]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/super.c
Merge branch 'urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/rric/oprofile...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include "compat.h"
44 #include "delayed-inode.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "xattr.h"
52 #include "volumes.h"
53 #include "version.h"
54 #include "export.h"
55 #include "compression.h"
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/btrfs.h>
59
60 static const struct super_operations btrfs_super_ops;
61
62 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
63 char nbuf[16])
64 {
65 char *errstr = NULL;
66
67 switch (errno) {
68 case -EIO:
69 errstr = "IO failure";
70 break;
71 case -ENOMEM:
72 errstr = "Out of memory";
73 break;
74 case -EROFS:
75 errstr = "Readonly filesystem";
76 break;
77 default:
78 if (nbuf) {
79 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
80 errstr = nbuf;
81 }
82 break;
83 }
84
85 return errstr;
86 }
87
88 static void __save_error_info(struct btrfs_fs_info *fs_info)
89 {
90 /*
91 * today we only save the error info into ram. Long term we'll
92 * also send it down to the disk
93 */
94 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
95 }
96
97 /* NOTE:
98 * We move write_super stuff at umount in order to avoid deadlock
99 * for umount hold all lock.
100 */
101 static void save_error_info(struct btrfs_fs_info *fs_info)
102 {
103 __save_error_info(fs_info);
104 }
105
106 /* btrfs handle error by forcing the filesystem readonly */
107 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
108 {
109 struct super_block *sb = fs_info->sb;
110
111 if (sb->s_flags & MS_RDONLY)
112 return;
113
114 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
115 sb->s_flags |= MS_RDONLY;
116 printk(KERN_INFO "btrfs is forced readonly\n");
117 }
118 }
119
120 /*
121 * __btrfs_std_error decodes expected errors from the caller and
122 * invokes the approciate error response.
123 */
124 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
125 unsigned int line, int errno)
126 {
127 struct super_block *sb = fs_info->sb;
128 char nbuf[16];
129 const char *errstr;
130
131 /*
132 * Special case: if the error is EROFS, and we're already
133 * under MS_RDONLY, then it is safe here.
134 */
135 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
136 return;
137
138 errstr = btrfs_decode_error(fs_info, errno, nbuf);
139 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
140 sb->s_id, function, line, errstr);
141 save_error_info(fs_info);
142
143 btrfs_handle_error(fs_info);
144 }
145
146 static void btrfs_put_super(struct super_block *sb)
147 {
148 struct btrfs_root *root = btrfs_sb(sb);
149 int ret;
150
151 ret = close_ctree(root);
152 sb->s_fs_info = NULL;
153
154 (void)ret; /* FIXME: need to fix VFS to return error? */
155 }
156
157 enum {
158 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
159 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
160 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
161 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
162 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
163 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
164 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_err,
165 };
166
167 static match_table_t tokens = {
168 {Opt_degraded, "degraded"},
169 {Opt_subvol, "subvol=%s"},
170 {Opt_subvolid, "subvolid=%d"},
171 {Opt_device, "device=%s"},
172 {Opt_nodatasum, "nodatasum"},
173 {Opt_nodatacow, "nodatacow"},
174 {Opt_nobarrier, "nobarrier"},
175 {Opt_max_inline, "max_inline=%s"},
176 {Opt_alloc_start, "alloc_start=%s"},
177 {Opt_thread_pool, "thread_pool=%d"},
178 {Opt_compress, "compress"},
179 {Opt_compress_type, "compress=%s"},
180 {Opt_compress_force, "compress-force"},
181 {Opt_compress_force_type, "compress-force=%s"},
182 {Opt_ssd, "ssd"},
183 {Opt_ssd_spread, "ssd_spread"},
184 {Opt_nossd, "nossd"},
185 {Opt_noacl, "noacl"},
186 {Opt_notreelog, "notreelog"},
187 {Opt_flushoncommit, "flushoncommit"},
188 {Opt_ratio, "metadata_ratio=%d"},
189 {Opt_discard, "discard"},
190 {Opt_space_cache, "space_cache"},
191 {Opt_clear_cache, "clear_cache"},
192 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
193 {Opt_enospc_debug, "enospc_debug"},
194 {Opt_subvolrootid, "subvolrootid=%d"},
195 {Opt_defrag, "autodefrag"},
196 {Opt_err, NULL},
197 };
198
199 /*
200 * Regular mount options parser. Everything that is needed only when
201 * reading in a new superblock is parsed here.
