]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/super.c
Merge branch 'ucount-fixes-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/btrfs.h>
54
55 static const struct super_operations btrfs_super_ops;
56
57 /*
58 * Types for mounting the default subvolume and a subvolume explicitly
59 * requested by subvol=/path. That way the callchain is straightforward and we
60 * don't have to play tricks with the mount options and recursive calls to
61 * btrfs_mount.
62 *
63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64 */
65 static struct file_system_type btrfs_fs_type;
66 static struct file_system_type btrfs_root_fs_type;
67
68 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69
70 /*
71 * Generally the error codes correspond to their respective errors, but there
72 * are a few special cases.
73 *
74 * EUCLEAN: Any sort of corruption that we encounter. The tree-checker for
75 * instance will return EUCLEAN if any of the blocks are corrupted in
76 * a way that is problematic. We want to reserve EUCLEAN for these
77 * sort of corruptions.
78 *
79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
80 * need to use EROFS for this case. We will have no idea of the
81 * original failure, that will have been reported at the time we tripped
82 * over the error. Each subsequent error that doesn't have any context
83 * of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
84 */
85 const char * __attribute_const__ btrfs_decode_error(int errno)
86 {
87 char *errstr = "unknown";
88
89 switch (errno) {
90 case -ENOENT: /* -2 */
91 errstr = "No such entry";
92 break;
93 case -EIO: /* -5 */
94 errstr = "IO failure";
95 break;
96 case -ENOMEM: /* -12*/
97 errstr = "Out of memory";
98 break;
99 case -EEXIST: /* -17 */
100 errstr = "Object already exists";
101 break;
102 case -ENOSPC: /* -28 */
103 errstr = "No space left";
104 break;
105 case -EROFS: /* -30 */
106 errstr = "Readonly filesystem";
107 break;
108 case -EOPNOTSUPP: /* -95 */
109 errstr = "Operation not supported";
110 break;
111 case -EUCLEAN: /* -117 */
112 errstr = "Filesystem corrupted";
113 break;
114 case -EDQUOT: /* -122 */
115 errstr = "Quota exceeded";
116 break;
117 }
118
119 return errstr;
120 }
121
122 /*
123 * __btrfs_handle_fs_error decodes expected errors from the caller and
124 * invokes the appropriate error response.
125 */
126 __cold
127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
128 unsigned int line, int errno, const char *fmt, ...)
129 {
130 struct super_block *sb = fs_info->sb;
131 #ifdef CONFIG_PRINTK
132 const char *errstr;
133 #endif
134
135 /*
136 * Special case: if the error is EROFS, and we're already
137 * under SB_RDONLY, then it is safe here.
138 */
139 if (errno == -EROFS && sb_rdonly(sb))
140 return;
141
142 #ifdef CONFIG_PRINTK
143 errstr = btrfs_decode_error(errno);
144 if (fmt) {
145 struct va_format vaf;
146 va_list args;
147
148 va_start(args, fmt);
149 vaf.fmt = fmt;
150 vaf.va = &args;
151
152 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
153 sb->s_id, function, line, errno, errstr, &vaf);
154 va_end(args);
155 } else {
156 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
157 sb->s_id, function, line, errno, errstr);
158 }
159 #endif
160
161 /*
162 * Today we only save the error info to memory. Long term we'll
163 * also send it down to the disk
164 */
165 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
166
167 /* Don't go through full error handling during mount */
168 if (!(sb->s_flags & SB_BORN))
169 return;
170
171 if (sb_rdonly(sb))
172 return;
173
174 btrfs_discard_stop(fs_info);
175
176 /* btrfs handle error by forcing the filesystem readonly */
177 btrfs_set_sb_rdonly(sb);
178 btrfs_info(fs_info, "forced readonly");
179 /*
180 * Note that a running device replace operation is not canceled here
181 * although there is no way to update the progress. It would add the
182 * risk of a deadlock, therefore the canceling is omitted. The only
183 * penalty is that some I/O remains active until the procedure
184 * completes. The next time when the filesystem is mounted writable
185 * again, the device replace operation continues.
186 */
187 }
188
189 #ifdef CONFIG_PRINTK
190 static const char * const logtypes[] = {
191 "emergency",
192 "alert",
193 "critical",
194 "error",
195 "warning",
196 "notice",
197 "info",
198 "debug",
199 };
200
201
202 /*
203 * Use one ratelimit state per log level so that a flood of less important
204 * messages doesn't cause more important ones to be dropped.
205 */
206 static struct ratelimit_state printk_limits[] = {
207 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
208 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
209 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
210 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
211 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
212 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
213 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
214 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
215 };
216
217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
218 {
219 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
220 struct va_format vaf;
221 va_list args;
222 int kern_level;
223 const char *type = logtypes[4];
224 struct ratelimit_state *ratelimit = &printk_limits[4];
225
226 va_start(args, fmt);
227
228 while ((kern_level = printk_get_level(fmt)) != 0) {
229 size_t size = printk_skip_level(fmt) - fmt;
230
231 if (kern_level >= '0' && kern_level <= '7') {
232 memcpy(lvl, fmt, size);
233 lvl[size] = '\0';
234 type = logtypes[kern_level - '0'];
235 ratelimit = &printk_limits[kern_level - '0'];
236 }
237 fmt += size;
238 }
239
240 vaf.fmt = fmt;
241 vaf.va = &args;
242
243 if (__ratelimit(ratelimit)) {
244 if (fs_info)
245 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
246 fs_info->sb->s_id, &vaf);
247 else
248 printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
249 }
250
251 va_end(args);
252 }
253 #endif
254
255 #if BITS_PER_LONG == 32
256 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
257 {
258 if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
259 btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
260 btrfs_warn(fs_info,
261 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
262 BTRFS_32BIT_MAX_FILE_SIZE >> 40);
263 btrfs_warn(fs_info,
264 "please consider upgrading to 64bit kernel/hardware");
265 }
266 }
267
268 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
269 {
270 if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
271 btrfs_err(fs_info, "reached 32bit limit for logical addresses");
272 btrfs_err(fs_info,
273 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
274 BTRFS_32BIT_MAX_FILE_SIZE >> 40);
275 btrfs_err(fs_info,
276 "please consider upgrading to 64bit kernel/hardware");
277 }
278 }
279 #endif
280
281 /*
282 * We only mark the transaction aborted and then set the file system read-only.
283 * This will prevent new transactions from starting or trying to join this
284 * one.
285 *
286 * This means that error recovery at the call site is limited to freeing
287 * any local memory allocations and passing the error code up without
288 * further cleanup. The transaction should complete as it normally would
289 * in the call path but will return -EIO.
290 *
291 * We'll complete the cleanup in btrfs_end_transaction and
292 * btrfs_commit_transaction.
293 */
294 __cold
295 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
296 const char *function,
297 unsigned int line, int errno)
298 {
299 struct btrfs_fs_info *fs_info = trans->fs_info;
300
301 WRITE_ONCE(trans->aborted, errno);
302 WRITE_ONCE(trans->transaction->aborted, errno);
303 /* Wake up anybody who may be waiting on this transaction */
304 wake_up(&fs_info->transaction_wait);
305 wake_up(&fs_info->transaction_blocked_wait);
306 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
307 }
308 /*
309 * __btrfs_panic decodes unexpected, fatal errors from the caller,
310 * issues an alert, and either panics or BUGs, depending on mount options.
311 */
312 __cold
313 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
314 unsigned int line, int errno, const char *fmt, ...)
