]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/super.c
Btrfs: integrate integrity check module into btrfs
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/mnt_namespace.h>
44 #include <linux/ratelimit.h>
45 #include "compat.h"
46 #include "delayed-inode.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "ioctl.h"
52 #include "print-tree.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "version.h"
56 #include "export.h"
57 #include "compression.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66 char nbuf[16])
67 {
68 char *errstr = NULL;
69
70 switch (errno) {
71 case -EIO:
72 errstr = "IO failure";
73 break;
74 case -ENOMEM:
75 errstr = "Out of memory";
76 break;
77 case -EROFS:
78 errstr = "Readonly filesystem";
79 break;
80 default:
81 if (nbuf) {
82 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
83 errstr = nbuf;
84 }
85 break;
86 }
87
88 return errstr;
89 }
90
91 static void __save_error_info(struct btrfs_fs_info *fs_info)
92 {
93 /*
94 * today we only save the error info into ram. Long term we'll
95 * also send it down to the disk
96 */
97 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
98 }
99
100 /* NOTE:
101 * We move write_super stuff at umount in order to avoid deadlock
102 * for umount hold all lock.
103 */
104 static void save_error_info(struct btrfs_fs_info *fs_info)
105 {
106 __save_error_info(fs_info);
107 }
108
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112 struct super_block *sb = fs_info->sb;
113
114 if (sb->s_flags & MS_RDONLY)
115 return;
116
117 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
118 sb->s_flags |= MS_RDONLY;
119 printk(KERN_INFO "btrfs is forced readonly\n");
120 }
121 }
122
123 /*
124 * __btrfs_std_error decodes expected errors from the caller and
125 * invokes the approciate error response.
126 */
127 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
128 unsigned int line, int errno)
129 {
130 struct super_block *sb = fs_info->sb;
131 char nbuf[16];
132 const char *errstr;
133
134 /*
135 * Special case: if the error is EROFS, and we're already
136 * under MS_RDONLY, then it is safe here.
137 */
138 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
139 return;
140
141 errstr = btrfs_decode_error(fs_info, errno, nbuf);
142 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
143 sb->s_id, function, line, errstr);
144 save_error_info(fs_info);
145
146 btrfs_handle_error(fs_info);
147 }
148
149 static void btrfs_put_super(struct super_block *sb)
150 {
151 struct btrfs_root *root = btrfs_sb(sb);
152 int ret;
153
154 ret = close_ctree(root);
155 sb->s_fs_info = NULL;
156
157 (void)ret; /* FIXME: need to fix VFS to return error? */
158 }
159
160 enum {
161 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
162 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
163 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
164 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
165 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
166 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
167 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
168 Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
169 Opt_check_integrity, Opt_check_integrity_including_extent_data,
170 Opt_check_integrity_print_mask,
171 Opt_err,
172 };
173
174 static match_table_t tokens = {
175 {Opt_degraded, "degraded"},
176 {Opt_subvol, "subvol=%s"},
177 {Opt_subvolid, "subvolid=%d"},
178 {Opt_device, "device=%s"},
179 {Opt_nodatasum, "nodatasum"},
180 {Opt_nodatacow, "nodatacow"},
181 {Opt_nobarrier, "nobarrier"},
182 {Opt_max_inline, "max_inline=%s"},
183 {Opt_alloc_start, "alloc_start=%s"},
184 {Opt_thread_pool, "thread_pool=%d"},
185 {Opt_compress, "compress"},
186 {Opt_compress_type, "compress=%s"},
187 {Opt_compress_force, "compress-force"},
188 {Opt_compress_force_type, "compress-force=%s"},
189 {Opt_ssd, "ssd"},
190 {Opt_ssd_spread, "ssd_spread"},
191 {Opt_nossd, "nossd"},
192 {Opt_noacl, "noacl"},
193 {Opt_notreelog, "notreelog"},
194 {Opt_flushoncommit, "flushoncommit"},
195 {Opt_ratio, "metadata_ratio=%d"},
196 {Opt_discard, "discard"},
197 {Opt_space_cache, "space_cache"},
198 {Opt_clear_cache, "clear_cache"},
199 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
200 {Opt_enospc_debug, "enospc_debug"},
201 {Opt_subvolrootid, "subvolrootid=%d"},
202 {Opt_defrag, "autodefrag"},
203 {Opt_inode_cache, "inode_cache"},
204 {Opt_no_space_cache, "nospace_cache"},
205 {Opt_recovery, "recovery"},
206 {Opt_check_integrity, "check_int"},
207 {Opt_check_integrity_including_extent_data, "check_int_data"},
208 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
209 {Opt_err, NULL},
210 };
211
212 /*
213 * Regular mount options parser. Everything that is needed only when
214 * reading in a new superblock is parsed here.
215 */
216 int btrfs_parse_options(struct btrfs_root *root, char *options)
217 {
218 struct btrfs_fs_info *info = root->fs_info;
219 substring_t args[MAX_OPT_ARGS];
220 char *p, *num, *orig = NULL;
221 u64 cache_gen;
222 int intarg;
223 int ret = 0;
224 char *compress_type;
225 bool compress_force = false;
226
227 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
228 if (cache_gen)
229 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
230
231 if (!options)
232 goto out;
233
234 /*
235 * strsep changes the string, duplicate it because parse_options
236 * gets called twice
237 */
238 options = kstrdup(options, GFP_NOFS);
239 if (!options)
240 return -ENOMEM;
241
242 orig = options;
243
244 while ((p = strsep(&options, ",")) != NULL) {
245 int token;
246 if (!*p)
247 continue;
248
249 token = match_token(p, tokens, args);
250 switch (token) {
251 case Opt_degraded:
252 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
253 btrfs_set_opt(info->mount_opt, DEGRADED);
254 break;
255 case Opt_subvol:
256 case Opt_subvolid:
257 case Opt_subvolrootid:
258 case Opt_device:
259 /*
260 * These are parsed by btrfs_parse_early_options
261 * and can be happily ignored here.