202 */
203 int btrfs_parse_options(struct btrfs_root *root, char *options)
204 {
205 struct btrfs_fs_info *info = root->fs_info;
206 substring_t args[MAX_OPT_ARGS];
207 char *p, *num, *orig;
208 int intarg;
209 int ret = 0;
210 char *compress_type;
211 bool compress_force = false;
212
213 if (!options)
214 return 0;
215
216 /*
217 * strsep changes the string, duplicate it because parse_options
218 * gets called twice
219 */
220 options = kstrdup(options, GFP_NOFS);
221 if (!options)
222 return -ENOMEM;
223
224 orig = options;
225
226 while ((p = strsep(&options, ",")) != NULL) {
227 int token;
228 if (!*p)
229 continue;
230
231 token = match_token(p, tokens, args);
232 switch (token) {
233 case Opt_degraded:
234 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
235 btrfs_set_opt(info->mount_opt, DEGRADED);
236 break;
237 case Opt_subvol:
238 case Opt_subvolid:
239 case Opt_subvolrootid:
240 case Opt_device:
241 /*
242 * These are parsed by btrfs_parse_early_options
243 * and can be happily ignored here.
244 */
245 break;
246 case Opt_nodatasum:
247 printk(KERN_INFO "btrfs: setting nodatasum\n");
248 btrfs_set_opt(info->mount_opt, NODATASUM);
249 break;
250 case Opt_nodatacow:
251 printk(KERN_INFO "btrfs: setting nodatacow\n");
252 btrfs_set_opt(info->mount_opt, NODATACOW);
253 btrfs_set_opt(info->mount_opt, NODATASUM);
254 break;
255 case Opt_compress_force:
256 case Opt_compress_force_type:
257 compress_force = true;
258 case Opt_compress:
259 case Opt_compress_type:
260 if (token == Opt_compress ||
261 token == Opt_compress_force ||
262 strcmp(args[0].from, "zlib") == 0) {
263 compress_type = "zlib";
264 info->compress_type = BTRFS_COMPRESS_ZLIB;
265 } else if (strcmp(args[0].from, "lzo") == 0) {
266 compress_type = "lzo";
267 info->compress_type = BTRFS_COMPRESS_LZO;
268 } else {
269 ret = -EINVAL;
270 goto out;
271 }
272
273 btrfs_set_opt(info->mount_opt, COMPRESS);
274 if (compress_force) {
275 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
276 pr_info("btrfs: force %s compression\n",
277 compress_type);
278 } else
279 pr_info("btrfs: use %s compression\n",
280 compress_type);
281 break;
282 case Opt_ssd:
283 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
284 btrfs_set_opt(info->mount_opt, SSD);
285 break;
286 case Opt_ssd_spread:
287 printk(KERN_INFO "btrfs: use spread ssd "
288 "allocation scheme\n");
289 btrfs_set_opt(info->mount_opt, SSD);
290 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
291 break;
292 case Opt_nossd:
293 printk(KERN_INFO "btrfs: not using ssd allocation "
294 "scheme\n");
295 btrfs_set_opt(info->mount_opt, NOSSD);
296 btrfs_clear_opt(info->mount_opt, SSD);
297 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
298 break;
299 case Opt_nobarrier:
300 printk(KERN_INFO "btrfs: turning off barriers\n");
301 btrfs_set_opt(info->mount_opt, NOBARRIER);
302 break;
303 case Opt_thread_pool:
304 intarg = 0;
305 match_int(&args[0], &intarg);
306 if (intarg) {
307 info->thread_pool_size = intarg;
308 printk(KERN_INFO "btrfs: thread pool %d\n",
309 info->thread_pool_size);
310 }
311 break;
312 case Opt_max_inline:
313 num = match_strdup(&args[0]);
314 if (num) {
315 info->max_inline = memparse(num, NULL);
316 kfree(num);
317
318 if (info->max_inline) {
319 info->max_inline = max_t(u64,
320 info->max_inline,
321 root->sectorsize);
322 }
323 printk(KERN_INFO "btrfs: max_inline at %llu\n",
324 (unsigned long long)info->max_inline);
325 }
326 break;
327 case Opt_alloc_start:
328 num = match_strdup(&args[0]);
329 if (num) {
330 info->alloc_start = memparse(num, NULL);
331 kfree(num);
332 printk(KERN_INFO
333 "btrfs: allocations start at %llu\n",
334 (unsigned long long)info->alloc_start);
335 }
336 break;
337 case Opt_noacl:
338 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
339 break;
340 case Opt_notreelog:
341 printk(KERN_INFO "btrfs: disabling tree log\n");
342 btrfs_set_opt(info->mount_opt, NOTREELOG);
