]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/super.c
Btrfs: fix how we mount subvol=<whatever>
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/mnt_namespace.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/btrfs.h>
60
61 static const struct super_operations btrfs_super_ops;
62 static struct file_system_type btrfs_fs_type;
63
64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65 char nbuf[16])
66 {
67 char *errstr = NULL;
68
69 switch (errno) {
70 case -EIO:
71 errstr = "IO failure";
72 break;
73 case -ENOMEM:
74 errstr = "Out of memory";
75 break;
76 case -EROFS:
77 errstr = "Readonly filesystem";
78 break;
79 default:
80 if (nbuf) {
81 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
82 errstr = nbuf;
83 }
84 break;
85 }
86
87 return errstr;
88 }
89
90 static void __save_error_info(struct btrfs_fs_info *fs_info)
91 {
92 /*
93 * today we only save the error info into ram. Long term we'll
94 * also send it down to the disk
95 */
96 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
97 }
98
99 /* NOTE:
100 * We move write_super stuff at umount in order to avoid deadlock
101 * for umount hold all lock.
102 */
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105 __save_error_info(fs_info);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 struct super_block *sb = fs_info->sb;
112
113 if (sb->s_flags & MS_RDONLY)
114 return;
115
116 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 sb->s_flags |= MS_RDONLY;
118 printk(KERN_INFO "btrfs is forced readonly\n");
119 }
120 }
121
122 /*
123 * __btrfs_std_error decodes expected errors from the caller and
124 * invokes the approciate error response.
125 */
126 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
127 unsigned int line, int errno)
128 {
129 struct super_block *sb = fs_info->sb;
130 char nbuf[16];
131 const char *errstr;
132
133 /*
134 * Special case: if the error is EROFS, and we're already
135 * under MS_RDONLY, then it is safe here.
136 */
137 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
138 return;
139
140 errstr = btrfs_decode_error(fs_info, errno, nbuf);
141 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
142 sb->s_id, function, line, errstr);
143 save_error_info(fs_info);
144
145 btrfs_handle_error(fs_info);
146 }
147
148 static void btrfs_put_super(struct super_block *sb)
149 {
150 struct btrfs_root *root = btrfs_sb(sb);
151 int ret;
152
153 ret = close_ctree(root);
154 sb->s_fs_info = NULL;
155
156 (void)ret; /* FIXME: need to fix VFS to return error? */
157 }
158
159 enum {
160 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
161 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
162 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
163 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
164 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
165 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
166 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
167 Opt_inode_cache, Opt_err,
168 };
169
170 static match_table_t tokens = {
171 {Opt_degraded, "degraded"},
172 {Opt_subvol, "subvol=%s"},
173 {Opt_subvolid, "subvolid=%d"},
174 {Opt_device, "device=%s"},
175 {Opt_nodatasum, "nodatasum"},
176 {Opt_nodatacow, "nodatacow"},
177 {Opt_nobarrier, "nobarrier"},
178 {Opt_max_inline, "max_inline=%s"},
179 {Opt_alloc_start, "alloc_start=%s"},
180 {Opt_thread_pool, "thread_pool=%d"},
181 {Opt_compress, "compress"},
182 {Opt_compress_type, "compress=%s"},
183 {Opt_compress_force, "compress-force"},
184 {Opt_compress_force_type, "compress-force=%s"},
185 {Opt_ssd, "ssd"},
186 {Opt_ssd_spread, "ssd_spread"},
187 {Opt_nossd, "nossd"},
188 {Opt_noacl, "noacl"},
189 {Opt_notreelog, "notreelog"},
190 {Opt_flushoncommit, "flushoncommit"},
191 {Opt_ratio, "metadata_ratio=%d"},
192 {Opt_discard, "discard"},
193 {Opt_space_cache, "space_cache"},
194 {Opt_clear_cache, "clear_cache"},
195 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
196 {Opt_enospc_debug, "enospc_debug"},
197 {Opt_subvolrootid, "subvolrootid=%d"},
198 {Opt_defrag, "autodefrag"},
199 {Opt_inode_cache, "inode_cache"},
200 {Opt_err, NULL},
201 };
202
203 /*
204 * Regular mount options parser. Everything that is needed only when
205 * reading in a new superblock is parsed here.
206 */
207 int btrfs_parse_options(struct btrfs_root *root, char *options)
208 {
209 struct btrfs_fs_info *info = root->fs_info;
210 substring_t args[MAX_OPT_ARGS];
211 char *p, *num, *orig;
212 int intarg;
213 int ret = 0;
214 char *compress_type;
215 bool compress_force = false;
216
217 if (!options)
218 return 0;
219
220 /*
221 * strsep changes the string, duplicate it because parse_options
222 * gets called twice
223 */
224 options = kstrdup(options, GFP_NOFS);
225 if (!options)
226 return -ENOMEM;
227
228 orig = options;
229
230 while ((p = strsep(&options, ",")) != NULL) {
231 int token;
232 if (!*p)
233 continue;
234
235 token = match_token(p, tokens, args);
236 switch (token) {
237 case Opt_degraded:
238 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
239 btrfs_set_opt(info->mount_opt, DEGRADED);
240 break;
241 case Opt_subvol:
242 case Opt_subvolid:
243 case Opt_subvolrootid:
244 case Opt_device:
245 /*
246 * These are parsed by btrfs_parse_early_options
247 * and can be happily ignored here.