262 */
263 break;
264 case Opt_nodatasum:
265 printk(KERN_INFO "btrfs: setting nodatasum\n");
266 btrfs_set_opt(info->mount_opt, NODATASUM);
267 break;
268 case Opt_nodatacow:
269 printk(KERN_INFO "btrfs: setting nodatacow\n");
270 btrfs_set_opt(info->mount_opt, NODATACOW);
271 btrfs_set_opt(info->mount_opt, NODATASUM);
272 break;
273 case Opt_compress_force:
274 case Opt_compress_force_type:
275 compress_force = true;
276 case Opt_compress:
277 case Opt_compress_type:
278 if (token == Opt_compress ||
279 token == Opt_compress_force ||
280 strcmp(args[0].from, "zlib") == 0) {
281 compress_type = "zlib";
282 info->compress_type = BTRFS_COMPRESS_ZLIB;
283 } else if (strcmp(args[0].from, "lzo") == 0) {
284 compress_type = "lzo";
285 info->compress_type = BTRFS_COMPRESS_LZO;
286 } else {
287 ret = -EINVAL;
288 goto out;
289 }
290
291 btrfs_set_opt(info->mount_opt, COMPRESS);
292 if (compress_force) {
293 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
294 pr_info("btrfs: force %s compression\n",
295 compress_type);
296 } else
297 pr_info("btrfs: use %s compression\n",
298 compress_type);
299 break;
300 case Opt_ssd:
301 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
302 btrfs_set_opt(info->mount_opt, SSD);
303 break;
304 case Opt_ssd_spread:
305 printk(KERN_INFO "btrfs: use spread ssd "
306 "allocation scheme\n");
307 btrfs_set_opt(info->mount_opt, SSD);
308 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
309 break;
310 case Opt_nossd:
311 printk(KERN_INFO "btrfs: not using ssd allocation "
312 "scheme\n");
313 btrfs_set_opt(info->mount_opt, NOSSD);
314 btrfs_clear_opt(info->mount_opt, SSD);
315 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
316 break;
317 case Opt_nobarrier:
318 printk(KERN_INFO "btrfs: turning off barriers\n");
319 btrfs_set_opt(info->mount_opt, NOBARRIER);
320 break;
321 case Opt_thread_pool:
322 intarg = 0;
323 match_int(&args[0], &intarg);
324 if (intarg) {
325 info->thread_pool_size = intarg;
326 printk(KERN_INFO "btrfs: thread pool %d\n",
327 info->thread_pool_size);
328 }
329 break;
330 case Opt_max_inline:
331 num = match_strdup(&args[0]);
332 if (num) {
333 info->max_inline = memparse(num, NULL);
334 kfree(num);
335
336 if (info->max_inline) {
337 info->max_inline = max_t(u64,
338 info->max_inline,
339 root->sectorsize);
340 }
341 printk(KERN_INFO "btrfs: max_inline at %llu\n",
342 (unsigned long long)info->max_inline);
343 }
344 break;
345 case Opt_alloc_start:
346 num = match_strdup(&args[0]);
347 if (num) {
348 info->alloc_start = memparse(num, NULL);
349 kfree(num);
350 printk(KERN_INFO
351 "btrfs: allocations start at %llu\n",
352 (unsigned long long)info->alloc_start);
353 }
354 break;
355 case Opt_noacl:
356 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
357 break;
358 case Opt_notreelog:
359 printk(KERN_INFO "btrfs: disabling tree log\n");
360 btrfs_set_opt(info->mount_opt, NOTREELOG);
361 break;
362 case Opt_flushoncommit:
363 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
364 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
365 break;
366 case Opt_ratio:
367 intarg = 0;
368 match_int(&args[0], &intarg);
369 if (intarg) {
370 info->metadata_ratio = intarg;
371 printk(KERN_INFO "btrfs: metadata ratio %d\n",
372 info->metadata_ratio);
373 }
374 break;
375 case Opt_discard:
376 btrfs_set_opt(info->mount_opt, DISCARD);
377 break;
378 case Opt_space_cache:
379 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
380 break;
381 case Opt_no_space_cache:
382 printk(KERN_INFO "btrfs: disabling disk space caching\n");
383 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
384 break;
385 case Opt_inode_cache:
386 printk(KERN_INFO "btrfs: enabling inode map caching\n");
387 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
388 break;
389 case Opt_clear_cache:
390 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
391 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
392 break;
393 case Opt_user_subvol_rm_allowed:
394 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
395 break;
396 case Opt_enospc_debug:
397 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
398 break;
399 case Opt_defrag:
400 printk(KERN_INFO "btrfs: enabling auto defrag");
401 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
402 break;
403 case Opt_recovery:
404 printk(KERN_INFO "btrfs: enabling auto recovery");
405 btrfs_set_opt(info->mount_opt, RECOVERY);
406 break;
407 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
408 case Opt_check_integrity_including_extent_data:
409 printk(KERN_INFO "btrfs: enabling check integrity"
410 " including extent data\n");
411 btrfs_set_opt(info->mount_opt,
412 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
413 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
414 break;
415 case Opt_check_integrity:
416 printk(KERN_INFO "btrfs: enabling check integrity\n");
417 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
418 break;
419 case Opt_check_integrity_print_mask:
420 intarg = 0;
421 match_int(&args[0], &intarg);
422 if (intarg) {
423 info->check_integrity_print_mask = intarg;
424 printk(KERN_INFO "btrfs:"
425 " check_integrity_print_mask 0x%x\n",
426 info->check_integrity_print_mask);
427 }
428 break;
429 #else
430 case Opt_check_integrity_including_extent_data:
431 case Opt_check_integrity:
432 case Opt_check_integrity_print_mask:
433 printk(KERN_ERR "btrfs: support for check_integrity*"
434 " not compiled in!\n");
435 ret = -EINVAL;
436 goto out;
437 #endif
438 case Opt_err:
439 printk(KERN_INFO "btrfs: unrecognized mount option "
440 "'%s'\n", p);
441 ret = -EINVAL;
442 goto out;
443 default:
444 break;
445 }
446 }
447 out:
448 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
449 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
450 kfree(orig);
451 return ret;
452 }
453
454 /*
455 * Parse mount options that are required early in the mount process.