343 break;
344 case Opt_flushoncommit:
345 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
346 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
347 break;
348 case Opt_ratio:
349 intarg = 0;
350 match_int(&args[0], &intarg);
351 if (intarg) {
352 info->metadata_ratio = intarg;
353 printk(KERN_INFO "btrfs: metadata ratio %d\n",
354 info->metadata_ratio);
355 }
356 break;
357 case Opt_discard:
358 btrfs_set_opt(info->mount_opt, DISCARD);
359 break;
360 case Opt_space_cache:
361 printk(KERN_INFO "btrfs: enabling disk space caching\n");
362 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
363 break;
364 case Opt_clear_cache:
365 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
366 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
367 break;
368 case Opt_user_subvol_rm_allowed:
369 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
370 break;
371 case Opt_enospc_debug:
372 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
373 break;
374 case Opt_defrag:
375 printk(KERN_INFO "btrfs: enabling auto defrag");
376 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
377 break;
378 case Opt_err:
379 printk(KERN_INFO "btrfs: unrecognized mount option "
380 "'%s'\n", p);
381 ret = -EINVAL;
382 goto out;
383 default:
384 break;
385 }
386 }
387 out:
388 kfree(orig);
389 return ret;
390 }
391
392 /*
393 * Parse mount options that are required early in the mount process.
394 *
395 * All other options will be parsed on much later in the mount process and
396 * only when we need to allocate a new super block.
397 */
398 static int btrfs_parse_early_options(const char *options, fmode_t flags,
399 void *holder, char **subvol_name, u64 *subvol_objectid,
400 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
401 {
402 substring_t args[MAX_OPT_ARGS];
403 char *opts, *orig, *p;
404 int error = 0;
405 int intarg;
406
407 if (!options)
408 goto out;
409
410 /*
411 * strsep changes the string, duplicate it because parse_options
412 * gets called twice
413 */
414 opts = kstrdup(options, GFP_KERNEL);
415 if (!opts)
416 return -ENOMEM;
417 orig = opts;
418
419 while ((p = strsep(&opts, ",")) != NULL) {
420 int token;
421 if (!*p)
422 continue;
423
424 token = match_token(p, tokens, args);
425 switch (token) {
426 case Opt_subvol:
427 *subvol_name = match_strdup(&args[0]);
428 break;
429 case Opt_subvolid:
430 intarg = 0;
431 error = match_int(&args[0], &intarg);
432 if (!error) {
433 /* we want the original fs_tree */
434 if (!intarg)
435 *subvol_objectid =
436 BTRFS_FS_TREE_OBJECTID;
437 else
438 *subvol_objectid = intarg;
439 }
440 break;
441 case Opt_subvolrootid:
442 intarg = 0;
443 error = match_int(&args[0], &intarg);
444 if (!error) {
445 /* we want the original fs_tree */
446 if (!intarg)
447 *subvol_rootid =
448 BTRFS_FS_TREE_OBJECTID;
449 else
450 *subvol_rootid = intarg;
451 }
452 break;
453 case Opt_device:
454 error = btrfs_scan_one_device(match_strdup(&args[0]),
455 flags, holder, fs_devices);
456 if (error)
457 goto out_free_opts;
458 break;
459 default:
460 break;
461 }
462 }
463
464 out_free_opts:
465 kfree(orig);
466 out:
467 /*
468 * If no subvolume name is specified we use the default one. Allocate
469 * a copy of the string "." here so that code later in the
470 * mount path doesn't care if it's the default volume or another one.
471 */
472 if (!*subvol_name) {
473 *subvol_name = kstrdup(".", GFP_KERNEL);
474 if (!*subvol_name)
475 return -ENOMEM;
476 }
477 return error;
478 }
479
480 static struct dentry *get_default_root(struct super_block *sb,
481 u64 subvol_objectid)
482 {
483 struct btrfs_root *root = sb->s_fs_info;
484 struct btrfs_root *new_root;
485 struct btrfs_dir_item *di;
486 struct btrfs_path *path;
487 struct btrfs_key location;
488 struct inode *inode;
489 struct dentry *dentry;
490 u64 dir_id;
491 int new = 0;
492
493 /*
494 * We have a specific subvol we want to mount, just setup location and
495 * go look up the root.