248 */
249 break;
250 case Opt_nodatasum:
251 printk(KERN_INFO "btrfs: setting nodatasum\n");
252 btrfs_set_opt(info->mount_opt, NODATASUM);
253 break;
254 case Opt_nodatacow:
255 printk(KERN_INFO "btrfs: setting nodatacow\n");
256 btrfs_set_opt(info->mount_opt, NODATACOW);
257 btrfs_set_opt(info->mount_opt, NODATASUM);
258 break;
259 case Opt_compress_force:
260 case Opt_compress_force_type:
261 compress_force = true;
262 case Opt_compress:
263 case Opt_compress_type:
264 if (token == Opt_compress ||
265 token == Opt_compress_force ||
266 strcmp(args[0].from, "zlib") == 0) {
267 compress_type = "zlib";
268 info->compress_type = BTRFS_COMPRESS_ZLIB;
269 } else if (strcmp(args[0].from, "lzo") == 0) {
270 compress_type = "lzo";
271 info->compress_type = BTRFS_COMPRESS_LZO;
272 } else {
273 ret = -EINVAL;
274 goto out;
275 }
276
277 btrfs_set_opt(info->mount_opt, COMPRESS);
278 if (compress_force) {
279 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
280 pr_info("btrfs: force %s compression\n",
281 compress_type);
282 } else
283 pr_info("btrfs: use %s compression\n",
284 compress_type);
285 break;
286 case Opt_ssd:
287 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
288 btrfs_set_opt(info->mount_opt, SSD);
289 break;
290 case Opt_ssd_spread:
291 printk(KERN_INFO "btrfs: use spread ssd "
292 "allocation scheme\n");
293 btrfs_set_opt(info->mount_opt, SSD);
294 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
295 break;
296 case Opt_nossd:
297 printk(KERN_INFO "btrfs: not using ssd allocation "
298 "scheme\n");
299 btrfs_set_opt(info->mount_opt, NOSSD);
300 btrfs_clear_opt(info->mount_opt, SSD);
301 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
302 break;
303 case Opt_nobarrier:
304 printk(KERN_INFO "btrfs: turning off barriers\n");
305 btrfs_set_opt(info->mount_opt, NOBARRIER);
306 break;
307 case Opt_thread_pool:
308 intarg = 0;
309 match_int(&args[0], &intarg);
310 if (intarg) {
311 info->thread_pool_size = intarg;
312 printk(KERN_INFO "btrfs: thread pool %d\n",
313 info->thread_pool_size);
314 }
315 break;
316 case Opt_max_inline:
317 num = match_strdup(&args[0]);
318 if (num) {
319 info->max_inline = memparse(num, NULL);
320 kfree(num);
321
322 if (info->max_inline) {
323 info->max_inline = max_t(u64,
324 info->max_inline,
325 root->sectorsize);
326 }
327 printk(KERN_INFO "btrfs: max_inline at %llu\n",
328 (unsigned long long)info->max_inline);
329 }
330 break;
331 case Opt_alloc_start:
332 num = match_strdup(&args[0]);
333 if (num) {
334 info->alloc_start = memparse(num, NULL);
335 kfree(num);
336 printk(KERN_INFO
337 "btrfs: allocations start at %llu\n",
338 (unsigned long long)info->alloc_start);
339 }
340 break;
341 case Opt_noacl:
342 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
343 break;
344 case Opt_notreelog:
345 printk(KERN_INFO "btrfs: disabling tree log\n");
346 btrfs_set_opt(info->mount_opt, NOTREELOG);
347 break;
348 case Opt_flushoncommit:
349 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
350 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
351 break;
352 case Opt_ratio:
353 intarg = 0;
354 match_int(&args[0], &intarg);
355 if (intarg) {
356 info->metadata_ratio = intarg;
357 printk(KERN_INFO "btrfs: metadata ratio %d\n",
358 info->metadata_ratio);
359 }
360 break;
361 case Opt_discard:
362 btrfs_set_opt(info->mount_opt, DISCARD);
363 break;
364 case Opt_space_cache:
365 printk(KERN_INFO "btrfs: enabling disk space caching\n");
366 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
367 break;
368 case Opt_inode_cache:
369 printk(KERN_INFO "btrfs: enabling inode map caching\n");
370 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
371 break;
372 case Opt_clear_cache:
373 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
374 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
375 break;
376 case Opt_user_subvol_rm_allowed:
377 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
378 break;
379 case Opt_enospc_debug:
380 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
381 break;
382 case Opt_defrag:
383 printk(KERN_INFO "btrfs: enabling auto defrag");
384 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
385 break;
386 case Opt_err:
387 printk(KERN_INFO "btrfs: unrecognized mount option "
388 "'%s'\n", p);
389 ret = -EINVAL;
390 goto out;
391 default:
392 break;
393 }
394 }
395 out:
396 kfree(orig);
397 return ret;
398 }
399
400 /*
401 * Parse mount options that are required early in the mount process.