456 *
457 * All other options will be parsed on much later in the mount process and
458 * only when we need to allocate a new super block.
459 */
460 static int btrfs_parse_early_options(const char *options, fmode_t flags,
461 void *holder, char **subvol_name, u64 *subvol_objectid,
462 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
463 {
464 substring_t args[MAX_OPT_ARGS];
465 char *device_name, *opts, *orig, *p;
466 int error = 0;
467 int intarg;
468
469 if (!options)
470 return 0;
471
472 /*
473 * strsep changes the string, duplicate it because parse_options
474 * gets called twice
475 */
476 opts = kstrdup(options, GFP_KERNEL);
477 if (!opts)
478 return -ENOMEM;
479 orig = opts;
480
481 while ((p = strsep(&opts, ",")) != NULL) {
482 int token;
483 if (!*p)
484 continue;
485
486 token = match_token(p, tokens, args);
487 switch (token) {
488 case Opt_subvol:
489 kfree(*subvol_name);
490 *subvol_name = match_strdup(&args[0]);
491 break;
492 case Opt_subvolid:
493 intarg = 0;
494 error = match_int(&args[0], &intarg);
495 if (!error) {
496 /* we want the original fs_tree */
497 if (!intarg)
498 *subvol_objectid =
499 BTRFS_FS_TREE_OBJECTID;
500 else
501 *subvol_objectid = intarg;
502 }
503 break;
504 case Opt_subvolrootid:
505 intarg = 0;
506 error = match_int(&args[0], &intarg);
507 if (!error) {
508 /* we want the original fs_tree */
509 if (!intarg)
510 *subvol_rootid =
511 BTRFS_FS_TREE_OBJECTID;
512 else
513 *subvol_rootid = intarg;
514 }
515 break;
516 case Opt_device:
517 device_name = match_strdup(&args[0]);
518 if (!device_name) {
519 error = -ENOMEM;
520 goto out;
521 }
522 error = btrfs_scan_one_device(device_name,
523 flags, holder, fs_devices);
524 kfree(device_name);
525 if (error)
526 goto out;
527 break;
528 default:
529 break;
530 }
531 }
532
533 out:
534 kfree(orig);
535 return error;
536 }
537
538 static struct dentry *get_default_root(struct super_block *sb,
539 u64 subvol_objectid)
540 {
541 struct btrfs_root *root = sb->s_fs_info;
542 struct btrfs_root *new_root;
543 struct btrfs_dir_item *di;
544 struct btrfs_path *path;
545 struct btrfs_key location;
546 struct inode *inode;
547 u64 dir_id;
548 int new = 0;
549
550 /*
551 * We have a specific subvol we want to mount, just setup location and
552 * go look up the root.
553 */
554 if (subvol_objectid) {
555 location.objectid = subvol_objectid;
556 location.type = BTRFS_ROOT_ITEM_KEY;
557 location.offset = (u64)-1;
558 goto find_root;
559 }
560
561 path = btrfs_alloc_path();
562 if (!path)
563 return ERR_PTR(-ENOMEM);
564 path->leave_spinning = 1;
565
566 /*
567 * Find the "default" dir item which points to the root item that we
568 * will mount by default if we haven't been given a specific subvolume
569 * to mount.
570 */
571 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
572 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
573 if (IS_ERR(di)) {
574 btrfs_free_path(path);
575 return ERR_CAST(di);
576 }
577 if (!di) {
578 /*
579 * Ok the default dir item isn't there. This is weird since
580 * it's always been there, but don't freak out, just try and
581 * mount to root most subvolume.