496 */
497 if (subvol_objectid) {
498 location.objectid = subvol_objectid;
499 location.type = BTRFS_ROOT_ITEM_KEY;
500 location.offset = (u64)-1;
501 goto find_root;
502 }
503
504 path = btrfs_alloc_path();
505 if (!path)
506 return ERR_PTR(-ENOMEM);
507 path->leave_spinning = 1;
508
509 /*
510 * Find the "default" dir item which points to the root item that we
511 * will mount by default if we haven't been given a specific subvolume
512 * to mount.
513 */
514 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
515 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
516 if (IS_ERR(di)) {
517 btrfs_free_path(path);
518 return ERR_CAST(di);
519 }
520 if (!di) {
521 /*
522 * Ok the default dir item isn't there. This is weird since
523 * it's always been there, but don't freak out, just try and
524 * mount to root most subvolume.
525 */
526 btrfs_free_path(path);
527 dir_id = BTRFS_FIRST_FREE_OBJECTID;
528 new_root = root->fs_info->fs_root;
529 goto setup_root;
530 }
531
532 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
533 btrfs_free_path(path);
534
535 find_root:
536 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
537 if (IS_ERR(new_root))
538 return ERR_CAST(new_root);
539
540 if (btrfs_root_refs(&new_root->root_item) == 0)
541 return ERR_PTR(-ENOENT);
542
543 dir_id = btrfs_root_dirid(&new_root->root_item);
544 setup_root:
545 location.objectid = dir_id;
546 location.type = BTRFS_INODE_ITEM_KEY;
547 location.offset = 0;
548
549 inode = btrfs_iget(sb, &location, new_root, &new);
550 if (IS_ERR(inode))
551 return ERR_CAST(inode);
552
553 /*
554 * If we're just mounting the root most subvol put the inode and return
555 * a reference to the dentry. We will have already gotten a reference
556 * to the inode in btrfs_fill_super so we're good to go.
557 */
558 if (!new && sb->s_root->d_inode == inode) {
559 iput(inode);
560 return dget(sb->s_root);
561 }
562
563 if (new) {
564 const struct qstr name = { .name = "/", .len = 1 };
565
566 /*
567 * New inode, we need to make the dentry a sibling of s_root so
568 * everything gets cleaned up properly on unmount.
569 */
570 dentry = d_alloc(sb->s_root, &name);
571 if (!dentry) {
572 iput(inode);
573 return ERR_PTR(-ENOMEM);
574 }
575 d_splice_alias(inode, dentry);
576 } else {
577 /*
578 * We found the inode in cache, just find a dentry for it and
579 * put the reference to the inode we just got.
580 */
581 dentry = d_find_alias(inode);
582 iput(inode);
583 }
584
585 return dentry;
586 }
587
588 static int btrfs_fill_super(struct super_block *sb,
589 struct btrfs_fs_devices *fs_devices,
590 void *data, int silent)
591 {
592 struct inode *inode;
593 struct dentry *root_dentry;
594 struct btrfs_root *tree_root;
595 struct btrfs_key key;
596 int err;
597
598 sb->s_maxbytes = MAX_LFS_FILESIZE;
599 sb->s_magic = BTRFS_SUPER_MAGIC;
600 sb->s_op = &btrfs_super_ops;
601 sb->s_d_op = &btrfs_dentry_operations;
602 sb->s_export_op = &btrfs_export_ops;
603 sb->s_xattr = btrfs_xattr_handlers;
604 sb->s_time_gran = 1;
605 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
606 sb->s_flags |= MS_POSIXACL;
607 #endif
608
609 tree_root = open_ctree(sb, fs_devices, (char *)data);
610
611 if (IS_ERR(tree_root)) {
612 printk("btrfs: open_ctree failed\n");
613 return PTR_ERR(tree_root);
614 }
615 sb->s_fs_info = tree_root;
616
617 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
618 key.type = BTRFS_INODE_ITEM_KEY;
619 key.offset = 0;
620 inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
621 if (IS_ERR(inode)) {
622 err = PTR_ERR(inode);
623 goto fail_close;
624 }
625
626 root_dentry = d_alloc_root(inode);