315 {
316 char *s_id = "<unknown>";
317 const char *errstr;
318 struct va_format vaf = { .fmt = fmt };
319 va_list args;
320
321 if (fs_info)
322 s_id = fs_info->sb->s_id;
323
324 va_start(args, fmt);
325 vaf.va = &args;
326
327 errstr = btrfs_decode_error(errno);
328 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
329 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
330 s_id, function, line, &vaf, errno, errstr);
331
332 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
333 function, line, &vaf, errno, errstr);
334 va_end(args);
335 /* Caller calls BUG() */
336 }
337
338 static void btrfs_put_super(struct super_block *sb)
339 {
340 close_ctree(btrfs_sb(sb));
341 }
342
343 enum {
344 Opt_acl, Opt_noacl,
345 Opt_clear_cache,
346 Opt_commit_interval,
347 Opt_compress,
348 Opt_compress_force,
349 Opt_compress_force_type,
350 Opt_compress_type,
351 Opt_degraded,
352 Opt_device,
353 Opt_fatal_errors,
354 Opt_flushoncommit, Opt_noflushoncommit,
355 Opt_max_inline,
356 Opt_barrier, Opt_nobarrier,
357 Opt_datacow, Opt_nodatacow,
358 Opt_datasum, Opt_nodatasum,
359 Opt_defrag, Opt_nodefrag,
360 Opt_discard, Opt_nodiscard,
361 Opt_discard_mode,
362 Opt_norecovery,
363 Opt_ratio,
364 Opt_rescan_uuid_tree,
365 Opt_skip_balance,
366 Opt_space_cache, Opt_no_space_cache,
367 Opt_space_cache_version,
368 Opt_ssd, Opt_nossd,
369 Opt_ssd_spread, Opt_nossd_spread,
370 Opt_subvol,
371 Opt_subvol_empty,
372 Opt_subvolid,
373 Opt_thread_pool,
374 Opt_treelog, Opt_notreelog,
375 Opt_user_subvol_rm_allowed,
376
377 /* Rescue options */
378 Opt_rescue,
379 Opt_usebackuproot,
380 Opt_nologreplay,
381 Opt_ignorebadroots,
382 Opt_ignoredatacsums,
383 Opt_rescue_all,
384
385 /* Deprecated options */
386 Opt_recovery,
387 Opt_inode_cache, Opt_noinode_cache,
388
389 /* Debugging options */
390 Opt_check_integrity,
391 Opt_check_integrity_including_extent_data,
392 Opt_check_integrity_print_mask,
393 Opt_enospc_debug, Opt_noenospc_debug,
394 #ifdef CONFIG_BTRFS_DEBUG
395 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
396 #endif
397 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
398 Opt_ref_verify,
399 #endif
400 Opt_err,
401 };
402
403 static const match_table_t tokens = {
404 {Opt_acl, "acl"},
405 {Opt_noacl, "noacl"},
406 {Opt_clear_cache, "clear_cache"},
407 {Opt_commit_interval, "commit=%u"},
408 {Opt_compress, "compress"},
409 {Opt_compress_type, "compress=%s"},
410 {Opt_compress_force, "compress-force"},
411 {Opt_compress_force_type, "compress-force=%s"},
412 {Opt_degraded, "degraded"},
413 {Opt_device, "device=%s"},
414 {Opt_fatal_errors, "fatal_errors=%s"},
415 {Opt_flushoncommit, "flushoncommit"},
416 {Opt_noflushoncommit, "noflushoncommit"},
417 {Opt_inode_cache, "inode_cache"},
418 {Opt_noinode_cache, "noinode_cache"},
419 {Opt_max_inline, "max_inline=%s"},
420 {Opt_barrier, "barrier"},
421 {Opt_nobarrier, "nobarrier"},
422 {Opt_datacow, "datacow"},
423 {Opt_nodatacow, "nodatacow"},
424 {Opt_datasum, "datasum"},
425 {Opt_nodatasum, "nodatasum"},
426 {Opt_defrag, "autodefrag"},
427 {Opt_nodefrag, "noautodefrag"},
428 {Opt_discard, "discard"},
429 {Opt_discard_mode, "discard=%s"},
430 {Opt_nodiscard, "nodiscard"},
431 {Opt_norecovery, "norecovery"},
432 {Opt_ratio, "metadata_ratio=%u"},
433 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
434 {Opt_skip_balance, "skip_balance"},
435 {Opt_space_cache, "space_cache"},
436 {Opt_no_space_cache, "nospace_cache"},
437 {Opt_space_cache_version, "space_cache=%s"},
438 {Opt_ssd, "ssd"},
439 {Opt_nossd, "nossd"},
440 {Opt_ssd_spread, "ssd_spread"},
441 {Opt_nossd_spread, "nossd_spread"},
442 {Opt_subvol, "subvol=%s"},
443 {Opt_subvol_empty, "subvol="},
444 {Opt_subvolid, "subvolid=%s"},
445 {Opt_thread_pool, "thread_pool=%u"},
446 {Opt_treelog, "treelog"},
447 {Opt_notreelog, "notreelog"},
448 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
449
450 /* Rescue options */
451 {Opt_rescue, "rescue=%s"},
452 /* Deprecated, with alias rescue=nologreplay */
453 {Opt_nologreplay, "nologreplay"},
454 /* Deprecated, with alias rescue=usebackuproot */
455 {Opt_usebackuproot, "usebackuproot"},
456
457 /* Deprecated options */
458 {Opt_recovery, "recovery"},
459
460 /* Debugging options */
461 {Opt_check_integrity, "check_int"},
462 {Opt_check_integrity_including_extent_data, "check_int_data"},
463 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
464 {Opt_enospc_debug, "enospc_debug"},
465 {Opt_noenospc_debug, "noenospc_debug"},
466 #ifdef CONFIG_BTRFS_DEBUG
467 {Opt_fragment_data, "fragment=data"},
468 {Opt_fragment_metadata, "fragment=metadata"},
469 {Opt_fragment_all, "fragment=all"},
470 #endif
471 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
472 {Opt_ref_verify, "ref_verify"},
473 #endif
474 {Opt_err, NULL},
475 };
476
477 static const match_table_t rescue_tokens = {
478 {Opt_usebackuproot, "usebackuproot"},
479 {Opt_nologreplay, "nologreplay"},
480 {Opt_ignorebadroots, "ignorebadroots"},
481 {Opt_ignorebadroots, "ibadroots"},
482 {Opt_ignoredatacsums, "ignoredatacsums"},
483 {Opt_ignoredatacsums, "idatacsums"},
484 {Opt_rescue_all, "all"},
485 {Opt_err, NULL},
486 };
487
488 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
489 const char *opt_name)
490 {
491 if (fs_info->mount_opt & opt) {
492 btrfs_err(fs_info, "%s must be used with ro mount option",
493 opt_name);
494 return true;
495 }
496 return false;
497 }
498
499 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
500 {
501 char *opts;
502 char *orig;
503 char *p;
504 substring_t args[MAX_OPT_ARGS];
505 int ret = 0;
506
507 opts = kstrdup(options, GFP_KERNEL);
508 if (!opts)
509 return -ENOMEM;
510 orig = opts;
511
512 while ((p = strsep(&opts, ":")) != NULL) {
513 int token;
514
515 if (!*p)
516 continue;
517 token = match_token(p, rescue_tokens, args);
518 switch (token){
519 case Opt_usebackuproot:
520 btrfs_info(info,
521 "trying to use backup root at mount time");
522 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
523 break;
524 case Opt_nologreplay:
525 btrfs_set_and_info(info, NOLOGREPLAY,
526 "disabling log replay at mount time");
527 break;
528 case Opt_ignorebadroots:
529 btrfs_set_and_info(info, IGNOREBADROOTS,
530 "ignoring bad roots");
531 break;
532 case Opt_ignoredatacsums:
533 btrfs_set_and_info(info, IGNOREDATACSUMS,
534 "ignoring data csums");
535 break;
536 case Opt_rescue_all:
537 btrfs_info(info, "enabling all of the rescue options");
538 btrfs_set_and_info(info, IGNOREDATACSUMS,
539 "ignoring data csums");
540 btrfs_set_and_info(info, IGNOREBADROOTS,
541 "ignoring bad roots");
542 btrfs_set_and_info(info, NOLOGREPLAY,
543 "disabling log replay at mount time");
544 break;
545 case Opt_err:
546 btrfs_info(info, "unrecognized rescue option '%s'", p);
547 ret = -EINVAL;
548 goto out;
549 default:
550 break;
551 }
552
553 }
554 out:
555 kfree(orig);
556 return ret;
557 }
558
559 /*
560 * Regular mount options parser. Everything that is needed only when
561 * reading in a new superblock is parsed here.
562 * XXX JDM: This needs to be cleaned up for remount.
563 */
564 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
565 unsigned long new_flags)
566 {
567 substring_t args[MAX_OPT_ARGS];
568 char *p, *num;
569 int intarg;
570 int ret = 0;
571 char *compress_type;
572 bool compress_force = false;
573 enum btrfs_compression_type saved_compress_type;
574 int saved_compress_level;
575 bool saved_compress_force;
576 int no_compress = 0;
577
578 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
579 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
580 else if (btrfs_free_space_cache_v1_active(info)) {
581 if (btrfs_is_zoned(info)) {
582 btrfs_info(info,
583 "zoned: clearing existing space cache");
584 btrfs_set_super_cache_generation(info->super_copy, 0);
585 } else {
586 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
587 }
588 }
589
590 /*
591 * Even the options are empty, we still need to do extra check
592 * against new flags
593 */
594 if (!options)
595 goto check;
596
597 while ((p = strsep(&options, ",")) != NULL) {
598 int token;
599 if (!*p)
600 continue;
601
602 token = match_token(p, tokens, args);
603 switch (token) {
604 case Opt_degraded:
605 btrfs_info(info, "allowing degraded mounts");
606 btrfs_set_opt(info->mount_opt, DEGRADED);
607 break;
608 case Opt_subvol:
609 case Opt_subvol_empty:
610 case Opt_subvolid:
611 case Opt_device:
612 /*
613 * These are parsed by btrfs_parse_subvol_options or
614 * btrfs_parse_device_options and can be ignored here.
615 */
616 break;
617 case Opt_nodatasum:
618 btrfs_set_and_info(info, NODATASUM,
619 "setting nodatasum");
620 break;
621 case Opt_datasum:
622 if (btrfs_test_opt(info, NODATASUM)) {
623 if (btrfs_test_opt(info, NODATACOW))
624 btrfs_info(info,
625 "setting datasum, datacow enabled");
626 else
627 btrfs_info(info, "setting datasum");
628 }
629 btrfs_clear_opt(info->mount_opt, NODATACOW);
630 btrfs_clear_opt(info->mount_opt, NODATASUM);
631 break;
632 case Opt_nodatacow:
633 if (!btrfs_test_opt(info, NODATACOW)) {
634 if (!btrfs_test_opt(info, COMPRESS) ||
635 !btrfs_test_opt(info, FORCE_COMPRESS)) {
636 btrfs_info(info,
637 "setting nodatacow, compression disabled");
638 } else {
639 btrfs_info(info, "setting nodatacow");
640 }
641 }
642 btrfs_clear_opt(info->mount_opt, COMPRESS);
643 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
644 btrfs_set_opt(info->mount_opt, NODATACOW);
645 btrfs_set_opt(info->mount_opt, NODATASUM);
646 break;
647 case Opt_datacow:
648 btrfs_clear_and_info(info, NODATACOW,
649 "setting datacow");
650 break;
651 case Opt_compress_force:
652 case Opt_compress_force_type:
653 compress_force = true;
654 fallthrough;
655 case Opt_compress:
656 case Opt_compress_type:
657 saved_compress_type = btrfs_test_opt(info,
658 COMPRESS) ?
659 info->compress_type : BTRFS_COMPRESS_NONE;
660 saved_compress_force =
661 btrfs_test_opt(info, FORCE_COMPRESS);
662 saved_compress_level = info->compress_level;
663 if (token == Opt_compress ||
664 token == Opt_compress_force ||
665 strncmp(args[0].from, "zlib", 4) == 0) {
666 compress_type = "zlib";
667
668 info->compress_type = BTRFS_COMPRESS_ZLIB;
669 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
670 /*
671 * args[0] contains uninitialized data since
672 * for these tokens we don't expect any
673 * parameter.
674 */
675 if (token != Opt_compress &&
676 token != Opt_compress_force)
677 info->compress_level =
678 btrfs_compress_str2level(
679 BTRFS_COMPRESS_ZLIB,
680 args[0].from + 4);
681 btrfs_set_opt(info->mount_opt, COMPRESS);
682 btrfs_clear_opt(info->mount_opt, NODATACOW);
683 btrfs_clear_opt(info->mount_opt, NODATASUM);
684 no_compress = 0;
685 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
686 compress_type = "lzo";
687 info->compress_type = BTRFS_COMPRESS_LZO;
688 info->compress_level = 0;
689 btrfs_set_opt(info->mount_opt, COMPRESS);
690 btrfs_clear_opt(info->mount_opt, NODATACOW);
691 btrfs_clear_opt(info->mount_opt, NODATASUM);
692 btrfs_set_fs_incompat(info, COMPRESS_LZO);
693 no_compress = 0;
694 } else if (strncmp(args[0].from, "zstd", 4) == 0) {
695 compress_type = "zstd";
696 info->compress_type = BTRFS_COMPRESS_ZSTD;
697 info->compress_level =
698 btrfs_compress_str2level(
699 BTRFS_COMPRESS_ZSTD,
700 args[0].from + 4);
701 btrfs_set_opt(info->mount_opt, COMPRESS);
702 btrfs_clear_opt(info->mount_opt, NODATACOW);
703 btrfs_clear_opt(info->mount_opt, NODATASUM);
704 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
705 no_compress = 0;
706 } else if (strncmp(args[0].from, "no", 2) == 0) {
707 compress_type = "no";
708 info->compress_level = 0;
709 info->compress_type = 0;
710 btrfs_clear_opt(info->mount_opt, COMPRESS);
711 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
712 compress_force = false;
713 no_compress++;
714 } else {
715 ret = -EINVAL;
716 goto out;
717 }
718
719 if (compress_force) {
720 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
721 } else {
722 /*
723 * If we remount from compress-force=xxx to
724 * compress=xxx, we need clear FORCE_COMPRESS
725 * flag, otherwise, there is no way for users
726 * to disable forcible compression separately.