582 */
583 btrfs_free_path(path);
584 dir_id = BTRFS_FIRST_FREE_OBJECTID;
585 new_root = root->fs_info->fs_root;
586 goto setup_root;
587 }
588
589 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
590 btrfs_free_path(path);
591
592 find_root:
593 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
594 if (IS_ERR(new_root))
595 return ERR_CAST(new_root);
596
597 if (btrfs_root_refs(&new_root->root_item) == 0)
598 return ERR_PTR(-ENOENT);
599
600 dir_id = btrfs_root_dirid(&new_root->root_item);
601 setup_root:
602 location.objectid = dir_id;
603 location.type = BTRFS_INODE_ITEM_KEY;
604 location.offset = 0;
605
606 inode = btrfs_iget(sb, &location, new_root, &new);
607 if (IS_ERR(inode))
608 return ERR_CAST(inode);
609
610 /*
611 * If we're just mounting the root most subvol put the inode and return
612 * a reference to the dentry. We will have already gotten a reference
613 * to the inode in btrfs_fill_super so we're good to go.
614 */
615 if (!new && sb->s_root->d_inode == inode) {
616 iput(inode);
617 return dget(sb->s_root);
618 }
619
620 return d_obtain_alias(inode);
621 }
622
623 static int btrfs_fill_super(struct super_block *sb,
624 struct btrfs_fs_devices *fs_devices,
625 void *data, int silent)
626 {
627 struct inode *inode;
628 struct dentry *root_dentry;
629 struct btrfs_root *tree_root;
630 struct btrfs_key key;
631 int err;
632
633 sb->s_maxbytes = MAX_LFS_FILESIZE;
634 sb->s_magic = BTRFS_SUPER_MAGIC;
635 sb->s_op = &btrfs_super_ops;
636 sb->s_d_op = &btrfs_dentry_operations;
637 sb->s_export_op = &btrfs_export_ops;
638 sb->s_xattr = btrfs_xattr_handlers;
639 sb->s_time_gran = 1;
640 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
641 sb->s_flags |= MS_POSIXACL;
642 #endif
643
644 tree_root = open_ctree(sb, fs_devices, (char *)data);
645
646 if (IS_ERR(tree_root)) {
647 printk("btrfs: open_ctree failed\n");
648 return PTR_ERR(tree_root);
649 }
650 sb->s_fs_info = tree_root;
651
652 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
653 key.type = BTRFS_INODE_ITEM_KEY;
654 key.offset = 0;
655 inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
656 if (IS_ERR(inode)) {
657 err = PTR_ERR(inode);
658 goto fail_close;
659 }
660
661 root_dentry = d_alloc_root(inode);
662 if (!root_dentry) {
663 iput(inode);
664 err = -ENOMEM;
665 goto fail_close;
666 }
667
668 sb->s_root = root_dentry;
669
670 save_mount_options(sb, data);
671 cleancache_init_fs(sb);
672 return 0;
673
674 fail_close:
675 close_ctree(tree_root);
676 return err;
677 }
678
679 int btrfs_sync_fs(struct super_block *sb, int wait)
680 {
681 struct btrfs_trans_handle *trans;
682 struct btrfs_root *root = btrfs_sb(sb);
683 int ret;
684
685 trace_btrfs_sync_fs(wait);
686
687 if (!wait) {
688 filemap_flush(root->fs_info->btree_inode->i_mapping);
689 return 0;
690 }
691
692 btrfs_start_delalloc_inodes(root, 0);
693 btrfs_wait_ordered_extents(root, 0, 0);
694
695 trans = btrfs_start_transaction(root, 0);
696 if (IS_ERR(trans))
697 return PTR_ERR(trans);
698 ret = btrfs_commit_transaction(trans, root);
699 return ret;
700 }
701
702 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
703 {
704 struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
705 struct btrfs_fs_info *info = root->fs_info;
706 char *compress_type;
707
708 if (btrfs_test_opt(root, DEGRADED))
709 seq_puts(seq, ",degraded");
710 if (btrfs_test_opt(root, NODATASUM))
711 seq_puts(seq, ",nodatasum");
712 if (btrfs_test_opt(root, NODATACOW))
713 seq_puts(seq, ",nodatacow");
714 if (btrfs_test_opt(root, NOBARRIER))
715 seq_puts(seq, ",nobarrier");
716 if (info->max_inline != 8192 * 1024)
717 seq_printf(seq, ",max_inline=%llu",
718 (unsigned long long)info->max_inline);
719 if (info->alloc_start != 0)
720 seq_printf(seq, ",alloc_start=%llu",
721 (unsigned long long)info->alloc_start);
722 if (info->thread_pool_size != min_t(unsigned long,
723 num_online_cpus() + 2, 8))
724 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
725 if (btrfs_test_opt(root, COMPRESS)) {
726 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
727 compress_type = "zlib";
728 else
729 compress_type = "lzo";
730 if (btrfs_test_opt(root, FORCE_COMPRESS))
731 seq_printf(seq, ",compress-force=%s", compress_type);
732 else
733 seq_printf(seq, ",compress=%s", compress_type);
734 }
735 if (btrfs_test_opt(root, NOSSD))
736 seq_puts(seq, ",nossd");
737 if (btrfs_test_opt(root, SSD_SPREAD))
738 seq_puts(seq, ",ssd_spread");
739 else if (btrfs_test_opt(root, SSD))
740 seq_puts(seq, ",ssd");
741 if (btrfs_test_opt(root, NOTREELOG))
742 seq_puts(seq, ",notreelog");
743 if (btrfs_test_opt(root, FLUSHONCOMMIT))
744 seq_puts(seq, ",flushoncommit");
745 if (btrfs_test_opt(root, DISCARD))
746 seq_puts(seq, ",discard");
747 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
748 seq_puts(seq, ",noacl");
749 if (btrfs_test_opt(root, SPACE_CACHE))
750 seq_puts(seq, ",space_cache");
751 else
752 seq_puts(seq, ",nospace_cache");
753 if (btrfs_test_opt(root, CLEAR_CACHE))
754 seq_puts(seq, ",clear_cache");
755 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
756 seq_puts(seq, ",user_subvol_rm_allowed");
757 if (btrfs_test_opt(root, ENOSPC_DEBUG))
758 seq_puts(seq, ",enospc_debug");
759 if (btrfs_test_opt(root, AUTO_DEFRAG))
760 seq_puts(seq, ",autodefrag");
761 if (btrfs_test_opt(root, INODE_MAP_CACHE))
762 seq_puts(seq, ",inode_cache");
763 return 0;
764 }
765
766 static int btrfs_test_super(struct super_block *s, void *data)
767 {
768 struct btrfs_root *test_root = data;
769 struct btrfs_root *root = btrfs_sb(s);
770
771 /*
772 * If this super block is going away, return false as it
773 * can't match as an existing super block.
