]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/send.c
Merge tag 'gvt-fixes-2017-12-06' of https://github.com/intel/gvt-linux into drm-intel...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / send.c
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 #include <linux/compat.h>
30
31 #include "send.h"
32 #include "backref.h"
33 #include "hash.h"
34 #include "locking.h"
35 #include "disk-io.h"
36 #include "btrfs_inode.h"
37 #include "transaction.h"
38 #include "compression.h"
39
40 /*
41 * A fs_path is a helper to dynamically build path names with unknown size.
42 * It reallocates the internal buffer on demand.
43 * It allows fast adding of path elements on the right side (normal path) and
44 * fast adding to the left side (reversed path). A reversed path can also be
45 * unreversed if needed.
46 */
47 struct fs_path {
48 union {
49 struct {
50 char *start;
51 char *end;
52
53 char *buf;
54 unsigned short buf_len:15;
55 unsigned short reversed:1;
56 char inline_buf[];
57 };
58 /*
59 * Average path length does not exceed 200 bytes, we'll have
60 * better packing in the slab and higher chance to satisfy
61 * a allocation later during send.
62 */
63 char pad[256];
64 };
65 };
66 #define FS_PATH_INLINE_SIZE \
67 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
68
69
70 /* reused for each extent */
71 struct clone_root {
72 struct btrfs_root *root;
73 u64 ino;
74 u64 offset;
75
76 u64 found_refs;
77 };
78
79 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
80 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
81
82 struct send_ctx {
83 struct file *send_filp;
84 loff_t send_off;
85 char *send_buf;
86 u32 send_size;
87 u32 send_max_size;
88 u64 total_send_size;
89 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
90 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
91
92 struct btrfs_root *send_root;
93 struct btrfs_root *parent_root;
94 struct clone_root *clone_roots;
95 int clone_roots_cnt;
96
97 /* current state of the compare_tree call */
98 struct btrfs_path *left_path;
99 struct btrfs_path *right_path;
100 struct btrfs_key *cmp_key;
101
102 /*
103 * infos of the currently processed inode. In case of deleted inodes,
104 * these are the values from the deleted inode.
105 */
106 u64 cur_ino;
107 u64 cur_inode_gen;
108 int cur_inode_new;
109 int cur_inode_new_gen;
110 int cur_inode_deleted;
111 u64 cur_inode_size;
112 u64 cur_inode_mode;
113 u64 cur_inode_rdev;
114 u64 cur_inode_last_extent;
115
116 u64 send_progress;
117
118 struct list_head new_refs;
119 struct list_head deleted_refs;
120
121 struct radix_tree_root name_cache;
122 struct list_head name_cache_list;
123 int name_cache_size;
124
125 struct file_ra_state ra;
126
127 char *read_buf;
128
129 /*
130 * We process inodes by their increasing order, so if before an
131 * incremental send we reverse the parent/child relationship of
132 * directories such that a directory with a lower inode number was
133 * the parent of a directory with a higher inode number, and the one
134 * becoming the new parent got renamed too, we can't rename/move the
135 * directory with lower inode number when we finish processing it - we
136 * must process the directory with higher inode number first, then
137 * rename/move it and then rename/move the directory with lower inode
138 * number. Example follows.
139 *
140 * Tree state when the first send was performed:
141 *
142 * .
143 * |-- a (ino 257)
144 * |-- b (ino 258)
145 * |
146 * |
147 * |-- c (ino 259)
148 * | |-- d (ino 260)
149 * |
150 * |-- c2 (ino 261)
151 *
152 * Tree state when the second (incremental) send is performed:
153 *
154 * .
155 * |-- a (ino 257)
156 * |-- b (ino 258)
157 * |-- c2 (ino 261)
158 * |-- d2 (ino 260)
159 * |-- cc (ino 259)
160 *
161 * The sequence of steps that lead to the second state was:
162 *
163 * mv /a/b/c/d /a/b/c2/d2
164 * mv /a/b/c /a/b/c2/d2/cc
165 *
166 * "c" has lower inode number, but we can't move it (2nd mv operation)
167 * before we move "d", which has higher inode number.
168 *
169 * So we just memorize which move/rename operations must be performed
170 * later when their respective parent is processed and moved/renamed.
171 */
172
173 /* Indexed by parent directory inode number. */
174 struct rb_root pending_dir_moves;
175
176 /*
177 * Reverse index, indexed by the inode number of a directory that
178 * is waiting for the move/rename of its immediate parent before its
179 * own move/rename can be performed.
180 */
181 struct rb_root waiting_dir_moves;
182
183 /*
184 * A directory that is going to be rm'ed might have a child directory
185 * which is in the pending directory moves index above. In this case,
186 * the directory can only be removed after the move/rename of its child
187 * is performed. Example:
188 *
189 * Parent snapshot:
190 *
191 * . (ino 256)
192 * |-- a/ (ino 257)
193 * |-- b/ (ino 258)
194 * |-- c/ (ino 259)
195 * | |-- x/ (ino 260)
196 * |
197 * |-- y/ (ino 261)
198 *
199 * Send snapshot:
200 *
201 * . (ino 256)
202 * |-- a/ (ino 257)
203 * |-- b/ (ino 258)
204 * |-- YY/ (ino 261)
205 * |-- x/ (ino 260)
206 *
207 * Sequence of steps that lead to the send snapshot:
208 * rm -f /a/b/c/foo.txt
209 * mv /a/b/y /a/b/YY
210 * mv /a/b/c/x /a/b/YY
211 * rmdir /a/b/c
212 *
213 * When the child is processed, its move/rename is delayed until its
214 * parent is processed (as explained above), but all other operations
215 * like update utimes, chown, chgrp, etc, are performed and the paths
216 * that it uses for those operations must use the orphanized name of
217 * its parent (the directory we're going to rm later), so we need to
218 * memorize that name.
219 *
220 * Indexed by the inode number of the directory to be deleted.
221 */
222 struct rb_root orphan_dirs;
223 };
224
225 struct pending_dir_move {
226 struct rb_node node;
227 struct list_head list;
228 u64 parent_ino;
229 u64 ino;
230 u64 gen;
231 struct list_head update_refs;
232 };
233
234 struct waiting_dir_move {
235 struct rb_node node;
236 u64 ino;
237 /*
238 * There might be some directory that could not be removed because it
239 * was waiting for this directory inode to be moved first. Therefore
240 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
241 */
242 u64 rmdir_ino;
243 bool orphanized;
244 };
245
246 struct orphan_dir_info {
247 struct rb_node node;
248 u64 ino;
249 u64 gen;
250 };
251
252 struct name_cache_entry {
253 struct list_head list;
254 /*
255 * radix_tree has only 32bit entries but we need to handle 64bit inums.
256 * We use the lower 32bit of the 64bit inum to store it in the tree. If
257 * more then one inum would fall into the same entry, we use radix_list
258 * to store the additional entries. radix_list is also used to store
259 * entries where two entries have the same inum but different
260 * generations.
261 */
262 struct list_head radix_list;
263 u64 ino;
264 u64 gen;
265 u64 parent_ino;
266 u64 parent_gen;
267 int ret;
268 int need_later_update;
269 int name_len;
270 char name[];
271 };
272
273 static void inconsistent_snapshot_error(struct send_ctx *sctx,
274 enum btrfs_compare_tree_result result,
275 const char *what)
276 {
277 const char *result_string;
278
279 switch (result) {
280 case BTRFS_COMPARE_TREE_NEW:
281 result_string = "new";
282 break;
283 case BTRFS_COMPARE_TREE_DELETED:
284 result_string = "deleted";
285 break;
286 case BTRFS_COMPARE_TREE_CHANGED:
287 result_string = "updated";
288 break;
289 case BTRFS_COMPARE_TREE_SAME:
290 ASSERT(0);
291 result_string = "unchanged";
292 break;
293 default:
294 ASSERT(0);
295 result_string = "unexpected";
296 }
297
298 btrfs_err(sctx->send_root->fs_info,
299 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
300 result_string, what, sctx->cmp_key->objectid,
301 sctx->send_root->root_key.objectid,
302 (sctx->parent_root ?
303 sctx->parent_root->root_key.objectid : 0));
304 }
305
306 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
307
308 static struct waiting_dir_move *
309 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
310
311 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
312
313 static int need_send_hole(struct send_ctx *sctx)
314 {
315 return (sctx->parent_root && !sctx->cur_inode_new &&
316 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
317 S_ISREG(sctx->cur_inode_mode));
318 }
319
320 static void fs_path_reset(struct fs_path *p)
321 {
322 if (p->reversed) {
323 p->start = p->buf + p->buf_len - 1;
324 p->end = p->start;
325 *p->start = 0;
326 } else {
327 p->start = p->buf;
328 p->end = p->start;
329 *p->start = 0;
330 }
331 }
332
333 static struct fs_path *fs_path_alloc(void)
334 {
335 struct fs_path *p;
336
337 p = kmalloc(sizeof(*p), GFP_KERNEL);
338 if (!p)
339 return NULL;
340 p->reversed = 0;
341 p->buf = p->inline_buf;
342 p->buf_len = FS_PATH_INLINE_SIZE;
343 fs_path_reset(p);
344 return p;
345 }
346
347 static struct fs_path *fs_path_alloc_reversed(void)
348 {
349 struct fs_path *p;
350
351 p = fs_path_alloc();
352 if (!p)
353 return NULL;
354 p->reversed = 1;
355 fs_path_reset(p);
356 return p;
357 }
358
359 static void fs_path_free(struct fs_path *p)
360 {
361 if (!p)
362 return;
363 if (p->buf != p->inline_buf)
364 kfree(p->buf);
365 kfree(p);
366 }
367
368 static int fs_path_len(struct fs_path *p)
369 {
370 return p->end - p->start;
371 }
372
373 static int fs_path_ensure_buf(struct fs_path *p, int len)
374 {
375 char *tmp_buf;
376 int path_len;
377 int old_buf_len;
378
379 len++;
380
381 if (p->buf_len >= len)
382 return 0;
383
384 if (len > PATH_MAX) {
385 WARN_ON(1);
386 return -ENOMEM;
387 }
388
389 path_len = p->end - p->start;
390 old_buf_len = p->buf_len;
391
392 /*
393 * First time the inline_buf does not suffice
394 */
395 if (p->buf == p->inline_buf) {
396 tmp_buf = kmalloc(len, GFP_KERNEL);
397 if (tmp_buf)
398 memcpy(tmp_buf, p->buf, old_buf_len);
399 } else {
400 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
401 }
402 if (!tmp_buf)
403 return -ENOMEM;
404 p->buf = tmp_buf;
405 /*
406 * The real size of the buffer is bigger, this will let the fast path
407 * happen most of the time
408 */
409 p->buf_len = ksize(p->buf);
410
411 if (p->reversed) {
412 tmp_buf = p->buf + old_buf_len - path_len - 1;
413 p->end = p->buf + p->buf_len - 1;
414 p->start = p->end - path_len;
415 memmove(p->start, tmp_buf, path_len + 1);
416 } else {
417 p->start = p->buf;
418 p->end = p->start + path_len;
419 }
420 return 0;
421 }
422
423 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
424 char **prepared)
425 {
426 int ret;
427 int new_len;
428
429 new_len = p->end - p->start + name_len;
430 if (p->start != p->end)
431 new_len++;
432 ret = fs_path_ensure_buf(p, new_len);
433 if (ret < 0)
434 goto out;
435
436 if (p->reversed) {
437 if (p->start != p->end)
438 *--p->start = '/';
439 p->start -= name_len;
440 *prepared = p->start;
441 } else {
442 if (p->start != p->end)
443 *p->end++ = '/';
444 *prepared = p->end;
445 p->end += name_len;
446 *p->end = 0;
447 }
448
449 out:
450 return ret;
451 }
452
453 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
454 {
455 int ret;
456 char *prepared;
457
458 ret = fs_path_prepare_for_add(p, name_len, &prepared);
459 if (ret < 0)
460 goto out;
461 memcpy(prepared, name, name_len);
462
463 out:
464 return ret;
465 }
466
467 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
468 {
469 int ret;
470 char *prepared;
471
472 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
473 if (ret < 0)
474 goto out;
475 memcpy(prepared, p2->start, p2->end - p2->start);
476
477 out:
478 return ret;
479 }
480
481 static int fs_path_add_from_extent_buffer(struct fs_path *p,
482 struct extent_buffer *eb,
483 unsigned long off, int len)
484 {
485 int ret;
486 char *prepared;
487
488 ret = fs_path_prepare_for_add(p, len, &prepared);
489 if (ret < 0)
490 goto out;
491
492 read_extent_buffer(eb, prepared, off, len);
493
494 out:
495 return ret;
496 }
497
498 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
499 {
500 int ret;
501
502 p->reversed = from->reversed;
503 fs_path_reset(p);
504
505 ret = fs_path_add_path(p, from);
506
507 return ret;
508 }
509
510
511 static void fs_path_unreverse(struct fs_path *p)
512 {
513 char *tmp;
514 int len;
515
516 if (!p->reversed)
517 return;
518
519 tmp = p->start;
520 len = p->end - p->start;
521 p->start = p->buf;
522 p->end = p->start + len;
523 memmove(p->start, tmp, len + 1);
524 p->reversed = 0;
525 }
526
527 static struct btrfs_path *alloc_path_for_send(void)
528 {
529 struct btrfs_path *path;
530
531 path = btrfs_alloc_path();
532 if (!path)
533 return NULL;
534 path->search_commit_root = 1;
535 path->skip_locking = 1;
536 path->need_commit_sem = 1;
537 return path;
538 }
539
540 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
541 {
542 int ret;
543 u32 pos = 0;
544
545 while (pos < len) {
546 ret = kernel_write(filp, buf + pos, len - pos, off);
547 /* TODO handle that correctly */
548 /*if (ret == -ERESTARTSYS) {
549 continue;
550 }*/
551 if (ret < 0)
552 return ret;
553 if (ret == 0) {
554 return -EIO;
555 }
556 pos += ret;
557 }
558
559 return 0;
560 }
561
562 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
563 {
564 struct btrfs_tlv_header *hdr;
565 int total_len = sizeof(*hdr) + len;
566 int left = sctx->send_max_size - sctx->send_size;
567
568 if (unlikely(left < total_len))
569 return -EOVERFLOW;
570
571 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
572 hdr->tlv_type = cpu_to_le16(attr);
573 hdr->tlv_len = cpu_to_le16(len);
574 memcpy(hdr + 1, data, len);
575 sctx->send_size += total_len;
576
577 return 0;
578 }
579
580 #define TLV_PUT_DEFINE_INT(bits) \
581 static int tlv_put_u##bits(struct send_ctx *sctx, \
582 u##bits attr, u##bits value) \
583 { \
584 __le##bits __tmp = cpu_to_le##bits(value); \
585 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
586 }
587
588 TLV_PUT_DEFINE_INT(64)
589
590 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
591 const char *str, int len)
592 {
593 if (len == -1)
594 len = strlen(str);
595 return tlv_put(sctx, attr, str, len);
596 }
597
598 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
599 const u8 *uuid)
600 {
601 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
602 }
603
604 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
605 struct extent_buffer *eb,
606 struct btrfs_timespec *ts)
607 {
608 struct btrfs_timespec bts;
609 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
610 return tlv_put(sctx, attr, &bts, sizeof(bts));
611 }
612
613
614 #define TLV_PUT(sctx, attrtype, attrlen, data) \
615 do { \
616 ret = tlv_put(sctx, attrtype, attrlen, data); \
617 if (ret < 0) \
618 goto tlv_put_failure; \
619 } while (0)
620
621 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
622 do { \
623 ret = tlv_put_u##bits(sctx, attrtype, value); \
624 if (ret < 0) \
625 goto tlv_put_failure; \
626 } while (0)
627
628 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
629 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
630 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
631 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
632 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
633 do { \
634 ret = tlv_put_string(sctx, attrtype, str, len); \
635 if (ret < 0) \
636 goto tlv_put_failure; \
637 } while (0)
638 #define TLV_PUT_PATH(sctx, attrtype, p) \
639 do { \
640 ret = tlv_put_string(sctx, attrtype, p->start, \
641 p->end - p->start); \
642 if (ret < 0) \
643 goto tlv_put_failure; \
644 } while(0)
645 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
646 do { \
647 ret = tlv_put_uuid(sctx, attrtype, uuid); \
648 if (ret < 0) \
649 goto tlv_put_failure; \
650 } while (0)
651 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
652 do { \
653 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
654 if (ret < 0) \
655 goto tlv_put_failure; \
656 } while (0)
657
658 static int send_header(struct send_ctx *sctx)
659 {
660 struct btrfs_stream_header hdr;
661
662 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
663 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
664
665 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
666 &sctx->send_off);
667 }
668
669 /*
670 * For each command/item we want to send to userspace, we call this function.
671 */
672 static int begin_cmd(struct send_ctx *sctx, int cmd)
673 {
674 struct btrfs_cmd_header *hdr;
675
676 if (WARN_ON(!sctx->send_buf))
677 return -EINVAL;
678
679 BUG_ON(sctx->send_size);
680
681 sctx->send_size += sizeof(*hdr);
682 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
683 hdr->cmd = cpu_to_le16(cmd);
684
685 return 0;
686 }
687
688 static int send_cmd(struct send_ctx *sctx)
689 {
690 int ret;
691 struct btrfs_cmd_header *hdr;
692 u32 crc;
693
694 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
695 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
696 hdr->crc = 0;
697
698 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
699 hdr->crc = cpu_to_le32(crc);
700
701 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
702 &sctx->send_off);
703
704 sctx->total_send_size += sctx->send_size;
705 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
706 sctx->send_size = 0;
707
708 return ret;
709 }
710
711 /*
712 * Sends a move instruction to user space
713 */
714 static int send_rename(struct send_ctx *sctx,
715 struct fs_path *from, struct fs_path *to)
716 {
717 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
718 int ret;
719
720 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
721
722 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
723 if (ret < 0)
724 goto out;
725
726 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
727 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
728
729 ret = send_cmd(sctx);
730
731 tlv_put_failure:
732 out:
733 return ret;
734 }
735
736 /*
737 * Sends a link instruction to user space
738 */
739 static int send_link(struct send_ctx *sctx,
740 struct fs_path *path, struct fs_path *lnk)
741 {
742 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
743 int ret;
744
745 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
746
747 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
748 if (ret < 0)
749 goto out;
750
751 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
753
754 ret = send_cmd(sctx);
755
756 tlv_put_failure:
757 out:
758 return ret;
759 }
760
761 /*
762 * Sends an unlink instruction to user space
763 */
764 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
765 {
766 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
767 int ret;
768
769 btrfs_debug(fs_info, "send_unlink %s", path->start);
770
771 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
772 if (ret < 0)
773 goto out;
774
775 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
776
777 ret = send_cmd(sctx);
778
779 tlv_put_failure:
780 out:
781 return ret;
782 }
783
784 /*
785 * Sends a rmdir instruction to user space
786 */
787 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
788 {
789 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
790 int ret;
791
792 btrfs_debug(fs_info, "send_rmdir %s", path->start);
793
794 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
795 if (ret < 0)
796 goto out;
797
798 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
799
800 ret = send_cmd(sctx);
801
802 tlv_put_failure:
803 out:
804 return ret;
805 }
806
807 /*
808 * Helper function to retrieve some fields from an inode item.
809 */
810 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
811 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
812 u64 *gid, u64 *rdev)
813 {
814 int ret;
815 struct btrfs_inode_item *ii;
816 struct btrfs_key key;
817
818 key.objectid = ino;
819 key.type = BTRFS_INODE_ITEM_KEY;
820 key.offset = 0;
821 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
822 if (ret) {
823 if (ret > 0)
824 ret = -ENOENT;
825 return ret;
826 }
827
828 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
829 struct btrfs_inode_item);
830 if (size)
831 *size = btrfs_inode_size(path->nodes[0], ii);
832 if (gen)
833 *gen = btrfs_inode_generation(path->nodes[0], ii);
834 if (mode)
835 *mode = btrfs_inode_mode(path->nodes[0], ii);
836 if (uid)
837 *uid = btrfs_inode_uid(path->nodes[0], ii);
838 if (gid)
839 *gid = btrfs_inode_gid(path->nodes[0], ii);
840 if (rdev)
841 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
842
843 return ret;
844 }
845
846 static int get_inode_info(struct btrfs_root *root,
847 u64 ino, u64 *size, u64 *gen,
848 u64 *mode, u64 *uid, u64 *gid,
849 u64 *rdev)
850 {
851 struct btrfs_path *path;
852 int ret;
853
854 path = alloc_path_for_send();
855 if (!path)
856 return -ENOMEM;
857 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
858 rdev);
859 btrfs_free_path(path);
860 return ret;
861 }
862
863 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
864 struct fs_path *p,
865 void *ctx);
866
867 /*
868 * Helper function to iterate the entries in ONE btrfs_inode_ref or
869 * btrfs_inode_extref.
870 * The iterate callback may return a non zero value to stop iteration. This can
871 * be a negative value for error codes or 1 to simply stop it.
872 *
873 * path must point to the INODE_REF or INODE_EXTREF when called.
874 */
875 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
876 struct btrfs_key *found_key, int resolve,
877 iterate_inode_ref_t iterate, void *ctx)
878 {
879 struct extent_buffer *eb = path->nodes[0];
880 struct btrfs_item *item;
881 struct btrfs_inode_ref *iref;
882 struct btrfs_inode_extref *extref;
883 struct btrfs_path *tmp_path;
884 struct fs_path *p;
885 u32 cur = 0;
886 u32 total;
887 int slot = path->slots[0];
888 u32 name_len;
889 char *start;
890 int ret = 0;
891 int num = 0;
892 int index;
893 u64 dir;
894 unsigned long name_off;
895 unsigned long elem_size;
896 unsigned long ptr;
897
898 p = fs_path_alloc_reversed();
899 if (!p)
900 return -ENOMEM;
901
902 tmp_path = alloc_path_for_send();
903 if (!tmp_path) {
904 fs_path_free(p);
905 return -ENOMEM;
906 }
907
908
909 if (found_key->type == BTRFS_INODE_REF_KEY) {
910 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
911 struct btrfs_inode_ref);
912 item = btrfs_item_nr(slot);
913 total = btrfs_item_size(eb, item);
914 elem_size = sizeof(*iref);
915 } else {
916 ptr = btrfs_item_ptr_offset(eb, slot);
917 total = btrfs_item_size_nr(eb, slot);
918 elem_size = sizeof(*extref);
919 }
920
921 while (cur < total) {
922 fs_path_reset(p);
923
924 if (found_key->type == BTRFS_INODE_REF_KEY) {
925 iref = (struct btrfs_inode_ref *)(ptr + cur);
926 name_len = btrfs_inode_ref_name_len(eb, iref);
927 name_off = (unsigned long)(iref + 1);
928 index = btrfs_inode_ref_index(eb, iref);
929 dir = found_key->offset;
930 } else {
931 extref = (struct btrfs_inode_extref *)(ptr + cur);
932 name_len = btrfs_inode_extref_name_len(eb, extref);
933 name_off = (unsigned long)&extref->name;
934 index = btrfs_inode_extref_index(eb, extref);
935 dir = btrfs_inode_extref_parent(eb, extref);
936 }
937
938 if (resolve) {
939 start = btrfs_ref_to_path(root, tmp_path, name_len,
940 name_off, eb, dir,
941 p->buf, p->buf_len);
942 if (IS_ERR(start)) {
943 ret = PTR_ERR(start);
944 goto out;
945 }
946 if (start < p->buf) {
947 /* overflow , try again with larger buffer */
948 ret = fs_path_ensure_buf(p,
949 p->buf_len + p->buf - start);
950 if (ret < 0)
951 goto out;
952 start = btrfs_ref_to_path(root, tmp_path,
953 name_len, name_off,
954 eb, dir,
955 p->buf, p->buf_len);
956 if (IS_ERR(start)) {
957 ret = PTR_ERR(start);
958 goto out;
959 }
960 BUG_ON(start < p->buf);
961 }
962 p->start = start;
963 } else {
964 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
965 name_len);
966 if (ret < 0)
967 goto out;
968 }
969
970 cur += elem_size + name_len;
971 ret = iterate(num, dir, index, p, ctx);
972 if (ret)
973 goto out;
974 num++;
975 }
976
977 out:
978 btrfs_free_path(tmp_path);
979 fs_path_free(p);
980 return ret;
981 }
982
983 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
984 const char *name, int name_len,
985 const char *data, int data_len,
986 u8 type, void *ctx);
987
988 /*
989 * Helper function to iterate the entries in ONE btrfs_dir_item.
