]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/btrfs/send.c
ASoC: tlv320aic31xx: Reset registers during power up
[mirror_ubuntu-focal-kernel.git] / fs / btrfs / send.c
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 #include <linux/compat.h>
30
31 #include "send.h"
32 #include "backref.h"
33 #include "hash.h"
34 #include "locking.h"
35 #include "disk-io.h"
36 #include "btrfs_inode.h"
37 #include "transaction.h"
38 #include "compression.h"
39
40 /*
41 * A fs_path is a helper to dynamically build path names with unknown size.
42 * It reallocates the internal buffer on demand.
43 * It allows fast adding of path elements on the right side (normal path) and
44 * fast adding to the left side (reversed path). A reversed path can also be
45 * unreversed if needed.
46 */
47 struct fs_path {
48 union {
49 struct {
50 char *start;
51 char *end;
52
53 char *buf;
54 unsigned short buf_len:15;
55 unsigned short reversed:1;
56 char inline_buf[];
57 };
58 /*
59 * Average path length does not exceed 200 bytes, we'll have
60 * better packing in the slab and higher chance to satisfy
61 * a allocation later during send.
62 */
63 char pad[256];
64 };
65 };
66 #define FS_PATH_INLINE_SIZE \
67 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
68
69
70 /* reused for each extent */
71 struct clone_root {
72 struct btrfs_root *root;
73 u64 ino;
74 u64 offset;
75
76 u64 found_refs;
77 };
78
79 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
80 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
81
82 struct send_ctx {
83 struct file *send_filp;
84 loff_t send_off;
85 char *send_buf;
86 u32 send_size;
87 u32 send_max_size;
88 u64 total_send_size;
89 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
90 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
91
92 struct btrfs_root *send_root;
93 struct btrfs_root *parent_root;
94 struct clone_root *clone_roots;
95 int clone_roots_cnt;
96
97 /* current state of the compare_tree call */
98 struct btrfs_path *left_path;
99 struct btrfs_path *right_path;
100 struct btrfs_key *cmp_key;
101
102 /*
103 * infos of the currently processed inode. In case of deleted inodes,
104 * these are the values from the deleted inode.
105 */
106 u64 cur_ino;
107 u64 cur_inode_gen;
108 int cur_inode_new;
109 int cur_inode_new_gen;
110 int cur_inode_deleted;
111 u64 cur_inode_size;
112 u64 cur_inode_mode;
113 u64 cur_inode_rdev;
114 u64 cur_inode_last_extent;
115
116 u64 send_progress;
117
118 struct list_head new_refs;
119 struct list_head deleted_refs;
120
121 struct radix_tree_root name_cache;
122 struct list_head name_cache_list;
123 int name_cache_size;
124
125 struct file_ra_state ra;
126
127 char *read_buf;
128
129 /*
130 * We process inodes by their increasing order, so if before an
131 * incremental send we reverse the parent/child relationship of
132 * directories such that a directory with a lower inode number was
133 * the parent of a directory with a higher inode number, and the one
134 * becoming the new parent got renamed too, we can't rename/move the
135 * directory with lower inode number when we finish processing it - we
136 * must process the directory with higher inode number first, then
137 * rename/move it and then rename/move the directory with lower inode
138 * number. Example follows.
139 *
140 * Tree state when the first send was performed:
141 *
142 * .
143 * |-- a (ino 257)
144 * |-- b (ino 258)
145 * |
146 * |
147 * |-- c (ino 259)
148 * | |-- d (ino 260)
149 * |
150 * |-- c2 (ino 261)
151 *
152 * Tree state when the second (incremental) send is performed:
153 *
154 * .
155 * |-- a (ino 257)
156 * |-- b (ino 258)
157 * |-- c2 (ino 261)
158 * |-- d2 (ino 260)
159 * |-- cc (ino 259)
160 *
161 * The sequence of steps that lead to the second state was:
162 *
163 * mv /a/b/c/d /a/b/c2/d2
164 * mv /a/b/c /a/b/c2/d2/cc
165 *
166 * "c" has lower inode number, but we can't move it (2nd mv operation)
167 * before we move "d", which has higher inode number.
168 *
169 * So we just memorize which move/rename operations must be performed
170 * later when their respective parent is processed and moved/renamed.
171 */
172
173 /* Indexed by parent directory inode number. */
174 struct rb_root pending_dir_moves;
175
176 /*
177 * Reverse index, indexed by the inode number of a directory that
178 * is waiting for the move/rename of its immediate parent before its
179 * own move/rename can be performed.
180 */
181 struct rb_root waiting_dir_moves;
182
183 /*
184 * A directory that is going to be rm'ed might have a child directory
185 * which is in the pending directory moves index above. In this case,
186 * the directory can only be removed after the move/rename of its child
187 * is performed. Example:
188 *
189 * Parent snapshot:
190 *
191 * . (ino 256)
192 * |-- a/ (ino 257)
193 * |-- b/ (ino 258)
194 * |-- c/ (ino 259)
195 * | |-- x/ (ino 260)
196 * |
197 * |-- y/ (ino 261)
198 *
199 * Send snapshot:
200 *
201 * . (ino 256)
202 * |-- a/ (ino 257)
203 * |-- b/ (ino 258)
204 * |-- YY/ (ino 261)
205 * |-- x/ (ino 260)
206 *
207 * Sequence of steps that lead to the send snapshot:
208 * rm -f /a/b/c/foo.txt
209 * mv /a/b/y /a/b/YY
210 * mv /a/b/c/x /a/b/YY
211 * rmdir /a/b/c
212 *
213 * When the child is processed, its move/rename is delayed until its
214 * parent is processed (as explained above), but all other operations
215 * like update utimes, chown, chgrp, etc, are performed and the paths
216 * that it uses for those operations must use the orphanized name of
217 * its parent (the directory we're going to rm later), so we need to
218 * memorize that name.
219 *
220 * Indexed by the inode number of the directory to be deleted.
221 */
222 struct rb_root orphan_dirs;
223 };
224
225 struct pending_dir_move {
226 struct rb_node node;
227 struct list_head list;
228 u64 parent_ino;
229 u64 ino;
230 u64 gen;
231 struct list_head update_refs;
232 };
233
234 struct waiting_dir_move {
235 struct rb_node node;
236 u64 ino;
237 /*
238 * There might be some directory that could not be removed because it
239 * was waiting for this directory inode to be moved first. Therefore
240 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
241 */
242 u64 rmdir_ino;
243 bool orphanized;
244 };
245
246 struct orphan_dir_info {
247 struct rb_node node;
248 u64 ino;
249 u64 gen;
250 };
251
252 struct name_cache_entry {
253 struct list_head list;
254 /*
255 * radix_tree has only 32bit entries but we need to handle 64bit inums.
256 * We use the lower 32bit of the 64bit inum to store it in the tree. If
257 * more then one inum would fall into the same entry, we use radix_list
258 * to store the additional entries. radix_list is also used to store
259 * entries where two entries have the same inum but different
260 * generations.
261 */
262 struct list_head radix_list;
263 u64 ino;
264 u64 gen;
265 u64 parent_ino;
266 u64 parent_gen;
267 int ret;
268 int need_later_update;
269 int name_len;
270 char name[];
271 };
272
273 static void inconsistent_snapshot_error(struct send_ctx *sctx,
274 enum btrfs_compare_tree_result result,
275 const char *what)
276 {
277 const char *result_string;
278
279 switch (result) {
280 case BTRFS_COMPARE_TREE_NEW:
281 result_string = "new";
282 break;
283 case BTRFS_COMPARE_TREE_DELETED:
284 result_string = "deleted";
285 break;
286 case BTRFS_COMPARE_TREE_CHANGED:
287 result_string = "updated";
288 break;
289 case BTRFS_COMPARE_TREE_SAME:
290 ASSERT(0);
291 result_string = "unchanged";
292 break;
293 default:
294 ASSERT(0);
295 result_string = "unexpected";
296 }
297
298 btrfs_err(sctx->send_root->fs_info,
299 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
300 result_string, what, sctx->cmp_key->objectid,
301 sctx->send_root->root_key.objectid,
302 (sctx->parent_root ?
303 sctx->parent_root->root_key.objectid : 0));
304 }
305
306 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
307
308 static struct waiting_dir_move *
309 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
310
311 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
312
313 static int need_send_hole(struct send_ctx *sctx)
314 {
315 return (sctx->parent_root && !sctx->cur_inode_new &&
316 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
317 S_ISREG(sctx->cur_inode_mode));
318 }
319
320 static void fs_path_reset(struct fs_path *p)
321 {
322 if (p->reversed) {
323 p->start = p->buf + p->buf_len - 1;
324 p->end = p->start;
325 *p->start = 0;
326 } else {
327 p->start = p->buf;
328 p->end = p->start;
329 *p->start = 0;
330 }
331 }
332
333 static struct fs_path *fs_path_alloc(void)
334 {
335 struct fs_path *p;
336
337 p = kmalloc(sizeof(*p), GFP_KERNEL);
338 if (!p)
339 return NULL;
340 p->reversed = 0;
341 p->buf = p->inline_buf;
342 p->buf_len = FS_PATH_INLINE_SIZE;
343 fs_path_reset(p);
344 return p;
345 }
346
347 static struct fs_path *fs_path_alloc_reversed(void)
348 {
349 struct fs_path *p;
350
351 p = fs_path_alloc();
352 if (!p)
353 return NULL;
354 p->reversed = 1;
355 fs_path_reset(p);
356 return p;
357 }
358
359 static void fs_path_free(struct fs_path *p)
360 {
361 if (!p)
362 return;
363 if (p->buf != p->inline_buf)
364 kfree(p->buf);
365 kfree(p);
366 }
367
368 static int fs_path_len(struct fs_path *p)
369 {
370 return p->end - p->start;
371 }
372
373 static int fs_path_ensure_buf(struct fs_path *p, int len)
374 {
375 char *tmp_buf;
376 int path_len;
377 int old_buf_len;
378
379 len++;
380
381 if (p->buf_len >= len)
382 return 0;
383
384 if (len > PATH_MAX) {
385 WARN_ON(1);
386 return -ENOMEM;
387 }
388
389 path_len = p->end - p->start;
390 old_buf_len = p->buf_len;
391
392 /*
393 * First time the inline_buf does not suffice
394 */
395 if (p->buf == p->inline_buf) {
396 tmp_buf = kmalloc(len, GFP_KERNEL);
397 if (tmp_buf)
398 memcpy(tmp_buf, p->buf, old_buf_len);
399 } else {
400 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
401 }
402 if (!tmp_buf)
403 return -ENOMEM;
404 p->buf = tmp_buf;
405 /*
406 * The real size of the buffer is bigger, this will let the fast path
407 * happen most of the time
408 */
409 p->buf_len = ksize(p->buf);
410
411 if (p->reversed) {
412 tmp_buf = p->buf + old_buf_len - path_len - 1;
413 p->end = p->buf + p->buf_len - 1;
414 p->start = p->end - path_len;
415 memmove(p->start, tmp_buf, path_len + 1);
416 } else {
417 p->start = p->buf;
418 p->end = p->start + path_len;
419 }
420 return 0;
421 }
422
423 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
424 char **prepared)
425 {
426 int ret;
427 int new_len;
428
429 new_len = p->end - p->start + name_len;
430 if (p->start != p->end)
431 new_len++;
432 ret = fs_path_ensure_buf(p, new_len);
433 if (ret < 0)
434 goto out;
435
436 if (p->reversed) {
437 if (p->start != p->end)
438 *--p->start = '/';
439 p->start -= name_len;
440 *prepared = p->start;
441 } else {
442 if (p->start != p->end)
443 *p->end++ = '/';
444 *prepared = p->end;
445 p->end += name_len;
446 *p->end = 0;
447 }
448
449 out:
450 return ret;
451 }
452
453 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
454 {
455 int ret;
456 char *prepared;
457
458 ret = fs_path_prepare_for_add(p, name_len, &prepared);
459 if (ret < 0)
460 goto out;
461 memcpy(prepared, name, name_len);
462
463 out:
464 return ret;
465 }
466
467 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
468 {
469 int ret;
470 char *prepared;
471
472 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
473 if (ret < 0)
474 goto out;
475 memcpy(prepared, p2->start, p2->end - p2->start);
476
477 out:
478 return ret;
479 }
480
481 static int fs_path_add_from_extent_buffer(struct fs_path *p,
482 struct extent_buffer *eb,
483 unsigned long off, int len)
484 {
485 int ret;
486 char *prepared;
487
488 ret = fs_path_prepare_for_add(p, len, &prepared);
489 if (ret < 0)
490 goto out;
491
492 read_extent_buffer(eb, prepared, off, len);
493
494 out:
495 return ret;
496 }
497
498 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
499 {
500 int ret;
501
502 p->reversed = from->reversed;
503 fs_path_reset(p);
504
505 ret = fs_path_add_path(p, from);
506
507 return ret;
508 }
509
510
511 static void fs_path_unreverse(struct fs_path *p)
512 {
513 char *tmp;
514 int len;
515
516 if (!p->reversed)
517 return;
518
519 tmp = p->start;
520 len = p->end - p->start;
521 p->start = p->buf;
522 p->end = p->start + len;
523 memmove(p->start, tmp, len + 1);
524 p->reversed = 0;
525 }
526
527 static struct btrfs_path *alloc_path_for_send(void)
528 {
529 struct btrfs_path *path;
530
531 path = btrfs_alloc_path();
532 if (!path)
533 return NULL;
534 path->search_commit_root = 1;
535 path->skip_locking = 1;
536 path->need_commit_sem = 1;
537 return path;
538 }
539
540 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
541 {
542 int ret;
543 u32 pos = 0;
544
545 while (pos < len) {
546 ret = kernel_write(filp, buf + pos, len - pos, off);
547 /* TODO handle that correctly */
548 /*if (ret == -ERESTARTSYS) {
549 continue;
550 }*/
551 if (ret < 0)
552 return ret;
553 if (ret == 0) {
554 return -EIO;
555 }
556 pos += ret;
557 }
558
559 return 0;
560 }
561
562 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
563 {
564 struct btrfs_tlv_header *hdr;
565 int total_len = sizeof(*hdr) + len;
566 int left = sctx->send_max_size - sctx->send_size;
567
568 if (unlikely(left < total_len))
569 return -EOVERFLOW;
570
571 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
572 hdr->tlv_type = cpu_to_le16(attr);
573 hdr->tlv_len = cpu_to_le16(len);
574 memcpy(hdr + 1, data, len);
575 sctx->send_size += total_len;
576
577 return 0;
578 }
579
580 #define TLV_PUT_DEFINE_INT(bits) \
581 static int tlv_put_u##bits(struct send_ctx *sctx, \
582 u##bits attr, u##bits value) \
583 { \
584 __le##bits __tmp = cpu_to_le##bits(value); \
585 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
586 }
587
588 TLV_PUT_DEFINE_INT(64)
589
590 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
591 const char *str, int len)
592 {
593 if (len == -1)
594 len = strlen(str);
595 return tlv_put(sctx, attr, str, len);
596 }
597
598 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
599 const u8 *uuid)
600 {
601 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
602 }
603
604 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
605 struct extent_buffer *eb,
606 struct btrfs_timespec *ts)
607 {
608 struct btrfs_timespec bts;
609 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
610 return tlv_put(sctx, attr, &bts, sizeof(bts));
611 }
612
613
614 #define TLV_PUT(sctx, attrtype, attrlen, data) \
615 do { \
616 ret = tlv_put(sctx, attrtype, attrlen, data); \
617 if (ret < 0) \
618 goto tlv_put_failure; \
619 } while (0)
620
621 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
622 do { \
623 ret = tlv_put_u##bits(sctx, attrtype, value); \
624 if (ret < 0) \
625 goto tlv_put_failure; \
626 } while (0)
627
628 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
629 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
630 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
631 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
632 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
633 do { \
634 ret = tlv_put_string(sctx, attrtype, str, len); \
635 if (ret < 0) \
636 goto tlv_put_failure; \
637 } while (0)
638 #define TLV_PUT_PATH(sctx, attrtype, p) \
639 do { \
640 ret = tlv_put_string(sctx, attrtype, p->start, \
641 p->end - p->start); \
642 if (ret < 0) \
643 goto tlv_put_failure; \
644 } while(0)
645 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
646 do { \
647 ret = tlv_put_uuid(sctx, attrtype, uuid); \
648 if (ret < 0) \
649 goto tlv_put_failure; \
650 } while (0)
651 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
652 do { \
653 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
654 if (ret < 0) \
655 goto tlv_put_failure; \
656 } while (0)
657
658 static int send_header(struct send_ctx *sctx)
659 {
660 struct btrfs_stream_header hdr;
661
662 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
663 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
664
665 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
666 &sctx->send_off);
667 }
668
669 /*
670 * For each command/item we want to send to userspace, we call this function.
671 */
672 static int begin_cmd(struct send_ctx *sctx, int cmd)
673 {
674 struct btrfs_cmd_header *hdr;
675
676 if (WARN_ON(!sctx->send_buf))
677 return -EINVAL;
678
679 BUG_ON(sctx->send_size);
680
681 sctx->send_size += sizeof(*hdr);
682 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
683 hdr->cmd = cpu_to_le16(cmd);
684
685 return 0;
686 }
687
688 static int send_cmd(struct send_ctx *sctx)
689 {
690 int ret;
691 struct btrfs_cmd_header *hdr;
692 u32 crc;
693
694 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
695 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
696 hdr->crc = 0;
697
698 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
699 hdr->crc = cpu_to_le32(crc);
700
701 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
702 &sctx->send_off);
703
704 sctx->total_send_size += sctx->send_size;
705 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
706 sctx->send_size = 0;
707
708 return ret;
709 }
710
711 /*
712 * Sends a move instruction to user space
713 */
714 static int send_rename(struct send_ctx *sctx,
715 struct fs_path *from, struct fs_path *to)
716 {
717 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
718 int ret;
719
720 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
721
722 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
723 if (ret < 0)
724 goto out;
725
726 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
727 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
728
729 ret = send_cmd(sctx);
730
731 tlv_put_failure:
732 out:
733 return ret;
734 }
735
736 /*
737 * Sends a link instruction to user space
738 */
739 static int send_link(struct send_ctx *sctx,
740 struct fs_path *path, struct fs_path *lnk)
741 {
742 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
743 int ret;
744
745 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
746
747 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
748 if (ret < 0)
749 goto out;
750
751 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
753
754 ret = send_cmd(sctx);
755
756 tlv_put_failure:
757 out:
758 return ret;
759 }
760
761 /*
762 * Sends an unlink instruction to user space
763 */
764 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
765 {
766 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
767 int ret;
768
769 btrfs_debug(fs_info, "send_unlink %s", path->start);
770
771 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
772 if (ret < 0)
773 goto out;
774
775 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
776
777 ret = send_cmd(sctx);
778
779 tlv_put_failure:
780 out:
781 return ret;
782 }
783
784 /*
785 * Sends a rmdir instruction to user space
786 */
787 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
788 {
789 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
790 int ret;
791
792 btrfs_debug(fs_info, "send_rmdir %s", path->start);
793
794 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
795 if (ret < 0)
796 goto out;
797
798 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
799
800 ret = send_cmd(sctx);
801
802 tlv_put_failure:
803 out:
804 return ret;
805 }
806
807 /*
808 * Helper function to retrieve some fields from an inode item.
809 */
810 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
811 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
812 u64 *gid, u64 *rdev)
813 {
814 int ret;
815 struct btrfs_inode_item *ii;
816 struct btrfs_key key;
817
818 key.objectid = ino;
819 key.type = BTRFS_INODE_ITEM_KEY;
820 key.offset = 0;
821 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
822 if (ret) {
823 if (ret > 0)
824 ret = -ENOENT;
825 return ret;
826 }
827
828 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
829 struct btrfs_inode_item);
830 if (size)
831 *size = btrfs_inode_size(path->nodes[0], ii);
832 if (gen)
833 *gen = btrfs_inode_generation(path->nodes[0], ii);
834 if (mode)
835 *mode = btrfs_inode_mode(path->nodes[0], ii);
836 if (uid)
837 *uid = btrfs_inode_uid(path->nodes[0], ii);
838 if (gid)
839 *gid = btrfs_inode_gid(path->nodes[0], ii);
840 if (rdev)
841 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
842
843 return ret;
844 }
845
846 static int get_inode_info(struct btrfs_root *root,
847 u64 ino, u64 *size, u64 *gen,
848 u64 *mode, u64 *uid, u64 *gid,
849 u64 *rdev)
850 {
851 struct btrfs_path *path;
852 int ret;
853
854 path = alloc_path_for_send();
855 if (!path)
856 return -ENOMEM;
857 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
858 rdev);
859 btrfs_free_path(path);
860 return ret;
861 }
862
863 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
864 struct fs_path *p,
865 void *ctx);
866
867 /*
868 * Helper function to iterate the entries in ONE btrfs_inode_ref or
869 * btrfs_inode_extref.
870 * The iterate callback may return a non zero value to stop iteration. This can
871 * be a negative value for error codes or 1 to simply stop it.
872 *
873 * path must point to the INODE_REF or INODE_EXTREF when called.
874 */
875 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
876 struct btrfs_key *found_key, int resolve,
877 iterate_inode_ref_t iterate, void *ctx)
878 {
879 struct extent_buffer *eb = path->nodes[0];
880 struct btrfs_item *item;
881 struct btrfs_inode_ref *iref;
882 struct btrfs_inode_extref *extref;
883 struct btrfs_path *tmp_path;
884 struct fs_path *p;
885 u32 cur = 0;
886 u32 total;
887 int slot = path->slots[0];
888 u32 name_len;
889 char *start;
890 int ret = 0;
891 int num = 0;
892 int index;
893 u64 dir;
894 unsigned long name_off;
895 unsigned long elem_size;
896 unsigned long ptr;
897
898 p = fs_path_alloc_reversed();
899 if (!p)
900 return -ENOMEM;
901
902 tmp_path = alloc_path_for_send();
903 if (!tmp_path) {
904 fs_path_free(p);
905 return -ENOMEM;
906 }
907
908
909 if (found_key->type == BTRFS_INODE_REF_KEY) {
910 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
911 struct btrfs_inode_ref);
912 item = btrfs_item_nr(slot);
913 total = btrfs_item_size(eb, item);
914 elem_size = sizeof(*iref);
915 } else {
916 ptr = btrfs_item_ptr_offset(eb, slot);
917 total = btrfs_item_size_nr(eb, slot);
918 elem_size = sizeof(*extref);
919 }
920
921 while (cur < total) {
922 fs_path_reset(p);
923
924 if (found_key->type == BTRFS_INODE_REF_KEY) {
925 iref = (struct btrfs_inode_ref *)(ptr + cur);
926 name_len = btrfs_inode_ref_name_len(eb, iref);
927 name_off = (unsigned long)(iref + 1);
928 index = btrfs_inode_ref_index(eb, iref);
929 dir = found_key->offset;
930 } else {
931 extref = (struct btrfs_inode_extref *)(ptr + cur);
932 name_len = btrfs_inode_extref_name_len(eb, extref);
933 name_off = (unsigned long)&extref->name;
934 index = btrfs_inode_extref_index(eb, extref);
935 dir = btrfs_inode_extref_parent(eb, extref);
936 }
937
938 if (resolve) {
939 start = btrfs_ref_to_path(root, tmp_path, name_len,
940 name_off, eb, dir,
941 p->buf, p->buf_len);
942 if (IS_ERR(start)) {
943 ret = PTR_ERR(start);
944 goto out;
945 }
946 if (start < p->buf) {
947 /* overflow , try again with larger buffer */
948 ret = fs_path_ensure_buf(p,
949 p->buf_len + p->buf - start);
950 if (ret < 0)
951 goto out;
952 start = btrfs_ref_to_path(root, tmp_path,
953 name_len, name_off,
954 eb, dir,
955 p->buf, p->buf_len);
956 if (IS_ERR(start)) {
957 ret = PTR_ERR(start);
958 goto out;
959 }
960 BUG_ON(start < p->buf);
961 }
962 p->start = start;
963 } else {
964 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
965 name_len);
966 if (ret < 0)
967 goto out;
968 }
969
970 cur += elem_size + name_len;
971 ret = iterate(num, dir, index, p, ctx);
972 if (ret)
973 goto out;
974 num++;
975 }
976
977 out:
978 btrfs_free_path(tmp_path);
979 fs_path_free(p);
980 return ret;
981 }
982
983 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
984 const char *name, int name_len,
985 const char *data, int data_len,
986 u8 type, void *ctx);
987
988 /*
989 * Helper function to iterate the entries in ONE btrfs_dir_item.