727 */
728 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
729 }
730 if (no_compress == 1) {
731 btrfs_info(info, "use no compression");
732 } else if ((info->compress_type != saved_compress_type) ||
733 (compress_force != saved_compress_force) ||
734 (info->compress_level != saved_compress_level)) {
735 btrfs_info(info, "%s %s compression, level %d",
736 (compress_force) ? "force" : "use",
737 compress_type, info->compress_level);
738 }
739 compress_force = false;
740 break;
741 case Opt_ssd:
742 btrfs_set_and_info(info, SSD,
743 "enabling ssd optimizations");
744 btrfs_clear_opt(info->mount_opt, NOSSD);
745 break;
746 case Opt_ssd_spread:
747 btrfs_set_and_info(info, SSD,
748 "enabling ssd optimizations");
749 btrfs_set_and_info(info, SSD_SPREAD,
750 "using spread ssd allocation scheme");
751 btrfs_clear_opt(info->mount_opt, NOSSD);
752 break;
753 case Opt_nossd:
754 btrfs_set_opt(info->mount_opt, NOSSD);
755 btrfs_clear_and_info(info, SSD,
756 "not using ssd optimizations");
757 fallthrough;
758 case Opt_nossd_spread:
759 btrfs_clear_and_info(info, SSD_SPREAD,
760 "not using spread ssd allocation scheme");
761 break;
762 case Opt_barrier:
763 btrfs_clear_and_info(info, NOBARRIER,
764 "turning on barriers");
765 break;
766 case Opt_nobarrier:
767 btrfs_set_and_info(info, NOBARRIER,
768 "turning off barriers");
769 break;
770 case Opt_thread_pool:
771 ret = match_int(&args[0], &intarg);
772 if (ret) {
773 goto out;
774 } else if (intarg == 0) {
775 ret = -EINVAL;
776 goto out;
777 }
778 info->thread_pool_size = intarg;
779 break;
780 case Opt_max_inline:
781 num = match_strdup(&args[0]);
782 if (num) {
783 info->max_inline = memparse(num, NULL);
784 kfree(num);
785
786 if (info->max_inline) {
787 info->max_inline = min_t(u64,
788 info->max_inline,
789 info->sectorsize);
790 }
791 btrfs_info(info, "max_inline at %llu",
792 info->max_inline);
793 } else {
794 ret = -ENOMEM;
795 goto out;
796 }
797 break;
798 case Opt_acl:
799 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
800 info->sb->s_flags |= SB_POSIXACL;
801 break;
802 #else
803 btrfs_err(info, "support for ACL not compiled in!");
804 ret = -EINVAL;
805 goto out;
806 #endif
807 case Opt_noacl:
808 info->sb->s_flags &= ~SB_POSIXACL;
809 break;
810 case Opt_notreelog:
811 btrfs_set_and_info(info, NOTREELOG,
812 "disabling tree log");
813 break;
814 case Opt_treelog:
815 btrfs_clear_and_info(info, NOTREELOG,
816 "enabling tree log");
817 break;
818 case Opt_norecovery:
819 case Opt_nologreplay:
820 btrfs_warn(info,
821 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
822 btrfs_set_and_info(info, NOLOGREPLAY,
823 "disabling log replay at mount time");
824 break;
825 case Opt_flushoncommit:
826 btrfs_set_and_info(info, FLUSHONCOMMIT,
827 "turning on flush-on-commit");
828 break;
829 case Opt_noflushoncommit:
830 btrfs_clear_and_info(info, FLUSHONCOMMIT,
831 "turning off flush-on-commit");
832 break;
833 case Opt_ratio:
834 ret = match_int(&args[0], &intarg);
835 if (ret)
836 goto out;
837 info->metadata_ratio = intarg;
838 btrfs_info(info, "metadata ratio %u",
839 info->metadata_ratio);
840 break;
841 case Opt_discard:
842 case Opt_discard_mode:
843 if (token == Opt_discard ||
844 strcmp(args[0].from, "sync") == 0) {
845 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
846 btrfs_set_and_info(info, DISCARD_SYNC,
847 "turning on sync discard");
848 } else if (strcmp(args[0].from, "async") == 0) {
849 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
850 btrfs_set_and_info(info, DISCARD_ASYNC,
851 "turning on async discard");
852 } else {
853 ret = -EINVAL;
854 goto out;
855 }
856 break;
857 case Opt_nodiscard:
858 btrfs_clear_and_info(info, DISCARD_SYNC,
859 "turning off discard");
860 btrfs_clear_and_info(info, DISCARD_ASYNC,
861 "turning off async discard");
862 break;
863 case Opt_space_cache:
864 case Opt_space_cache_version:
865 if (token == Opt_space_cache ||
866 strcmp(args[0].from, "v1") == 0) {
867 btrfs_clear_opt(info->mount_opt,
868 FREE_SPACE_TREE);
869 btrfs_set_and_info(info, SPACE_CACHE,
870 "enabling disk space caching");
871 } else if (strcmp(args[0].from, "v2") == 0) {
872 btrfs_clear_opt(info->mount_opt,
873 SPACE_CACHE);
874 btrfs_set_and_info(info, FREE_SPACE_TREE,
875 "enabling free space tree");
876 } else {
877 ret = -EINVAL;
878 goto out;
879 }
880 break;
881 case Opt_rescan_uuid_tree:
882 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
883 break;
884 case Opt_no_space_cache:
885 if (btrfs_test_opt(info, SPACE_CACHE)) {
886 btrfs_clear_and_info(info, SPACE_CACHE,
887 "disabling disk space caching");
888 }
889 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
890 btrfs_clear_and_info(info, FREE_SPACE_TREE,
891 "disabling free space tree");
892 }
893 break;
894 case Opt_inode_cache:
895 case Opt_noinode_cache:
896 btrfs_warn(info,
897 "the 'inode_cache' option is deprecated and has no effect since 5.11");
898 break;
899 case Opt_clear_cache:
900 btrfs_set_and_info(info, CLEAR_CACHE,
901 "force clearing of disk cache");
902 break;
903 case Opt_user_subvol_rm_allowed:
904 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
905 break;
906 case Opt_enospc_debug:
907 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
908 break;
909 case Opt_noenospc_debug:
910 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
911 break;
912 case Opt_defrag:
913 btrfs_set_and_info(info, AUTO_DEFRAG,
914 "enabling auto defrag");
915 break;
916 case Opt_nodefrag:
917 btrfs_clear_and_info(info, AUTO_DEFRAG,
918 "disabling auto defrag");
919 break;
920 case Opt_recovery:
921 case Opt_usebackuproot:
922 btrfs_warn(info,
923 "'%s' is deprecated, use 'rescue=usebackuproot' instead",
924 token == Opt_recovery ? "recovery" :
925 "usebackuproot");
926 btrfs_info(info,
927 "trying to use backup root at mount time");
928 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
929 break;
930 case Opt_skip_balance:
931 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
932 break;
933 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
934 case Opt_check_integrity_including_extent_data:
935 btrfs_info(info,
936 "enabling check integrity including extent data");
937 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
938 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
939 break;
940 case Opt_check_integrity:
941 btrfs_info(info, "enabling check integrity");
942 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
943 break;
944 case Opt_check_integrity_print_mask:
945 ret = match_int(&args[0], &intarg);
946 if (ret)
947 goto out;
948 info->check_integrity_print_mask = intarg;
949 btrfs_info(info, "check_integrity_print_mask 0x%x",
950 info->check_integrity_print_mask);
951 break;
952 #else
953 case Opt_check_integrity_including_extent_data:
954 case Opt_check_integrity:
955 case Opt_check_integrity_print_mask:
956 btrfs_err(info,
957 "support for check_integrity* not compiled in!");
958 ret = -EINVAL;
959 goto out;
960 #endif
961 case Opt_fatal_errors:
962 if (strcmp(args[0].from, "panic") == 0)
963 btrfs_set_opt(info->mount_opt,
964 PANIC_ON_FATAL_ERROR);
965 else if (strcmp(args[0].from, "bug") == 0)
966 btrfs_clear_opt(info->mount_opt,
967 PANIC_ON_FATAL_ERROR);
968 else {
969 ret = -EINVAL;
970 goto out;
971 }
972 break;
973 case Opt_commit_interval:
974 intarg = 0;
975 ret = match_int(&args[0], &intarg);
976 if (ret)
977 goto out;
978 if (intarg == 0) {
979 btrfs_info(info,
980 "using default commit interval %us",
981 BTRFS_DEFAULT_COMMIT_INTERVAL);
982 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
983 } else if (intarg > 300) {
984 btrfs_warn(info, "excessive commit interval %d",
985 intarg);
986 }
987 info->commit_interval = intarg;
988 break;
989 case Opt_rescue:
990 ret = parse_rescue_options(info, args[0].from);
991 if (ret < 0)
992 goto out;
993 break;
994 #ifdef CONFIG_BTRFS_DEBUG
995 case Opt_fragment_all:
996 btrfs_info(info, "fragmenting all space");
997 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
998 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
999 break;
1000 case Opt_fragment_metadata:
1001 btrfs_info(info, "fragmenting metadata");
1002 btrfs_set_opt(info->mount_opt,
1003 FRAGMENT_METADATA);
1004 break;
1005 case Opt_fragment_data:
1006 btrfs_info(info, "fragmenting data");
1007 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
1008 break;
1009 #endif
1010 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1011 case Opt_ref_verify:
1012 btrfs_info(info, "doing ref verification");
1013 btrfs_set_opt(info->mount_opt, REF_VERIFY);
1014 break;
1015 #endif
1016 case Opt_err:
1017 btrfs_err(info, "unrecognized mount option '%s'", p);
1018 ret = -EINVAL;
1019 goto out;
1020 default:
1021 break;
1022 }
1023 }
1024 check:
1025 /* We're read-only, don't have to check. */
1026 if (new_flags & SB_RDONLY)
1027 goto out;
1028
1029 if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
1030 check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
1031 check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
1032 ret = -EINVAL;
1033 out:
1034 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
1035 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
1036 !btrfs_test_opt(info, CLEAR_CACHE)) {
1037 btrfs_err(info, "cannot disable free space tree");
1038 ret = -EINVAL;
1039
1040 }
1041 if (!ret)
1042 ret = btrfs_check_mountopts_zoned(info);
1043 if (!ret && btrfs_test_opt(info, SPACE_CACHE))
1044 btrfs_info(info, "disk space caching is enabled");
1045 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
1046 btrfs_info(info, "using free space tree");
1047 return ret;
1048 }
1049
1050 /*
1051 * Parse mount options that are required early in the mount process.