990 * The iterate callback may return a non zero value to stop iteration. This can
991 * be a negative value for error codes or 1 to simply stop it.
992 *
993 * path must point to the dir item when called.
994 */
995 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
996 iterate_dir_item_t iterate, void *ctx)
997 {
998 int ret = 0;
999 struct extent_buffer *eb;
1000 struct btrfs_item *item;
1001 struct btrfs_dir_item *di;
1002 struct btrfs_key di_key;
1003 char *buf = NULL;
1004 int buf_len;
1005 u32 name_len;
1006 u32 data_len;
1007 u32 cur;
1008 u32 len;
1009 u32 total;
1010 int slot;
1011 int num;
1012 u8 type;
1013
1014 /*
1015 * Start with a small buffer (1 page). If later we end up needing more
1016 * space, which can happen for xattrs on a fs with a leaf size greater
1017 * then the page size, attempt to increase the buffer. Typically xattr
1018 * values are small.
1019 */
1020 buf_len = PATH_MAX;
1021 buf = kmalloc(buf_len, GFP_KERNEL);
1022 if (!buf) {
1023 ret = -ENOMEM;
1024 goto out;
1025 }
1026
1027 eb = path->nodes[0];
1028 slot = path->slots[0];
1029 item = btrfs_item_nr(slot);
1030 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1031 cur = 0;
1032 len = 0;
1033 total = btrfs_item_size(eb, item);
1034
1035 num = 0;
1036 while (cur < total) {
1037 name_len = btrfs_dir_name_len(eb, di);
1038 data_len = btrfs_dir_data_len(eb, di);
1039 type = btrfs_dir_type(eb, di);
1040 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1041
1042 if (type == BTRFS_FT_XATTR) {
1043 if (name_len > XATTR_NAME_MAX) {
1044 ret = -ENAMETOOLONG;
1045 goto out;
1046 }
1047 if (name_len + data_len >
1048 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1049 ret = -E2BIG;
1050 goto out;
1051 }
1052 } else {
1053 /*
1054 * Path too long
1055 */
1056 if (name_len + data_len > PATH_MAX) {
1057 ret = -ENAMETOOLONG;
1058 goto out;
1059 }
1060 }
1061
1062 ret = btrfs_is_name_len_valid(eb, path->slots[0],
1063 (unsigned long)(di + 1), name_len + data_len);
1064 if (!ret) {
1065 ret = -EIO;
1066 goto out;
1067 }
1068 if (name_len + data_len > buf_len) {
1069 buf_len = name_len + data_len;
1070 if (is_vmalloc_addr(buf)) {
1071 vfree(buf);
1072 buf = NULL;
1073 } else {
1074 char *tmp = krealloc(buf, buf_len,
1075 GFP_KERNEL | __GFP_NOWARN);
1076
1077 if (!tmp)
1078 kfree(buf);
1079 buf = tmp;
1080 }
1081 if (!buf) {
1082 buf = kvmalloc(buf_len, GFP_KERNEL);
1083 if (!buf) {
1084 ret = -ENOMEM;
1085 goto out;
1086 }
1087 }
1088 }
1089
1090 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1091 name_len + data_len);
1092
1093 len = sizeof(*di) + name_len + data_len;
1094 di = (struct btrfs_dir_item *)((char *)di + len);
1095 cur += len;
1096
1097 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1098 data_len, type, ctx);
1099 if (ret < 0)
1100 goto out;
1101 if (ret) {
1102 ret = 0;
1103 goto out;
1104 }
1105
1106 num++;
1107 }
1108
1109 out:
1110 kvfree(buf);
1111 return ret;
1112 }
1113
1114 static int __copy_first_ref(int num, u64 dir, int index,
1115 struct fs_path *p, void *ctx)
1116 {
1117 int ret;
1118 struct fs_path *pt = ctx;
1119
1120 ret = fs_path_copy(pt, p);
1121 if (ret < 0)
1122 return ret;
1123
1124 /* we want the first only */
1125 return 1;
1126 }
1127
1128 /*
1129 * Retrieve the first path of an inode. If an inode has more then one
1130 * ref/hardlink, this is ignored.
1131 */
1132 static int get_inode_path(struct btrfs_root *root,
1133 u64 ino, struct fs_path *path)
1134 {
1135 int ret;
1136 struct btrfs_key key, found_key;
1137 struct btrfs_path *p;
1138
1139 p = alloc_path_for_send();
1140 if (!p)
1141 return -ENOMEM;
1142
1143 fs_path_reset(path);
1144
1145 key.objectid = ino;
1146 key.type = BTRFS_INODE_REF_KEY;
1147 key.offset = 0;
1148
1149 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1150 if (ret < 0)
1151 goto out;
1152 if (ret) {
1153 ret = 1;
1154 goto out;
1155 }
1156 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1157 if (found_key.objectid != ino ||
1158 (found_key.type != BTRFS_INODE_REF_KEY &&
1159 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1160 ret = -ENOENT;
1161 goto out;
1162 }
1163
1164 ret = iterate_inode_ref(root, p, &found_key, 1,
1165 __copy_first_ref, path);
1166 if (ret < 0)
1167 goto out;
1168 ret = 0;
1169
1170 out:
1171 btrfs_free_path(p);
1172 return ret;
1173 }
1174
1175 struct backref_ctx {
1176 struct send_ctx *sctx;
1177
1178 struct btrfs_path *path;
1179 /* number of total found references */
1180 u64 found;
1181
1182 /*
1183 * used for clones found in send_root. clones found behind cur_objectid
1184 * and cur_offset are not considered as allowed clones.
1185 */
1186 u64 cur_objectid;
1187 u64 cur_offset;
1188
1189 /* may be truncated in case it's the last extent in a file */
1190 u64 extent_len;
1191
1192 /* data offset in the file extent item */
1193 u64 data_offset;
1194
1195 /* Just to check for bugs in backref resolving */
1196 int found_itself;
1197 };
1198
1199 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1200 {
1201 u64 root = (u64)(uintptr_t)key;
1202 struct clone_root *cr = (struct clone_root *)elt;
1203
1204 if (root < cr->root->objectid)
1205 return -1;
1206 if (root > cr->root->objectid)
1207 return 1;
1208 return 0;
1209 }
1210
1211 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1212 {
1213 struct clone_root *cr1 = (struct clone_root *)e1;
1214 struct clone_root *cr2 = (struct clone_root *)e2;
1215
1216 if (cr1->root->objectid < cr2->root->objectid)
1217 return -1;
1218 if (cr1->root->objectid > cr2->root->objectid)
1219 return 1;
1220 return 0;
1221 }
1222
1223 /*
1224 * Called for every backref that is found for the current extent.
1225 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1226 */
1227 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1228 {
1229 struct backref_ctx *bctx = ctx_;
1230 struct clone_root *found;
1231 int ret;
1232 u64 i_size;
1233
1234 /* First check if the root is in the list of accepted clone sources */
1235 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1236 bctx->sctx->clone_roots_cnt,
1237 sizeof(struct clone_root),
1238 __clone_root_cmp_bsearch);
1239 if (!found)
1240 return 0;
1241
1242 if (found->root == bctx->sctx->send_root &&
1243 ino == bctx->cur_objectid &&
1244 offset == bctx->cur_offset) {
1245 bctx->found_itself = 1;
1246 }
1247
1248 /*
1249 * There are inodes that have extents that lie behind its i_size. Don't
1250 * accept clones from these extents.
1251 */
1252 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1253 NULL, NULL, NULL);
1254 btrfs_release_path(bctx->path);
1255 if (ret < 0)
1256 return ret;
1257
1258 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1259 return 0;
1260
1261 /*
1262 * Make sure we don't consider clones from send_root that are
1263 * behind the current inode/offset.
1264 */
1265 if (found->root == bctx->sctx->send_root) {
1266 /*
1267 * TODO for the moment we don't accept clones from the inode
1268 * that is currently send. We may change this when
1269 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1270 * file.
1271 */
1272 if (ino >= bctx->cur_objectid)
1273 return 0;
1274 }
1275
1276 bctx->found++;
1277 found->found_refs++;
1278 if (ino < found->ino) {
1279 found->ino = ino;
1280 found->offset = offset;
1281 } else if (found->ino == ino) {
1282 /*
1283 * same extent found more then once in the same file.
1284 */
1285 if (found->offset > offset + bctx->extent_len)
1286 found->offset = offset;
1287 }
1288
1289 return 0;
1290 }
1291
1292 /*
1293 * Given an inode, offset and extent item, it finds a good clone for a clone
1294 * instruction. Returns -ENOENT when none could be found. The function makes
1295 * sure that the returned clone is usable at the point where sending is at the
1296 * moment. This means, that no clones are accepted which lie behind the current
1297 * inode+offset.
1298 *
1299 * path must point to the extent item when called.
1300 */
1301 static int find_extent_clone(struct send_ctx *sctx,
1302 struct btrfs_path *path,
1303 u64 ino, u64 data_offset,
1304 u64 ino_size,
1305 struct clone_root **found)
1306 {
1307 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1308 int ret;
1309 int extent_type;
1310 u64 logical;
1311 u64 disk_byte;
1312 u64 num_bytes;
1313 u64 extent_item_pos;
1314 u64 flags = 0;
1315 struct btrfs_file_extent_item *fi;
1316 struct extent_buffer *eb = path->nodes[0];
1317 struct backref_ctx *backref_ctx = NULL;
1318 struct clone_root *cur_clone_root;
1319 struct btrfs_key found_key;
1320 struct btrfs_path *tmp_path;
1321 int compressed;
1322 u32 i;
1323
1324 tmp_path = alloc_path_for_send();
1325 if (!tmp_path)
1326 return -ENOMEM;
1327
1328 /* We only use this path under the commit sem */
1329 tmp_path->need_commit_sem = 0;
1330
1331 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1332 if (!backref_ctx) {
1333 ret = -ENOMEM;
1334 goto out;
1335 }
1336
1337 backref_ctx->path = tmp_path;
1338
1339 if (data_offset >= ino_size) {
1340 /*
1341 * There may be extents that lie behind the file's size.
1342 * I at least had this in combination with snapshotting while
1343 * writing large files.
1344 */
1345 ret = 0;
1346 goto out;
1347 }
1348
1349 fi = btrfs_item_ptr(eb, path->slots[0],
1350 struct btrfs_file_extent_item);
1351 extent_type = btrfs_file_extent_type(eb, fi);
1352 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1353 ret = -ENOENT;
1354 goto out;
1355 }
1356 compressed = btrfs_file_extent_compression(eb, fi);
1357
1358 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1359 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1360 if (disk_byte == 0) {
1361 ret = -ENOENT;
1362 goto out;
1363 }
1364 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1365
1366 down_read(&fs_info->commit_root_sem);
1367 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1368 &found_key, &flags);
1369 up_read(&fs_info->commit_root_sem);
1370 btrfs_release_path(tmp_path);
1371
1372 if (ret < 0)
1373 goto out;
1374 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1375 ret = -EIO;
1376 goto out;
1377 }
1378
1379 /*
1380 * Setup the clone roots.
1381 */
1382 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1383 cur_clone_root = sctx->clone_roots + i;
1384 cur_clone_root->ino = (u64)-1;
1385 cur_clone_root->offset = 0;
1386 cur_clone_root->found_refs = 0;
1387 }
1388
1389 backref_ctx->sctx = sctx;
1390 backref_ctx->found = 0;
1391 backref_ctx->cur_objectid = ino;
1392 backref_ctx->cur_offset = data_offset;
1393 backref_ctx->found_itself = 0;
1394 backref_ctx->extent_len = num_bytes;
1395 /*
1396 * For non-compressed extents iterate_extent_inodes() gives us extent
1397 * offsets that already take into account the data offset, but not for
1398 * compressed extents, since the offset is logical and not relative to
1399 * the physical extent locations. We must take this into account to
1400 * avoid sending clone offsets that go beyond the source file's size,
1401 * which would result in the clone ioctl failing with -EINVAL on the
1402 * receiving end.
1403 */
1404 if (compressed == BTRFS_COMPRESS_NONE)
1405 backref_ctx->data_offset = 0;
1406 else
1407 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1408
1409 /*
1410 * The last extent of a file may be too large due to page alignment.
1411 * We need to adjust extent_len in this case so that the checks in
1412 * __iterate_backrefs work.
1413 */
1414 if (data_offset + num_bytes >= ino_size)
1415 backref_ctx->extent_len = ino_size - data_offset;
1416
1417 /*
1418 * Now collect all backrefs.
1419 */
1420 if (compressed == BTRFS_COMPRESS_NONE)
1421 extent_item_pos = logical - found_key.objectid;
1422 else
1423 extent_item_pos = 0;
1424 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1425 extent_item_pos, 1, __iterate_backrefs,
1426 backref_ctx, false);
1427
1428 if (ret < 0)
1429 goto out;
1430
1431 if (!backref_ctx->found_itself) {
1432 /* found a bug in backref code? */
1433 ret = -EIO;
1434 btrfs_err(fs_info,
1435 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1436 ino, data_offset, disk_byte, found_key.objectid);
1437 goto out;
1438 }
1439
1440 btrfs_debug(fs_info,
1441 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1442 data_offset, ino, num_bytes, logical);
1443
1444 if (!backref_ctx->found)
1445 btrfs_debug(fs_info, "no clones found");
1446
1447 cur_clone_root = NULL;
1448 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1449 if (sctx->clone_roots[i].found_refs) {
1450 if (!cur_clone_root)
1451 cur_clone_root = sctx->clone_roots + i;
1452 else if (sctx->clone_roots[i].root == sctx->send_root)
1453 /* prefer clones from send_root over others */
1454 cur_clone_root = sctx->clone_roots + i;
1455 }
1456
1457 }
1458
1459 if (cur_clone_root) {
1460 *found = cur_clone_root;
1461 ret = 0;
1462 } else {
1463 ret = -ENOENT;
1464 }
1465
1466 out:
1467 btrfs_free_path(tmp_path);
1468 kfree(backref_ctx);
1469 return ret;
1470 }
1471
1472 static int read_symlink(struct btrfs_root *root,
1473 u64 ino,
1474 struct fs_path *dest)
1475 {
1476 int ret;
1477 struct btrfs_path *path;
1478 struct btrfs_key key;
1479 struct btrfs_file_extent_item *ei;
1480 u8 type;
1481 u8 compression;
1482 unsigned long off;
1483 int len;
1484
1485 path = alloc_path_for_send();
1486 if (!path)
1487 return -ENOMEM;
1488
1489 key.objectid = ino;
1490 key.type = BTRFS_EXTENT_DATA_KEY;
1491 key.offset = 0;
1492 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1493 if (ret < 0)
1494 goto out;
1495 if (ret) {
1496 /*
1497 * An empty symlink inode. Can happen in rare error paths when
1498 * creating a symlink (transaction committed before the inode
1499 * eviction handler removed the symlink inode items and a crash
1500 * happened in between or the subvol was snapshoted in between).
1501 * Print an informative message to dmesg/syslog so that the user
1502 * can delete the symlink.
1503 */
1504 btrfs_err(root->fs_info,
1505 "Found empty symlink inode %llu at root %llu",
1506 ino, root->root_key.objectid);
1507 ret = -EIO;
1508 goto out;
1509 }
1510
1511 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1512 struct btrfs_file_extent_item);
1513 type = btrfs_file_extent_type(path->nodes[0], ei);
1514 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1515 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1516 BUG_ON(compression);
1517
1518 off = btrfs_file_extent_inline_start(ei);
1519 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1520
1521 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1522
1523 out:
1524 btrfs_free_path(path);
1525 return ret;
1526 }
1527
1528 /*
1529 * Helper function to generate a file name that is unique in the root of
1530 * send_root and parent_root. This is used to generate names for orphan inodes.
1531 */
1532 static int gen_unique_name(struct send_ctx *sctx,
1533 u64 ino, u64 gen,
1534 struct fs_path *dest)
1535 {
1536 int ret = 0;
1537 struct btrfs_path *path;
1538 struct btrfs_dir_item *di;
1539 char tmp[64];
1540 int len;
1541 u64 idx = 0;
1542
1543 path = alloc_path_for_send();
1544 if (!path)
1545 return -ENOMEM;
1546
1547 while (1) {
1548 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1549 ino, gen, idx);
1550 ASSERT(len < sizeof(tmp));
1551
1552 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1553 path, BTRFS_FIRST_FREE_OBJECTID,
1554 tmp, strlen(tmp), 0);
1555 btrfs_release_path(path);
1556 if (IS_ERR(di)) {
1557 ret = PTR_ERR(di);
1558 goto out;
1559 }
1560 if (di) {
1561 /* not unique, try again */
1562 idx++;
1563 continue;
1564 }
1565
1566 if (!sctx->parent_root) {
1567 /* unique */
1568 ret = 0;
1569 break;
1570 }
1571
1572 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1573 path, BTRFS_FIRST_FREE_OBJECTID,
1574 tmp, strlen(tmp), 0);
1575 btrfs_release_path(path);
1576 if (IS_ERR(di)) {
1577 ret = PTR_ERR(di);
1578 goto out;
1579 }
1580 if (di) {
1581 /* not unique, try again */
1582 idx++;
1583 continue;
1584 }
1585 /* unique */
1586 break;
1587 }
1588
1589 ret = fs_path_add(dest, tmp, strlen(tmp));
1590
1591 out:
1592 btrfs_free_path(path);
1593 return ret;
1594 }
1595
1596 enum inode_state {
1597 inode_state_no_change,
1598 inode_state_will_create,
1599 inode_state_did_create,
1600 inode_state_will_delete,
1601 inode_state_did_delete,
1602 };
1603
1604 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1605 {
1606 int ret;
1607 int left_ret;
1608 int right_ret;
1609 u64 left_gen;
1610 u64 right_gen;
1611
1612 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1613 NULL, NULL);
1614 if (ret < 0 && ret != -ENOENT)
1615 goto out;
1616 left_ret = ret;
1617
1618 if (!sctx->parent_root) {
1619 right_ret = -ENOENT;
1620 } else {
1621 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1622 NULL, NULL, NULL, NULL);
1623 if (ret < 0 && ret != -ENOENT)
1624 goto out;
1625 right_ret = ret;
1626 }
1627
1628 if (!left_ret && !right_ret) {
1629 if (left_gen == gen && right_gen == gen) {
1630 ret = inode_state_no_change;
1631 } else if (left_gen == gen) {
1632 if (ino < sctx->send_progress)
1633 ret = inode_state_did_create;
1634 else
1635 ret = inode_state_will_create;
1636 } else if (right_gen == gen) {
1637 if (ino < sctx->send_progress)
1638 ret = inode_state_did_delete;
1639 else
1640 ret = inode_state_will_delete;
1641 } else {
1642 ret = -ENOENT;
1643 }
1644 } else if (!left_ret) {
1645 if (left_gen == gen) {
1646 if (ino < sctx->send_progress)
1647 ret = inode_state_did_create;
1648 else
1649 ret = inode_state_will_create;
1650 } else {
1651 ret = -ENOENT;
1652 }
1653 } else if (!right_ret) {
1654 if (right_gen == gen) {
1655 if (ino < sctx->send_progress)
1656 ret = inode_state_did_delete;
1657 else
1658 ret = inode_state_will_delete;
1659 } else {
1660 ret = -ENOENT;
1661 }
1662 } else {
1663 ret = -ENOENT;
1664 }
1665
1666 out:
1667 return ret;
1668 }
1669
1670 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1671 {
1672 int ret;
1673
1674 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1675 return 1;
1676
1677 ret = get_cur_inode_state(sctx, ino, gen);
1678 if (ret < 0)
1679 goto out;
1680
1681 if (ret == inode_state_no_change ||
1682 ret == inode_state_did_create ||
1683 ret == inode_state_will_delete)
1684 ret = 1;
1685 else
1686 ret = 0;
1687
1688 out:
1689 return ret;
1690 }
1691
1692 /*
1693 * Helper function to lookup a dir item in a dir.
1694 */
1695 static int lookup_dir_item_inode(struct btrfs_root *root,
1696 u64 dir, const char *name, int name_len,
1697 u64 *found_inode,
1698 u8 *found_type)
1699 {
1700 int ret = 0;
1701 struct btrfs_dir_item *di;
1702 struct btrfs_key key;
1703 struct btrfs_path *path;
1704
1705 path = alloc_path_for_send();
1706 if (!path)
1707 return -ENOMEM;
1708
1709 di = btrfs_lookup_dir_item(NULL, root, path,
1710 dir, name, name_len, 0);
1711 if (!di) {
1712 ret = -ENOENT;
1713 goto out;
1714 }
1715 if (IS_ERR(di)) {
1716 ret = PTR_ERR(di);
1717 goto out;
1718 }
1719 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1720 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1721 ret = -ENOENT;
1722 goto out;
1723 }
1724 *found_inode = key.objectid;
1725 *found_type = btrfs_dir_type(path->nodes[0], di);
1726
1727 out:
1728 btrfs_free_path(path);
1729 return ret;
1730 }
1731
1732 /*
1733 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1734 * generation of the parent dir and the name of the dir entry.
1735 */
1736 static int get_first_ref(struct btrfs_root *root, u64 ino,
1737 u64 *dir, u64 *dir_gen, struct fs_path *name)
1738 {
1739 int ret;
1740 struct btrfs_key key;
1741 struct btrfs_key found_key;
1742 struct btrfs_path *path;
1743 int len;
1744 u64 parent_dir;
1745
1746 path = alloc_path_for_send();
1747 if (!path)
1748 return -ENOMEM;
1749
1750 key.objectid = ino;
1751 key.type = BTRFS_INODE_REF_KEY;
1752 key.offset = 0;
1753
1754 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1755 if (ret < 0)
1756 goto out;
1757 if (!ret)
1758 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1759 path->slots[0]);
1760 if (ret || found_key.objectid != ino ||
1761 (found_key.type != BTRFS_INODE_REF_KEY &&
1762 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1763 ret = -ENOENT;
1764 goto out;
1765 }
1766
1767 if (found_key.type == BTRFS_INODE_REF_KEY) {
1768 struct btrfs_inode_ref *iref;
1769 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1770 struct btrfs_inode_ref);
1771 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1772 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1773 (unsigned long)(iref + 1),
1774 len);
1775 parent_dir = found_key.offset;
1776 } else {
1777 struct btrfs_inode_extref *extref;
1778 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1779 struct btrfs_inode_extref);
1780 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1781 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1782 (unsigned long)&extref->name, len);
1783 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1784 }
1785 if (ret < 0)
1786 goto out;
1787 btrfs_release_path(path);
1788
1789 if (dir_gen) {
1790 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1791 NULL, NULL, NULL);
1792 if (ret < 0)
1793 goto out;
1794 }
1795
1796 *dir = parent_dir;
1797
1798 out:
1799 btrfs_free_path(path);
1800 return ret;
1801 }
1802
1803 static int is_first_ref(struct btrfs_root *root,
1804 u64 ino, u64 dir,
1805 const char *name, int name_len)
1806 {
1807 int ret;
1808 struct fs_path *tmp_name;
1809 u64 tmp_dir;
1810
1811 tmp_name = fs_path_alloc();
1812 if (!tmp_name)
1813 return -ENOMEM;
1814
1815 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1816 if (ret < 0)
1817 goto out;
1818
1819 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1820 ret = 0;
1821 goto out;
1822 }
1823
1824 ret = !memcmp(tmp_name->start, name, name_len);
1825
1826 out:
1827 fs_path_free(tmp_name);
1828 return ret;
1829 }
1830
1831 /*
1832 * Used by process_recorded_refs to determine if a new ref would overwrite an
1833 * already existing ref. In case it detects an overwrite, it returns the
1834 * inode/gen in who_ino/who_gen.