990 * The iterate callback may return a non zero value to stop iteration. This can
991 * be a negative value for error codes or 1 to simply stop it.
992 *
993 * path must point to the dir item when called.
994 */
995 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
996 iterate_dir_item_t iterate, void *ctx)
997 {
998 int ret = 0;
999 struct extent_buffer *eb;
1000 struct btrfs_item *item;
1001 struct btrfs_dir_item *di;
1002 struct btrfs_key di_key;
1003 char *buf = NULL;
1004 int buf_len;
1005 u32 name_len;
1006 u32 data_len;
1007 u32 cur;
1008 u32 len;
1009 u32 total;
1010 int slot;
1011 int num;
1012 u8 type;
1013
1014 /*
1015 * Start with a small buffer (1 page). If later we end up needing more
1016 * space, which can happen for xattrs on a fs with a leaf size greater
1017 * then the page size, attempt to increase the buffer. Typically xattr
1018 * values are small.
1019 */
1020 buf_len = PATH_MAX;
1021 buf = kmalloc(buf_len, GFP_KERNEL);
1022 if (!buf) {
1023 ret = -ENOMEM;
1024 goto out;
1025 }
1026
1027 eb = path->nodes[0];
1028 slot = path->slots[0];
1029 item = btrfs_item_nr(slot);
1030 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1031 cur = 0;
1032 len = 0;
1033 total = btrfs_item_size(eb, item);
1034
1035 num = 0;
1036 while (cur < total) {
1037 name_len = btrfs_dir_name_len(eb, di);
1038 data_len = btrfs_dir_data_len(eb, di);
1039 type = btrfs_dir_type(eb, di);
1040 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1041
1042 if (type == BTRFS_FT_XATTR) {
1043 if (name_len > XATTR_NAME_MAX) {
1044 ret = -ENAMETOOLONG;
1045 goto out;
1046 }
1047 if (name_len + data_len >
1048 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1049 ret = -E2BIG;
1050 goto out;
1051 }
1052 } else {
1053 /*
1054 * Path too long
1055 */
1056 if (name_len + data_len > PATH_MAX) {
1057 ret = -ENAMETOOLONG;
1058 goto out;
1059 }
1060 }
1061
1062 ret = btrfs_is_name_len_valid(eb, path->slots[0],
1063 (unsigned long)(di + 1), name_len + data_len);
1064 if (!ret) {
1065 ret = -EIO;
1066 goto out;
1067 }
1068 if (name_len + data_len > buf_len) {
1069 buf_len = name_len + data_len;
1070 if (is_vmalloc_addr(buf)) {
1071 vfree(buf);
1072 buf = NULL;
1073 } else {
1074 char *tmp = krealloc(buf, buf_len,
1075 GFP_KERNEL | __GFP_NOWARN);
1076
1077 if (!tmp)
1078 kfree(buf);
1079 buf = tmp;
1080 }
1081 if (!buf) {
1082 buf = kvmalloc(buf_len, GFP_KERNEL);
1083 if (!buf) {
1084 ret = -ENOMEM;
1085 goto out;
1086 }
1087 }
1088 }
1089
1090 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1091 name_len + data_len);
1092
1093 len = sizeof(*di) + name_len + data_len;
1094 di = (struct btrfs_dir_item *)((char *)di + len);
1095 cur += len;
1096
1097 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1098 data_len, type, ctx);
1099 if (ret < 0)
1100 goto out;
1101 if (ret) {
1102 ret = 0;
1103 goto out;
1104 }
1105
1106 num++;
1107 }
1108
1109 out:
1110 kvfree(buf);
1111 return ret;
1112 }
1113
1114 static int __copy_first_ref(int num, u64 dir, int index,
1115 struct fs_path *p, void *ctx)
1116 {
1117 int ret;
1118 struct fs_path *pt = ctx;
1119
1120 ret = fs_path_copy(pt, p);
1121 if (ret < 0)
1122 return ret;
1123
1124 /* we want the first only */
1125 return 1;
1126 }
1127
1128 /*
1129 * Retrieve the first path of an inode. If an inode has more then one
1130 * ref/hardlink, this is ignored.
1131 */
1132 static int get_inode_path(struct btrfs_root *root,
1133 u64 ino, struct fs_path *path)
1134 {
1135 int ret;
1136 struct btrfs_key key, found_key;
1137 struct btrfs_path *p;
1138
1139 p = alloc_path_for_send();
1140 if (!p)
1141 return -ENOMEM;
1142
1143 fs_path_reset(path);
1144
1145 key.objectid = ino;
1146 key.type = BTRFS_INODE_REF_KEY;
1147 key.offset = 0;
1148
1149 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1150 if (ret < 0)
1151 goto out;
1152 if (ret) {
1153 ret = 1;
1154 goto out;
1155 }
1156 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1157 if (found_key.objectid != ino ||
1158 (found_key.type != BTRFS_INODE_REF_KEY &&
1159 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1160 ret = -ENOENT;
1161 goto out;
1162 }
1163
1164 ret = iterate_inode_ref(root, p, &found_key, 1,
1165 __copy_first_ref, path);
1166 if (ret < 0)
1167 goto out;
1168 ret = 0;
1169
1170 out:
1171 btrfs_free_path(p);
1172 return ret;
1173 }
1174
1175 struct backref_ctx {
1176 struct send_ctx *sctx;
1177
1178 struct btrfs_path *path;
1179 /* number of total found references */
1180 u64 found;
1181
1182 /*
1183 * used for clones found in send_root. clones found behind cur_objectid
1184 * and cur_offset are not considered as allowed clones.
1185 */
1186 u64 cur_objectid;
1187 u64 cur_offset;
1188
1189 /* may be truncated in case it's the last extent in a file */
1190 u64 extent_len;
1191
1192 /* data offset in the file extent item */
1193 u64 data_offset;
1194
1195 /* Just to check for bugs in backref resolving */
1196 int found_itself;
1197 };
1198
1199 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1200 {
1201 u64 root = (u64)(uintptr_t)key;
1202 struct clone_root *cr = (struct clone_root *)elt;
1203
1204 if (root < cr->root->objectid)
1205 return -1;
1206 if (root > cr->root->objectid)
1207 return 1;
1208 return 0;
1209 }
1210
1211 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1212 {
1213 struct clone_root *cr1 = (struct clone_root *)e1;
1214 struct clone_root *cr2 = (struct clone_root *)e2;
1215
1216 if (cr1->root->objectid < cr2->root->objectid)
1217 return -1;
1218 if (cr1->root->objectid > cr2->root->objectid)
1219 return 1;
1220 return 0;
1221 }
1222
1223 /*
1224 * Called for every backref that is found for the current extent.
1225 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1226 */
1227 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1228 {
1229 struct backref_ctx *bctx = ctx_;
1230 struct clone_root *found;
1231 int ret;
1232 u64 i_size;
1233
1234 /* First check if the root is in the list of accepted clone sources */
1235 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1236 bctx->sctx->clone_roots_cnt,
1237 sizeof(struct clone_root),
1238 __clone_root_cmp_bsearch);
1239 if (!found)
1240 return 0;
1241
1242 if (found->root == bctx->sctx->send_root &&
1243 ino == bctx->cur_objectid &&
1244 offset == bctx->cur_offset) {
1245 bctx->found_itself = 1;
1246 }
1247
1248 /*
1249 * There are inodes that have extents that lie behind its i_size. Don't
1250 * accept clones from these extents.
1251 */
1252 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1253 NULL, NULL, NULL);
1254 btrfs_release_path(bctx->path);
1255 if (ret < 0)
1256 return ret;
1257
1258 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1259 return 0;
1260
1261 /*
1262 * Make sure we don't consider clones from send_root that are
1263 * behind the current inode/offset.
1264 */
1265 if (found->root == bctx->sctx->send_root) {
1266 /*
1267 * TODO for the moment we don't accept clones from the inode
1268 * that is currently send. We may change this when
1269 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1270 * file.
1271 */
1272 if (ino >= bctx->cur_objectid)
1273 return 0;
1274 }
1275
1276 bctx->found++;
1277 found->found_refs++;
1278 if (ino < found->ino) {
1279 found->ino = ino;
1280 found->offset = offset;
1281 } else if (found->ino == ino) {
1282 /*
1283 * same extent found more then once in the same file.
1284 */
1285 if (found->offset > offset + bctx->extent_len)
1286 found->offset = offset;
1287 }
1288
1289 return 0;
1290 }
1291
1292 /*
1293 * Given an inode, offset and extent item, it finds a good clone for a clone
1294 * instruction. Returns -ENOENT when none could be found. The function makes
1295 * sure that the returned clone is usable at the point where sending is at the
1296 * moment. This means, that no clones are accepted which lie behind the current
1297 * inode+offset.
1298 *
1299 * path must point to the extent item when called.
1300 */
1301 static int find_extent_clone(struct send_ctx *sctx,
1302 struct btrfs_path *path,
1303 u64 ino, u64 data_offset,
1304 u64 ino_size,
1305 struct clone_root **found)
1306 {
1307 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1308 int ret;
1309 int extent_type;
1310 u64 logical;
1311 u64 disk_byte;
1312 u64 num_bytes;
1313 u64 extent_item_pos;
1314 u64 flags = 0;
1315 struct btrfs_file_extent_item *fi;
1316 struct extent_buffer *eb = path->nodes[0];
1317 struct backref_ctx *backref_ctx = NULL;
1318 struct clone_root *cur_clone_root;
1319 struct btrfs_key found_key;
1320 struct btrfs_path *tmp_path;
1321 int compressed;
1322 u32 i;
1323
1324 tmp_path = alloc_path_for_send();
1325 if (!tmp_path)
1326 return -ENOMEM;
1327
1328 /* We only use this path under the commit sem */
1329 tmp_path->need_commit_sem = 0;
1330
1331 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1332 if (!backref_ctx) {
1333 ret = -ENOMEM;
1334 goto out;
1335 }
1336
1337 backref_ctx->path = tmp_path;
1338
1339 if (data_offset >= ino_size) {
1340 /*
1341 * There may be extents that lie behind the file's size.
1342 * I at least had this in combination with snapshotting while
1343 * writing large files.
1344 */
1345 ret = 0;
1346 goto out;
1347 }
1348
1349 fi = btrfs_item_ptr(eb, path->slots[0],
1350 struct btrfs_file_extent_item);
1351 extent_type = btrfs_file_extent_type(eb, fi);
1352 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1353 ret = -ENOENT;
1354 goto out;
1355 }
1356 compressed = btrfs_file_extent_compression(eb, fi);
1357
1358 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1359 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1360 if (disk_byte == 0) {
1361 ret = -ENOENT;
1362 goto out;
1363 }
1364 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1365
1366 down_read(&fs_info->commit_root_sem);
1367 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1368 &found_key, &flags);
1369 up_read(&fs_info->commit_root_sem);
1370 btrfs_release_path(tmp_path);
1371
1372 if (ret < 0)
1373 goto out;
1374 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1375 ret = -EIO;
1376 goto out;
1377 }
1378
1379 /*
1380 * Setup the clone roots.
1381 */
1382 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1383 cur_clone_root = sctx->clone_roots + i;
1384 cur_clone_root->ino = (u64)-1;
1385 cur_clone_root->offset = 0;
1386 cur_clone_root->found_refs = 0;
1387 }
1388
1389 backref_ctx->sctx = sctx;
1390 backref_ctx->found = 0;
1391 backref_ctx->cur_objectid = ino;
1392 backref_ctx->cur_offset = data_offset;
1393 backref_ctx->found_itself = 0;
1394 backref_ctx->extent_len = num_bytes;
1395 /*
1396 * For non-compressed extents iterate_extent_inodes() gives us extent
1397 * offsets that already take into account the data offset, but not for
1398 * compressed extents, since the offset is logical and not relative to
1399 * the physical extent locations. We must take this into account to
1400 * avoid sending clone offsets that go beyond the source file's size,
1401 * which would result in the clone ioctl failing with -EINVAL on the
1402 * receiving end.
1403 */
1404 if (compressed == BTRFS_COMPRESS_NONE)
1405 backref_ctx->data_offset = 0;
1406 else
1407 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1408
1409 /*
1410 * The last extent of a file may be too large due to page alignment.
1411 * We need to adjust extent_len in this case so that the checks in
1412 * __iterate_backrefs work.
1413 */
1414 if (data_offset + num_bytes >= ino_size)
1415 backref_ctx->extent_len = ino_size - data_offset;
1416
1417 /*
1418 * Now collect all backrefs.
1419 */
1420 if (compressed == BTRFS_COMPRESS_NONE)
1421 extent_item_pos = logical - found_key.objectid;
1422 else
1423 extent_item_pos = 0;
1424 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1425 extent_item_pos, 1, __iterate_backrefs,
1426 backref_ctx, false);
1427
1428 if (ret < 0)
1429 goto out;
1430
1431 if (!backref_ctx->found_itself) {
1432 /* found a bug in backref code? */
1433 ret = -EIO;
1434 btrfs_err(fs_info,
1435 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1436 ino, data_offset, disk_byte, found_key.objectid);
1437 goto out;
1438 }
1439
1440 btrfs_debug(fs_info,
1441 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1442 data_offset, ino, num_bytes, logical);
1443
1444 if (!backref_ctx->found)
1445 btrfs_debug(fs_info, "no clones found");
1446
1447 cur_clone_root = NULL;
1448 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1449 if (sctx->clone_roots[i].found_refs) {
1450 if (!cur_clone_root)
1451 cur_clone_root = sctx->clone_roots + i;
1452 else if (sctx->clone_roots[i].root == sctx->send_root)
1453 /* prefer clones from send_root over others */
1454 cur_clone_root = sctx->clone_roots + i;
1455 }
1456
1457 }
1458
1459 if (cur_clone_root) {
1460 *found = cur_clone_root;
1461 ret = 0;
1462 } else {
1463 ret = -ENOENT;
1464 }
1465
1466 out:
1467 btrfs_free_path(tmp_path);
1468 kfree(backref_ctx);
1469 return ret;
1470 }
1471
1472 static int read_symlink(struct btrfs_root *root,
1473 u64 ino,
1474 struct fs_path *dest)
1475 {
1476 int ret;
1477 struct btrfs_path *path;
1478 struct btrfs_key key;
1479 struct btrfs_file_extent_item *ei;
1480 u8 type;
1481 u8 compression;
1482 unsigned long off;
1483 int len;
1484
1485 path = alloc_path_for_send();
1486 if (!path)
1487 return -ENOMEM;
1488
1489 key.objectid = ino;
1490 key.type = BTRFS_EXTENT_DATA_KEY;
1491 key.offset = 0;
1492 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1493 if (ret < 0)
1494 goto out;
1495 if (ret) {
1496 /*
1497 * An empty symlink inode. Can happen in rare error paths when
1498 * creating a symlink (transaction committed before the inode
1499 * eviction handler removed the symlink inode items and a crash
1500 * happened in between or the subvol was snapshoted in between).
1501 * Print an informative message to dmesg/syslog so that the user
1502 * can delete the symlink.
1503 */
1504 btrfs_err(root->fs_info,
1505 "Found empty symlink inode %llu at root %llu",
1506 ino, root->root_key.objectid);
1507 ret = -EIO;
1508 goto out;
1509 }
1510
1511 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1512 struct btrfs_file_extent_item);
1513 type = btrfs_file_extent_type(path->nodes[0], ei);
1514 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1515 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1516 BUG_ON(compression);
1517
1518 off = btrfs_file_extent_inline_start(ei);
1519 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1520
1521 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1522
1523 out:
1524 btrfs_free_path(path);
1525 return ret;
1526 }
1527
1528 /*
1529 * Helper function to generate a file name that is unique in the root of
1530 * send_root and parent_root. This is used to generate names for orphan inodes.
1531 */
1532 static int gen_unique_name(struct send_ctx *sctx,
1533 u64 ino, u64 gen,
1534 struct fs_path *dest)
1535 {
1536 int ret = 0;
1537 struct btrfs_path *path;
1538 struct btrfs_dir_item *di;
1539 char tmp[64];
1540 int len;
1541 u64 idx = 0;
1542
1543 path = alloc_path_for_send();
1544 if (!path)
1545 return -ENOMEM;
1546
1547 while (1) {
1548 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1549 ino, gen, idx);
1550 ASSERT(len < sizeof(tmp));
1551
1552 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1553 path, BTRFS_FIRST_FREE_OBJECTID,
1554 tmp, strlen(tmp), 0);
1555 btrfs_release_path(path);
1556 if (IS_ERR(di)) {
1557 ret = PTR_ERR(di);
1558 goto out;
1559 }
1560 if (di) {
1561 /* not unique, try again */
1562 idx++;
1563 continue;
1564 }
1565
1566 if (!sctx->parent_root) {
1567 /* unique */
1568 ret = 0;
1569 break;
1570 }
1571
1572 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1573 path, BTRFS_FIRST_FREE_OBJECTID,
1574 tmp, strlen(tmp), 0);
1575 btrfs_release_path(path);
1576 if (IS_ERR(di)) {
1577 ret = PTR_ERR(di);
1578 goto out;
1579 }
1580 if (di) {
1581 /* not unique, try again */
1582 idx++;
1583 continue;
1584 }
1585 /* unique */
1586 break;
1587 }
1588
1589 ret = fs_path_add(dest, tmp, strlen(tmp));
1590
1591 out:
1592 btrfs_free_path(path);
1593 return ret;
1594 }
1595
1596 enum inode_state {
1597 inode_state_no_change,
1598 inode_state_will_create,
1599 inode_state_did_create,
1600 inode_state_will_delete,
1601 inode_state_did_delete,
1602 };
1603
1604 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1605 {
1606 int ret;
1607 int left_ret;
1608 int right_ret;
1609 u64 left_gen;
1610 u64 right_gen;
1611
1612 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1613 NULL, NULL);
1614 if (ret < 0 && ret != -ENOENT)
1615 goto out;
1616 left_ret = ret;
1617
1618 if (!sctx->parent_root) {
1619 right_ret = -ENOENT;
1620 } else {
1621 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1622 NULL, NULL, NULL, NULL);
1623 if (ret < 0 && ret != -ENOENT)
1624 goto out;
1625 right_ret = ret;
1626 }
1627
1628 if (!left_ret && !right_ret) {
1629 if (left_gen == gen && right_gen == gen) {
1630 ret = inode_state_no_change;
1631 } else if (left_gen == gen) {
1632 if (ino < sctx->send_progress)
1633 ret = inode_state_did_create;
1634 else
1635 ret = inode_state_will_create;
1636 } else if (right_gen == gen) {
1637 if (ino < sctx->send_progress)
1638 ret = inode_state_did_delete;
1639 else
1640 ret = inode_state_will_delete;
1641 } else {
1642 ret = -ENOENT;
1643 }
1644 } else if (!left_ret) {
1645 if (left_gen == gen) {
1646 if (ino < sctx->send_progress)
1647 ret = inode_state_did_create;
1648 else
1649 ret = inode_state_will_create;
1650 } else {
1651 ret = -ENOENT;
1652 }
1653 } else if (!right_ret) {
1654 if (right_gen == gen) {
1655 if (ino < sctx->send_progress)
1656 ret = inode_state_did_delete;
1657 else
1658 ret = inode_state_will_delete;
1659 } else {
1660 ret = -ENOENT;
1661 }
1662 } else {
1663 ret = -ENOENT;
1664 }
1665
1666 out:
1667 return ret;
1668 }
1669
1670 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1671 {
1672 int ret;
1673
1674 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1675 return 1;
1676
1677 ret = get_cur_inode_state(sctx, ino, gen);
1678 if (ret < 0)
1679 goto out;
1680
1681 if (ret == inode_state_no_change ||
1682 ret == inode_state_did_create ||
1683 ret == inode_state_will_delete)
1684 ret = 1;
1685 else
1686 ret = 0;
1687
1688 out:
1689 return ret;
1690 }
1691
1692 /*
1693 * Helper function to lookup a dir item in a dir.
1694 */
1695 static int lookup_dir_item_inode(struct btrfs_root *root,
1696 u64 dir, const char *name, int name_len,
1697 u64 *found_inode,
1698 u8 *found_type)
1699 {
1700 int ret = 0;
1701 struct btrfs_dir_item *di;
1702 struct btrfs_key key;
1703 struct btrfs_path *path;
1704
1705 path = alloc_path_for_send();
1706 if (!path)
1707 return -ENOMEM;
1708
1709 di = btrfs_lookup_dir_item(NULL, root, path,
1710 dir, name, name_len, 0);
1711 if (!di) {
1712 ret = -ENOENT;
1713 goto out;
1714 }
1715 if (IS_ERR(di)) {
1716 ret = PTR_ERR(di);
1717 goto out;
1718 }
1719 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1720 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1721 ret = -ENOENT;
1722 goto out;
1723 }
1724 *found_inode = key.objectid;
1725 *found_type = btrfs_dir_type(path->nodes[0], di);
1726
1727 out:
1728 btrfs_free_path(path);
1729 return ret;
1730 }
1731
1732 /*
1733 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1734 * generation of the parent dir and the name of the dir entry.