774 */
775 if (!atomic_read(&s->s_active))
776 return 0;
777 return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
778 }
779
780 static int btrfs_set_super(struct super_block *s, void *data)
781 {
782 s->s_fs_info = data;
783
784 return set_anon_super(s, data);
785 }
786
787 /*
788 * subvolumes are identified by ino 256
789 */
790 static inline int is_subvolume_inode(struct inode *inode)
791 {
792 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
793 return 1;
794 return 0;
795 }
796
797 /*
798 * This will strip out the subvol=%s argument for an argument string and add
799 * subvolid=0 to make sure we get the actual tree root for path walking to the
800 * subvol we want.
801 */
802 static char *setup_root_args(char *args)
803 {
804 unsigned copied = 0;
805 unsigned len = strlen(args) + 2;
806 char *pos;
807 char *ret;
808
809 /*
810 * We need the same args as before, but minus
811 *
812 * subvol=a
813 *
814 * and add
815 *
816 * subvolid=0
817 *
818 * which is a difference of 2 characters, so we allocate strlen(args) +
819 * 2 characters.
820 */
821 ret = kzalloc(len * sizeof(char), GFP_NOFS);
822 if (!ret)
823 return NULL;
824 pos = strstr(args, "subvol=");
825
826 /* This shouldn't happen, but just in case.. */
827 if (!pos) {
828 kfree(ret);
829 return NULL;
830 }
831
832 /*
833 * The subvol=<> arg is not at the front of the string, copy everybody
834 * up to that into ret.
835 */
836 if (pos != args) {
837 *pos = '\0';
838 strcpy(ret, args);
839 copied += strlen(args);
840 pos++;
841 }
842
843 strncpy(ret + copied, "subvolid=0", len - copied);
844
845 /* Length of subvolid=0 */
846 copied += 10;
847
848 /*
849 * If there is no , after the subvol= option then we know there's no
850 * other options and we can just return.
851 */
852 pos = strchr(pos, ',');
853 if (!pos)
854 return ret;
855
856 /* Copy the rest of the arguments into our buffer */
857 strncpy(ret + copied, pos, len - copied);
858 copied += strlen(pos);
859
860 return ret;
861 }
862
863 static struct dentry *mount_subvol(const char *subvol_name, int flags,
864 const char *device_name, char *data)
865 {
866 struct super_block *s;
867 struct dentry *root;
868 struct vfsmount *mnt;
869 struct mnt_namespace *ns_private;
870 char *newargs;
871 struct path path;
872 int error;
873
874 newargs = setup_root_args(data);
875 if (!newargs)
876 return ERR_PTR(-ENOMEM);
877 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
878 newargs);
879 kfree(newargs);
880 if (IS_ERR(mnt))
881 return ERR_CAST(mnt);
882
883 ns_private = create_mnt_ns(mnt);
884 if (IS_ERR(ns_private)) {
885 mntput(mnt);
886 return ERR_CAST(ns_private);
887 }
888
889 /*
890 * This will trigger the automount of the subvol so we can just
891 * drop the mnt we have here and return the dentry that we
892 * found.
893 */
894 error = vfs_path_lookup(mnt->mnt_root, mnt, subvol_name,
895 LOOKUP_FOLLOW, &path);
896 put_mnt_ns(ns_private);
897 if (error)
898 return ERR_PTR(error);
899
900 if (!is_subvolume_inode(path.dentry->d_inode)) {
901 path_put(&path);
902 mntput(mnt);
903 error = -EINVAL;
904 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
905 subvol_name);
906 return ERR_PTR(-EINVAL);
907 }
908
909 /* Get a ref to the sb and the dentry we found and return it */
910 s = path.mnt->mnt_sb;
911 atomic_inc(&s->s_active);
912 root = dget(path.dentry);
913 path_put(&path);
914 down_write(&s->s_umount);
915
916 return root;
917 }
918
919 /*
920 * Find a superblock for the given device / mount point.
921 *
922 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
923 * for multiple device setup. Make sure to keep it in sync.