1835 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1836 * to make sure later references to the overwritten inode are possible.
1837 * Orphanizing is however only required for the first ref of an inode.
1838 * process_recorded_refs does an additional is_first_ref check to see if
1839 * orphanizing is really required.
1840 */
1841 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1842 const char *name, int name_len,
1843 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1844 {
1845 int ret = 0;
1846 u64 gen;
1847 u64 other_inode = 0;
1848 u8 other_type = 0;
1849
1850 if (!sctx->parent_root)
1851 goto out;
1852
1853 ret = is_inode_existent(sctx, dir, dir_gen);
1854 if (ret <= 0)
1855 goto out;
1856
1857 /*
1858 * If we have a parent root we need to verify that the parent dir was
1859 * not deleted and then re-created, if it was then we have no overwrite
1860 * and we can just unlink this entry.
1861 */
1862 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1863 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1864 NULL, NULL, NULL);
1865 if (ret < 0 && ret != -ENOENT)
1866 goto out;
1867 if (ret) {
1868 ret = 0;
1869 goto out;
1870 }
1871 if (gen != dir_gen)
1872 goto out;
1873 }
1874
1875 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1876 &other_inode, &other_type);
1877 if (ret < 0 && ret != -ENOENT)
1878 goto out;
1879 if (ret) {
1880 ret = 0;
1881 goto out;
1882 }
1883
1884 /*
1885 * Check if the overwritten ref was already processed. If yes, the ref
1886 * was already unlinked/moved, so we can safely assume that we will not
1887 * overwrite anything at this point in time.
1888 */
1889 if (other_inode > sctx->send_progress ||
1890 is_waiting_for_move(sctx, other_inode)) {
1891 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1892 who_gen, who_mode, NULL, NULL, NULL);
1893 if (ret < 0)
1894 goto out;
1895
1896 ret = 1;
1897 *who_ino = other_inode;
1898 } else {
1899 ret = 0;
1900 }
1901
1902 out:
1903 return ret;
1904 }
1905
1906 /*
1907 * Checks if the ref was overwritten by an already processed inode. This is
1908 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1909 * thus the orphan name needs be used.
1910 * process_recorded_refs also uses it to avoid unlinking of refs that were
1911 * overwritten.
1912 */
1913 static int did_overwrite_ref(struct send_ctx *sctx,
1914 u64 dir, u64 dir_gen,
1915 u64 ino, u64 ino_gen,
1916 const char *name, int name_len)
1917 {
1918 int ret = 0;
1919 u64 gen;
1920 u64 ow_inode;
1921 u8 other_type;
1922
1923 if (!sctx->parent_root)
1924 goto out;
1925
1926 ret = is_inode_existent(sctx, dir, dir_gen);
1927 if (ret <= 0)
1928 goto out;
1929
1930 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1931 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1932 NULL, NULL, NULL);
1933 if (ret < 0 && ret != -ENOENT)
1934 goto out;
1935 if (ret) {
1936 ret = 0;
1937 goto out;
1938 }
1939 if (gen != dir_gen)
1940 goto out;
1941 }
1942
1943 /* check if the ref was overwritten by another ref */
1944 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1945 &ow_inode, &other_type);
1946 if (ret < 0 && ret != -ENOENT)
1947 goto out;
1948 if (ret) {
1949 /* was never and will never be overwritten */
1950 ret = 0;
1951 goto out;
1952 }
1953
1954 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1955 NULL, NULL);
1956 if (ret < 0)
1957 goto out;
1958
1959 if (ow_inode == ino && gen == ino_gen) {
1960 ret = 0;
1961 goto out;
1962 }
1963
1964 /*
1965 * We know that it is or will be overwritten. Check this now.
1966 * The current inode being processed might have been the one that caused
1967 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1968 * the current inode being processed.
1969 */
1970 if ((ow_inode < sctx->send_progress) ||
1971 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1972 gen == sctx->cur_inode_gen))
1973 ret = 1;
1974 else
1975 ret = 0;
1976
1977 out:
1978 return ret;
1979 }
1980
1981 /*
1982 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1983 * that got overwritten. This is used by process_recorded_refs to determine
1984 * if it has to use the path as returned by get_cur_path or the orphan name.
1985 */
1986 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1987 {
1988 int ret = 0;
1989 struct fs_path *name = NULL;
1990 u64 dir;
1991 u64 dir_gen;
1992
1993 if (!sctx->parent_root)
1994 goto out;
1995
1996 name = fs_path_alloc();
1997 if (!name)
1998 return -ENOMEM;
1999
2000 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2001 if (ret < 0)
2002 goto out;
2003
2004 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2005 name->start, fs_path_len(name));
2006
2007 out:
2008 fs_path_free(name);
2009 return ret;
2010 }
2011
2012 /*
2013 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2014 * so we need to do some special handling in case we have clashes. This function
2015 * takes care of this with the help of name_cache_entry::radix_list.
2016 * In case of error, nce is kfreed.
2017 */
2018 static int name_cache_insert(struct send_ctx *sctx,
2019 struct name_cache_entry *nce)
2020 {
2021 int ret = 0;
2022 struct list_head *nce_head;
2023
2024 nce_head = radix_tree_lookup(&sctx->name_cache,
2025 (unsigned long)nce->ino);
2026 if (!nce_head) {
2027 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2028 if (!nce_head) {
2029 kfree(nce);
2030 return -ENOMEM;
2031 }
2032 INIT_LIST_HEAD(nce_head);
2033
2034 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2035 if (ret < 0) {
2036 kfree(nce_head);
2037 kfree(nce);
2038 return ret;
2039 }
2040 }
2041 list_add_tail(&nce->radix_list, nce_head);
2042 list_add_tail(&nce->list, &sctx->name_cache_list);
2043 sctx->name_cache_size++;
2044
2045 return ret;
2046 }
2047
2048 static void name_cache_delete(struct send_ctx *sctx,
2049 struct name_cache_entry *nce)
2050 {
2051 struct list_head *nce_head;
2052
2053 nce_head = radix_tree_lookup(&sctx->name_cache,
2054 (unsigned long)nce->ino);
2055 if (!nce_head) {
2056 btrfs_err(sctx->send_root->fs_info,
2057 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2058 nce->ino, sctx->name_cache_size);
2059 }
2060
2061 list_del(&nce->radix_list);
2062 list_del(&nce->list);
2063 sctx->name_cache_size--;
2064
2065 /*
2066 * We may not get to the final release of nce_head if the lookup fails
2067 */
2068 if (nce_head && list_empty(nce_head)) {
2069 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2070 kfree(nce_head);
2071 }
2072 }
2073
2074 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2075 u64 ino, u64 gen)
2076 {
2077 struct list_head *nce_head;
2078 struct name_cache_entry *cur;
2079
2080 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2081 if (!nce_head)
2082 return NULL;
2083
2084 list_for_each_entry(cur, nce_head, radix_list) {
2085 if (cur->ino == ino && cur->gen == gen)
2086 return cur;
2087 }
2088 return NULL;
2089 }
2090
2091 /*
2092 * Removes the entry from the list and adds it back to the end. This marks the
2093 * entry as recently used so that name_cache_clean_unused does not remove it.
2094 */
2095 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2096 {
2097 list_del(&nce->list);
2098 list_add_tail(&nce->list, &sctx->name_cache_list);
2099 }
2100
2101 /*
2102 * Remove some entries from the beginning of name_cache_list.
2103 */
2104 static void name_cache_clean_unused(struct send_ctx *sctx)
2105 {
2106 struct name_cache_entry *nce;
2107
2108 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2109 return;
2110
2111 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2112 nce = list_entry(sctx->name_cache_list.next,
2113 struct name_cache_entry, list);
2114 name_cache_delete(sctx, nce);
2115 kfree(nce);
2116 }
2117 }
2118
2119 static void name_cache_free(struct send_ctx *sctx)
2120 {
2121 struct name_cache_entry *nce;
2122
2123 while (!list_empty(&sctx->name_cache_list)) {
2124 nce = list_entry(sctx->name_cache_list.next,
2125 struct name_cache_entry, list);
2126 name_cache_delete(sctx, nce);
2127 kfree(nce);
2128 }
2129 }
2130
2131 /*
2132 * Used by get_cur_path for each ref up to the root.
2133 * Returns 0 if it succeeded.
2134 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2135 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2136 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2137 * Returns <0 in case of error.
2138 */
2139 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2140 u64 ino, u64 gen,
2141 u64 *parent_ino,
2142 u64 *parent_gen,
2143 struct fs_path *dest)
2144 {
2145 int ret;
2146 int nce_ret;
2147 struct name_cache_entry *nce = NULL;
2148
2149 /*
2150 * First check if we already did a call to this function with the same
2151 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2152 * return the cached result.
2153 */
2154 nce = name_cache_search(sctx, ino, gen);
2155 if (nce) {
2156 if (ino < sctx->send_progress && nce->need_later_update) {
2157 name_cache_delete(sctx, nce);
2158 kfree(nce);
2159 nce = NULL;
2160 } else {
2161 name_cache_used(sctx, nce);
2162 *parent_ino = nce->parent_ino;
2163 *parent_gen = nce->parent_gen;
2164 ret = fs_path_add(dest, nce->name, nce->name_len);
2165 if (ret < 0)
2166 goto out;
2167 ret = nce->ret;
2168 goto out;
2169 }
2170 }
2171
2172 /*
2173 * If the inode is not existent yet, add the orphan name and return 1.
2174 * This should only happen for the parent dir that we determine in
2175 * __record_new_ref
2176 */
2177 ret = is_inode_existent(sctx, ino, gen);
2178 if (ret < 0)
2179 goto out;
2180
2181 if (!ret) {
2182 ret = gen_unique_name(sctx, ino, gen, dest);
2183 if (ret < 0)
2184 goto out;
2185 ret = 1;
2186 goto out_cache;
2187 }
2188
2189 /*
2190 * Depending on whether the inode was already processed or not, use
2191 * send_root or parent_root for ref lookup.
2192 */
2193 if (ino < sctx->send_progress)
2194 ret = get_first_ref(sctx->send_root, ino,
2195 parent_ino, parent_gen, dest);
2196 else
2197 ret = get_first_ref(sctx->parent_root, ino,
2198 parent_ino, parent_gen, dest);
2199 if (ret < 0)
2200 goto out;
2201
2202 /*
2203 * Check if the ref was overwritten by an inode's ref that was processed
2204 * earlier. If yes, treat as orphan and return 1.
2205 */
2206 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2207 dest->start, dest->end - dest->start);
2208 if (ret < 0)
2209 goto out;
2210 if (ret) {
2211 fs_path_reset(dest);
2212 ret = gen_unique_name(sctx, ino, gen, dest);
2213 if (ret < 0)
2214 goto out;
2215 ret = 1;
2216 }
2217
2218 out_cache:
2219 /*
2220 * Store the result of the lookup in the name cache.
2221 */
2222 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2223 if (!nce) {
2224 ret = -ENOMEM;
2225 goto out;
2226 }
2227
2228 nce->ino = ino;
2229 nce->gen = gen;
2230 nce->parent_ino = *parent_ino;
2231 nce->parent_gen = *parent_gen;
2232 nce->name_len = fs_path_len(dest);
2233 nce->ret = ret;
2234 strcpy(nce->name, dest->start);
2235
2236 if (ino < sctx->send_progress)
2237 nce->need_later_update = 0;
2238 else
2239 nce->need_later_update = 1;
2240
2241 nce_ret = name_cache_insert(sctx, nce);
2242 if (nce_ret < 0)
2243 ret = nce_ret;
2244 name_cache_clean_unused(sctx);
2245
2246 out:
2247 return ret;
2248 }
2249
2250 /*
2251 * Magic happens here. This function returns the first ref to an inode as it
2252 * would look like while receiving the stream at this point in time.
2253 * We walk the path up to the root. For every inode in between, we check if it
2254 * was already processed/sent. If yes, we continue with the parent as found
2255 * in send_root. If not, we continue with the parent as found in parent_root.
2256 * If we encounter an inode that was deleted at this point in time, we use the
2257 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2258 * that were not created yet and overwritten inodes/refs.
2259 *
2260 * When do we have have orphan inodes:
2261 * 1. When an inode is freshly created and thus no valid refs are available yet
2262 * 2. When a directory lost all it's refs (deleted) but still has dir items
2263 * inside which were not processed yet (pending for move/delete). If anyone
2264 * tried to get the path to the dir items, it would get a path inside that
2265 * orphan directory.
2266 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2267 * of an unprocessed inode. If in that case the first ref would be
2268 * overwritten, the overwritten inode gets "orphanized". Later when we
2269 * process this overwritten inode, it is restored at a new place by moving
2270 * the orphan inode.
2271 *
2272 * sctx->send_progress tells this function at which point in time receiving
2273 * would be.
2274 */
2275 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2276 struct fs_path *dest)
2277 {
2278 int ret = 0;
2279 struct fs_path *name = NULL;
2280 u64 parent_inode = 0;
2281 u64 parent_gen = 0;
2282 int stop = 0;
2283
2284 name = fs_path_alloc();
2285 if (!name) {
2286 ret = -ENOMEM;
2287 goto out;
2288 }
2289
2290 dest->reversed = 1;
2291 fs_path_reset(dest);
2292
2293 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2294 struct waiting_dir_move *wdm;
2295
2296 fs_path_reset(name);
2297
2298 if (is_waiting_for_rm(sctx, ino)) {
2299 ret = gen_unique_name(sctx, ino, gen, name);
2300 if (ret < 0)
2301 goto out;
2302 ret = fs_path_add_path(dest, name);
2303 break;
2304 }
2305
2306 wdm = get_waiting_dir_move(sctx, ino);
2307 if (wdm && wdm->orphanized) {
2308 ret = gen_unique_name(sctx, ino, gen, name);
2309 stop = 1;
2310 } else if (wdm) {
2311 ret = get_first_ref(sctx->parent_root, ino,
2312 &parent_inode, &parent_gen, name);
2313 } else {
2314 ret = __get_cur_name_and_parent(sctx, ino, gen,
2315 &parent_inode,
2316 &parent_gen, name);
2317 if (ret)
2318 stop = 1;
2319 }
2320
2321 if (ret < 0)
2322 goto out;
2323
2324 ret = fs_path_add_path(dest, name);
2325 if (ret < 0)
2326 goto out;
2327
2328 ino = parent_inode;
2329 gen = parent_gen;
2330 }
2331
2332 out:
2333 fs_path_free(name);
2334 if (!ret)
2335 fs_path_unreverse(dest);
2336 return ret;
2337 }
2338
2339 /*
2340 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2341 */
2342 static int send_subvol_begin(struct send_ctx *sctx)
2343 {
2344 int ret;
2345 struct btrfs_root *send_root = sctx->send_root;
2346 struct btrfs_root *parent_root = sctx->parent_root;
2347 struct btrfs_path *path;
2348 struct btrfs_key key;
2349 struct btrfs_root_ref *ref;
2350 struct extent_buffer *leaf;
2351 char *name = NULL;
2352 int namelen;
2353
2354 path = btrfs_alloc_path();
2355 if (!path)
2356 return -ENOMEM;
2357
2358 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2359 if (!name) {
2360 btrfs_free_path(path);
2361 return -ENOMEM;
2362 }
2363
2364 key.objectid = send_root->objectid;
2365 key.type = BTRFS_ROOT_BACKREF_KEY;
2366 key.offset = 0;
2367
2368 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2369 &key, path, 1, 0);
2370 if (ret < 0)
2371 goto out;
2372 if (ret) {
2373 ret = -ENOENT;
2374 goto out;
2375 }
2376
2377 leaf = path->nodes[0];
2378 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2379 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2380 key.objectid != send_root->objectid) {
2381 ret = -ENOENT;
2382 goto out;
2383 }
2384 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2385 namelen = btrfs_root_ref_name_len(leaf, ref);
2386 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2387 btrfs_release_path(path);
2388
2389 if (parent_root) {
2390 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2391 if (ret < 0)
2392 goto out;
2393 } else {
2394 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2395 if (ret < 0)
2396 goto out;
2397 }
2398
2399 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2400
2401 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2402 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2403 sctx->send_root->root_item.received_uuid);
2404 else
2405 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2406 sctx->send_root->root_item.uuid);
2407
2408 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2409 le64_to_cpu(sctx->send_root->root_item.ctransid));
2410 if (parent_root) {
2411 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2412 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2413 parent_root->root_item.received_uuid);
2414 else
2415 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2416 parent_root->root_item.uuid);
2417 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2418 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2419 }
2420
2421 ret = send_cmd(sctx);
2422
2423 tlv_put_failure:
2424 out:
2425 btrfs_free_path(path);
2426 kfree(name);
2427 return ret;
2428 }
2429
2430 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2431 {
2432 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2433 int ret = 0;
2434 struct fs_path *p;
2435
2436 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2437
2438 p = fs_path_alloc();
2439 if (!p)
2440 return -ENOMEM;
2441
2442 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2443 if (ret < 0)
2444 goto out;
2445
2446 ret = get_cur_path(sctx, ino, gen, p);
2447 if (ret < 0)
2448 goto out;
2449 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2450 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2451
2452 ret = send_cmd(sctx);
2453
2454 tlv_put_failure:
2455 out:
2456 fs_path_free(p);
2457 return ret;
2458 }
2459
2460 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2461 {
2462 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2463 int ret = 0;
2464 struct fs_path *p;
2465
2466 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2467
2468 p = fs_path_alloc();
2469 if (!p)
2470 return -ENOMEM;
2471
2472 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2473 if (ret < 0)
2474 goto out;
2475
2476 ret = get_cur_path(sctx, ino, gen, p);
2477 if (ret < 0)
2478 goto out;
2479 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2480 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2481
2482 ret = send_cmd(sctx);
2483
2484 tlv_put_failure:
2485 out:
2486 fs_path_free(p);
2487 return ret;
2488 }
2489
2490 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2491 {
2492 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2493 int ret = 0;
2494 struct fs_path *p;
2495
2496 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2497 ino, uid, gid);
2498
2499 p = fs_path_alloc();
2500 if (!p)
2501 return -ENOMEM;
2502
2503 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2504 if (ret < 0)
2505 goto out;
2506
2507 ret = get_cur_path(sctx, ino, gen, p);
2508 if (ret < 0)
2509 goto out;
2510 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2511 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2512 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2513
2514 ret = send_cmd(sctx);
2515
2516 tlv_put_failure:
2517 out:
2518 fs_path_free(p);
2519 return ret;
2520 }
2521
2522 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2523 {
2524 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2525 int ret = 0;
2526 struct fs_path *p = NULL;
2527 struct btrfs_inode_item *ii;
2528 struct btrfs_path *path = NULL;
2529 struct extent_buffer *eb;
2530 struct btrfs_key key;
2531 int slot;
2532
2533 btrfs_debug(fs_info, "send_utimes %llu", ino);
2534
2535 p = fs_path_alloc();
2536 if (!p)
2537 return -ENOMEM;
2538
2539 path = alloc_path_for_send();
2540 if (!path) {
2541 ret = -ENOMEM;
2542 goto out;
2543 }
2544
2545 key.objectid = ino;
2546 key.type = BTRFS_INODE_ITEM_KEY;
2547 key.offset = 0;
2548 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2549 if (ret > 0)
2550 ret = -ENOENT;
2551 if (ret < 0)
2552 goto out;
2553
2554 eb = path->nodes[0];
2555 slot = path->slots[0];
2556 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2557
2558 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2559 if (ret < 0)
2560 goto out;
2561
2562 ret = get_cur_path(sctx, ino, gen, p);
2563 if (ret < 0)
2564 goto out;
2565 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2566 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2567 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2568 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2569 /* TODO Add otime support when the otime patches get into upstream */
2570
2571 ret = send_cmd(sctx);
2572
2573 tlv_put_failure:
2574 out:
2575 fs_path_free(p);
2576 btrfs_free_path(path);
2577 return ret;
2578 }
2579
2580 /*
2581 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2582 * a valid path yet because we did not process the refs yet. So, the inode
2583 * is created as orphan.
2584 */
2585 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2586 {
2587 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2588 int ret = 0;
2589 struct fs_path *p;
2590 int cmd;
2591 u64 gen;
2592 u64 mode;
2593 u64 rdev;
2594
2595 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2596
2597 p = fs_path_alloc();
2598 if (!p)
2599 return -ENOMEM;
2600
2601 if (ino != sctx->cur_ino) {
2602 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2603 NULL, NULL, &rdev);
2604 if (ret < 0)
2605 goto out;
2606 } else {
2607 gen = sctx->cur_inode_gen;
2608 mode = sctx->cur_inode_mode;
2609 rdev = sctx->cur_inode_rdev;
2610 }
2611
2612 if (S_ISREG(mode)) {
2613 cmd = BTRFS_SEND_C_MKFILE;
2614 } else if (S_ISDIR(mode)) {
2615 cmd = BTRFS_SEND_C_MKDIR;
2616 } else if (S_ISLNK(mode)) {
2617 cmd = BTRFS_SEND_C_SYMLINK;
2618 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2619 cmd = BTRFS_SEND_C_MKNOD;
2620 } else if (S_ISFIFO(mode)) {
2621 cmd = BTRFS_SEND_C_MKFIFO;
2622 } else if (S_ISSOCK(mode)) {
2623 cmd = BTRFS_SEND_C_MKSOCK;
2624 } else {
2625 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2626 (int)(mode & S_IFMT));
2627 ret = -EOPNOTSUPP;
2628 goto out;
2629 }
2630
2631 ret = begin_cmd(sctx, cmd);
2632 if (ret < 0)
2633 goto out;
2634
2635 ret = gen_unique_name(sctx, ino, gen, p);
2636 if (ret < 0)
2637 goto out;
2638
2639 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2640 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2641
2642 if (S_ISLNK(mode)) {
2643 fs_path_reset(p);
2644 ret = read_symlink(sctx->send_root, ino, p);
2645 if (ret < 0)
2646 goto out;
2647 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2648 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2649 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2650 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2651 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2652 }
2653
2654 ret = send_cmd(sctx);
2655 if (ret < 0)
2656 goto out;
2657
2658
2659 tlv_put_failure:
2660 out:
2661 fs_path_free(p);
2662 return ret;
2663 }
2664
2665 /*
2666 * We need some special handling for inodes that get processed before the parent
2667 * directory got created. See process_recorded_refs for details.
2668 * This function does the check if we already created the dir out of order.