1735 */
1736 static int get_first_ref(struct btrfs_root *root, u64 ino,
1737 u64 *dir, u64 *dir_gen, struct fs_path *name)
1738 {
1739 int ret;
1740 struct btrfs_key key;
1741 struct btrfs_key found_key;
1742 struct btrfs_path *path;
1743 int len;
1744 u64 parent_dir;
1745
1746 path = alloc_path_for_send();
1747 if (!path)
1748 return -ENOMEM;
1749
1750 key.objectid = ino;
1751 key.type = BTRFS_INODE_REF_KEY;
1752 key.offset = 0;
1753
1754 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1755 if (ret < 0)
1756 goto out;
1757 if (!ret)
1758 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1759 path->slots[0]);
1760 if (ret || found_key.objectid != ino ||
1761 (found_key.type != BTRFS_INODE_REF_KEY &&
1762 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1763 ret = -ENOENT;
1764 goto out;
1765 }
1766
1767 if (found_key.type == BTRFS_INODE_REF_KEY) {
1768 struct btrfs_inode_ref *iref;
1769 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1770 struct btrfs_inode_ref);
1771 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1772 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1773 (unsigned long)(iref + 1),
1774 len);
1775 parent_dir = found_key.offset;
1776 } else {
1777 struct btrfs_inode_extref *extref;
1778 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1779 struct btrfs_inode_extref);
1780 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1781 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1782 (unsigned long)&extref->name, len);
1783 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1784 }
1785 if (ret < 0)
1786 goto out;
1787 btrfs_release_path(path);
1788
1789 if (dir_gen) {
1790 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1791 NULL, NULL, NULL);
1792 if (ret < 0)
1793 goto out;
1794 }
1795
1796 *dir = parent_dir;
1797
1798 out:
1799 btrfs_free_path(path);
1800 return ret;
1801 }
1802
1803 static int is_first_ref(struct btrfs_root *root,
1804 u64 ino, u64 dir,
1805 const char *name, int name_len)
1806 {
1807 int ret;
1808 struct fs_path *tmp_name;
1809 u64 tmp_dir;
1810
1811 tmp_name = fs_path_alloc();
1812 if (!tmp_name)
1813 return -ENOMEM;
1814
1815 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1816 if (ret < 0)
1817 goto out;
1818
1819 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1820 ret = 0;
1821 goto out;
1822 }
1823
1824 ret = !memcmp(tmp_name->start, name, name_len);
1825
1826 out:
1827 fs_path_free(tmp_name);
1828 return ret;
1829 }
1830
1831 /*
1832 * Used by process_recorded_refs to determine if a new ref would overwrite an
1833 * already existing ref. In case it detects an overwrite, it returns the
1834 * inode/gen in who_ino/who_gen.
1835 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1836 * to make sure later references to the overwritten inode are possible.
1837 * Orphanizing is however only required for the first ref of an inode.
1838 * process_recorded_refs does an additional is_first_ref check to see if
1839 * orphanizing is really required.
1840 */
1841 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1842 const char *name, int name_len,
1843 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1844 {
1845 int ret = 0;
1846 u64 gen;
1847 u64 other_inode = 0;
1848 u8 other_type = 0;
1849
1850 if (!sctx->parent_root)
1851 goto out;
1852
1853 ret = is_inode_existent(sctx, dir, dir_gen);
1854 if (ret <= 0)
1855 goto out;
1856
1857 /*
1858 * If we have a parent root we need to verify that the parent dir was
1859 * not deleted and then re-created, if it was then we have no overwrite
1860 * and we can just unlink this entry.
1861 */
1862 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1863 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1864 NULL, NULL, NULL);
1865 if (ret < 0 && ret != -ENOENT)
1866 goto out;
1867 if (ret) {
1868 ret = 0;
1869 goto out;
1870 }
1871 if (gen != dir_gen)
1872 goto out;
1873 }
1874
1875 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1876 &other_inode, &other_type);
1877 if (ret < 0 && ret != -ENOENT)
1878 goto out;
1879 if (ret) {
1880 ret = 0;
1881 goto out;
1882 }
1883
1884 /*
1885 * Check if the overwritten ref was already processed. If yes, the ref
1886 * was already unlinked/moved, so we can safely assume that we will not
1887 * overwrite anything at this point in time.
1888 */
1889 if (other_inode > sctx->send_progress ||
1890 is_waiting_for_move(sctx, other_inode)) {
1891 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1892 who_gen, who_mode, NULL, NULL, NULL);
1893 if (ret < 0)
1894 goto out;
1895
1896 ret = 1;
1897 *who_ino = other_inode;
1898 } else {
1899 ret = 0;
1900 }
1901
1902 out:
1903 return ret;
1904 }
1905
1906 /*
1907 * Checks if the ref was overwritten by an already processed inode. This is
1908 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1909 * thus the orphan name needs be used.
1910 * process_recorded_refs also uses it to avoid unlinking of refs that were
1911 * overwritten.
1912 */
1913 static int did_overwrite_ref(struct send_ctx *sctx,
1914 u64 dir, u64 dir_gen,
1915 u64 ino, u64 ino_gen,
1916 const char *name, int name_len)
1917 {
1918 int ret = 0;
1919 u64 gen;
1920 u64 ow_inode;
1921 u8 other_type;
1922
1923 if (!sctx->parent_root)
1924 goto out;
1925
1926 ret = is_inode_existent(sctx, dir, dir_gen);
1927 if (ret <= 0)
1928 goto out;
1929
1930 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1931 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1932 NULL, NULL, NULL);
1933 if (ret < 0 && ret != -ENOENT)
1934 goto out;
1935 if (ret) {
1936 ret = 0;
1937 goto out;
1938 }
1939 if (gen != dir_gen)
1940 goto out;
1941 }
1942
1943 /* check if the ref was overwritten by another ref */
1944 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1945 &ow_inode, &other_type);
1946 if (ret < 0 && ret != -ENOENT)
1947 goto out;
1948 if (ret) {
1949 /* was never and will never be overwritten */
1950 ret = 0;
1951 goto out;
1952 }
1953
1954 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1955 NULL, NULL);
1956 if (ret < 0)
1957 goto out;
1958
1959 if (ow_inode == ino && gen == ino_gen) {
1960 ret = 0;
1961 goto out;
1962 }
1963
1964 /*
1965 * We know that it is or will be overwritten. Check this now.
1966 * The current inode being processed might have been the one that caused
1967 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1968 * the current inode being processed.
1969 */
1970 if ((ow_inode < sctx->send_progress) ||
1971 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1972 gen == sctx->cur_inode_gen))
1973 ret = 1;
1974 else
1975 ret = 0;
1976
1977 out:
1978 return ret;
1979 }
1980
1981 /*
1982 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1983 * that got overwritten. This is used by process_recorded_refs to determine
1984 * if it has to use the path as returned by get_cur_path or the orphan name.
1985 */
1986 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1987 {
1988 int ret = 0;
1989 struct fs_path *name = NULL;
1990 u64 dir;
1991 u64 dir_gen;
1992
1993 if (!sctx->parent_root)
1994 goto out;
1995
1996 name = fs_path_alloc();
1997 if (!name)
1998 return -ENOMEM;
1999
2000 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2001 if (ret < 0)
2002 goto out;
2003
2004 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2005 name->start, fs_path_len(name));
2006
2007 out:
2008 fs_path_free(name);
2009 return ret;
2010 }
2011
2012 /*
2013 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2014 * so we need to do some special handling in case we have clashes. This function
2015 * takes care of this with the help of name_cache_entry::radix_list.
2016 * In case of error, nce is kfreed.
2017 */
2018 static int name_cache_insert(struct send_ctx *sctx,
2019 struct name_cache_entry *nce)
2020 {
2021 int ret = 0;
2022 struct list_head *nce_head;
2023
2024 nce_head = radix_tree_lookup(&sctx->name_cache,
2025 (unsigned long)nce->ino);
2026 if (!nce_head) {
2027 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2028 if (!nce_head) {
2029 kfree(nce);
2030 return -ENOMEM;
2031 }
2032 INIT_LIST_HEAD(nce_head);
2033
2034 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2035 if (ret < 0) {
2036 kfree(nce_head);
2037 kfree(nce);
2038 return ret;
2039 }
2040 }
2041 list_add_tail(&nce->radix_list, nce_head);
2042 list_add_tail(&nce->list, &sctx->name_cache_list);
2043 sctx->name_cache_size++;
2044
2045 return ret;
2046 }
2047
2048 static void name_cache_delete(struct send_ctx *sctx,
2049 struct name_cache_entry *nce)
2050 {
2051 struct list_head *nce_head;
2052
2053 nce_head = radix_tree_lookup(&sctx->name_cache,
2054 (unsigned long)nce->ino);
2055 if (!nce_head) {
2056 btrfs_err(sctx->send_root->fs_info,
2057 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2058 nce->ino, sctx->name_cache_size);
2059 }
2060
2061 list_del(&nce->radix_list);
2062 list_del(&nce->list);
2063 sctx->name_cache_size--;
2064
2065 /*
2066 * We may not get to the final release of nce_head if the lookup fails
2067 */
2068 if (nce_head && list_empty(nce_head)) {
2069 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2070 kfree(nce_head);
2071 }
2072 }
2073
2074 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2075 u64 ino, u64 gen)
2076 {
2077 struct list_head *nce_head;
2078 struct name_cache_entry *cur;
2079
2080 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2081 if (!nce_head)
2082 return NULL;
2083
2084 list_for_each_entry(cur, nce_head, radix_list) {
2085 if (cur->ino == ino && cur->gen == gen)
2086 return cur;
2087 }
2088 return NULL;
2089 }
2090
2091 /*
2092 * Removes the entry from the list and adds it back to the end. This marks the
2093 * entry as recently used so that name_cache_clean_unused does not remove it.
2094 */
2095 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2096 {
2097 list_del(&nce->list);
2098 list_add_tail(&nce->list, &sctx->name_cache_list);
2099 }
2100
2101 /*
2102 * Remove some entries from the beginning of name_cache_list.
2103 */
2104 static void name_cache_clean_unused(struct send_ctx *sctx)
2105 {
2106 struct name_cache_entry *nce;
2107
2108 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2109 return;
2110
2111 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2112 nce = list_entry(sctx->name_cache_list.next,
2113 struct name_cache_entry, list);
2114 name_cache_delete(sctx, nce);
2115 kfree(nce);
2116 }
2117 }
2118
2119 static void name_cache_free(struct send_ctx *sctx)
2120 {
2121 struct name_cache_entry *nce;
2122
2123 while (!list_empty(&sctx->name_cache_list)) {
2124 nce = list_entry(sctx->name_cache_list.next,
2125 struct name_cache_entry, list);
2126 name_cache_delete(sctx, nce);
2127 kfree(nce);
2128 }
2129 }
2130
2131 /*
2132 * Used by get_cur_path for each ref up to the root.
2133 * Returns 0 if it succeeded.
2134 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2135 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2136 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2137 * Returns <0 in case of error.
2138 */
2139 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2140 u64 ino, u64 gen,
2141 u64 *parent_ino,
2142 u64 *parent_gen,
2143 struct fs_path *dest)
2144 {
2145 int ret;
2146 int nce_ret;
2147 struct name_cache_entry *nce = NULL;
2148
2149 /*
2150 * First check if we already did a call to this function with the same
2151 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2152 * return the cached result.
2153 */
2154 nce = name_cache_search(sctx, ino, gen);
2155 if (nce) {
2156 if (ino < sctx->send_progress && nce->need_later_update) {
2157 name_cache_delete(sctx, nce);
2158 kfree(nce);
2159 nce = NULL;
2160 } else {
2161 name_cache_used(sctx, nce);
2162 *parent_ino = nce->parent_ino;
2163 *parent_gen = nce->parent_gen;
2164 ret = fs_path_add(dest, nce->name, nce->name_len);
2165 if (ret < 0)
2166 goto out;
2167 ret = nce->ret;
2168 goto out;
2169 }
2170 }
2171
2172 /*
2173 * If the inode is not existent yet, add the orphan name and return 1.
2174 * This should only happen for the parent dir that we determine in
2175 * __record_new_ref
2176 */
2177 ret = is_inode_existent(sctx, ino, gen);
2178 if (ret < 0)
2179 goto out;
2180
2181 if (!ret) {
2182 ret = gen_unique_name(sctx, ino, gen, dest);
2183 if (ret < 0)
2184 goto out;
2185 ret = 1;
2186 goto out_cache;
2187 }
2188
2189 /*
2190 * Depending on whether the inode was already processed or not, use
2191 * send_root or parent_root for ref lookup.
2192 */
2193 if (ino < sctx->send_progress)
2194 ret = get_first_ref(sctx->send_root, ino,
2195 parent_ino, parent_gen, dest);
2196 else
2197 ret = get_first_ref(sctx->parent_root, ino,
2198 parent_ino, parent_gen, dest);
2199 if (ret < 0)
2200 goto out;
2201
2202 /*
2203 * Check if the ref was overwritten by an inode's ref that was processed
2204 * earlier. If yes, treat as orphan and return 1.
2205 */
2206 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2207 dest->start, dest->end - dest->start);
2208 if (ret < 0)
2209 goto out;
2210 if (ret) {
2211 fs_path_reset(dest);
2212 ret = gen_unique_name(sctx, ino, gen, dest);
2213 if (ret < 0)
2214 goto out;
2215 ret = 1;
2216 }
2217
2218 out_cache:
2219 /*
2220 * Store the result of the lookup in the name cache.
2221 */
2222 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2223 if (!nce) {
2224 ret = -ENOMEM;
2225 goto out;
2226 }
2227
2228 nce->ino = ino;
2229 nce->gen = gen;
2230 nce->parent_ino = *parent_ino;
2231 nce->parent_gen = *parent_gen;
2232 nce->name_len = fs_path_len(dest);
2233 nce->ret = ret;
2234 strcpy(nce->name, dest->start);
2235
2236 if (ino < sctx->send_progress)
2237 nce->need_later_update = 0;
2238 else
2239 nce->need_later_update = 1;
2240
2241 nce_ret = name_cache_insert(sctx, nce);
2242 if (nce_ret < 0)
2243 ret = nce_ret;
2244 name_cache_clean_unused(sctx);
2245
2246 out:
2247 return ret;
2248 }
2249
2250 /*
2251 * Magic happens here. This function returns the first ref to an inode as it
2252 * would look like while receiving the stream at this point in time.
2253 * We walk the path up to the root. For every inode in between, we check if it
2254 * was already processed/sent. If yes, we continue with the parent as found
2255 * in send_root. If not, we continue with the parent as found in parent_root.
2256 * If we encounter an inode that was deleted at this point in time, we use the
2257 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2258 * that were not created yet and overwritten inodes/refs.
2259 *
2260 * When do we have have orphan inodes:
2261 * 1. When an inode is freshly created and thus no valid refs are available yet
2262 * 2. When a directory lost all it's refs (deleted) but still has dir items
2263 * inside which were not processed yet (pending for move/delete). If anyone
2264 * tried to get the path to the dir items, it would get a path inside that
2265 * orphan directory.
2266 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2267 * of an unprocessed inode. If in that case the first ref would be
2268 * overwritten, the overwritten inode gets "orphanized". Later when we
2269 * process this overwritten inode, it is restored at a new place by moving
2270 * the orphan inode.
2271 *
2272 * sctx->send_progress tells this function at which point in time receiving
2273 * would be.
2274 */
2275 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2276 struct fs_path *dest)
2277 {
2278 int ret = 0;
2279 struct fs_path *name = NULL;
2280 u64 parent_inode = 0;
2281 u64 parent_gen = 0;
2282 int stop = 0;
2283
2284 name = fs_path_alloc();
2285 if (!name) {
2286 ret = -ENOMEM;
2287 goto out;
2288 }
2289
2290 dest->reversed = 1;
2291 fs_path_reset(dest);
2292
2293 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2294 struct waiting_dir_move *wdm;
2295
2296 fs_path_reset(name);
2297
2298 if (is_waiting_for_rm(sctx, ino)) {
2299 ret = gen_unique_name(sctx, ino, gen, name);
2300 if (ret < 0)
2301 goto out;
2302 ret = fs_path_add_path(dest, name);
2303 break;
2304 }
2305
2306 wdm = get_waiting_dir_move(sctx, ino);
2307 if (wdm && wdm->orphanized) {
2308 ret = gen_unique_name(sctx, ino, gen, name);
2309 stop = 1;
2310 } else if (wdm) {
2311 ret = get_first_ref(sctx->parent_root, ino,
2312 &parent_inode, &parent_gen, name);
2313 } else {
2314 ret = __get_cur_name_and_parent(sctx, ino, gen,
2315 &parent_inode,
2316 &parent_gen, name);
2317 if (ret)
2318 stop = 1;
2319 }
2320
2321 if (ret < 0)
2322 goto out;
2323
2324 ret = fs_path_add_path(dest, name);
2325 if (ret < 0)
2326 goto out;
2327
2328 ino = parent_inode;
2329 gen = parent_gen;
2330 }
2331
2332 out:
2333 fs_path_free(name);
2334 if (!ret)
2335 fs_path_unreverse(dest);
2336 return ret;
2337 }
2338
2339 /*
2340 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2341 */
2342 static int send_subvol_begin(struct send_ctx *sctx)
2343 {
2344 int ret;
2345 struct btrfs_root *send_root = sctx->send_root;
2346 struct btrfs_root *parent_root = sctx->parent_root;
2347 struct btrfs_path *path;
2348 struct btrfs_key key;
2349 struct btrfs_root_ref *ref;
2350 struct extent_buffer *leaf;
2351 char *name = NULL;
2352 int namelen;
2353
2354 path = btrfs_alloc_path();
2355 if (!path)
2356 return -ENOMEM;
2357
2358 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2359 if (!name) {
2360 btrfs_free_path(path);
2361 return -ENOMEM;
2362 }
2363
2364 key.objectid = send_root->objectid;
2365 key.type = BTRFS_ROOT_BACKREF_KEY;
2366 key.offset = 0;
2367
2368 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2369 &key, path, 1, 0);
2370 if (ret < 0)
2371 goto out;
2372 if (ret) {
2373 ret = -ENOENT;
2374 goto out;
2375 }
2376
2377 leaf = path->nodes[0];
2378 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2379 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2380 key.objectid != send_root->objectid) {
2381 ret = -ENOENT;
2382 goto out;
2383 }
2384 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2385 namelen = btrfs_root_ref_name_len(leaf, ref);
2386 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2387 btrfs_release_path(path);
2388
2389 if (parent_root) {
2390 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2391 if (ret < 0)
2392 goto out;
2393 } else {
2394 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2395 if (ret < 0)
2396 goto out;
2397 }
2398
2399 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2400
2401 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2402 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2403 sctx->send_root->root_item.received_uuid);
2404 else
2405 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2406 sctx->send_root->root_item.uuid);
2407
2408 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2409 le64_to_cpu(sctx->send_root->root_item.ctransid));
2410 if (parent_root) {
2411 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2412 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2413 parent_root->root_item.received_uuid);
2414 else
2415 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2416 parent_root->root_item.uuid);
2417 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2418 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2419 }
2420
2421 ret = send_cmd(sctx);
2422
2423 tlv_put_failure:
2424 out:
2425 btrfs_free_path(path);
2426 kfree(name);
2427 return ret;
2428 }
2429
2430 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2431 {
2432 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2433 int ret = 0;
2434 struct fs_path *p;
2435
2436 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2437
2438 p = fs_path_alloc();
2439 if (!p)
2440 return -ENOMEM;
2441
2442 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2443 if (ret < 0)
2444 goto out;
2445
2446 ret = get_cur_path(sctx, ino, gen, p);
2447 if (ret < 0)
2448 goto out;
2449 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2450 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2451
2452 ret = send_cmd(sctx);
2453
2454 tlv_put_failure:
2455 out:
2456 fs_path_free(p);
2457 return ret;
2458 }
2459
2460 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2461 {
2462 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2463 int ret = 0;
2464 struct fs_path *p;
2465
2466 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2467
2468 p = fs_path_alloc();
2469 if (!p)
2470 return -ENOMEM;
2471
2472 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2473 if (ret < 0)
2474 goto out;
2475
2476 ret = get_cur_path(sctx, ino, gen, p);
2477 if (ret < 0)
2478 goto out;
2479 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2480 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2481
2482 ret = send_cmd(sctx);
2483
2484 tlv_put_failure:
2485 out:
2486 fs_path_free(p);
2487 return ret;
2488 }
2489
2490 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2491 {
2492 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2493 int ret = 0;
2494 struct fs_path *p;
2495
2496 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2497 ino, uid, gid);
2498
2499 p = fs_path_alloc();
2500 if (!p)
2501 return -ENOMEM;
2502
2503 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2504 if (ret < 0)
2505 goto out;
2506
2507 ret = get_cur_path(sctx, ino, gen, p);
2508 if (ret < 0)
2509 goto out;
2510 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2511 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2512 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2513
2514 ret = send_cmd(sctx);
2515
2516 tlv_put_failure:
2517 out:
2518 fs_path_free(p);
2519 return ret;
2520 }
2521
2522 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2523 {
2524 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2525 int ret = 0;
2526 struct fs_path *p = NULL;
2527 struct btrfs_inode_item *ii;
2528 struct btrfs_path *path = NULL;
2529 struct extent_buffer *eb;
2530 struct btrfs_key key;
2531 int slot;
2532
2533 btrfs_debug(fs_info, "send_utimes %llu", ino);
2534
2535 p = fs_path_alloc();
2536 if (!p)
2537 return -ENOMEM;
2538
2539 path = alloc_path_for_send();
2540 if (!path) {
2541 ret = -ENOMEM;
2542 goto out;
2543 }
2544
2545 key.objectid = ino;
2546 key.type = BTRFS_INODE_ITEM_KEY;
2547 key.offset = 0;
2548 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2549 if (ret > 0)
2550 ret = -ENOENT;
2551 if (ret < 0)
2552 goto out;
2553
2554 eb = path->nodes[0];
2555 slot = path->slots[0];
2556 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2557
2558 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2559 if (ret < 0)
2560 goto out;
2561
2562 ret = get_cur_path(sctx, ino, gen, p);
2563 if (ret < 0)
2564 goto out;
2565 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2566 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2567 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2568 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2569 /* TODO Add otime support when the otime patches get into upstream */
2570
2571 ret = send_cmd(sctx);
2572
2573 tlv_put_failure:
2574 out:
2575 fs_path_free(p);
2576 btrfs_free_path(path);
2577 return ret;
2578 }
2579
2580 /*
2581 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2582 * a valid path yet because we did not process the refs yet. So, the inode
2583 * is created as orphan.
2584 */
2585 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2586 {
2587 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2588 int ret = 0;
2589 struct fs_path *p;
2590 int cmd;
2591 u64 gen;
2592 u64 mode;
2593 u64 rdev;
2594
2595 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2596
2597 p = fs_path_alloc();
2598 if (!p)
2599 return -ENOMEM;
2600
2601 if (ino != sctx->cur_ino) {
2602 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2603 NULL, NULL, &rdev);
2604 if (ret < 0)
2605 goto out;
2606 } else {
2607 gen = sctx->cur_inode_gen;
2608 mode = sctx->cur_inode_mode;
2609 rdev = sctx->cur_inode_rdev;
2610 }
2611
2612 if (S_ISREG(mode)) {
2613 cmd = BTRFS_SEND_C_MKFILE;
2614 } else if (S_ISDIR(mode)) {
2615 cmd = BTRFS_SEND_C_MKDIR;
2616 } else if (S_ISLNK(mode)) {
2617 cmd = BTRFS_SEND_C_SYMLINK;
2618 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2619 cmd = BTRFS_SEND_C_MKNOD;
2620 } else if (S_ISFIFO(mode)) {
2621 cmd = BTRFS_SEND_C_MKFIFO;
2622 } else if (S_ISSOCK(mode)) {
2623 cmd = BTRFS_SEND_C_MKSOCK;
2624 } else {
2625 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2626 (int)(mode & S_IFMT));
2627 ret = -EOPNOTSUPP;
2628 goto out;
2629 }
2630
2631 ret = begin_cmd(sctx, cmd);
2632 if (ret < 0)
2633 goto out;
2634
2635 ret = gen_unique_name(sctx, ino, gen, p);
2636 if (ret < 0)
2637 goto out;
2638
2639 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2640 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2641
2642 if (S_ISLNK(mode)) {
2643 fs_path_reset(p);
2644 ret = read_symlink(sctx->send_root, ino, p);
2645 if (ret < 0)
2646 goto out;
2647 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2648 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2649 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2650 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2651 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2652 }
2653
2654 ret = send_cmd(sctx);
2655 if (ret < 0)
2656 goto out;
2657
2658
2659 tlv_put_failure:
2660 out:
2661 fs_path_free(p);
2662 return ret;
2663 }
2664
2665 /*
2666 * We need some special handling for inodes that get processed before the parent
2667 * directory got created. See process_recorded_refs for details.
