goto out;
3233 if (ret) {
3234 ret = add_pending_dir_move(sctx,
3235 cur->dir);
3236 *pending_move = 1;
3237 } else {
3238 ret = send_rename(sctx, valid_path,
3239 cur->full_path);
3240 if (!ret)
3241 ret = fs_path_copy(valid_path,
3242 cur->full_path);
3243 }
3244 if (ret < 0)
3245 goto out;
3246 } else {
3247 ret = send_link(sctx, cur->full_path,
3248 valid_path);
3249 if (ret < 0)
3250 goto out;
3251 }
3252 }
3253 ret = dup_ref(cur, &check_dirs);
3254 if (ret < 0)
3255 goto out;
3256 }
3257
3258 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3259 /*
3260 * Check if we can already rmdir the directory. If not,
3261 * orphanize it. For every dir item inside that gets deleted
3262 * later, we do this check again and rmdir it then if possible.
3263 * See the use of check_dirs for more details.
3264 */
3265 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
3266 if (ret < 0)
3267 goto out;
3268 if (ret) {
3269 ret = send_rmdir(sctx, valid_path);
3270 if (ret < 0)
3271 goto out;
3272 } else if (!is_orphan) {
3273 ret = orphanize_inode(sctx, sctx->cur_ino,
3274 sctx->cur_inode_gen, valid_path);
3275 if (ret < 0)
3276 goto out;
3277 is_orphan = 1;
3278 }
3279
3280 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3281 ret = dup_ref(cur, &check_dirs);
3282 if (ret < 0)
3283 goto out;
3284 }
3285 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3286 !list_empty(&sctx->deleted_refs)) {
3287 /*
3288 * We have a moved dir. Add the old parent to check_dirs
3289 */
3290 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3291 list);
3292 ret = dup_ref(cur, &check_dirs);
3293 if (ret < 0)
3294 goto out;
3295 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3296 /*
3297 * We have a non dir inode. Go through all deleted refs and
3298 * unlink them if they were not already overwritten by other
3299 * inodes.
3300 */
3301 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3302 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3303 sctx->cur_ino, sctx->cur_inode_gen,
3304 cur->name, cur->name_len);
3305 if (ret < 0)
3306 goto out;
3307 if (!ret) {
3308 ret = send_unlink(sctx, cur->full_path);
3309 if (ret < 0)
3310 goto out;
3311 }
3312 ret = dup_ref(cur, &check_dirs);
3313 if (ret < 0)
3314 goto out;
3315 }
3316 /*
3317 * If the inode is still orphan, unlink the orphan. This may
3318 * happen when a previous inode did overwrite the first ref
3319 * of this inode and no new refs were added for the current
3320 * inode. Unlinking does not mean that the inode is deleted in
3321 * all cases. There may still be links to this inode in other
3322 * places.
3323 */
3324 if (is_orphan) {
3325 ret = send_unlink(sctx, valid_path);
3326 if (ret < 0)
3327 goto out;
3328 }
3329 }
3330
3331 /*
3332 * We did collect all parent dirs where cur_inode was once located. We
3333 * now go through all these dirs and check if they are pending for
3334 * deletion and if it's finally possible to perform the rmdir now.
3335 * We also update the inode stats of the parent dirs here.
3336 */
3337 list_for_each_entry(cur, &check_dirs, list) {
3338 /*
3339 * In case we had refs into dirs that were not processed yet,
3340 * we don't need to do the utime and rmdir logic for these dirs.
3341 * The dir will be processed later.
3342 */
3343 if (cur->dir > sctx->cur_ino)
3344 continue;
3345
3346 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3347 if (ret < 0)
3348 goto out;
3349
3350 if (ret == inode_state_did_create ||
3351 ret == inode_state_no_change) {
3352 /* TODO delayed utimes */
3353 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3354 if (ret < 0)
3355 goto out;
3356 } else if (ret == inode_state_did_delete) {
3357 ret = can_rmdir(sctx, cur->dir, sctx->cur_ino);
3358 if (ret < 0)
3359 goto out;
3360 if (ret) {
3361 ret = get_cur_path(sctx, cur->dir,
3362 cur->dir_gen, valid_path);
3363 if (ret < 0)
3364 goto out;
3365 ret = send_rmdir(sctx, valid_path);
3366 if (ret < 0)
3367 goto out;
3368 }
3369 }
3370 }
3371
3372 ret = 0;
3373
3374 out:
3375 __free_recorded_refs(&check_dirs);
3376 free_recorded_refs(sctx);
3377 fs_path_free(valid_path);
3378 return ret;
3379 }
3380
3381 static int __record_new_ref(int num, u64 dir, int index,
3382 struct fs_path *name,
3383 void *ctx)
3384 {
3385 int ret = 0;
3386 struct send_ctx *sctx = ctx;
3387 struct fs_path *p;
3388 u64 gen;
3389
3390 p = fs_path_alloc();
3391 if (!p)
3392 return -ENOMEM;
3393
3394 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
3395 NULL, NULL);
3396 if (ret < 0)
3397 goto out;
3398
3399 ret = get_cur_path(sctx, dir, gen, p);
3400 if (ret < 0)
3401 goto out;
3402 ret = fs_path_add_path(p, name);
3403 if (ret < 0)
3404 goto out;
3405
3406 ret = record_ref(&sctx->new_refs, dir, gen, p);
3407
3408 out:
3409 if (ret)
3410 fs_path_free(p);
3411 return ret;
3412 }
3413
3414 static int __record_deleted_ref(int num, u64 dir, int index,
3415 struct fs_path *name,
3416 void *ctx)
3417 {
3418 int ret = 0;
3419 struct send_ctx *sctx = ctx;
3420 struct fs_path *p;
3421 u64 gen;
3422
3423 p = fs_path_alloc();
3424 if (!p)
3425 return -ENOMEM;
3426
3427 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
3428 NULL, NULL);
3429 if (ret < 0)
3430 goto out;
3431
3432 ret = get_cur_path(sctx, dir, gen, p);
3433 if (ret < 0)
3434 goto out;
3435 ret = fs_path_add_path(p, name);
3436 if (ret < 0)
3437 goto out;
3438
3439 ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3440
3441 out:
3442 if (ret)
3443 fs_path_free(p);
3444 return ret;
3445 }
3446
3447 static int record_new_ref(struct send_ctx *sctx)
3448 {
3449 int ret;
3450
3451 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3452 sctx->cmp_key, 0, __record_new_ref, sctx);
3453 if (ret < 0)
3454 goto out;
3455 ret = 0;
3456
3457 out:
3458 return ret;
3459 }
3460
3461 static int record_deleted_ref(struct send_ctx *sctx)
3462 {
3463 int ret;
3464
3465 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3466 sctx->cmp_key, 0, __record_deleted_ref, sctx);
3467 if (ret < 0)
3468 goto out;
3469 ret = 0;
3470
3471 out:
3472 return ret;
3473 }
3474
3475 struct find_ref_ctx {
3476 u64 dir;
3477 u64 dir_gen;
3478 struct btrfs_root *root;
3479 struct fs_path *name;
3480 int found_idx;
3481 };
3482
3483 static int __find_iref(int num, u64 dir, int index,
3484 struct fs_path *name,
3485 void *ctx_)
3486 {
3487 struct find_ref_ctx *ctx = ctx_;
3488 u64 dir_gen;
3489 int ret;
3490
3491 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3492 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3493 /*
3494 * To avoid doing extra lookups we'll only do this if everything
3495 * else matches.