2669 */
2670 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2671 {
2672 int ret = 0;
2673 struct btrfs_path *path = NULL;
2674 struct btrfs_key key;
2675 struct btrfs_key found_key;
2676 struct btrfs_key di_key;
2677 struct extent_buffer *eb;
2678 struct btrfs_dir_item *di;
2679 int slot;
2680
2681 path = alloc_path_for_send();
2682 if (!path) {
2683 ret = -ENOMEM;
2684 goto out;
2685 }
2686
2687 key.objectid = dir;
2688 key.type = BTRFS_DIR_INDEX_KEY;
2689 key.offset = 0;
2690 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2691 if (ret < 0)
2692 goto out;
2693
2694 while (1) {
2695 eb = path->nodes[0];
2696 slot = path->slots[0];
2697 if (slot >= btrfs_header_nritems(eb)) {
2698 ret = btrfs_next_leaf(sctx->send_root, path);
2699 if (ret < 0) {
2700 goto out;
2701 } else if (ret > 0) {
2702 ret = 0;
2703 break;
2704 }
2705 continue;
2706 }
2707
2708 btrfs_item_key_to_cpu(eb, &found_key, slot);
2709 if (found_key.objectid != key.objectid ||
2710 found_key.type != key.type) {
2711 ret = 0;
2712 goto out;
2713 }
2714
2715 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2716 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2717
2718 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2719 di_key.objectid < sctx->send_progress) {
2720 ret = 1;
2721 goto out;
2722 }
2723
2724 path->slots[0]++;
2725 }
2726
2727 out:
2728 btrfs_free_path(path);
2729 return ret;
2730 }
2731
2732 /*
2733 * Only creates the inode if it is:
2734 * 1. Not a directory
2735 * 2. Or a directory which was not created already due to out of order
2736 * directories. See did_create_dir and process_recorded_refs for details.
2737 */
2738 static int send_create_inode_if_needed(struct send_ctx *sctx)
2739 {
2740 int ret;
2741
2742 if (S_ISDIR(sctx->cur_inode_mode)) {
2743 ret = did_create_dir(sctx, sctx->cur_ino);
2744 if (ret < 0)
2745 goto out;
2746 if (ret) {
2747 ret = 0;
2748 goto out;
2749 }
2750 }
2751
2752 ret = send_create_inode(sctx, sctx->cur_ino);
2753 if (ret < 0)
2754 goto out;
2755
2756 out:
2757 return ret;
2758 }
2759
2760 struct recorded_ref {
2761 struct list_head list;
2762 char *name;
2763 struct fs_path *full_path;
2764 u64 dir;
2765 u64 dir_gen;
2766 int name_len;
2767 };
2768
2769 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2770 {
2771 ref->full_path = path;
2772 ref->name = (char *)kbasename(ref->full_path->start);
2773 ref->name_len = ref->full_path->end - ref->name;
2774 }
2775
2776 /*
2777 * We need to process new refs before deleted refs, but compare_tree gives us
2778 * everything mixed. So we first record all refs and later process them.
2779 * This function is a helper to record one ref.
2780 */
2781 static int __record_ref(struct list_head *head, u64 dir,
2782 u64 dir_gen, struct fs_path *path)
2783 {
2784 struct recorded_ref *ref;
2785
2786 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2787 if (!ref)
2788 return -ENOMEM;
2789
2790 ref->dir = dir;
2791 ref->dir_gen = dir_gen;
2792 set_ref_path(ref, path);
2793 list_add_tail(&ref->list, head);
2794 return 0;
2795 }
2796
2797 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2798 {
2799 struct recorded_ref *new;
2800
2801 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2802 if (!new)
2803 return -ENOMEM;
2804
2805 new->dir = ref->dir;
2806 new->dir_gen = ref->dir_gen;
2807 new->full_path = NULL;
2808 INIT_LIST_HEAD(&new->list);
2809 list_add_tail(&new->list, list);
2810 return 0;
2811 }
2812
2813 static void __free_recorded_refs(struct list_head *head)
2814 {
2815 struct recorded_ref *cur;
2816
2817 while (!list_empty(head)) {
2818 cur = list_entry(head->next, struct recorded_ref, list);
2819 fs_path_free(cur->full_path);
2820 list_del(&cur->list);
2821 kfree(cur);
2822 }
2823 }
2824
2825 static void free_recorded_refs(struct send_ctx *sctx)
2826 {
2827 __free_recorded_refs(&sctx->new_refs);
2828 __free_recorded_refs(&sctx->deleted_refs);
2829 }
2830
2831 /*
2832 * Renames/moves a file/dir to its orphan name. Used when the first
2833 * ref of an unprocessed inode gets overwritten and for all non empty
2834 * directories.
2835 */
2836 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2837 struct fs_path *path)
2838 {
2839 int ret;
2840 struct fs_path *orphan;
2841
2842 orphan = fs_path_alloc();
2843 if (!orphan)
2844 return -ENOMEM;
2845
2846 ret = gen_unique_name(sctx, ino, gen, orphan);
2847 if (ret < 0)
2848 goto out;
2849
2850 ret = send_rename(sctx, path, orphan);
2851
2852 out:
2853 fs_path_free(orphan);
2854 return ret;
2855 }
2856
2857 static struct orphan_dir_info *
2858 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2859 {
2860 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2861 struct rb_node *parent = NULL;
2862 struct orphan_dir_info *entry, *odi;
2863
2864 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2865 if (!odi)
2866 return ERR_PTR(-ENOMEM);
2867 odi->ino = dir_ino;
2868 odi->gen = 0;
2869
2870 while (*p) {
2871 parent = *p;
2872 entry = rb_entry(parent, struct orphan_dir_info, node);
2873 if (dir_ino < entry->ino) {
2874 p = &(*p)->rb_left;
2875 } else if (dir_ino > entry->ino) {
2876 p = &(*p)->rb_right;
2877 } else {
2878 kfree(odi);
2879 return entry;
2880 }
2881 }
2882
2883 rb_link_node(&odi->node, parent, p);
2884 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2885 return odi;
2886 }
2887
2888 static struct orphan_dir_info *
2889 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2890 {
2891 struct rb_node *n = sctx->orphan_dirs.rb_node;
2892 struct orphan_dir_info *entry;
2893
2894 while (n) {
2895 entry = rb_entry(n, struct orphan_dir_info, node);
2896 if (dir_ino < entry->ino)
2897 n = n->rb_left;
2898 else if (dir_ino > entry->ino)
2899 n = n->rb_right;
2900 else
2901 return entry;
2902 }
2903 return NULL;
2904 }
2905
2906 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2907 {
2908 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2909
2910 return odi != NULL;
2911 }
2912
2913 static void free_orphan_dir_info(struct send_ctx *sctx,
2914 struct orphan_dir_info *odi)
2915 {
2916 if (!odi)
2917 return;
2918 rb_erase(&odi->node, &sctx->orphan_dirs);
2919 kfree(odi);
2920 }
2921
2922 /*
2923 * Returns 1 if a directory can be removed at this point in time.
2924 * We check this by iterating all dir items and checking if the inode behind
2925 * the dir item was already processed.
2926 */
2927 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2928 u64 send_progress)
2929 {
2930 int ret = 0;
2931 struct btrfs_root *root = sctx->parent_root;
2932 struct btrfs_path *path;
2933 struct btrfs_key key;
2934 struct btrfs_key found_key;
2935 struct btrfs_key loc;
2936 struct btrfs_dir_item *di;
2937
2938 /*
2939 * Don't try to rmdir the top/root subvolume dir.
2940 */
2941 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2942 return 0;
2943
2944 path = alloc_path_for_send();
2945 if (!path)
2946 return -ENOMEM;
2947
2948 key.objectid = dir;
2949 key.type = BTRFS_DIR_INDEX_KEY;
2950 key.offset = 0;
2951 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2952 if (ret < 0)
2953 goto out;
2954
2955 while (1) {
2956 struct waiting_dir_move *dm;
2957
2958 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2959 ret = btrfs_next_leaf(root, path);
2960 if (ret < 0)
2961 goto out;
2962 else if (ret > 0)
2963 break;
2964 continue;
2965 }
2966 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2967 path->slots[0]);
2968 if (found_key.objectid != key.objectid ||
2969 found_key.type != key.type)
2970 break;
2971
2972 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2973 struct btrfs_dir_item);
2974 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2975
2976 dm = get_waiting_dir_move(sctx, loc.objectid);
2977 if (dm) {
2978 struct orphan_dir_info *odi;
2979
2980 odi = add_orphan_dir_info(sctx, dir);
2981 if (IS_ERR(odi)) {
2982 ret = PTR_ERR(odi);
2983 goto out;
2984 }
2985 odi->gen = dir_gen;
2986 dm->rmdir_ino = dir;
2987 ret = 0;
2988 goto out;
2989 }
2990
2991 if (loc.objectid > send_progress) {
2992 struct orphan_dir_info *odi;
2993
2994 odi = get_orphan_dir_info(sctx, dir);
2995 free_orphan_dir_info(sctx, odi);
2996 ret = 0;
2997 goto out;
2998 }
2999
3000 path->slots[0]++;
3001 }
3002
3003 ret = 1;
3004
3005 out:
3006 btrfs_free_path(path);
3007 return ret;
3008 }
3009
3010 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3011 {
3012 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3013
3014 return entry != NULL;
3015 }
3016
3017 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3018 {
3019 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3020 struct rb_node *parent = NULL;
3021 struct waiting_dir_move *entry, *dm;
3022
3023 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3024 if (!dm)
3025 return -ENOMEM;
3026 dm->ino = ino;
3027 dm->rmdir_ino = 0;
3028 dm->orphanized = orphanized;
3029
3030 while (*p) {
3031 parent = *p;
3032 entry = rb_entry(parent, struct waiting_dir_move, node);
3033 if (ino < entry->ino) {
3034 p = &(*p)->rb_left;
3035 } else if (ino > entry->ino) {
3036 p = &(*p)->rb_right;
3037 } else {
3038 kfree(dm);
3039 return -EEXIST;
3040 }
3041 }
3042
3043 rb_link_node(&dm->node, parent, p);
3044 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3045 return 0;
3046 }
3047
3048 static struct waiting_dir_move *
3049 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3050 {
3051 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3052 struct waiting_dir_move *entry;
3053
3054 while (n) {
3055 entry = rb_entry(n, struct waiting_dir_move, node);
3056 if (ino < entry->ino)
3057 n = n->rb_left;
3058 else if (ino > entry->ino)
3059 n = n->rb_right;
3060 else
3061 return entry;
3062 }
3063 return NULL;
3064 }
3065
3066 static void free_waiting_dir_move(struct send_ctx *sctx,
3067 struct waiting_dir_move *dm)
3068 {
3069 if (!dm)
3070 return;
3071 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3072 kfree(dm);
3073 }
3074
3075 static int add_pending_dir_move(struct send_ctx *sctx,
3076 u64 ino,
3077 u64 ino_gen,
3078 u64 parent_ino,
3079 struct list_head *new_refs,
3080 struct list_head *deleted_refs,
3081 const bool is_orphan)
3082 {
3083 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3084 struct rb_node *parent = NULL;
3085 struct pending_dir_move *entry = NULL, *pm;
3086 struct recorded_ref *cur;
3087 int exists = 0;
3088 int ret;
3089
3090 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3091 if (!pm)
3092 return -ENOMEM;
3093 pm->parent_ino = parent_ino;
3094 pm->ino = ino;
3095 pm->gen = ino_gen;
3096 INIT_LIST_HEAD(&pm->list);
3097 INIT_LIST_HEAD(&pm->update_refs);
3098 RB_CLEAR_NODE(&pm->node);
3099
3100 while (*p) {
3101 parent = *p;
3102 entry = rb_entry(parent, struct pending_dir_move, node);
3103 if (parent_ino < entry->parent_ino) {
3104 p = &(*p)->rb_left;
3105 } else if (parent_ino > entry->parent_ino) {
3106 p = &(*p)->rb_right;
3107 } else {
3108 exists = 1;
3109 break;
3110 }
3111 }
3112
3113 list_for_each_entry(cur, deleted_refs, list) {
3114 ret = dup_ref(cur, &pm->update_refs);
3115 if (ret < 0)
3116 goto out;
3117 }
3118 list_for_each_entry(cur, new_refs, list) {
3119 ret = dup_ref(cur, &pm->update_refs);
3120 if (ret < 0)
3121 goto out;
3122 }
3123
3124 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3125 if (ret)
3126 goto out;
3127
3128 if (exists) {
3129 list_add_tail(&pm->list, &entry->list);
3130 } else {
3131 rb_link_node(&pm->node, parent, p);
3132 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3133 }
3134 ret = 0;
3135 out:
3136 if (ret) {
3137 __free_recorded_refs(&pm->update_refs);
3138 kfree(pm);
3139 }
3140 return ret;
3141 }
3142
3143 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3144 u64 parent_ino)
3145 {
3146 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3147 struct pending_dir_move *entry;
3148
3149 while (n) {
3150 entry = rb_entry(n, struct pending_dir_move, node);
3151 if (parent_ino < entry->parent_ino)
3152 n = n->rb_left;
3153 else if (parent_ino > entry->parent_ino)
3154 n = n->rb_right;
3155 else
3156 return entry;
3157 }
3158 return NULL;
3159 }
3160
3161 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3162 u64 ino, u64 gen, u64 *ancestor_ino)
3163 {
3164 int ret = 0;
3165 u64 parent_inode = 0;
3166 u64 parent_gen = 0;
3167 u64 start_ino = ino;
3168
3169 *ancestor_ino = 0;
3170 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3171 fs_path_reset(name);
3172
3173 if (is_waiting_for_rm(sctx, ino))
3174 break;
3175 if (is_waiting_for_move(sctx, ino)) {
3176 if (*ancestor_ino == 0)
3177 *ancestor_ino = ino;
3178 ret = get_first_ref(sctx->parent_root, ino,
3179 &parent_inode, &parent_gen, name);
3180 } else {
3181 ret = __get_cur_name_and_parent(sctx, ino, gen,
3182 &parent_inode,
3183 &parent_gen, name);
3184 if (ret > 0) {
3185 ret = 0;
3186 break;
3187 }
3188 }
3189 if (ret < 0)
3190 break;
3191 if (parent_inode == start_ino) {
3192 ret = 1;
3193 if (*ancestor_ino == 0)
3194 *ancestor_ino = ino;
3195 break;
3196 }
3197 ino = parent_inode;
3198 gen = parent_gen;
3199 }
3200 return ret;
3201 }
3202
3203 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3204 {
3205 struct fs_path *from_path = NULL;
3206 struct fs_path *to_path = NULL;
3207 struct fs_path *name = NULL;
3208 u64 orig_progress = sctx->send_progress;
3209 struct recorded_ref *cur;
3210 u64 parent_ino, parent_gen;
3211 struct waiting_dir_move *dm = NULL;
3212 u64 rmdir_ino = 0;
3213 u64 ancestor;
3214 bool is_orphan;
3215 int ret;
3216
3217 name = fs_path_alloc();
3218 from_path = fs_path_alloc();
3219 if (!name || !from_path) {
3220 ret = -ENOMEM;
3221 goto out;
3222 }
3223
3224 dm = get_waiting_dir_move(sctx, pm->ino);
3225 ASSERT(dm);
3226 rmdir_ino = dm->rmdir_ino;
3227 is_orphan = dm->orphanized;
3228 free_waiting_dir_move(sctx, dm);
3229
3230 if (is_orphan) {
3231 ret = gen_unique_name(sctx, pm->ino,
3232 pm->gen, from_path);
3233 } else {
3234 ret = get_first_ref(sctx->parent_root, pm->ino,
3235 &parent_ino, &parent_gen, name);
3236 if (ret < 0)
3237 goto out;
3238 ret = get_cur_path(sctx, parent_ino, parent_gen,
3239 from_path);
3240 if (ret < 0)
3241 goto out;
3242 ret = fs_path_add_path(from_path, name);
3243 }
3244 if (ret < 0)
3245 goto out;
3246
3247 sctx->send_progress = sctx->cur_ino + 1;
3248 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3249 if (ret < 0)
3250 goto out;
3251 if (ret) {
3252 LIST_HEAD(deleted_refs);
3253 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3254 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3255 &pm->update_refs, &deleted_refs,
3256 is_orphan);
3257 if (ret < 0)
3258 goto out;
3259 if (rmdir_ino) {
3260 dm = get_waiting_dir_move(sctx, pm->ino);
3261 ASSERT(dm);
3262 dm->rmdir_ino = rmdir_ino;
3263 }
3264 goto out;
3265 }
3266 fs_path_reset(name);
3267 to_path = name;
3268 name = NULL;
3269 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3270 if (ret < 0)
3271 goto out;
3272
3273 ret = send_rename(sctx, from_path, to_path);
3274 if (ret < 0)
3275 goto out;
3276
3277 if (rmdir_ino) {
3278 struct orphan_dir_info *odi;
3279
3280 odi = get_orphan_dir_info(sctx, rmdir_ino);
3281 if (!odi) {
3282 /* already deleted */
3283 goto finish;
3284 }
3285 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3286 if (ret < 0)
3287 goto out;
3288 if (!ret)
3289 goto finish;
3290
3291 name = fs_path_alloc();
3292 if (!name) {
3293 ret = -ENOMEM;
3294 goto out;
3295 }
3296 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3297 if (ret < 0)
3298 goto out;
3299 ret = send_rmdir(sctx, name);
3300 if (ret < 0)
3301 goto out;
3302 free_orphan_dir_info(sctx, odi);
3303 }
3304
3305 finish:
3306 ret = send_utimes(sctx, pm->ino, pm->gen);
3307 if (ret < 0)
3308 goto out;
3309
3310 /*
3311 * After rename/move, need to update the utimes of both new parent(s)
3312 * and old parent(s).
3313 */
3314 list_for_each_entry(cur, &pm->update_refs, list) {
3315 /*
3316 * The parent inode might have been deleted in the send snapshot
3317 */
3318 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3319 NULL, NULL, NULL, NULL, NULL);
3320 if (ret == -ENOENT) {
3321 ret = 0;
3322 continue;
3323 }
3324 if (ret < 0)
3325 goto out;
3326
3327 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3328 if (ret < 0)
3329 goto out;
3330 }
3331
3332 out:
3333 fs_path_free(name);
3334 fs_path_free(from_path);
3335 fs_path_free(to_path);
3336 sctx->send_progress = orig_progress;
3337
3338 return ret;
3339 }
3340
3341 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3342 {
3343 if (!list_empty(&m->list))
3344 list_del(&m->list);
3345 if (!RB_EMPTY_NODE(&m->node))
3346 rb_erase(&m->node, &sctx->pending_dir_moves);
3347 __free_recorded_refs(&m->update_refs);
3348 kfree(m);
3349 }
3350
3351 static void tail_append_pending_moves(struct pending_dir_move *moves,
3352 struct list_head *stack)
3353 {
3354 if (list_empty(&moves->list)) {
3355 list_add_tail(&moves->list, stack);
3356 } else {
3357 LIST_HEAD(list);
3358 list_splice_init(&moves->list, &list);
3359 list_add_tail(&moves->list, stack);
3360 list_splice_tail(&list, stack);
3361 }
3362 }
3363
3364 static int apply_children_dir_moves(struct send_ctx *sctx)
3365 {
3366 struct pending_dir_move *pm;
3367 struct list_head stack;
3368 u64 parent_ino = sctx->cur_ino;
3369 int ret = 0;
3370
3371 pm = get_pending_dir_moves(sctx, parent_ino);
3372 if (!pm)
3373 return 0;
3374
3375 INIT_LIST_HEAD(&stack);
3376 tail_append_pending_moves(pm, &stack);
3377
3378 while (!list_empty(&stack)) {
3379 pm = list_first_entry(&stack, struct pending_dir_move, list);
3380 parent_ino = pm->ino;
3381 ret = apply_dir_move(sctx, pm);
3382 free_pending_move(sctx, pm);
3383 if (ret)
3384 goto out;
3385 pm = get_pending_dir_moves(sctx, parent_ino);
3386 if (pm)
3387 tail_append_pending_moves(pm, &stack);
3388 }
3389 return 0;
3390
3391 out:
3392 while (!list_empty(&stack)) {
3393 pm = list_first_entry(&stack, struct pending_dir_move, list);
3394 free_pending_move(sctx, pm);
3395 }
3396 return ret;
3397 }
3398
3399 /*
3400 * We might need to delay a directory rename even when no ancestor directory
3401 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3402 * renamed. This happens when we rename a directory to the old name (the name
3403 * in the parent root) of some other unrelated directory that got its rename
3404 * delayed due to some ancestor with higher number that got renamed.
3405 *
3406 * Example:
3407 *
3408 * Parent snapshot:
3409 * . (ino 256)
3410 * |---- a/ (ino 257)
3411 * | |---- file (ino 260)
3412 * |
3413 * |---- b/ (ino 258)
3414 * |---- c/ (ino 259)
3415 *
3416 * Send snapshot:
3417 * . (ino 256)
3418 * |---- a/ (ino 258)
3419 * |---- x/ (ino 259)
3420 * |---- y/ (ino 257)
3421 * |----- file (ino 260)
3422 *
3423 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3424 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3425 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3426 * must issue is:
3427 *
3428 * 1 - rename 259 from 'c' to 'x'
3429 * 2 - rename 257 from 'a' to 'x/y'
3430 * 3 - rename 258 from 'b' to 'a'
3431 *
3432 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3433 * be done right away and < 0 on error.
3434 */
3435 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3436 struct recorded_ref *parent_ref,
3437 const bool is_orphan)
3438 {
3439 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3440 struct btrfs_path *path;
3441 struct btrfs_key key;
3442 struct btrfs_key di_key;
3443 struct btrfs_dir_item *di;
3444 u64 left_gen;
3445 u64 right_gen;
3446 int ret = 0;
3447 struct waiting_dir_move *wdm;
3448
3449 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3450 return 0;
3451
3452 path = alloc_path_for_send();
3453 if (!path)
3454 return -ENOMEM;
3455
3456 key.objectid = parent_ref->dir;
3457 key.type = BTRFS_DIR_ITEM_KEY;
3458 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3459
3460 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3461 if (ret < 0) {
3462 goto out;
3463 } else if (ret > 0) {
3464 ret = 0;
3465 goto out;
3466 }
3467
3468 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3469 parent_ref->name_len);
3470 if (!di) {
3471 ret = 0;
3472 goto out;
3473 }
3474 /*
3475 * di_key.objectid has the number of the inode that has a dentry in the
3476 * parent directory with the same name that sctx->cur_ino is being
3477 * renamed to. We need to check if that inode is in the send root as
3478 * well and if it is currently marked as an inode with a pending rename,
3479 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3480 * that it happens after that other inode is renamed.
3481 */
3482 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3483 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3484 ret = 0;
3485 goto out;
3486 }
3487
3488 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3489 &left_gen, NULL, NULL, NULL, NULL);
3490 if (ret < 0)
3491 goto out;
3492 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3493 &right_gen, NULL, NULL, NULL, NULL);
3494 if (ret < 0) {
3495 if (ret == -ENOENT)
3496 ret = 0;
3497 goto out;
3498 }
3499
3500 /* Different inode, no need to delay the rename of sctx->cur_ino */
3501 if (right_gen != left_gen) {
3502 ret = 0;
3503 goto out;
3504 }
3505
3506 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3507 if (wdm && !wdm->orphanized) {
3508 ret = add_pending_dir_move(sctx,
3509 sctx->cur_ino,
3510 sctx->cur_inode_gen,
3511 di_key.objectid,
3512 &sctx->new_refs,
3513 &sctx->deleted_refs,
3514 is_orphan);
3515 if (!ret)
3516 ret = 1;
3517 }
3518 out:
3519 btrfs_free_path(path);
3520 return ret;
3521 }
3522
3523 /*
3524 * Check if inode ino2, or any of its ancestors, is inode ino1.
3525 * Return 1 if true, 0 if false and < 0 on error.