2668 * This function does the check if we already created the dir out of order.
2669 */
2670 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2671 {
2672 int ret = 0;
2673 struct btrfs_path *path = NULL;
2674 struct btrfs_key key;
2675 struct btrfs_key found_key;
2676 struct btrfs_key di_key;
2677 struct extent_buffer *eb;
2678 struct btrfs_dir_item *di;
2679 int slot;
2680
2681 path = alloc_path_for_send();
2682 if (!path) {
2683 ret = -ENOMEM;
2684 goto out;
2685 }
2686
2687 key.objectid = dir;
2688 key.type = BTRFS_DIR_INDEX_KEY;
2689 key.offset = 0;
2690 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2691 if (ret < 0)
2692 goto out;
2693
2694 while (1) {
2695 eb = path->nodes[0];
2696 slot = path->slots[0];
2697 if (slot >= btrfs_header_nritems(eb)) {
2698 ret = btrfs_next_leaf(sctx->send_root, path);
2699 if (ret < 0) {
2700 goto out;
2701 } else if (ret > 0) {
2702 ret = 0;
2703 break;
2704 }
2705 continue;
2706 }
2707
2708 btrfs_item_key_to_cpu(eb, &found_key, slot);
2709 if (found_key.objectid != key.objectid ||
2710 found_key.type != key.type) {
2711 ret = 0;
2712 goto out;
2713 }
2714
2715 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2716 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2717
2718 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2719 di_key.objectid < sctx->send_progress) {
2720 ret = 1;
2721 goto out;
2722 }
2723
2724 path->slots[0]++;
2725 }
2726
2727 out:
2728 btrfs_free_path(path);
2729 return ret;
2730 }
2731
2732 /*
2733 * Only creates the inode if it is:
2734 * 1. Not a directory
2735 * 2. Or a directory which was not created already due to out of order
2736 * directories. See did_create_dir and process_recorded_refs for details.
2737 */
2738 static int send_create_inode_if_needed(struct send_ctx *sctx)
2739 {
2740 int ret;
2741
2742 if (S_ISDIR(sctx->cur_inode_mode)) {
2743 ret = did_create_dir(sctx, sctx->cur_ino);
2744 if (ret < 0)
2745 goto out;
2746 if (ret) {
2747 ret = 0;
2748 goto out;
2749 }
2750 }
2751
2752 ret = send_create_inode(sctx, sctx->cur_ino);
2753 if (ret < 0)
2754 goto out;
2755
2756 out:
2757 return ret;
2758 }
2759
2760 struct recorded_ref {
2761 struct list_head list;
2762 char *name;
2763 struct fs_path *full_path;
2764 u64 dir;
2765 u64 dir_gen;
2766 int name_len;
2767 };
2768
2769 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2770 {
2771 ref->full_path = path;
2772 ref->name = (char *)kbasename(ref->full_path->start);
2773 ref->name_len = ref->full_path->end - ref->name;
2774 }
2775
2776 /*
2777 * We need to process new refs before deleted refs, but compare_tree gives us
2778 * everything mixed. So we first record all refs and later process them.
2779 * This function is a helper to record one ref.
2780 */
2781 static int __record_ref(struct list_head *head, u64 dir,
2782 u64 dir_gen, struct fs_path *path)
2783 {
2784 struct recorded_ref *ref;
2785
2786 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2787 if (!ref)
2788 return -ENOMEM;
2789
2790 ref->dir = dir;
2791 ref->dir_gen = dir_gen;
2792 set_ref_path(ref, path);
2793 list_add_tail(&ref->list, head);
2794 return 0;
2795 }
2796
2797 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2798 {
2799 struct recorded_ref *new;
2800
2801 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2802 if (!new)
2803 return -ENOMEM;
2804
2805 new->dir = ref->dir;
2806 new->dir_gen = ref->dir_gen;
2807 new->full_path = NULL;
2808 INIT_LIST_HEAD(&new->list);
2809 list_add_tail(&new->list, list);
2810 return 0;
2811 }
2812
2813 static void __free_recorded_refs(struct list_head *head)
2814 {
2815 struct recorded_ref *cur;
2816
2817 while (!list_empty(head)) {
2818 cur = list_entry(head->next, struct recorded_ref, list);
2819 fs_path_free(cur->full_path);
2820 list_del(&cur->list);
2821 kfree(cur);
2822 }
2823 }
2824
2825 static void free_recorded_refs(struct send_ctx *sctx)
2826 {
2827 __free_recorded_refs(&sctx->new_refs);
2828 __free_recorded_refs(&sctx->deleted_refs);
2829 }
2830
2831 /*
2832 * Renames/moves a file/dir to its orphan name. Used when the first
2833 * ref of an unprocessed inode gets overwritten and for all non empty
2834 * directories.
2835 */
2836 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2837 struct fs_path *path)
2838 {
2839 int ret;
2840 struct fs_path *orphan;
2841
2842 orphan = fs_path_alloc();
2843 if (!orphan)
2844 return -ENOMEM;
2845
2846 ret = gen_unique_name(sctx, ino, gen, orphan);
2847 if (ret < 0)
2848 goto out;
2849
2850 ret = send_rename(sctx, path, orphan);
2851
2852 out:
2853 fs_path_free(orphan);
2854 return ret;
2855 }
2856
2857 static struct orphan_dir_info *
2858 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2859 {
2860 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2861 struct rb_node *parent = NULL;
2862 struct orphan_dir_info *entry, *odi;
2863
2864 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2865 if (!odi)
2866 return ERR_PTR(-ENOMEM);
2867 odi->ino = dir_ino;
2868 odi->gen = 0;
2869
2870 while (*p) {
2871 parent = *p;
2872 entry = rb_entry(parent, struct orphan_dir_info, node);
2873 if (dir_ino < entry->ino) {
2874 p = &(*p)->rb_left;
2875 } else if (dir_ino > entry->ino) {
2876 p = &(*p)->rb_right;
2877 } else {
2878 kfree(odi);
2879 return entry;
2880 }
2881 }
2882
2883 rb_link_node(&odi->node, parent, p);
2884 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2885 return odi;
2886 }
2887
2888 static struct orphan_dir_info *
2889 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2890 {
2891 struct rb_node *n = sctx->orphan_dirs.rb_node;
2892 struct orphan_dir_info *entry;
2893
2894 while (n) {
2895 entry = rb_entry(n, struct orphan_dir_info, node);
2896 if (dir_ino < entry->ino)
2897 n = n->rb_left;
2898 else if (dir_ino > entry->ino)
2899 n = n->rb_right;
2900 else
2901 return entry;
2902 }
2903 return NULL;
2904 }
2905
2906 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2907 {
2908 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2909
2910 return odi != NULL;
2911 }
2912
2913 static void free_orphan_dir_info(struct send_ctx *sctx,
2914 struct orphan_dir_info *odi)
2915 {
2916 if (!odi)
2917 return;
2918 rb_erase(&odi->node, &sctx->orphan_dirs);
2919 kfree(odi);
2920 }
2921
2922 /*
2923 * Returns 1 if a directory can be removed at this point in time.
2924 * We check this by iterating all dir items and checking if the inode behind
2925 * the dir item was already processed.
2926 */
2927 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2928 u64 send_progress)
2929 {
2930 int ret = 0;
2931 struct btrfs_root *root = sctx->parent_root;
2932 struct btrfs_path *path;
2933 struct btrfs_key key;
2934 struct btrfs_key found_key;
2935 struct btrfs_key loc;
2936 struct btrfs_dir_item *di;
2937
2938 /*
2939 * Don't try to rmdir the top/root subvolume dir.
2940 */
2941 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2942 return 0;
2943
2944 path = alloc_path_for_send();
2945 if (!path)
2946 return -ENOMEM;
2947
2948 key.objectid = dir;
2949 key.type = BTRFS_DIR_INDEX_KEY;
2950 key.offset = 0;
2951 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2952 if (ret < 0)
2953 goto out;
2954
2955 while (1) {
2956 struct waiting_dir_move *dm;
2957
2958 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2959 ret = btrfs_next_leaf(root, path);
2960 if (ret < 0)
2961 goto out;
2962 else if (ret > 0)
2963 break;
2964 continue;
2965 }
2966 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2967 path->slots[0]);
2968 if (found_key.objectid != key.objectid ||
2969 found_key.type != key.type)
2970 break;
2971
2972 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2973 struct btrfs_dir_item);
2974 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2975
2976 dm = get_waiting_dir_move(sctx, loc.objectid);
2977 if (dm) {
2978 struct orphan_dir_info *odi;
2979
2980 odi = add_orphan_dir_info(sctx, dir);
2981 if (IS_ERR(odi)) {
2982 ret = PTR_ERR(odi);
2983 goto out;
2984 }
2985 odi->gen = dir_gen;
2986 dm->rmdir_ino = dir;
2987 ret = 0;
2988 goto out;
2989 }
2990
2991 if (loc.objectid > send_progress) {
2992 struct orphan_dir_info *odi;
2993
2994 odi = get_orphan_dir_info(sctx, dir);
2995 free_orphan_dir_info(sctx, odi);
2996 ret = 0;
2997 goto out;
2998 }
2999
3000 path->slots[0]++;
3001 }
3002
3003 ret = 1;
3004
3005 out:
3006 btrfs_free_path(path);
3007 return ret;
3008 }
3009
3010 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3011 {
3012 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3013
3014 return entry != NULL;
3015 }
3016
3017 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3018 {
3019 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3020 struct rb_node *parent = NULL;
3021 struct waiting_dir_move *entry, *dm;
3022
3023 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3024 if (!dm)
3025 return -ENOMEM;
3026 dm->ino = ino;
3027 dm->rmdir_ino = 0;
3028 dm->orphanized = orphanized;
3029
3030 while (*p) {
3031 parent = *p;
3032 entry = rb_entry(parent, struct waiting_dir_move, node);
3033 if (ino < entry->ino) {
3034 p = &(*p)->rb_left;
3035 } else if (ino > entry->ino) {
3036 p = &(*p)->rb_right;
3037 } else {
3038 kfree(dm);
3039 return -EEXIST;
3040 }
3041 }
3042
3043 rb_link_node(&dm->node, parent, p);
3044 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3045 return 0;
3046 }
3047
3048 static struct waiting_dir_move *
3049 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3050 {
3051 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3052 struct waiting_dir_move *entry;
3053
3054 while (n) {
3055 entry = rb_entry(n, struct waiting_dir_move, node);
3056 if (ino < entry->ino)
3057 n = n->rb_left;
3058 else if (ino > entry->ino)
3059 n = n->rb_right;
3060 else
3061 return entry;
3062 }
3063 return NULL;
3064 }
3065
3066 static void free_waiting_dir_move(struct send_ctx *sctx,
3067 struct waiting_dir_move *dm)
3068 {
3069 if (!dm)
3070 return;
3071 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3072 kfree(dm);
3073 }
3074
3075 static int add_pending_dir_move(struct send_ctx *sctx,
3076 u64 ino,
3077 u64 ino_gen,
3078 u64 parent_ino,
3079 struct list_head *new_refs,
3080 struct list_head *deleted_refs,
3081 const bool is_orphan)
3082 {
3083 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3084 struct rb_node *parent = NULL;
3085 struct pending_dir_move *entry = NULL, *pm;
3086 struct recorded_ref *cur;
3087 int exists = 0;
3088 int ret;
3089
3090 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3091 if (!pm)
3092 return -ENOMEM;
3093 pm->parent_ino = parent_ino;
3094 pm->ino = ino;
3095 pm->gen = ino_gen;
3096 INIT_LIST_HEAD(&pm->list);
3097 INIT_LIST_HEAD(&pm->update_refs);
3098 RB_CLEAR_NODE(&pm->node);
3099
3100 while (*p) {
3101 parent = *p;
3102 entry = rb_entry(parent, struct pending_dir_move, node);
3103 if (parent_ino < entry->parent_ino) {
3104 p = &(*p)->rb_left;
3105 } else if (parent_ino > entry->parent_ino) {
3106 p = &(*p)->rb_right;
3107 } else {
3108 exists = 1;
3109 break;
3110 }
3111 }
3112
3113 list_for_each_entry(cur, deleted_refs, list) {
3114 ret = dup_ref(cur, &pm->update_refs);
3115 if (ret < 0)
3116 goto out;
3117 }
3118 list_for_each_entry(cur, new_refs, list) {
3119 ret = dup_ref(cur, &pm->update_refs);
3120 if (ret < 0)
3121 goto out;
3122 }
3123
3124 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3125 if (ret)
3126 goto out;
3127
3128 if (exists) {
3129 list_add_tail(&pm->list, &entry->list);
3130 } else {
3131 rb_link_node(&pm->node, parent, p);
3132 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3133 }
3134 ret = 0;
3135 out:
3136 if (ret) {
3137 __free_recorded_refs(&pm->update_refs);
3138 kfree(pm);
3139 }
3140 return ret;
3141 }
3142
3143 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3144 u64 parent_ino)
3145 {
3146 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3147 struct pending_dir_move *entry;
3148
3149 while (n) {
3150 entry = rb_entry(n, struct pending_dir_move, node);
3151 if (parent_ino < entry->parent_ino)
3152 n = n->rb_left;
3153 else if (parent_ino > entry->parent_ino)
3154 n = n->rb_right;
3155 else
3156 return entry;
3157 }
3158 return NULL;
3159 }
3160
3161 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3162 u64 ino, u64 gen, u64 *ancestor_ino)
3163 {
3164 int ret = 0;
3165 u64 parent_inode = 0;
3166 u64 parent_gen = 0;
3167 u64 start_ino = ino;
3168
3169 *ancestor_ino = 0;
3170 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3171 fs_path_reset(name);
3172
3173 if (is_waiting_for_rm(sctx, ino))
3174 break;
3175 if (is_waiting_for_move(sctx, ino)) {
3176 if (*ancestor_ino == 0)
3177 *ancestor_ino = ino;
3178 ret = get_first_ref(sctx->parent_root, ino,
3179 &parent_inode, &parent_gen, name);
3180 } else {
3181 ret = __get_cur_name_and_parent(sctx, ino, gen,
3182 &parent_inode,
3183 &parent_gen, name);
3184 if (ret > 0) {
3185 ret = 0;
3186 break;
3187 }
3188 }
3189 if (ret < 0)
3190 break;
3191 if (parent_inode == start_ino) {
3192 ret = 1;
3193 if (*ancestor_ino == 0)
3194 *ancestor_ino = ino;
3195 break;
3196 }
3197 ino = parent_inode;
3198 gen = parent_gen;
3199 }
3200 return ret;
3201 }
3202
3203 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3204 {
3205 struct fs_path *from_path = NULL;
3206 struct fs_path *to_path = NULL;
3207 struct fs_path *name = NULL;
3208 u64 orig_progress = sctx->send_progress;
3209 struct recorded_ref *cur;
3210 u64 parent_ino, parent_gen;
3211 struct waiting_dir_move *dm = NULL;
3212 u64 rmdir_ino = 0;
3213 u64 ancestor;
3214 bool is_orphan;
3215 int ret;
3216
3217 name = fs_path_alloc();
3218 from_path = fs_path_alloc();
3219 if (!name || !from_path) {
3220 ret = -ENOMEM;
3221 goto out;
3222 }
3223
3224 dm = get_waiting_dir_move(sctx, pm->ino);
3225 ASSERT(dm);
3226 rmdir_ino = dm->rmdir_ino;
3227 is_orphan = dm->orphanized;
3228 free_waiting_dir_move(sctx, dm);
3229
3230 if (is_orphan) {
3231 ret = gen_unique_name(sctx, pm->ino,
3232 pm->gen, from_path);
3233 } else {
3234 ret = get_first_ref(sctx->parent_root, pm->ino,
3235 &parent_ino, &parent_gen, name);
3236 if (ret < 0)
3237 goto out;
3238 ret = get_cur_path(sctx, parent_ino, parent_gen,
3239 from_path);
3240 if (ret < 0)
3241 goto out;
3242 ret = fs_path_add_path(from_path, name);
3243 }
3244 if (ret < 0)
3245 goto out;
3246
3247 sctx->send_progress = sctx->cur_ino + 1;
3248 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3249 if (ret < 0)
3250 goto out;
3251 if (ret) {
3252 LIST_HEAD(deleted_refs);
3253 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3254 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3255 &pm->update_refs, &deleted_refs,
3256 is_orphan);
3257 if (ret < 0)
3258 goto out;
3259 if (rmdir_ino) {
3260 dm = get_waiting_dir_move(sctx, pm->ino);
3261 ASSERT(dm);
3262 dm->rmdir_ino = rmdir_ino;
3263 }
3264 goto out;
3265 }
3266 fs_path_reset(name);
3267 to_path = name;
3268 name = NULL;
3269 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3270 if (ret < 0)
3271 goto out;
3272
3273 ret = send_rename(sctx, from_path, to_path);
3274 if (ret < 0)
3275 goto out;
3276
3277 if (rmdir_ino) {
3278 struct orphan_dir_info *odi;
3279
3280 odi = get_orphan_dir_info(sctx, rmdir_ino);
3281 if (!odi) {
3282 /* already deleted */
3283 goto finish;
3284 }
3285 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3286 if (ret < 0)
3287 goto out;
3288 if (!ret)
3289 goto finish;
3290
3291 name = fs_path_alloc();
3292 if (!name) {
3293 ret = -ENOMEM;
3294 goto out;
3295 }
3296 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3297 if (ret < 0)
3298 goto out;
3299 ret = send_rmdir(sctx, name);
3300 if (ret < 0)
3301 goto out;
3302 free_orphan_dir_info(sctx, odi);
3303 }
3304
3305 finish:
3306 ret = send_utimes(sctx, pm->ino, pm->gen);
3307 if (ret < 0)
3308 goto out;
3309
3310 /*
3311 * After rename/move, need to update the utimes of both new parent(s)
3312 * and old parent(s).
3313 */
3314 list_for_each_entry(cur, &pm->update_refs, list) {
3315 /*
3316 * The parent inode might have been deleted in the send snapshot
3317 */
3318 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3319 NULL, NULL, NULL, NULL, NULL);
3320 if (ret == -ENOENT) {
3321 ret = 0;
3322 continue;
3323 }
3324 if (ret < 0)
3325 goto out;
3326
3327 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3328 if (ret < 0)
3329 goto out;
3330 }
3331
3332 out:
3333 fs_path_free(name);
3334 fs_path_free(from_path);
3335 fs_path_free(to_path);
3336 sctx->send_progress = orig_progress;
3337
3338 return ret;
3339 }
3340
3341 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3342 {
3343 if (!list_empty(&m->list))
3344 list_del(&m->list);
3345 if (!RB_EMPTY_NODE(&m->node))
3346 rb_erase(&m->node, &sctx->pending_dir_moves);
3347 __free_recorded_refs(&m->update_refs);
3348 kfree(m);
3349 }
3350
3351 static void tail_append_pending_moves(struct pending_dir_move *moves,
3352 struct list_head *stack)
3353 {
3354 if (list_empty(&moves->list)) {
3355 list_add_tail(&moves->list, stack);
3356 } else {
3357 LIST_HEAD(list);
3358 list_splice_init(&moves->list, &list);
3359 list_add_tail(&moves->list, stack);
3360 list_splice_tail(&list, stack);
3361 }
3362 }
3363
3364 static int apply_children_dir_moves(struct send_ctx *sctx)
3365 {
3366 struct pending_dir_move *pm;
3367 struct list_head stack;
3368 u64 parent_ino = sctx->cur_ino;
3369 int ret = 0;
3370
3371 pm = get_pending_dir_moves(sctx, parent_ino);
3372 if (!pm)
3373 return 0;
3374
3375 INIT_LIST_HEAD(&stack);
3376 tail_append_pending_moves(pm, &stack);
3377
3378 while (!list_empty(&stack)) {
3379 pm = list_first_entry(&stack, struct pending_dir_move, list);
3380 parent_ino = pm->ino;
3381 ret = apply_dir_move(sctx, pm);
3382 free_pending_move(sctx, pm);
3383 if (ret)
3384 goto out;
3385 pm = get_pending_dir_moves(sctx, parent_ino);
3386 if (pm)
3387 tail_append_pending_moves(pm, &stack);
3388 }
3389 return 0;
3390
3391 out:
3392 while (!list_empty(&stack)) {
3393 pm = list_first_entry(&stack, struct pending_dir_move, list);
3394 free_pending_move(sctx, pm);
3395 }
3396 return ret;
3397 }
3398
3399 /*
3400 * We might need to delay a directory rename even when no ancestor directory
3401 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3402 * renamed. This happens when we rename a directory to the old name (the name
3403 * in the parent root) of some other unrelated directory that got its rename
3404 * delayed due to some ancestor with higher number that got renamed.
3405 *
3406 * Example:
3407 *
3408 * Parent snapshot:
3409 * . (ino 256)
3410 * |---- a/ (ino 257)
3411 * | |---- file (ino 260)
3412 * |
3413 * |---- b/ (ino 258)
3414 * |---- c/ (ino 259)
3415 *
3416 * Send snapshot:
3417 * . (ino 256)
3418 * |---- a/ (ino 258)
3419 * |---- x/ (ino 259)
3420 * |---- y/ (ino 257)
3421 * |----- file (ino 260)
3422 *
3423 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3424 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3425 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3426 * must issue is:
3427 *
3428 * 1 - rename 259 from 'c' to 'x'
3429 * 2 - rename 257 from 'a' to 'x/y'
3430 * 3 - rename 258 from 'b' to 'a'
3431 *
3432 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3433 * be done right away and < 0 on error.
3434 */
3435 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3436 struct recorded_ref *parent_ref,
3437 const bool is_orphan)
3438 {
3439 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3440 struct btrfs_path *path;
3441 struct btrfs_key key;
3442 struct btrfs_key di_key;
3443 struct btrfs_dir_item *di;
3444 u64 left_gen;
3445 u64 right_gen;
3446 int ret = 0;
3447 struct waiting_dir_move *wdm;
3448
3449 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3450 return 0;
3451
3452 path = alloc_path_for_send();
3453 if (!path)
3454 return -ENOMEM;
3455
3456 key.objectid = parent_ref->dir;
3457 key.type = BTRFS_DIR_ITEM_KEY;
3458 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3459
3460 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3461 if (ret < 0) {
3462 goto out;
3463 } else if (ret > 0) {
3464 ret = 0;
3465 goto out;
3466 }
3467
3468 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3469 parent_ref->name_len);
3470 if (!di) {
3471 ret = 0;
3472 goto out;
3473 }
3474 /*
3475 * di_key.objectid has the number of the inode that has a dentry in the
3476 * parent directory with the same name that sctx->cur_ino is being
3477 * renamed to. We need to check if that inode is in the send root as
3478 * well and if it is currently marked as an inode with a pending rename,
3479 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3480 * that it happens after that other inode is renamed.
