]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/super.c
btrfs: make close_ctree return void
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68
69 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
70
71 static const char *btrfs_decode_error(int errno)
72 {
73 char *errstr = "unknown";
74
75 switch (errno) {
76 case -EIO:
77 errstr = "IO failure";
78 break;
79 case -ENOMEM:
80 errstr = "Out of memory";
81 break;
82 case -EROFS:
83 errstr = "Readonly filesystem";
84 break;
85 case -EEXIST:
86 errstr = "Object already exists";
87 break;
88 case -ENOSPC:
89 errstr = "No space left";
90 break;
91 case -ENOENT:
92 errstr = "No such entry";
93 break;
94 }
95
96 return errstr;
97 }
98
99 static void save_error_info(struct btrfs_fs_info *fs_info)
100 {
101 /*
102 * today we only save the error info into ram. Long term we'll
103 * also send it down to the disk
104 */
105 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 struct super_block *sb = fs_info->sb;
112
113 if (sb->s_flags & MS_RDONLY)
114 return;
115
116 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
117 sb->s_flags |= MS_RDONLY;
118 btrfs_info(fs_info, "forced readonly");
119 /*
120 * Note that a running device replace operation is not
121 * canceled here although there is no way to update
122 * the progress. It would add the risk of a deadlock,
123 * therefore the canceling is ommited. The only penalty
124 * is that some I/O remains active until the procedure
125 * completes. The next time when the filesystem is
126 * mounted writeable again, the device replace
127 * operation continues.
128 */
129 }
130 }
131
132 #ifdef CONFIG_PRINTK
133 /*
134 * __btrfs_std_error decodes expected errors from the caller and
135 * invokes the approciate error response.
136 */
137 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
138 unsigned int line, int errno, const char *fmt, ...)
139 {
140 struct super_block *sb = fs_info->sb;
141 const char *errstr;
142
143 /*
144 * Special case: if the error is EROFS, and we're already
145 * under MS_RDONLY, then it is safe here.
146 */
147 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
148 return;
149
150 errstr = btrfs_decode_error(errno);
151 if (fmt) {
152 struct va_format vaf;
153 va_list args;
154
155 va_start(args, fmt);
156 vaf.fmt = fmt;
157 vaf.va = &args;
158
159 printk(KERN_CRIT
160 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
161 sb->s_id, function, line, errno, errstr, &vaf);
162 va_end(args);
163 } else {
164 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
165 sb->s_id, function, line, errno, errstr);
166 }
167
168 /* Don't go through full error handling during mount */
169 save_error_info(fs_info);
170 if (sb->s_flags & MS_BORN)
171 btrfs_handle_error(fs_info);
172 }
173
174 static const char * const logtypes[] = {
175 "emergency",
176 "alert",
177 "critical",
178 "error",
179 "warning",
180 "notice",
181 "info",
182 "debug",
183 };
184
185 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
186 {
187 struct super_block *sb = fs_info->sb;
188 char lvl[4];
189 struct va_format vaf;
190 va_list args;
191 const char *type = logtypes[4];
192 int kern_level;
193
194 va_start(args, fmt);
195
196 kern_level = printk_get_level(fmt);
197 if (kern_level) {
198 size_t size = printk_skip_level(fmt) - fmt;
199 memcpy(lvl, fmt, size);
200 lvl[size] = '\0';
201 fmt += size;
202 type = logtypes[kern_level - '0'];
203 } else
204 *lvl = '\0';
205
206 vaf.fmt = fmt;
207 vaf.va = &args;
208
209 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
210
211 va_end(args);
212 }
213
214 #else
215
216 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
217 unsigned int line, int errno, const char *fmt, ...)
218 {
219 struct super_block *sb = fs_info->sb;
220
221 /*
222 * Special case: if the error is EROFS, and we're already
223 * under MS_RDONLY, then it is safe here.
224 */
225 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
226 return;
227
228 /* Don't go through full error handling during mount */
229 if (sb->s_flags & MS_BORN) {
230 save_error_info(fs_info);
231 btrfs_handle_error(fs_info);
232 }
233 }
234 #endif
235
236 /*
237 * We only mark the transaction aborted and then set the file system read-only.
238 * This will prevent new transactions from starting or trying to join this
239 * one.
240 *
241 * This means that error recovery at the call site is limited to freeing
242 * any local memory allocations and passing the error code up without
243 * further cleanup. The transaction should complete as it normally would
244 * in the call path but will return -EIO.
245 *
246 * We'll complete the cleanup in btrfs_end_transaction and
247 * btrfs_commit_transaction.
248 */
249 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
250 struct btrfs_root *root, const char *function,
251 unsigned int line, int errno)
252 {
253 /*
254 * Report first abort since mount
255 */
256 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
257 &root->fs_info->fs_state)) {
258 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
259 errno);
260 }
261 trans->aborted = errno;
262 /* Nothing used. The other threads that have joined this
263 * transaction may be able to continue. */
264 if (!trans->blocks_used) {
265 const char *errstr;
266
267 errstr = btrfs_decode_error(errno);
268 btrfs_warn(root->fs_info,
269 "%s:%d: Aborting unused transaction(%s).",
270 function, line, errstr);
271 return;
272 }
273 ACCESS_ONCE(trans->transaction->aborted) = errno;
274 /* Wake up anybody who may be waiting on this transaction */
275 wake_up(&root->fs_info->transaction_wait);
276 wake_up(&root->fs_info->transaction_blocked_wait);
277 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
278 }
279 /*
280 * __btrfs_panic decodes unexpected, fatal errors from the caller,
281 * issues an alert, and either panics or BUGs, depending on mount options.
282 */
283 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
284 unsigned int line, int errno, const char *fmt, ...)
285 {
286 char *s_id = "<unknown>";
287 const char *errstr;
288 struct va_format vaf = { .fmt = fmt };
289 va_list args;
290
291 if (fs_info)
292 s_id = fs_info->sb->s_id;
293
294 va_start(args, fmt);
295 vaf.va = &args;
296
297 errstr = btrfs_decode_error(errno);
298 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
299 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
300 s_id, function, line, &vaf, errno, errstr);
301
302 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
303 function, line, &vaf, errno, errstr);
304 va_end(args);
305 /* Caller calls BUG() */
306 }
307
308 static void btrfs_put_super(struct super_block *sb)
309 {
310 close_ctree(btrfs_sb(sb)->tree_root);
311 }
312
313 enum {
314 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
315 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
316 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
317 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
318 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
319 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
320 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
321 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
322 Opt_check_integrity, Opt_check_integrity_including_extent_data,
323 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
324 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
325 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
326 Opt_datasum, Opt_treelog, Opt_noinode_cache,
327 Opt_err,
328 };
329
330 static match_table_t tokens = {
331 {Opt_degraded, "degraded"},
332 {Opt_subvol, "subvol=%s"},
333 {Opt_subvolid, "subvolid=%s"},
334 {Opt_device, "device=%s"},
335 {Opt_nodatasum, "nodatasum"},
336 {Opt_datasum, "datasum"},
337 {Opt_nodatacow, "nodatacow"},
338 {Opt_datacow, "datacow"},
339 {Opt_nobarrier, "nobarrier"},
340 {Opt_barrier, "barrier"},
341 {Opt_max_inline, "max_inline=%s"},
342 {Opt_alloc_start, "alloc_start=%s"},
343 {Opt_thread_pool, "thread_pool=%d"},
344 {Opt_compress, "compress"},
345 {Opt_compress_type, "compress=%s"},
346 {Opt_compress_force, "compress-force"},
347 {Opt_compress_force_type, "compress-force=%s"},
348 {Opt_ssd, "ssd"},
349 {Opt_ssd_spread, "ssd_spread"},
350 {Opt_nossd, "nossd"},
351 {Opt_acl, "acl"},
352 {Opt_noacl, "noacl"},
353 {Opt_notreelog, "notreelog"},
354 {Opt_treelog, "treelog"},
355 {Opt_flushoncommit, "flushoncommit"},
356 {Opt_noflushoncommit, "noflushoncommit"},
357 {Opt_ratio, "metadata_ratio=%d"},
358 {Opt_discard, "discard"},
359 {Opt_nodiscard, "nodiscard"},
360 {Opt_space_cache, "space_cache"},
361 {Opt_clear_cache, "clear_cache"},
362 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
363 {Opt_enospc_debug, "enospc_debug"},
364 {Opt_noenospc_debug, "noenospc_debug"},
365 {Opt_subvolrootid, "subvolrootid=%d"},
366 {Opt_defrag, "autodefrag"},
367 {Opt_nodefrag, "noautodefrag"},
368 {Opt_inode_cache, "inode_cache"},
369 {Opt_noinode_cache, "noinode_cache"},
370 {Opt_no_space_cache, "nospace_cache"},
371 {Opt_recovery, "recovery"},
372 {Opt_skip_balance, "skip_balance"},
373 {Opt_check_integrity, "check_int"},
374 {Opt_check_integrity_including_extent_data, "check_int_data"},
375 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
376 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
377 {Opt_fatal_errors, "fatal_errors=%s"},
378 {Opt_commit_interval, "commit=%d"},
379 {Opt_err, NULL},
380 };
381
382 /*
383 * Regular mount options parser. Everything that is needed only when
384 * reading in a new superblock is parsed here.