3496 */
3497 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3498 NULL, NULL, NULL);
3499 if (ret)
3500 return ret;
3501 if (dir_gen != ctx->dir_gen)
3502 return 0;
3503 ctx->found_idx = num;
3504 return 1;
3505 }
3506 return 0;
3507 }
3508
3509 static int find_iref(struct btrfs_root *root,
3510 struct btrfs_path *path,
3511 struct btrfs_key *key,
3512 u64 dir, u64 dir_gen, struct fs_path *name)
3513 {
3514 int ret;
3515 struct find_ref_ctx ctx;
3516
3517 ctx.dir = dir;
3518 ctx.name = name;
3519 ctx.dir_gen = dir_gen;
3520 ctx.found_idx = -1;
3521 ctx.root = root;
3522
3523 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3524 if (ret < 0)
3525 return ret;
3526
3527 if (ctx.found_idx == -1)
3528 return -ENOENT;
3529
3530 return ctx.found_idx;
3531 }
3532
3533 static int __record_changed_new_ref(int num, u64 dir, int index,
3534 struct fs_path *name,
3535 void *ctx)
3536 {
3537 u64 dir_gen;
3538 int ret;
3539 struct send_ctx *sctx = ctx;
3540
3541 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3542 NULL, NULL, NULL);
3543 if (ret)
3544 return ret;
3545
3546 ret = find_iref(sctx->parent_root, sctx->right_path,
3547 sctx->cmp_key, dir, dir_gen, name);
3548 if (ret == -ENOENT)
3549 ret = __record_new_ref(num, dir, index, name, sctx);
3550 else if (ret > 0)
3551 ret = 0;
3552
3553 return ret;
3554 }
3555
3556 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3557 struct fs_path *name,
3558 void *ctx)
3559 {
3560 u64 dir_gen;
3561 int ret;
3562 struct send_ctx *sctx = ctx;
3563
3564 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3565 NULL, NULL, NULL);
3566 if (ret)
3567 return ret;
3568
3569 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3570 dir, dir_gen, name);
3571 if (ret == -ENOENT)
3572 ret = __record_deleted_ref(num, dir, index, name, sctx);
3573 else if (ret > 0)
3574 ret = 0;
3575
3576 return ret;
3577 }
3578
3579 static int record_changed_ref(struct send_ctx *sctx)
3580 {
3581 int ret = 0;
3582
3583 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3584 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3585 if (ret < 0)
3586 goto out;
3587 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3588 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3589 if (ret < 0)
3590 goto out;
3591 ret = 0;
3592
3593 out:
3594 return ret;
3595 }
3596
3597 /*
3598 * Record and process all refs at once. Needed when an inode changes the
3599 * generation number, which means that it was deleted and recreated.
3600 */
3601 static int process_all_refs(struct send_ctx *sctx,
3602 enum btrfs_compare_tree_result cmd)
3603 {
3604 int ret;
3605 struct btrfs_root *root;
3606 struct btrfs_path *path;
3607 struct btrfs_key key;
3608 struct btrfs_key found_key;
3609 struct extent_buffer *eb;
3610 int slot;
3611 iterate_inode_ref_t cb;
3612 int pending_move = 0;
3613
3614 path = alloc_path_for_send();
3615 if (!path)
3616 return -ENOMEM;
3617
3618 if (cmd == BTRFS_COMPARE_TREE_NEW) {
3619 root = sctx->send_root;
3620 cb = __record_new_ref;
3621 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3622 root = sctx->parent_root;
3623 cb = __record_deleted_ref;
3624 } else {
3625 BUG();
3626 }
3627
3628 key.objectid = sctx->cmp_key->objectid;
3629 key.type = BTRFS_INODE_REF_KEY;
3630 key.offset = 0;
3631 while (1) {
3632 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3633 if (ret < 0)
3634 goto out;
3635 if (ret)
3636 break;
3637
3638 eb = path->nodes[0];
3639 slot = path->slots[0];
3640 btrfs_item_key_to_cpu(eb, &found_key, slot);
3641
3642 if (found_key.objectid != key.objectid ||
3643 (found_key.type != BTRFS_INODE_REF_KEY &&
3644 found_key.type != BTRFS_INODE_EXTREF_KEY))
3645 break;
3646
3647 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
3648 btrfs_release_path(path);
3649 if (ret < 0)
3650 goto out;
3651
3652 key.offset = found_key.offset + 1;
3653 }
3654 btrfs_release_path(path);
3655
3656 ret = process_recorded_refs(sctx, &pending_move);
3657 /* Only applicable to an incremental send. */
3658 ASSERT(pending_move == 0);
3659
3660 out:
3661 btrfs_free_path(path);
3662 return ret;
3663 }
3664
3665 static int send_set_xattr(struct send_ctx *sctx,
3666 struct fs_path *path,
3667 const char *name, int name_len,
3668 const char *data, int data_len)
3669 {
3670 int ret = 0;
3671
3672 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3673 if (ret < 0)
3674 goto out;
3675
3676 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3677 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3678 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3679
3680 ret = send_cmd(sctx);
3681
3682 tlv_put_failure:
3683 out:
3684 return ret;
3685 }
3686
3687 static int send_remove_xattr(struct send_ctx *sctx,
3688 struct fs_path *path,
3689 const char *name, int name_len)
3690 {
3691 int ret = 0;
3692
3693 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3694 if (ret < 0)
3695 goto out;
3696
3697 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3698 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3699
3700 ret = send_cmd(sctx);
3701
3702 tlv_put_failure:
3703 out:
3704 return ret;
3705 }
3706
3707 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3708 const char *name, int name_len,
3709 const char *data, int data_len,
3710 u8 type, void *ctx)
3711 {
3712 int ret;
3713 struct send_ctx *sctx = ctx;
3714 struct fs_path *p;
3715 posix_acl_xattr_header dummy_acl;
3716
3717 p = fs_path_alloc();
3718 if (!p)
3719 return -ENOMEM;
3720
3721 /*
3722 * This hack is needed because empty acl's are stored as zero byte
3723 * data in xattrs. Problem with that is, that receiving these zero byte
3724 * acl's will fail later. To fix this, we send a dummy acl list that
3725 * only contains the version number and no entries.
3726 */
3727 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3728 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3729 if (data_len == 0) {
3730 dummy_acl.a_version =
3731 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3732 data = (char *)&dummy_acl;
3733 data_len = sizeof(dummy_acl);
3734 }
3735 }
3736
3737 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3738 if (ret < 0)
3739 goto out;
3740
3741 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3742
3743 out:
3744 fs_path_free(p);
3745 return ret;
3746 }
3747
3748 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3749 const char *name, int name_len,
3750 const char *data, int data_len,
3751 u8 type, void *ctx)
3752 {
3753 int ret;
3754 struct send_ctx *sctx = ctx;
3755 struct fs_path *p;
3756
3757 p = fs_path_alloc();
3758 if (!p)
3759 return -ENOMEM;
3760
3761 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3762 if (ret < 0)
3763 goto out;
3764
3765 ret = send_remove_xattr(sctx, p, name, name_len);
3766
3767 out:
3768 fs_path_free(p);
3769 return ret;
3770 }
3771
3772 static int process_new_xattr(struct send_ctx *sctx)
3773 {
3774 int ret = 0;
3775
3776 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3777 sctx->cmp_key, __process_new_xattr, sctx);
3778
3779 return ret;
3780 }
3781
3782 static int process_deleted_xattr(struct send_ctx *sctx)
3783 {
3784 int ret;
3785
3786 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3787 sctx->cmp_key, __process_deleted_xattr, sctx);
3788
3789 return ret;
3790 }
3791
3792 struct find_xattr_ctx {
3793 const char *name;
3794 int name_len;
3795 int found_idx;
3796 char *found_data;
3797 int found_data_len;
3798 };
3799
3800 static int __find_xattr(int num, struct btrfs_key *di_key,
3801 const char *name, int name_len,
3802 const char *data, int data_len,
3803 u8 type, void *vctx)
3804 {
3805 struct find_xattr_ctx *ctx = vctx;
3806
3807 if (name_len == ctx->name_len &&
3808 strncmp(name, ctx->name, name_len) == 0) {
3809 ctx->found_idx = num;
3810 ctx->found_data_len = data_len;
3811 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
3812 if (!ctx->found_data)
3813 return -ENOMEM;
3814 return 1;
3815 }
3816 return 0;
3817 }
3818
3819 static int find_xattr(struct btrfs_root *root,