1052 *
1053 * All other options will be parsed on much later in the mount process and
1054 * only when we need to allocate a new super block.
1055 */
1056 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1057 void *holder)
1058 {
1059 substring_t args[MAX_OPT_ARGS];
1060 char *device_name, *opts, *orig, *p;
1061 struct btrfs_device *device = NULL;
1062 int error = 0;
1063
1064 lockdep_assert_held(&uuid_mutex);
1065
1066 if (!options)
1067 return 0;
1068
1069 /*
1070 * strsep changes the string, duplicate it because btrfs_parse_options
1071 * gets called later
1072 */
1073 opts = kstrdup(options, GFP_KERNEL);
1074 if (!opts)
1075 return -ENOMEM;
1076 orig = opts;
1077
1078 while ((p = strsep(&opts, ",")) != NULL) {
1079 int token;
1080
1081 if (!*p)
1082 continue;
1083
1084 token = match_token(p, tokens, args);
1085 if (token == Opt_device) {
1086 device_name = match_strdup(&args[0]);
1087 if (!device_name) {
1088 error = -ENOMEM;
1089 goto out;
1090 }
1091 device = btrfs_scan_one_device(device_name, flags,
1092 holder);
1093 kfree(device_name);
1094 if (IS_ERR(device)) {
1095 error = PTR_ERR(device);
1096 goto out;
1097 }
1098 }
1099 }
1100
1101 out:
1102 kfree(orig);
1103 return error;
1104 }
1105
1106 /*
1107 * Parse mount options that are related to subvolume id
1108 *
1109 * The value is later passed to mount_subvol()
1110 */
1111 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1112 u64 *subvol_objectid)
1113 {
1114 substring_t args[MAX_OPT_ARGS];
1115 char *opts, *orig, *p;
1116 int error = 0;
1117 u64 subvolid;
1118
1119 if (!options)
1120 return 0;
1121
1122 /*
1123 * strsep changes the string, duplicate it because
1124 * btrfs_parse_device_options gets called later
1125 */
1126 opts = kstrdup(options, GFP_KERNEL);
1127 if (!opts)
1128 return -ENOMEM;
1129 orig = opts;
1130
1131 while ((p = strsep(&opts, ",")) != NULL) {
1132 int token;
1133 if (!*p)
1134 continue;
1135
1136 token = match_token(p, tokens, args);
1137 switch (token) {
1138 case Opt_subvol:
1139 kfree(*subvol_name);
1140 *subvol_name = match_strdup(&args[0]);
1141 if (!*subvol_name) {
1142 error = -ENOMEM;
1143 goto out;
1144 }
1145 break;
1146 case Opt_subvolid:
1147 error = match_u64(&args[0], &subvolid);
1148 if (error)
1149 goto out;
1150
1151 /* we want the original fs_tree */
1152 if (subvolid == 0)
1153 subvolid = BTRFS_FS_TREE_OBJECTID;
1154
1155 *subvol_objectid = subvolid;
1156 break;
1157 default:
1158 break;
1159 }
1160 }
1161
1162 out:
1163 kfree(orig);
1164 return error;
1165 }
1166
1167 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1168 u64 subvol_objectid)
1169 {
1170 struct btrfs_root *root = fs_info->tree_root;
1171 struct btrfs_root *fs_root = NULL;
1172 struct btrfs_root_ref *root_ref;
1173 struct btrfs_inode_ref *inode_ref;
1174 struct btrfs_key key;
1175 struct btrfs_path *path = NULL;
1176 char *name = NULL, *ptr;
1177 u64 dirid;
1178 int len;
1179 int ret;
1180
1181 path = btrfs_alloc_path();
1182 if (!path) {
1183 ret = -ENOMEM;
1184 goto err;
1185 }
1186
1187 name = kmalloc(PATH_MAX, GFP_KERNEL);
1188 if (!name) {
1189 ret = -ENOMEM;
1190 goto err;
1191 }
1192 ptr = name + PATH_MAX - 1;
1193 ptr[0] = '\0';
1194
1195 /*
1196 * Walk up the subvolume trees in the tree of tree roots by root
1197 * backrefs until we hit the top-level subvolume.
1198 */
1199 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1200 key.objectid = subvol_objectid;
1201 key.type = BTRFS_ROOT_BACKREF_KEY;
1202 key.offset = (u64)-1;
1203
1204 ret = btrfs_search_backwards(root, &key, path);
1205 if (ret < 0) {
1206 goto err;
1207 } else if (ret > 0) {
1208 ret = -ENOENT;
1209 goto err;
1210 }
1211
1212 subvol_objectid = key.offset;
1213
1214 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1215 struct btrfs_root_ref);
1216 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1217 ptr -= len + 1;
1218 if (ptr < name) {
1219 ret = -ENAMETOOLONG;
1220 goto err;
1221 }
1222 read_extent_buffer(path->nodes[0], ptr + 1,
1223 (unsigned long)(root_ref + 1), len);
1224 ptr[0] = '/';
1225 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1226 btrfs_release_path(path);
1227
1228 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1229 if (IS_ERR(fs_root)) {
1230 ret = PTR_ERR(fs_root);
1231 fs_root = NULL;
1232 goto err;
1233 }
1234
1235 /*
1236 * Walk up the filesystem tree by inode refs until we hit the
1237 * root directory.
1238 */
1239 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1240 key.objectid = dirid;
1241 key.type = BTRFS_INODE_REF_KEY;
1242 key.offset = (u64)-1;
1243
1244 ret = btrfs_search_backwards(fs_root, &key, path);
1245 if (ret < 0) {
1246 goto err;
1247 } else if (ret > 0) {
1248 ret = -ENOENT;
1249 goto err;
1250 }
1251
1252 dirid = key.offset;
1253
1254 inode_ref = btrfs_item_ptr(path->nodes[0],
1255 path->slots[0],
1256 struct btrfs_inode_ref);
1257 len = btrfs_inode_ref_name_len(path->nodes[0],
1258 inode_ref);
1259 ptr -= len + 1;
1260 if (ptr < name) {
1261 ret = -ENAMETOOLONG;
1262 goto err;
1263 }
1264 read_extent_buffer(path->nodes[0], ptr + 1,
1265 (unsigned long)(inode_ref + 1), len);
1266 ptr[0] = '/';
1267 btrfs_release_path(path);
1268 }
1269 btrfs_put_root(fs_root);
1270 fs_root = NULL;
1271 }
1272
1273 btrfs_free_path(path);
1274 if (ptr == name + PATH_MAX - 1) {
1275 name[0] = '/';
1276 name[1] = '\0';
1277 } else {
1278 memmove(name, ptr, name + PATH_MAX - ptr);
1279 }
1280 return name;
1281
1282 err:
1283 btrfs_put_root(fs_root);
1284 btrfs_free_path(path);
1285 kfree(name);
1286 return ERR_PTR(ret);
1287 }
1288
1289 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1290 {
1291 struct btrfs_root *root = fs_info->tree_root;
1292 struct btrfs_dir_item *di;
1293 struct btrfs_path *path;
1294 struct btrfs_key location;
1295 u64 dir_id;
1296
1297 path = btrfs_alloc_path();
1298 if (!path)
1299 return -ENOMEM;
1300
1301 /*
1302 * Find the "default" dir item which points to the root item that we
1303 * will mount by default if we haven't been given a specific subvolume
1304 * to mount.
1305 */
1306 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1307 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1308 if (IS_ERR(di)) {
1309 btrfs_free_path(path);
1310 return PTR_ERR(di);
1311 }
1312 if (!di) {
1313 /*
1314 * Ok the default dir item isn't there. This is weird since
1315 * it's always been there, but don't freak out, just try and
1316 * mount the top-level subvolume.
1317 */
1318 btrfs_free_path(path);
1319 *objectid = BTRFS_FS_TREE_OBJECTID;
1320 return 0;
1321 }
1322
1323 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1324 btrfs_free_path(path);
1325 *objectid = location.objectid;
1326 return 0;
1327 }
1328
1329 static int btrfs_fill_super(struct super_block *sb,
1330 struct btrfs_fs_devices *fs_devices,
1331 void *data)
1332 {
1333 struct inode *inode;
1334 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1335 int err;
1336
1337 sb->s_maxbytes = MAX_LFS_FILESIZE;
1338 sb->s_magic = BTRFS_SUPER_MAGIC;
1339 sb->s_op = &btrfs_super_ops;
1340 sb->s_d_op = &btrfs_dentry_operations;
1341 sb->s_export_op = &btrfs_export_ops;
1342 #ifdef CONFIG_FS_VERITY
1343 sb->s_vop = &btrfs_verityops;
1344 #endif
1345 sb->s_xattr = btrfs_xattr_handlers;
1346 sb->s_time_gran = 1;
1347 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1348 sb->s_flags |= SB_POSIXACL;
1349 #endif
1350 sb->s_flags |= SB_I_VERSION;
1351 sb->s_iflags |= SB_I_CGROUPWB;
1352
1353 err = super_setup_bdi(sb);
1354 if (err) {
1355 btrfs_err(fs_info, "super_setup_bdi failed");
1356 return err;
1357 }
1358
1359 err = open_ctree(sb, fs_devices, (char *)data);
1360 if (err) {
1361 btrfs_err(fs_info, "open_ctree failed");
1362 return err;
1363 }
1364
1365 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1366 if (IS_ERR(inode)) {
1367 err = PTR_ERR(inode);
1368 goto fail_close;
1369 }
1370
1371 sb->s_root = d_make_root(inode);
1372 if (!sb->s_root) {
1373 err = -ENOMEM;
1374 goto fail_close;
1375 }
1376
1377 cleancache_init_fs(sb);
1378 sb->s_flags |= SB_ACTIVE;
1379 return 0;
1380
1381 fail_close:
1382 close_ctree(fs_info);
1383 return err;
1384 }
1385
1386 int btrfs_sync_fs(struct super_block *sb, int wait)
1387 {
1388 struct btrfs_trans_handle *trans;
1389 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1390 struct btrfs_root *root = fs_info->tree_root;
1391
1392 trace_btrfs_sync_fs(fs_info, wait);
1393
1394 if (!wait) {
1395 filemap_flush(fs_info->btree_inode->i_mapping);
1396 return 0;
1397 }
1398
1399 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1400
1401 trans = btrfs_attach_transaction_barrier(root);
1402 if (IS_ERR(trans)) {
1403 /* no transaction, don't bother */
1404 if (PTR_ERR(trans) == -ENOENT) {
1405 /*
1406 * Exit unless we have some pending changes
1407 * that need to go through commit
1408 */
1409 if (fs_info->pending_changes == 0)
1410 return 0;
1411 /*
1412 * A non-blocking test if the fs is frozen. We must not
1413 * start a new transaction here otherwise a deadlock
1414 * happens. The pending operations are delayed to the
1415 * next commit after thawing.