3481 */
3482 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3483 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3484 ret = 0;
3485 goto out;
3486 }
3487
3488 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3489 &left_gen, NULL, NULL, NULL, NULL);
3490 if (ret < 0)
3491 goto out;
3492 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3493 &right_gen, NULL, NULL, NULL, NULL);
3494 if (ret < 0) {
3495 if (ret == -ENOENT)
3496 ret = 0;
3497 goto out;
3498 }
3499
3500 /* Different inode, no need to delay the rename of sctx->cur_ino */
3501 if (right_gen != left_gen) {
3502 ret = 0;
3503 goto out;
3504 }
3505
3506 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3507 if (wdm && !wdm->orphanized) {
3508 ret = add_pending_dir_move(sctx,
3509 sctx->cur_ino,
3510 sctx->cur_inode_gen,
3511 di_key.objectid,
3512 &sctx->new_refs,
3513 &sctx->deleted_refs,
3514 is_orphan);
3515 if (!ret)
3516 ret = 1;
3517 }
3518 out:
3519 btrfs_free_path(path);
3520 return ret;
3521 }
3522
3523 /*
3524 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3525 * Return 1 if true, 0 if false and < 0 on error.
3526 */
3527 static int is_ancestor(struct btrfs_root *root,
3528 const u64 ino1,
3529 const u64 ino1_gen,
3530 const u64 ino2,
3531 struct fs_path *fs_path)
3532 {
3533 u64 ino = ino2;
3534 bool free_path = false;
3535 int ret = 0;
3536
3537 if (!fs_path) {
3538 fs_path = fs_path_alloc();
3539 if (!fs_path)
3540 return -ENOMEM;
3541 free_path = true;
3542 }
3543
3544 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3545 u64 parent;
3546 u64 parent_gen;
3547
3548 fs_path_reset(fs_path);
3549 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3550 if (ret < 0) {
3551 if (ret == -ENOENT && ino == ino2)
3552 ret = 0;
3553 goto out;
3554 }
3555 if (parent == ino1) {
3556 ret = parent_gen == ino1_gen ? 1 : 0;
3557 goto out;
3558 }
3559 ino = parent;
3560 }
3561 out:
3562 if (free_path)
3563 fs_path_free(fs_path);
3564 return ret;
3565 }
3566
3567 static int wait_for_parent_move(struct send_ctx *sctx,
3568 struct recorded_ref *parent_ref,
3569 const bool is_orphan)
3570 {
3571 int ret = 0;
3572 u64 ino = parent_ref->dir;
3573 u64 ino_gen = parent_ref->dir_gen;
3574 u64 parent_ino_before, parent_ino_after;
3575 struct fs_path *path_before = NULL;
3576 struct fs_path *path_after = NULL;
3577 int len1, len2;
3578
3579 path_after = fs_path_alloc();
3580 path_before = fs_path_alloc();
3581 if (!path_after || !path_before) {
3582 ret = -ENOMEM;
3583 goto out;
3584 }
3585
3586 /*
3587 * Our current directory inode may not yet be renamed/moved because some
3588 * ancestor (immediate or not) has to be renamed/moved first. So find if
3589 * such ancestor exists and make sure our own rename/move happens after
3590 * that ancestor is processed to avoid path build infinite loops (done
3591 * at get_cur_path()).
3592 */
3593 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3594 u64 parent_ino_after_gen;
3595
3596 if (is_waiting_for_move(sctx, ino)) {
3597 /*
3598 * If the current inode is an ancestor of ino in the
3599 * parent root, we need to delay the rename of the
3600 * current inode, otherwise don't delayed the rename
3601 * because we can end up with a circular dependency
3602 * of renames, resulting in some directories never
3603 * getting the respective rename operations issued in
3604 * the send stream or getting into infinite path build
3605 * loops.
3606 */
3607 ret = is_ancestor(sctx->parent_root,
3608 sctx->cur_ino, sctx->cur_inode_gen,
3609 ino, path_before);
3610 if (ret)
3611 break;
3612 }
3613
3614 fs_path_reset(path_before);
3615 fs_path_reset(path_after);
3616
3617 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3618 &parent_ino_after_gen, path_after);
3619 if (ret < 0)
3620 goto out;
3621 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3622 NULL, path_before);
3623 if (ret < 0 && ret != -ENOENT) {
3624 goto out;
3625 } else if (ret == -ENOENT) {
3626 ret = 0;
3627 break;
3628 }
3629
3630 len1 = fs_path_len(path_before);
3631 len2 = fs_path_len(path_after);
3632 if (ino > sctx->cur_ino &&
3633 (parent_ino_before != parent_ino_after || len1 != len2 ||
3634 memcmp(path_before->start, path_after->start, len1))) {
3635 u64 parent_ino_gen;
3636
3637 ret = get_inode_info(sctx->parent_root, ino, NULL,
3638 &parent_ino_gen, NULL, NULL, NULL,
3639 NULL);
3640 if (ret < 0)
3641 goto out;
3642 if (ino_gen == parent_ino_gen) {
3643 ret = 1;
3644 break;
3645 }
3646 }
3647 ino = parent_ino_after;
3648 ino_gen = parent_ino_after_gen;
3649 }
3650
3651 out:
3652 fs_path_free(path_before);
3653 fs_path_free(path_after);
3654
3655 if (ret == 1) {
3656 ret = add_pending_dir_move(sctx,
3657 sctx->cur_ino,
3658 sctx->cur_inode_gen,
3659 ino,
3660 &sctx->new_refs,
3661 &sctx->deleted_refs,
3662 is_orphan);
3663 if (!ret)
3664 ret = 1;
3665 }
3666
3667 return ret;
3668 }
3669
3670 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3671 {
3672 int ret;
3673 struct fs_path *new_path;
3674
3675 /*
3676 * Our reference's name member points to its full_path member string, so
3677 * we use here a new path.
3678 */
3679 new_path = fs_path_alloc();
3680 if (!new_path)
3681 return -ENOMEM;
3682
3683 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3684 if (ret < 0) {
3685 fs_path_free(new_path);
3686 return ret;
3687 }
3688 ret = fs_path_add(new_path, ref->name, ref->name_len);
3689 if (ret < 0) {
3690 fs_path_free(new_path);
3691 return ret;
3692 }
3693
3694 fs_path_free(ref->full_path);
3695 set_ref_path(ref, new_path);
3696
3697 return 0;
3698 }
3699
3700 /*
3701 * This does all the move/link/unlink/rmdir magic.
3702 */
3703 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3704 {
3705 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3706 int ret = 0;
3707 struct recorded_ref *cur;
3708 struct recorded_ref *cur2;
3709 struct list_head check_dirs;
3710 struct fs_path *valid_path = NULL;
3711 u64 ow_inode = 0;
3712 u64 ow_gen;
3713 u64 ow_mode;
3714 int did_overwrite = 0;
3715 int is_orphan = 0;
3716 u64 last_dir_ino_rm = 0;
3717 bool can_rename = true;
3718 bool orphanized_dir = false;
3719 bool orphanized_ancestor = false;
3720
3721 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3722
3723 /*
3724 * This should never happen as the root dir always has the same ref
3725 * which is always '..'
3726 */
3727 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3728 INIT_LIST_HEAD(&check_dirs);
3729
3730 valid_path = fs_path_alloc();
3731 if (!valid_path) {
3732 ret = -ENOMEM;
3733 goto out;
3734 }
3735
3736 /*
3737 * First, check if the first ref of the current inode was overwritten
3738 * before. If yes, we know that the current inode was already orphanized
3739 * and thus use the orphan name. If not, we can use get_cur_path to
3740 * get the path of the first ref as it would like while receiving at
3741 * this point in time.
3742 * New inodes are always orphan at the beginning, so force to use the
3743 * orphan name in this case.
3744 * The first ref is stored in valid_path and will be updated if it
3745 * gets moved around.
3746 */
3747 if (!sctx->cur_inode_new) {
3748 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3749 sctx->cur_inode_gen);
3750 if (ret < 0)
3751 goto out;
3752 if (ret)
3753 did_overwrite = 1;
3754 }
3755 if (sctx->cur_inode_new || did_overwrite) {
3756 ret = gen_unique_name(sctx, sctx->cur_ino,
3757 sctx->cur_inode_gen, valid_path);
3758 if (ret < 0)
3759 goto out;
3760 is_orphan = 1;
3761 } else {
3762 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3763 valid_path);
3764 if (ret < 0)
3765 goto out;
3766 }
3767
3768 list_for_each_entry(cur, &sctx->new_refs, list) {
3769 /*
3770 * We may have refs where the parent directory does not exist
3771 * yet. This happens if the parent directories inum is higher
3772 * the the current inum. To handle this case, we create the
3773 * parent directory out of order. But we need to check if this
3774 * did already happen before due to other refs in the same dir.
3775 */
3776 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3777 if (ret < 0)
3778 goto out;
3779 if (ret == inode_state_will_create) {
3780 ret = 0;
3781 /*
3782 * First check if any of the current inodes refs did
3783 * already create the dir.
3784 */
3785 list_for_each_entry(cur2, &sctx->new_refs, list) {
3786 if (cur == cur2)
3787 break;
3788 if (cur2->dir == cur->dir) {
3789 ret = 1;
3790 break;
3791 }
3792 }
3793
3794 /*
3795 * If that did not happen, check if a previous inode
3796 * did already create the dir.
3797 */
3798 if (!ret)
3799 ret = did_create_dir(sctx, cur->dir);
3800 if (ret < 0)
3801 goto out;
3802 if (!ret) {
3803 ret = send_create_inode(sctx, cur->dir);
3804 if (ret < 0)
3805 goto out;
3806 }
3807 }
3808
3809 /*
3810 * Check if this new ref would overwrite the first ref of
3811 * another unprocessed inode. If yes, orphanize the
3812 * overwritten inode. If we find an overwritten ref that is
3813 * not the first ref, simply unlink it.
3814 */
3815 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3816 cur->name, cur->name_len,
3817 &ow_inode, &ow_gen, &ow_mode);
3818 if (ret < 0)
3819 goto out;
3820 if (ret) {
3821 ret = is_first_ref(sctx->parent_root,
3822 ow_inode, cur->dir, cur->name,
3823 cur->name_len);
3824 if (ret < 0)
3825 goto out;
3826 if (ret) {
3827 struct name_cache_entry *nce;
3828 struct waiting_dir_move *wdm;
3829
3830 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3831 cur->full_path);
3832 if (ret < 0)
3833 goto out;
3834 if (S_ISDIR(ow_mode))
3835 orphanized_dir = true;
3836
3837 /*
3838 * If ow_inode has its rename operation delayed
3839 * make sure that its orphanized name is used in
3840 * the source path when performing its rename
3841 * operation.
3842 */
3843 if (is_waiting_for_move(sctx, ow_inode)) {
3844 wdm = get_waiting_dir_move(sctx,
3845 ow_inode);
3846 ASSERT(wdm);
3847 wdm->orphanized = true;
3848 }
3849
3850 /*
3851 * Make sure we clear our orphanized inode's
3852 * name from the name cache. This is because the
3853 * inode ow_inode might be an ancestor of some
3854 * other inode that will be orphanized as well
3855 * later and has an inode number greater than
3856 * sctx->send_progress. We need to prevent
3857 * future name lookups from using the old name
3858 * and get instead the orphan name.
3859 */
3860 nce = name_cache_search(sctx, ow_inode, ow_gen);
3861 if (nce) {
3862 name_cache_delete(sctx, nce);
3863 kfree(nce);
3864 }
3865
3866 /*
3867 * ow_inode might currently be an ancestor of
3868 * cur_ino, therefore compute valid_path (the
3869 * current path of cur_ino) again because it
3870 * might contain the pre-orphanization name of
3871 * ow_inode, which is no longer valid.
3872 */
3873 ret = is_ancestor(sctx->parent_root,
3874 ow_inode, ow_gen,
3875 sctx->cur_ino, NULL);
3876 if (ret > 0) {
3877 orphanized_ancestor = true;
3878 fs_path_reset(valid_path);
3879 ret = get_cur_path(sctx, sctx->cur_ino,
3880 sctx->cur_inode_gen,
3881 valid_path);
3882 }
3883 if (ret < 0)
3884 goto out;
3885 } else {
3886 ret = send_unlink(sctx, cur->full_path);
3887 if (ret < 0)
3888 goto out;
3889 }
3890 }
3891
3892 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3893 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3894 if (ret < 0)
3895 goto out;
3896 if (ret == 1) {
3897 can_rename = false;
3898 *pending_move = 1;
3899 }
3900 }
3901
3902 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3903 can_rename) {
3904 ret = wait_for_parent_move(sctx, cur, is_orphan);
3905 if (ret < 0)
3906 goto out;
3907 if (ret == 1) {
3908 can_rename = false;
3909 *pending_move = 1;
3910 }
3911 }
3912
3913 /*
3914 * link/move the ref to the new place. If we have an orphan
3915 * inode, move it and update valid_path. If not, link or move
3916 * it depending on the inode mode.
3917 */
3918 if (is_orphan && can_rename) {
3919 ret = send_rename(sctx, valid_path, cur->full_path);
3920 if (ret < 0)
3921 goto out;
3922 is_orphan = 0;
3923 ret = fs_path_copy(valid_path, cur->full_path);
3924 if (ret < 0)
3925 goto out;
3926 } else if (can_rename) {
3927 if (S_ISDIR(sctx->cur_inode_mode)) {
3928 /*
3929 * Dirs can't be linked, so move it. For moved
3930 * dirs, we always have one new and one deleted
3931 * ref. The deleted ref is ignored later.
3932 */
3933 ret = send_rename(sctx, valid_path,
3934 cur->full_path);
3935 if (!ret)
3936 ret = fs_path_copy(valid_path,
3937 cur->full_path);
3938 if (ret < 0)
3939 goto out;
3940 } else {
3941 /*
3942 * We might have previously orphanized an inode
3943 * which is an ancestor of our current inode,
3944 * so our reference's full path, which was
3945 * computed before any such orphanizations, must
3946 * be updated.
3947 */
3948 if (orphanized_dir) {
3949 ret = update_ref_path(sctx, cur);
3950 if (ret < 0)
3951 goto out;
3952 }
3953 ret = send_link(sctx, cur->full_path,
3954 valid_path);
3955 if (ret < 0)
3956 goto out;
3957 }
3958 }
3959 ret = dup_ref(cur, &check_dirs);
3960 if (ret < 0)
3961 goto out;
3962 }
3963
3964 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3965 /*
3966 * Check if we can already rmdir the directory. If not,
3967 * orphanize it. For every dir item inside that gets deleted
3968 * later, we do this check again and rmdir it then if possible.
3969 * See the use of check_dirs for more details.
3970 */
3971 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3972 sctx->cur_ino);
3973 if (ret < 0)
3974 goto out;
3975 if (ret) {
3976 ret = send_rmdir(sctx, valid_path);
3977 if (ret < 0)
3978 goto out;
3979 } else if (!is_orphan) {
3980 ret = orphanize_inode(sctx, sctx->cur_ino,
3981 sctx->cur_inode_gen, valid_path);
3982 if (ret < 0)
3983 goto out;
3984 is_orphan = 1;
3985 }
3986
3987 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3988 ret = dup_ref(cur, &check_dirs);
3989 if (ret < 0)
3990 goto out;
3991 }
3992 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3993 !list_empty(&sctx->deleted_refs)) {
3994 /*
3995 * We have a moved dir. Add the old parent to check_dirs
3996 */
3997 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3998 list);
3999 ret = dup_ref(cur, &check_dirs);
4000 if (ret < 0)
4001 goto out;
4002 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4003 /*
4004 * We have a non dir inode. Go through all deleted refs and
4005 * unlink them if they were not already overwritten by other
4006 * inodes.
4007 */
4008 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4009 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4010 sctx->cur_ino, sctx->cur_inode_gen,
4011 cur->name, cur->name_len);
4012 if (ret < 0)
4013 goto out;
4014 if (!ret) {
4015 /*
4016 * If we orphanized any ancestor before, we need
4017 * to recompute the full path for deleted names,
4018 * since any such path was computed before we
4019 * processed any references and orphanized any
4020 * ancestor inode.
4021 */
4022 if (orphanized_ancestor) {
4023 ret = update_ref_path(sctx, cur);
4024 if (ret < 0)
4025 goto out;
4026 }
4027 ret = send_unlink(sctx, cur->full_path);
4028 if (ret < 0)
4029 goto out;
4030 }
4031 ret = dup_ref(cur, &check_dirs);
4032 if (ret < 0)
4033 goto out;
4034 }
4035 /*
4036 * If the inode is still orphan, unlink the orphan. This may
4037 * happen when a previous inode did overwrite the first ref
4038 * of this inode and no new refs were added for the current
4039 * inode. Unlinking does not mean that the inode is deleted in
4040 * all cases. There may still be links to this inode in other
4041 * places.
4042 */
4043 if (is_orphan) {
4044 ret = send_unlink(sctx, valid_path);
4045 if (ret < 0)
4046 goto out;
4047 }
4048 }
4049
4050 /*
4051 * We did collect all parent dirs where cur_inode was once located. We
4052 * now go through all these dirs and check if they are pending for
4053 * deletion and if it's finally possible to perform the rmdir now.
4054 * We also update the inode stats of the parent dirs here.
4055 */
4056 list_for_each_entry(cur, &check_dirs, list) {
4057 /*
4058 * In case we had refs into dirs that were not processed yet,
4059 * we don't need to do the utime and rmdir logic for these dirs.
4060 * The dir will be processed later.
4061 */
4062 if (cur->dir > sctx->cur_ino)
4063 continue;
4064
4065 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4066 if (ret < 0)
4067 goto out;
4068
4069 if (ret == inode_state_did_create ||
4070 ret == inode_state_no_change) {
4071 /* TODO delayed utimes */
4072 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4073 if (ret < 0)
4074 goto out;
4075 } else if (ret == inode_state_did_delete &&
4076 cur->dir != last_dir_ino_rm) {
4077 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4078 sctx->cur_ino);
4079 if (ret < 0)
4080 goto out;
4081 if (ret) {
4082 ret = get_cur_path(sctx, cur->dir,
4083 cur->dir_gen, valid_path);
4084 if (ret < 0)
4085 goto out;
4086 ret = send_rmdir(sctx, valid_path);
4087 if (ret < 0)
4088 goto out;
4089 last_dir_ino_rm = cur->dir;
4090 }
4091 }
4092 }
4093
4094 ret = 0;
4095
4096 out:
4097 __free_recorded_refs(&check_dirs);
4098 free_recorded_refs(sctx);
4099 fs_path_free(valid_path);
4100 return ret;
4101 }
4102
4103 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4104 void *ctx, struct list_head *refs)
4105 {
4106 int ret = 0;
4107 struct send_ctx *sctx = ctx;
4108 struct fs_path *p;
4109 u64 gen;
4110
4111 p = fs_path_alloc();
4112 if (!p)
4113 return -ENOMEM;
4114
4115 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4116 NULL, NULL);
4117 if (ret < 0)
4118 goto out;
4119
4120 ret = get_cur_path(sctx, dir, gen, p);
4121 if (ret < 0)
4122 goto out;
4123 ret = fs_path_add_path(p, name);
4124 if (ret < 0)
4125 goto out;
4126
4127 ret = __record_ref(refs, dir, gen, p);
4128
4129 out:
4130 if (ret)
4131 fs_path_free(p);
4132 return ret;
4133 }
4134
4135 static int __record_new_ref(int num, u64 dir, int index,
4136 struct fs_path *name,
4137 void *ctx)
4138 {
4139 struct send_ctx *sctx = ctx;
4140 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4141 }
4142
4143
4144 static int __record_deleted_ref(int num, u64 dir, int index,
4145 struct fs_path *name,
4146 void *ctx)
4147 {
4148 struct send_ctx *sctx = ctx;
4149 return record_ref(sctx->parent_root, dir, name, ctx,
4150 &sctx->deleted_refs);
4151 }
4152
4153 static int record_new_ref(struct send_ctx *sctx)
4154 {
4155 int ret;
4156
4157 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4158 sctx->cmp_key, 0, __record_new_ref, sctx);
4159 if (ret < 0)
4160 goto out;
4161 ret = 0;
4162
4163 out:
4164 return ret;
4165 }
4166
4167 static int record_deleted_ref(struct send_ctx *sctx)
4168 {
4169 int ret;
4170
4171 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4172 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4173 if (ret < 0)
4174 goto out;
4175 ret = 0;
4176
4177 out:
4178 return ret;
4179 }
4180
4181 struct find_ref_ctx {
4182 u64 dir;
4183 u64 dir_gen;
4184 struct btrfs_root *root;
4185 struct fs_path *name;
4186 int found_idx;
4187 };
4188
4189 static int __find_iref(int num, u64 dir, int index,
4190 struct fs_path *name,
4191 void *ctx_)
4192 {
4193 struct find_ref_ctx *ctx = ctx_;
4194 u64 dir_gen;
4195 int ret;
4196
4197 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4198 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4199 /*
4200 * To avoid doing extra lookups we'll only do this if everything
4201 * else matches.
4202 */
4203 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4204 NULL, NULL, NULL);
4205 if (ret)
4206 return ret;
4207 if (dir_gen != ctx->dir_gen)
4208 return 0;
4209 ctx->found_idx = num;
4210 return 1;
4211 }
4212 return 0;
4213 }
4214
4215 static int find_iref(struct btrfs_root *root,
4216 struct btrfs_path *path,
4217 struct btrfs_key *key,
4218 u64 dir, u64 dir_gen, struct fs_path *name)
4219 {
4220 int ret;
4221 struct find_ref_ctx ctx;
4222
4223 ctx.dir = dir;
4224 ctx.name = name;
4225 ctx.dir_gen = dir_gen;
4226 ctx.found_idx = -1;
4227 ctx.root = root;
4228
4229 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4230 if (ret < 0)
4231 return ret;
4232
4233 if (ctx.found_idx == -1)
4234 return -ENOENT;
4235
4236 return ctx.found_idx;
4237 }
4238
4239 static int __record_changed_new_ref(int num, u64 dir, int index,
4240 struct fs_path *name,
4241 void *ctx)
4242 {
4243 u64 dir_gen;
4244 int ret;
4245 struct send_ctx *sctx = ctx;
4246
4247 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4248 NULL, NULL, NULL);
4249 if (ret)
4250 return ret;
4251
4252 ret = find_iref(sctx->parent_root, sctx->right_path,
4253 sctx->cmp_key, dir, dir_gen, name);
4254 if (ret == -ENOENT)
4255 ret = __record_new_ref(num, dir, index, name, sctx);
4256 else if (ret > 0)
4257 ret = 0;
4258
4259 return ret;
4260 }
4261
4262 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4263 struct fs_path *name,
4264 void *ctx)
4265 {
4266 u64 dir_gen;
4267 int ret;
4268 struct send_ctx *sctx = ctx;
4269
4270 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4271 NULL, NULL, NULL);
4272 if (ret)
4273 return ret;
4274
4275 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4276 dir, dir_gen, name);
4277 if (ret == -ENOENT)
4278 ret = __record_deleted_ref(num, dir, index, name, sctx);
4279 else if (ret > 0)
4280 ret = 0;
4281
4282 return ret;
4283 }
4284
4285 static int record_changed_ref(struct send_ctx *sctx)
4286 {
4287 int ret = 0;
4288
4289 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4290 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4291 if (ret < 0)
4292 goto out;
4293 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4294 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4295 if (ret < 0)
4296 goto out;
4297 ret = 0;
4298
4299 out:
4300 return ret;
4301 }
4302
4303 /*
4304 * Record and process all refs at once. Needed when an inode changes the
4305 * generation number, which means that it was deleted and recreated.