402 *
403 * All other options will be parsed on much later in the mount process and
404 * only when we need to allocate a new super block.
405 */
406 static int btrfs_parse_early_options(const char *options, fmode_t flags,
407 void *holder, char **subvol_name, u64 *subvol_objectid,
408 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
409 {
410 substring_t args[MAX_OPT_ARGS];
411 char *opts, *orig, *p;
412 int error = 0;
413 int intarg;
414
415 if (!options)
416 return 0;
417
418 /*
419 * strsep changes the string, duplicate it because parse_options
420 * gets called twice
421 */
422 opts = kstrdup(options, GFP_KERNEL);
423 if (!opts)
424 return -ENOMEM;
425 orig = opts;
426
427 while ((p = strsep(&opts, ",")) != NULL) {
428 int token;
429 if (!*p)
430 continue;
431
432 token = match_token(p, tokens, args);
433 switch (token) {
434 case Opt_subvol:
435 *subvol_name = match_strdup(&args[0]);
436 break;
437 case Opt_subvolid:
438 intarg = 0;
439 error = match_int(&args[0], &intarg);
440 if (!error) {
441 /* we want the original fs_tree */
442 if (!intarg)
443 *subvol_objectid =
444 BTRFS_FS_TREE_OBJECTID;
445 else
446 *subvol_objectid = intarg;
447 }
448 break;
449 case Opt_subvolrootid:
450 intarg = 0;
451 error = match_int(&args[0], &intarg);
452 if (!error) {
453 /* we want the original fs_tree */
454 if (!intarg)
455 *subvol_rootid =
456 BTRFS_FS_TREE_OBJECTID;
457 else
458 *subvol_rootid = intarg;
459 }
460 break;
461 case Opt_device:
462 error = btrfs_scan_one_device(match_strdup(&args[0]),
463 flags, holder, fs_devices);
464 if (error)
465 goto out;
466 break;
467 default:
468 break;
469 }
470 }
471
472 out:
473 kfree(orig);
474 return error;
475 }
476
477 static struct dentry *get_default_root(struct super_block *sb,
478 u64 subvol_objectid)
479 {
480 struct btrfs_root *root = sb->s_fs_info;
481 struct btrfs_root *new_root;
482 struct btrfs_dir_item *di;
483 struct btrfs_path *path;
484 struct btrfs_key location;
485 struct inode *inode;
486 u64 dir_id;
487 int new = 0;
488
489 /*
490 * We have a specific subvol we want to mount, just setup location and
491 * go look up the root.
492 */
493 if (subvol_objectid) {
494 location.objectid = subvol_objectid;
495 location.type = BTRFS_ROOT_ITEM_KEY;
496 location.offset = (u64)-1;
497 goto find_root;
498 }
499
500 path = btrfs_alloc_path();
501 if (!path)
502 return ERR_PTR(-ENOMEM);
503 path->leave_spinning = 1;
504
505 /*
506 * Find the "default" dir item which points to the root item that we
507 * will mount by default if we haven't been given a specific subvolume
508 * to mount.
509 */
510 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
511 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
512 if (IS_ERR(di)) {
513 btrfs_free_path(path);
514 return ERR_CAST(di);
515 }
516 if (!di) {
517 /*
518 * Ok the default dir item isn't there. This is weird since
519 * it's always been there, but don't freak out, just try and
520 * mount to root most subvolume.
521 */
522 btrfs_free_path(path);
523 dir_id = BTRFS_FIRST_FREE_OBJECTID;
524 new_root = root->fs_info->fs_root;
525 goto setup_root;
526 }
527
528 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
529 btrfs_free_path(path);
530
531 find_root:
532 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
533 if (IS_ERR(new_root))
534 return ERR_CAST(new_root);
535
536 if (btrfs_root_refs(&new_root->root_item) == 0)
537 return ERR_PTR(-ENOENT);
538
539 dir_id = btrfs_root_dirid(&new_root->root_item);
540 setup_root:
541 location.objectid = dir_id;
542 location.type = BTRFS_INODE_ITEM_KEY;
543 location.offset = 0;
544
545 inode = btrfs_iget(sb, &location, new_root, &new);
546 if (IS_ERR(inode))
547 return ERR_CAST(inode);
548
549 /*
550 * If we're just mounting the root most subvol put the inode and return
551 * a reference to the dentry. We will have already gotten a reference
552 * to the inode in btrfs_fill_super so we're good to go.