1416 */
1417 if (sb_start_write_trylock(sb))
1418 sb_end_write(sb);
1419 else
1420 return 0;
1421 trans = btrfs_start_transaction(root, 0);
1422 }
1423 if (IS_ERR(trans))
1424 return PTR_ERR(trans);
1425 }
1426 return btrfs_commit_transaction(trans);
1427 }
1428
1429 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1430 {
1431 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1432 *printed = true;
1433 }
1434
1435 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1436 {
1437 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1438 const char *compress_type;
1439 const char *subvol_name;
1440 bool printed = false;
1441
1442 if (btrfs_test_opt(info, DEGRADED))
1443 seq_puts(seq, ",degraded");
1444 if (btrfs_test_opt(info, NODATASUM))
1445 seq_puts(seq, ",nodatasum");
1446 if (btrfs_test_opt(info, NODATACOW))
1447 seq_puts(seq, ",nodatacow");
1448 if (btrfs_test_opt(info, NOBARRIER))
1449 seq_puts(seq, ",nobarrier");
1450 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1451 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1452 if (info->thread_pool_size != min_t(unsigned long,
1453 num_online_cpus() + 2, 8))
1454 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1455 if (btrfs_test_opt(info, COMPRESS)) {
1456 compress_type = btrfs_compress_type2str(info->compress_type);
1457 if (btrfs_test_opt(info, FORCE_COMPRESS))
1458 seq_printf(seq, ",compress-force=%s", compress_type);
1459 else
1460 seq_printf(seq, ",compress=%s", compress_type);
1461 if (info->compress_level)
1462 seq_printf(seq, ":%d", info->compress_level);
1463 }
1464 if (btrfs_test_opt(info, NOSSD))
1465 seq_puts(seq, ",nossd");
1466 if (btrfs_test_opt(info, SSD_SPREAD))
1467 seq_puts(seq, ",ssd_spread");
1468 else if (btrfs_test_opt(info, SSD))
1469 seq_puts(seq, ",ssd");
1470 if (btrfs_test_opt(info, NOTREELOG))
1471 seq_puts(seq, ",notreelog");
1472 if (btrfs_test_opt(info, NOLOGREPLAY))
1473 print_rescue_option(seq, "nologreplay", &printed);
1474 if (btrfs_test_opt(info, USEBACKUPROOT))
1475 print_rescue_option(seq, "usebackuproot", &printed);
1476 if (btrfs_test_opt(info, IGNOREBADROOTS))
1477 print_rescue_option(seq, "ignorebadroots", &printed);
1478 if (btrfs_test_opt(info, IGNOREDATACSUMS))
1479 print_rescue_option(seq, "ignoredatacsums", &printed);
1480 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1481 seq_puts(seq, ",flushoncommit");
1482 if (btrfs_test_opt(info, DISCARD_SYNC))
1483 seq_puts(seq, ",discard");
1484 if (btrfs_test_opt(info, DISCARD_ASYNC))
1485 seq_puts(seq, ",discard=async");
1486 if (!(info->sb->s_flags & SB_POSIXACL))
1487 seq_puts(seq, ",noacl");
1488 if (btrfs_free_space_cache_v1_active(info))
1489 seq_puts(seq, ",space_cache");
1490 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1491 seq_puts(seq, ",space_cache=v2");
1492 else
1493 seq_puts(seq, ",nospace_cache");
1494 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1495 seq_puts(seq, ",rescan_uuid_tree");
1496 if (btrfs_test_opt(info, CLEAR_CACHE))
1497 seq_puts(seq, ",clear_cache");
1498 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1499 seq_puts(seq, ",user_subvol_rm_allowed");
1500 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1501 seq_puts(seq, ",enospc_debug");
1502 if (btrfs_test_opt(info, AUTO_DEFRAG))
1503 seq_puts(seq, ",autodefrag");
1504 if (btrfs_test_opt(info, SKIP_BALANCE))
1505 seq_puts(seq, ",skip_balance");
1506 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1507 if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1508 seq_puts(seq, ",check_int_data");
1509 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1510 seq_puts(seq, ",check_int");
1511 if (info->check_integrity_print_mask)
1512 seq_printf(seq, ",check_int_print_mask=%d",
1513 info->check_integrity_print_mask);
1514 #endif
1515 if (info->metadata_ratio)
1516 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1517 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1518 seq_puts(seq, ",fatal_errors=panic");
1519 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1520 seq_printf(seq, ",commit=%u", info->commit_interval);
1521 #ifdef CONFIG_BTRFS_DEBUG
1522 if (btrfs_test_opt(info, FRAGMENT_DATA))
1523 seq_puts(seq, ",fragment=data");
1524 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1525 seq_puts(seq, ",fragment=metadata");
1526 #endif
1527 if (btrfs_test_opt(info, REF_VERIFY))
1528 seq_puts(seq, ",ref_verify");
1529 seq_printf(seq, ",subvolid=%llu",
1530 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1531 subvol_name = btrfs_get_subvol_name_from_objectid(info,
1532 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1533 if (!IS_ERR(subvol_name)) {
1534 seq_puts(seq, ",subvol=");
1535 seq_escape(seq, subvol_name, " \t\n\\");
1536 kfree(subvol_name);
1537 }
1538 return 0;
1539 }
1540
1541 static int btrfs_test_super(struct super_block *s, void *data)
1542 {
1543 struct btrfs_fs_info *p = data;
1544 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1545
1546 return fs_info->fs_devices == p->fs_devices;
1547 }
1548
1549 static int btrfs_set_super(struct super_block *s, void *data)
1550 {
1551 int err = set_anon_super(s, data);
1552 if (!err)
1553 s->s_fs_info = data;
1554 return err;
1555 }
1556
1557 /*
1558 * subvolumes are identified by ino 256
1559 */
1560 static inline int is_subvolume_inode(struct inode *inode)
1561 {
1562 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1563 return 1;
1564 return 0;
1565 }
1566
1567 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1568 struct vfsmount *mnt)
1569 {
1570 struct dentry *root;
1571 int ret;
1572
1573 if (!subvol_name) {
1574 if (!subvol_objectid) {
1575 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1576 &subvol_objectid);
1577 if (ret) {
1578 root = ERR_PTR(ret);
1579 goto out;
1580 }
1581 }
1582 subvol_name = btrfs_get_subvol_name_from_objectid(
1583 btrfs_sb(mnt->mnt_sb), subvol_objectid);
1584 if (IS_ERR(subvol_name)) {
1585 root = ERR_CAST(subvol_name);
1586 subvol_name = NULL;
1587 goto out;
1588 }
1589
1590 }
1591
1592 root = mount_subtree(mnt, subvol_name);
1593 /* mount_subtree() drops our reference on the vfsmount. */
1594 mnt = NULL;
1595
1596 if (!IS_ERR(root)) {
1597 struct super_block *s = root->d_sb;
1598 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1599 struct inode *root_inode = d_inode(root);
1600 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1601
1602 ret = 0;
1603 if (!is_subvolume_inode(root_inode)) {
1604 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1605 subvol_name);
1606 ret = -EINVAL;
1607 }
1608 if (subvol_objectid && root_objectid != subvol_objectid) {
1609 /*
1610 * This will also catch a race condition where a
1611 * subvolume which was passed by ID is renamed and
1612 * another subvolume is renamed over the old location.
1613 */
1614 btrfs_err(fs_info,
1615 "subvol '%s' does not match subvolid %llu",
1616 subvol_name, subvol_objectid);
1617 ret = -EINVAL;
1618 }
1619 if (ret) {
1620 dput(root);
1621 root = ERR_PTR(ret);
1622 deactivate_locked_super(s);
1623 }
1624 }
1625
1626 out:
1627 mntput(mnt);
1628 kfree(subvol_name);
1629 return root;
1630 }
1631
1632 /*
1633 * Find a superblock for the given device / mount point.
1634 *
1635 * Note: This is based on mount_bdev from fs/super.c with a few additions
1636 * for multiple device setup. Make sure to keep it in sync.
1637 */
1638 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1639 int flags, const char *device_name, void *data)
1640 {
1641 struct block_device *bdev = NULL;
1642 struct super_block *s;
1643 struct btrfs_device *device = NULL;
1644 struct btrfs_fs_devices *fs_devices = NULL;
1645 struct btrfs_fs_info *fs_info = NULL;
1646 void *new_sec_opts = NULL;
1647 fmode_t mode = FMODE_READ;
1648 int error = 0;
1649
1650 if (!(flags & SB_RDONLY))
1651 mode |= FMODE_WRITE;
1652
1653 if (data) {
1654 error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1655 if (error)
1656 return ERR_PTR(error);
1657 }
1658
1659 /*
1660 * Setup a dummy root and fs_info for test/set super. This is because
1661 * we don't actually fill this stuff out until open_ctree, but we need
1662 * then open_ctree will properly initialize the file system specific
1663 * settings later. btrfs_init_fs_info initializes the static elements
1664 * of the fs_info (locks and such) to make cleanup easier if we find a
1665 * superblock with our given fs_devices later on at sget() time.