3526 */
3527 static int check_ino_in_path(struct btrfs_root *root,
3528 const u64 ino1,
3529 const u64 ino1_gen,
3530 const u64 ino2,
3531 const u64 ino2_gen,
3532 struct fs_path *fs_path)
3533 {
3534 u64 ino = ino2;
3535
3536 if (ino1 == ino2)
3537 return ino1_gen == ino2_gen;
3538
3539 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3540 u64 parent;
3541 u64 parent_gen;
3542 int ret;
3543
3544 fs_path_reset(fs_path);
3545 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3546 if (ret < 0)
3547 return ret;
3548 if (parent == ino1)
3549 return parent_gen == ino1_gen;
3550 ino = parent;
3551 }
3552 return 0;
3553 }
3554
3555 /*
3556 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3557 * possible path (in case ino2 is not a directory and has multiple hard links).
3558 * Return 1 if true, 0 if false and < 0 on error.
3559 */
3560 static int is_ancestor(struct btrfs_root *root,
3561 const u64 ino1,
3562 const u64 ino1_gen,
3563 const u64 ino2,
3564 struct fs_path *fs_path)
3565 {
3566 bool free_fs_path = false;
3567 int ret = 0;
3568 struct btrfs_path *path = NULL;
3569 struct btrfs_key key;
3570
3571 if (!fs_path) {
3572 fs_path = fs_path_alloc();
3573 if (!fs_path)
3574 return -ENOMEM;
3575 free_fs_path = true;
3576 }
3577
3578 path = alloc_path_for_send();
3579 if (!path) {
3580 ret = -ENOMEM;
3581 goto out;
3582 }
3583
3584 key.objectid = ino2;
3585 key.type = BTRFS_INODE_REF_KEY;
3586 key.offset = 0;
3587
3588 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3589 if (ret < 0)
3590 goto out;
3591
3592 while (true) {
3593 struct extent_buffer *leaf = path->nodes[0];
3594 int slot = path->slots[0];
3595 u32 cur_offset = 0;
3596 u32 item_size;
3597
3598 if (slot >= btrfs_header_nritems(leaf)) {
3599 ret = btrfs_next_leaf(root, path);
3600 if (ret < 0)
3601 goto out;
3602 if (ret > 0)
3603 break;
3604 continue;
3605 }
3606
3607 btrfs_item_key_to_cpu(leaf, &key, slot);
3608 if (key.objectid != ino2)
3609 break;
3610 if (key.type != BTRFS_INODE_REF_KEY &&
3611 key.type != BTRFS_INODE_EXTREF_KEY)
3612 break;
3613
3614 item_size = btrfs_item_size_nr(leaf, slot);
3615 while (cur_offset < item_size) {
3616 u64 parent;
3617 u64 parent_gen;
3618
3619 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3620 unsigned long ptr;
3621 struct btrfs_inode_extref *extref;
3622
3623 ptr = btrfs_item_ptr_offset(leaf, slot);
3624 extref = (struct btrfs_inode_extref *)
3625 (ptr + cur_offset);
3626 parent = btrfs_inode_extref_parent(leaf,
3627 extref);
3628 cur_offset += sizeof(*extref);
3629 cur_offset += btrfs_inode_extref_name_len(leaf,
3630 extref);
3631 } else {
3632 parent = key.offset;
3633 cur_offset = item_size;
3634 }
3635
3636 ret = get_inode_info(root, parent, NULL, &parent_gen,
3637 NULL, NULL, NULL, NULL);
3638 if (ret < 0)
3639 goto out;
3640 ret = check_ino_in_path(root, ino1, ino1_gen,
3641 parent, parent_gen, fs_path);
3642 if (ret)
3643 goto out;
3644 }
3645 path->slots[0]++;
3646 }
3647 ret = 0;
3648 out:
3649 btrfs_free_path(path);
3650 if (free_fs_path)
3651 fs_path_free(fs_path);
3652 return ret;
3653 }
3654
3655 static int wait_for_parent_move(struct send_ctx *sctx,
3656 struct recorded_ref *parent_ref,
3657 const bool is_orphan)
3658 {
3659 int ret = 0;
3660 u64 ino = parent_ref->dir;
3661 u64 ino_gen = parent_ref->dir_gen;
3662 u64 parent_ino_before, parent_ino_after;
3663 struct fs_path *path_before = NULL;
3664 struct fs_path *path_after = NULL;
3665 int len1, len2;
3666
3667 path_after = fs_path_alloc();
3668 path_before = fs_path_alloc();
3669 if (!path_after || !path_before) {
3670 ret = -ENOMEM;
3671 goto out;
3672 }
3673
3674 /*
3675 * Our current directory inode may not yet be renamed/moved because some
3676 * ancestor (immediate or not) has to be renamed/moved first. So find if
3677 * such ancestor exists and make sure our own rename/move happens after
3678 * that ancestor is processed to avoid path build infinite loops (done
3679 * at get_cur_path()).
3680 */
3681 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3682 u64 parent_ino_after_gen;
3683
3684 if (is_waiting_for_move(sctx, ino)) {
3685 /*
3686 * If the current inode is an ancestor of ino in the
3687 * parent root, we need to delay the rename of the
3688 * current inode, otherwise don't delayed the rename
3689 * because we can end up with a circular dependency
3690 * of renames, resulting in some directories never
3691 * getting the respective rename operations issued in
3692 * the send stream or getting into infinite path build
3693 * loops.
3694 */
3695 ret = is_ancestor(sctx->parent_root,
3696 sctx->cur_ino, sctx->cur_inode_gen,
3697 ino, path_before);
3698 if (ret)
3699 break;
3700 }
3701
3702 fs_path_reset(path_before);
3703 fs_path_reset(path_after);
3704
3705 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3706 &parent_ino_after_gen, path_after);
3707 if (ret < 0)
3708 goto out;
3709 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3710 NULL, path_before);
3711 if (ret < 0 && ret != -ENOENT) {
3712 goto out;
3713 } else if (ret == -ENOENT) {
3714 ret = 0;
3715 break;
3716 }
3717
3718 len1 = fs_path_len(path_before);
3719 len2 = fs_path_len(path_after);
3720 if (ino > sctx->cur_ino &&
3721 (parent_ino_before != parent_ino_after || len1 != len2 ||
3722 memcmp(path_before->start, path_after->start, len1))) {
3723 u64 parent_ino_gen;
3724
3725 ret = get_inode_info(sctx->parent_root, ino, NULL,
3726 &parent_ino_gen, NULL, NULL, NULL,
3727 NULL);
3728 if (ret < 0)
3729 goto out;
3730 if (ino_gen == parent_ino_gen) {
3731 ret = 1;
3732 break;
3733 }
3734 }
3735 ino = parent_ino_after;
3736 ino_gen = parent_ino_after_gen;
3737 }
3738
3739 out:
3740 fs_path_free(path_before);
3741 fs_path_free(path_after);
3742
3743 if (ret == 1) {
3744 ret = add_pending_dir_move(sctx,
3745 sctx->cur_ino,
3746 sctx->cur_inode_gen,
3747 ino,
3748 &sctx->new_refs,
3749 &sctx->deleted_refs,
3750 is_orphan);
3751 if (!ret)
3752 ret = 1;
3753 }
3754
3755 return ret;
3756 }
3757
3758 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3759 {
3760 int ret;
3761 struct fs_path *new_path;
3762
3763 /*
3764 * Our reference's name member points to its full_path member string, so
3765 * we use here a new path.
3766 */
3767 new_path = fs_path_alloc();
3768 if (!new_path)
3769 return -ENOMEM;
3770
3771 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3772 if (ret < 0) {
3773 fs_path_free(new_path);
3774 return ret;
3775 }
3776 ret = fs_path_add(new_path, ref->name, ref->name_len);
3777 if (ret < 0) {
3778 fs_path_free(new_path);
3779 return ret;
3780 }
3781
3782 fs_path_free(ref->full_path);
3783 set_ref_path(ref, new_path);
3784
3785 return 0;
3786 }
3787
3788 /*
3789 * This does all the move/link/unlink/rmdir magic.
3790 */
3791 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3792 {
3793 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3794 int ret = 0;
3795 struct recorded_ref *cur;
3796 struct recorded_ref *cur2;
3797 struct list_head check_dirs;
3798 struct fs_path *valid_path = NULL;
3799 u64 ow_inode = 0;
3800 u64 ow_gen;
3801 u64 ow_mode;
3802 int did_overwrite = 0;
3803 int is_orphan = 0;
3804 u64 last_dir_ino_rm = 0;
3805 bool can_rename = true;
3806 bool orphanized_dir = false;
3807 bool orphanized_ancestor = false;
3808
3809 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3810
3811 /*
3812 * This should never happen as the root dir always has the same ref
3813 * which is always '..'
3814 */
3815 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3816 INIT_LIST_HEAD(&check_dirs);
3817
3818 valid_path = fs_path_alloc();
3819 if (!valid_path) {
3820 ret = -ENOMEM;
3821 goto out;
3822 }
3823
3824 /*
3825 * First, check if the first ref of the current inode was overwritten
3826 * before. If yes, we know that the current inode was already orphanized
3827 * and thus use the orphan name. If not, we can use get_cur_path to
3828 * get the path of the first ref as it would like while receiving at
3829 * this point in time.
3830 * New inodes are always orphan at the beginning, so force to use the
3831 * orphan name in this case.
3832 * The first ref is stored in valid_path and will be updated if it
3833 * gets moved around.
3834 */
3835 if (!sctx->cur_inode_new) {
3836 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3837 sctx->cur_inode_gen);
3838 if (ret < 0)
3839 goto out;
3840 if (ret)
3841 did_overwrite = 1;
3842 }
3843 if (sctx->cur_inode_new || did_overwrite) {
3844 ret = gen_unique_name(sctx, sctx->cur_ino,
3845 sctx->cur_inode_gen, valid_path);
3846 if (ret < 0)
3847 goto out;
3848 is_orphan = 1;
3849 } else {
3850 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3851 valid_path);
3852 if (ret < 0)
3853 goto out;
3854 }
3855
3856 list_for_each_entry(cur, &sctx->new_refs, list) {
3857 /*
3858 * We may have refs where the parent directory does not exist
3859 * yet. This happens if the parent directories inum is higher
3860 * the the current inum. To handle this case, we create the
3861 * parent directory out of order. But we need to check if this
3862 * did already happen before due to other refs in the same dir.
3863 */
3864 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3865 if (ret < 0)
3866 goto out;
3867 if (ret == inode_state_will_create) {
3868 ret = 0;
3869 /*
3870 * First check if any of the current inodes refs did
3871 * already create the dir.
3872 */
3873 list_for_each_entry(cur2, &sctx->new_refs, list) {
3874 if (cur == cur2)
3875 break;
3876 if (cur2->dir == cur->dir) {
3877 ret = 1;
3878 break;
3879 }
3880 }
3881
3882 /*
3883 * If that did not happen, check if a previous inode
3884 * did already create the dir.
3885 */
3886 if (!ret)
3887 ret = did_create_dir(sctx, cur->dir);
3888 if (ret < 0)
3889 goto out;
3890 if (!ret) {
3891 ret = send_create_inode(sctx, cur->dir);
3892 if (ret < 0)
3893 goto out;
3894 }
3895 }
3896
3897 /*
3898 * Check if this new ref would overwrite the first ref of
3899 * another unprocessed inode. If yes, orphanize the
3900 * overwritten inode. If we find an overwritten ref that is
3901 * not the first ref, simply unlink it.
3902 */
3903 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3904 cur->name, cur->name_len,
3905 &ow_inode, &ow_gen, &ow_mode);
3906 if (ret < 0)
3907 goto out;
3908 if (ret) {
3909 ret = is_first_ref(sctx->parent_root,
3910 ow_inode, cur->dir, cur->name,
3911 cur->name_len);
3912 if (ret < 0)
3913 goto out;
3914 if (ret) {
3915 struct name_cache_entry *nce;
3916 struct waiting_dir_move *wdm;
3917
3918 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3919 cur->full_path);
3920 if (ret < 0)
3921 goto out;
3922 if (S_ISDIR(ow_mode))
3923 orphanized_dir = true;
3924
3925 /*
3926 * If ow_inode has its rename operation delayed
3927 * make sure that its orphanized name is used in
3928 * the source path when performing its rename
3929 * operation.
3930 */
3931 if (is_waiting_for_move(sctx, ow_inode)) {
3932 wdm = get_waiting_dir_move(sctx,
3933 ow_inode);
3934 ASSERT(wdm);
3935 wdm->orphanized = true;
3936 }
3937
3938 /*
3939 * Make sure we clear our orphanized inode's
3940 * name from the name cache. This is because the
3941 * inode ow_inode might be an ancestor of some
3942 * other inode that will be orphanized as well
3943 * later and has an inode number greater than
3944 * sctx->send_progress. We need to prevent
3945 * future name lookups from using the old name
3946 * and get instead the orphan name.
3947 */
3948 nce = name_cache_search(sctx, ow_inode, ow_gen);
3949 if (nce) {
3950 name_cache_delete(sctx, nce);
3951 kfree(nce);
3952 }
3953
3954 /*
3955 * ow_inode might currently be an ancestor of
3956 * cur_ino, therefore compute valid_path (the
3957 * current path of cur_ino) again because it
3958 * might contain the pre-orphanization name of
3959 * ow_inode, which is no longer valid.
3960 */
3961 ret = is_ancestor(sctx->parent_root,
3962 ow_inode, ow_gen,
3963 sctx->cur_ino, NULL);
3964 if (ret > 0) {
3965 orphanized_ancestor = true;
3966 fs_path_reset(valid_path);
3967 ret = get_cur_path(sctx, sctx->cur_ino,
3968 sctx->cur_inode_gen,
3969 valid_path);
3970 }
3971 if (ret < 0)
3972 goto out;
3973 } else {
3974 ret = send_unlink(sctx, cur->full_path);
3975 if (ret < 0)
3976 goto out;
3977 }
3978 }
3979
3980 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3981 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3982 if (ret < 0)
3983 goto out;
3984 if (ret == 1) {
3985 can_rename = false;
3986 *pending_move = 1;
3987 }
3988 }
3989
3990 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3991 can_rename) {
3992 ret = wait_for_parent_move(sctx, cur, is_orphan);
3993 if (ret < 0)
3994 goto out;
3995 if (ret == 1) {
3996 can_rename = false;
3997 *pending_move = 1;
3998 }
3999 }
4000
4001 /*
4002 * link/move the ref to the new place. If we have an orphan
4003 * inode, move it and update valid_path. If not, link or move
4004 * it depending on the inode mode.
4005 */
4006 if (is_orphan && can_rename) {
4007 ret = send_rename(sctx, valid_path, cur->full_path);
4008 if (ret < 0)
4009 goto out;
4010 is_orphan = 0;
4011 ret = fs_path_copy(valid_path, cur->full_path);
4012 if (ret < 0)
4013 goto out;
4014 } else if (can_rename) {
4015 if (S_ISDIR(sctx->cur_inode_mode)) {
4016 /*
4017 * Dirs can't be linked, so move it. For moved
4018 * dirs, we always have one new and one deleted
4019 * ref. The deleted ref is ignored later.
4020 */
4021 ret = send_rename(sctx, valid_path,
4022 cur->full_path);
4023 if (!ret)
4024 ret = fs_path_copy(valid_path,
4025 cur->full_path);
4026 if (ret < 0)
4027 goto out;
4028 } else {
4029 /*
4030 * We might have previously orphanized an inode
4031 * which is an ancestor of our current inode,
4032 * so our reference's full path, which was
4033 * computed before any such orphanizations, must
4034 * be updated.
4035 */
4036 if (orphanized_dir) {
4037 ret = update_ref_path(sctx, cur);
4038 if (ret < 0)
4039 goto out;
4040 }
4041 ret = send_link(sctx, cur->full_path,
4042 valid_path);
4043 if (ret < 0)
4044 goto out;
4045 }
4046 }
4047 ret = dup_ref(cur, &check_dirs);
4048 if (ret < 0)
4049 goto out;
4050 }
4051
4052 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4053 /*
4054 * Check if we can already rmdir the directory. If not,
4055 * orphanize it. For every dir item inside that gets deleted
4056 * later, we do this check again and rmdir it then if possible.
4057 * See the use of check_dirs for more details.
4058 */
4059 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4060 sctx->cur_ino);
4061 if (ret < 0)
4062 goto out;
4063 if (ret) {
4064 ret = send_rmdir(sctx, valid_path);
4065 if (ret < 0)
4066 goto out;
4067 } else if (!is_orphan) {
4068 ret = orphanize_inode(sctx, sctx->cur_ino,
4069 sctx->cur_inode_gen, valid_path);
4070 if (ret < 0)
4071 goto out;
4072 is_orphan = 1;
4073 }
4074
4075 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4076 ret = dup_ref(cur, &check_dirs);
4077 if (ret < 0)
4078 goto out;
4079 }
4080 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4081 !list_empty(&sctx->deleted_refs)) {
4082 /*
4083 * We have a moved dir. Add the old parent to check_dirs
4084 */
4085 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4086 list);
4087 ret = dup_ref(cur, &check_dirs);
4088 if (ret < 0)
4089 goto out;
4090 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4091 /*
4092 * We have a non dir inode. Go through all deleted refs and
4093 * unlink them if they were not already overwritten by other
4094 * inodes.
4095 */
4096 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4097 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4098 sctx->cur_ino, sctx->cur_inode_gen,
4099 cur->name, cur->name_len);
4100 if (ret < 0)
4101 goto out;
4102 if (!ret) {
4103 /*
4104 * If we orphanized any ancestor before, we need
4105 * to recompute the full path for deleted names,
4106 * since any such path was computed before we
4107 * processed any references and orphanized any
4108 * ancestor inode.
4109 */
4110 if (orphanized_ancestor) {
4111 ret = update_ref_path(sctx, cur);
4112 if (ret < 0)
4113 goto out;
4114 }
4115 ret = send_unlink(sctx, cur->full_path);
4116 if (ret < 0)
4117 goto out;
4118 }
4119 ret = dup_ref(cur, &check_dirs);
4120 if (ret < 0)
4121 goto out;
4122 }
4123 /*
4124 * If the inode is still orphan, unlink the orphan. This may
4125 * happen when a previous inode did overwrite the first ref
4126 * of this inode and no new refs were added for the current
4127 * inode. Unlinking does not mean that the inode is deleted in
4128 * all cases. There may still be links to this inode in other
4129 * places.
4130 */
4131 if (is_orphan) {
4132 ret = send_unlink(sctx, valid_path);
4133 if (ret < 0)
4134 goto out;
4135 }
4136 }
4137
4138 /*
4139 * We did collect all parent dirs where cur_inode was once located. We
4140 * now go through all these dirs and check if they are pending for
4141 * deletion and if it's finally possible to perform the rmdir now.
4142 * We also update the inode stats of the parent dirs here.
4143 */
4144 list_for_each_entry(cur, &check_dirs, list) {
4145 /*
4146 * In case we had refs into dirs that were not processed yet,
4147 * we don't need to do the utime and rmdir logic for these dirs.
4148 * The dir will be processed later.
4149 */
4150 if (cur->dir > sctx->cur_ino)
4151 continue;
4152
4153 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4154 if (ret < 0)
4155 goto out;
4156
4157 if (ret == inode_state_did_create ||
4158 ret == inode_state_no_change) {
4159 /* TODO delayed utimes */
4160 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4161 if (ret < 0)
4162 goto out;
4163 } else if (ret == inode_state_did_delete &&
4164 cur->dir != last_dir_ino_rm) {
4165 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4166 sctx->cur_ino);
4167 if (ret < 0)
4168 goto out;
4169 if (ret) {
4170 ret = get_cur_path(sctx, cur->dir,
4171 cur->dir_gen, valid_path);
4172 if (ret < 0)
4173 goto out;
4174 ret = send_rmdir(sctx, valid_path);
4175 if (ret < 0)
4176 goto out;
4177 last_dir_ino_rm = cur->dir;
4178 }
4179 }
4180 }
4181
4182 ret = 0;
4183
4184 out:
4185 __free_recorded_refs(&check_dirs);
4186 free_recorded_refs(sctx);
4187 fs_path_free(valid_path);
4188 return ret;
4189 }
4190
4191 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4192 void *ctx, struct list_head *refs)
4193 {
4194 int ret = 0;
4195 struct send_ctx *sctx = ctx;
4196 struct fs_path *p;
4197 u64 gen;
4198
4199 p = fs_path_alloc();
4200 if (!p)
4201 return -ENOMEM;
4202
4203 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4204 NULL, NULL);
4205 if (ret < 0)
4206 goto out;
4207
4208 ret = get_cur_path(sctx, dir, gen, p);
4209 if (ret < 0)
4210 goto out;
4211 ret = fs_path_add_path(p, name);
4212 if (ret < 0)
4213 goto out;
4214
4215 ret = __record_ref(refs, dir, gen, p);
4216
4217 out:
4218 if (ret)
4219 fs_path_free(p);
4220 return ret;
4221 }
4222
4223 static int __record_new_ref(int num, u64 dir, int index,
4224 struct fs_path *name,
4225 void *ctx)
4226 {
4227 struct send_ctx *sctx = ctx;
4228 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4229 }
4230
4231
4232 static int __record_deleted_ref(int num, u64 dir, int index,
4233 struct fs_path *name,
4234 void *ctx)
4235 {
4236 struct send_ctx *sctx = ctx;
4237 return record_ref(sctx->parent_root, dir, name, ctx,
4238 &sctx->deleted_refs);
4239 }
4240
4241 static int record_new_ref(struct send_ctx *sctx)
4242 {
4243 int ret;
4244
4245 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4246 sctx->cmp_key, 0, __record_new_ref, sctx);
4247 if (ret < 0)
4248 goto out;
4249 ret = 0;
4250
4251 out:
4252 return ret;
4253 }
4254
4255 static int record_deleted_ref(struct send_ctx *sctx)
4256 {
4257 int ret;
4258
4259 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4260 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4261 if (ret < 0)
4262 goto out;
4263 ret = 0;
4264
4265 out:
4266 return ret;
4267 }
4268
4269 struct find_ref_ctx {
4270 u64 dir;
4271 u64 dir_gen;
4272 struct btrfs_root *root;
4273 struct fs_path *name;
4274 int found_idx;
4275 };
4276
4277 static int __find_iref(int num, u64 dir, int index,
4278 struct fs_path *name,
4279 void *ctx_)
4280 {
4281 struct find_ref_ctx *ctx = ctx_;
4282 u64 dir_gen;
4283 int ret;
4284
4285 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4286 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4287 /*
4288 * To avoid doing extra lookups we'll only do this if everything
4289 * else matches.