3820 struct btrfs_path *path,
3821 struct btrfs_key *key,
3822 const char *name, int name_len,
3823 char **data, int *data_len)
3824 {
3825 int ret;
3826 struct find_xattr_ctx ctx;
3827
3828 ctx.name = name;
3829 ctx.name_len = name_len;
3830 ctx.found_idx = -1;
3831 ctx.found_data = NULL;
3832 ctx.found_data_len = 0;
3833
3834 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
3835 if (ret < 0)
3836 return ret;
3837
3838 if (ctx.found_idx == -1)
3839 return -ENOENT;
3840 if (data) {
3841 *data = ctx.found_data;
3842 *data_len = ctx.found_data_len;
3843 } else {
3844 kfree(ctx.found_data);
3845 }
3846 return ctx.found_idx;
3847 }
3848
3849
3850 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3851 const char *name, int name_len,
3852 const char *data, int data_len,
3853 u8 type, void *ctx)
3854 {
3855 int ret;
3856 struct send_ctx *sctx = ctx;
3857 char *found_data = NULL;
3858 int found_data_len = 0;
3859
3860 ret = find_xattr(sctx->parent_root, sctx->right_path,
3861 sctx->cmp_key, name, name_len, &found_data,
3862 &found_data_len);
3863 if (ret == -ENOENT) {
3864 ret = __process_new_xattr(num, di_key, name, name_len, data,
3865 data_len, type, ctx);
3866 } else if (ret >= 0) {
3867 if (data_len != found_data_len ||
3868 memcmp(data, found_data, data_len)) {
3869 ret = __process_new_xattr(num, di_key, name, name_len,
3870 data, data_len, type, ctx);
3871 } else {
3872 ret = 0;
3873 }
3874 }
3875
3876 kfree(found_data);
3877 return ret;
3878 }
3879
3880 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3881 const char *name, int name_len,
3882 const char *data, int data_len,
3883 u8 type, void *ctx)
3884 {
3885 int ret;
3886 struct send_ctx *sctx = ctx;
3887
3888 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
3889 name, name_len, NULL, NULL);
3890 if (ret == -ENOENT)
3891 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3892 data_len, type, ctx);
3893 else if (ret >= 0)
3894 ret = 0;
3895
3896 return ret;
3897 }
3898
3899 static int process_changed_xattr(struct send_ctx *sctx)
3900 {
3901 int ret = 0;
3902
3903 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3904 sctx->cmp_key, __process_changed_new_xattr, sctx);
3905 if (ret < 0)
3906 goto out;
3907 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3908 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3909
3910 out:
3911 return ret;
3912 }
3913
3914 static int process_all_new_xattrs(struct send_ctx *sctx)
3915 {
3916 int ret;
3917 struct btrfs_root *root;
3918 struct btrfs_path *path;
3919 struct btrfs_key key;
3920 struct btrfs_key found_key;
3921 struct extent_buffer *eb;
3922 int slot;
3923
3924 path = alloc_path_for_send();
3925 if (!path)
3926 return -ENOMEM;
3927
3928 root = sctx->send_root;
3929
3930 key.objectid = sctx->cmp_key->objectid;
3931 key.type = BTRFS_XATTR_ITEM_KEY;
3932 key.offset = 0;
3933 while (1) {
3934 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3935 if (ret < 0)
3936 goto out;
3937 if (ret) {
3938 ret = 0;
3939 goto out;
3940 }
3941
3942 eb = path->nodes[0];
3943 slot = path->slots[0];
3944 btrfs_item_key_to_cpu(eb, &found_key, slot);
3945
3946 if (found_key.objectid != key.objectid ||
3947 found_key.type != key.type) {
3948 ret = 0;
3949 goto out;
3950 }
3951
3952 ret = iterate_dir_item(root, path, &found_key,
3953 __process_new_xattr, sctx);
3954 if (ret < 0)
3955 goto out;
3956
3957 btrfs_release_path(path);
3958 key.offset = found_key.offset + 1;
3959 }
3960
3961 out:
3962 btrfs_free_path(path);
3963 return ret;
3964 }
3965
3966 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
3967 {
3968 struct btrfs_root *root = sctx->send_root;
3969 struct btrfs_fs_info *fs_info = root->fs_info;
3970 struct inode *inode;
3971 struct page *page;
3972 char *addr;
3973 struct btrfs_key key;
3974 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
3975 pgoff_t last_index;
3976 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
3977 ssize_t ret = 0;
3978
3979 key.objectid = sctx->cur_ino;
3980 key.type = BTRFS_INODE_ITEM_KEY;
3981 key.offset = 0;
3982
3983 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3984 if (IS_ERR(inode))
3985 return PTR_ERR(inode);
3986
3987 if (offset + len > i_size_read(inode)) {
3988 if (offset > i_size_read(inode))
3989 len = 0;
3990 else
3991 len = offset - i_size_read(inode);
3992 }
3993 if (len == 0)
3994 goto out;
3995
3996 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
3997 while (index <= last_index) {
3998 unsigned cur_len = min_t(unsigned, len,
3999 PAGE_CACHE_SIZE - pg_offset);
4000 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4001 if (!page) {
4002 ret = -ENOMEM;
4003 break;
4004 }
4005
4006 if (!PageUptodate(page)) {
4007 btrfs_readpage(NULL, page);
4008 lock_page(page);
4009 if (!PageUptodate(page)) {
4010 unlock_page(page);
4011 page_cache_release(page);
4012 ret = -EIO;
4013 break;
4014 }
4015 }
4016
4017 addr = kmap(page);
4018 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4019 kunmap(page);
4020 unlock_page(page);
4021 page_cache_release(page);
4022 index++;
4023 pg_offset = 0;
4024 len -= cur_len;
4025 ret += cur_len;
4026 }
4027 out:
4028 iput(inode);
4029 return ret;
4030 }
4031
4032 /*
4033 * Read some bytes from the current inode/file and send a write command to
4034 * user space.
4035 */
4036 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4037 {
4038 int ret = 0;
4039 struct fs_path *p;
4040 ssize_t num_read = 0;
4041
4042 p = fs_path_alloc();
4043 if (!p)
4044 return -ENOMEM;
4045
4046 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4047
4048 num_read = fill_read_buf(sctx, offset, len);
4049 if (num_read <= 0) {
4050 if (num_read < 0)
4051 ret = num_read;
4052 goto out;
4053 }
4054
4055 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4056 if (ret < 0)
4057 goto out;
4058
4059 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4060 if (ret < 0)
4061 goto out;
4062
4063 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4064 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4065 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4066
4067 ret = send_cmd(sctx);
4068
4069 tlv_put_failure:
4070 out:
4071 fs_path_free(p);
4072 if (ret < 0)
4073 return ret;
4074 return num_read;
4075 }
4076
4077 /*
4078 * Send a clone command to user space.
4079 */
4080 static int send_clone(struct send_ctx *sctx,
4081 u64 offset, u32 len,
4082 struct clone_root *clone_root)
4083 {
4084 int ret = 0;
4085 struct fs_path *p;
4086 u64 gen;
4087
4088 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4089 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4090 clone_root->root->objectid, clone_root->ino,
4091 clone_root->offset);
4092
4093 p = fs_path_alloc();
4094 if (!p)
4095 return -ENOMEM;
4096
4097 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4098 if (ret < 0)
4099 goto out;
4100
4101 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4102 if (ret < 0)
4103 goto out;
4104
4105 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4106 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4107 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4108
4109 if (clone_root->root == sctx->send_root) {
4110 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4111 &gen, NULL, NULL, NULL, NULL);
4112 if (ret < 0)
4113 goto out;
4114 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4115 } else {
4116 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4117 }
4118 if (ret < 0)
4119 goto out;
4120
4121 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4122 clone_root->root->root_item.uuid);
4123 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4124 le64_to_cpu(clone_root->root->root_item.ctransid));
4125 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4126 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4127 clone_root->offset);
4128
4129 ret = send_cmd(sctx);
4130
4131 tlv_put_failure:
4132 out:
4133 fs_path_free(p);
4134 return ret;
4135 }
4136
4137 /*
4138 * Send an update extent command to user space.