1666 */
1667 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1668 if (!fs_info) {
1669 error = -ENOMEM;
1670 goto error_sec_opts;
1671 }
1672 btrfs_init_fs_info(fs_info);
1673
1674 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1675 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1676 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1677 error = -ENOMEM;
1678 goto error_fs_info;
1679 }
1680
1681 mutex_lock(&uuid_mutex);
1682 error = btrfs_parse_device_options(data, mode, fs_type);
1683 if (error) {
1684 mutex_unlock(&uuid_mutex);
1685 goto error_fs_info;
1686 }
1687
1688 device = btrfs_scan_one_device(device_name, mode, fs_type);
1689 if (IS_ERR(device)) {
1690 mutex_unlock(&uuid_mutex);
1691 error = PTR_ERR(device);
1692 goto error_fs_info;
1693 }
1694
1695 fs_devices = device->fs_devices;
1696 fs_info->fs_devices = fs_devices;
1697
1698 error = btrfs_open_devices(fs_devices, mode, fs_type);
1699 mutex_unlock(&uuid_mutex);
1700 if (error)
1701 goto error_fs_info;
1702
1703 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1704 error = -EACCES;
1705 goto error_close_devices;
1706 }
1707
1708 bdev = fs_devices->latest_bdev;
1709 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1710 fs_info);
1711 if (IS_ERR(s)) {
1712 error = PTR_ERR(s);
1713 goto error_close_devices;
1714 }
1715
1716 if (s->s_root) {
1717 btrfs_close_devices(fs_devices);
1718 btrfs_free_fs_info(fs_info);
1719 if ((flags ^ s->s_flags) & SB_RDONLY)
1720 error = -EBUSY;
1721 } else {
1722 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1723 btrfs_sb(s)->bdev_holder = fs_type;
1724 if (!strstr(crc32c_impl(), "generic"))
1725 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1726 error = btrfs_fill_super(s, fs_devices, data);
1727 }
1728 if (!error)
1729 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1730 security_free_mnt_opts(&new_sec_opts);
1731 if (error) {
1732 deactivate_locked_super(s);
1733 return ERR_PTR(error);
1734 }
1735
1736 return dget(s->s_root);
1737
1738 error_close_devices:
1739 btrfs_close_devices(fs_devices);
1740 error_fs_info:
1741 btrfs_free_fs_info(fs_info);
1742 error_sec_opts:
1743 security_free_mnt_opts(&new_sec_opts);
1744 return ERR_PTR(error);
1745 }
1746
1747 /*
1748 * Mount function which is called by VFS layer.
1749 *
1750 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1751 * which needs vfsmount* of device's root (/). This means device's root has to
1752 * be mounted internally in any case.
1753 *
1754 * Operation flow:
1755 * 1. Parse subvol id related options for later use in mount_subvol().
1756 *
1757 * 2. Mount device's root (/) by calling vfs_kern_mount().
1758 *
1759 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1760 * first place. In order to avoid calling btrfs_mount() again, we use
1761 * different file_system_type which is not registered to VFS by
1762 * register_filesystem() (btrfs_root_fs_type). As a result,
1763 * btrfs_mount_root() is called. The return value will be used by
1764 * mount_subtree() in mount_subvol().
1765 *
1766 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1767 * "btrfs subvolume set-default", mount_subvol() is called always.
1768 */
1769 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1770 const char *device_name, void *data)
1771 {
1772 struct vfsmount *mnt_root;
1773 struct dentry *root;
1774 char *subvol_name = NULL;
1775 u64 subvol_objectid = 0;
1776 int error = 0;
1777
1778 error = btrfs_parse_subvol_options(data, &subvol_name,
1779 &subvol_objectid);
1780 if (error) {
1781 kfree(subvol_name);
1782 return ERR_PTR(error);
1783 }
1784
1785 /* mount device's root (/) */
1786 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1787 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1788 if (flags & SB_RDONLY) {
1789 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1790 flags & ~SB_RDONLY, device_name, data);
1791 } else {
1792 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1793 flags | SB_RDONLY, device_name, data);
1794 if (IS_ERR(mnt_root)) {
1795 root = ERR_CAST(mnt_root);
1796 kfree(subvol_name);
1797 goto out;
1798 }
1799
1800 down_write(&mnt_root->mnt_sb->s_umount);
1801 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1802 up_write(&mnt_root->mnt_sb->s_umount);
1803 if (error < 0) {
1804 root = ERR_PTR(error);
1805 mntput(mnt_root);
1806 kfree(subvol_name);
1807 goto out;
1808 }
1809 }
1810 }
1811 if (IS_ERR(mnt_root)) {
1812 root = ERR_CAST(mnt_root);
1813 kfree(subvol_name);
1814 goto out;
1815 }
1816
1817 /* mount_subvol() will free subvol_name and mnt_root */
1818 root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1819
1820 out:
1821 return root;
1822 }
1823
1824 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1825 u32 new_pool_size, u32 old_pool_size)
1826 {
1827 if (new_pool_size == old_pool_size)
1828 return;
1829
1830 fs_info->thread_pool_size = new_pool_size;
1831
1832 btrfs_info(fs_info, "resize thread pool %d -> %d",
1833 old_pool_size, new_pool_size);
1834
1835 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1836 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1837 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1838 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1839 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1840 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1841 new_pool_size);
1842 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1843 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1844 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1845 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1846 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1847 new_pool_size);
1848 }
1849
1850 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1851 unsigned long old_opts, int flags)
1852 {
1853 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1854 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1855 (flags & SB_RDONLY))) {
1856 /* wait for any defraggers to finish */
1857 wait_event(fs_info->transaction_wait,
1858 (atomic_read(&fs_info->defrag_running) == 0));
1859 if (flags & SB_RDONLY)
1860 sync_filesystem(fs_info->sb);
1861 }
1862 }
1863
1864 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1865 unsigned long old_opts)
1866 {
1867 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1868
1869 /*
1870 * We need to cleanup all defragable inodes if the autodefragment is
1871 * close or the filesystem is read only.
1872 */
1873 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1874 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1875 btrfs_cleanup_defrag_inodes(fs_info);
1876 }
1877
1878 /* If we toggled discard async */
1879 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1880 btrfs_test_opt(fs_info, DISCARD_ASYNC))
1881 btrfs_discard_resume(fs_info);
1882 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1883 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1884 btrfs_discard_cleanup(fs_info);
1885
1886 /* If we toggled space cache */
1887 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1888 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1889 }
1890
1891 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1892 {
1893 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1894 unsigned old_flags = sb->s_flags;
1895 unsigned long old_opts = fs_info->mount_opt;
1896 unsigned long old_compress_type = fs_info->compress_type;
1897 u64 old_max_inline = fs_info->max_inline;
1898 u32 old_thread_pool_size = fs_info->thread_pool_size;
1899 u32 old_metadata_ratio = fs_info->metadata_ratio;
1900 int ret;
1901
1902 sync_filesystem(sb);
1903 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1904
1905 if (data) {
1906 void *new_sec_opts = NULL;
1907
1908 ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1909 if (!ret)
1910 ret = security_sb_remount(sb, new_sec_opts);
1911 security_free_mnt_opts(&new_sec_opts);
1912 if (ret)
1913 goto restore;
1914 }
1915
1916 ret = btrfs_parse_options(fs_info, data, *flags);
1917 if (ret)
1918 goto restore;
1919
1920 btrfs_remount_begin(fs_info, old_opts, *flags);
1921 btrfs_resize_thread_pool(fs_info,
1922 fs_info->thread_pool_size, old_thread_pool_size);
1923
1924 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1925 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1926 (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1927 btrfs_warn(fs_info,
1928 "remount supports changing free space tree only from ro to rw");
1929 /* Make sure free space cache options match the state on disk */
1930 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1931 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1932 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1933 }
1934 if (btrfs_free_space_cache_v1_active(fs_info)) {
1935 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1936 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1937 }
1938 }
1939
1940 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1941 goto out;
1942
1943 if (*flags & SB_RDONLY) {
1944 /*
1945 * this also happens on 'umount -rf' or on shutdown, when
1946 * the filesystem is busy.
1947 */
1948 cancel_work_sync(&fs_info->async_reclaim_work);
1949 cancel_work_sync(&fs_info->async_data_reclaim_work);
1950
1951 btrfs_discard_cleanup(fs_info);
1952
1953 /* wait for the uuid_scan task to finish */
1954 down(&fs_info->uuid_tree_rescan_sem);
1955 /* avoid complains from lockdep et al. */
1956 up(&fs_info->uuid_tree_rescan_sem);
1957
1958 btrfs_set_sb_rdonly(sb);
1959
1960 /*
1961 * Setting SB_RDONLY will put the cleaner thread to
1962 * sleep at the next loop if it's already active.
1963 * If it's already asleep, we'll leave unused block
1964 * groups on disk until we're mounted read-write again
1965 * unless we clean them up here.
1966 */
1967 btrfs_delete_unused_bgs(fs_info);
1968
1969 /*
1970 * The cleaner task could be already running before we set the
1971 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1972 * We must make sure that after we finish the remount, i.e. after
1973 * we call btrfs_commit_super(), the cleaner can no longer start
1974 * a transaction - either because it was dropping a dead root,
1975 * running delayed iputs or deleting an unused block group (the
1976 * cleaner picked a block group from the list of unused block
1977 * groups before we were able to in the previous call to
1978 * btrfs_delete_unused_bgs()).
1979 */
1980 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1981 TASK_UNINTERRUPTIBLE);
1982
1983 /*
1984 * We've set the superblock to RO mode, so we might have made
1985 * the cleaner task sleep without running all pending delayed
1986 * iputs. Go through all the delayed iputs here, so that if an
1987 * unmount happens without remounting RW we don't end up at
1988 * finishing close_ctree() with a non-empty list of delayed
1989 * iputs.
1990 */
1991 btrfs_run_delayed_iputs(fs_info);
1992
1993 btrfs_dev_replace_suspend_for_unmount(fs_info);
1994 btrfs_scrub_cancel(fs_info);
1995 btrfs_pause_balance(fs_info);
1996
1997 /*
1998 * Pause the qgroup rescan worker if it is running. We don't want
1999 * it to be still running after we are in RO mode, as after that,
2000 * by the time we unmount, it might have left a transaction open,
2001 * so we would leak the transaction and/or crash.