385 * XXX JDM: This needs to be cleaned up for remount.
386 */
387 int btrfs_parse_options(struct btrfs_root *root, char *options)
388 {
389 struct btrfs_fs_info *info = root->fs_info;
390 substring_t args[MAX_OPT_ARGS];
391 char *p, *num, *orig = NULL;
392 u64 cache_gen;
393 int intarg;
394 int ret = 0;
395 char *compress_type;
396 bool compress_force = false;
397 bool compress = false;
398
399 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
400 if (cache_gen)
401 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
402
403 if (!options)
404 goto out;
405
406 /*
407 * strsep changes the string, duplicate it because parse_options
408 * gets called twice
409 */
410 options = kstrdup(options, GFP_NOFS);
411 if (!options)
412 return -ENOMEM;
413
414 orig = options;
415
416 while ((p = strsep(&options, ",")) != NULL) {
417 int token;
418 if (!*p)
419 continue;
420
421 token = match_token(p, tokens, args);
422 switch (token) {
423 case Opt_degraded:
424 btrfs_info(root->fs_info, "allowing degraded mounts");
425 btrfs_set_opt(info->mount_opt, DEGRADED);
426 break;
427 case Opt_subvol:
428 case Opt_subvolid:
429 case Opt_subvolrootid:
430 case Opt_device:
431 /*
432 * These are parsed by btrfs_parse_early_options
433 * and can be happily ignored here.
434 */
435 break;
436 case Opt_nodatasum:
437 btrfs_set_and_info(root, NODATASUM,
438 "setting nodatasum");
439 break;
440 case Opt_datasum:
441 if (btrfs_test_opt(root, NODATASUM)) {
442 if (btrfs_test_opt(root, NODATACOW))
443 btrfs_info(root->fs_info, "setting datasum, datacow enabled");
444 else
445 btrfs_info(root->fs_info, "setting datasum");
446 }
447 btrfs_clear_opt(info->mount_opt, NODATACOW);
448 btrfs_clear_opt(info->mount_opt, NODATASUM);
449 break;
450 case Opt_nodatacow:
451 if (!btrfs_test_opt(root, NODATACOW)) {
452 if (!btrfs_test_opt(root, COMPRESS) ||
453 !btrfs_test_opt(root, FORCE_COMPRESS)) {
454 btrfs_info(root->fs_info,
455 "setting nodatacow, compression disabled");
456 } else {
457 btrfs_info(root->fs_info, "setting nodatacow");
458 }
459 }
460 btrfs_clear_opt(info->mount_opt, COMPRESS);
461 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
462 btrfs_set_opt(info->mount_opt, NODATACOW);
463 btrfs_set_opt(info->mount_opt, NODATASUM);
464 break;
465 case Opt_datacow:
466 btrfs_clear_and_info(root, NODATACOW,
467 "setting datacow");
468 break;
469 case Opt_compress_force:
470 case Opt_compress_force_type:
471 compress_force = true;
472 /* Fallthrough */
473 case Opt_compress:
474 case Opt_compress_type:
475 compress = true;
476 if (token == Opt_compress ||
477 token == Opt_compress_force ||
478 strcmp(args[0].from, "zlib") == 0) {
479 compress_type = "zlib";
480 info->compress_type = BTRFS_COMPRESS_ZLIB;
481 btrfs_set_opt(info->mount_opt, COMPRESS);
482 btrfs_clear_opt(info->mount_opt, NODATACOW);
483 btrfs_clear_opt(info->mount_opt, NODATASUM);
484 } else if (strcmp(args[0].from, "lzo") == 0) {
485 compress_type = "lzo";
486 info->compress_type = BTRFS_COMPRESS_LZO;
487 btrfs_set_opt(info->mount_opt, COMPRESS);
488 btrfs_clear_opt(info->mount_opt, NODATACOW);
489 btrfs_clear_opt(info->mount_opt, NODATASUM);
490 btrfs_set_fs_incompat(info, COMPRESS_LZO);
491 } else if (strncmp(args[0].from, "no", 2) == 0) {
492 compress_type = "no";
493 btrfs_clear_opt(info->mount_opt, COMPRESS);
494 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
495 compress_force = false;
496 } else {
497 ret = -EINVAL;
498 goto out;
499 }
500
501 if (compress_force) {
502 btrfs_set_and_info(root, FORCE_COMPRESS,
503 "force %s compression",
504 compress_type);
505 } else if (compress) {
506 if (!btrfs_test_opt(root, COMPRESS))
507 btrfs_info(root->fs_info,
508 "btrfs: use %s compression",
509 compress_type);
510 }
511 break;
512 case Opt_ssd:
513 btrfs_set_and_info(root, SSD,
514 "use ssd allocation scheme");
515 break;
516 case Opt_ssd_spread:
517 btrfs_set_and_info(root, SSD_SPREAD,
518 "use spread ssd allocation scheme");
519 btrfs_set_opt(info->mount_opt, SSD);
520 break;
521 case Opt_nossd:
522 btrfs_set_and_info(root, NOSSD,
523 "not using ssd allocation scheme");
524 btrfs_clear_opt(info->mount_opt, SSD);
525 break;
526 case Opt_barrier:
527 btrfs_clear_and_info(root, NOBARRIER,
528 "turning on barriers");
529 break;
530 case Opt_nobarrier:
531 btrfs_set_and_info(root, NOBARRIER,
532 "turning off barriers");
533 break;
534 case Opt_thread_pool:
535 ret = match_int(&args[0], &intarg);
536 if (ret) {
537 goto out;
538 } else if (intarg > 0) {
539 info->thread_pool_size = intarg;
540 } else {
541 ret = -EINVAL;
542 goto out;
543 }
544 break;
545 case Opt_max_inline:
546 num = match_strdup(&args[0]);
547 if (num) {
548 info->max_inline = memparse(num, NULL);
549 kfree(num);
550
551 if (info->max_inline) {
552 info->max_inline = min_t(u64,
553 info->max_inline,
554 root->sectorsize);
555 }
556 btrfs_info(root->fs_info, "max_inline at %llu",
557 info->max_inline);
558 } else {
559 ret = -ENOMEM;
560 goto out;
561 }
562 break;
563 case Opt_alloc_start:
564 num = match_strdup(&args[0]);
565 if (num) {
566 mutex_lock(&info->chunk_mutex);
567 info->alloc_start = memparse(num, NULL);
568 mutex_unlock(&info->chunk_mutex);
569 kfree(num);
570 btrfs_info(root->fs_info, "allocations start at %llu",
571 info->alloc_start);
572 } else {
573 ret = -ENOMEM;
574 goto out;
575 }
576 break;
577 case Opt_acl:
578 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
579 root->fs_info->sb->s_flags |= MS_POSIXACL;
580 break;
581 #else
582 btrfs_err(root->fs_info,
583 "support for ACL not compiled in!");
584 ret = -EINVAL;
585 goto out;
586 #endif
587 case Opt_noacl:
588 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
589 break;
590 case Opt_notreelog:
591 btrfs_set_and_info(root, NOTREELOG,
592 "disabling tree log");
593 break;
594 case Opt_treelog:
595 btrfs_clear_and_info(root, NOTREELOG,
596 "enabling tree log");
597 break;
598 case Opt_flushoncommit:
599 btrfs_set_and_info(root, FLUSHONCOMMIT,
600 "turning on flush-on-commit");
601 break;
602 case Opt_noflushoncommit:
603 btrfs_clear_and_info(root, FLUSHONCOMMIT,
604 "turning off flush-on-commit");
605 break;
606 case Opt_ratio:
607 ret = match_int(&args[0], &intarg);
608 if (ret) {
609 goto out;
610 } else if (intarg >= 0) {
611 info->metadata_ratio = intarg;
612 btrfs_info(root->fs_info, "metadata ratio %d",
613 info->metadata_ratio);
614 } else {
615 ret = -EINVAL;