4306 */
4307 static int process_all_refs(struct send_ctx *sctx,
4308 enum btrfs_compare_tree_result cmd)
4309 {
4310 int ret;
4311 struct btrfs_root *root;
4312 struct btrfs_path *path;
4313 struct btrfs_key key;
4314 struct btrfs_key found_key;
4315 struct extent_buffer *eb;
4316 int slot;
4317 iterate_inode_ref_t cb;
4318 int pending_move = 0;
4319
4320 path = alloc_path_for_send();
4321 if (!path)
4322 return -ENOMEM;
4323
4324 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4325 root = sctx->send_root;
4326 cb = __record_new_ref;
4327 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4328 root = sctx->parent_root;
4329 cb = __record_deleted_ref;
4330 } else {
4331 btrfs_err(sctx->send_root->fs_info,
4332 "Wrong command %d in process_all_refs", cmd);
4333 ret = -EINVAL;
4334 goto out;
4335 }
4336
4337 key.objectid = sctx->cmp_key->objectid;
4338 key.type = BTRFS_INODE_REF_KEY;
4339 key.offset = 0;
4340 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4341 if (ret < 0)
4342 goto out;
4343
4344 while (1) {
4345 eb = path->nodes[0];
4346 slot = path->slots[0];
4347 if (slot >= btrfs_header_nritems(eb)) {
4348 ret = btrfs_next_leaf(root, path);
4349 if (ret < 0)
4350 goto out;
4351 else if (ret > 0)
4352 break;
4353 continue;
4354 }
4355
4356 btrfs_item_key_to_cpu(eb, &found_key, slot);
4357
4358 if (found_key.objectid != key.objectid ||
4359 (found_key.type != BTRFS_INODE_REF_KEY &&
4360 found_key.type != BTRFS_INODE_EXTREF_KEY))
4361 break;
4362
4363 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4364 if (ret < 0)
4365 goto out;
4366
4367 path->slots[0]++;
4368 }
4369 btrfs_release_path(path);
4370
4371 /*
4372 * We don't actually care about pending_move as we are simply
4373 * re-creating this inode and will be rename'ing it into place once we
4374 * rename the parent directory.
4375 */
4376 ret = process_recorded_refs(sctx, &pending_move);
4377 out:
4378 btrfs_free_path(path);
4379 return ret;
4380 }
4381
4382 static int send_set_xattr(struct send_ctx *sctx,
4383 struct fs_path *path,
4384 const char *name, int name_len,
4385 const char *data, int data_len)
4386 {
4387 int ret = 0;
4388
4389 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4390 if (ret < 0)
4391 goto out;
4392
4393 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4394 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4395 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4396
4397 ret = send_cmd(sctx);
4398
4399 tlv_put_failure:
4400 out:
4401 return ret;
4402 }
4403
4404 static int send_remove_xattr(struct send_ctx *sctx,
4405 struct fs_path *path,
4406 const char *name, int name_len)
4407 {
4408 int ret = 0;
4409
4410 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4411 if (ret < 0)
4412 goto out;
4413
4414 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4415 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4416
4417 ret = send_cmd(sctx);
4418
4419 tlv_put_failure:
4420 out:
4421 return ret;
4422 }
4423
4424 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4425 const char *name, int name_len,
4426 const char *data, int data_len,
4427 u8 type, void *ctx)
4428 {
4429 int ret;
4430 struct send_ctx *sctx = ctx;
4431 struct fs_path *p;
4432 struct posix_acl_xattr_header dummy_acl;
4433
4434 p = fs_path_alloc();
4435 if (!p)
4436 return -ENOMEM;
4437
4438 /*
4439 * This hack is needed because empty acls are stored as zero byte
4440 * data in xattrs. Problem with that is, that receiving these zero byte
4441 * acls will fail later. To fix this, we send a dummy acl list that
4442 * only contains the version number and no entries.
4443 */
4444 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4445 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4446 if (data_len == 0) {
4447 dummy_acl.a_version =
4448 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4449 data = (char *)&dummy_acl;
4450 data_len = sizeof(dummy_acl);
4451 }
4452 }
4453
4454 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4455 if (ret < 0)
4456 goto out;
4457
4458 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4459
4460 out:
4461 fs_path_free(p);
4462 return ret;
4463 }
4464
4465 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4466 const char *name, int name_len,
4467 const char *data, int data_len,
4468 u8 type, void *ctx)
4469 {
4470 int ret;
4471 struct send_ctx *sctx = ctx;
4472 struct fs_path *p;
4473
4474 p = fs_path_alloc();
4475 if (!p)
4476 return -ENOMEM;
4477
4478 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4479 if (ret < 0)
4480 goto out;
4481
4482 ret = send_remove_xattr(sctx, p, name, name_len);
4483
4484 out:
4485 fs_path_free(p);
4486 return ret;
4487 }
4488
4489 static int process_new_xattr(struct send_ctx *sctx)
4490 {
4491 int ret = 0;
4492
4493 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4494 __process_new_xattr, sctx);
4495
4496 return ret;
4497 }
4498
4499 static int process_deleted_xattr(struct send_ctx *sctx)
4500 {
4501 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4502 __process_deleted_xattr, sctx);
4503 }
4504
4505 struct find_xattr_ctx {
4506 const char *name;
4507 int name_len;
4508 int found_idx;
4509 char *found_data;
4510 int found_data_len;
4511 };
4512
4513 static int __find_xattr(int num, struct btrfs_key *di_key,
4514 const char *name, int name_len,
4515 const char *data, int data_len,
4516 u8 type, void *vctx)
4517 {
4518 struct find_xattr_ctx *ctx = vctx;
4519
4520 if (name_len == ctx->name_len &&
4521 strncmp(name, ctx->name, name_len) == 0) {
4522 ctx->found_idx = num;
4523 ctx->found_data_len = data_len;
4524 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4525 if (!ctx->found_data)
4526 return -ENOMEM;
4527 return 1;
4528 }
4529 return 0;
4530 }
4531
4532 static int find_xattr(struct btrfs_root *root,
4533 struct btrfs_path *path,
4534 struct btrfs_key *key,
4535 const char *name, int name_len,
4536 char **data, int *data_len)
4537 {
4538 int ret;
4539 struct find_xattr_ctx ctx;
4540
4541 ctx.name = name;
4542 ctx.name_len = name_len;
4543 ctx.found_idx = -1;
4544 ctx.found_data = NULL;
4545 ctx.found_data_len = 0;
4546
4547 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4548 if (ret < 0)
4549 return ret;
4550
4551 if (ctx.found_idx == -1)
4552 return -ENOENT;
4553 if (data) {
4554 *data = ctx.found_data;
4555 *data_len = ctx.found_data_len;
4556 } else {
4557 kfree(ctx.found_data);
4558 }
4559 return ctx.found_idx;
4560 }
4561
4562
4563 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4564 const char *name, int name_len,
4565 const char *data, int data_len,
4566 u8 type, void *ctx)
4567 {
4568 int ret;
4569 struct send_ctx *sctx = ctx;
4570 char *found_data = NULL;
4571 int found_data_len = 0;
4572
4573 ret = find_xattr(sctx->parent_root, sctx->right_path,
4574 sctx->cmp_key, name, name_len, &found_data,
4575 &found_data_len);
4576 if (ret == -ENOENT) {
4577 ret = __process_new_xattr(num, di_key, name, name_len, data,
4578 data_len, type, ctx);
4579 } else if (ret >= 0) {
4580 if (data_len != found_data_len ||
4581 memcmp(data, found_data, data_len)) {
4582 ret = __process_new_xattr(num, di_key, name, name_len,
4583 data, data_len, type, ctx);
4584 } else {
4585 ret = 0;
4586 }
4587 }
4588
4589 kfree(found_data);
4590 return ret;
4591 }
4592
4593 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4594 const char *name, int name_len,
4595 const char *data, int data_len,
4596 u8 type, void *ctx)
4597 {
4598 int ret;
4599 struct send_ctx *sctx = ctx;
4600
4601 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4602 name, name_len, NULL, NULL);
4603 if (ret == -ENOENT)
4604 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4605 data_len, type, ctx);
4606 else if (ret >= 0)
4607 ret = 0;
4608
4609 return ret;
4610 }
4611
4612 static int process_changed_xattr(struct send_ctx *sctx)
4613 {
4614 int ret = 0;
4615
4616 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4617 __process_changed_new_xattr, sctx);
4618 if (ret < 0)
4619 goto out;
4620 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4621 __process_changed_deleted_xattr, sctx);
4622
4623 out:
4624 return ret;
4625 }
4626
4627 static int process_all_new_xattrs(struct send_ctx *sctx)
4628 {
4629 int ret;
4630 struct btrfs_root *root;
4631 struct btrfs_path *path;
4632 struct btrfs_key key;
4633 struct btrfs_key found_key;
4634 struct extent_buffer *eb;
4635 int slot;
4636
4637 path = alloc_path_for_send();
4638 if (!path)
4639 return -ENOMEM;
4640
4641 root = sctx->send_root;
4642
4643 key.objectid = sctx->cmp_key->objectid;
4644 key.type = BTRFS_XATTR_ITEM_KEY;
4645 key.offset = 0;
4646 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4647 if (ret < 0)
4648 goto out;
4649
4650 while (1) {
4651 eb = path->nodes[0];
4652 slot = path->slots[0];
4653 if (slot >= btrfs_header_nritems(eb)) {
4654 ret = btrfs_next_leaf(root, path);
4655 if (ret < 0) {
4656 goto out;
4657 } else if (ret > 0) {
4658 ret = 0;
4659 break;
4660 }
4661 continue;
4662 }
4663
4664 btrfs_item_key_to_cpu(eb, &found_key, slot);
4665 if (found_key.objectid != key.objectid ||
4666 found_key.type != key.type) {
4667 ret = 0;
4668 goto out;
4669 }
4670
4671 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4672 if (ret < 0)
4673 goto out;
4674
4675 path->slots[0]++;
4676 }
4677
4678 out:
4679 btrfs_free_path(path);
4680 return ret;
4681 }
4682
4683 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4684 {
4685 struct btrfs_root *root = sctx->send_root;
4686 struct btrfs_fs_info *fs_info = root->fs_info;
4687 struct inode *inode;
4688 struct page *page;
4689 char *addr;
4690 struct btrfs_key key;
4691 pgoff_t index = offset >> PAGE_SHIFT;
4692 pgoff_t last_index;
4693 unsigned pg_offset = offset & ~PAGE_MASK;
4694 ssize_t ret = 0;
4695
4696 key.objectid = sctx->cur_ino;
4697 key.type = BTRFS_INODE_ITEM_KEY;
4698 key.offset = 0;
4699
4700 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4701 if (IS_ERR(inode))
4702 return PTR_ERR(inode);
4703
4704 if (offset + len > i_size_read(inode)) {
4705 if (offset > i_size_read(inode))
4706 len = 0;
4707 else
4708 len = offset - i_size_read(inode);
4709 }
4710 if (len == 0)
4711 goto out;
4712
4713 last_index = (offset + len - 1) >> PAGE_SHIFT;
4714
4715 /* initial readahead */
4716 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4717 file_ra_state_init(&sctx->ra, inode->i_mapping);
4718
4719 while (index <= last_index) {
4720 unsigned cur_len = min_t(unsigned, len,
4721 PAGE_SIZE - pg_offset);
4722
4723 page = find_lock_page(inode->i_mapping, index);
4724 if (!page) {
4725 page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4726 NULL, index, last_index + 1 - index);
4727
4728 page = find_or_create_page(inode->i_mapping, index,
4729 GFP_KERNEL);
4730 if (!page) {
4731 ret = -ENOMEM;
4732 break;
4733 }
4734 }
4735
4736 if (PageReadahead(page)) {
4737 page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4738 NULL, page, index, last_index + 1 - index);
4739 }
4740
4741 if (!PageUptodate(page)) {
4742 btrfs_readpage(NULL, page);
4743 lock_page(page);
4744 if (!PageUptodate(page)) {
4745 unlock_page(page);
4746 put_page(page);
4747 ret = -EIO;
4748 break;
4749 }
4750 }
4751
4752 addr = kmap(page);
4753 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4754 kunmap(page);
4755 unlock_page(page);
4756 put_page(page);
4757 index++;
4758 pg_offset = 0;
4759 len -= cur_len;
4760 ret += cur_len;
4761 }
4762 out:
4763 iput(inode);
4764 return ret;
4765 }
4766
4767 /*
4768 * Read some bytes from the current inode/file and send a write command to
4769 * user space.
4770 */
4771 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4772 {
4773 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4774 int ret = 0;
4775 struct fs_path *p;
4776 ssize_t num_read = 0;
4777
4778 p = fs_path_alloc();
4779 if (!p)
4780 return -ENOMEM;
4781
4782 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4783
4784 num_read = fill_read_buf(sctx, offset, len);
4785 if (num_read <= 0) {
4786 if (num_read < 0)
4787 ret = num_read;
4788 goto out;
4789 }
4790
4791 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4792 if (ret < 0)
4793 goto out;
4794
4795 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4796 if (ret < 0)
4797 goto out;
4798
4799 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4800 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4801 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4802
4803 ret = send_cmd(sctx);
4804
4805 tlv_put_failure:
4806 out:
4807 fs_path_free(p);
4808 if (ret < 0)
4809 return ret;
4810 return num_read;
4811 }
4812
4813 /*
4814 * Send a clone command to user space.
4815 */
4816 static int send_clone(struct send_ctx *sctx,
4817 u64 offset, u32 len,
4818 struct clone_root *clone_root)
4819 {
4820 int ret = 0;
4821 struct fs_path *p;
4822 u64 gen;
4823
4824 btrfs_debug(sctx->send_root->fs_info,
4825 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4826 offset, len, clone_root->root->objectid, clone_root->ino,
4827 clone_root->offset);
4828
4829 p = fs_path_alloc();
4830 if (!p)
4831 return -ENOMEM;
4832
4833 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4834 if (ret < 0)
4835 goto out;
4836
4837 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4838 if (ret < 0)
4839 goto out;
4840
4841 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4842 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4843 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4844
4845 if (clone_root->root == sctx->send_root) {
4846 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4847 &gen, NULL, NULL, NULL, NULL);
4848 if (ret < 0)
4849 goto out;
4850 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4851 } else {
4852 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4853 }
4854 if (ret < 0)
4855 goto out;
4856
4857 /*
4858 * If the parent we're using has a received_uuid set then use that as
4859 * our clone source as that is what we will look for when doing a
4860 * receive.
4861 *
4862 * This covers the case that we create a snapshot off of a received
4863 * subvolume and then use that as the parent and try to receive on a
4864 * different host.
4865 */
4866 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4867 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4868 clone_root->root->root_item.received_uuid);
4869 else
4870 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4871 clone_root->root->root_item.uuid);
4872 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4873 le64_to_cpu(clone_root->root->root_item.ctransid));
4874 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4875 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4876 clone_root->offset);
4877
4878 ret = send_cmd(sctx);
4879
4880 tlv_put_failure:
4881 out:
4882 fs_path_free(p);
4883 return ret;
4884 }
4885
4886 /*
4887 * Send an update extent command to user space.
4888 */
4889 static int send_update_extent(struct send_ctx *sctx,
4890 u64 offset, u32 len)
4891 {
4892 int ret = 0;
4893 struct fs_path *p;
4894
4895 p = fs_path_alloc();
4896 if (!p)
4897 return -ENOMEM;
4898
4899 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4900 if (ret < 0)
4901 goto out;
4902
4903 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4904 if (ret < 0)
4905 goto out;
4906
4907 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4908 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4909 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4910
4911 ret = send_cmd(sctx);
4912
4913 tlv_put_failure:
4914 out:
4915 fs_path_free(p);
4916 return ret;
4917 }
4918
4919 static int send_hole(struct send_ctx *sctx, u64 end)
4920 {
4921 struct fs_path *p = NULL;
4922 u64 offset = sctx->cur_inode_last_extent;
4923 u64 len;
4924 int ret = 0;
4925
4926 p = fs_path_alloc();
4927 if (!p)
4928 return -ENOMEM;
4929 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4930 if (ret < 0)
4931 goto tlv_put_failure;
4932 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4933 while (offset < end) {
4934 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4935
4936 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4937 if (ret < 0)
4938 break;
4939 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4940 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4941 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4942 ret = send_cmd(sctx);
4943 if (ret < 0)
4944 break;
4945 offset += len;
4946 }
4947 tlv_put_failure:
4948 fs_path_free(p);
4949 return ret;
4950 }
4951
4952 static int send_extent_data(struct send_ctx *sctx,
4953 const u64 offset,
4954 const u64 len)
4955 {
4956 u64 sent = 0;
4957
4958 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4959 return send_update_extent(sctx, offset, len);
4960
4961 while (sent < len) {
4962 u64 size = len - sent;
4963 int ret;
4964
4965 if (size > BTRFS_SEND_READ_SIZE)
4966 size = BTRFS_SEND_READ_SIZE;
4967 ret = send_write(sctx, offset + sent, size);
4968 if (ret < 0)
4969 return ret;
4970 if (!ret)
4971 break;
4972 sent += ret;
4973 }
4974 return 0;
4975 }
4976
4977 static int clone_range(struct send_ctx *sctx,
4978 struct clone_root *clone_root,
4979 const u64 disk_byte,
4980 u64 data_offset,
4981 u64 offset,
4982 u64 len)
4983 {
4984 struct btrfs_path *path;
4985 struct btrfs_key key;
4986 int ret;
4987
4988 /*
4989 * Prevent cloning from a zero offset with a length matching the sector
4990 * size because in some scenarios this will make the receiver fail.
4991 *
4992 * For example, if in the source filesystem the extent at offset 0
4993 * has a length of sectorsize and it was written using direct IO, then
4994 * it can never be an inline extent (even if compression is enabled).
4995 * Then this extent can be cloned in the original filesystem to a non
4996 * zero file offset, but it may not be possible to clone in the
4997 * destination filesystem because it can be inlined due to compression
4998 * on the destination filesystem (as the receiver's write operations are
4999 * always done using buffered IO). The same happens when the original
5000 * filesystem does not have compression enabled but the destination
5001 * filesystem has.
5002 */
5003 if (clone_root->offset == 0 &&
5004 len == sctx->send_root->fs_info->sectorsize)
5005 return send_extent_data(sctx, offset, len);
5006
5007 path = alloc_path_for_send();
5008 if (!path)
5009 return -ENOMEM;
5010
5011 /*
5012 * We can't send a clone operation for the entire range if we find
5013 * extent items in the respective range in the source file that
5014 * refer to different extents or if we find holes.
5015 * So check for that and do a mix of clone and regular write/copy
5016 * operations if needed.
5017 *
5018 * Example:
5019 *
5020 * mkfs.btrfs -f /dev/sda
5021 * mount /dev/sda /mnt
5022 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5023 * cp --reflink=always /mnt/foo /mnt/bar
5024 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5025 * btrfs subvolume snapshot -r /mnt /mnt/snap
5026 *
5027 * If when we send the snapshot and we are processing file bar (which
5028 * has a higher inode number than foo) we blindly send a clone operation
5029 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5030 * a file bar that matches the content of file foo - iow, doesn't match
5031 * the content from bar in the original filesystem.
5032 */
5033 key.objectid = clone_root->ino;
5034 key.type = BTRFS_EXTENT_DATA_KEY;
5035 key.offset = clone_root->offset;
5036 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5037 if (ret < 0)
5038 goto out;
5039 if (ret > 0 && path->slots[0] > 0) {
5040 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5041 if (key.objectid == clone_root->ino &&
5042 key.type == BTRFS_EXTENT_DATA_KEY)
5043 path->slots[0]--;
5044 }
5045
5046 while (true) {
5047 struct extent_buffer *leaf = path->nodes[0];
5048 int slot = path->slots[0];
5049 struct btrfs_file_extent_item *ei;
5050 u8 type;
5051 u64 ext_len;
5052 u64 clone_len;
5053
5054 if (slot >= btrfs_header_nritems(leaf)) {
5055 ret = btrfs_next_leaf(clone_root->root, path);
5056 if (ret < 0)
5057 goto out;
5058 else if (ret > 0)
5059 break;
5060 continue;
5061 }
5062
5063 btrfs_item_key_to_cpu(leaf, &key, slot);
5064
5065 /*
5066 * We might have an implicit trailing hole (NO_HOLES feature
5067 * enabled). We deal with it after leaving this loop.
5068 */
5069 if (key.objectid != clone_root->ino ||
5070 key.type != BTRFS_EXTENT_DATA_KEY)
5071 break;
5072
5073 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5074 type = btrfs_file_extent_type(leaf, ei);
5075 if (type == BTRFS_FILE_EXTENT_INLINE) {
5076 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5077 ext_len = PAGE_ALIGN(ext_len);
5078 } else {
5079 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5080 }
5081
5082 if (key.offset + ext_len <= clone_root->offset)
5083 goto next;
5084
5085 if (key.offset > clone_root->offset) {
5086 /* Implicit hole, NO_HOLES feature enabled. */
5087 u64 hole_len = key.offset - clone_root->offset;
5088
5089 if (hole_len > len)
5090 hole_len = len;
5091 ret = send_extent_data(sctx, offset, hole_len);
5092 if (ret < 0)
5093 goto out;
5094
5095 len -= hole_len;
5096 if (len == 0)
5097 break;
5098 offset += hole_len;
5099 clone_root->offset += hole_len;
5100 data_offset += hole_len;
5101 }
5102
5103 if (key.offset >= clone_root->offset + len)
5104 break;
5105
5106 clone_len = min_t(u64, ext_len, len);
5107
5108 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5109 btrfs_file_extent_offset(leaf, ei) == data_offset)
5110 ret = send_clone(sctx, offset, clone_len, clone_root);
5111 else
5112 ret = send_extent_data(sctx, offset, clone_len);
5113
5114 if (ret < 0)
5115 goto out;
5116
5117 len -= clone_len;
5118 if (len == 0)
5119 break;
5120 offset += clone_len;
5121 clone_root->offset += clone_len;
5122 data_offset += clone_len;
5123 next:
5124 path->slots[0]++;
5125 }
5126
5127 if (len > 0)
5128 ret = send_extent_data(sctx, offset, len);
5129 else
5130 ret = 0;
5131 out:
5132 btrfs_free_path(path);
5133 return ret;
5134 }
5135
5136 static int send_write_or_clone(struct send_ctx *sctx,
5137 struct btrfs_path *path,
5138 struct btrfs_key *key,
5139 struct clone_root *clone_root)
5140 {
5141 int ret = 0;
5142 struct btrfs_file_extent_item *ei;
5143 u64 offset = key->offset;
5144 u64 len;
5145 u8 type;
5146 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5147
5148 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5149 struct btrfs_file_extent_item);
5150 type = btrfs_file_extent_type(path->nodes[0], ei);
5151 if (type == BTRFS_FILE_EXTENT_INLINE) {
5152 len = btrfs_file_extent_inline_len(path->nodes[0],
5153 path->slots[0], ei);
5154 /*
5155 * it is possible the inline item won't cover the whole page,
5156 * but there may be items after this page. Make
5157 * sure to send the whole thing
5158 */
5159 len = PAGE_ALIGN(len);
5160 } else {
5161 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5162 }
5163
5164 if (offset + len > sctx->cur_inode_size)
5165 len = sctx->cur_inode_size - offset;
5166 if (len == 0) {
5167 ret = 0;
5168 goto out;
5169 }
5170
5171 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5172 u64 disk_byte;
5173 u64 data_offset;
5174
5175 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5176 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5177 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5178 offset, len);
5179 } else {
5180 ret = send_extent_data(sctx, offset, len);
5181 }
5182 out:
5183 return ret;
5184 }
5185
5186 static int is_extent_unchanged(struct send_ctx *sctx,
5187 struct btrfs_path *left_path,
5188 struct btrfs_key *ekey)
5189 {
5190 int ret = 0;
5191 struct btrfs_key key;
5192 struct btrfs_path *path = NULL;
5193 struct extent_buffer *eb;
5194 int slot;
5195 struct btrfs_key found_key;
5196 struct btrfs_file_extent_item *ei;
5197 u64 left_disknr;
5198 u64 right_disknr;
5199 u64 left_offset;
5200 u64 right_offset;
5201 u64 left_offset_fixed;
5202 u64 left_len;
5203 u64 right_len;
5204 u64 left_gen;
5205 u64 right_gen;
5206 u8 left_type;
5207 u8 right_type;
5208
5209 path = alloc_path_for_send();
5210 if (!path)
5211 return -ENOMEM;
5212
5213 eb = left_path->nodes[0];
5214 slot = left_path->slots[0];
5215 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5216 left_type = btrfs_file_extent_type(eb, ei);
5217
5218 if (left_type != BTRFS_FILE_EXTENT_REG) {
5219 ret = 0;
5220 goto out;
5221 }
5222 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5223 left_len = btrfs_file_extent_num_bytes(eb, ei);
5224 left_offset = btrfs_file_extent_offset(eb, ei);
5225 left_gen = btrfs_file_extent_generation(eb, ei);
5226
5227 /*
5228 * Following comments will refer to these graphics. L is the left
5229 * extents which we are checking at the moment. 1-8 are the right
5230 * extents that we iterate.