4290 */
4291 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4292 NULL, NULL, NULL);
4293 if (ret)
4294 return ret;
4295 if (dir_gen != ctx->dir_gen)
4296 return 0;
4297 ctx->found_idx = num;
4298 return 1;
4299 }
4300 return 0;
4301 }
4302
4303 static int find_iref(struct btrfs_root *root,
4304 struct btrfs_path *path,
4305 struct btrfs_key *key,
4306 u64 dir, u64 dir_gen, struct fs_path *name)
4307 {
4308 int ret;
4309 struct find_ref_ctx ctx;
4310
4311 ctx.dir = dir;
4312 ctx.name = name;
4313 ctx.dir_gen = dir_gen;
4314 ctx.found_idx = -1;
4315 ctx.root = root;
4316
4317 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4318 if (ret < 0)
4319 return ret;
4320
4321 if (ctx.found_idx == -1)
4322 return -ENOENT;
4323
4324 return ctx.found_idx;
4325 }
4326
4327 static int __record_changed_new_ref(int num, u64 dir, int index,
4328 struct fs_path *name,
4329 void *ctx)
4330 {
4331 u64 dir_gen;
4332 int ret;
4333 struct send_ctx *sctx = ctx;
4334
4335 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4336 NULL, NULL, NULL);
4337 if (ret)
4338 return ret;
4339
4340 ret = find_iref(sctx->parent_root, sctx->right_path,
4341 sctx->cmp_key, dir, dir_gen, name);
4342 if (ret == -ENOENT)
4343 ret = __record_new_ref(num, dir, index, name, sctx);
4344 else if (ret > 0)
4345 ret = 0;
4346
4347 return ret;
4348 }
4349
4350 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4351 struct fs_path *name,
4352 void *ctx)
4353 {
4354 u64 dir_gen;
4355 int ret;
4356 struct send_ctx *sctx = ctx;
4357
4358 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4359 NULL, NULL, NULL);
4360 if (ret)
4361 return ret;
4362
4363 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4364 dir, dir_gen, name);
4365 if (ret == -ENOENT)
4366 ret = __record_deleted_ref(num, dir, index, name, sctx);
4367 else if (ret > 0)
4368 ret = 0;
4369
4370 return ret;
4371 }
4372
4373 static int record_changed_ref(struct send_ctx *sctx)
4374 {
4375 int ret = 0;
4376
4377 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4378 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4379 if (ret < 0)
4380 goto out;
4381 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4382 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4383 if (ret < 0)
4384 goto out;
4385 ret = 0;
4386
4387 out:
4388 return ret;
4389 }
4390
4391 /*
4392 * Record and process all refs at once. Needed when an inode changes the
4393 * generation number, which means that it was deleted and recreated.
4394 */
4395 static int process_all_refs(struct send_ctx *sctx,
4396 enum btrfs_compare_tree_result cmd)
4397 {
4398 int ret;
4399 struct btrfs_root *root;
4400 struct btrfs_path *path;
4401 struct btrfs_key key;
4402 struct btrfs_key found_key;
4403 struct extent_buffer *eb;
4404 int slot;
4405 iterate_inode_ref_t cb;
4406 int pending_move = 0;
4407
4408 path = alloc_path_for_send();
4409 if (!path)
4410 return -ENOMEM;
4411
4412 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4413 root = sctx->send_root;
4414 cb = __record_new_ref;
4415 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4416 root = sctx->parent_root;
4417 cb = __record_deleted_ref;
4418 } else {
4419 btrfs_err(sctx->send_root->fs_info,
4420 "Wrong command %d in process_all_refs", cmd);
4421 ret = -EINVAL;
4422 goto out;
4423 }
4424
4425 key.objectid = sctx->cmp_key->objectid;
4426 key.type = BTRFS_INODE_REF_KEY;
4427 key.offset = 0;
4428 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4429 if (ret < 0)
4430 goto out;
4431
4432 while (1) {
4433 eb = path->nodes[0];
4434 slot = path->slots[0];
4435 if (slot >= btrfs_header_nritems(eb)) {
4436 ret = btrfs_next_leaf(root, path);
4437 if (ret < 0)
4438 goto out;
4439 else if (ret > 0)
4440 break;
4441 continue;
4442 }
4443
4444 btrfs_item_key_to_cpu(eb, &found_key, slot);
4445
4446 if (found_key.objectid != key.objectid ||
4447 (found_key.type != BTRFS_INODE_REF_KEY &&
4448 found_key.type != BTRFS_INODE_EXTREF_KEY))
4449 break;
4450
4451 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4452 if (ret < 0)
4453 goto out;
4454
4455 path->slots[0]++;
4456 }
4457 btrfs_release_path(path);
4458
4459 /*
4460 * We don't actually care about pending_move as we are simply
4461 * re-creating this inode and will be rename'ing it into place once we
4462 * rename the parent directory.
4463 */
4464 ret = process_recorded_refs(sctx, &pending_move);
4465 out:
4466 btrfs_free_path(path);
4467 return ret;
4468 }
4469
4470 static int send_set_xattr(struct send_ctx *sctx,
4471 struct fs_path *path,
4472 const char *name, int name_len,
4473 const char *data, int data_len)
4474 {
4475 int ret = 0;
4476
4477 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4478 if (ret < 0)
4479 goto out;
4480
4481 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4482 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4483 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4484
4485 ret = send_cmd(sctx);
4486
4487 tlv_put_failure:
4488 out:
4489 return ret;
4490 }
4491
4492 static int send_remove_xattr(struct send_ctx *sctx,
4493 struct fs_path *path,
4494 const char *name, int name_len)
4495 {
4496 int ret = 0;
4497
4498 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4499 if (ret < 0)
4500 goto out;
4501
4502 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4503 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4504
4505 ret = send_cmd(sctx);
4506
4507 tlv_put_failure:
4508 out:
4509 return ret;
4510 }
4511
4512 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4513 const char *name, int name_len,
4514 const char *data, int data_len,
4515 u8 type, void *ctx)
4516 {
4517 int ret;
4518 struct send_ctx *sctx = ctx;
4519 struct fs_path *p;
4520 struct posix_acl_xattr_header dummy_acl;
4521
4522 p = fs_path_alloc();
4523 if (!p)
4524 return -ENOMEM;
4525
4526 /*
4527 * This hack is needed because empty acls are stored as zero byte
4528 * data in xattrs. Problem with that is, that receiving these zero byte
4529 * acls will fail later. To fix this, we send a dummy acl list that
4530 * only contains the version number and no entries.
4531 */
4532 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4533 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4534 if (data_len == 0) {
4535 dummy_acl.a_version =
4536 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4537 data = (char *)&dummy_acl;
4538 data_len = sizeof(dummy_acl);
4539 }
4540 }
4541
4542 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4543 if (ret < 0)
4544 goto out;
4545
4546 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4547
4548 out:
4549 fs_path_free(p);
4550 return ret;
4551 }
4552
4553 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4554 const char *name, int name_len,
4555 const char *data, int data_len,
4556 u8 type, void *ctx)
4557 {
4558 int ret;
4559 struct send_ctx *sctx = ctx;
4560 struct fs_path *p;
4561
4562 p = fs_path_alloc();
4563 if (!p)
4564 return -ENOMEM;
4565
4566 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4567 if (ret < 0)
4568 goto out;
4569
4570 ret = send_remove_xattr(sctx, p, name, name_len);
4571
4572 out:
4573 fs_path_free(p);
4574 return ret;
4575 }
4576
4577 static int process_new_xattr(struct send_ctx *sctx)
4578 {
4579 int ret = 0;
4580
4581 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4582 __process_new_xattr, sctx);
4583
4584 return ret;
4585 }
4586
4587 static int process_deleted_xattr(struct send_ctx *sctx)
4588 {
4589 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4590 __process_deleted_xattr, sctx);
4591 }
4592
4593 struct find_xattr_ctx {
4594 const char *name;
4595 int name_len;
4596 int found_idx;
4597 char *found_data;
4598 int found_data_len;
4599 };
4600
4601 static int __find_xattr(int num, struct btrfs_key *di_key,
4602 const char *name, int name_len,
4603 const char *data, int data_len,
4604 u8 type, void *vctx)
4605 {
4606 struct find_xattr_ctx *ctx = vctx;
4607
4608 if (name_len == ctx->name_len &&
4609 strncmp(name, ctx->name, name_len) == 0) {
4610 ctx->found_idx = num;
4611 ctx->found_data_len = data_len;
4612 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4613 if (!ctx->found_data)
4614 return -ENOMEM;
4615 return 1;
4616 }
4617 return 0;
4618 }
4619
4620 static int find_xattr(struct btrfs_root *root,
4621 struct btrfs_path *path,
4622 struct btrfs_key *key,
4623 const char *name, int name_len,
4624 char **data, int *data_len)
4625 {
4626 int ret;
4627 struct find_xattr_ctx ctx;
4628
4629 ctx.name = name;
4630 ctx.name_len = name_len;
4631 ctx.found_idx = -1;
4632 ctx.found_data = NULL;
4633 ctx.found_data_len = 0;
4634
4635 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4636 if (ret < 0)
4637 return ret;
4638
4639 if (ctx.found_idx == -1)
4640 return -ENOENT;
4641 if (data) {
4642 *data = ctx.found_data;
4643 *data_len = ctx.found_data_len;
4644 } else {
4645 kfree(ctx.found_data);
4646 }
4647 return ctx.found_idx;
4648 }
4649
4650
4651 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4652 const char *name, int name_len,
4653 const char *data, int data_len,
4654 u8 type, void *ctx)
4655 {
4656 int ret;
4657 struct send_ctx *sctx = ctx;
4658 char *found_data = NULL;
4659 int found_data_len = 0;
4660
4661 ret = find_xattr(sctx->parent_root, sctx->right_path,
4662 sctx->cmp_key, name, name_len, &found_data,
4663 &found_data_len);
4664 if (ret == -ENOENT) {
4665 ret = __process_new_xattr(num, di_key, name, name_len, data,
4666 data_len, type, ctx);
4667 } else if (ret >= 0) {
4668 if (data_len != found_data_len ||
4669 memcmp(data, found_data, data_len)) {
4670 ret = __process_new_xattr(num, di_key, name, name_len,
4671 data, data_len, type, ctx);
4672 } else {
4673 ret = 0;
4674 }
4675 }
4676
4677 kfree(found_data);
4678 return ret;
4679 }
4680
4681 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4682 const char *name, int name_len,
4683 const char *data, int data_len,
4684 u8 type, void *ctx)
4685 {
4686 int ret;
4687 struct send_ctx *sctx = ctx;
4688
4689 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4690 name, name_len, NULL, NULL);
4691 if (ret == -ENOENT)
4692 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4693 data_len, type, ctx);
4694 else if (ret >= 0)
4695 ret = 0;
4696
4697 return ret;
4698 }
4699
4700 static int process_changed_xattr(struct send_ctx *sctx)
4701 {
4702 int ret = 0;
4703
4704 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4705 __process_changed_new_xattr, sctx);
4706 if (ret < 0)
4707 goto out;
4708 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4709 __process_changed_deleted_xattr, sctx);
4710
4711 out:
4712 return ret;
4713 }
4714
4715 static int process_all_new_xattrs(struct send_ctx *sctx)
4716 {
4717 int ret;
4718 struct btrfs_root *root;
4719 struct btrfs_path *path;
4720 struct btrfs_key key;
4721 struct btrfs_key found_key;
4722 struct extent_buffer *eb;
4723 int slot;
4724
4725 path = alloc_path_for_send();
4726 if (!path)
4727 return -ENOMEM;
4728
4729 root = sctx->send_root;
4730
4731 key.objectid = sctx->cmp_key->objectid;
4732 key.type = BTRFS_XATTR_ITEM_KEY;
4733 key.offset = 0;
4734 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4735 if (ret < 0)
4736 goto out;
4737
4738 while (1) {
4739 eb = path->nodes[0];
4740 slot = path->slots[0];
4741 if (slot >= btrfs_header_nritems(eb)) {
4742 ret = btrfs_next_leaf(root, path);
4743 if (ret < 0) {
4744 goto out;
4745 } else if (ret > 0) {
4746 ret = 0;
4747 break;
4748 }
4749 continue;
4750 }
4751
4752 btrfs_item_key_to_cpu(eb, &found_key, slot);
4753 if (found_key.objectid != key.objectid ||
4754 found_key.type != key.type) {
4755 ret = 0;
4756 goto out;
4757 }
4758
4759 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4760 if (ret < 0)
4761 goto out;
4762
4763 path->slots[0]++;
4764 }
4765
4766 out:
4767 btrfs_free_path(path);
4768 return ret;
4769 }
4770
4771 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4772 {
4773 struct btrfs_root *root = sctx->send_root;
4774 struct btrfs_fs_info *fs_info = root->fs_info;
4775 struct inode *inode;
4776 struct page *page;
4777 char *addr;
4778 struct btrfs_key key;
4779 pgoff_t index = offset >> PAGE_SHIFT;
4780 pgoff_t last_index;
4781 unsigned pg_offset = offset & ~PAGE_MASK;
4782 ssize_t ret = 0;
4783
4784 key.objectid = sctx->cur_ino;
4785 key.type = BTRFS_INODE_ITEM_KEY;
4786 key.offset = 0;
4787
4788 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4789 if (IS_ERR(inode))
4790 return PTR_ERR(inode);
4791
4792 if (offset + len > i_size_read(inode)) {
4793 if (offset > i_size_read(inode))
4794 len = 0;
4795 else
4796 len = offset - i_size_read(inode);
4797 }
4798 if (len == 0)
4799 goto out;
4800
4801 last_index = (offset + len - 1) >> PAGE_SHIFT;
4802
4803 /* initial readahead */
4804 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4805 file_ra_state_init(&sctx->ra, inode->i_mapping);
4806
4807 while (index <= last_index) {
4808 unsigned cur_len = min_t(unsigned, len,
4809 PAGE_SIZE - pg_offset);
4810
4811 page = find_lock_page(inode->i_mapping, index);
4812 if (!page) {
4813 page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4814 NULL, index, last_index + 1 - index);
4815
4816 page = find_or_create_page(inode->i_mapping, index,
4817 GFP_KERNEL);
4818 if (!page) {
4819 ret = -ENOMEM;
4820 break;
4821 }
4822 }
4823
4824 if (PageReadahead(page)) {
4825 page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4826 NULL, page, index, last_index + 1 - index);
4827 }
4828
4829 if (!PageUptodate(page)) {
4830 btrfs_readpage(NULL, page);
4831 lock_page(page);
4832 if (!PageUptodate(page)) {
4833 unlock_page(page);
4834 put_page(page);
4835 ret = -EIO;
4836 break;
4837 }
4838 }
4839
4840 addr = kmap(page);
4841 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4842 kunmap(page);
4843 unlock_page(page);
4844 put_page(page);
4845 index++;
4846 pg_offset = 0;
4847 len -= cur_len;
4848 ret += cur_len;
4849 }
4850 out:
4851 iput(inode);
4852 return ret;
4853 }
4854
4855 /*
4856 * Read some bytes from the current inode/file and send a write command to
4857 * user space.
4858 */
4859 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4860 {
4861 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4862 int ret = 0;
4863 struct fs_path *p;
4864 ssize_t num_read = 0;
4865
4866 p = fs_path_alloc();
4867 if (!p)
4868 return -ENOMEM;
4869
4870 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4871
4872 num_read = fill_read_buf(sctx, offset, len);
4873 if (num_read <= 0) {
4874 if (num_read < 0)
4875 ret = num_read;
4876 goto out;
4877 }
4878
4879 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4880 if (ret < 0)
4881 goto out;
4882
4883 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4884 if (ret < 0)
4885 goto out;
4886
4887 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4888 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4889 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4890
4891 ret = send_cmd(sctx);
4892
4893 tlv_put_failure:
4894 out:
4895 fs_path_free(p);
4896 if (ret < 0)
4897 return ret;
4898 return num_read;
4899 }
4900
4901 /*
4902 * Send a clone command to user space.
4903 */
4904 static int send_clone(struct send_ctx *sctx,
4905 u64 offset, u32 len,
4906 struct clone_root *clone_root)
4907 {
4908 int ret = 0;
4909 struct fs_path *p;
4910 u64 gen;
4911
4912 btrfs_debug(sctx->send_root->fs_info,
4913 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4914 offset, len, clone_root->root->objectid, clone_root->ino,
4915 clone_root->offset);
4916
4917 p = fs_path_alloc();
4918 if (!p)
4919 return -ENOMEM;
4920
4921 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4922 if (ret < 0)
4923 goto out;
4924
4925 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4926 if (ret < 0)
4927 goto out;
4928
4929 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4930 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4931 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4932
4933 if (clone_root->root == sctx->send_root) {
4934 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4935 &gen, NULL, NULL, NULL, NULL);
4936 if (ret < 0)
4937 goto out;
4938 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4939 } else {
4940 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4941 }
4942 if (ret < 0)
4943 goto out;
4944
4945 /*
4946 * If the parent we're using has a received_uuid set then use that as
4947 * our clone source as that is what we will look for when doing a
4948 * receive.
4949 *
4950 * This covers the case that we create a snapshot off of a received
4951 * subvolume and then use that as the parent and try to receive on a
4952 * different host.
4953 */
4954 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4955 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4956 clone_root->root->root_item.received_uuid);
4957 else
4958 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4959 clone_root->root->root_item.uuid);
4960 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4961 le64_to_cpu(clone_root->root->root_item.ctransid));
4962 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4963 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4964 clone_root->offset);
4965
4966 ret = send_cmd(sctx);
4967
4968 tlv_put_failure:
4969 out:
4970 fs_path_free(p);
4971 return ret;
4972 }
4973
4974 /*
4975 * Send an update extent command to user space.
4976 */
4977 static int send_update_extent(struct send_ctx *sctx,
4978 u64 offset, u32 len)
4979 {
4980 int ret = 0;
4981 struct fs_path *p;
4982
4983 p = fs_path_alloc();
4984 if (!p)
4985 return -ENOMEM;
4986
4987 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4988 if (ret < 0)
4989 goto out;
4990
4991 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4992 if (ret < 0)
4993 goto out;
4994
4995 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4996 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4997 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4998
4999 ret = send_cmd(sctx);
5000
5001 tlv_put_failure:
5002 out:
5003 fs_path_free(p);
5004 return ret;
5005 }
5006
5007 static int send_hole(struct send_ctx *sctx, u64 end)
5008 {
5009 struct fs_path *p = NULL;
5010 u64 offset = sctx->cur_inode_last_extent;
5011 u64 len;
5012 int ret = 0;
5013
5014 p = fs_path_alloc();
5015 if (!p)
5016 return -ENOMEM;
5017 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5018 if (ret < 0)
5019 goto tlv_put_failure;
5020 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5021 while (offset < end) {
5022 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5023
5024 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5025 if (ret < 0)
5026 break;
5027 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5028 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5029 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5030 ret = send_cmd(sctx);
5031 if (ret < 0)
5032 break;
5033 offset += len;
5034 }
5035 tlv_put_failure:
5036 fs_path_free(p);
5037 return ret;
5038 }
5039
5040 static int send_extent_data(struct send_ctx *sctx,
5041 const u64 offset,
5042 const u64 len)
5043 {
5044 u64 sent = 0;
5045
5046 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5047 return send_update_extent(sctx, offset, len);
5048
5049 while (sent < len) {
5050 u64 size = len - sent;
5051 int ret;
5052
5053 if (size > BTRFS_SEND_READ_SIZE)
5054 size = BTRFS_SEND_READ_SIZE;
5055 ret = send_write(sctx, offset + sent, size);
5056 if (ret < 0)
5057 return ret;
5058 if (!ret)
5059 break;
5060 sent += ret;
5061 }
5062 return 0;
5063 }
5064
5065 static int clone_range(struct send_ctx *sctx,
5066 struct clone_root *clone_root,
5067 const u64 disk_byte,
5068 u64 data_offset,
5069 u64 offset,
5070 u64 len)
5071 {
5072 struct btrfs_path *path;
5073 struct btrfs_key key;
5074 int ret;
5075
5076 /*
5077 * Prevent cloning from a zero offset with a length matching the sector
5078 * size because in some scenarios this will make the receiver fail.
5079 *
5080 * For example, if in the source filesystem the extent at offset 0
5081 * has a length of sectorsize and it was written using direct IO, then
5082 * it can never be an inline extent (even if compression is enabled).
5083 * Then this extent can be cloned in the original filesystem to a non
5084 * zero file offset, but it may not be possible to clone in the
5085 * destination filesystem because it can be inlined due to compression
5086 * on the destination filesystem (as the receiver's write operations are
5087 * always done using buffered IO). The same happens when the original
5088 * filesystem does not have compression enabled but the destination
5089 * filesystem has.
5090 */
5091 if (clone_root->offset == 0 &&
5092 len == sctx->send_root->fs_info->sectorsize)
5093 return send_extent_data(sctx, offset, len);
5094
5095 path = alloc_path_for_send();
5096 if (!path)
5097 return -ENOMEM;
5098
5099 /*
5100 * We can't send a clone operation for the entire range if we find
5101 * extent items in the respective range in the source file that
5102 * refer to different extents or if we find holes.
5103 * So check for that and do a mix of clone and regular write/copy
5104 * operations if needed.
5105 *
5106 * Example:
5107 *
5108 * mkfs.btrfs -f /dev/sda
5109 * mount /dev/sda /mnt
5110 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5111 * cp --reflink=always /mnt/foo /mnt/bar
5112 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5113 * btrfs subvolume snapshot -r /mnt /mnt/snap
5114 *
5115 * If when we send the snapshot and we are processing file bar (which
5116 * has a higher inode number than foo) we blindly send a clone operation
5117 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5118 * a file bar that matches the content of file foo - iow, doesn't match
5119 * the content from bar in the original filesystem.
5120 */
5121 key.objectid = clone_root->ino;
5122 key.type = BTRFS_EXTENT_DATA_KEY;
5123 key.offset = clone_root->offset;
5124 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5125 if (ret < 0)
5126 goto out;
5127 if (ret > 0 && path->slots[0] > 0) {
5128 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5129 if (key.objectid == clone_root->ino &&
5130 key.type == BTRFS_EXTENT_DATA_KEY)
5131 path->slots[0]--;
5132 }
5133
5134 while (true) {
5135 struct extent_buffer *leaf = path->nodes[0];
5136 int slot = path->slots[0];
5137 struct btrfs_file_extent_item *ei;
5138 u8 type;
5139 u64 ext_len;
5140 u64 clone_len;
5141
5142 if (slot >= btrfs_header_nritems(leaf)) {
5143 ret = btrfs_next_leaf(clone_root->root, path);
5144 if (ret < 0)
5145 goto out;
5146 else if (ret > 0)
5147 break;
5148 continue;
5149 }
5150
5151 btrfs_item_key_to_cpu(leaf, &key, slot);
5152
5153 /*
5154 * We might have an implicit trailing hole (NO_HOLES feature
5155 * enabled). We deal with it after leaving this loop.