616 goto out;
617 }
618 break;
619 case Opt_discard:
620 btrfs_set_and_info(root, DISCARD,
621 "turning on discard");
622 break;
623 case Opt_nodiscard:
624 btrfs_clear_and_info(root, DISCARD,
625 "turning off discard");
626 break;
627 case Opt_space_cache:
628 btrfs_set_and_info(root, SPACE_CACHE,
629 "enabling disk space caching");
630 break;
631 case Opt_rescan_uuid_tree:
632 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
633 break;
634 case Opt_no_space_cache:
635 btrfs_clear_and_info(root, SPACE_CACHE,
636 "disabling disk space caching");
637 break;
638 case Opt_inode_cache:
639 btrfs_set_and_info(root, CHANGE_INODE_CACHE,
640 "enabling inode map caching");
641 break;
642 case Opt_noinode_cache:
643 btrfs_clear_and_info(root, CHANGE_INODE_CACHE,
644 "disabling inode map caching");
645 break;
646 case Opt_clear_cache:
647 btrfs_set_and_info(root, CLEAR_CACHE,
648 "force clearing of disk cache");
649 break;
650 case Opt_user_subvol_rm_allowed:
651 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
652 break;
653 case Opt_enospc_debug:
654 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
655 break;
656 case Opt_noenospc_debug:
657 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
658 break;
659 case Opt_defrag:
660 btrfs_set_and_info(root, AUTO_DEFRAG,
661 "enabling auto defrag");
662 break;
663 case Opt_nodefrag:
664 btrfs_clear_and_info(root, AUTO_DEFRAG,
665 "disabling auto defrag");
666 break;
667 case Opt_recovery:
668 btrfs_info(root->fs_info, "enabling auto recovery");
669 btrfs_set_opt(info->mount_opt, RECOVERY);
670 break;
671 case Opt_skip_balance:
672 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
673 break;
674 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
675 case Opt_check_integrity_including_extent_data:
676 btrfs_info(root->fs_info,
677 "enabling check integrity including extent data");
678 btrfs_set_opt(info->mount_opt,
679 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
680 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
681 break;
682 case Opt_check_integrity:
683 btrfs_info(root->fs_info, "enabling check integrity");
684 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
685 break;
686 case Opt_check_integrity_print_mask:
687 ret = match_int(&args[0], &intarg);
688 if (ret) {
689 goto out;
690 } else if (intarg >= 0) {
691 info->check_integrity_print_mask = intarg;
692 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
693 info->check_integrity_print_mask);
694 } else {
695 ret = -EINVAL;
696 goto out;
697 }
698 break;
699 #else
700 case Opt_check_integrity_including_extent_data:
701 case Opt_check_integrity:
702 case Opt_check_integrity_print_mask:
703 btrfs_err(root->fs_info,
704 "support for check_integrity* not compiled in!");
705 ret = -EINVAL;
706 goto out;
707 #endif
708 case Opt_fatal_errors:
709 if (strcmp(args[0].from, "panic") == 0)
710 btrfs_set_opt(info->mount_opt,
711 PANIC_ON_FATAL_ERROR);
712 else if (strcmp(args[0].from, "bug") == 0)
713 btrfs_clear_opt(info->mount_opt,
714 PANIC_ON_FATAL_ERROR);
715 else {
716 ret = -EINVAL;
717 goto out;
718 }
719 break;
720 case Opt_commit_interval:
721 intarg = 0;
722 ret = match_int(&args[0], &intarg);
723 if (ret < 0) {
724 btrfs_err(root->fs_info, "invalid commit interval");
725 ret = -EINVAL;
726 goto out;
727 }
728 if (intarg > 0) {
729 if (intarg > 300) {
730 btrfs_warn(root->fs_info, "excessive commit interval %d",
731 intarg);
732 }
733 info->commit_interval = intarg;
734 } else {
735 btrfs_info(root->fs_info, "using default commit interval %ds",
736 BTRFS_DEFAULT_COMMIT_INTERVAL);
737 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
738 }
739 break;
740 case Opt_err:
741 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
742 ret = -EINVAL;
743 goto out;
744 default:
745 break;
746 }
747 }
748 out:
749 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
750 btrfs_info(root->fs_info, "disk space caching is enabled");
751 kfree(orig);
752 return ret;
753 }
754
755 /*
756 * Parse mount options that are required early in the mount process.
757 *
758 * All other options will be parsed on much later in the mount process and
759 * only when we need to allocate a new super block.
760 */
761 static int btrfs_parse_early_options(const char *options, fmode_t flags,
762 void *holder, char **subvol_name, u64 *subvol_objectid,
763 struct btrfs_fs_devices **fs_devices)
764 {
765 substring_t args[MAX_OPT_ARGS];
766 char *device_name, *opts, *orig, *p;
767 char *num = NULL;
768 int error = 0;
769
770 if (!options)
771 return 0;
772
773 /*
774 * strsep changes the string, duplicate it because parse_options
775 * gets called twice
776 */
777 opts = kstrdup(options, GFP_KERNEL);
778 if (!opts)
779 return -ENOMEM;
780 orig = opts;
781
782 while ((p = strsep(&opts, ",")) != NULL) {
783 int token;
784 if (!*p)
785 continue;
786
787 token = match_token(p, tokens, args);
788 switch (token) {
789 case Opt_subvol:
790 kfree(*subvol_name);
791 *subvol_name = match_strdup(&args[0]);
792 if (!*subvol_name) {
793 error = -ENOMEM;
794 goto out;
795 }
796 break;
797 case Opt_subvolid:
798 num = match_strdup(&args[0]);
799 if (num) {
800 *subvol_objectid = memparse(num, NULL);
801 kfree(num);
802 /* we want the original fs_tree */
803 if (!*subvol_objectid)
804 *subvol_objectid =
805 BTRFS_FS_TREE_OBJECTID;
806 } else {
807 error = -EINVAL;
808 goto out;
809 }
810 break;
811 case Opt_subvolrootid:
812 printk(KERN_WARNING
813 "BTRFS: 'subvolrootid' mount option is deprecated and has "
814 "no effect\n");
815 break;
816 case Opt_device:
817 device_name = match_strdup(&args[0]);
818 if (!device_name) {
819 error = -ENOMEM;
820 goto out;
821 }
822 error = btrfs_scan_one_device(device_name,
823 flags, holder, fs_devices);
824 kfree(device_name);
825 if (error)
826 goto out;
827 break;
828 default:
829 break;
830 }
831 }
832
833 out:
834 kfree(orig);
835 return error;
836 }
837
838 static struct dentry *get_default_root(struct super_block *sb,
839 u64 subvol_objectid)
840 {
841 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
842 struct btrfs_root *root = fs_info->tree_root;
843 struct btrfs_root *new_root;
844 struct btrfs_dir_item *di;
845 struct btrfs_path *path;
846 struct btrfs_key location;
847 struct inode *inode;
848 u64 dir_id;
849 int new = 0;
850
851 /*
852 * We have a specific subvol we want to mount, just setup location and
853 * go look up the root.