924 */
925 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
926 const char *device_name, void *data)
927 {
928 struct block_device *bdev = NULL;
929 struct super_block *s;
930 struct dentry *root;
931 struct btrfs_fs_devices *fs_devices = NULL;
932 struct btrfs_fs_info *fs_info = NULL;
933 fmode_t mode = FMODE_READ;
934 char *subvol_name = NULL;
935 u64 subvol_objectid = 0;
936 u64 subvol_rootid = 0;
937 int error = 0;
938
939 if (!(flags & MS_RDONLY))
940 mode |= FMODE_WRITE;
941
942 error = btrfs_parse_early_options(data, mode, fs_type,
943 &subvol_name, &subvol_objectid,
944 &subvol_rootid, &fs_devices);
945 if (error) {
946 kfree(subvol_name);
947 return ERR_PTR(error);
948 }
949
950 if (subvol_name) {
951 root = mount_subvol(subvol_name, flags, device_name, data);
952 kfree(subvol_name);
953 return root;
954 }
955
956 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
957 if (error)
958 return ERR_PTR(error);
959
960 /*
961 * Setup a dummy root and fs_info for test/set super. This is because
962 * we don't actually fill this stuff out until open_ctree, but we need
963 * it for searching for existing supers, so this lets us do that and
964 * then open_ctree will properly initialize everything later.
965 */
966 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
967 if (!fs_info)
968 return ERR_PTR(-ENOMEM);
969
970 fs_info->tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
971 if (!fs_info->tree_root) {
972 error = -ENOMEM;
973 goto error_fs_info;
974 }
975 fs_info->tree_root->fs_info = fs_info;
976 fs_info->fs_devices = fs_devices;
977
978 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
979 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
980 if (!fs_info->super_copy || !fs_info->super_for_commit) {
981 error = -ENOMEM;
982 goto error_fs_info;
983 }
984
985 error = btrfs_open_devices(fs_devices, mode, fs_type);
986 if (error)
987 goto error_fs_info;
988
989 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
990 error = -EACCES;
991 goto error_close_devices;
992 }
993
994 bdev = fs_devices->latest_bdev;
995 s = sget(fs_type, btrfs_test_super, btrfs_set_super,
996 fs_info->tree_root);
997 if (IS_ERR(s)) {
998 error = PTR_ERR(s);
999 goto error_close_devices;
1000 }
1001
1002 if (s->s_root) {
1003 if ((flags ^ s->s_flags) & MS_RDONLY) {
1004 deactivate_locked_super(s);
1005 error = -EBUSY;
1006 goto error_close_devices;
1007 }
1008
1009 btrfs_close_devices(fs_devices);
1010 free_fs_info(fs_info);
1011 } else {
1012 char b[BDEVNAME_SIZE];
1013
1014 s->s_flags = flags | MS_NOSEC;
1015 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1016 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
1017 error = btrfs_fill_super(s, fs_devices, data,
1018 flags & MS_SILENT ? 1 : 0);
1019 if (error) {
1020 deactivate_locked_super(s);
1021 return ERR_PTR(error);
1022 }
1023
1024 s->s_flags |= MS_ACTIVE;
1025 }
1026
1027 root = get_default_root(s, subvol_objectid);
1028 if (IS_ERR(root)) {
1029 deactivate_locked_super(s);
1030 return root;
1031 }
1032
1033 return root;
1034
1035 error_close_devices:
1036 btrfs_close_devices(fs_devices);
1037 error_fs_info:
1038 free_fs_info(fs_info);
1039 return ERR_PTR(error);
1040 }
1041
1042 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1043 {
1044 struct btrfs_root *root = btrfs_sb(sb);
1045 int ret;
1046
1047 ret = btrfs_parse_options(root, data);
1048 if (ret)
1049 return -EINVAL;
1050
1051 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1052 return 0;
1053
1054 if (*flags & MS_RDONLY) {
1055 sb->s_flags |= MS_RDONLY;
1056
1057 ret = btrfs_commit_super(root);
1058 WARN_ON(ret);
1059 } else {
1060 if (root->fs_info->fs_devices->rw_devices == 0)
1061 return -EACCES;
1062
1063 if (btrfs_super_log_root(root->fs_info->super_copy) != 0)
1064 return -EINVAL;
1065
1066 ret = btrfs_cleanup_fs_roots(root->fs_info);
1067 WARN_ON(ret);
1068
1069 /* recover relocation */
1070 ret = btrfs_recover_relocation(root);
1071 WARN_ON(ret);
1072
1073 sb->s_flags &= ~MS_RDONLY;
1074 }
1075
1076 return 0;
1077 }
1078
1079 /* Used to sort the devices by max_avail(descending sort) */
1080 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1081 const void *dev_info2)
1082 {
1083 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1084 ((struct btrfs_device_info *)dev_info2)->max_avail)
1085 return -1;
1086 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1087 ((struct btrfs_device_info *)dev_info2)->max_avail)
1088 return 1;
1089 else
1090 return 0;
1091 }
1092
1093 /*
1094 * sort the devices by max_avail, in which max free extent size of each device
1095 * is stored.(Descending Sort)
1096 */
1097 static inline void btrfs_descending_sort_devices(
1098 struct btrfs_device_info *devices,
1099 size_t nr_devices)
1100 {
1101 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1102 btrfs_cmp_device_free_bytes, NULL);
1103 }
1104
1105 /*
1106 * The helper to calc the free space on the devices that can be used to store
1107 * file data.