553 */
554 if (!new && sb->s_root->d_inode == inode) {
555 iput(inode);
556 return dget(sb->s_root);
557 }
558
559 return d_obtain_alias(inode);
560 }
561
562 static int btrfs_fill_super(struct super_block *sb,
563 struct btrfs_fs_devices *fs_devices,
564 void *data, int silent)
565 {
566 struct inode *inode;
567 struct dentry *root_dentry;
568 struct btrfs_root *tree_root;
569 struct btrfs_key key;
570 int err;
571
572 sb->s_maxbytes = MAX_LFS_FILESIZE;
573 sb->s_magic = BTRFS_SUPER_MAGIC;
574 sb->s_op = &btrfs_super_ops;
575 sb->s_d_op = &btrfs_dentry_operations;
576 sb->s_export_op = &btrfs_export_ops;
577 sb->s_xattr = btrfs_xattr_handlers;
578 sb->s_time_gran = 1;
579 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
580 sb->s_flags |= MS_POSIXACL;
581 #endif
582
583 tree_root = open_ctree(sb, fs_devices, (char *)data);
584
585 if (IS_ERR(tree_root)) {
586 printk("btrfs: open_ctree failed\n");
587 return PTR_ERR(tree_root);
588 }
589 sb->s_fs_info = tree_root;
590
591 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
592 key.type = BTRFS_INODE_ITEM_KEY;
593 key.offset = 0;
594 inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
595 if (IS_ERR(inode)) {
596 err = PTR_ERR(inode);
597 goto fail_close;
598 }
599
600 root_dentry = d_alloc_root(inode);
601 if (!root_dentry) {
602 iput(inode);
603 err = -ENOMEM;
604 goto fail_close;
605 }
606
607 sb->s_root = root_dentry;
608
609 save_mount_options(sb, data);
610 cleancache_init_fs(sb);
611 return 0;
612
613 fail_close:
614 close_ctree(tree_root);
615 return err;
616 }
617
618 int btrfs_sync_fs(struct super_block *sb, int wait)
619 {
620 struct btrfs_trans_handle *trans;
621 struct btrfs_root *root = btrfs_sb(sb);
622 int ret;
623
624 trace_btrfs_sync_fs(wait);
625
626 if (!wait) {
627 filemap_flush(root->fs_info->btree_inode->i_mapping);
628 return 0;
629 }
630
631 btrfs_start_delalloc_inodes(root, 0);
632 btrfs_wait_ordered_extents(root, 0, 0);
633
634 trans = btrfs_start_transaction(root, 0);
635 if (IS_ERR(trans))
636 return PTR_ERR(trans);
637 ret = btrfs_commit_transaction(trans, root);
638 return ret;
639 }
640
641 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
642 {
643 struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
644 struct btrfs_fs_info *info = root->fs_info;
645 char *compress_type;
646
647 if (btrfs_test_opt(root, DEGRADED))
648 seq_puts(seq, ",degraded");
649 if (btrfs_test_opt(root, NODATASUM))
650 seq_puts(seq, ",nodatasum");
651 if (btrfs_test_opt(root, NODATACOW))
652 seq_puts(seq, ",nodatacow");
653 if (btrfs_test_opt(root, NOBARRIER))
654 seq_puts(seq, ",nobarrier");
655 if (info->max_inline != 8192 * 1024)
656 seq_printf(seq, ",max_inline=%llu",
657 (unsigned long long)info->max_inline);
658 if (info->alloc_start != 0)
659 seq_printf(seq, ",alloc_start=%llu",
660 (unsigned long long)info->alloc_start);
661 if (info->thread_pool_size != min_t(unsigned long,
662 num_online_cpus() + 2, 8))
663 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
664 if (btrfs_test_opt(root, COMPRESS)) {
665 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
666 compress_type = "zlib";
667 else
668 compress_type = "lzo";
669 if (btrfs_test_opt(root, FORCE_COMPRESS))
670 seq_printf(seq, ",compress-force=%s", compress_type);
671 else
672 seq_printf(seq, ",compress=%s", compress_type);
673 }
674 if (btrfs_test_opt(root, NOSSD))
675 seq_puts(seq, ",nossd");
676 if (btrfs_test_opt(root, SSD_SPREAD))
677 seq_puts(seq, ",ssd_spread");
678 else if (btrfs_test_opt(root, SSD))
679 seq_puts(seq, ",ssd");
680 if (btrfs_test_opt(root, NOTREELOG))
681 seq_puts(seq, ",notreelog");
682 if (btrfs_test_opt(root, FLUSHONCOMMIT))
683 seq_puts(seq, ",flushoncommit");
684 if (btrfs_test_opt(root, DISCARD))
685 seq_puts(seq, ",discard");
686 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
687 seq_puts(seq, ",noacl");
688 if (btrfs_test_opt(root, SPACE_CACHE))
689 seq_puts(seq, ",space_cache");
690 if (btrfs_test_opt(root, CLEAR_CACHE))
691 seq_puts(seq, ",clear_cache");
692 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
693 seq_puts(seq, ",user_subvol_rm_allowed");
694 if (btrfs_test_opt(root, ENOSPC_DEBUG))
695 seq_puts(seq, ",enospc_debug");
696 if (btrfs_test_opt(root, AUTO_DEFRAG))
697 seq_puts(seq, ",autodefrag");
698 if (btrfs_test_opt(root, INODE_MAP_CACHE))
699 seq_puts(seq, ",inode_cache");
700 return 0;
701 }
702
703 static int btrfs_test_super(struct super_block *s, void *data)
704 {
705 struct btrfs_root *test_root = data;
706 struct btrfs_root *root = btrfs_sb(s);
707
708 /*
709 * If this super block is going away, return false as it
710 * can't match as an existing super block.