5231 *
5232 * |-----L-----|
5233 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5234 *
5235 * |-----L-----|
5236 * |--1--|-2b-|...(same as above)
5237 *
5238 * Alternative situation. Happens on files where extents got split.
5239 * |-----L-----|
5240 * |-----------7-----------|-6-|
5241 *
5242 * Alternative situation. Happens on files which got larger.
5243 * |-----L-----|
5244 * |-8-|
5245 * Nothing follows after 8.
5246 */
5247
5248 key.objectid = ekey->objectid;
5249 key.type = BTRFS_EXTENT_DATA_KEY;
5250 key.offset = ekey->offset;
5251 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5252 if (ret < 0)
5253 goto out;
5254 if (ret) {
5255 ret = 0;
5256 goto out;
5257 }
5258
5259 /*
5260 * Handle special case where the right side has no extents at all.
5261 */
5262 eb = path->nodes[0];
5263 slot = path->slots[0];
5264 btrfs_item_key_to_cpu(eb, &found_key, slot);
5265 if (found_key.objectid != key.objectid ||
5266 found_key.type != key.type) {
5267 /* If we're a hole then just pretend nothing changed */
5268 ret = (left_disknr) ? 0 : 1;
5269 goto out;
5270 }
5271
5272 /*
5273 * We're now on 2a, 2b or 7.
5274 */
5275 key = found_key;
5276 while (key.offset < ekey->offset + left_len) {
5277 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5278 right_type = btrfs_file_extent_type(eb, ei);
5279 if (right_type != BTRFS_FILE_EXTENT_REG &&
5280 right_type != BTRFS_FILE_EXTENT_INLINE) {
5281 ret = 0;
5282 goto out;
5283 }
5284
5285 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5286 right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5287 right_len = PAGE_ALIGN(right_len);
5288 } else {
5289 right_len = btrfs_file_extent_num_bytes(eb, ei);
5290 }
5291
5292 /*
5293 * Are we at extent 8? If yes, we know the extent is changed.
5294 * This may only happen on the first iteration.
5295 */
5296 if (found_key.offset + right_len <= ekey->offset) {
5297 /* If we're a hole just pretend nothing changed */
5298 ret = (left_disknr) ? 0 : 1;
5299 goto out;
5300 }
5301
5302 /*
5303 * We just wanted to see if when we have an inline extent, what
5304 * follows it is a regular extent (wanted to check the above
5305 * condition for inline extents too). This should normally not
5306 * happen but it's possible for example when we have an inline
5307 * compressed extent representing data with a size matching
5308 * the page size (currently the same as sector size).
5309 */
5310 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5311 ret = 0;
5312 goto out;
5313 }
5314
5315 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5316 right_offset = btrfs_file_extent_offset(eb, ei);
5317 right_gen = btrfs_file_extent_generation(eb, ei);
5318
5319 left_offset_fixed = left_offset;
5320 if (key.offset < ekey->offset) {
5321 /* Fix the right offset for 2a and 7. */
5322 right_offset += ekey->offset - key.offset;
5323 } else {
5324 /* Fix the left offset for all behind 2a and 2b */
5325 left_offset_fixed += key.offset - ekey->offset;
5326 }
5327
5328 /*
5329 * Check if we have the same extent.
5330 */
5331 if (left_disknr != right_disknr ||
5332 left_offset_fixed != right_offset ||
5333 left_gen != right_gen) {
5334 ret = 0;
5335 goto out;
5336 }
5337
5338 /*
5339 * Go to the next extent.
5340 */
5341 ret = btrfs_next_item(sctx->parent_root, path);
5342 if (ret < 0)
5343 goto out;
5344 if (!ret) {
5345 eb = path->nodes[0];
5346 slot = path->slots[0];
5347 btrfs_item_key_to_cpu(eb, &found_key, slot);
5348 }
5349 if (ret || found_key.objectid != key.objectid ||
5350 found_key.type != key.type) {
5351 key.offset += right_len;
5352 break;
5353 }
5354 if (found_key.offset != key.offset + right_len) {
5355 ret = 0;
5356 goto out;
5357 }
5358 key = found_key;
5359 }
5360
5361 /*
5362 * We're now behind the left extent (treat as unchanged) or at the end
5363 * of the right side (treat as changed).
5364 */
5365 if (key.offset >= ekey->offset + left_len)
5366 ret = 1;
5367 else
5368 ret = 0;
5369
5370
5371 out:
5372 btrfs_free_path(path);
5373 return ret;
5374 }
5375
5376 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5377 {
5378 struct btrfs_path *path;
5379 struct btrfs_root *root = sctx->send_root;
5380 struct btrfs_file_extent_item *fi;
5381 struct btrfs_key key;
5382 u64 extent_end;
5383 u8 type;
5384 int ret;
5385
5386 path = alloc_path_for_send();
5387 if (!path)
5388 return -ENOMEM;
5389
5390 sctx->cur_inode_last_extent = 0;
5391
5392 key.objectid = sctx->cur_ino;
5393 key.type = BTRFS_EXTENT_DATA_KEY;
5394 key.offset = offset;
5395 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5396 if (ret < 0)
5397 goto out;
5398 ret = 0;
5399 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5400 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5401 goto out;
5402
5403 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5404 struct btrfs_file_extent_item);
5405 type = btrfs_file_extent_type(path->nodes[0], fi);
5406 if (type == BTRFS_FILE_EXTENT_INLINE) {
5407 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5408 path->slots[0], fi);
5409 extent_end = ALIGN(key.offset + size,
5410 sctx->send_root->fs_info->sectorsize);
5411 } else {
5412 extent_end = key.offset +
5413 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5414 }
5415 sctx->cur_inode_last_extent = extent_end;
5416 out:
5417 btrfs_free_path(path);
5418 return ret;
5419 }
5420
5421 static int range_is_hole_in_parent(struct send_ctx *sctx,
5422 const u64 start,
5423 const u64 end)
5424 {
5425 struct btrfs_path *path;
5426 struct btrfs_key key;
5427 struct btrfs_root *root = sctx->parent_root;
5428 u64 search_start = start;
5429 int ret;
5430
5431 path = alloc_path_for_send();
5432 if (!path)
5433 return -ENOMEM;
5434
5435 key.objectid = sctx->cur_ino;
5436 key.type = BTRFS_EXTENT_DATA_KEY;
5437 key.offset = search_start;
5438 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5439 if (ret < 0)
5440 goto out;
5441 if (ret > 0 && path->slots[0] > 0)
5442 path->slots[0]--;
5443
5444 while (search_start < end) {
5445 struct extent_buffer *leaf = path->nodes[0];
5446 int slot = path->slots[0];
5447 struct btrfs_file_extent_item *fi;
5448 u64 extent_end;
5449
5450 if (slot >= btrfs_header_nritems(leaf)) {
5451 ret = btrfs_next_leaf(root, path);
5452 if (ret < 0)
5453 goto out;
5454 else if (ret > 0)
5455 break;
5456 continue;
5457 }
5458
5459 btrfs_item_key_to_cpu(leaf, &key, slot);
5460 if (key.objectid < sctx->cur_ino ||
5461 key.type < BTRFS_EXTENT_DATA_KEY)
5462 goto next;
5463 if (key.objectid > sctx->cur_ino ||
5464 key.type > BTRFS_EXTENT_DATA_KEY ||
5465 key.offset >= end)
5466 break;
5467
5468 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5469 if (btrfs_file_extent_type(leaf, fi) ==
5470 BTRFS_FILE_EXTENT_INLINE) {
5471 u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5472
5473 extent_end = ALIGN(key.offset + size,
5474 root->fs_info->sectorsize);
5475 } else {
5476 extent_end = key.offset +
5477 btrfs_file_extent_num_bytes(leaf, fi);
5478 }
5479 if (extent_end <= start)
5480 goto next;
5481 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5482 search_start = extent_end;
5483 goto next;
5484 }
5485 ret = 0;
5486 goto out;
5487 next:
5488 path->slots[0]++;
5489 }
5490 ret = 1;
5491 out:
5492 btrfs_free_path(path);
5493 return ret;
5494 }
5495
5496 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5497 struct btrfs_key *key)
5498 {
5499 struct btrfs_file_extent_item *fi;
5500 u64 extent_end;
5501 u8 type;
5502 int ret = 0;
5503
5504 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5505 return 0;
5506
5507 if (sctx->cur_inode_last_extent == (u64)-1) {
5508 ret = get_last_extent(sctx, key->offset - 1);
5509 if (ret)
5510 return ret;
5511 }
5512
5513 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5514 struct btrfs_file_extent_item);
5515 type = btrfs_file_extent_type(path->nodes[0], fi);
5516 if (type == BTRFS_FILE_EXTENT_INLINE) {
5517 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5518 path->slots[0], fi);
5519 extent_end = ALIGN(key->offset + size,
5520 sctx->send_root->fs_info->sectorsize);
5521 } else {
5522 extent_end = key->offset +
5523 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5524 }
5525
5526 if (path->slots[0] == 0 &&
5527 sctx->cur_inode_last_extent < key->offset) {
5528 /*
5529 * We might have skipped entire leafs that contained only
5530 * file extent items for our current inode. These leafs have
5531 * a generation number smaller (older) than the one in the
5532 * current leaf and the leaf our last extent came from, and
5533 * are located between these 2 leafs.
5534 */
5535 ret = get_last_extent(sctx, key->offset - 1);
5536 if (ret)
5537 return ret;
5538 }
5539
5540 if (sctx->cur_inode_last_extent < key->offset) {
5541 ret = range_is_hole_in_parent(sctx,
5542 sctx->cur_inode_last_extent,
5543 key->offset);
5544 if (ret < 0)
5545 return ret;
5546 else if (ret == 0)
5547 ret = send_hole(sctx, key->offset);
5548 else
5549 ret = 0;
5550 }
5551 sctx->cur_inode_last_extent = extent_end;
5552 return ret;
5553 }
5554
5555 static int process_extent(struct send_ctx *sctx,
5556 struct btrfs_path *path,
5557 struct btrfs_key *key)
5558 {
5559 struct clone_root *found_clone = NULL;
5560 int ret = 0;
5561
5562 if (S_ISLNK(sctx->cur_inode_mode))
5563 return 0;
5564
5565 if (sctx->parent_root && !sctx->cur_inode_new) {
5566 ret = is_extent_unchanged(sctx, path, key);
5567 if (ret < 0)
5568 goto out;
5569 if (ret) {
5570 ret = 0;
5571 goto out_hole;
5572 }
5573 } else {
5574 struct btrfs_file_extent_item *ei;
5575 u8 type;
5576
5577 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5578 struct btrfs_file_extent_item);
5579 type = btrfs_file_extent_type(path->nodes[0], ei);
5580 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5581 type == BTRFS_FILE_EXTENT_REG) {
5582 /*
5583 * The send spec does not have a prealloc command yet,
5584 * so just leave a hole for prealloc'ed extents until
5585 * we have enough commands queued up to justify rev'ing
5586 * the send spec.
5587 */
5588 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5589 ret = 0;
5590 goto out;
5591 }
5592
5593 /* Have a hole, just skip it. */
5594 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5595 ret = 0;
5596 goto out;
5597 }
5598 }
5599 }
5600
5601 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5602 sctx->cur_inode_size, &found_clone);
5603 if (ret != -ENOENT && ret < 0)
5604 goto out;
5605
5606 ret = send_write_or_clone(sctx, path, key, found_clone);
5607 if (ret)
5608 goto out;
5609 out_hole:
5610 ret = maybe_send_hole(sctx, path, key);
5611 out:
5612 return ret;
5613 }
5614
5615 static int process_all_extents(struct send_ctx *sctx)
5616 {
5617 int ret;
5618 struct btrfs_root *root;
5619 struct btrfs_path *path;
5620 struct btrfs_key key;
5621 struct btrfs_key found_key;
5622 struct extent_buffer *eb;
5623 int slot;
5624
5625 root = sctx->send_root;
5626 path = alloc_path_for_send();
5627 if (!path)
5628 return -ENOMEM;
5629
5630 key.objectid = sctx->cmp_key->objectid;
5631 key.type = BTRFS_EXTENT_DATA_KEY;
5632 key.offset = 0;
5633 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5634 if (ret < 0)
5635 goto out;
5636
5637 while (1) {
5638 eb = path->nodes[0];
5639 slot = path->slots[0];
5640
5641 if (slot >= btrfs_header_nritems(eb)) {
5642 ret = btrfs_next_leaf(root, path);
5643 if (ret < 0) {
5644 goto out;
5645 } else if (ret > 0) {
5646 ret = 0;
5647 break;
5648 }
5649 continue;
5650 }
5651
5652 btrfs_item_key_to_cpu(eb, &found_key, slot);
5653
5654 if (found_key.objectid != key.objectid ||
5655 found_key.type != key.type) {
5656 ret = 0;
5657 goto out;
5658 }
5659
5660 ret = process_extent(sctx, path, &found_key);
5661 if (ret < 0)
5662 goto out;
5663
5664 path->slots[0]++;
5665 }
5666
5667 out:
5668 btrfs_free_path(path);
5669 return ret;
5670 }
5671
5672 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5673 int *pending_move,
5674 int *refs_processed)
5675 {
5676 int ret = 0;
5677
5678 if (sctx->cur_ino == 0)
5679 goto out;
5680 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5681 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5682 goto out;
5683 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5684 goto out;
5685
5686 ret = process_recorded_refs(sctx, pending_move);
5687 if (ret < 0)
5688 goto out;
5689
5690 *refs_processed = 1;
5691 out:
5692 return ret;
5693 }
5694
5695 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5696 {
5697 int ret = 0;
5698 u64 left_mode;
5699 u64 left_uid;
5700 u64 left_gid;
5701 u64 right_mode;
5702 u64 right_uid;
5703 u64 right_gid;
5704 int need_chmod = 0;
5705 int need_chown = 0;
5706 int pending_move = 0;
5707 int refs_processed = 0;
5708
5709 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5710 &refs_processed);
5711 if (ret < 0)
5712 goto out;
5713
5714 /*
5715 * We have processed the refs and thus need to advance send_progress.
5716 * Now, calls to get_cur_xxx will take the updated refs of the current
5717 * inode into account.
5718 *
5719 * On the other hand, if our current inode is a directory and couldn't
5720 * be moved/renamed because its parent was renamed/moved too and it has
5721 * a higher inode number, we can only move/rename our current inode
5722 * after we moved/renamed its parent. Therefore in this case operate on
5723 * the old path (pre move/rename) of our current inode, and the
5724 * move/rename will be performed later.
5725 */
5726 if (refs_processed && !pending_move)
5727 sctx->send_progress = sctx->cur_ino + 1;
5728
5729 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5730 goto out;
5731 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5732 goto out;
5733
5734 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5735 &left_mode, &left_uid, &left_gid, NULL);
5736 if (ret < 0)
5737 goto out;
5738
5739 if (!sctx->parent_root || sctx->cur_inode_new) {
5740 need_chown = 1;
5741 if (!S_ISLNK(sctx->cur_inode_mode))
5742 need_chmod = 1;
5743 } else {
5744 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5745 NULL, NULL, &right_mode, &right_uid,
5746 &right_gid, NULL);
5747 if (ret < 0)
5748 goto out;
5749
5750 if (left_uid != right_uid || left_gid != right_gid)
5751 need_chown = 1;
5752 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5753 need_chmod = 1;
5754 }
5755
5756 if (S_ISREG(sctx->cur_inode_mode)) {
5757 if (need_send_hole(sctx)) {
5758 if (sctx->cur_inode_last_extent == (u64)-1 ||
5759 sctx->cur_inode_last_extent <
5760 sctx->cur_inode_size) {
5761 ret = get_last_extent(sctx, (u64)-1);
5762 if (ret)
5763 goto out;
5764 }
5765 if (sctx->cur_inode_last_extent <
5766 sctx->cur_inode_size) {
5767 ret = send_hole(sctx, sctx->cur_inode_size);
5768 if (ret)
5769 goto out;
5770 }
5771 }
5772 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5773 sctx->cur_inode_size);
5774 if (ret < 0)
5775 goto out;
5776 }
5777
5778 if (need_chown) {
5779 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5780 left_uid, left_gid);
5781 if (ret < 0)
5782 goto out;
5783 }
5784 if (need_chmod) {
5785 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5786 left_mode);
5787 if (ret < 0)
5788 goto out;
5789 }
5790
5791 /*
5792 * If other directory inodes depended on our current directory
5793 * inode's move/rename, now do their move/rename operations.
5794 */
5795 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5796 ret = apply_children_dir_moves(sctx);
5797 if (ret)
5798 goto out;
5799 /*
5800 * Need to send that every time, no matter if it actually
5801 * changed between the two trees as we have done changes to
5802 * the inode before. If our inode is a directory and it's
5803 * waiting to be moved/renamed, we will send its utimes when
5804 * it's moved/renamed, therefore we don't need to do it here.
5805 */
5806 sctx->send_progress = sctx->cur_ino + 1;
5807 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5808 if (ret < 0)
5809 goto out;
5810 }
5811
5812 out:
5813 return ret;
5814 }
5815
5816 static int changed_inode(struct send_ctx *sctx,
5817 enum btrfs_compare_tree_result result)
5818 {
5819 int ret = 0;
5820 struct btrfs_key *key = sctx->cmp_key;
5821 struct btrfs_inode_item *left_ii = NULL;
5822 struct btrfs_inode_item *right_ii = NULL;
5823 u64 left_gen = 0;
5824 u64 right_gen = 0;
5825
5826 sctx->cur_ino = key->objectid;
5827 sctx->cur_inode_new_gen = 0;
5828 sctx->cur_inode_last_extent = (u64)-1;
5829
5830 /*
5831 * Set send_progress to current inode. This will tell all get_cur_xxx
5832 * functions that the current inode's refs are not updated yet. Later,
5833 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5834 */
5835 sctx->send_progress = sctx->cur_ino;
5836
5837 if (result == BTRFS_COMPARE_TREE_NEW ||
5838 result == BTRFS_COMPARE_TREE_CHANGED) {
5839 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5840 sctx->left_path->slots[0],
5841 struct btrfs_inode_item);
5842 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5843 left_ii);
5844 } else {
5845 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5846 sctx->right_path->slots[0],
5847 struct btrfs_inode_item);
5848 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5849 right_ii);
5850 }
5851 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5852 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5853 sctx->right_path->slots[0],
5854 struct btrfs_inode_item);
5855
5856 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5857 right_ii);
5858
5859 /*
5860 * The cur_ino = root dir case is special here. We can't treat
5861 * the inode as deleted+reused because it would generate a
5862 * stream that tries to delete/mkdir the root dir.
5863 */
5864 if (left_gen != right_gen &&
5865 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5866 sctx->cur_inode_new_gen = 1;
5867 }
5868
5869 if (result == BTRFS_COMPARE_TREE_NEW) {
5870 sctx->cur_inode_gen = left_gen;
5871 sctx->cur_inode_new = 1;
5872 sctx->cur_inode_deleted = 0;
5873 sctx->cur_inode_size = btrfs_inode_size(
5874 sctx->left_path->nodes[0], left_ii);
5875 sctx->cur_inode_mode = btrfs_inode_mode(
5876 sctx->left_path->nodes[0], left_ii);
5877 sctx->cur_inode_rdev = btrfs_inode_rdev(
5878 sctx->left_path->nodes[0], left_ii);
5879 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5880 ret = send_create_inode_if_needed(sctx);
5881 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5882 sctx->cur_inode_gen = right_gen;
5883 sctx->cur_inode_new = 0;
5884 sctx->cur_inode_deleted = 1;
5885 sctx->cur_inode_size = btrfs_inode_size(
5886 sctx->right_path->nodes[0], right_ii);
5887 sctx->cur_inode_mode = btrfs_inode_mode(
5888 sctx->right_path->nodes[0], right_ii);
5889 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5890 /*
5891 * We need to do some special handling in case the inode was
5892 * reported as changed with a changed generation number. This
5893 * means that the original inode was deleted and new inode
5894 * reused the same inum. So we have to treat the old inode as
5895 * deleted and the new one as new.
5896 */
5897 if (sctx->cur_inode_new_gen) {
5898 /*
5899 * First, process the inode as if it was deleted.
5900 */
5901 sctx->cur_inode_gen = right_gen;
5902 sctx->cur_inode_new = 0;
5903 sctx->cur_inode_deleted = 1;
5904 sctx->cur_inode_size = btrfs_inode_size(
5905 sctx->right_path->nodes[0], right_ii);
5906 sctx->cur_inode_mode = btrfs_inode_mode(
5907 sctx->right_path->nodes[0], right_ii);
5908 ret = process_all_refs(sctx,
5909 BTRFS_COMPARE_TREE_DELETED);
5910 if (ret < 0)
5911 goto out;
5912
5913 /*
5914 * Now process the inode as if it was new.