4139 */
4140 static int send_update_extent(struct send_ctx *sctx,
4141 u64 offset, u32 len)
4142 {
4143 int ret = 0;
4144 struct fs_path *p;
4145
4146 p = fs_path_alloc();
4147 if (!p)
4148 return -ENOMEM;
4149
4150 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4151 if (ret < 0)
4152 goto out;
4153
4154 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4155 if (ret < 0)
4156 goto out;
4157
4158 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4159 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4160 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4161
4162 ret = send_cmd(sctx);
4163
4164 tlv_put_failure:
4165 out:
4166 fs_path_free(p);
4167 return ret;
4168 }
4169
4170 static int send_hole(struct send_ctx *sctx, u64 end)
4171 {
4172 struct fs_path *p = NULL;
4173 u64 offset = sctx->cur_inode_last_extent;
4174 u64 len;
4175 int ret = 0;
4176
4177 p = fs_path_alloc();
4178 if (!p)
4179 return -ENOMEM;
4180 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4181 while (offset < end) {
4182 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4183
4184 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4185 if (ret < 0)
4186 break;
4187 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4188 if (ret < 0)
4189 break;
4190 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4191 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4192 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4193 ret = send_cmd(sctx);
4194 if (ret < 0)
4195 break;
4196 offset += len;
4197 }
4198 tlv_put_failure:
4199 fs_path_free(p);
4200 return ret;
4201 }
4202
4203 static int send_write_or_clone(struct send_ctx *sctx,
4204 struct btrfs_path *path,
4205 struct btrfs_key *key,
4206 struct clone_root *clone_root)
4207 {
4208 int ret = 0;
4209 struct btrfs_file_extent_item *ei;
4210 u64 offset = key->offset;
4211 u64 pos = 0;
4212 u64 len;
4213 u32 l;
4214 u8 type;
4215 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4216
4217 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4218 struct btrfs_file_extent_item);
4219 type = btrfs_file_extent_type(path->nodes[0], ei);
4220 if (type == BTRFS_FILE_EXTENT_INLINE) {
4221 len = btrfs_file_extent_inline_len(path->nodes[0],
4222 path->slots[0], ei);
4223 /*
4224 * it is possible the inline item won't cover the whole page,
4225 * but there may be items after this page. Make
4226 * sure to send the whole thing
4227 */
4228 len = PAGE_CACHE_ALIGN(len);
4229 } else {
4230 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4231 }
4232
4233 if (offset + len > sctx->cur_inode_size)
4234 len = sctx->cur_inode_size - offset;
4235 if (len == 0) {
4236 ret = 0;
4237 goto out;
4238 }
4239
4240 if (clone_root && IS_ALIGNED(offset + len, bs)) {
4241 ret = send_clone(sctx, offset, len, clone_root);
4242 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4243 ret = send_update_extent(sctx, offset, len);
4244 } else {
4245 while (pos < len) {
4246 l = len - pos;
4247 if (l > BTRFS_SEND_READ_SIZE)
4248 l = BTRFS_SEND_READ_SIZE;
4249 ret = send_write(sctx, pos + offset, l);
4250 if (ret < 0)
4251 goto out;
4252 if (!ret)
4253 break;
4254 pos += ret;
4255 }
4256 ret = 0;
4257 }
4258 out:
4259 return ret;
4260 }
4261
4262 static int is_extent_unchanged(struct send_ctx *sctx,
4263 struct btrfs_path *left_path,
4264 struct btrfs_key *ekey)
4265 {
4266 int ret = 0;
4267 struct btrfs_key key;
4268 struct btrfs_path *path = NULL;
4269 struct extent_buffer *eb;
4270 int slot;
4271 struct btrfs_key found_key;
4272 struct btrfs_file_extent_item *ei;
4273 u64 left_disknr;
4274 u64 right_disknr;
4275 u64 left_offset;
4276 u64 right_offset;
4277 u64 left_offset_fixed;
4278 u64 left_len;
4279 u64 right_len;
4280 u64 left_gen;
4281 u64 right_gen;
4282 u8 left_type;
4283 u8 right_type;
4284
4285 path = alloc_path_for_send();
4286 if (!path)
4287 return -ENOMEM;
4288
4289 eb = left_path->nodes[0];
4290 slot = left_path->slots[0];
4291 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4292 left_type = btrfs_file_extent_type(eb, ei);
4293
4294 if (left_type != BTRFS_FILE_EXTENT_REG) {
4295 ret = 0;
4296 goto out;
4297 }
4298 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4299 left_len = btrfs_file_extent_num_bytes(eb, ei);
4300 left_offset = btrfs_file_extent_offset(eb, ei);
4301 left_gen = btrfs_file_extent_generation(eb, ei);
4302
4303 /*
4304 * Following comments will refer to these graphics. L is the left
4305 * extents which we are checking at the moment. 1-8 are the right
4306 * extents that we iterate.
4307 *
4308 * |-----L-----|
4309 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4310 *
4311 * |-----L-----|
4312 * |--1--|-2b-|...(same as above)
4313 *
4314 * Alternative situation. Happens on files where extents got split.
4315 * |-----L-----|
4316 * |-----------7-----------|-6-|
4317 *
4318 * Alternative situation. Happens on files which got larger.
4319 * |-----L-----|
4320 * |-8-|
4321 * Nothing follows after 8.
4322 */
4323
4324 key.objectid = ekey->objectid;
4325 key.type = BTRFS_EXTENT_DATA_KEY;
4326 key.offset = ekey->offset;
4327 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4328 if (ret < 0)
4329 goto out;
4330 if (ret) {
4331 ret = 0;
4332 goto out;
4333 }
4334
4335 /*
4336 * Handle special case where the right side has no extents at all.
4337 */
4338 eb = path->nodes[0];
4339 slot = path->slots[0];
4340 btrfs_item_key_to_cpu(eb, &found_key, slot);
4341 if (found_key.objectid != key.objectid ||
4342 found_key.type != key.type) {
4343 /* If we're a hole then just pretend nothing changed */
4344 ret = (left_disknr) ? 0 : 1;
4345 goto out;
4346 }
4347
4348 /*
4349 * We're now on 2a, 2b or 7.
4350 */
4351 key = found_key;
4352 while (key.offset < ekey->offset + left_len) {
4353 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4354 right_type = btrfs_file_extent_type(eb, ei);
4355 if (right_type != BTRFS_FILE_EXTENT_REG) {
4356 ret = 0;
4357 goto out;
4358 }
4359
4360 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4361 right_len = btrfs_file_extent_num_bytes(eb, ei);
4362 right_offset = btrfs_file_extent_offset(eb, ei);
4363 right_gen = btrfs_file_extent_generation(eb, ei);
4364
4365 /*
4366 * Are we at extent 8? If yes, we know the extent is changed.
4367 * This may only happen on the first iteration.
4368 */
4369 if (found_key.offset + right_len <= ekey->offset) {
4370 /* If we're a hole just pretend nothing changed */
4371 ret = (left_disknr) ? 0 : 1;
4372 goto out;
4373 }
4374
4375 left_offset_fixed = left_offset;
4376 if (key.offset < ekey->offset) {
4377 /* Fix the right offset for 2a and 7. */
4378 right_offset += ekey->offset - key.offset;
4379 } else {
4380 /* Fix the left offset for all behind 2a and 2b */
4381 left_offset_fixed += key.offset - ekey->offset;
4382 }
4383
4384 /*
4385 * Check if we have the same extent.
4386 */
4387 if (left_disknr != right_disknr ||
4388 left_offset_fixed != right_offset ||
4389 left_gen != right_gen) {
4390 ret = 0;
4391 goto out;
4392 }
4393
4394 /*
4395 * Go to the next extent.
4396 */
4397 ret = btrfs_next_item(sctx->parent_root, path);
4398 if (ret < 0)
4399 goto out;
4400 if (!ret) {
4401 eb = path->nodes[0];
4402 slot = path->slots[0];
4403 btrfs_item_key_to_cpu(eb, &found_key, slot);
4404 }
4405 if (ret || found_key.objectid != key.objectid ||
4406 found_key.type != key.type) {
4407 key.offset += right_len;
4408 break;
4409 }
4410 if (found_key.offset != key.offset + right_len) {
4411 ret = 0;
4412 goto out;
4413 }
4414 key = found_key;
4415 }
4416
4417 /*
4418 * We're now behind the left extent (treat as unchanged) or at the end
4419 * of the right side (treat as changed).