711 */
712 if (!atomic_read(&s->s_active))
713 return 0;
714 return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
715 }
716
717 static int btrfs_set_super(struct super_block *s, void *data)
718 {
719 s->s_fs_info = data;
720
721 return set_anon_super(s, data);
722 }
723
724 /*
725 * This will strip out the subvol=%s argument for an argument string and add
726 * subvolid=0 to make sure we get the actual tree root for path walking to the
727 * subvol we want.
728 */
729 static char *setup_root_args(char *args)
730 {
731 unsigned copied = 0;
732 unsigned len = strlen(args) + 2;
733 char *pos;
734 char *ret;
735
736 /*
737 * We need the same args as before, but minus
738 *
739 * subvol=a
740 *
741 * and add
742 *
743 * subvolid=0
744 *
745 * which is a difference of 2 characters, so we allocate strlen(args) +
746 * 2 characters.
747 */
748 ret = kzalloc(len * sizeof(char), GFP_NOFS);
749 if (!ret)
750 return NULL;
751 pos = strstr(args, "subvol=");
752
753 /* This shouldn't happen, but just in case.. */
754 if (!pos) {
755 kfree(ret);
756 return NULL;
757 }
758
759 /*
760 * The subvol=<> arg is not at the front of the string, copy everybody
761 * up to that into ret.
762 */
763 if (pos != args) {
764 *pos = '\0';
765 strcpy(ret, args);
766 copied += strlen(args);
767 pos++;
768 }
769
770 strncpy(ret + copied, "subvolid=0", len - copied);
771
772 /* Length of subvolid=0 */
773 copied += 10;
774
775 /*
776 * If there is no , after the subvol= option then we know there's no
777 * other options and we can just return.
778 */
779 pos = strchr(pos, ',');
780 if (!pos)
781 return ret;
782
783 /* Copy the rest of the arguments into our buffer */
784 strncpy(ret + copied, pos, len - copied);
785 copied += strlen(pos);
786
787 return ret;
788 }
789
790 static struct dentry *mount_subvol(const char *subvol_name, int flags,
791 const char *device_name, char *data)
792 {
793 struct super_block *s;
794 struct dentry *root;
795 struct vfsmount *mnt;
796 struct mnt_namespace *ns_private;
797 char *newargs;
798 struct path path;
799 int error;
800
801 newargs = setup_root_args(data);
802 if (!newargs)
803 return ERR_PTR(-ENOMEM);
804 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
805 newargs);
806 kfree(newargs);
807 if (IS_ERR(mnt))
808 return ERR_CAST(mnt);
809
810 ns_private = create_mnt_ns(mnt);
811 if (IS_ERR(ns_private)) {
812 mntput(mnt);
813 return ERR_CAST(ns_private);
814 }
815
816 /*
817 * This will trigger the automount of the subvol so we can just
818 * drop the mnt we have here and return the dentry that we
819 * found.
820 */
821 error = vfs_path_lookup(mnt->mnt_root, mnt, subvol_name,
822 LOOKUP_FOLLOW, &path);
823 put_mnt_ns(ns_private);
824 if (error)
825 return ERR_PTR(error);
826
827 /* Get a ref to the sb and the dentry we found and return it */
828 s = path.mnt->mnt_sb;
829 atomic_inc(&s->s_active);
830 root = dget(path.dentry);
831 path_put(&path);
832 down_write(&s->s_umount);
833
834 return root;
835 }
836
837 /*
838 * Find a superblock for the given device / mount point.
839 *
840 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
841 * for multiple device setup. Make sure to keep it in sync.
842 */
843 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
844 const char *device_name, void *data)
845 {
846 struct block_device *bdev = NULL;
847 struct super_block *s;
848 struct dentry *root;
849 struct btrfs_fs_devices *fs_devices = NULL;
850 struct btrfs_root *tree_root = NULL;
851 struct btrfs_fs_info *fs_info = NULL;
852 fmode_t mode = FMODE_READ;
853 char *subvol_name = NULL;
854 u64 subvol_objectid = 0;
855 u64 subvol_rootid = 0;
856 int error = 0;
857
858 if (!(flags & MS_RDONLY))
859 mode |= FMODE_WRITE;
860
861 error = btrfs_parse_early_options(data, mode, fs_type,
862 &subvol_name, &subvol_objectid,
863 &subvol_rootid, &fs_devices);
864 if (error)
865 return ERR_PTR(error);
866
867 if (subvol_name) {
868 root = mount_subvol(subvol_name, flags, device_name, data);
869 kfree(subvol_name);
870 return root;
871 }
872
873 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
874 if (error)
875 return ERR_PTR(error);
876
877 error = btrfs_open_devices(fs_devices, mode, fs_type);
878 if (error)
879 return ERR_PTR(error);
880
881 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
882 error = -EACCES;
883 goto error_close_devices;
884 }
885
886 /*
887 * Setup a dummy root and fs_info for test/set super. This is because
888 * we don't actually fill this stuff out until open_ctree, but we need
889 * it for searching for existing supers, so this lets us do that and
890 * then open_ctree will properly initialize everything later.