627 if (!root_dentry) {
628 iput(inode);
629 err = -ENOMEM;
630 goto fail_close;
631 }
632
633 sb->s_root = root_dentry;
634
635 save_mount_options(sb, data);
636 cleancache_init_fs(sb);
637 return 0;
638
639 fail_close:
640 close_ctree(tree_root);
641 return err;
642 }
643
644 int btrfs_sync_fs(struct super_block *sb, int wait)
645 {
646 struct btrfs_trans_handle *trans;
647 struct btrfs_root *root = btrfs_sb(sb);
648 int ret;
649
650 trace_btrfs_sync_fs(wait);
651
652 if (!wait) {
653 filemap_flush(root->fs_info->btree_inode->i_mapping);
654 return 0;
655 }
656
657 btrfs_start_delalloc_inodes(root, 0);
658 btrfs_wait_ordered_extents(root, 0, 0);
659
660 trans = btrfs_start_transaction(root, 0);
661 if (IS_ERR(trans))
662 return PTR_ERR(trans);
663 ret = btrfs_commit_transaction(trans, root);
664 return ret;
665 }
666
667 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
668 {
669 struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
670 struct btrfs_fs_info *info = root->fs_info;
671 char *compress_type;
672
673 if (btrfs_test_opt(root, DEGRADED))
674 seq_puts(seq, ",degraded");
675 if (btrfs_test_opt(root, NODATASUM))
676 seq_puts(seq, ",nodatasum");
677 if (btrfs_test_opt(root, NODATACOW))
678 seq_puts(seq, ",nodatacow");
679 if (btrfs_test_opt(root, NOBARRIER))
680 seq_puts(seq, ",nobarrier");
681 if (info->max_inline != 8192 * 1024)
682 seq_printf(seq, ",max_inline=%llu",
683 (unsigned long long)info->max_inline);
684 if (info->alloc_start != 0)
685 seq_printf(seq, ",alloc_start=%llu",
686 (unsigned long long)info->alloc_start);
687 if (info->thread_pool_size != min_t(unsigned long,
688 num_online_cpus() + 2, 8))
689 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
690 if (btrfs_test_opt(root, COMPRESS)) {
691 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
692 compress_type = "zlib";
693 else
694 compress_type = "lzo";
695 if (btrfs_test_opt(root, FORCE_COMPRESS))
696 seq_printf(seq, ",compress-force=%s", compress_type);
697 else
698 seq_printf(seq, ",compress=%s", compress_type);
699 }
700 if (btrfs_test_opt(root, NOSSD))
701 seq_puts(seq, ",nossd");
702 if (btrfs_test_opt(root, SSD_SPREAD))
703 seq_puts(seq, ",ssd_spread");
704 else if (btrfs_test_opt(root, SSD))
705 seq_puts(seq, ",ssd");
706 if (btrfs_test_opt(root, NOTREELOG))
707 seq_puts(seq, ",notreelog");
708 if (btrfs_test_opt(root, FLUSHONCOMMIT))
709 seq_puts(seq, ",flushoncommit");
710 if (btrfs_test_opt(root, DISCARD))
711 seq_puts(seq, ",discard");
712 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
713 seq_puts(seq, ",noacl");
714 if (btrfs_test_opt(root, SPACE_CACHE))
715 seq_puts(seq, ",space_cache");
716 if (btrfs_test_opt(root, CLEAR_CACHE))
717 seq_puts(seq, ",clear_cache");
718 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
719 seq_puts(seq, ",user_subvol_rm_allowed");
720 return 0;
721 }
722
723 static int btrfs_test_super(struct super_block *s, void *data)
724 {
725 struct btrfs_root *test_root = data;
726 struct btrfs_root *root = btrfs_sb(s);
727
728 /*
729 * If this super block is going away, return false as it
730 * can't match as an existing super block.
731 */
732 if (!atomic_read(&s->s_active))
733 return 0;
734 return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
735 }
736
737 static int btrfs_set_super(struct super_block *s, void *data)
738 {
739 s->s_fs_info = data;
740
741 return set_anon_super(s, data);
742 }
743
744
745 /*
746 * Find a superblock for the given device / mount point.
747 *
748 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
749 * for multiple device setup. Make sure to keep it in sync.