2002 */
2003 btrfs_qgroup_wait_for_completion(fs_info, false);
2004
2005 ret = btrfs_commit_super(fs_info);
2006 if (ret)
2007 goto restore;
2008 } else {
2009 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2010 btrfs_err(fs_info,
2011 "Remounting read-write after error is not allowed");
2012 ret = -EINVAL;
2013 goto restore;
2014 }
2015 if (fs_info->fs_devices->rw_devices == 0) {
2016 ret = -EACCES;
2017 goto restore;
2018 }
2019
2020 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
2021 btrfs_warn(fs_info,
2022 "too many missing devices, writable remount is not allowed");
2023 ret = -EACCES;
2024 goto restore;
2025 }
2026
2027 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
2028 btrfs_warn(fs_info,
2029 "mount required to replay tree-log, cannot remount read-write");
2030 ret = -EINVAL;
2031 goto restore;
2032 }
2033
2034 /*
2035 * NOTE: when remounting with a change that does writes, don't
2036 * put it anywhere above this point, as we are not sure to be
2037 * safe to write until we pass the above checks.
2038 */
2039 ret = btrfs_start_pre_rw_mount(fs_info);
2040 if (ret)
2041 goto restore;
2042
2043 btrfs_clear_sb_rdonly(sb);
2044
2045 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
2046 }
2047 out:
2048 /*
2049 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
2050 * since the absence of the flag means it can be toggled off by remount.
2051 */
2052 *flags |= SB_I_VERSION;
2053
2054 wake_up_process(fs_info->transaction_kthread);
2055 btrfs_remount_cleanup(fs_info, old_opts);
2056 btrfs_clear_oneshot_options(fs_info);
2057 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2058
2059 return 0;
2060
2061 restore:
2062 /* We've hit an error - don't reset SB_RDONLY */
2063 if (sb_rdonly(sb))
2064 old_flags |= SB_RDONLY;
2065 if (!(old_flags & SB_RDONLY))
2066 clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2067 sb->s_flags = old_flags;
2068 fs_info->mount_opt = old_opts;
2069 fs_info->compress_type = old_compress_type;
2070 fs_info->max_inline = old_max_inline;
2071 btrfs_resize_thread_pool(fs_info,
2072 old_thread_pool_size, fs_info->thread_pool_size);
2073 fs_info->metadata_ratio = old_metadata_ratio;
2074 btrfs_remount_cleanup(fs_info, old_opts);
2075 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
2076
2077 return ret;
2078 }
2079
2080 /* Used to sort the devices by max_avail(descending sort) */
2081 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
2082 {
2083 const struct btrfs_device_info *dev_info1 = a;
2084 const struct btrfs_device_info *dev_info2 = b;
2085
2086 if (dev_info1->max_avail > dev_info2->max_avail)
2087 return -1;
2088 else if (dev_info1->max_avail < dev_info2->max_avail)
2089 return 1;
2090 return 0;
2091 }
2092
2093 /*
2094 * sort the devices by max_avail, in which max free extent size of each device
2095 * is stored.(Descending Sort)
2096 */
2097 static inline void btrfs_descending_sort_devices(
2098 struct btrfs_device_info *devices,
2099 size_t nr_devices)
2100 {
2101 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2102 btrfs_cmp_device_free_bytes, NULL);
2103 }
2104
2105 /*
2106 * The helper to calc the free space on the devices that can be used to store
2107 * file data.
2108 */
2109 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2110 u64 *free_bytes)
2111 {
2112 struct btrfs_device_info *devices_info;
2113 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2114 struct btrfs_device *device;
2115 u64 type;
2116 u64 avail_space;
2117 u64 min_stripe_size;
2118 int num_stripes = 1;
2119 int i = 0, nr_devices;
2120 const struct btrfs_raid_attr *rattr;
2121
2122 /*
2123 * We aren't under the device list lock, so this is racy-ish, but good
2124 * enough for our purposes.
2125 */
2126 nr_devices = fs_info->fs_devices->open_devices;
2127 if (!nr_devices) {
2128 smp_mb();
2129 nr_devices = fs_info->fs_devices->open_devices;
2130 ASSERT(nr_devices);
2131 if (!nr_devices) {
2132 *free_bytes = 0;
2133 return 0;
2134 }
2135 }
2136
2137 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2138 GFP_KERNEL);
2139 if (!devices_info)
2140 return -ENOMEM;
2141
2142 /* calc min stripe number for data space allocation */
2143 type = btrfs_data_alloc_profile(fs_info);
2144 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2145
2146 if (type & BTRFS_BLOCK_GROUP_RAID0)
2147 num_stripes = nr_devices;
2148 else if (type & BTRFS_BLOCK_GROUP_RAID1)
2149 num_stripes = 2;
2150 else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2151 num_stripes = 3;
2152 else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2153 num_stripes = 4;
2154 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2155 num_stripes = 4;
2156
2157 /* Adjust for more than 1 stripe per device */
2158 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2159
2160 rcu_read_lock();
2161 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2162 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2163 &device->dev_state) ||
2164 !device->bdev ||
2165 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2166 continue;
2167
2168 if (i >= nr_devices)
2169 break;
2170
2171 avail_space = device->total_bytes - device->bytes_used;
2172
2173 /* align with stripe_len */
2174 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2175
2176 /*
2177 * In order to avoid overwriting the superblock on the drive,
2178 * btrfs starts at an offset of at least 1MB when doing chunk
2179 * allocation.
2180 *
2181 * This ensures we have at least min_stripe_size free space
2182 * after excluding 1MB.
2183 */
2184 if (avail_space <= SZ_1M + min_stripe_size)
2185 continue;
2186
2187 avail_space -= SZ_1M;
2188
2189 devices_info[i].dev = device;
2190 devices_info[i].max_avail = avail_space;
2191
2192 i++;
2193 }
2194 rcu_read_unlock();
2195
2196 nr_devices = i;
2197
2198 btrfs_descending_sort_devices(devices_info, nr_devices);
2199
2200 i = nr_devices - 1;
2201 avail_space = 0;
2202 while (nr_devices >= rattr->devs_min) {
2203 num_stripes = min(num_stripes, nr_devices);
2204
2205 if (devices_info[i].max_avail >= min_stripe_size) {
2206 int j;
2207 u64 alloc_size;
2208
2209 avail_space += devices_info[i].max_avail * num_stripes;
2210 alloc_size = devices_info[i].max_avail;
2211 for (j = i + 1 - num_stripes; j <= i; j++)
2212 devices_info[j].max_avail -= alloc_size;
2213 }
2214 i--;
2215 nr_devices--;
2216 }
2217
2218 kfree(devices_info);
2219 *free_bytes = avail_space;
2220 return 0;
2221 }
2222
2223 /*
2224 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2225 *
2226 * If there's a redundant raid level at DATA block groups, use the respective
2227 * multiplier to scale the sizes.
2228 *
2229 * Unused device space usage is based on simulating the chunk allocator
2230 * algorithm that respects the device sizes and order of allocations. This is
2231 * a close approximation of the actual use but there are other factors that may
2232 * change the result (like a new metadata chunk).
2233 *
2234 * If metadata is exhausted, f_bavail will be 0.
2235 */
2236 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2237 {
2238 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2239 struct btrfs_super_block *disk_super = fs_info->super_copy;
2240 struct btrfs_space_info *found;
2241 u64 total_used = 0;
2242 u64 total_free_data = 0;
2243 u64 total_free_meta = 0;
2244 u32 bits = fs_info->sectorsize_bits;
2245 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2246 unsigned factor = 1;
2247 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2248 int ret;
2249 u64 thresh = 0;
2250 int mixed = 0;
2251
2252 list_for_each_entry(found, &fs_info->space_info, list) {
2253 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2254 int i;
2255
2256 total_free_data += found->disk_total - found->disk_used;
2257 total_free_data -=
2258 btrfs_account_ro_block_groups_free_space(found);
2259
2260 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2261 if (!list_empty(&found->block_groups[i]))
2262 factor = btrfs_bg_type_to_factor(
2263 btrfs_raid_array[i].bg_flag);
2264 }
2265 }
2266
2267 /*
2268 * Metadata in mixed block goup profiles are accounted in data
2269 */
2270 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2271 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2272 mixed = 1;
2273 else
2274 total_free_meta += found->disk_total -
2275 found->disk_used;
2276 }
2277
2278 total_used += found->disk_used;
2279 }
2280
2281 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2282 buf->f_blocks >>= bits;
2283 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2284
2285 /* Account global block reserve as used, it's in logical size already */
2286 spin_lock(&block_rsv->lock);
2287 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2288 if (buf->f_bfree >= block_rsv->size >> bits)
2289 buf->f_bfree -= block_rsv->size >> bits;
2290 else
2291 buf->f_bfree = 0;
2292 spin_unlock(&block_rsv->lock);
2293
2294 buf->f_bavail = div_u64(total_free_data, factor);
2295 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2296 if (ret)
2297 return ret;
2298 buf->f_bavail += div_u64(total_free_data, factor);
2299 buf->f_bavail = buf->f_bavail >> bits;
2300
2301 /*
2302 * We calculate the remaining metadata space minus global reserve. If
2303 * this is (supposedly) smaller than zero, there's no space. But this
2304 * does not hold in practice, the exhausted state happens where's still
2305 * some positive delta. So we apply some guesswork and compare the
2306 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2307 *
2308 * We probably cannot calculate the exact threshold value because this
2309 * depends on the internal reservations requested by various
2310 * operations, so some operations that consume a few metadata will
2311 * succeed even if the Avail is zero. But this is better than the other
2312 * way around.
2313 */
2314 thresh = SZ_4M;
2315
2316 /*
2317 * We only want to claim there's no available space if we can no longer
2318 * allocate chunks for our metadata profile and our global reserve will
2319 * not fit in the free metadata space. If we aren't ->full then we
2320 * still can allocate chunks and thus are fine using the currently
2321 * calculated f_bavail.
2322 */
2323 if (!mixed && block_rsv->space_info->full &&
2324 total_free_meta - thresh < block_rsv->size)
2325 buf->f_bavail = 0;
2326
2327 buf->f_type = BTRFS_SUPER_MAGIC;
2328 buf->f_bsize = dentry->d_sb->s_blocksize;
2329 buf->f_namelen = BTRFS_NAME_LEN;
2330
2331 /* We treat it as constant endianness (it doesn't matter _which_)
2332 because we want the fsid to come out the same whether mounted
2333 on a big-endian or little-endian host */
2334 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2335 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2336 /* Mask in the root object ID too, to disambiguate subvols */
2337 buf->f_fsid.val[0] ^=
2338 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2339 buf->f_fsid.val[1] ^=
2340 BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2341
2342 return 0;
2343 }
2344
2345 static void btrfs_kill_super(struct super_block *sb)
2346 {
2347 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2348 kill_anon_super(sb);
2349 btrfs_free_fs_info(fs_info);
2350 }
2351
2352 static struct file_system_type btrfs_fs_type = {
2353 .owner = THIS_MODULE,
2354 .name = "btrfs",
2355 .mount = btrfs_mount,
2356 .kill_sb = btrfs_kill_super,
2357 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2358 };
2359
2360 static struct file_system_type btrfs_root_fs_type = {
2361 .owner = THIS_MODULE,
2362 .name = "btrfs",
2363 .mount = btrfs_mount_root,
2364 .kill_sb = btrfs_kill_super,
2365 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2366 };
2367
2368 MODULE_ALIAS_FS("btrfs");
2369
2370 static int btrfs_control_open(struct inode *inode, struct file *file)
2371 {
2372 /*
2373 * The control file's private_data is used to hold the
2374 * transaction when it is started and is used to keep
2375 * track of whether a transaction is already in progress.