891 */
892 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
893 tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
894 if (!fs_info || !tree_root) {
895 error = -ENOMEM;
896 goto error_close_devices;
897 }
898 fs_info->tree_root = tree_root;
899 fs_info->fs_devices = fs_devices;
900 tree_root->fs_info = fs_info;
901
902 bdev = fs_devices->latest_bdev;
903 s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
904 if (IS_ERR(s)) {
905 error = PTR_ERR(s);
906 goto error_close_devices;
907 }
908
909 if (s->s_root) {
910 if ((flags ^ s->s_flags) & MS_RDONLY) {
911 deactivate_locked_super(s);
912 return ERR_PTR(-EBUSY);
913 }
914
915 btrfs_close_devices(fs_devices);
916 kfree(fs_info);
917 kfree(tree_root);
918 } else {
919 char b[BDEVNAME_SIZE];
920
921 s->s_flags = flags | MS_NOSEC;
922 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
923 error = btrfs_fill_super(s, fs_devices, data,
924 flags & MS_SILENT ? 1 : 0);
925 if (error) {
926 deactivate_locked_super(s);
927 return ERR_PTR(error);
928 }
929
930 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
931 s->s_flags |= MS_ACTIVE;
932 }
933
934 root = get_default_root(s, subvol_objectid);
935 if (IS_ERR(root)) {
936 deactivate_locked_super(s);
937 return root;
938 }
939
940 return root;
941
942 error_close_devices:
943 btrfs_close_devices(fs_devices);
944 kfree(fs_info);
945 kfree(tree_root);
946 return ERR_PTR(error);
947 }
948
949 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
950 {
951 struct btrfs_root *root = btrfs_sb(sb);
952 int ret;
953
954 ret = btrfs_parse_options(root, data);
955 if (ret)
956 return -EINVAL;
957
958 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
959 return 0;
960
961 if (*flags & MS_RDONLY) {
962 sb->s_flags |= MS_RDONLY;
963
964 ret = btrfs_commit_super(root);
965 WARN_ON(ret);
966 } else {
967 if (root->fs_info->fs_devices->rw_devices == 0)
968 return -EACCES;
969
970 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
971 return -EINVAL;
972
973 ret = btrfs_cleanup_fs_roots(root->fs_info);
974 WARN_ON(ret);
975
976 /* recover relocation */
977 ret = btrfs_recover_relocation(root);
978 WARN_ON(ret);
979
980 sb->s_flags &= ~MS_RDONLY;
981 }
982
983 return 0;
984 }
985
986 /* Used to sort the devices by max_avail(descending sort) */
987 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
988 const void *dev_info2)
989 {
990 if (((struct btrfs_device_info *)dev_info1)->max_avail >
991 ((struct btrfs_device_info *)dev_info2)->max_avail)
992 return -1;
993 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
994 ((struct btrfs_device_info *)dev_info2)->max_avail)
995 return 1;
996 else
997 return 0;
998 }
999
1000 /*
1001 * sort the devices by max_avail, in which max free extent size of each device
1002 * is stored.(Descending Sort)
1003 */
1004 static inline void btrfs_descending_sort_devices(
1005 struct btrfs_device_info *devices,
1006 size_t nr_devices)
1007 {
1008 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1009 btrfs_cmp_device_free_bytes, NULL);
1010 }
1011
1012 /*
1013 * The helper to calc the free space on the devices that can be used to store
1014 * file data.
1015 */
1016 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1017 {
1018 struct btrfs_fs_info *fs_info = root->fs_info;
1019 struct btrfs_device_info *devices_info;
1020 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1021 struct btrfs_device *device;
1022 u64 skip_space;
1023 u64 type;
1024 u64 avail_space;
1025 u64 used_space;
1026 u64 min_stripe_size;
1027 int min_stripes = 1;
1028 int i = 0, nr_devices;
1029 int ret;
1030
1031 nr_devices = fs_info->fs_devices->rw_devices;
1032 BUG_ON(!nr_devices);
1033
1034 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1035 GFP_NOFS);
1036 if (!devices_info)
1037 return -ENOMEM;
1038
1039 /* calc min stripe number for data space alloction */
1040 type = btrfs_get_alloc_profile(root, 1);
1041 if (type & BTRFS_BLOCK_GROUP_RAID0)
1042 min_stripes = 2;
1043 else if (type & BTRFS_BLOCK_GROUP_RAID1)
1044 min_stripes = 2;
1045 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1046 min_stripes = 4;
1047
1048 if (type & BTRFS_BLOCK_GROUP_DUP)
1049 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1050 else
1051 min_stripe_size = BTRFS_STRIPE_LEN;
1052
1053 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
1054 if (!device->in_fs_metadata)
1055 continue;
1056
1057 avail_space = device->total_bytes - device->bytes_used;
1058
1059 /* align with stripe_len */
1060 do_div(avail_space, BTRFS_STRIPE_LEN);
1061 avail_space *= BTRFS_STRIPE_LEN;
1062
1063 /*
1064 * In order to avoid overwritting the superblock on the drive,
1065 * btrfs starts at an offset of at least 1MB when doing chunk
1066 * allocation.