1108 */
1109 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1110 {
1111 struct btrfs_fs_info *fs_info = root->fs_info;
1112 struct btrfs_device_info *devices_info;
1113 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1114 struct btrfs_device *device;
1115 u64 skip_space;
1116 u64 type;
1117 u64 avail_space;
1118 u64 used_space;
1119 u64 min_stripe_size;
1120 int min_stripes = 1, num_stripes = 1;
1121 int i = 0, nr_devices;
1122 int ret;
1123
1124 nr_devices = fs_info->fs_devices->open_devices;
1125 BUG_ON(!nr_devices);
1126
1127 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1128 GFP_NOFS);
1129 if (!devices_info)
1130 return -ENOMEM;
1131
1132 /* calc min stripe number for data space alloction */
1133 type = btrfs_get_alloc_profile(root, 1);
1134 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1135 min_stripes = 2;
1136 num_stripes = nr_devices;
1137 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1138 min_stripes = 2;
1139 num_stripes = 2;
1140 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1141 min_stripes = 4;
1142 num_stripes = 4;
1143 }
1144
1145 if (type & BTRFS_BLOCK_GROUP_DUP)
1146 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1147 else
1148 min_stripe_size = BTRFS_STRIPE_LEN;
1149
1150 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1151 if (!device->in_fs_metadata || !device->bdev)
1152 continue;
1153
1154 avail_space = device->total_bytes - device->bytes_used;
1155
1156 /* align with stripe_len */
1157 do_div(avail_space, BTRFS_STRIPE_LEN);
1158 avail_space *= BTRFS_STRIPE_LEN;
1159
1160 /*
1161 * In order to avoid overwritting the superblock on the drive,
1162 * btrfs starts at an offset of at least 1MB when doing chunk
1163 * allocation.
1164 */
1165 skip_space = 1024 * 1024;
1166
1167 /* user can set the offset in fs_info->alloc_start. */
1168 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1169 device->total_bytes)
1170 skip_space = max(fs_info->alloc_start, skip_space);
1171
1172 /*
1173 * btrfs can not use the free space in [0, skip_space - 1],
1174 * we must subtract it from the total. In order to implement
1175 * it, we account the used space in this range first.
1176 */
1177 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1178 &used_space);
1179 if (ret) {
1180 kfree(devices_info);
1181 return ret;
1182 }
1183
1184 /* calc the free space in [0, skip_space - 1] */
1185 skip_space -= used_space;
1186
1187 /*
1188 * we can use the free space in [0, skip_space - 1], subtract
1189 * it from the total.
1190 */
1191 if (avail_space && avail_space >= skip_space)
1192 avail_space -= skip_space;
1193 else
1194 avail_space = 0;
1195
1196 if (avail_space < min_stripe_size)
1197 continue;
1198
1199 devices_info[i].dev = device;
1200 devices_info[i].max_avail = avail_space;
1201
1202 i++;
1203 }
1204
1205 nr_devices = i;
1206
1207 btrfs_descending_sort_devices(devices_info, nr_devices);
1208
1209 i = nr_devices - 1;
1210 avail_space = 0;
1211 while (nr_devices >= min_stripes) {
1212 if (num_stripes > nr_devices)
1213 num_stripes = nr_devices;
1214
1215 if (devices_info[i].max_avail >= min_stripe_size) {
1216 int j;
1217 u64 alloc_size;
1218
1219 avail_space += devices_info[i].max_avail * num_stripes;
1220 alloc_size = devices_info[i].max_avail;
1221 for (j = i + 1 - num_stripes; j <= i; j++)
1222 devices_info[j].max_avail -= alloc_size;
1223 }
1224 i--;
1225 nr_devices--;
1226 }
1227
1228 kfree(devices_info);
1229 *free_bytes = avail_space;
1230 return 0;
1231 }
1232
1233 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1234 {
1235 struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1236 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1237 struct list_head *head = &root->fs_info->space_info;
1238 struct btrfs_space_info *found;
1239 u64 total_used = 0;
1240 u64 total_free_data = 0;
1241 int bits = dentry->d_sb->s_blocksize_bits;
1242 __be32 *fsid = (__be32 *)root->fs_info->fsid;
1243 int ret;
1244
1245 /* holding chunk_muext to avoid allocating new chunks */
1246 mutex_lock(&root->fs_info->chunk_mutex);
1247 rcu_read_lock();
1248 list_for_each_entry_rcu(found, head, list) {
1249 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1250 total_free_data += found->disk_total - found->disk_used;
1251 total_free_data -=
1252 btrfs_account_ro_block_groups_free_space(found);
1253 }
1254
1255 total_used += found->disk_used;
1256 }
1257 rcu_read_unlock();
1258
1259 buf->f_namelen = BTRFS_NAME_LEN;
1260 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1261 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1262 buf->f_bsize = dentry->d_sb->s_blocksize;
1263 buf->f_type = BTRFS_SUPER_MAGIC;
1264 buf->f_bavail = total_free_data;
1265 ret = btrfs_calc_avail_data_space(root, &total_free_data);
1266 if (ret) {
1267 mutex_unlock(&root->fs_info->chunk_mutex);
1268 return ret;
1269 }
1270 buf->f_bavail += total_free_data;
1271 buf->f_bavail = buf->f_bavail >> bits;
1272 mutex_unlock(&root->fs_info->chunk_mutex);
1273