854 */
855 if (subvol_objectid) {
856 location.objectid = subvol_objectid;
857 location.type = BTRFS_ROOT_ITEM_KEY;
858 location.offset = (u64)-1;
859 goto find_root;
860 }
861
862 path = btrfs_alloc_path();
863 if (!path)
864 return ERR_PTR(-ENOMEM);
865 path->leave_spinning = 1;
866
867 /*
868 * Find the "default" dir item which points to the root item that we
869 * will mount by default if we haven't been given a specific subvolume
870 * to mount.
871 */
872 dir_id = btrfs_super_root_dir(fs_info->super_copy);
873 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
874 if (IS_ERR(di)) {
875 btrfs_free_path(path);
876 return ERR_CAST(di);
877 }
878 if (!di) {
879 /*
880 * Ok the default dir item isn't there. This is weird since
881 * it's always been there, but don't freak out, just try and
882 * mount to root most subvolume.
883 */
884 btrfs_free_path(path);
885 dir_id = BTRFS_FIRST_FREE_OBJECTID;
886 new_root = fs_info->fs_root;
887 goto setup_root;
888 }
889
890 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
891 btrfs_free_path(path);
892
893 find_root:
894 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
895 if (IS_ERR(new_root))
896 return ERR_CAST(new_root);
897
898 dir_id = btrfs_root_dirid(&new_root->root_item);
899 setup_root:
900 location.objectid = dir_id;
901 location.type = BTRFS_INODE_ITEM_KEY;
902 location.offset = 0;
903
904 inode = btrfs_iget(sb, &location, new_root, &new);
905 if (IS_ERR(inode))
906 return ERR_CAST(inode);
907
908 /*
909 * If we're just mounting the root most subvol put the inode and return
910 * a reference to the dentry. We will have already gotten a reference
911 * to the inode in btrfs_fill_super so we're good to go.
912 */
913 if (!new && sb->s_root->d_inode == inode) {
914 iput(inode);
915 return dget(sb->s_root);
916 }
917
918 return d_obtain_root(inode);
919 }
920
921 static int btrfs_fill_super(struct super_block *sb,
922 struct btrfs_fs_devices *fs_devices,
923 void *data, int silent)
924 {
925 struct inode *inode;
926 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
927 struct btrfs_key key;
928 int err;
929
930 sb->s_maxbytes = MAX_LFS_FILESIZE;
931 sb->s_magic = BTRFS_SUPER_MAGIC;
932 sb->s_op = &btrfs_super_ops;
933 sb->s_d_op = &btrfs_dentry_operations;
934 sb->s_export_op = &btrfs_export_ops;
935 sb->s_xattr = btrfs_xattr_handlers;
936 sb->s_time_gran = 1;
937 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
938 sb->s_flags |= MS_POSIXACL;
939 #endif
940 sb->s_flags |= MS_I_VERSION;
941 err = open_ctree(sb, fs_devices, (char *)data);
942 if (err) {
943 printk(KERN_ERR "BTRFS: open_ctree failed\n");
944 return err;
945 }
946
947 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
948 key.type = BTRFS_INODE_ITEM_KEY;
949 key.offset = 0;
950 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
951 if (IS_ERR(inode)) {
952 err = PTR_ERR(inode);
953 goto fail_close;
954 }
955
956 sb->s_root = d_make_root(inode);
957 if (!sb->s_root) {
958 err = -ENOMEM;
959 goto fail_close;
960 }
961
962 save_mount_options(sb, data);
963 cleancache_init_fs(sb);
964 sb->s_flags |= MS_ACTIVE;
965 return 0;
966
967 fail_close:
968 close_ctree(fs_info->tree_root);
969 return err;
970 }
971
972 int btrfs_sync_fs(struct super_block *sb, int wait)
973 {
974 struct btrfs_trans_handle *trans;
975 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
976 struct btrfs_root *root = fs_info->tree_root;
977
978 trace_btrfs_sync_fs(wait);
979
980 if (!wait) {
981 filemap_flush(fs_info->btree_inode->i_mapping);
982 return 0;
983 }
984
985 btrfs_wait_ordered_roots(fs_info, -1);
986
987 trans = btrfs_attach_transaction_barrier(root);
988 if (IS_ERR(trans)) {
989 /* no transaction, don't bother */
990 if (PTR_ERR(trans) == -ENOENT)
991 return 0;
992 return PTR_ERR(trans);
993 }
994 return btrfs_commit_transaction(trans, root);
995 }
996
997 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
998 {
999 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1000 struct btrfs_root *root = info->tree_root;
1001 char *compress_type;
1002
1003 if (btrfs_test_opt(root, DEGRADED))
1004 seq_puts(seq, ",degraded");
1005 if (btrfs_test_opt(root, NODATASUM))
1006 seq_puts(seq, ",nodatasum");
1007 if (btrfs_test_opt(root, NODATACOW))
1008 seq_puts(seq, ",nodatacow");
1009 if (btrfs_test_opt(root, NOBARRIER))
1010 seq_puts(seq, ",nobarrier");
1011 if (info->max_inline != 8192 * 1024)
1012 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1013 if (info->alloc_start != 0)
1014 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1015 if (info->thread_pool_size != min_t(unsigned long,
1016 num_online_cpus() + 2, 8))
1017 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1018 if (btrfs_test_opt(root, COMPRESS)) {
1019 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1020 compress_type = "zlib";
1021 else
1022 compress_type = "lzo";
1023 if (btrfs_test_opt(root, FORCE_COMPRESS))
1024 seq_printf(seq, ",compress-force=%s", compress_type);
1025 else
1026 seq_printf(seq, ",compress=%s", compress_type);
1027 }
1028 if (btrfs_test_opt(root, NOSSD))
1029 seq_puts(seq, ",nossd");
1030 if (btrfs_test_opt(root, SSD_SPREAD))
1031 seq_puts(seq, ",ssd_spread");
1032 else if (btrfs_test_opt(root, SSD))
1033 seq_puts(seq, ",ssd");
1034 if (btrfs_test_opt(root, NOTREELOG))
1035 seq_puts(seq, ",notreelog");
1036 if (btrfs_test_opt(root, FLUSHONCOMMIT))
1037 seq_puts(seq, ",flushoncommit");
1038 if (btrfs_test_opt(root, DISCARD))
1039 seq_puts(seq, ",discard");
1040 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1041 seq_puts(seq, ",noacl");
1042 if (btrfs_test_opt(root, SPACE_CACHE))
1043 seq_puts(seq, ",space_cache");
1044 else
1045 seq_puts(seq, ",nospace_cache");
1046 if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1047 seq_puts(seq, ",rescan_uuid_tree");
1048 if (btrfs_test_opt(root, CLEAR_CACHE))
1049 seq_puts(seq, ",clear_cache");
1050 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1051 seq_puts(seq, ",user_subvol_rm_allowed");
1052 if (btrfs_test_opt(root, ENOSPC_DEBUG))
1053 seq_puts(seq, ",enospc_debug");
1054 if (btrfs_test_opt(root, AUTO_DEFRAG))
1055 seq_puts(seq, ",autodefrag");
1056 if (btrfs_test_opt(root, INODE_MAP_CACHE))
1057 seq_puts(seq, ",inode_cache");
1058 if (btrfs_test_opt(root, SKIP_BALANCE))
1059 seq_puts(seq, ",skip_balance");
1060 if (btrfs_test_opt(root, RECOVERY))
1061 seq_puts(seq, ",recovery");
1062 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1063 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1064 seq_puts(seq, ",check_int_data");
1065 else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1066 seq_puts(seq, ",check_int");
1067 if (info->check_integrity_print_mask)
1068 seq_printf(seq, ",check_int_print_mask=%d",
1069 info->check_integrity_print_mask);
1070 #endif
1071 if (info->metadata_ratio)
1072 seq_printf(seq, ",metadata_ratio=%d",
1073 info->metadata_ratio);
1074 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1075 seq_puts(seq, ",fatal_errors=panic");
1076 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1077 seq_printf(seq, ",commit=%d", info->commit_interval);
1078 return 0;
1079 }
1080
1081 static int btrfs_test_super(struct super_block *s, void *data)
1082 {
1083 struct btrfs_fs_info *p = data;
1084 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1085
1086 return fs_info->fs_devices == p->fs_devices;
1087 }
1088
1089 static int btrfs_set_super(struct super_block *s, void *data)
1090 {
1091 int err = set_anon_super(s, data);
1092 if (!err)
1093 s->s_fs_info = data;
1094 return err;
1095 }
1096
1097 /*
1098 * subvolumes are identified by ino 256
1099 */
1100 static inline int is_subvolume_inode(struct inode *inode)
1101 {
1102 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1103 return 1;
1104 return 0;
1105 }
1106
1107 /*
1108 * This will strip out the subvol=%s argument for an argument string and add
1109 * subvolid=0 to make sure we get the actual tree root for path walking to the
1110 * subvol we want.