1067 */
1068 skip_space = 1024 * 1024;
1069
1070 /* user can set the offset in fs_info->alloc_start. */
1071 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1072 device->total_bytes)
1073 skip_space = max(fs_info->alloc_start, skip_space);
1074
1075 /*
1076 * btrfs can not use the free space in [0, skip_space - 1],
1077 * we must subtract it from the total. In order to implement
1078 * it, we account the used space in this range first.
1079 */
1080 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1081 &used_space);
1082 if (ret) {
1083 kfree(devices_info);
1084 return ret;
1085 }
1086
1087 /* calc the free space in [0, skip_space - 1] */
1088 skip_space -= used_space;
1089
1090 /*
1091 * we can use the free space in [0, skip_space - 1], subtract
1092 * it from the total.
1093 */
1094 if (avail_space && avail_space >= skip_space)
1095 avail_space -= skip_space;
1096 else
1097 avail_space = 0;
1098
1099 if (avail_space < min_stripe_size)
1100 continue;
1101
1102 devices_info[i].dev = device;
1103 devices_info[i].max_avail = avail_space;
1104
1105 i++;
1106 }
1107
1108 nr_devices = i;
1109
1110 btrfs_descending_sort_devices(devices_info, nr_devices);
1111
1112 i = nr_devices - 1;
1113 avail_space = 0;
1114 while (nr_devices >= min_stripes) {
1115 if (devices_info[i].max_avail >= min_stripe_size) {
1116 int j;
1117 u64 alloc_size;
1118
1119 avail_space += devices_info[i].max_avail * min_stripes;
1120 alloc_size = devices_info[i].max_avail;
1121 for (j = i + 1 - min_stripes; j <= i; j++)
1122 devices_info[j].max_avail -= alloc_size;
1123 }
1124 i--;
1125 nr_devices--;
1126 }
1127
1128 kfree(devices_info);
1129 *free_bytes = avail_space;
1130 return 0;
1131 }
1132
1133 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1134 {
1135 struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1136 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1137 struct list_head *head = &root->fs_info->space_info;
1138 struct btrfs_space_info *found;
1139 u64 total_used = 0;
1140 u64 total_free_data = 0;
1141 int bits = dentry->d_sb->s_blocksize_bits;
1142 __be32 *fsid = (__be32 *)root->fs_info->fsid;
1143 int ret;
1144
1145 /* holding chunk_muext to avoid allocating new chunks */
1146 mutex_lock(&root->fs_info->chunk_mutex);
1147 rcu_read_lock();
1148 list_for_each_entry_rcu(found, head, list) {
1149 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1150 total_free_data += found->disk_total - found->disk_used;
1151 total_free_data -=
1152 btrfs_account_ro_block_groups_free_space(found);
1153 }
1154
1155 total_used += found->disk_used;
1156 }
1157 rcu_read_unlock();
1158
1159 buf->f_namelen = BTRFS_NAME_LEN;
1160 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1161 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1162 buf->f_bsize = dentry->d_sb->s_blocksize;
1163 buf->f_type = BTRFS_SUPER_MAGIC;
1164 buf->f_bavail = total_free_data;
1165 ret = btrfs_calc_avail_data_space(root, &total_free_data);
1166 if (ret) {
1167 mutex_unlock(&root->fs_info->chunk_mutex);
1168 return ret;
1169 }
1170 buf->f_bavail += total_free_data;
1171 buf->f_bavail = buf->f_bavail >> bits;
1172 mutex_unlock(&root->fs_info->chunk_mutex);
1173
1174 /* We treat it as constant endianness (it doesn't matter _which_)
1175 because we want the fsid to come out the same whether mounted
1176 on a big-endian or little-endian host */
1177 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1178 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1179 /* Mask in the root object ID too, to disambiguate subvols */
1180 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1181 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1182
1183 return 0;
1184 }
1185
1186 static struct file_system_type btrfs_fs_type = {
1187 .owner = THIS_MODULE,
1188 .name = "btrfs",
1189 .mount = btrfs_mount,
1190 .kill_sb = kill_anon_super,
1191 .fs_flags = FS_REQUIRES_DEV,
1192 };
1193
1194 /*
1195 * used by btrfsctl to scan devices when no FS is mounted