1274 /* We treat it as constant endianness (it doesn't matter _which_)
1275 because we want the fsid to come out the same whether mounted
1276 on a big-endian or little-endian host */
1277 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1278 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1279 /* Mask in the root object ID too, to disambiguate subvols */
1280 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1281 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1282
1283 return 0;
1284 }
1285
1286 static struct file_system_type btrfs_fs_type = {
1287 .owner = THIS_MODULE,
1288 .name = "btrfs",
1289 .mount = btrfs_mount,
1290 .kill_sb = kill_anon_super,
1291 .fs_flags = FS_REQUIRES_DEV,
1292 };
1293
1294 /*
1295 * used by btrfsctl to scan devices when no FS is mounted
1296 */
1297 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1298 unsigned long arg)
1299 {
1300 struct btrfs_ioctl_vol_args *vol;
1301 struct btrfs_fs_devices *fs_devices;
1302 int ret = -ENOTTY;
1303
1304 if (!capable(CAP_SYS_ADMIN))
1305 return -EPERM;
1306
1307 vol = memdup_user((void __user *)arg, sizeof(*vol));
1308 if (IS_ERR(vol))
1309 return PTR_ERR(vol);
1310
1311 switch (cmd) {
1312 case BTRFS_IOC_SCAN_DEV:
1313 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1314 &btrfs_fs_type, &fs_devices);
1315 break;
1316 }
1317
1318 kfree(vol);
1319 return ret;
1320 }
1321
1322 static int btrfs_freeze(struct super_block *sb)
1323 {
1324 struct btrfs_root *root = btrfs_sb(sb);
1325 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1326 mutex_lock(&root->fs_info->cleaner_mutex);
1327 return 0;
1328 }
1329
1330 static int btrfs_unfreeze(struct super_block *sb)
1331 {
1332 struct btrfs_root *root = btrfs_sb(sb);
1333 mutex_unlock(&root->fs_info->cleaner_mutex);
1334 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1335 return 0;
1336 }
1337
1338 static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1339 {
1340 int ret;
1341
1342 ret = btrfs_dirty_inode(inode);
1343 if (ret)
1344 printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1345 "error %d\n", btrfs_ino(inode), ret);
1346 }
1347
1348 static const struct super_operations btrfs_super_ops = {
1349 .drop_inode = btrfs_drop_inode,
1350 .evict_inode = btrfs_evict_inode,
1351 .put_super = btrfs_put_super,
1352 .sync_fs = btrfs_sync_fs,
1353 .show_options = btrfs_show_options,
1354 .write_inode = btrfs_write_inode,
1355 .dirty_inode = btrfs_fs_dirty_inode,
1356 .alloc_inode = btrfs_alloc_inode,
1357 .destroy_inode = btrfs_destroy_inode,
1358 .statfs = btrfs_statfs,
1359 .remount_fs = btrfs_remount,
1360 .freeze_fs = btrfs_freeze,
1361 .unfreeze_fs = btrfs_unfreeze,
1362 };
1363
1364 static const struct file_operations btrfs_ctl_fops = {
1365 .unlocked_ioctl = btrfs_control_ioctl,
1366 .compat_ioctl = btrfs_control_ioctl,
1367 .owner = THIS_MODULE,
1368 .llseek = noop_llseek,
1369 };
1370
1371 static struct miscdevice btrfs_misc = {
1372 .minor = BTRFS_MINOR,
1373 .name = "btrfs-control",
1374 .fops = &btrfs_ctl_fops
1375 };
1376
1377 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1378 MODULE_ALIAS("devname:btrfs-control");
1379
1380 static int btrfs_interface_init(void)
1381 {
1382 return misc_register(&btrfs_misc);
1383 }
1384
1385 static void btrfs_interface_exit(void)
1386 {
1387 if (misc_deregister(&btrfs_misc) < 0)
1388 printk(KERN_INFO "misc_deregister failed for control device");
1389 }
1390
1391 static int __init init_btrfs_fs(void)
1392 {
1393 int err;
1394
1395 err = btrfs_init_sysfs();
1396 if (err)
1397 return err;
1398
1399 err = btrfs_init_compress();
1400 if (err)
1401 goto free_sysfs;
1402
1403 err = btrfs_init_cachep();
1404 if (err)
1405 goto free_compress;
1406
1407 err = extent_io_init();
1408 if (err)
1409 goto free_cachep;
1410
1411 err = extent_map_init();
1412 if (err)
1413 goto free_extent_io;
1414
1415 err = btrfs_delayed_inode_init();
1416 if (err)
1417 goto free_extent_map;
1418
1419 err = btrfs_interface_init();
1420 if (err)
1421 goto free_delayed_inode;
1422
1423 err = register_filesystem(&btrfs_fs_type);
1424 if (err)
1425 goto unregister_ioctl;
1426
1427 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1428 return 0;
1429
1430 unregister_ioctl:
1431 btrfs_interface_exit();
1432 free_delayed_inode:
1433 btrfs_delayed_inode_exit();
1434 free_extent_map:
1435 extent_map_exit();
1436 free_extent_io:
1437 extent_io_exit();
1438 free_cachep:
1439 btrfs_destroy_cachep();
1440 free_compress:
1441 btrfs_exit_compress();
1442 free_sysfs:
1443 btrfs_exit_sysfs();
1444 return err;
1445 }
1446
1447 static void __exit exit_btrfs_fs(void)
1448 {
1449 btrfs_destroy_cachep();
1450 btrfs_delayed_inode_exit();
1451 extent_map_exit();
1452 extent_io_exit();
1453 btrfs_interface_exit();
1454 unregister_filesystem(&btrfs_fs_type);
1455 btrfs_exit_sysfs();
1456 btrfs_cleanup_fs_uuids();
1457 btrfs_exit_compress();
1458 }
1459
1460 module_init(init_btrfs_fs)
1461 module_exit(exit_btrfs_fs)
1462
1463 MODULE_LICENSE("GPL");