1111 */
1112 static char *setup_root_args(char *args)
1113 {
1114 unsigned len = strlen(args) + 2 + 1;
1115 char *src, *dst, *buf;
1116
1117 /*
1118 * We need the same args as before, but with this substitution:
1119 * s!subvol=[^,]+!subvolid=0!
1120 *
1121 * Since the replacement string is up to 2 bytes longer than the
1122 * original, allocate strlen(args) + 2 + 1 bytes.
1123 */
1124
1125 src = strstr(args, "subvol=");
1126 /* This shouldn't happen, but just in case.. */
1127 if (!src)
1128 return NULL;
1129
1130 buf = dst = kmalloc(len, GFP_NOFS);
1131 if (!buf)
1132 return NULL;
1133
1134 /*
1135 * If the subvol= arg is not at the start of the string,
1136 * copy whatever precedes it into buf.
1137 */
1138 if (src != args) {
1139 *src++ = '\0';
1140 strcpy(buf, args);
1141 dst += strlen(args);
1142 }
1143
1144 strcpy(dst, "subvolid=0");
1145 dst += strlen("subvolid=0");
1146
1147 /*
1148 * If there is a "," after the original subvol=... string,
1149 * copy that suffix into our buffer. Otherwise, we're done.
1150 */
1151 src = strchr(src, ',');
1152 if (src)
1153 strcpy(dst, src);
1154
1155 return buf;
1156 }
1157
1158 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1159 const char *device_name, char *data)
1160 {
1161 struct dentry *root;
1162 struct vfsmount *mnt;
1163 char *newargs;
1164
1165 newargs = setup_root_args(data);
1166 if (!newargs)
1167 return ERR_PTR(-ENOMEM);
1168 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1169 newargs);
1170
1171 if (PTR_RET(mnt) == -EBUSY) {
1172 if (flags & MS_RDONLY) {
1173 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1174 newargs);
1175 } else {
1176 int r;
1177 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1178 newargs);
1179 if (IS_ERR(mnt)) {
1180 kfree(newargs);
1181 return ERR_CAST(mnt);
1182 }
1183
1184 r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1185 if (r < 0) {
1186 /* FIXME: release vfsmount mnt ??*/
1187 kfree(newargs);
1188 return ERR_PTR(r);
1189 }
1190 }
1191 }
1192
1193 kfree(newargs);
1194
1195 if (IS_ERR(mnt))
1196 return ERR_CAST(mnt);
1197
1198 root = mount_subtree(mnt, subvol_name);
1199
1200 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1201 struct super_block *s = root->d_sb;
1202 dput(root);
1203 root = ERR_PTR(-EINVAL);
1204 deactivate_locked_super(s);
1205 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1206 subvol_name);
1207 }
1208
1209 return root;
1210 }
1211
1212 /*
1213 * Find a superblock for the given device / mount point.
1214 *
1215 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1216 * for multiple device setup. Make sure to keep it in sync.
1217 */
1218 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1219 const char *device_name, void *data)
1220 {
1221 struct block_device *bdev = NULL;
1222 struct super_block *s;
1223 struct dentry *root;
1224 struct btrfs_fs_devices *fs_devices = NULL;
1225 struct btrfs_fs_info *fs_info = NULL;
1226 fmode_t mode = FMODE_READ;
1227 char *subvol_name = NULL;
1228 u64 subvol_objectid = 0;
1229 int error = 0;
1230
1231 if (!(flags & MS_RDONLY))
1232 mode |= FMODE_WRITE;
1233
1234 error = btrfs_parse_early_options(data, mode, fs_type,
1235 &subvol_name, &subvol_objectid,
1236 &fs_devices);
1237 if (error) {
1238 kfree(subvol_name);
1239 return ERR_PTR(error);
1240 }
1241
1242 if (subvol_name) {
1243 root = mount_subvol(subvol_name, flags, device_name, data);
1244 kfree(subvol_name);
1245 return root;
1246 }
1247
1248 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1249 if (error)
1250 return ERR_PTR(error);
1251
1252 /*
1253 * Setup a dummy root and fs_info for test/set super. This is because
1254 * we don't actually fill this stuff out until open_ctree, but we need
1255 * it for searching for existing supers, so this lets us do that and
1256 * then open_ctree will properly initialize everything later.
1257 */
1258 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1259 if (!fs_info)
1260 return ERR_PTR(-ENOMEM);
1261
1262 fs_info->fs_devices = fs_devices;
1263
1264 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1265 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1266 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1267 error = -ENOMEM;
1268 goto error_fs_info;
1269 }
1270
1271 error = btrfs_open_devices(fs_devices, mode, fs_type);
1272 if (error)
1273 goto error_fs_info;
1274
1275 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1276 error = -EACCES;
1277 goto error_close_devices;
1278 }
1279
1280 bdev = fs_devices->latest_bdev;
1281 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1282 fs_info);
1283 if (IS_ERR(s)) {
1284 error = PTR_ERR(s);
1285 goto error_close_devices;
1286 }
1287
1288 if (s->s_root) {
1289 btrfs_close_devices(fs_devices);
1290 free_fs_info(fs_info);
1291 if ((flags ^ s->s_flags) & MS_RDONLY)
1292 error = -EBUSY;
1293 } else {
1294 char b[BDEVNAME_SIZE];
1295
1296 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1297 btrfs_sb(s)->bdev_holder = fs_type;
1298 error = btrfs_fill_super(s, fs_devices, data,
1299 flags & MS_SILENT ? 1 : 0);
1300 }
1301
1302 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1303 if (IS_ERR(root))
1304 deactivate_locked_super(s);
1305
1306 return root;
1307
1308 error_close_devices:
1309 btrfs_close_devices(fs_devices);
1310 error_fs_info:
1311 free_fs_info(fs_info);
1312 return ERR_PTR(error);
1313 }
1314
1315 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1316 int new_pool_size, int old_pool_size)
1317 {
1318 if (new_pool_size == old_pool_size)
1319 return;
1320
1321 fs_info->thread_pool_size = new_pool_size;
1322
1323 btrfs_info(fs_info, "resize thread pool %d -> %d",
1324 old_pool_size, new_pool_size);
1325
1326 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1327 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1328 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1329 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1330 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1331 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1332 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1333 new_pool_size);
1334 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1335 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1336 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1337 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1338 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1339 new_pool_size);
1340 }
1341
1342 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1343 {
1344 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1345 }
1346
1347 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1348 unsigned long old_opts, int flags)
1349 {
1350 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1351 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1352 (flags & MS_RDONLY))) {
1353 /* wait for any defraggers to finish */
1354 wait_event(fs_info->transaction_wait,
1355 (atomic_read(&fs_info->defrag_running) == 0));
1356 if (flags & MS_RDONLY)
1357 sync_filesystem(fs_info->sb);
1358 }
1359 }
1360
1361 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1362 unsigned long old_opts)
1363 {
1364 /*
1365 * We need cleanup all defragable inodes if the autodefragment is
1366 * close or the fs is R/O.