2376 */
2377 file->private_data = NULL;
2378 return 0;
2379 }
2380
2381 /*
2382 * Used by /dev/btrfs-control for devices ioctls.
2383 */
2384 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2385 unsigned long arg)
2386 {
2387 struct btrfs_ioctl_vol_args *vol;
2388 struct btrfs_device *device = NULL;
2389 int ret = -ENOTTY;
2390
2391 if (!capable(CAP_SYS_ADMIN))
2392 return -EPERM;
2393
2394 vol = memdup_user((void __user *)arg, sizeof(*vol));
2395 if (IS_ERR(vol))
2396 return PTR_ERR(vol);
2397 vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2398
2399 switch (cmd) {
2400 case BTRFS_IOC_SCAN_DEV:
2401 mutex_lock(&uuid_mutex);
2402 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2403 &btrfs_root_fs_type);
2404 ret = PTR_ERR_OR_ZERO(device);
2405 mutex_unlock(&uuid_mutex);
2406 break;
2407 case BTRFS_IOC_FORGET_DEV:
2408 ret = btrfs_forget_devices(vol->name);
2409 break;
2410 case BTRFS_IOC_DEVICES_READY:
2411 mutex_lock(&uuid_mutex);
2412 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2413 &btrfs_root_fs_type);
2414 if (IS_ERR(device)) {
2415 mutex_unlock(&uuid_mutex);
2416 ret = PTR_ERR(device);
2417 break;
2418 }
2419 ret = !(device->fs_devices->num_devices ==
2420 device->fs_devices->total_devices);
2421 mutex_unlock(&uuid_mutex);
2422 break;
2423 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2424 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2425 break;
2426 }
2427
2428 kfree(vol);
2429 return ret;
2430 }
2431
2432 static int btrfs_freeze(struct super_block *sb)
2433 {
2434 struct btrfs_trans_handle *trans;
2435 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2436 struct btrfs_root *root = fs_info->tree_root;
2437
2438 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2439 /*
2440 * We don't need a barrier here, we'll wait for any transaction that
2441 * could be in progress on other threads (and do delayed iputs that
2442 * we want to avoid on a frozen filesystem), or do the commit
2443 * ourselves.
2444 */
2445 trans = btrfs_attach_transaction_barrier(root);
2446 if (IS_ERR(trans)) {
2447 /* no transaction, don't bother */
2448 if (PTR_ERR(trans) == -ENOENT)
2449 return 0;
2450 return PTR_ERR(trans);
2451 }
2452 return btrfs_commit_transaction(trans);
2453 }
2454
2455 static int btrfs_unfreeze(struct super_block *sb)
2456 {
2457 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2458
2459 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2460 return 0;
2461 }
2462
2463 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2464 {
2465 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2466 struct btrfs_device *dev, *first_dev = NULL;
2467
2468 /*
2469 * Lightweight locking of the devices. We should not need
2470 * device_list_mutex here as we only read the device data and the list
2471 * is protected by RCU. Even if a device is deleted during the list
2472 * traversals, we'll get valid data, the freeing callback will wait at
2473 * least until the rcu_read_unlock.
2474 */
2475 rcu_read_lock();
2476 list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2477 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2478 continue;
2479 if (!dev->name)
2480 continue;
2481 if (!first_dev || dev->devid < first_dev->devid)
2482 first_dev = dev;
2483 }
2484
2485 if (first_dev)
2486 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2487 else
2488 WARN_ON(1);
2489 rcu_read_unlock();
2490 return 0;
2491 }
2492
2493 static const struct super_operations btrfs_super_ops = {
2494 .drop_inode = btrfs_drop_inode,
2495 .evict_inode = btrfs_evict_inode,
2496 .put_super = btrfs_put_super,
2497 .sync_fs = btrfs_sync_fs,
2498 .show_options = btrfs_show_options,
2499 .show_devname = btrfs_show_devname,
2500 .alloc_inode = btrfs_alloc_inode,
2501 .destroy_inode = btrfs_destroy_inode,
2502 .free_inode = btrfs_free_inode,
2503 .statfs = btrfs_statfs,
2504 .remount_fs = btrfs_remount,
2505 .freeze_fs = btrfs_freeze,
2506 .unfreeze_fs = btrfs_unfreeze,
2507 };
2508
2509 static const struct file_operations btrfs_ctl_fops = {
2510 .open = btrfs_control_open,
2511 .unlocked_ioctl = btrfs_control_ioctl,
2512 .compat_ioctl = compat_ptr_ioctl,
2513 .owner = THIS_MODULE,
2514 .llseek = noop_llseek,
2515 };
2516
2517 static struct miscdevice btrfs_misc = {
2518 .minor = BTRFS_MINOR,
2519 .name = "btrfs-control",
2520 .fops = &btrfs_ctl_fops
2521 };
2522
2523 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2524 MODULE_ALIAS("devname:btrfs-control");
2525
2526 static int __init btrfs_interface_init(void)
2527 {
2528 return misc_register(&btrfs_misc);
2529 }
2530
2531 static __cold void btrfs_interface_exit(void)
2532 {
2533 misc_deregister(&btrfs_misc);
2534 }
2535
2536 static void __init btrfs_print_mod_info(void)
2537 {
2538 static const char options[] = ""
2539 #ifdef CONFIG_BTRFS_DEBUG
2540 ", debug=on"
2541 #endif
2542 #ifdef CONFIG_BTRFS_ASSERT
2543 ", assert=on"
2544 #endif
2545 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2546 ", integrity-checker=on"
2547 #endif
2548 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2549 ", ref-verify=on"
2550 #endif
2551 #ifdef CONFIG_BLK_DEV_ZONED
2552 ", zoned=yes"
2553 #else
2554 ", zoned=no"
2555 #endif
2556 #ifdef CONFIG_FS_VERITY
2557 ", fsverity=yes"
2558 #else
2559 ", fsverity=no"
2560 #endif
2561 ;
2562 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2563 }
2564
2565 static int __init init_btrfs_fs(void)
2566 {
2567 int err;
2568
2569 btrfs_props_init();
2570
2571 err = btrfs_init_sysfs();
2572 if (err)
2573 return err;
2574
2575 btrfs_init_compress();
2576
2577 err = btrfs_init_cachep();
2578 if (err)
2579 goto free_compress;
2580
2581 err = extent_io_init();
2582 if (err)
2583 goto free_cachep;
2584
2585 err = extent_state_cache_init();
2586 if (err)
2587 goto free_extent_io;
2588
2589 err = extent_map_init();
2590 if (err)
2591 goto free_extent_state_cache;
2592
2593 err = ordered_data_init();
2594 if (err)
2595 goto free_extent_map;
2596
2597 err = btrfs_delayed_inode_init();
2598 if (err)
2599 goto free_ordered_data;
2600
2601 err = btrfs_auto_defrag_init();
2602 if (err)
2603 goto free_delayed_inode;
2604
2605 err = btrfs_delayed_ref_init();
2606 if (err)
2607 goto free_auto_defrag;
2608
2609 err = btrfs_prelim_ref_init();
2610 if (err)
2611 goto free_delayed_ref;
2612
2613 err = btrfs_end_io_wq_init();
2614 if (err)
2615 goto free_prelim_ref;
2616
2617 err = btrfs_interface_init();
2618 if (err)
2619 goto free_end_io_wq;
2620
2621 btrfs_print_mod_info();
2622
2623 err = btrfs_run_sanity_tests();
2624 if (err)
2625 goto unregister_ioctl;
2626
2627 err = register_filesystem(&btrfs_fs_type);
2628 if (err)
2629 goto unregister_ioctl;
2630
2631 return 0;
2632
2633 unregister_ioctl:
2634 btrfs_interface_exit();
2635 free_end_io_wq:
2636 btrfs_end_io_wq_exit();
2637 free_prelim_ref:
2638 btrfs_prelim_ref_exit();
2639 free_delayed_ref:
2640 btrfs_delayed_ref_exit();
2641 free_auto_defrag:
2642 btrfs_auto_defrag_exit();
2643 free_delayed_inode:
2644 btrfs_delayed_inode_exit();
2645 free_ordered_data:
2646 ordered_data_exit();
2647 free_extent_map:
2648 extent_map_exit();
2649 free_extent_state_cache:
2650 extent_state_cache_exit();
2651 free_extent_io:
2652 extent_io_exit();
2653 free_cachep:
2654 btrfs_destroy_cachep();
2655 free_compress:
2656 btrfs_exit_compress();
2657 btrfs_exit_sysfs();
2658
2659 return err;
2660 }
2661
2662 static void __exit exit_btrfs_fs(void)
2663 {
2664 btrfs_destroy_cachep();
2665 btrfs_delayed_ref_exit();
2666 btrfs_auto_defrag_exit();
2667 btrfs_delayed_inode_exit();
2668 btrfs_prelim_ref_exit();
2669 ordered_data_exit();
2670 extent_map_exit();
2671 extent_state_cache_exit();
2672 extent_io_exit();
2673 btrfs_interface_exit();
2674 btrfs_end_io_wq_exit();
2675 unregister_filesystem(&btrfs_fs_type);
2676 btrfs_exit_sysfs();
2677 btrfs_cleanup_fs_uuids();
2678 btrfs_exit_compress();
2679 }
2680
2681 late_initcall(init_btrfs_fs);
2682 module_exit(exit_btrfs_fs)
2683
2684 MODULE_LICENSE("GPL");
2685 MODULE_SOFTDEP("pre: crc32c");
2686 MODULE_SOFTDEP("pre: xxhash64");
2687 MODULE_SOFTDEP("pre: sha256");
2688 MODULE_SOFTDEP("pre: blake2b-256");