750 */
751 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
752 const char *device_name, void *data)
753 {
754 struct block_device *bdev = NULL;
755 struct super_block *s;
756 struct dentry *root;
757 struct btrfs_fs_devices *fs_devices = NULL;
758 struct btrfs_root *tree_root = NULL;
759 struct btrfs_fs_info *fs_info = NULL;
760 fmode_t mode = FMODE_READ;
761 char *subvol_name = NULL;
762 u64 subvol_objectid = 0;
763 u64 subvol_rootid = 0;
764 int error = 0;
765
766 if (!(flags & MS_RDONLY))
767 mode |= FMODE_WRITE;
768
769 error = btrfs_parse_early_options(data, mode, fs_type,
770 &subvol_name, &subvol_objectid,
771 &subvol_rootid, &fs_devices);
772 if (error)
773 return ERR_PTR(error);
774
775 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
776 if (error)
777 goto error_free_subvol_name;
778
779 error = btrfs_open_devices(fs_devices, mode, fs_type);
780 if (error)
781 goto error_free_subvol_name;
782
783 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
784 error = -EACCES;
785 goto error_close_devices;
786 }
787
788 /*
789 * Setup a dummy root and fs_info for test/set super. This is because
790 * we don't actually fill this stuff out until open_ctree, but we need
791 * it for searching for existing supers, so this lets us do that and
792 * then open_ctree will properly initialize everything later.
793 */
794 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
795 tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
796 if (!fs_info || !tree_root) {
797 error = -ENOMEM;
798 goto error_close_devices;
799 }
800 fs_info->tree_root = tree_root;
801 fs_info->fs_devices = fs_devices;
802 tree_root->fs_info = fs_info;
803
804 bdev = fs_devices->latest_bdev;
805 s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
806 if (IS_ERR(s))
807 goto error_s;
808
809 if (s->s_root) {
810 if ((flags ^ s->s_flags) & MS_RDONLY) {
811 deactivate_locked_super(s);
812 error = -EBUSY;
813 goto error_close_devices;
814 }
815
816 btrfs_close_devices(fs_devices);
817 kfree(fs_info);
818 kfree(tree_root);
819 } else {
820 char b[BDEVNAME_SIZE];
821
822 s->s_flags = flags;
823 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
824 error = btrfs_fill_super(s, fs_devices, data,
825 flags & MS_SILENT ? 1 : 0);
826 if (error) {
827 deactivate_locked_super(s);
828 goto error_free_subvol_name;
829 }
830
831 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
832 s->s_flags |= MS_ACTIVE;
833 }
834
835 /* if they gave us a subvolume name bind mount into that */
836 if (strcmp(subvol_name, ".")) {
837 struct dentry *new_root;
838
839 root = get_default_root(s, subvol_rootid);
840 if (IS_ERR(root)) {
841 error = PTR_ERR(root);
842 deactivate_locked_super(s);
843 goto error_free_subvol_name;
844 }
845
846 mutex_lock(&root->d_inode->i_mutex);
847 new_root = lookup_one_len(subvol_name, root,
848 strlen(subvol_name));
849 mutex_unlock(&root->d_inode->i_mutex);
850
851 if (IS_ERR(new_root)) {
852 dput(root);
853 deactivate_locked_super(s);
854 error = PTR_ERR(new_root);
855 goto error_free_subvol_name;
856 }
857 if (!new_root->d_inode) {
858 dput(root);
859 dput(new_root);
860 deactivate_locked_super(s);
861 error = -ENXIO;
862 goto error_free_subvol_name;
863 }
864 dput(root);
865 root = new_root;
866 } else {
867 root = get_default_root(s, subvol_objectid);
868 if (IS_ERR(root)) {
869 error = PTR_ERR(root);
870 deactivate_locked_super(s);
871 goto error_free_subvol_name;
872 }
873 }
874
875 kfree(subvol_name);
876 return root;
877
878 error_s:
879 error = PTR_ERR(s);
880 error_close_devices:
881 btrfs_close_devices(fs_devices);
882 kfree(fs_info);
883 kfree(tree_root);
884 error_free_subvol_name:
885 kfree(subvol_name);
886 return ERR_PTR(error);
887 }
888
889 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
890 {
891 struct btrfs_root *root = btrfs_sb(sb);
892 int ret;
893
894 ret = btrfs_parse_options(root, data);