1367 */
1368 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1369 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1370 (fs_info->sb->s_flags & MS_RDONLY))) {
1371 btrfs_cleanup_defrag_inodes(fs_info);
1372 }
1373
1374 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1375 }
1376
1377 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1378 {
1379 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1380 struct btrfs_root *root = fs_info->tree_root;
1381 unsigned old_flags = sb->s_flags;
1382 unsigned long old_opts = fs_info->mount_opt;
1383 unsigned long old_compress_type = fs_info->compress_type;
1384 u64 old_max_inline = fs_info->max_inline;
1385 u64 old_alloc_start = fs_info->alloc_start;
1386 int old_thread_pool_size = fs_info->thread_pool_size;
1387 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1388 int ret;
1389
1390 sync_filesystem(sb);
1391 btrfs_remount_prepare(fs_info);
1392
1393 ret = btrfs_parse_options(root, data);
1394 if (ret) {
1395 ret = -EINVAL;
1396 goto restore;
1397 }
1398
1399 btrfs_remount_begin(fs_info, old_opts, *flags);
1400 btrfs_resize_thread_pool(fs_info,
1401 fs_info->thread_pool_size, old_thread_pool_size);
1402
1403 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1404 goto out;
1405
1406 if (*flags & MS_RDONLY) {
1407 /*
1408 * this also happens on 'umount -rf' or on shutdown, when
1409 * the filesystem is busy.
1410 */
1411 cancel_work_sync(&fs_info->async_reclaim_work);
1412
1413 /* wait for the uuid_scan task to finish */
1414 down(&fs_info->uuid_tree_rescan_sem);
1415 /* avoid complains from lockdep et al. */
1416 up(&fs_info->uuid_tree_rescan_sem);
1417
1418 sb->s_flags |= MS_RDONLY;
1419
1420 btrfs_dev_replace_suspend_for_unmount(fs_info);
1421 btrfs_scrub_cancel(fs_info);
1422 btrfs_pause_balance(fs_info);
1423
1424 ret = btrfs_commit_super(root);
1425 if (ret)
1426 goto restore;
1427 } else {
1428 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1429 btrfs_err(fs_info,
1430 "Remounting read-write after error is not allowed");
1431 ret = -EINVAL;
1432 goto restore;
1433 }
1434 if (fs_info->fs_devices->rw_devices == 0) {
1435 ret = -EACCES;
1436 goto restore;
1437 }
1438
1439 if (fs_info->fs_devices->missing_devices >
1440 fs_info->num_tolerated_disk_barrier_failures &&
1441 !(*flags & MS_RDONLY)) {
1442 btrfs_warn(fs_info,
1443 "too many missing devices, writeable remount is not allowed");
1444 ret = -EACCES;
1445 goto restore;
1446 }
1447
1448 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1449 ret = -EINVAL;
1450 goto restore;
1451 }
1452
1453 ret = btrfs_cleanup_fs_roots(fs_info);
1454 if (ret)
1455 goto restore;
1456
1457 /* recover relocation */
1458 mutex_lock(&fs_info->cleaner_mutex);
1459 ret = btrfs_recover_relocation(root);
1460 mutex_unlock(&fs_info->cleaner_mutex);
1461 if (ret)
1462 goto restore;
1463
1464 ret = btrfs_resume_balance_async(fs_info);
1465 if (ret)
1466 goto restore;
1467
1468 ret = btrfs_resume_dev_replace_async(fs_info);
1469 if (ret) {
1470 btrfs_warn(fs_info, "failed to resume dev_replace");
1471 goto restore;
1472 }
1473
1474 if (!fs_info->uuid_root) {
1475 btrfs_info(fs_info, "creating UUID tree");
1476 ret = btrfs_create_uuid_tree(fs_info);
1477 if (ret) {
1478 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1479 goto restore;
1480 }
1481 }
1482 sb->s_flags &= ~MS_RDONLY;
1483 }
1484 out:
1485 wake_up_process(fs_info->transaction_kthread);
1486 btrfs_remount_cleanup(fs_info, old_opts);
1487 return 0;
1488
1489 restore:
1490 /* We've hit an error - don't reset MS_RDONLY */
1491 if (sb->s_flags & MS_RDONLY)
1492 old_flags |= MS_RDONLY;
1493 sb->s_flags = old_flags;
1494 fs_info->mount_opt = old_opts;
1495 fs_info->compress_type = old_compress_type;
1496 fs_info->max_inline = old_max_inline;
1497 mutex_lock(&fs_info->chunk_mutex);
1498 fs_info->alloc_start = old_alloc_start;
1499 mutex_unlock(&fs_info->chunk_mutex);
1500 btrfs_resize_thread_pool(fs_info,
1501 old_thread_pool_size, fs_info->thread_pool_size);
1502 fs_info->metadata_ratio = old_metadata_ratio;
1503 btrfs_remount_cleanup(fs_info, old_opts);
1504 return ret;
1505 }
1506
1507 /* Used to sort the devices by max_avail(descending sort) */
1508 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1509 const void *dev_info2)
1510 {
1511 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1512 ((struct btrfs_device_info *)dev_info2)->max_avail)
1513 return -1;
1514 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1515 ((struct btrfs_device_info *)dev_info2)->max_avail)
1516 return 1;
1517 else
1518 return 0;
1519 }
1520
1521 /*
1522 * sort the devices by max_avail, in which max free extent size of each device
1523 * is stored.(Descending Sort)
1524 */
1525 static inline void btrfs_descending_sort_devices(
1526 struct btrfs_device_info *devices,
1527 size_t nr_devices)
1528 {
1529 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1530 btrfs_cmp_device_free_bytes, NULL);
1531 }
1532
1533 /*
1534 * The helper to calc the free space on the devices that can be used to store
1535 * file data.