1196 */
1197 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1198 unsigned long arg)
1199 {
1200 struct btrfs_ioctl_vol_args *vol;
1201 struct btrfs_fs_devices *fs_devices;
1202 int ret = -ENOTTY;
1203
1204 if (!capable(CAP_SYS_ADMIN))
1205 return -EPERM;
1206
1207 vol = memdup_user((void __user *)arg, sizeof(*vol));
1208 if (IS_ERR(vol))
1209 return PTR_ERR(vol);
1210
1211 switch (cmd) {
1212 case BTRFS_IOC_SCAN_DEV:
1213 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1214 &btrfs_fs_type, &fs_devices);
1215 break;
1216 }
1217
1218 kfree(vol);
1219 return ret;
1220 }
1221
1222 static int btrfs_freeze(struct super_block *sb)
1223 {
1224 struct btrfs_root *root = btrfs_sb(sb);
1225 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1226 mutex_lock(&root->fs_info->cleaner_mutex);
1227 return 0;
1228 }
1229
1230 static int btrfs_unfreeze(struct super_block *sb)
1231 {
1232 struct btrfs_root *root = btrfs_sb(sb);
1233 mutex_unlock(&root->fs_info->cleaner_mutex);
1234 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1235 return 0;
1236 }
1237
1238 static const struct super_operations btrfs_super_ops = {
1239 .drop_inode = btrfs_drop_inode,
1240 .evict_inode = btrfs_evict_inode,
1241 .put_super = btrfs_put_super,
1242 .sync_fs = btrfs_sync_fs,
1243 .show_options = btrfs_show_options,
1244 .write_inode = btrfs_write_inode,
1245 .dirty_inode = btrfs_dirty_inode,
1246 .alloc_inode = btrfs_alloc_inode,
1247 .destroy_inode = btrfs_destroy_inode,
1248 .statfs = btrfs_statfs,
1249 .remount_fs = btrfs_remount,
1250 .freeze_fs = btrfs_freeze,
1251 .unfreeze_fs = btrfs_unfreeze,
1252 };
1253
1254 static const struct file_operations btrfs_ctl_fops = {
1255 .unlocked_ioctl = btrfs_control_ioctl,
1256 .compat_ioctl = btrfs_control_ioctl,
1257 .owner = THIS_MODULE,
1258 .llseek = noop_llseek,
1259 };
1260
1261 static struct miscdevice btrfs_misc = {
1262 .minor = BTRFS_MINOR,
1263 .name = "btrfs-control",
1264 .fops = &btrfs_ctl_fops
1265 };
1266
1267 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1268 MODULE_ALIAS("devname:btrfs-control");
1269
1270 static int btrfs_interface_init(void)
1271 {
1272 return misc_register(&btrfs_misc);
1273 }
1274
1275 static void btrfs_interface_exit(void)
1276 {
1277 if (misc_deregister(&btrfs_misc) < 0)
1278 printk(KERN_INFO "misc_deregister failed for control device");
1279 }
1280
1281 static int __init init_btrfs_fs(void)
1282 {
1283 int err;
1284
1285 err = btrfs_init_sysfs();
1286 if (err)
1287 return err;
1288
1289 err = btrfs_init_compress();
1290 if (err)
1291 goto free_sysfs;
1292
1293 err = btrfs_init_cachep();
1294 if (err)
1295 goto free_compress;
1296
1297 err = extent_io_init();
1298 if (err)
1299 goto free_cachep;
1300
1301 err = extent_map_init();
1302 if (err)
1303 goto free_extent_io;
1304
1305 err = btrfs_delayed_inode_init();
1306 if (err)
1307 goto free_extent_map;
1308
1309 err = btrfs_interface_init();
1310 if (err)
1311 goto free_delayed_inode;
1312
1313 err = register_filesystem(&btrfs_fs_type);
1314 if (err)
1315 goto unregister_ioctl;
1316
1317 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1318 return 0;
1319
1320 unregister_ioctl:
1321 btrfs_interface_exit();
1322 free_delayed_inode:
1323 btrfs_delayed_inode_exit();
1324 free_extent_map:
1325 extent_map_exit();
1326 free_extent_io:
1327 extent_io_exit();
1328 free_cachep:
1329 btrfs_destroy_cachep();
1330 free_compress:
1331 btrfs_exit_compress();
1332 free_sysfs:
1333 btrfs_exit_sysfs();
1334 return err;
1335 }
1336
1337 static void __exit exit_btrfs_fs(void)
1338 {
1339 btrfs_destroy_cachep();
1340 btrfs_delayed_inode_exit();
1341 extent_map_exit();
1342 extent_io_exit();
1343 btrfs_interface_exit();
1344 unregister_filesystem(&btrfs_fs_type);
1345 btrfs_exit_sysfs();
1346 btrfs_cleanup_fs_uuids();
1347 btrfs_exit_compress();
1348 }
1349
1350 module_init(init_btrfs_fs)
1351 module_exit(exit_btrfs_fs)
1352
1353 MODULE_LICENSE("GPL");