895 if (ret)
896 return -EINVAL;
897
898 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
899 return 0;
900
901 if (*flags & MS_RDONLY) {
902 sb->s_flags |= MS_RDONLY;
903
904 ret = btrfs_commit_super(root);
905 WARN_ON(ret);
906 } else {
907 if (root->fs_info->fs_devices->rw_devices == 0)
908 return -EACCES;
909
910 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
911 return -EINVAL;
912
913 ret = btrfs_cleanup_fs_roots(root->fs_info);
914 WARN_ON(ret);
915
916 /* recover relocation */
917 ret = btrfs_recover_relocation(root);
918 WARN_ON(ret);
919
920 sb->s_flags &= ~MS_RDONLY;
921 }
922
923 return 0;
924 }
925
926 /* Used to sort the devices by max_avail(descending sort) */
927 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
928 const void *dev_info2)
929 {
930 if (((struct btrfs_device_info *)dev_info1)->max_avail >
931 ((struct btrfs_device_info *)dev_info2)->max_avail)
932 return -1;
933 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
934 ((struct btrfs_device_info *)dev_info2)->max_avail)
935 return 1;
936 else
937 return 0;
938 }
939
940 /*
941 * sort the devices by max_avail, in which max free extent size of each device
942 * is stored.(Descending Sort)
943 */
944 static inline void btrfs_descending_sort_devices(
945 struct btrfs_device_info *devices,
946 size_t nr_devices)
947 {
948 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
949 btrfs_cmp_device_free_bytes, NULL);
950 }
951
952 /*
953 * The helper to calc the free space on the devices that can be used to store
954 * file data.
955 */
956 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
957 {
958 struct btrfs_fs_info *fs_info = root->fs_info;
959 struct btrfs_device_info *devices_info;
960 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
961 struct btrfs_device *device;
962 u64 skip_space;
963 u64 type;
964 u64 avail_space;
965 u64 used_space;
966 u64 min_stripe_size;
967 int min_stripes = 1;
968 int i = 0, nr_devices;
969 int ret;
970
971 nr_devices = fs_info->fs_devices->rw_devices;
972 BUG_ON(!nr_devices);
973
974 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
975 GFP_NOFS);
976 if (!devices_info)
977 return -ENOMEM;
978
979 /* calc min stripe number for data space alloction */
980 type = btrfs_get_alloc_profile(root, 1);
981 if (type & BTRFS_BLOCK_GROUP_RAID0)
982 min_stripes = 2;
983 else if (type & BTRFS_BLOCK_GROUP_RAID1)
984 min_stripes = 2;
985 else if (type & BTRFS_BLOCK_GROUP_RAID10)
986 min_stripes = 4;
987
988 if (type & BTRFS_BLOCK_GROUP_DUP)
989 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
990 else
991 min_stripe_size = BTRFS_STRIPE_LEN;
992
993 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
994 if (!device->in_fs_metadata)
995 continue;
996
997 avail_space = device->total_bytes - device->bytes_used;
998
999 /* align with stripe_len */
1000 do_div(avail_space, BTRFS_STRIPE_LEN);
1001 avail_space *= BTRFS_STRIPE_LEN;
1002
1003 /*
1004 * In order to avoid overwritting the superblock on the drive,
1005 * btrfs starts at an offset of at least 1MB when doing chunk
1006 * allocation.
1007 */
1008 skip_space = 1024 * 1024;
1009
1010 /* user can set the offset in fs_info->alloc_start. */
1011 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1012 device->total_bytes)
1013 skip_space = max(fs_info->alloc_start, skip_space);
1014
1015 /*
1016 * btrfs can not use the free space in [0, skip_space - 1],
1017 * we must subtract it from the total. In order to implement
1018 * it, we account the used space in this range first.
1019 */
1020 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1021 &used_space);
1022 if (ret) {
1023 kfree(devices_info);
1024 return ret;
1025 }
1026
1027 /* calc the free space in [0, skip_space - 1] */
1028 skip_space -= used_space;
1029
1030 /*
1031 * we can use the free space in [0, skip_space - 1], subtract
1032 * it from the total.