5915 */
5916 sctx->cur_inode_gen = left_gen;
5917 sctx->cur_inode_new = 1;
5918 sctx->cur_inode_deleted = 0;
5919 sctx->cur_inode_size = btrfs_inode_size(
5920 sctx->left_path->nodes[0], left_ii);
5921 sctx->cur_inode_mode = btrfs_inode_mode(
5922 sctx->left_path->nodes[0], left_ii);
5923 sctx->cur_inode_rdev = btrfs_inode_rdev(
5924 sctx->left_path->nodes[0], left_ii);
5925 ret = send_create_inode_if_needed(sctx);
5926 if (ret < 0)
5927 goto out;
5928
5929 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5930 if (ret < 0)
5931 goto out;
5932 /*
5933 * Advance send_progress now as we did not get into
5934 * process_recorded_refs_if_needed in the new_gen case.
5935 */
5936 sctx->send_progress = sctx->cur_ino + 1;
5937
5938 /*
5939 * Now process all extents and xattrs of the inode as if
5940 * they were all new.
5941 */
5942 ret = process_all_extents(sctx);
5943 if (ret < 0)
5944 goto out;
5945 ret = process_all_new_xattrs(sctx);
5946 if (ret < 0)
5947 goto out;
5948 } else {
5949 sctx->cur_inode_gen = left_gen;
5950 sctx->cur_inode_new = 0;
5951 sctx->cur_inode_new_gen = 0;
5952 sctx->cur_inode_deleted = 0;
5953 sctx->cur_inode_size = btrfs_inode_size(
5954 sctx->left_path->nodes[0], left_ii);
5955 sctx->cur_inode_mode = btrfs_inode_mode(
5956 sctx->left_path->nodes[0], left_ii);
5957 }
5958 }
5959
5960 out:
5961 return ret;
5962 }
5963
5964 /*
5965 * We have to process new refs before deleted refs, but compare_trees gives us
5966 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5967 * first and later process them in process_recorded_refs.
5968 * For the cur_inode_new_gen case, we skip recording completely because
5969 * changed_inode did already initiate processing of refs. The reason for this is
5970 * that in this case, compare_tree actually compares the refs of 2 different
5971 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5972 * refs of the right tree as deleted and all refs of the left tree as new.
5973 */
5974 static int changed_ref(struct send_ctx *sctx,
5975 enum btrfs_compare_tree_result result)
5976 {
5977 int ret = 0;
5978
5979 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5980 inconsistent_snapshot_error(sctx, result, "reference");
5981 return -EIO;
5982 }
5983
5984 if (!sctx->cur_inode_new_gen &&
5985 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5986 if (result == BTRFS_COMPARE_TREE_NEW)
5987 ret = record_new_ref(sctx);
5988 else if (result == BTRFS_COMPARE_TREE_DELETED)
5989 ret = record_deleted_ref(sctx);
5990 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5991 ret = record_changed_ref(sctx);
5992 }
5993
5994 return ret;
5995 }
5996
5997 /*
5998 * Process new/deleted/changed xattrs. We skip processing in the
5999 * cur_inode_new_gen case because changed_inode did already initiate processing
6000 * of xattrs. The reason is the same as in changed_ref
6001 */
6002 static int changed_xattr(struct send_ctx *sctx,
6003 enum btrfs_compare_tree_result result)
6004 {
6005 int ret = 0;
6006
6007 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6008 inconsistent_snapshot_error(sctx, result, "xattr");
6009 return -EIO;
6010 }
6011
6012 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6013 if (result == BTRFS_COMPARE_TREE_NEW)
6014 ret = process_new_xattr(sctx);
6015 else if (result == BTRFS_COMPARE_TREE_DELETED)
6016 ret = process_deleted_xattr(sctx);
6017 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6018 ret = process_changed_xattr(sctx);
6019 }
6020
6021 return ret;
6022 }
6023
6024 /*
6025 * Process new/deleted/changed extents. We skip processing in the
6026 * cur_inode_new_gen case because changed_inode did already initiate processing
6027 * of extents. The reason is the same as in changed_ref
6028 */
6029 static int changed_extent(struct send_ctx *sctx,
6030 enum btrfs_compare_tree_result result)
6031 {
6032 int ret = 0;
6033
6034 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6035
6036 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6037 struct extent_buffer *leaf_l;
6038 struct extent_buffer *leaf_r;
6039 struct btrfs_file_extent_item *ei_l;
6040 struct btrfs_file_extent_item *ei_r;
6041
6042 leaf_l = sctx->left_path->nodes[0];
6043 leaf_r = sctx->right_path->nodes[0];
6044 ei_l = btrfs_item_ptr(leaf_l,
6045 sctx->left_path->slots[0],
6046 struct btrfs_file_extent_item);
6047 ei_r = btrfs_item_ptr(leaf_r,
6048 sctx->right_path->slots[0],
6049 struct btrfs_file_extent_item);
6050
6051 /*
6052 * We may have found an extent item that has changed
6053 * only its disk_bytenr field and the corresponding
6054 * inode item was not updated. This case happens due to
6055 * very specific timings during relocation when a leaf
6056 * that contains file extent items is COWed while
6057 * relocation is ongoing and its in the stage where it
6058 * updates data pointers. So when this happens we can
6059 * safely ignore it since we know it's the same extent,
6060 * but just at different logical and physical locations
6061 * (when an extent is fully replaced with a new one, we
6062 * know the generation number must have changed too,
6063 * since snapshot creation implies committing the current
6064 * transaction, and the inode item must have been updated
6065 * as well).
6066 * This replacement of the disk_bytenr happens at
6067 * relocation.c:replace_file_extents() through
6068 * relocation.c:btrfs_reloc_cow_block().
6069 */
6070 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6071 btrfs_file_extent_generation(leaf_r, ei_r) &&
6072 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6073 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6074 btrfs_file_extent_compression(leaf_l, ei_l) ==
6075 btrfs_file_extent_compression(leaf_r, ei_r) &&
6076 btrfs_file_extent_encryption(leaf_l, ei_l) ==
6077 btrfs_file_extent_encryption(leaf_r, ei_r) &&
6078 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6079 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6080 btrfs_file_extent_type(leaf_l, ei_l) ==
6081 btrfs_file_extent_type(leaf_r, ei_r) &&
6082 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6083 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6084 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6085 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6086 btrfs_file_extent_offset(leaf_l, ei_l) ==
6087 btrfs_file_extent_offset(leaf_r, ei_r) &&
6088 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6089 btrfs_file_extent_num_bytes(leaf_r, ei_r))
6090 return 0;
6091 }
6092
6093 inconsistent_snapshot_error(sctx, result, "extent");
6094 return -EIO;
6095 }
6096
6097 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6098 if (result != BTRFS_COMPARE_TREE_DELETED)
6099 ret = process_extent(sctx, sctx->left_path,
6100 sctx->cmp_key);
6101 }
6102
6103 return ret;
6104 }
6105
6106 static int dir_changed(struct send_ctx *sctx, u64 dir)
6107 {
6108 u64 orig_gen, new_gen;
6109 int ret;
6110
6111 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6112 NULL, NULL);
6113 if (ret)
6114 return ret;
6115
6116 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6117 NULL, NULL, NULL);
6118 if (ret)
6119 return ret;
6120
6121 return (orig_gen != new_gen) ? 1 : 0;
6122 }
6123
6124 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6125 struct btrfs_key *key)
6126 {
6127 struct btrfs_inode_extref *extref;
6128 struct extent_buffer *leaf;
6129 u64 dirid = 0, last_dirid = 0;
6130 unsigned long ptr;
6131 u32 item_size;
6132 u32 cur_offset = 0;
6133 int ref_name_len;
6134 int ret = 0;
6135
6136 /* Easy case, just check this one dirid */
6137 if (key->type == BTRFS_INODE_REF_KEY) {
6138 dirid = key->offset;
6139
6140 ret = dir_changed(sctx, dirid);
6141 goto out;
6142 }
6143
6144 leaf = path->nodes[0];
6145 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6146 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6147 while (cur_offset < item_size) {
6148 extref = (struct btrfs_inode_extref *)(ptr +
6149 cur_offset);
6150 dirid = btrfs_inode_extref_parent(leaf, extref);
6151 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6152 cur_offset += ref_name_len + sizeof(*extref);
6153 if (dirid == last_dirid)
6154 continue;
6155 ret = dir_changed(sctx, dirid);
6156 if (ret)
6157 break;
6158 last_dirid = dirid;
6159 }
6160 out:
6161 return ret;
6162 }
6163
6164 /*
6165 * Updates compare related fields in sctx and simply forwards to the actual
6166 * changed_xxx functions.
6167 */
6168 static int changed_cb(struct btrfs_path *left_path,
6169 struct btrfs_path *right_path,
6170 struct btrfs_key *key,
6171 enum btrfs_compare_tree_result result,
6172 void *ctx)
6173 {
6174 int ret = 0;
6175 struct send_ctx *sctx = ctx;
6176
6177 if (result == BTRFS_COMPARE_TREE_SAME) {
6178 if (key->type == BTRFS_INODE_REF_KEY ||
6179 key->type == BTRFS_INODE_EXTREF_KEY) {
6180 ret = compare_refs(sctx, left_path, key);
6181 if (!ret)
6182 return 0;
6183 if (ret < 0)
6184 return ret;
6185 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6186 return maybe_send_hole(sctx, left_path, key);
6187 } else {
6188 return 0;
6189 }
6190 result = BTRFS_COMPARE_TREE_CHANGED;
6191 ret = 0;
6192 }
6193
6194 sctx->left_path = left_path;
6195 sctx->right_path = right_path;
6196 sctx->cmp_key = key;
6197
6198 ret = finish_inode_if_needed(sctx, 0);
6199 if (ret < 0)
6200 goto out;
6201
6202 /* Ignore non-FS objects */
6203 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6204 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6205 goto out;
6206
6207 if (key->type == BTRFS_INODE_ITEM_KEY)
6208 ret = changed_inode(sctx, result);
6209 else if (key->type == BTRFS_INODE_REF_KEY ||
6210 key->type == BTRFS_INODE_EXTREF_KEY)
6211 ret = changed_ref(sctx, result);
6212 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6213 ret = changed_xattr(sctx, result);
6214 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6215 ret = changed_extent(sctx, result);
6216
6217 out:
6218 return ret;
6219 }
6220
6221 static int full_send_tree(struct send_ctx *sctx)
6222 {
6223 int ret;
6224 struct btrfs_root *send_root = sctx->send_root;
6225 struct btrfs_key key;
6226 struct btrfs_key found_key;
6227 struct btrfs_path *path;
6228 struct extent_buffer *eb;
6229 int slot;
6230
6231 path = alloc_path_for_send();
6232 if (!path)
6233 return -ENOMEM;
6234
6235 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6236 key.type = BTRFS_INODE_ITEM_KEY;
6237 key.offset = 0;
6238
6239 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6240 if (ret < 0)
6241 goto out;
6242 if (ret)
6243 goto out_finish;
6244
6245 while (1) {
6246 eb = path->nodes[0];
6247 slot = path->slots[0];
6248 btrfs_item_key_to_cpu(eb, &found_key, slot);
6249
6250 ret = changed_cb(path, NULL, &found_key,
6251 BTRFS_COMPARE_TREE_NEW, sctx);
6252 if (ret < 0)
6253 goto out;
6254
6255 key.objectid = found_key.objectid;
6256 key.type = found_key.type;
6257 key.offset = found_key.offset + 1;
6258
6259 ret = btrfs_next_item(send_root, path);
6260 if (ret < 0)
6261 goto out;
6262 if (ret) {
6263 ret = 0;
6264 break;
6265 }
6266 }
6267
6268 out_finish:
6269 ret = finish_inode_if_needed(sctx, 1);
6270
6271 out:
6272 btrfs_free_path(path);
6273 return ret;
6274 }
6275
6276 static int send_subvol(struct send_ctx *sctx)
6277 {
6278 int ret;
6279
6280 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6281 ret = send_header(sctx);
6282 if (ret < 0)
6283 goto out;
6284 }
6285
6286 ret = send_subvol_begin(sctx);
6287 if (ret < 0)
6288 goto out;
6289
6290 if (sctx->parent_root) {
6291 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6292 changed_cb, sctx);
6293 if (ret < 0)
6294 goto out;
6295 ret = finish_inode_if_needed(sctx, 1);
6296 if (ret < 0)
6297 goto out;
6298 } else {
6299 ret = full_send_tree(sctx);
6300 if (ret < 0)
6301 goto out;
6302 }
6303
6304 out:
6305 free_recorded_refs(sctx);
6306 return ret;
6307 }
6308
6309 /*
6310 * If orphan cleanup did remove any orphans from a root, it means the tree
6311 * was modified and therefore the commit root is not the same as the current
6312 * root anymore. This is a problem, because send uses the commit root and
6313 * therefore can see inode items that don't exist in the current root anymore,
6314 * and for example make calls to btrfs_iget, which will do tree lookups based
6315 * on the current root and not on the commit root. Those lookups will fail,
6316 * returning a -ESTALE error, and making send fail with that error. So make
6317 * sure a send does not see any orphans we have just removed, and that it will
6318 * see the same inodes regardless of whether a transaction commit happened
6319 * before it started (meaning that the commit root will be the same as the
6320 * current root) or not.
6321 */
6322 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6323 {
6324 int i;
6325 struct btrfs_trans_handle *trans = NULL;
6326
6327 again:
6328 if (sctx->parent_root &&
6329 sctx->parent_root->node != sctx->parent_root->commit_root)
6330 goto commit_trans;
6331
6332 for (i = 0; i < sctx->clone_roots_cnt; i++)
6333 if (sctx->clone_roots[i].root->node !=
6334 sctx->clone_roots[i].root->commit_root)
6335 goto commit_trans;
6336
6337 if (trans)
6338 return btrfs_end_transaction(trans);
6339
6340 return 0;
6341
6342 commit_trans:
6343 /* Use any root, all fs roots will get their commit roots updated. */
6344 if (!trans) {
6345 trans = btrfs_join_transaction(sctx->send_root);
6346 if (IS_ERR(trans))
6347 return PTR_ERR(trans);
6348 goto again;
6349 }
6350
6351 return btrfs_commit_transaction(trans);
6352 }
6353
6354 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6355 {
6356 spin_lock(&root->root_item_lock);
6357 root->send_in_progress--;
6358 /*
6359 * Not much left to do, we don't know why it's unbalanced and
6360 * can't blindly reset it to 0.
6361 */
6362 if (root->send_in_progress < 0)
6363 btrfs_err(root->fs_info,
6364 "send_in_progres unbalanced %d root %llu",
6365 root->send_in_progress, root->root_key.objectid);
6366 spin_unlock(&root->root_item_lock);
6367 }
6368
6369 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6370 {
6371 int ret = 0;
6372 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6373 struct btrfs_fs_info *fs_info = send_root->fs_info;
6374 struct btrfs_root *clone_root;
6375 struct btrfs_key key;
6376 struct send_ctx *sctx = NULL;
6377 u32 i;
6378 u64 *clone_sources_tmp = NULL;
6379 int clone_sources_to_rollback = 0;
6380 unsigned alloc_size;
6381 int sort_clone_roots = 0;
6382 int index;
6383
6384 if (!capable(CAP_SYS_ADMIN))
6385 return -EPERM;
6386
6387 /*
6388 * The subvolume must remain read-only during send, protect against
6389 * making it RW. This also protects against deletion.
6390 */
6391 spin_lock(&send_root->root_item_lock);
6392 send_root->send_in_progress++;
6393 spin_unlock(&send_root->root_item_lock);
6394
6395 /*
6396 * This is done when we lookup the root, it should already be complete
6397 * by the time we get here.
6398 */
6399 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6400
6401 /*
6402 * Userspace tools do the checks and warn the user if it's
6403 * not RO.
6404 */
6405 if (!btrfs_root_readonly(send_root)) {
6406 ret = -EPERM;
6407 goto out;
6408 }
6409
6410 /*
6411 * Check that we don't overflow at later allocations, we request
6412 * clone_sources_count + 1 items, and compare to unsigned long inside
6413 * access_ok.
6414 */
6415 if (arg->clone_sources_count >
6416 ULONG_MAX / sizeof(struct clone_root) - 1) {
6417 ret = -EINVAL;
6418 goto out;
6419 }
6420
6421 if (!access_ok(VERIFY_READ, arg->clone_sources,
6422 sizeof(*arg->clone_sources) *
6423 arg->clone_sources_count)) {
6424 ret = -EFAULT;
6425 goto out;
6426 }
6427
6428 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6429 ret = -EINVAL;
6430 goto out;
6431 }
6432
6433 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6434 if (!sctx) {
6435 ret = -ENOMEM;
6436 goto out;
6437 }
6438
6439 INIT_LIST_HEAD(&sctx->new_refs);
6440 INIT_LIST_HEAD(&sctx->deleted_refs);
6441 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6442 INIT_LIST_HEAD(&sctx->name_cache_list);
6443
6444 sctx->flags = arg->flags;
6445
6446 sctx->send_filp = fget(arg->send_fd);
6447 if (!sctx->send_filp) {
6448 ret = -EBADF;
6449 goto out;
6450 }
6451
6452 sctx->send_root = send_root;
6453 /*
6454 * Unlikely but possible, if the subvolume is marked for deletion but
6455 * is slow to remove the directory entry, send can still be started
6456 */
6457 if (btrfs_root_dead(sctx->send_root)) {
6458 ret = -EPERM;
6459 goto out;
6460 }
6461
6462 sctx->clone_roots_cnt = arg->clone_sources_count;
6463
6464 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6465 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6466 if (!sctx->send_buf) {
6467 ret = -ENOMEM;
6468 goto out;
6469 }
6470
6471 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6472 if (!sctx->read_buf) {
6473 ret = -ENOMEM;
6474 goto out;
6475 }
6476
6477 sctx->pending_dir_moves = RB_ROOT;
6478 sctx->waiting_dir_moves = RB_ROOT;
6479 sctx->orphan_dirs = RB_ROOT;
6480
6481 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6482
6483 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6484 if (!sctx->clone_roots) {
6485 ret = -ENOMEM;
6486 goto out;
6487 }
6488
6489 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6490
6491 if (arg->clone_sources_count) {
6492 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6493 if (!clone_sources_tmp) {
6494 ret = -ENOMEM;
6495 goto out;
6496 }
6497
6498 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6499 alloc_size);
6500 if (ret) {
6501 ret = -EFAULT;
6502 goto out;
6503 }
6504
6505 for (i = 0; i < arg->clone_sources_count; i++) {
6506 key.objectid = clone_sources_tmp[i];
6507 key.type = BTRFS_ROOT_ITEM_KEY;
6508 key.offset = (u64)-1;
6509
6510 index = srcu_read_lock(&fs_info->subvol_srcu);
6511
6512 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6513 if (IS_ERR(clone_root)) {
6514 srcu_read_unlock(&fs_info->subvol_srcu, index);
6515 ret = PTR_ERR(clone_root);
6516 goto out;
6517 }
6518 spin_lock(&clone_root->root_item_lock);
6519 if (!btrfs_root_readonly(clone_root) ||
6520 btrfs_root_dead(clone_root)) {
6521 spin_unlock(&clone_root->root_item_lock);
6522 srcu_read_unlock(&fs_info->subvol_srcu, index);
6523 ret = -EPERM;
6524 goto out;
6525 }
6526 clone_root->send_in_progress++;
6527 spin_unlock(&clone_root->root_item_lock);
6528 srcu_read_unlock(&fs_info->subvol_srcu, index);
6529
6530 sctx->clone_roots[i].root = clone_root;
6531 clone_sources_to_rollback = i + 1;
6532 }
6533 kvfree(clone_sources_tmp);
6534 clone_sources_tmp = NULL;
6535 }
6536
6537 if (arg->parent_root) {
6538 key.objectid = arg->parent_root;
6539 key.type = BTRFS_ROOT_ITEM_KEY;
6540 key.offset = (u64)-1;
6541
6542 index = srcu_read_lock(&fs_info->subvol_srcu);
6543
6544 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6545 if (IS_ERR(sctx->parent_root)) {
6546 srcu_read_unlock(&fs_info->subvol_srcu, index);
6547 ret = PTR_ERR(sctx->parent_root);
6548 goto out;
6549 }
6550
6551 spin_lock(&sctx->parent_root->root_item_lock);
6552 sctx->parent_root->send_in_progress++;
6553 if (!btrfs_root_readonly(sctx->parent_root) ||
6554 btrfs_root_dead(sctx->parent_root)) {
6555 spin_unlock(&sctx->parent_root->root_item_lock);
6556 srcu_read_unlock(&fs_info->subvol_srcu, index);
6557 ret = -EPERM;
6558 goto out;
6559 }
6560 spin_unlock(&sctx->parent_root->root_item_lock);
6561
6562 srcu_read_unlock(&fs_info->subvol_srcu, index);
6563 }
6564
6565 /*
6566 * Clones from send_root are allowed, but only if the clone source
6567 * is behind the current send position. This is checked while searching
6568 * for possible clone sources.
6569 */
6570 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6571
6572 /* We do a bsearch later */
6573 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6574 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6575 NULL);
6576 sort_clone_roots = 1;
6577
6578 ret = ensure_commit_roots_uptodate(sctx);
6579 if (ret)
6580 goto out;
6581
6582 current->journal_info = BTRFS_SEND_TRANS_STUB;
6583 ret = send_subvol(sctx);
6584 current->journal_info = NULL;
6585 if (ret < 0)
6586 goto out;
6587
6588 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6589 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6590 if (ret < 0)
6591 goto out;
6592 ret = send_cmd(sctx);
6593 if (ret < 0)
6594 goto out;
6595 }
6596
6597 out:
6598 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6599 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6600 struct rb_node *n;
6601 struct pending_dir_move *pm;
6602
6603 n = rb_first(&sctx->pending_dir_moves);
6604 pm = rb_entry(n, struct pending_dir_move, node);
6605 while (!list_empty(&pm->list)) {
6606 struct pending_dir_move *pm2;
6607
6608 pm2 = list_first_entry(&pm->list,
6609 struct pending_dir_move, list);
6610 free_pending_move(sctx, pm2);
6611 }
6612 free_pending_move(sctx, pm);
6613 }
6614
6615 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6616 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6617 struct rb_node *n;
6618 struct waiting_dir_move *dm;
6619
6620 n = rb_first(&sctx->waiting_dir_moves);
6621 dm = rb_entry(n, struct waiting_dir_move, node);
6622 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6623 kfree(dm);
6624 }
6625
6626 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6627 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6628 struct rb_node *n;
6629 struct orphan_dir_info *odi;
6630
6631 n = rb_first(&sctx->orphan_dirs);
6632 odi = rb_entry(n, struct orphan_dir_info, node);
6633 free_orphan_dir_info(sctx, odi);
6634 }
6635
6636 if (sort_clone_roots) {
6637 for (i = 0; i < sctx->clone_roots_cnt; i++)
6638 btrfs_root_dec_send_in_progress(
6639 sctx->clone_roots[i].root);
6640 } else {
6641 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6642 btrfs_root_dec_send_in_progress(
6643 sctx->clone_roots[i].root);
6644
6645 btrfs_root_dec_send_in_progress(send_root);
6646 }
6647 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6648 btrfs_root_dec_send_in_progress(sctx->parent_root);
6649
6650 kvfree(clone_sources_tmp);
6651
6652 if (sctx) {
6653 if (sctx->send_filp)
6654 fput(sctx->send_filp);
6655
6656 kvfree(sctx->clone_roots);
6657 kvfree(sctx->send_buf);
6658 kvfree(sctx->read_buf);
6659
6660 name_cache_free(sctx);
6661
6662 kfree(sctx);
6663 }
6664
6665 return ret;
6666 }