1536 */
1537 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1538 {
1539 struct btrfs_fs_info *fs_info = root->fs_info;
1540 struct btrfs_device_info *devices_info;
1541 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1542 struct btrfs_device *device;
1543 u64 skip_space;
1544 u64 type;
1545 u64 avail_space;
1546 u64 used_space;
1547 u64 min_stripe_size;
1548 int min_stripes = 1, num_stripes = 1;
1549 int i = 0, nr_devices;
1550 int ret;
1551
1552 nr_devices = fs_info->fs_devices->open_devices;
1553 BUG_ON(!nr_devices);
1554
1555 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1556 GFP_NOFS);
1557 if (!devices_info)
1558 return -ENOMEM;
1559
1560 /* calc min stripe number for data space alloction */
1561 type = btrfs_get_alloc_profile(root, 1);
1562 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1563 min_stripes = 2;
1564 num_stripes = nr_devices;
1565 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1566 min_stripes = 2;
1567 num_stripes = 2;
1568 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1569 min_stripes = 4;
1570 num_stripes = 4;
1571 }
1572
1573 if (type & BTRFS_BLOCK_GROUP_DUP)
1574 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1575 else
1576 min_stripe_size = BTRFS_STRIPE_LEN;
1577
1578 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1579 if (!device->in_fs_metadata || !device->bdev ||
1580 device->is_tgtdev_for_dev_replace)
1581 continue;
1582
1583 avail_space = device->total_bytes - device->bytes_used;
1584
1585 /* align with stripe_len */
1586 do_div(avail_space, BTRFS_STRIPE_LEN);
1587 avail_space *= BTRFS_STRIPE_LEN;
1588
1589 /*
1590 * In order to avoid overwritting the superblock on the drive,
1591 * btrfs starts at an offset of at least 1MB when doing chunk
1592 * allocation.
1593 */
1594 skip_space = 1024 * 1024;
1595
1596 /* user can set the offset in fs_info->alloc_start. */
1597 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1598 device->total_bytes)
1599 skip_space = max(fs_info->alloc_start, skip_space);
1600
1601 /*
1602 * btrfs can not use the free space in [0, skip_space - 1],
1603 * we must subtract it from the total. In order to implement
1604 * it, we account the used space in this range first.
1605 */
1606 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1607 &used_space);
1608 if (ret) {
1609 kfree(devices_info);
1610 return ret;
1611 }
1612
1613 /* calc the free space in [0, skip_space - 1] */
1614 skip_space -= used_space;
1615
1616 /*
1617 * we can use the free space in [0, skip_space - 1], subtract
1618 * it from the total.
1619 */
1620 if (avail_space && avail_space >= skip_space)
1621 avail_space -= skip_space;
1622 else
1623 avail_space = 0;
1624
1625 if (avail_space < min_stripe_size)
1626 continue;
1627
1628 devices_info[i].dev = device;
1629 devices_info[i].max_avail = avail_space;
1630
1631 i++;
1632 }
1633
1634 nr_devices = i;
1635
1636 btrfs_descending_sort_devices(devices_info, nr_devices);
1637
1638 i = nr_devices - 1;
1639 avail_space = 0;
1640 while (nr_devices >= min_stripes) {
1641 if (num_stripes > nr_devices)
1642 num_stripes = nr_devices;
1643
1644 if (devices_info[i].max_avail >= min_stripe_size) {
1645 int j;
1646 u64 alloc_size;
1647
1648 avail_space += devices_info[i].max_avail * num_stripes;
1649 alloc_size = devices_info[i].max_avail;
1650 for (j = i + 1 - num_stripes; j <= i; j++)
1651 devices_info[j].max_avail -= alloc_size;
1652 }
1653 i--;
1654 nr_devices--;
1655 }
1656
1657 kfree(devices_info);
1658 *free_bytes = avail_space;
1659 return 0;
1660 }
1661
1662 /*
1663 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1664 *
1665 * If there's a redundant raid level at DATA block groups, use the respective
1666 * multiplier to scale the sizes.
1667 *
1668 * Unused device space usage is based on simulating the chunk allocator
1669 * algorithm that respects the device sizes, order of allocations and the
1670 * 'alloc_start' value, this is a close approximation of the actual use but
1671 * there are other factors that may change the result (like a new metadata
1672 * chunk).
1673 *
1674 * FIXME: not accurate for mixed block groups, total and free/used are ok,
1675 * available appears slightly larger.
1676 */
1677 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1678 {
1679 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1680 struct btrfs_super_block *disk_super = fs_info->super_copy;
1681 struct list_head *head = &fs_info->space_info;
1682 struct btrfs_space_info *found;
1683 u64 total_used = 0;
1684 u64 total_free_data = 0;
1685 int bits = dentry->d_sb->s_blocksize_bits;
1686 __be32 *fsid = (__be32 *)fs_info->fsid;
1687 unsigned factor = 1;
1688 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1689 int ret;
1690
1691 /* holding chunk_muext to avoid allocating new chunks */
1692 mutex_lock(&fs_info->chunk_mutex);
1693 rcu_read_lock();
1694 list_for_each_entry_rcu(found, head, list) {
1695 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1696 int i;
1697
1698 total_free_data += found->disk_total - found->disk_used;
1699 total_free_data -=
1700 btrfs_account_ro_block_groups_free_space(found);
1701
1702 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1703 if (!list_empty(&found->block_groups[i])) {
1704 switch (i) {
1705 case BTRFS_RAID_DUP:
1706 case BTRFS_RAID_RAID1:
1707 case BTRFS_RAID_RAID10:
1708 factor = 2;
1709 }
1710 }
1711 }
1712 }
1713
1714 total_used += found->disk_used;
1715 }
1716
1717 rcu_read_unlock();
1718
1719 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1720 buf->f_blocks >>= bits;
1721 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1722
1723 /* Account global block reserve as used, it's in logical size already */
1724 spin_lock(&block_rsv->lock);
1725 buf->f_bfree -= block_rsv->size >> bits;
1726 spin_unlock(&block_rsv->lock);
1727
1728 buf->f_bavail = total_free_data;
1729 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1730 if (ret) {
1731 mutex_unlock(&fs_info->chunk_mutex);
1732 return ret;
1733 }
1734 buf->f_bavail += div_u64(total_free_data, factor);
1735 buf->f_bavail = buf->f_bavail >> bits;
1736 mutex_unlock(&fs_info->chunk_mutex);
1737
1738 buf->f_type = BTRFS_SUPER_MAGIC;
1739 buf->f_bsize = dentry->d_sb->s_blocksize;
1740 buf->f_namelen = BTRFS_NAME_LEN;
1741
1742 /* We treat it as constant endianness (it doesn't matter _which_)
1743 because we want the fsid to come out the same whether mounted
1744 on a big-endian or little-endian host */
1745 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1746 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1747 /* Mask in the root object ID too, to disambiguate subvols */
1748 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1749 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1750
1751 return 0;
1752 }
1753
1754 static void btrfs_kill_super(struct super_block *sb)
1755 {
1756 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1757 kill_anon_super(sb);
1758 free_fs_info(fs_info);
1759 }
1760
1761 static struct file_system_type btrfs_fs_type = {
1762 .owner = THIS_MODULE,
1763 .name = "btrfs",