4420 */
4421 if (key.offset >= ekey->offset + left_len)
4422 ret = 1;
4423 else
4424 ret = 0;
4425
4426
4427 out:
4428 btrfs_free_path(path);
4429 return ret;
4430 }
4431
4432 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4433 {
4434 struct btrfs_path *path;
4435 struct btrfs_root *root = sctx->send_root;
4436 struct btrfs_file_extent_item *fi;
4437 struct btrfs_key key;
4438 u64 extent_end;
4439 u8 type;
4440 int ret;
4441
4442 path = alloc_path_for_send();
4443 if (!path)
4444 return -ENOMEM;
4445
4446 sctx->cur_inode_last_extent = 0;
4447
4448 key.objectid = sctx->cur_ino;
4449 key.type = BTRFS_EXTENT_DATA_KEY;
4450 key.offset = offset;
4451 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4452 if (ret < 0)
4453 goto out;
4454 ret = 0;
4455 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4456 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4457 goto out;
4458
4459 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4460 struct btrfs_file_extent_item);
4461 type = btrfs_file_extent_type(path->nodes[0], fi);
4462 if (type == BTRFS_FILE_EXTENT_INLINE) {
4463 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4464 path->slots[0], fi);
4465 extent_end = ALIGN(key.offset + size,
4466 sctx->send_root->sectorsize);
4467 } else {
4468 extent_end = key.offset +
4469 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4470 }
4471 sctx->cur_inode_last_extent = extent_end;
4472 out:
4473 btrfs_free_path(path);
4474 return ret;
4475 }
4476
4477 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4478 struct btrfs_key *key)
4479 {
4480 struct btrfs_file_extent_item *fi;
4481 u64 extent_end;
4482 u8 type;
4483 int ret = 0;
4484
4485 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4486 return 0;
4487
4488 if (sctx->cur_inode_last_extent == (u64)-1) {
4489 ret = get_last_extent(sctx, key->offset - 1);
4490 if (ret)
4491 return ret;
4492 }
4493
4494 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4495 struct btrfs_file_extent_item);
4496 type = btrfs_file_extent_type(path->nodes[0], fi);
4497 if (type == BTRFS_FILE_EXTENT_INLINE) {
4498 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4499 path->slots[0], fi);
4500 extent_end = ALIGN(key->offset + size,
4501 sctx->send_root->sectorsize);
4502 } else {
4503 extent_end = key->offset +
4504 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4505 }
4506
4507 if (path->slots[0] == 0 &&
4508 sctx->cur_inode_last_extent < key->offset) {
4509 /*
4510 * We might have skipped entire leafs that contained only
4511 * file extent items for our current inode. These leafs have
4512 * a generation number smaller (older) than the one in the
4513 * current leaf and the leaf our last extent came from, and
4514 * are located between these 2 leafs.
4515 */
4516 ret = get_last_extent(sctx, key->offset - 1);
4517 if (ret)
4518 return ret;
4519 }
4520
4521 if (sctx->cur_inode_last_extent < key->offset)
4522 ret = send_hole(sctx, key->offset);
4523 sctx->cur_inode_last_extent = extent_end;
4524 return ret;
4525 }
4526
4527 static int process_extent(struct send_ctx *sctx,
4528 struct btrfs_path *path,
4529 struct btrfs_key *key)
4530 {
4531 struct clone_root *found_clone = NULL;
4532 int ret = 0;
4533
4534 if (S_ISLNK(sctx->cur_inode_mode))
4535 return 0;
4536
4537 if (sctx->parent_root && !sctx->cur_inode_new) {
4538 ret = is_extent_unchanged(sctx, path, key);
4539 if (ret < 0)
4540 goto out;
4541 if (ret) {
4542 ret = 0;
4543 goto out_hole;
4544 }
4545 } else {
4546 struct btrfs_file_extent_item *ei;
4547 u8 type;
4548
4549 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4550 struct btrfs_file_extent_item);
4551 type = btrfs_file_extent_type(path->nodes[0], ei);
4552 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4553 type == BTRFS_FILE_EXTENT_REG) {
4554 /*
4555 * The send spec does not have a prealloc command yet,
4556 * so just leave a hole for prealloc'ed extents until
4557 * we have enough commands queued up to justify rev'ing
4558 * the send spec.
4559 */
4560 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4561 ret = 0;
4562 goto out;
4563 }
4564
4565 /* Have a hole, just skip it. */
4566 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4567 ret = 0;
4568 goto out;
4569 }
4570 }
4571 }
4572
4573 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4574 sctx->cur_inode_size, &found_clone);
4575 if (ret != -ENOENT && ret < 0)
4576 goto out;
4577
4578 ret = send_write_or_clone(sctx, path, key, found_clone);
4579 if (ret)
4580 goto out;
4581 out_hole:
4582 ret = maybe_send_hole(sctx, path, key);
4583 out:
4584 return ret;
4585 }
4586
4587 static int process_all_extents(struct send_ctx *sctx)
4588 {
4589 int ret;
4590 struct btrfs_root *root;
4591 struct btrfs_path *path;
4592 struct btrfs_key key;
4593 struct btrfs_key found_key;
4594 struct extent_buffer *eb;
4595 int slot;
4596
4597 root = sctx->send_root;
4598 path = alloc_path_for_send();
4599 if (!path)
4600 return -ENOMEM;
4601
4602 key.objectid = sctx->cmp_key->objectid;
4603 key.type = BTRFS_EXTENT_DATA_KEY;
4604 key.offset = 0;
4605 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4606 if (ret < 0)
4607 goto out;
4608
4609 while (1) {
4610 eb = path->nodes[0];
4611 slot = path->slots[0];
4612
4613 if (slot >= btrfs_header_nritems(eb)) {
4614 ret = btrfs_next_leaf(root, path);
4615 if (ret < 0) {
4616 goto out;
4617 } else if (ret > 0) {
4618 ret = 0;
4619 break;
4620 }
4621 continue;
4622 }
4623
4624 btrfs_item_key_to_cpu(eb, &found_key, slot);
4625
4626 if (found_key.objectid != key.objectid ||
4627 found_key.type != key.type) {
4628 ret = 0;
4629 goto out;
4630 }
4631
4632 ret = process_extent(sctx, path, &found_key);
4633 if (ret < 0)
4634 goto out;
4635
4636 path->slots[0]++;
4637 }
4638
4639 out:
4640 btrfs_free_path(path);
4641 return ret;
4642 }
4643
4644 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4645 int *pending_move,
4646 int *refs_processed)
4647 {
4648 int ret = 0;
4649
4650 if (sctx->cur_ino == 0)
4651 goto out;
4652 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4653 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4654 goto out;
4655 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4656 goto out;
4657
4658 ret = process_recorded_refs(sctx, pending_move);
4659 if (ret < 0)
4660 goto out;
4661
4662 *refs_processed = 1;
4663 out:
4664 return ret;
4665 }
4666
4667 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4668 {
4669 int ret = 0;
4670 u64 left_mode;
4671 u64 left_uid;
4672 u64 left_gid;
4673 u64 right_mode;
4674 u64 right_uid;
4675 u64 right_gid;
4676 int need_chmod = 0;
4677 int need_chown = 0;
4678 int pending_move = 0;
4679 int refs_processed = 0;
4680
4681 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4682 &refs_processed);
4683 if (ret < 0)
4684 goto out;
4685
4686 /*
4687 * We have processed the refs and thus need to advance send_progress.
4688 * Now, calls to get_cur_xxx will take the updated refs of the current
4689 * inode into account.
4690 *
4691 * On the other hand, if our current inode is a directory and couldn't
4692 * be moved/renamed because its parent was renamed/moved too and it has
4693 * a higher inode number, we can only move/rename our current inode
4694 * after we moved/renamed its parent. Therefore in this case operate on
4695 * the old path (pre move/rename) of our current inode, and the
4696 * move/rename will be performed later.
4697 */
4698 if (refs_processed && !pending_move)
4699 sctx->send_progress = sctx->cur_ino + 1;
4700
4701 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4702 goto out;
4703 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4704 goto out;
4705
4706 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4707 &left_mode, &left_uid, &left_gid, NULL);
4708 if (ret < 0)
4709 goto out;
4710
4711 if (!sctx->parent_root || sctx->cur_inode_new) {
4712 need_chown = 1;
4713 if (!S_ISLNK(sctx->cur_inode_mode))
4714 need_chmod = 1;
4715 } else {
4716 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4717 NULL, NULL, &right_mode, &right_uid,
4718 &right_gid, NULL);
4719 if (ret < 0)
4720 goto out;
4721
4722 if (left_uid != right_uid || left_gid != right_gid)
4723 need_chown = 1;
4724 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4725 need_chmod = 1;
4726 }
4727
4728 if (S_ISREG(sctx->cur_inode_mode)) {
4729 if (need_send_hole(sctx)) {
4730 if (sctx->cur_inode_last_extent == (u64)-1) {
4731 ret = get_last_extent(sctx, (u64)-1);
4732 if (ret)
4733 goto out;
4734 }
4735 if (sctx->cur_inode_last_extent <
4736 sctx->cur_inode_size) {
4737 ret = send_hole(sctx, sctx->cur_inode_size);
4738 if (ret)
4739 goto out;
4740 }
4741 }
4742 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4743 sctx->cur_inode_size);
4744 if (ret < 0)
4745 goto out;
4746 }
4747
4748 if (need_chown) {
4749 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4750 left_uid, left_gid);
4751 if (ret < 0)
4752 goto out;
4753 }
4754 if (need_chmod) {
4755 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4756 left_mode);
4757 if (ret < 0)
4758 goto out;
4759 }
4760
4761 /*
4762 * If other directory inodes depended on our current directory
4763 * inode's move/rename, now do their move/rename operations.