5156 */
5157 if (key.objectid != clone_root->ino ||
5158 key.type != BTRFS_EXTENT_DATA_KEY)
5159 break;
5160
5161 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5162 type = btrfs_file_extent_type(leaf, ei);
5163 if (type == BTRFS_FILE_EXTENT_INLINE) {
5164 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5165 ext_len = PAGE_ALIGN(ext_len);
5166 } else {
5167 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5168 }
5169
5170 if (key.offset + ext_len <= clone_root->offset)
5171 goto next;
5172
5173 if (key.offset > clone_root->offset) {
5174 /* Implicit hole, NO_HOLES feature enabled. */
5175 u64 hole_len = key.offset - clone_root->offset;
5176
5177 if (hole_len > len)
5178 hole_len = len;
5179 ret = send_extent_data(sctx, offset, hole_len);
5180 if (ret < 0)
5181 goto out;
5182
5183 len -= hole_len;
5184 if (len == 0)
5185 break;
5186 offset += hole_len;
5187 clone_root->offset += hole_len;
5188 data_offset += hole_len;
5189 }
5190
5191 if (key.offset >= clone_root->offset + len)
5192 break;
5193
5194 clone_len = min_t(u64, ext_len, len);
5195
5196 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5197 btrfs_file_extent_offset(leaf, ei) == data_offset)
5198 ret = send_clone(sctx, offset, clone_len, clone_root);
5199 else
5200 ret = send_extent_data(sctx, offset, clone_len);
5201
5202 if (ret < 0)
5203 goto out;
5204
5205 len -= clone_len;
5206 if (len == 0)
5207 break;
5208 offset += clone_len;
5209 clone_root->offset += clone_len;
5210 data_offset += clone_len;
5211 next:
5212 path->slots[0]++;
5213 }
5214
5215 if (len > 0)
5216 ret = send_extent_data(sctx, offset, len);
5217 else
5218 ret = 0;
5219 out:
5220 btrfs_free_path(path);
5221 return ret;
5222 }
5223
5224 static int send_write_or_clone(struct send_ctx *sctx,
5225 struct btrfs_path *path,
5226 struct btrfs_key *key,
5227 struct clone_root *clone_root)
5228 {
5229 int ret = 0;
5230 struct btrfs_file_extent_item *ei;
5231 u64 offset = key->offset;
5232 u64 len;
5233 u8 type;
5234 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5235
5236 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5237 struct btrfs_file_extent_item);
5238 type = btrfs_file_extent_type(path->nodes[0], ei);
5239 if (type == BTRFS_FILE_EXTENT_INLINE) {
5240 len = btrfs_file_extent_inline_len(path->nodes[0],
5241 path->slots[0], ei);
5242 /*
5243 * it is possible the inline item won't cover the whole page,
5244 * but there may be items after this page. Make
5245 * sure to send the whole thing
5246 */
5247 len = PAGE_ALIGN(len);
5248 } else {
5249 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5250 }
5251
5252 if (offset + len > sctx->cur_inode_size)
5253 len = sctx->cur_inode_size - offset;
5254 if (len == 0) {
5255 ret = 0;
5256 goto out;
5257 }
5258
5259 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5260 u64 disk_byte;
5261 u64 data_offset;
5262
5263 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5264 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5265 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5266 offset, len);
5267 } else {
5268 ret = send_extent_data(sctx, offset, len);
5269 }
5270 out:
5271 return ret;
5272 }
5273
5274 static int is_extent_unchanged(struct send_ctx *sctx,
5275 struct btrfs_path *left_path,
5276 struct btrfs_key *ekey)
5277 {
5278 int ret = 0;
5279 struct btrfs_key key;
5280 struct btrfs_path *path = NULL;
5281 struct extent_buffer *eb;
5282 int slot;
5283 struct btrfs_key found_key;
5284 struct btrfs_file_extent_item *ei;
5285 u64 left_disknr;
5286 u64 right_disknr;
5287 u64 left_offset;
5288 u64 right_offset;
5289 u64 left_offset_fixed;
5290 u64 left_len;
5291 u64 right_len;
5292 u64 left_gen;
5293 u64 right_gen;
5294 u8 left_type;
5295 u8 right_type;
5296
5297 path = alloc_path_for_send();
5298 if (!path)
5299 return -ENOMEM;
5300
5301 eb = left_path->nodes[0];
5302 slot = left_path->slots[0];
5303 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5304 left_type = btrfs_file_extent_type(eb, ei);
5305
5306 if (left_type != BTRFS_FILE_EXTENT_REG) {
5307 ret = 0;
5308 goto out;
5309 }
5310 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5311 left_len = btrfs_file_extent_num_bytes(eb, ei);
5312 left_offset = btrfs_file_extent_offset(eb, ei);
5313 left_gen = btrfs_file_extent_generation(eb, ei);
5314
5315 /*
5316 * Following comments will refer to these graphics. L is the left
5317 * extents which we are checking at the moment. 1-8 are the right
5318 * extents that we iterate.
5319 *
5320 * |-----L-----|
5321 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5322 *
5323 * |-----L-----|
5324 * |--1--|-2b-|...(same as above)
5325 *
5326 * Alternative situation. Happens on files where extents got split.
5327 * |-----L-----|
5328 * |-----------7-----------|-6-|
5329 *
5330 * Alternative situation. Happens on files which got larger.
5331 * |-----L-----|
5332 * |-8-|
5333 * Nothing follows after 8.
5334 */
5335
5336 key.objectid = ekey->objectid;
5337 key.type = BTRFS_EXTENT_DATA_KEY;
5338 key.offset = ekey->offset;
5339 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5340 if (ret < 0)
5341 goto out;
5342 if (ret) {
5343 ret = 0;
5344 goto out;
5345 }
5346
5347 /*
5348 * Handle special case where the right side has no extents at all.
5349 */
5350 eb = path->nodes[0];
5351 slot = path->slots[0];
5352 btrfs_item_key_to_cpu(eb, &found_key, slot);
5353 if (found_key.objectid != key.objectid ||
5354 found_key.type != key.type) {
5355 /* If we're a hole then just pretend nothing changed */
5356 ret = (left_disknr) ? 0 : 1;
5357 goto out;
5358 }
5359
5360 /*
5361 * We're now on 2a, 2b or 7.
5362 */
5363 key = found_key;
5364 while (key.offset < ekey->offset + left_len) {
5365 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5366 right_type = btrfs_file_extent_type(eb, ei);
5367 if (right_type != BTRFS_FILE_EXTENT_REG &&
5368 right_type != BTRFS_FILE_EXTENT_INLINE) {
5369 ret = 0;
5370 goto out;
5371 }
5372
5373 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5374 right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5375 right_len = PAGE_ALIGN(right_len);
5376 } else {
5377 right_len = btrfs_file_extent_num_bytes(eb, ei);
5378 }
5379
5380 /*
5381 * Are we at extent 8? If yes, we know the extent is changed.
5382 * This may only happen on the first iteration.
5383 */
5384 if (found_key.offset + right_len <= ekey->offset) {
5385 /* If we're a hole just pretend nothing changed */
5386 ret = (left_disknr) ? 0 : 1;
5387 goto out;
5388 }
5389
5390 /*
5391 * We just wanted to see if when we have an inline extent, what
5392 * follows it is a regular extent (wanted to check the above
5393 * condition for inline extents too). This should normally not
5394 * happen but it's possible for example when we have an inline
5395 * compressed extent representing data with a size matching
5396 * the page size (currently the same as sector size).
5397 */
5398 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5399 ret = 0;
5400 goto out;
5401 }
5402
5403 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5404 right_offset = btrfs_file_extent_offset(eb, ei);
5405 right_gen = btrfs_file_extent_generation(eb, ei);
5406
5407 left_offset_fixed = left_offset;
5408 if (key.offset < ekey->offset) {
5409 /* Fix the right offset for 2a and 7. */
5410 right_offset += ekey->offset - key.offset;
5411 } else {
5412 /* Fix the left offset for all behind 2a and 2b */
5413 left_offset_fixed += key.offset - ekey->offset;
5414 }
5415
5416 /*
5417 * Check if we have the same extent.
5418 */
5419 if (left_disknr != right_disknr ||
5420 left_offset_fixed != right_offset ||
5421 left_gen != right_gen) {
5422 ret = 0;
5423 goto out;
5424 }
5425
5426 /*
5427 * Go to the next extent.
5428 */
5429 ret = btrfs_next_item(sctx->parent_root, path);
5430 if (ret < 0)
5431 goto out;
5432 if (!ret) {
5433 eb = path->nodes[0];
5434 slot = path->slots[0];
5435 btrfs_item_key_to_cpu(eb, &found_key, slot);
5436 }
5437 if (ret || found_key.objectid != key.objectid ||
5438 found_key.type != key.type) {
5439 key.offset += right_len;
5440 break;
5441 }
5442 if (found_key.offset != key.offset + right_len) {
5443 ret = 0;
5444 goto out;
5445 }
5446 key = found_key;
5447 }
5448
5449 /*
5450 * We're now behind the left extent (treat as unchanged) or at the end
5451 * of the right side (treat as changed).
5452 */
5453 if (key.offset >= ekey->offset + left_len)
5454 ret = 1;
5455 else
5456 ret = 0;
5457
5458
5459 out:
5460 btrfs_free_path(path);
5461 return ret;
5462 }
5463
5464 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5465 {
5466 struct btrfs_path *path;
5467 struct btrfs_root *root = sctx->send_root;
5468 struct btrfs_file_extent_item *fi;
5469 struct btrfs_key key;
5470 u64 extent_end;
5471 u8 type;
5472 int ret;
5473
5474 path = alloc_path_for_send();
5475 if (!path)
5476 return -ENOMEM;
5477
5478 sctx->cur_inode_last_extent = 0;
5479
5480 key.objectid = sctx->cur_ino;
5481 key.type = BTRFS_EXTENT_DATA_KEY;
5482 key.offset = offset;
5483 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5484 if (ret < 0)
5485 goto out;
5486 ret = 0;
5487 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5488 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5489 goto out;
5490
5491 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5492 struct btrfs_file_extent_item);
5493 type = btrfs_file_extent_type(path->nodes[0], fi);
5494 if (type == BTRFS_FILE_EXTENT_INLINE) {
5495 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5496 path->slots[0], fi);
5497 extent_end = ALIGN(key.offset + size,
5498 sctx->send_root->fs_info->sectorsize);
5499 } else {
5500 extent_end = key.offset +
5501 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5502 }
5503 sctx->cur_inode_last_extent = extent_end;
5504 out:
5505 btrfs_free_path(path);
5506 return ret;
5507 }
5508
5509 static int range_is_hole_in_parent(struct send_ctx *sctx,
5510 const u64 start,
5511 const u64 end)
5512 {
5513 struct btrfs_path *path;
5514 struct btrfs_key key;
5515 struct btrfs_root *root = sctx->parent_root;
5516 u64 search_start = start;
5517 int ret;
5518
5519 path = alloc_path_for_send();
5520 if (!path)
5521 return -ENOMEM;
5522
5523 key.objectid = sctx->cur_ino;
5524 key.type = BTRFS_EXTENT_DATA_KEY;
5525 key.offset = search_start;
5526 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5527 if (ret < 0)
5528 goto out;
5529 if (ret > 0 && path->slots[0] > 0)
5530 path->slots[0]--;
5531
5532 while (search_start < end) {
5533 struct extent_buffer *leaf = path->nodes[0];
5534 int slot = path->slots[0];
5535 struct btrfs_file_extent_item *fi;
5536 u64 extent_end;
5537
5538 if (slot >= btrfs_header_nritems(leaf)) {
5539 ret = btrfs_next_leaf(root, path);
5540 if (ret < 0)
5541 goto out;
5542 else if (ret > 0)
5543 break;
5544 continue;
5545 }
5546
5547 btrfs_item_key_to_cpu(leaf, &key, slot);
5548 if (key.objectid < sctx->cur_ino ||
5549 key.type < BTRFS_EXTENT_DATA_KEY)
5550 goto next;
5551 if (key.objectid > sctx->cur_ino ||
5552 key.type > BTRFS_EXTENT_DATA_KEY ||
5553 key.offset >= end)
5554 break;
5555
5556 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5557 if (btrfs_file_extent_type(leaf, fi) ==
5558 BTRFS_FILE_EXTENT_INLINE) {
5559 u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5560
5561 extent_end = ALIGN(key.offset + size,
5562 root->fs_info->sectorsize);
5563 } else {
5564 extent_end = key.offset +
5565 btrfs_file_extent_num_bytes(leaf, fi);
5566 }
5567 if (extent_end <= start)
5568 goto next;
5569 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5570 search_start = extent_end;
5571 goto next;
5572 }
5573 ret = 0;
5574 goto out;
5575 next:
5576 path->slots[0]++;
5577 }
5578 ret = 1;
5579 out:
5580 btrfs_free_path(path);
5581 return ret;
5582 }
5583
5584 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5585 struct btrfs_key *key)
5586 {
5587 struct btrfs_file_extent_item *fi;
5588 u64 extent_end;
5589 u8 type;
5590 int ret = 0;
5591
5592 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5593 return 0;
5594
5595 if (sctx->cur_inode_last_extent == (u64)-1) {
5596 ret = get_last_extent(sctx, key->offset - 1);
5597 if (ret)
5598 return ret;
5599 }
5600
5601 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5602 struct btrfs_file_extent_item);
5603 type = btrfs_file_extent_type(path->nodes[0], fi);
5604 if (type == BTRFS_FILE_EXTENT_INLINE) {
5605 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5606 path->slots[0], fi);
5607 extent_end = ALIGN(key->offset + size,
5608 sctx->send_root->fs_info->sectorsize);
5609 } else {
5610 extent_end = key->offset +
5611 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5612 }
5613
5614 if (path->slots[0] == 0 &&
5615 sctx->cur_inode_last_extent < key->offset) {
5616 /*
5617 * We might have skipped entire leafs that contained only
5618 * file extent items for our current inode. These leafs have
5619 * a generation number smaller (older) than the one in the
5620 * current leaf and the leaf our last extent came from, and
5621 * are located between these 2 leafs.
5622 */
5623 ret = get_last_extent(sctx, key->offset - 1);
5624 if (ret)
5625 return ret;
5626 }
5627
5628 if (sctx->cur_inode_last_extent < key->offset) {
5629 ret = range_is_hole_in_parent(sctx,
5630 sctx->cur_inode_last_extent,
5631 key->offset);
5632 if (ret < 0)
5633 return ret;
5634 else if (ret == 0)
5635 ret = send_hole(sctx, key->offset);
5636 else
5637 ret = 0;
5638 }
5639 sctx->cur_inode_last_extent = extent_end;
5640 return ret;
5641 }
5642
5643 static int process_extent(struct send_ctx *sctx,
5644 struct btrfs_path *path,
5645 struct btrfs_key *key)
5646 {
5647 struct clone_root *found_clone = NULL;
5648 int ret = 0;
5649
5650 if (S_ISLNK(sctx->cur_inode_mode))
5651 return 0;
5652
5653 if (sctx->parent_root && !sctx->cur_inode_new) {
5654 ret = is_extent_unchanged(sctx, path, key);
5655 if (ret < 0)
5656 goto out;
5657 if (ret) {
5658 ret = 0;
5659 goto out_hole;
5660 }
5661 } else {
5662 struct btrfs_file_extent_item *ei;
5663 u8 type;
5664
5665 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5666 struct btrfs_file_extent_item);
5667 type = btrfs_file_extent_type(path->nodes[0], ei);
5668 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5669 type == BTRFS_FILE_EXTENT_REG) {
5670 /*
5671 * The send spec does not have a prealloc command yet,
5672 * so just leave a hole for prealloc'ed extents until
5673 * we have enough commands queued up to justify rev'ing
5674 * the send spec.
5675 */
5676 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5677 ret = 0;
5678 goto out;
5679 }
5680
5681 /* Have a hole, just skip it. */
5682 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5683 ret = 0;
5684 goto out;
5685 }
5686 }
5687 }
5688
5689 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5690 sctx->cur_inode_size, &found_clone);
5691 if (ret != -ENOENT && ret < 0)
5692 goto out;
5693
5694 ret = send_write_or_clone(sctx, path, key, found_clone);
5695 if (ret)
5696 goto out;
5697 out_hole:
5698 ret = maybe_send_hole(sctx, path, key);
5699 out:
5700 return ret;
5701 }
5702
5703 static int process_all_extents(struct send_ctx *sctx)
5704 {
5705 int ret;
5706 struct btrfs_root *root;
5707 struct btrfs_path *path;
5708 struct btrfs_key key;
5709 struct btrfs_key found_key;
5710 struct extent_buffer *eb;
5711 int slot;
5712
5713 root = sctx->send_root;
5714 path = alloc_path_for_send();
5715 if (!path)
5716 return -ENOMEM;
5717
5718 key.objectid = sctx->cmp_key->objectid;
5719 key.type = BTRFS_EXTENT_DATA_KEY;
5720 key.offset = 0;
5721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5722 if (ret < 0)
5723 goto out;
5724
5725 while (1) {
5726 eb = path->nodes[0];
5727 slot = path->slots[0];
5728
5729 if (slot >= btrfs_header_nritems(eb)) {
5730 ret = btrfs_next_leaf(root, path);
5731 if (ret < 0) {
5732 goto out;
5733 } else if (ret > 0) {
5734 ret = 0;
5735 break;
5736 }
5737 continue;
5738 }
5739
5740 btrfs_item_key_to_cpu(eb, &found_key, slot);
5741
5742 if (found_key.objectid != key.objectid ||
5743 found_key.type != key.type) {
5744 ret = 0;
5745 goto out;
5746 }
5747
5748 ret = process_extent(sctx, path, &found_key);
5749 if (ret < 0)
5750 goto out;
5751
5752 path->slots[0]++;
5753 }
5754
5755 out:
5756 btrfs_free_path(path);
5757 return ret;
5758 }
5759
5760 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5761 int *pending_move,
5762 int *refs_processed)
5763 {
5764 int ret = 0;
5765
5766 if (sctx->cur_ino == 0)
5767 goto out;
5768 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5769 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5770 goto out;
5771 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5772 goto out;
5773
5774 ret = process_recorded_refs(sctx, pending_move);
5775 if (ret < 0)
5776 goto out;
5777
5778 *refs_processed = 1;
5779 out:
5780 return ret;
5781 }
5782
5783 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5784 {
5785 int ret = 0;
5786 u64 left_mode;
5787 u64 left_uid;
5788 u64 left_gid;
5789 u64 right_mode;
5790 u64 right_uid;
5791 u64 right_gid;
5792 int need_chmod = 0;
5793 int need_chown = 0;
5794 int pending_move = 0;
5795 int refs_processed = 0;
5796
5797 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5798 &refs_processed);
5799 if (ret < 0)
5800 goto out;
5801
5802 /*
5803 * We have processed the refs and thus need to advance send_progress.
5804 * Now, calls to get_cur_xxx will take the updated refs of the current
5805 * inode into account.
5806 *
5807 * On the other hand, if our current inode is a directory and couldn't
5808 * be moved/renamed because its parent was renamed/moved too and it has
5809 * a higher inode number, we can only move/rename our current inode
5810 * after we moved/renamed its parent. Therefore in this case operate on
5811 * the old path (pre move/rename) of our current inode, and the
5812 * move/rename will be performed later.
5813 */
5814 if (refs_processed && !pending_move)
5815 sctx->send_progress = sctx->cur_ino + 1;
5816
5817 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5818 goto out;
5819 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5820 goto out;
5821
5822 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5823 &left_mode, &left_uid, &left_gid, NULL);
5824 if (ret < 0)
5825 goto out;
5826
5827 if (!sctx->parent_root || sctx->cur_inode_new) {
5828 need_chown = 1;
5829 if (!S_ISLNK(sctx->cur_inode_mode))
5830 need_chmod = 1;
5831 } else {
5832 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5833 NULL, NULL, &right_mode, &right_uid,
5834 &right_gid, NULL);
5835 if (ret < 0)
5836 goto out;
5837
5838 if (left_uid != right_uid || left_gid != right_gid)
5839 need_chown = 1;
5840 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5841 need_chmod = 1;
5842 }
5843
5844 if (S_ISREG(sctx->cur_inode_mode)) {
5845 if (need_send_hole(sctx)) {
5846 if (sctx->cur_inode_last_extent == (u64)-1 ||
5847 sctx->cur_inode_last_extent <
5848 sctx->cur_inode_size) {
5849 ret = get_last_extent(sctx, (u64)-1);
5850 if (ret)
5851 goto out;
5852 }
5853 if (sctx->cur_inode_last_extent <
5854 sctx->cur_inode_size) {
5855 ret = send_hole(sctx, sctx->cur_inode_size);
5856 if (ret)
5857 goto out;
5858 }
5859 }
5860 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5861 sctx->cur_inode_size);
5862 if (ret < 0)
5863 goto out;
5864 }
5865
5866 if (need_chown) {
5867 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5868 left_uid, left_gid);
5869 if (ret < 0)
5870 goto out;
5871 }
5872 if (need_chmod) {
5873 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5874 left_mode);
5875 if (ret < 0)
5876 goto out;
5877 }
5878
5879 /*
5880 * If other directory inodes depended on our current directory
5881 * inode's move/rename, now do their move/rename operations.
5882 */
5883 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5884 ret = apply_children_dir_moves(sctx);
5885 if (ret)
5886 goto out;
5887 /*
5888 * Need to send that every time, no matter if it actually
5889 * changed between the two trees as we have done changes to
5890 * the inode before. If our inode is a directory and it's
5891 * waiting to be moved/renamed, we will send its utimes when
5892 * it's moved/renamed, therefore we don't need to do it here.
5893 */
5894 sctx->send_progress = sctx->cur_ino + 1;
5895 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5896 if (ret < 0)
5897 goto out;
5898 }
5899
5900 out:
5901 return ret;
5902 }
5903
5904 static int changed_inode(struct send_ctx *sctx,
5905 enum btrfs_compare_tree_result result)
5906 {
5907 int ret = 0;
5908 struct btrfs_key *key = sctx->cmp_key;
5909 struct btrfs_inode_item *left_ii = NULL;
5910 struct btrfs_inode_item *right_ii = NULL;
5911 u64 left_gen = 0;
5912 u64 right_gen = 0;
5913
5914 sctx->cur_ino = key->objectid;
5915 sctx->cur_inode_new_gen = 0;
5916 sctx->cur_inode_last_extent = (u64)-1;
5917
5918 /*
5919 * Set send_progress to current inode. This will tell all get_cur_xxx
5920 * functions that the current inode's refs are not updated yet. Later,
5921 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5922 */
5923 sctx->send_progress = sctx->cur_ino;
5924
5925 if (result == BTRFS_COMPARE_TREE_NEW ||
5926 result == BTRFS_COMPARE_TREE_CHANGED) {
5927 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5928 sctx->left_path->slots[0],
5929 struct btrfs_inode_item);
5930 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5931 left_ii);
5932 } else {
5933 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5934 sctx->right_path->slots[0],
5935 struct btrfs_inode_item);
5936 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5937 right_ii);
5938 }
5939 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5940 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5941 sctx->right_path->slots[0],
5942 struct btrfs_inode_item);
5943
5944 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5945 right_ii);
5946
5947 /*
5948 * The cur_ino = root dir case is special here. We can't treat
5949 * the inode as deleted+reused because it would generate a
5950 * stream that tries to delete/mkdir the root dir.
5951 */
5952 if (left_gen != right_gen &&
5953 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5954 sctx->cur_inode_new_gen = 1;
5955 }
5956
5957 if (result == BTRFS_COMPARE_TREE_NEW) {
5958 sctx->cur_inode_gen = left_gen;
5959 sctx->cur_inode_new = 1;
5960 sctx->cur_inode_deleted = 0;
5961 sctx->cur_inode_size = btrfs_inode_size(
5962 sctx->left_path->nodes[0], left_ii);
5963 sctx->cur_inode_mode = btrfs_inode_mode(
5964 sctx->left_path->nodes[0], left_ii);
5965 sctx->cur_inode_rdev = btrfs_inode_rdev(
5966 sctx->left_path->nodes[0], left_ii);
5967 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5968 ret = send_create_inode_if_needed(sctx);
5969 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5970 sctx->cur_inode_gen = right_gen;
5971 sctx->cur_inode_new = 0;
5972 sctx->cur_inode_deleted = 1;
5973 sctx->cur_inode_size = btrfs_inode_size(
5974 sctx->right_path->nodes[0], right_ii);
5975 sctx->cur_inode_mode = btrfs_inode_mode(
5976 sctx->right_path->nodes[0], right_ii);
5977 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5978 /*
5979 * We need to do some special handling in case the inode was
5980 * reported as changed with a changed generation number. This
5981 * means that the original inode was deleted and new inode
5982 * reused the same inum. So we have to treat the old inode as
5983 * deleted and the new one as new.
5984 */
5985 if (sctx->cur_inode_new_gen) {
5986 /*
5987 * First, process the inode as if it was deleted.
5988 */
5989 sctx->cur_inode_gen = right_gen;
5990 sctx->cur_inode_new = 0;
5991 sctx->cur_inode_deleted = 1;
5992 sctx->cur_inode_size = btrfs_inode_size(
5993 sctx->right_path->nodes[0], right_ii);
5994 sctx->cur_inode_mode = btrfs_inode_mode(
5995 sctx->right_path->nodes[0], right_ii);
5996 ret = process_all_refs(sctx,
5997 BTRFS_COMPARE_TREE_DELETED);
5998 if (ret < 0)
5999 goto out;
6000
6001 /*
6002 * Now process the inode as if it was new.