1764 .mount = btrfs_mount,
1765 .kill_sb = btrfs_kill_super,
1766 .fs_flags = FS_REQUIRES_DEV,
1767 };
1768 MODULE_ALIAS_FS("btrfs");
1769
1770 /*
1771 * used by btrfsctl to scan devices when no FS is mounted
1772 */
1773 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1774 unsigned long arg)
1775 {
1776 struct btrfs_ioctl_vol_args *vol;
1777 struct btrfs_fs_devices *fs_devices;
1778 int ret = -ENOTTY;
1779
1780 if (!capable(CAP_SYS_ADMIN))
1781 return -EPERM;
1782
1783 vol = memdup_user((void __user *)arg, sizeof(*vol));
1784 if (IS_ERR(vol))
1785 return PTR_ERR(vol);
1786
1787 switch (cmd) {
1788 case BTRFS_IOC_SCAN_DEV:
1789 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1790 &btrfs_fs_type, &fs_devices);
1791 break;
1792 case BTRFS_IOC_DEVICES_READY:
1793 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1794 &btrfs_fs_type, &fs_devices);
1795 if (ret)
1796 break;
1797 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1798 break;
1799 }
1800
1801 kfree(vol);
1802 return ret;
1803 }
1804
1805 static int btrfs_freeze(struct super_block *sb)
1806 {
1807 struct btrfs_trans_handle *trans;
1808 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1809
1810 trans = btrfs_attach_transaction_barrier(root);
1811 if (IS_ERR(trans)) {
1812 /* no transaction, don't bother */
1813 if (PTR_ERR(trans) == -ENOENT)
1814 return 0;
1815 return PTR_ERR(trans);
1816 }
1817 return btrfs_commit_transaction(trans, root);
1818 }
1819
1820 static int btrfs_unfreeze(struct super_block *sb)
1821 {
1822 return 0;
1823 }
1824
1825 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1826 {
1827 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1828 struct btrfs_fs_devices *cur_devices;
1829 struct btrfs_device *dev, *first_dev = NULL;
1830 struct list_head *head;
1831 struct rcu_string *name;
1832
1833 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1834 cur_devices = fs_info->fs_devices;
1835 while (cur_devices) {
1836 head = &cur_devices->devices;
1837 list_for_each_entry(dev, head, dev_list) {
1838 if (dev->missing)
1839 continue;
1840 if (!dev->name)
1841 continue;
1842 if (!first_dev || dev->devid < first_dev->devid)
1843 first_dev = dev;
1844 }
1845 cur_devices = cur_devices->seed;
1846 }
1847
1848 if (first_dev) {
1849 rcu_read_lock();
1850 name = rcu_dereference(first_dev->name);
1851 seq_escape(m, name->str, " \t\n\\");
1852 rcu_read_unlock();
1853 } else {
1854 WARN_ON(1);
1855 }
1856 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1857 return 0;
1858 }
1859
1860 static const struct super_operations btrfs_super_ops = {
1861 .drop_inode = btrfs_drop_inode,
1862 .evict_inode = btrfs_evict_inode,
1863 .put_super = btrfs_put_super,
1864 .sync_fs = btrfs_sync_fs,
1865 .show_options = btrfs_show_options,
1866 .show_devname = btrfs_show_devname,
1867 .write_inode = btrfs_write_inode,
1868 .alloc_inode = btrfs_alloc_inode,
1869 .destroy_inode = btrfs_destroy_inode,
1870 .statfs = btrfs_statfs,
1871 .remount_fs = btrfs_remount,
1872 .freeze_fs = btrfs_freeze,
1873 .unfreeze_fs = btrfs_unfreeze,
1874 };
1875
1876 static const struct file_operations btrfs_ctl_fops = {
1877 .unlocked_ioctl = btrfs_control_ioctl,
1878 .compat_ioctl = btrfs_control_ioctl,
1879 .owner = THIS_MODULE,
1880 .llseek = noop_llseek,
1881 };
1882
1883 static struct miscdevice btrfs_misc = {
1884 .minor = BTRFS_MINOR,
1885 .name = "btrfs-control",
1886 .fops = &btrfs_ctl_fops
1887 };
1888
1889 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1890 MODULE_ALIAS("devname:btrfs-control");
1891
1892 static int btrfs_interface_init(void)
1893 {
1894 return misc_register(&btrfs_misc);
1895 }
1896
1897 static void btrfs_interface_exit(void)
1898 {
1899 if (misc_deregister(&btrfs_misc) < 0)
1900 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1901 }
1902
1903 static void btrfs_print_info(void)
1904 {
1905 printk(KERN_INFO "Btrfs loaded"
1906 #ifdef CONFIG_BTRFS_DEBUG
1907 ", debug=on"
1908 #endif
1909 #ifdef CONFIG_BTRFS_ASSERT
1910 ", assert=on"
1911 #endif
1912 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1913 ", integrity-checker=on"
1914 #endif
1915 "\n");
1916 }
1917
1918 static int btrfs_run_sanity_tests(void)
1919 {
1920 int ret;
1921
1922 ret = btrfs_init_test_fs();
1923 if (ret)
1924 return ret;
1925
1926 ret = btrfs_test_free_space_cache();
1927 if (ret)
1928 goto out;
1929 ret = btrfs_test_extent_buffer_operations();
1930 if (ret)
1931 goto out;
1932 ret = btrfs_test_extent_io();
1933 if (ret)
1934 goto out;
1935 ret = btrfs_test_inodes();
1936 if (ret)
1937 goto out;
1938 ret = btrfs_test_qgroups();
1939 out:
1940 btrfs_destroy_test_fs();
1941 return ret;
1942 }
1943
1944 static int __init init_btrfs_fs(void)
1945 {
1946 int err;
1947
1948 err = btrfs_hash_init();
1949 if (err)
1950 return err;
1951
1952 btrfs_props_init();
1953
1954 err = btrfs_init_sysfs();
1955 if (err)
1956 goto free_hash;
1957
1958 btrfs_init_compress();
1959
1960 err = btrfs_init_cachep();
1961 if (err)
1962 goto free_compress;
1963
1964 err = extent_io_init();
1965 if (err)
1966 goto free_cachep;
1967
1968 err = extent_map_init();
1969 if (err)
1970 goto free_extent_io;
1971
1972 err = ordered_data_init();
1973 if (err)
1974 goto free_extent_map;
1975
1976 err = btrfs_delayed_inode_init();
1977 if (err)
1978 goto free_ordered_data;
1979
1980 err = btrfs_auto_defrag_init();
1981 if (err)
1982 goto free_delayed_inode;
1983
1984 err = btrfs_delayed_ref_init();
1985 if (err)
1986 goto free_auto_defrag;
1987
1988 err = btrfs_prelim_ref_init();
1989 if (err)
1990 goto free_prelim_ref;
1991
1992 err = btrfs_interface_init();
1993 if (err)
1994 goto free_delayed_ref;
1995
1996 btrfs_init_lockdep();
1997
1998 btrfs_print_info();
1999
2000 err = btrfs_run_sanity_tests();
2001 if (err)
2002 goto unregister_ioctl;
2003
2004 err = register_filesystem(&btrfs_fs_type);
2005 if (err)
2006 goto unregister_ioctl;
2007
2008 return 0;
2009
2010 unregister_ioctl:
2011 btrfs_interface_exit();
2012 free_prelim_ref:
2013 btrfs_prelim_ref_exit();
2014 free_delayed_ref:
2015 btrfs_delayed_ref_exit();
2016 free_auto_defrag:
2017 btrfs_auto_defrag_exit();
2018 free_delayed_inode:
2019 btrfs_delayed_inode_exit();
2020 free_ordered_data:
2021 ordered_data_exit();
2022 free_extent_map:
2023 extent_map_exit();
2024 free_extent_io:
2025 extent_io_exit();
2026 free_cachep:
2027 btrfs_destroy_cachep();
2028 free_compress:
2029 btrfs_exit_compress();
2030 btrfs_exit_sysfs();
2031 free_hash:
2032 btrfs_hash_exit();
2033 return err;
2034 }
2035
2036 static void __exit exit_btrfs_fs(void)
2037 {
2038 btrfs_destroy_cachep();
2039 btrfs_delayed_ref_exit();
2040 btrfs_auto_defrag_exit();
2041 btrfs_delayed_inode_exit();
2042 btrfs_prelim_ref_exit();
2043 ordered_data_exit();
2044 extent_map_exit();
2045 extent_io_exit();
2046 btrfs_interface_exit();
2047 unregister_filesystem(&btrfs_fs_type);
2048 btrfs_exit_sysfs();
2049 btrfs_cleanup_fs_uuids();
2050 btrfs_exit_compress();
2051 btrfs_hash_exit();
2052 }
2053
2054 late_initcall(init_btrfs_fs);
2055 module_exit(exit_btrfs_fs)
2056
2057 MODULE_LICENSE("GPL");