4764 */
4765 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
4766 ret = apply_children_dir_moves(sctx);
4767 if (ret)
4768 goto out;
4769 }
4770
4771 /*
4772 * Need to send that every time, no matter if it actually
4773 * changed between the two trees as we have done changes to
4774 * the inode before.
4775 */
4776 sctx->send_progress = sctx->cur_ino + 1;
4777 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4778 if (ret < 0)
4779 goto out;
4780
4781 out:
4782 return ret;
4783 }
4784
4785 static int changed_inode(struct send_ctx *sctx,
4786 enum btrfs_compare_tree_result result)
4787 {
4788 int ret = 0;
4789 struct btrfs_key *key = sctx->cmp_key;
4790 struct btrfs_inode_item *left_ii = NULL;
4791 struct btrfs_inode_item *right_ii = NULL;
4792 u64 left_gen = 0;
4793 u64 right_gen = 0;
4794
4795 sctx->cur_ino = key->objectid;
4796 sctx->cur_inode_new_gen = 0;
4797 sctx->cur_inode_last_extent = (u64)-1;
4798
4799 /*
4800 * Set send_progress to current inode. This will tell all get_cur_xxx
4801 * functions that the current inode's refs are not updated yet. Later,
4802 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4803 */
4804 sctx->send_progress = sctx->cur_ino;
4805
4806 if (result == BTRFS_COMPARE_TREE_NEW ||
4807 result == BTRFS_COMPARE_TREE_CHANGED) {
4808 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4809 sctx->left_path->slots[0],
4810 struct btrfs_inode_item);
4811 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4812 left_ii);
4813 } else {
4814 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4815 sctx->right_path->slots[0],
4816 struct btrfs_inode_item);
4817 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4818 right_ii);
4819 }
4820 if (result == BTRFS_COMPARE_TREE_CHANGED) {
4821 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4822 sctx->right_path->slots[0],
4823 struct btrfs_inode_item);
4824
4825 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4826 right_ii);
4827
4828 /*
4829 * The cur_ino = root dir case is special here. We can't treat
4830 * the inode as deleted+reused because it would generate a
4831 * stream that tries to delete/mkdir the root dir.
4832 */
4833 if (left_gen != right_gen &&
4834 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4835 sctx->cur_inode_new_gen = 1;
4836 }
4837
4838 if (result == BTRFS_COMPARE_TREE_NEW) {
4839 sctx->cur_inode_gen = left_gen;
4840 sctx->cur_inode_new = 1;
4841 sctx->cur_inode_deleted = 0;
4842 sctx->cur_inode_size = btrfs_inode_size(
4843 sctx->left_path->nodes[0], left_ii);
4844 sctx->cur_inode_mode = btrfs_inode_mode(
4845 sctx->left_path->nodes[0], left_ii);
4846 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4847 ret = send_create_inode_if_needed(sctx);
4848 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
4849 sctx->cur_inode_gen = right_gen;
4850 sctx->cur_inode_new = 0;
4851 sctx->cur_inode_deleted = 1;
4852 sctx->cur_inode_size = btrfs_inode_size(
4853 sctx->right_path->nodes[0], right_ii);
4854 sctx->cur_inode_mode = btrfs_inode_mode(
4855 sctx->right_path->nodes[0], right_ii);
4856 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
4857 /*
4858 * We need to do some special handling in case the inode was
4859 * reported as changed with a changed generation number. This
4860 * means that the original inode was deleted and new inode
4861 * reused the same inum. So we have to treat the old inode as
4862 * deleted and the new one as new.
4863 */
4864 if (sctx->cur_inode_new_gen) {
4865 /*
4866 * First, process the inode as if it was deleted.
4867 */
4868 sctx->cur_inode_gen = right_gen;
4869 sctx->cur_inode_new = 0;
4870 sctx->cur_inode_deleted = 1;
4871 sctx->cur_inode_size = btrfs_inode_size(
4872 sctx->right_path->nodes[0], right_ii);
4873 sctx->cur_inode_mode = btrfs_inode_mode(
4874 sctx->right_path->nodes[0], right_ii);
4875 ret = process_all_refs(sctx,
4876 BTRFS_COMPARE_TREE_DELETED);
4877 if (ret < 0)
4878 goto out;
4879
4880 /*
4881 * Now process the inode as if it was new.
4882 */
4883 sctx->cur_inode_gen = left_gen;
4884 sctx->cur_inode_new = 1;
4885 sctx->cur_inode_deleted = 0;
4886 sctx->cur_inode_size = btrfs_inode_size(
4887 sctx->left_path->nodes[0], left_ii);
4888 sctx->cur_inode_mode = btrfs_inode_mode(
4889 sctx->left_path->nodes[0], left_ii);
4890 ret = send_create_inode_if_needed(sctx);
4891 if (ret < 0)
4892 goto out;
4893
4894 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4895 if (ret < 0)
4896 goto out;
4897 /*
4898 * Advance send_progress now as we did not get into
4899 * process_recorded_refs_if_needed in the new_gen case.
4900 */
4901 sctx->send_progress = sctx->cur_ino + 1;
4902
4903 /*
4904 * Now process all extents and xattrs of the inode as if
4905 * they were all new.
4906 */
4907 ret = process_all_extents(sctx);
4908 if (ret < 0)
4909 goto out;
4910 ret = process_all_new_xattrs(sctx);
4911 if (ret < 0)
4912 goto out;
4913 } else {
4914 sctx->cur_inode_gen = left_gen;
4915 sctx->cur_inode_new = 0;
4916 sctx->cur_inode_new_gen = 0;
4917 sctx->cur_inode_deleted = 0;
4918 sctx->cur_inode_size = btrfs_inode_size(
4919 sctx->left_path->nodes[0], left_ii);
4920 sctx->cur_inode_mode = btrfs_inode_mode(
4921 sctx->left_path->nodes[0], left_ii);
4922 }
4923 }
4924
4925 out:
4926 return ret;
4927 }
4928
4929 /*
4930 * We have to process new refs before deleted refs, but compare_trees gives us
4931 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4932 * first and later process them in process_recorded_refs.
4933 * For the cur_inode_new_gen case, we skip recording completely because
4934 * changed_inode did already initiate processing of refs. The reason for this is
4935 * that in this case, compare_tree actually compares the refs of 2 different
4936 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4937 * refs of the right tree as deleted and all refs of the left tree as new.