6003 */
6004 sctx->cur_inode_gen = left_gen;
6005 sctx->cur_inode_new = 1;
6006 sctx->cur_inode_deleted = 0;
6007 sctx->cur_inode_size = btrfs_inode_size(
6008 sctx->left_path->nodes[0], left_ii);
6009 sctx->cur_inode_mode = btrfs_inode_mode(
6010 sctx->left_path->nodes[0], left_ii);
6011 sctx->cur_inode_rdev = btrfs_inode_rdev(
6012 sctx->left_path->nodes[0], left_ii);
6013 ret = send_create_inode_if_needed(sctx);
6014 if (ret < 0)
6015 goto out;
6016
6017 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6018 if (ret < 0)
6019 goto out;
6020 /*
6021 * Advance send_progress now as we did not get into
6022 * process_recorded_refs_if_needed in the new_gen case.
6023 */
6024 sctx->send_progress = sctx->cur_ino + 1;
6025
6026 /*
6027 * Now process all extents and xattrs of the inode as if
6028 * they were all new.
6029 */
6030 ret = process_all_extents(sctx);
6031 if (ret < 0)
6032 goto out;
6033 ret = process_all_new_xattrs(sctx);
6034 if (ret < 0)
6035 goto out;
6036 } else {
6037 sctx->cur_inode_gen = left_gen;
6038 sctx->cur_inode_new = 0;
6039 sctx->cur_inode_new_gen = 0;
6040 sctx->cur_inode_deleted = 0;
6041 sctx->cur_inode_size = btrfs_inode_size(
6042 sctx->left_path->nodes[0], left_ii);
6043 sctx->cur_inode_mode = btrfs_inode_mode(
6044 sctx->left_path->nodes[0], left_ii);
6045 }
6046 }
6047
6048 out:
6049 return ret;
6050 }
6051
6052 /*
6053 * We have to process new refs before deleted refs, but compare_trees gives us
6054 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6055 * first and later process them in process_recorded_refs.
6056 * For the cur_inode_new_gen case, we skip recording completely because
6057 * changed_inode did already initiate processing of refs. The reason for this is
6058 * that in this case, compare_tree actually compares the refs of 2 different
6059 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6060 * refs of the right tree as deleted and all refs of the left tree as new.
6061 */
6062 static int changed_ref(struct send_ctx *sctx,
6063 enum btrfs_compare_tree_result result)
6064 {
6065 int ret = 0;
6066
6067 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6068 inconsistent_snapshot_error(sctx, result, "reference");
6069 return -EIO;
6070 }
6071
6072 if (!sctx->cur_inode_new_gen &&
6073 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6074 if (result == BTRFS_COMPARE_TREE_NEW)
6075 ret = record_new_ref(sctx);
6076 else if (result == BTRFS_COMPARE_TREE_DELETED)
6077 ret = record_deleted_ref(sctx);
6078 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6079 ret = record_changed_ref(sctx);
6080 }
6081
6082 return ret;
6083 }
6084
6085 /*
6086 * Process new/deleted/changed xattrs. We skip processing in the
6087 * cur_inode_new_gen case because changed_inode did already initiate processing
6088 * of xattrs. The reason is the same as in changed_ref
6089 */
6090 static int changed_xattr(struct send_ctx *sctx,
6091 enum btrfs_compare_tree_result result)
6092 {
6093 int ret = 0;
6094
6095 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6096 inconsistent_snapshot_error(sctx, result, "xattr");
6097 return -EIO;
6098 }
6099
6100 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6101 if (result == BTRFS_COMPARE_TREE_NEW)
6102 ret = process_new_xattr(sctx);
6103 else if (result == BTRFS_COMPARE_TREE_DELETED)
6104 ret = process_deleted_xattr(sctx);
6105 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6106 ret = process_changed_xattr(sctx);
6107 }
6108
6109 return ret;
6110 }
6111
6112 /*
6113 * Process new/deleted/changed extents. We skip processing in the
6114 * cur_inode_new_gen case because changed_inode did already initiate processing
6115 * of extents. The reason is the same as in changed_ref
6116 */
6117 static int changed_extent(struct send_ctx *sctx,
6118 enum btrfs_compare_tree_result result)
6119 {
6120 int ret = 0;
6121
6122 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6123
6124 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6125 struct extent_buffer *leaf_l;
6126 struct extent_buffer *leaf_r;
6127 struct btrfs_file_extent_item *ei_l;
6128 struct btrfs_file_extent_item *ei_r;
6129
6130 leaf_l = sctx->left_path->nodes[0];
6131 leaf_r = sctx->right_path->nodes[0];
6132 ei_l = btrfs_item_ptr(leaf_l,
6133 sctx->left_path->slots[0],
6134 struct btrfs_file_extent_item);
6135 ei_r = btrfs_item_ptr(leaf_r,
6136 sctx->right_path->slots[0],
6137 struct btrfs_file_extent_item);
6138
6139 /*
6140 * We may have found an extent item that has changed
6141 * only its disk_bytenr field and the corresponding
6142 * inode item was not updated. This case happens due to
6143 * very specific timings during relocation when a leaf
6144 * that contains file extent items is COWed while
6145 * relocation is ongoing and its in the stage where it
6146 * updates data pointers. So when this happens we can
6147 * safely ignore it since we know it's the same extent,
6148 * but just at different logical and physical locations
6149 * (when an extent is fully replaced with a new one, we
6150 * know the generation number must have changed too,
6151 * since snapshot creation implies committing the current
6152 * transaction, and the inode item must have been updated
6153 * as well).
6154 * This replacement of the disk_bytenr happens at
6155 * relocation.c:replace_file_extents() through
6156 * relocation.c:btrfs_reloc_cow_block().
6157 */
6158 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6159 btrfs_file_extent_generation(leaf_r, ei_r) &&
6160 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6161 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6162 btrfs_file_extent_compression(leaf_l, ei_l) ==
6163 btrfs_file_extent_compression(leaf_r, ei_r) &&
6164 btrfs_file_extent_encryption(leaf_l, ei_l) ==
6165 btrfs_file_extent_encryption(leaf_r, ei_r) &&
6166 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6167 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6168 btrfs_file_extent_type(leaf_l, ei_l) ==
6169 btrfs_file_extent_type(leaf_r, ei_r) &&
6170 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6171 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6172 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6173 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6174 btrfs_file_extent_offset(leaf_l, ei_l) ==
6175 btrfs_file_extent_offset(leaf_r, ei_r) &&
6176 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6177 btrfs_file_extent_num_bytes(leaf_r, ei_r))
6178 return 0;
6179 }
6180
6181 inconsistent_snapshot_error(sctx, result, "extent");
6182 return -EIO;
6183 }
6184
6185 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6186 if (result != BTRFS_COMPARE_TREE_DELETED)
6187 ret = process_extent(sctx, sctx->left_path,
6188 sctx->cmp_key);
6189 }
6190
6191 return ret;
6192 }
6193
6194 static int dir_changed(struct send_ctx *sctx, u64 dir)
6195 {
6196 u64 orig_gen, new_gen;
6197 int ret;
6198
6199 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6200 NULL, NULL);
6201 if (ret)
6202 return ret;
6203
6204 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6205 NULL, NULL, NULL);
6206 if (ret)
6207 return ret;
6208
6209 return (orig_gen != new_gen) ? 1 : 0;
6210 }
6211
6212 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6213 struct btrfs_key *key)
6214 {
6215 struct btrfs_inode_extref *extref;
6216 struct extent_buffer *leaf;
6217 u64 dirid = 0, last_dirid = 0;
6218 unsigned long ptr;
6219 u32 item_size;
6220 u32 cur_offset = 0;
6221 int ref_name_len;
6222 int ret = 0;
6223
6224 /* Easy case, just check this one dirid */
6225 if (key->type == BTRFS_INODE_REF_KEY) {
6226 dirid = key->offset;
6227
6228 ret = dir_changed(sctx, dirid);
6229 goto out;
6230 }
6231
6232 leaf = path->nodes[0];
6233 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6234 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6235 while (cur_offset < item_size) {
6236 extref = (struct btrfs_inode_extref *)(ptr +
6237 cur_offset);
6238 dirid = btrfs_inode_extref_parent(leaf, extref);
6239 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6240 cur_offset += ref_name_len + sizeof(*extref);
6241 if (dirid == last_dirid)
6242 continue;
6243 ret = dir_changed(sctx, dirid);
6244 if (ret)
6245 break;
6246 last_dirid = dirid;
6247 }
6248 out:
6249 return ret;
6250 }
6251
6252 /*
6253 * Updates compare related fields in sctx and simply forwards to the actual
6254 * changed_xxx functions.
6255 */
6256 static int changed_cb(struct btrfs_path *left_path,
6257 struct btrfs_path *right_path,
6258 struct btrfs_key *key,
6259 enum btrfs_compare_tree_result result,
6260 void *ctx)
6261 {
6262 int ret = 0;
6263 struct send_ctx *sctx = ctx;
6264
6265 if (result == BTRFS_COMPARE_TREE_SAME) {
6266 if (key->type == BTRFS_INODE_REF_KEY ||
6267 key->type == BTRFS_INODE_EXTREF_KEY) {
6268 ret = compare_refs(sctx, left_path, key);
6269 if (!ret)
6270 return 0;
6271 if (ret < 0)
6272 return ret;
6273 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6274 return maybe_send_hole(sctx, left_path, key);
6275 } else {
6276 return 0;
6277 }
6278 result = BTRFS_COMPARE_TREE_CHANGED;
6279 ret = 0;
6280 }
6281
6282 sctx->left_path = left_path;
6283 sctx->right_path = right_path;
6284 sctx->cmp_key = key;
6285
6286 ret = finish_inode_if_needed(sctx, 0);
6287 if (ret < 0)
6288 goto out;
6289
6290 /* Ignore non-FS objects */
6291 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6292 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6293 goto out;
6294
6295 if (key->type == BTRFS_INODE_ITEM_KEY)
6296 ret = changed_inode(sctx, result);
6297 else if (key->type == BTRFS_INODE_REF_KEY ||
6298 key->type == BTRFS_INODE_EXTREF_KEY)
6299 ret = changed_ref(sctx, result);
6300 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6301 ret = changed_xattr(sctx, result);
6302 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6303 ret = changed_extent(sctx, result);
6304
6305 out:
6306 return ret;
6307 }
6308
6309 static int full_send_tree(struct send_ctx *sctx)
6310 {
6311 int ret;
6312 struct btrfs_root *send_root = sctx->send_root;
6313 struct btrfs_key key;
6314 struct btrfs_key found_key;
6315 struct btrfs_path *path;
6316 struct extent_buffer *eb;
6317 int slot;
6318
6319 path = alloc_path_for_send();
6320 if (!path)
6321 return -ENOMEM;
6322
6323 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6324 key.type = BTRFS_INODE_ITEM_KEY;
6325 key.offset = 0;
6326
6327 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6328 if (ret < 0)
6329 goto out;
6330 if (ret)
6331 goto out_finish;
6332
6333 while (1) {
6334 eb = path->nodes[0];
6335 slot = path->slots[0];
6336 btrfs_item_key_to_cpu(eb, &found_key, slot);
6337
6338 ret = changed_cb(path, NULL, &found_key,
6339 BTRFS_COMPARE_TREE_NEW, sctx);
6340 if (ret < 0)
6341 goto out;
6342
6343 key.objectid = found_key.objectid;
6344 key.type = found_key.type;
6345 key.offset = found_key.offset + 1;
6346
6347 ret = btrfs_next_item(send_root, path);
6348 if (ret < 0)
6349 goto out;
6350 if (ret) {
6351 ret = 0;
6352 break;
6353 }
6354 }
6355
6356 out_finish:
6357 ret = finish_inode_if_needed(sctx, 1);
6358
6359 out:
6360 btrfs_free_path(path);
6361 return ret;
6362 }
6363
6364 static int send_subvol(struct send_ctx *sctx)
6365 {
6366 int ret;
6367
6368 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6369 ret = send_header(sctx);
6370 if (ret < 0)
6371 goto out;
6372 }
6373
6374 ret = send_subvol_begin(sctx);
6375 if (ret < 0)
6376 goto out;
6377
6378 if (sctx->parent_root) {
6379 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6380 changed_cb, sctx);
6381 if (ret < 0)
6382 goto out;
6383 ret = finish_inode_if_needed(sctx, 1);
6384 if (ret < 0)
6385 goto out;
6386 } else {
6387 ret = full_send_tree(sctx);
6388 if (ret < 0)
6389 goto out;
6390 }
6391
6392 out:
6393 free_recorded_refs(sctx);
6394 return ret;
6395 }
6396
6397 /*
6398 * If orphan cleanup did remove any orphans from a root, it means the tree
6399 * was modified and therefore the commit root is not the same as the current
6400 * root anymore. This is a problem, because send uses the commit root and
6401 * therefore can see inode items that don't exist in the current root anymore,
6402 * and for example make calls to btrfs_iget, which will do tree lookups based
6403 * on the current root and not on the commit root. Those lookups will fail,
6404 * returning a -ESTALE error, and making send fail with that error. So make
6405 * sure a send does not see any orphans we have just removed, and that it will
6406 * see the same inodes regardless of whether a transaction commit happened
6407 * before it started (meaning that the commit root will be the same as the
6408 * current root) or not.
6409 */
6410 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6411 {
6412 int i;
6413 struct btrfs_trans_handle *trans = NULL;
6414
6415 again:
6416 if (sctx->parent_root &&
6417 sctx->parent_root->node != sctx->parent_root->commit_root)
6418 goto commit_trans;
6419
6420 for (i = 0; i < sctx->clone_roots_cnt; i++)
6421 if (sctx->clone_roots[i].root->node !=
6422 sctx->clone_roots[i].root->commit_root)
6423 goto commit_trans;
6424
6425 if (trans)
6426 return btrfs_end_transaction(trans);
6427
6428 return 0;
6429
6430 commit_trans:
6431 /* Use any root, all fs roots will get their commit roots updated. */
6432 if (!trans) {
6433 trans = btrfs_join_transaction(sctx->send_root);
6434 if (IS_ERR(trans))
6435 return PTR_ERR(trans);
6436 goto again;
6437 }
6438
6439 return btrfs_commit_transaction(trans);
6440 }
6441
6442 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6443 {
6444 spin_lock(&root->root_item_lock);
6445 root->send_in_progress--;
6446 /*
6447 * Not much left to do, we don't know why it's unbalanced and
6448 * can't blindly reset it to 0.
6449 */
6450 if (root->send_in_progress < 0)
6451 btrfs_err(root->fs_info,
6452 "send_in_progres unbalanced %d root %llu",
6453 root->send_in_progress, root->root_key.objectid);
6454 spin_unlock(&root->root_item_lock);
6455 }
6456
6457 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6458 {
6459 int ret = 0;
6460 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6461 struct btrfs_fs_info *fs_info = send_root->fs_info;
6462 struct btrfs_root *clone_root;
6463 struct btrfs_key key;
6464 struct send_ctx *sctx = NULL;
6465 u32 i;
6466 u64 *clone_sources_tmp = NULL;
6467 int clone_sources_to_rollback = 0;
6468 unsigned alloc_size;
6469 int sort_clone_roots = 0;
6470 int index;
6471
6472 if (!capable(CAP_SYS_ADMIN))
6473 return -EPERM;
6474
6475 /*
6476 * The subvolume must remain read-only during send, protect against
6477 * making it RW. This also protects against deletion.
6478 */
6479 spin_lock(&send_root->root_item_lock);
6480 send_root->send_in_progress++;
6481 spin_unlock(&send_root->root_item_lock);
6482
6483 /*
6484 * This is done when we lookup the root, it should already be complete
6485 * by the time we get here.
6486 */
6487 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6488
6489 /*
6490 * Userspace tools do the checks and warn the user if it's
6491 * not RO.
6492 */
6493 if (!btrfs_root_readonly(send_root)) {
6494 ret = -EPERM;
6495 goto out;
6496 }
6497
6498 /*
6499 * Check that we don't overflow at later allocations, we request
6500 * clone_sources_count + 1 items, and compare to unsigned long inside
6501 * access_ok.
6502 */
6503 if (arg->clone_sources_count >
6504 ULONG_MAX / sizeof(struct clone_root) - 1) {
6505 ret = -EINVAL;
6506 goto out;
6507 }
6508
6509 if (!access_ok(VERIFY_READ, arg->clone_sources,
6510 sizeof(*arg->clone_sources) *
6511 arg->clone_sources_count)) {
6512 ret = -EFAULT;
6513 goto out;
6514 }
6515
6516 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6517 ret = -EINVAL;
6518 goto out;
6519 }
6520
6521 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6522 if (!sctx) {
6523 ret = -ENOMEM;
6524 goto out;
6525 }
6526
6527 INIT_LIST_HEAD(&sctx->new_refs);
6528 INIT_LIST_HEAD(&sctx->deleted_refs);
6529 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6530 INIT_LIST_HEAD(&sctx->name_cache_list);
6531
6532 sctx->flags = arg->flags;
6533
6534 sctx->send_filp = fget(arg->send_fd);
6535 if (!sctx->send_filp) {
6536 ret = -EBADF;
6537 goto out;
6538 }
6539
6540 sctx->send_root = send_root;
6541 /*
6542 * Unlikely but possible, if the subvolume is marked for deletion but
6543 * is slow to remove the directory entry, send can still be started
6544 */
6545 if (btrfs_root_dead(sctx->send_root)) {
6546 ret = -EPERM;
6547 goto out;
6548 }
6549
6550 sctx->clone_roots_cnt = arg->clone_sources_count;
6551
6552 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6553 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6554 if (!sctx->send_buf) {
6555 ret = -ENOMEM;
6556 goto out;
6557 }
6558
6559 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6560 if (!sctx->read_buf) {
6561 ret = -ENOMEM;
6562 goto out;
6563 }
6564
6565 sctx->pending_dir_moves = RB_ROOT;
6566 sctx->waiting_dir_moves = RB_ROOT;
6567 sctx->orphan_dirs = RB_ROOT;
6568
6569 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6570
6571 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6572 if (!sctx->clone_roots) {
6573 ret = -ENOMEM;
6574 goto out;
6575 }
6576
6577 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6578
6579 if (arg->clone_sources_count) {
6580 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6581 if (!clone_sources_tmp) {
6582 ret = -ENOMEM;
6583 goto out;
6584 }
6585
6586 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6587 alloc_size);
6588 if (ret) {
6589 ret = -EFAULT;
6590 goto out;
6591 }
6592
6593 for (i = 0; i < arg->clone_sources_count; i++) {
6594 key.objectid = clone_sources_tmp[i];
6595 key.type = BTRFS_ROOT_ITEM_KEY;
6596 key.offset = (u64)-1;
6597
6598 index = srcu_read_lock(&fs_info->subvol_srcu);
6599
6600 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6601 if (IS_ERR(clone_root)) {
6602 srcu_read_unlock(&fs_info->subvol_srcu, index);
6603 ret = PTR_ERR(clone_root);
6604 goto out;
6605 }
6606 spin_lock(&clone_root->root_item_lock);
6607 if (!btrfs_root_readonly(clone_root) ||
6608 btrfs_root_dead(clone_root)) {
6609 spin_unlock(&clone_root->root_item_lock);
6610 srcu_read_unlock(&fs_info->subvol_srcu, index);
6611 ret = -EPERM;
6612 goto out;
6613 }
6614 clone_root->send_in_progress++;
6615 spin_unlock(&clone_root->root_item_lock);
6616 srcu_read_unlock(&fs_info->subvol_srcu, index);
6617
6618 sctx->clone_roots[i].root = clone_root;
6619 clone_sources_to_rollback = i + 1;
6620 }
6621 kvfree(clone_sources_tmp);
6622 clone_sources_tmp = NULL;
6623 }
6624
6625 if (arg->parent_root) {
6626 key.objectid = arg->parent_root;
6627 key.type = BTRFS_ROOT_ITEM_KEY;
6628 key.offset = (u64)-1;
6629
6630 index = srcu_read_lock(&fs_info->subvol_srcu);
6631
6632 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6633 if (IS_ERR(sctx->parent_root)) {
6634 srcu_read_unlock(&fs_info->subvol_srcu, index);
6635 ret = PTR_ERR(sctx->parent_root);
6636 goto out;
6637 }
6638
6639 spin_lock(&sctx->parent_root->root_item_lock);
6640 sctx->parent_root->send_in_progress++;
6641 if (!btrfs_root_readonly(sctx->parent_root) ||
6642 btrfs_root_dead(sctx->parent_root)) {
6643 spin_unlock(&sctx->parent_root->root_item_lock);
6644 srcu_read_unlock(&fs_info->subvol_srcu, index);
6645 ret = -EPERM;
6646 goto out;
6647 }
6648 spin_unlock(&sctx->parent_root->root_item_lock);
6649
6650 srcu_read_unlock(&fs_info->subvol_srcu, index);
6651 }
6652
6653 /*
6654 * Clones from send_root are allowed, but only if the clone source
6655 * is behind the current send position. This is checked while searching
6656 * for possible clone sources.
6657 */
6658 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6659
6660 /* We do a bsearch later */
6661 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6662 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6663 NULL);
6664 sort_clone_roots = 1;
6665
6666 ret = ensure_commit_roots_uptodate(sctx);
6667 if (ret)
6668 goto out;
6669
6670 current->journal_info = BTRFS_SEND_TRANS_STUB;
6671 ret = send_subvol(sctx);
6672 current->journal_info = NULL;
6673 if (ret < 0)
6674 goto out;
6675
6676 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6677 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6678 if (ret < 0)
6679 goto out;
6680 ret = send_cmd(sctx);
6681 if (ret < 0)
6682 goto out;
6683 }
6684
6685 out:
6686 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6687 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6688 struct rb_node *n;
6689 struct pending_dir_move *pm;
6690
6691 n = rb_first(&sctx->pending_dir_moves);
6692 pm = rb_entry(n, struct pending_dir_move, node);
6693 while (!list_empty(&pm->list)) {
6694 struct pending_dir_move *pm2;
6695
6696 pm2 = list_first_entry(&pm->list,
6697 struct pending_dir_move, list);
6698 free_pending_move(sctx, pm2);
6699 }
6700 free_pending_move(sctx, pm);
6701 }
6702
6703 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6704 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6705 struct rb_node *n;
6706 struct waiting_dir_move *dm;
6707
6708 n = rb_first(&sctx->waiting_dir_moves);
6709 dm = rb_entry(n, struct waiting_dir_move, node);
6710 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6711 kfree(dm);
6712 }
6713
6714 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6715 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6716 struct rb_node *n;
6717 struct orphan_dir_info *odi;
6718
6719 n = rb_first(&sctx->orphan_dirs);
6720 odi = rb_entry(n, struct orphan_dir_info, node);
6721 free_orphan_dir_info(sctx, odi);
6722 }
6723
6724 if (sort_clone_roots) {
6725 for (i = 0; i < sctx->clone_roots_cnt; i++)
6726 btrfs_root_dec_send_in_progress(
6727 sctx->clone_roots[i].root);
6728 } else {
6729 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6730 btrfs_root_dec_send_in_progress(
6731 sctx->clone_roots[i].root);
6732
6733 btrfs_root_dec_send_in_progress(send_root);
6734 }
6735 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6736 btrfs_root_dec_send_in_progress(sctx->parent_root);
6737
6738 kvfree(clone_sources_tmp);
6739
6740 if (sctx) {
6741 if (sctx->send_filp)
6742 fput(sctx->send_filp);
6743
6744 kvfree(sctx->clone_roots);
6745 kvfree(sctx->send_buf);
6746 kvfree(sctx->read_buf);
6747
6748 name_cache_free(sctx);
6749
6750 kfree(sctx);
6751 }
6752
6753 return ret;
6754 }