4938 */
4939 static int changed_ref(struct send_ctx *sctx,
4940 enum btrfs_compare_tree_result result)
4941 {
4942 int ret = 0;
4943
4944 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4945
4946 if (!sctx->cur_inode_new_gen &&
4947 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4948 if (result == BTRFS_COMPARE_TREE_NEW)
4949 ret = record_new_ref(sctx);
4950 else if (result == BTRFS_COMPARE_TREE_DELETED)
4951 ret = record_deleted_ref(sctx);
4952 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4953 ret = record_changed_ref(sctx);
4954 }
4955
4956 return ret;
4957 }
4958
4959 /*
4960 * Process new/deleted/changed xattrs. We skip processing in the
4961 * cur_inode_new_gen case because changed_inode did already initiate processing
4962 * of xattrs. The reason is the same as in changed_ref
4963 */
4964 static int changed_xattr(struct send_ctx *sctx,
4965 enum btrfs_compare_tree_result result)
4966 {
4967 int ret = 0;
4968
4969 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4970
4971 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4972 if (result == BTRFS_COMPARE_TREE_NEW)
4973 ret = process_new_xattr(sctx);
4974 else if (result == BTRFS_COMPARE_TREE_DELETED)
4975 ret = process_deleted_xattr(sctx);
4976 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4977 ret = process_changed_xattr(sctx);
4978 }
4979
4980 return ret;
4981 }
4982
4983 /*
4984 * Process new/deleted/changed extents. We skip processing in the
4985 * cur_inode_new_gen case because changed_inode did already initiate processing
4986 * of extents. The reason is the same as in changed_ref
4987 */
4988 static int changed_extent(struct send_ctx *sctx,
4989 enum btrfs_compare_tree_result result)
4990 {
4991 int ret = 0;
4992
4993 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4994
4995 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4996 if (result != BTRFS_COMPARE_TREE_DELETED)
4997 ret = process_extent(sctx, sctx->left_path,
4998 sctx->cmp_key);
4999 }
5000
5001 return ret;
5002 }
5003
5004 static int dir_changed(struct send_ctx *sctx, u64 dir)
5005 {
5006 u64 orig_gen, new_gen;
5007 int ret;
5008
5009 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5010 NULL, NULL);
5011 if (ret)
5012 return ret;
5013
5014 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5015 NULL, NULL, NULL);
5016 if (ret)
5017 return ret;
5018
5019 return (orig_gen != new_gen) ? 1 : 0;
5020 }
5021
5022 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5023 struct btrfs_key *key)
5024 {
5025 struct btrfs_inode_extref *extref;
5026 struct extent_buffer *leaf;
5027 u64 dirid = 0, last_dirid = 0;
5028 unsigned long ptr;
5029 u32 item_size;
5030 u32 cur_offset = 0;
5031 int ref_name_len;
5032 int ret = 0;
5033
5034 /* Easy case, just check this one dirid */
5035 if (key->type == BTRFS_INODE_REF_KEY) {
5036 dirid = key->offset;
5037
5038 ret = dir_changed(sctx, dirid);
5039 goto out;
5040 }
5041
5042 leaf = path->nodes[0];
5043 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5044 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5045 while (cur_offset < item_size) {
5046 extref = (struct btrfs_inode_extref *)(ptr +
5047 cur_offset);
5048 dirid = btrfs_inode_extref_parent(leaf, extref);
5049 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5050 cur_offset += ref_name_len + sizeof(*extref);
5051 if (dirid == last_dirid)
5052 continue;
5053 ret = dir_changed(sctx, dirid);
5054 if (ret)
5055 break;
5056 last_dirid = dirid;
5057 }
5058 out:
5059 return ret;
5060 }
5061
5062 /*
5063 * Updates compare related fields in sctx and simply forwards to the actual
5064 * changed_xxx functions.
5065 */
5066 static int changed_cb(struct btrfs_root *left_root,
5067 struct btrfs_root *right_root,
5068 struct btrfs_path *left_path,
5069 struct btrfs_path *right_path,
5070 struct btrfs_key *key,
5071 enum btrfs_compare_tree_result result,
5072 void *ctx)
5073 {
5074 int ret = 0;
5075 struct send_ctx *sctx = ctx;
5076
5077 if (result == BTRFS_COMPARE_TREE_SAME) {
5078 if (key->type == BTRFS_INODE_REF_KEY ||
5079 key->type == BTRFS_INODE_EXTREF_KEY) {
5080 ret = compare_refs(sctx, left_path, key);
5081 if (!ret)
5082 return 0;
5083 if (ret < 0)
5084 return ret;
5085 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5086 return maybe_send_hole(sctx, left_path, key);
5087 } else {
5088 return 0;
5089 }
5090 result = BTRFS_COMPARE_TREE_CHANGED;
5091 ret = 0;
5092 }
5093
5094 sctx->left_path = left_path;
5095 sctx->right_path = right_path;
5096 sctx->cmp_key = key;
5097
5098 ret = finish_inode_if_needed(sctx, 0);
5099 if (ret < 0)
5100 goto out;
5101
5102 /* Ignore non-FS objects */
5103 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5104 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5105 goto out;
5106
5107 if (key->type == BTRFS_INODE_ITEM_KEY)
5108 ret = changed_inode(sctx, result);
5109 else if (key->type == BTRFS_INODE_REF_KEY ||
5110 key->type == BTRFS_INODE_EXTREF_KEY)
5111 ret = changed_ref(sctx, result);
5112 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5113 ret = changed_xattr(sctx, result);
5114 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5115 ret = changed_extent(sctx, result);
5116
5117 out:
5118 return ret;
5119 }
5120
5121 static int full_send_tree(struct send_ctx *sctx)
5122 {
5123 int ret;
5124 struct btrfs_root *send_root = sctx->send_root;
5125 struct btrfs_key key;
5126 struct btrfs_key found_key;
5127 struct btrfs_path *path;
5128 struct extent_buffer *eb;
5129 int slot;
5130 u64 start_ctransid;
5131 u64 ctransid;
5132
5133 path = alloc_path_for_send();
5134 if (!path)
5135 return -ENOMEM;
5136
5137 spin_lock(&send_root->root_item_lock);
5138 start_ctransid = btrfs_root_ctransid(&send_root->root_item);
5139 spin_unlock(&send_root->root_item_lock);
5140
5141 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5142 key.type = BTRFS_INODE_ITEM_KEY;
5143 key.offset = 0;
5144
5145 /*
5146 * Make sure the tree has not changed after re-joining. We detect this
5147 * by comparing start_ctransid and ctransid. They should always match.
5148 */
5149 spin_lock(&send_root->root_item_lock);
5150 ctransid = btrfs_root_ctransid(&send_root->root_item);
5151 spin_unlock(&send_root->root_item_lock);
5152
5153 if (ctransid != start_ctransid) {
5154 WARN(1, KERN_WARNING "BTRFS: the root that you're trying to "
5155 "send was modified in between. This is "
5156 "probably a bug.\n");
5157 ret = -EIO;
5158 goto out;
5159 }
5160
5161 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5162 if (ret < 0)
5163 goto out;
5164 if (ret)
5165 goto out_finish;
5166
5167 while (1) {
5168 eb = path->nodes[0];
5169 slot = path->slots[0];
5170 btrfs_item_key_to_cpu(eb, &found_key, slot);
5171
5172 ret = changed_cb(send_root, NULL, path, NULL,
5173 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5174 if (ret < 0)
5175 goto out;
5176
5177 key.objectid = found_key.objectid;
5178 key.type = found_key.type;
5179 key.offset = found_key.offset + 1;
5180
5181 ret = btrfs_next_item(send_root, path);
5182 if (ret < 0)
5183 goto out;
5184 if (ret) {
5185 ret = 0;
5186 break;
5187 }
5188 }
5189
5190 out_finish:
5191 ret = finish_inode_if_needed(sctx, 1);
5192
5193 out:
5194 btrfs_free_path(path);
5195 return ret;
5196 }
5197
5198 static int send_subvol(struct send_ctx *sctx)
5199 {
5200 int ret;
5201
5202 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5203 ret = send_header(sctx);
5204 if (ret < 0)
5205 goto out;
5206 }
5207
5208 ret = send_subvol_begin(sctx);
5209 if (ret < 0)
5210 goto out;
5211
5212 if (sctx->parent_root) {
5213 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5214 changed_cb, sctx);
5215 if (ret < 0)
5216 goto out;
5217 ret = finish_inode_if_needed(sctx, 1);
5218 if (ret < 0)
5219 goto out;
5220 } else {
5221 ret = full_send_tree(sctx);
5222 if (ret < 0)
5223 goto out;
5224 }
5225
5226 out:
5227 free_recorded_refs(sctx);
5228 return ret;
5229 }
5230
5231 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5232 {
5233 spin_lock(&root->root_item_lock);
5234 root->send_in_progress--;
5235 /*
5236 * Not much left to do, we don't know why it's unbalanced and
5237 * can't blindly reset it to 0.
5238 */
5239 if (root->send_in_progress < 0)
5240 btrfs_err(root->fs_info,
5241 "send_in_progres unbalanced %d root %llu\n",
5242 root->send_in_progress, root->root_key.objectid);
5243 spin_unlock(&root->root_item_lock);
5244 }
5245
5246 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5247 {
5248 int ret = 0;
5249 struct btrfs_root *send_root;
5250 struct btrfs_root *clone_root;
5251 struct btrfs_fs_info *fs_info;
5252 struct btrfs_ioctl_send_args *arg = NULL;
5253 struct btrfs_key key;
5254 struct send_ctx *sctx = NULL;
5255 u32 i;
5256 u64 *clone_sources_tmp = NULL;
5257 int clone_sources_to_rollback = 0;
5258 int sort_clone_roots = 0;
5259 int index;
5260
5261 if (!capable(CAP_SYS_ADMIN))
5262 return -EPERM;
5263
5264 send_root = BTRFS_I(file_inode(mnt_file))->root;
5265 fs_info = send_root->fs_info;
5266
5267 /*
5268 * The subvolume must remain read-only during send, protect against
5269 * making it RW.
5270 */
5271 spin_lock(&send_root->root_item_lock);
5272 send_root->send_in_progress++;
5273 spin_unlock(&send_root->root_item_lock);
5274
5275 /*
5276 * This is done when we lookup the root, it should already be complete
5277 * by the time we get here.
5278 */
5279 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5280
5281 /*
5282 * Userspace tools do the checks and warn the user if it's
5283 * not RO.
5284 */
5285 if (!btrfs_root_readonly(send_root)) {
5286 ret = -EPERM;
5287 goto out;
5288 }
5289
5290 arg = memdup_user(arg_, sizeof(*arg));
5291 if (IS_ERR(arg)) {
5292 ret = PTR_ERR(arg);
5293 arg = NULL;
5294 goto out;
5295 }
5296
5297 if (!access_ok(VERIFY_READ, arg->clone_sources,
5298 sizeof(*arg->clone_sources) *
5299 arg->clone_sources_count)) {
5300 ret = -EFAULT;
5301 goto out;
5302 }
5303
5304 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5305 ret = -EINVAL;
5306 goto out;
5307 }
5308
5309 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5310 if (!sctx) {
5311 ret = -ENOMEM;
5312 goto out;
5313 }
5314
5315 INIT_LIST_HEAD(&sctx->new_refs);
5316 INIT_LIST_HEAD(&sctx->deleted_refs);
5317 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5318 INIT_LIST_HEAD(&sctx->name_cache_list);
5319
5320 sctx->flags = arg->flags;
5321
5322 sctx->send_filp = fget(arg->send_fd);
5323 if (!sctx->send_filp) {
5324 ret = -EBADF;
5325 goto out;
5326 }
5327
5328 sctx->send_root = send_root;
5329 sctx->clone_roots_cnt = arg->clone_sources_count;
5330
5331 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5332 sctx->send_buf = vmalloc(sctx->send_max_size);
5333 if (!sctx->send_buf) {
5334 ret = -ENOMEM;
5335 goto out;
5336 }
5337
5338 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5339 if (!sctx->read_buf) {
5340 ret = -ENOMEM;
5341 goto out;
5342 }
5343
5344 sctx->pending_dir_moves = RB_ROOT;
5345 sctx->waiting_dir_moves = RB_ROOT;
5346
5347 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5348 (arg->clone_sources_count + 1));
5349 if (!sctx->clone_roots) {
5350 ret = -ENOMEM;
5351 goto out;
5352 }
5353
5354 if (arg->clone_sources_count) {
5355 clone_sources_tmp = vmalloc(arg->clone_sources_count *
5356 sizeof(*arg->clone_sources));
5357 if (!clone_sources_tmp) {
5358 ret = -ENOMEM;
5359 goto out;
5360 }
5361
5362 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5363 arg->clone_sources_count *
5364 sizeof(*arg->clone_sources));
5365 if (ret) {
5366 ret = -EFAULT;
5367 goto out;
5368 }
5369
5370 for (i = 0; i < arg->clone_sources_count; i++) {
5371 key.objectid = clone_sources_tmp[i];
5372 key.type = BTRFS_ROOT_ITEM_KEY;
5373 key.offset = (u64)-1;
5374
5375 index = srcu_read_lock(&fs_info->subvol_srcu);
5376
5377 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5378 if (IS_ERR(clone_root)) {
5379 srcu_read_unlock(&fs_info->subvol_srcu, index);
5380 ret = PTR_ERR(clone_root);
5381 goto out;
5382 }
5383 clone_sources_to_rollback = i + 1;
5384 spin_lock(&clone_root->root_item_lock);
5385 clone_root->send_in_progress++;
5386 if (!btrfs_root_readonly(clone_root)) {
5387 spin_unlock(&clone_root->root_item_lock);
5388 srcu_read_unlock(&fs_info->subvol_srcu, index);
5389 ret = -EPERM;
5390 goto out;
5391 }
5392 spin_unlock(&clone_root->root_item_lock);
5393 srcu_read_unlock(&fs_info->subvol_srcu, index);
5394
5395 sctx->clone_roots[i].root = clone_root;
5396 }
5397 vfree(clone_sources_tmp);
5398 clone_sources_tmp = NULL;
5399 }
5400
5401 if (arg->parent_root) {
5402 key.objectid = arg->parent_root;
5403 key.type = BTRFS_ROOT_ITEM_KEY;
5404 key.offset = (u64)-1;
5405
5406 index = srcu_read_lock(&fs_info->subvol_srcu);
5407
5408 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5409 if (IS_ERR(sctx->parent_root)) {
5410 srcu_read_unlock(&fs_info->subvol_srcu, index);
5411 ret = PTR_ERR(sctx->parent_root);
5412 goto out;
5413 }
5414
5415 spin_lock(&sctx->parent_root->root_item_lock);
5416 sctx->parent_root->send_in_progress++;
5417 if (!btrfs_root_readonly(sctx->parent_root)) {
5418 spin_unlock(&sctx->parent_root->root_item_lock);
5419 srcu_read_unlock(&fs_info->subvol_srcu, index);
5420 ret = -EPERM;
5421 goto out;
5422 }
5423 spin_unlock(&sctx->parent_root->root_item_lock);
5424
5425 srcu_read_unlock(&fs_info->subvol_srcu, index);
5426 }
5427
5428 /*
5429 * Clones from send_root are allowed, but only if the clone source
5430 * is behind the current send position. This is checked while searching
5431 * for possible clone sources.
5432 */
5433 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5434
5435 /* We do a bsearch later */
5436 sort(sctx->clone_roots, sctx->clone_roots_cnt,
5437 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5438 NULL);
5439 sort_clone_roots = 1;
5440
5441 ret = send_subvol(sctx);
5442 if (ret < 0)
5443 goto out;
5444
5445 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5446 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5447 if (ret < 0)
5448 goto out;
5449 ret = send_cmd(sctx);
5450 if (ret < 0)
5451 goto out;
5452 }
5453
5454 out:
5455 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5456 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5457 struct rb_node *n;
5458 struct pending_dir_move *pm;
5459
5460 n = rb_first(&sctx->pending_dir_moves);
5461 pm = rb_entry(n, struct pending_dir_move, node);
5462 while (!list_empty(&pm->list)) {
5463 struct pending_dir_move *pm2;
5464
5465 pm2 = list_first_entry(&pm->list,
5466 struct pending_dir_move, list);
5467 free_pending_move(sctx, pm2);
5468 }
5469 free_pending_move(sctx, pm);
5470 }
5471
5472 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5473 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5474 struct rb_node *n;
5475 struct waiting_dir_move *dm;
5476
5477 n = rb_first(&sctx->waiting_dir_moves);
5478 dm = rb_entry(n, struct waiting_dir_move, node);
5479 rb_erase(&dm->node, &sctx->waiting_dir_moves);
5480 kfree(dm);
5481 }
5482
5483 if (sort_clone_roots) {
5484 for (i = 0; i < sctx->clone_roots_cnt; i++)
5485 btrfs_root_dec_send_in_progress(
5486 sctx->clone_roots[i].root);
5487 } else {
5488 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5489 btrfs_root_dec_send_in_progress(
5490 sctx->clone_roots[i].root);
5491
5492 btrfs_root_dec_send_in_progress(send_root);
5493 }
5494 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5495 btrfs_root_dec_send_in_progress(sctx->parent_root);
5496
5497 kfree(arg);
5498 vfree(clone_sources_tmp);
5499
5500 if (sctx) {
5501 if (sctx->send_filp)
5502 fput(sctx->send_filp);
5503
5504 vfree(sctx->clone_roots);
5505 vfree(sctx->send_buf);
5506 vfree(sctx->read_buf);
5507
5508 name_cache_free(sctx);
5509
5510 kfree(sctx);
5511 }
5512
5513 return ret;
5514 }