1033 */
1034 if (avail_space && avail_space >= skip_space)
1035 avail_space -= skip_space;
1036 else
1037 avail_space = 0;
1038
1039 if (avail_space < min_stripe_size)
1040 continue;
1041
1042 devices_info[i].dev = device;
1043 devices_info[i].max_avail = avail_space;
1044
1045 i++;
1046 }
1047
1048 nr_devices = i;
1049
1050 btrfs_descending_sort_devices(devices_info, nr_devices);
1051
1052 i = nr_devices - 1;
1053 avail_space = 0;
1054 while (nr_devices >= min_stripes) {
1055 if (devices_info[i].max_avail >= min_stripe_size) {
1056 int j;
1057 u64 alloc_size;
1058
1059 avail_space += devices_info[i].max_avail * min_stripes;
1060 alloc_size = devices_info[i].max_avail;
1061 for (j = i + 1 - min_stripes; j <= i; j++)
1062 devices_info[j].max_avail -= alloc_size;
1063 }
1064 i--;
1065 nr_devices--;
1066 }
1067
1068 kfree(devices_info);
1069 *free_bytes = avail_space;
1070 return 0;
1071 }
1072
1073 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1074 {
1075 struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1076 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1077 struct list_head *head = &root->fs_info->space_info;
1078 struct btrfs_space_info *found;
1079 u64 total_used = 0;
1080 u64 total_free_data = 0;
1081 int bits = dentry->d_sb->s_blocksize_bits;
1082 __be32 *fsid = (__be32 *)root->fs_info->fsid;
1083 int ret;
1084
1085 /* holding chunk_muext to avoid allocating new chunks */
1086 mutex_lock(&root->fs_info->chunk_mutex);
1087 rcu_read_lock();
1088 list_for_each_entry_rcu(found, head, list) {
1089 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1090 total_free_data += found->disk_total - found->disk_used;
1091 total_free_data -=
1092 btrfs_account_ro_block_groups_free_space(found);
1093 }
1094
1095 total_used += found->disk_used;
1096 }
1097 rcu_read_unlock();
1098
1099 buf->f_namelen = BTRFS_NAME_LEN;
1100 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1101 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1102 buf->f_bsize = dentry->d_sb->s_blocksize;
1103 buf->f_type = BTRFS_SUPER_MAGIC;
1104 buf->f_bavail = total_free_data;
1105 ret = btrfs_calc_avail_data_space(root, &total_free_data);
1106 if (ret) {
1107 mutex_unlock(&root->fs_info->chunk_mutex);
1108 return ret;
1109 }
1110 buf->f_bavail += total_free_data;
1111 buf->f_bavail = buf->f_bavail >> bits;
1112 mutex_unlock(&root->fs_info->chunk_mutex);
1113
1114 /* We treat it as constant endianness (it doesn't matter _which_)
1115 because we want the fsid to come out the same whether mounted
1116 on a big-endian or little-endian host */
1117 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1118 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1119 /* Mask in the root object ID too, to disambiguate subvols */
1120 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1121 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1122
1123 return 0;
1124 }
1125
1126 static struct file_system_type btrfs_fs_type = {
1127 .owner = THIS_MODULE,
1128 .name = "btrfs",
1129 .mount = btrfs_mount,
1130 .kill_sb = kill_anon_super,
1131 .fs_flags = FS_REQUIRES_DEV,
1132 };
1133
1134 /*
1135 * used by btrfsctl to scan devices when no FS is mounted
1136 */
1137 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1138 unsigned long arg)
1139 {
1140 struct btrfs_ioctl_vol_args *vol;
1141 struct btrfs_fs_devices *fs_devices;
1142 int ret = -ENOTTY;
1143
1144 if (!capable(CAP_SYS_ADMIN))
1145 return -EPERM;
1146
1147 vol = memdup_user((void __user *)arg, sizeof(*vol));
1148 if (IS_ERR(vol))
1149 return PTR_ERR(vol);
1150
1151 switch (cmd) {
1152 case BTRFS_IOC_SCAN_DEV:
1153 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1154 &btrfs_fs_type, &fs_devices);
1155 break;
1156 }
1157
1158 kfree(vol);
1159 return ret;
1160 }
1161
1162 static int btrfs_freeze(struct super_block *sb)
1163 {
1164 struct btrfs_root *root = btrfs_sb(sb);
1165 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1166 mutex_lock(&root->fs_info->cleaner_mutex);
1167 return 0;
1168 }
1169
1170 static int btrfs_unfreeze(struct super_block *sb)
1171 {
1172 struct btrfs_root *root = btrfs_sb(sb);
1173 mutex_unlock(&root->fs_info->cleaner_mutex);
1174 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1175 return 0;
1176 }
1177
1178 static const struct super_operations btrfs_super_ops = {
1179 .drop_inode = btrfs_drop_inode,
1180 .evict_inode = btrfs_evict_inode,
1181 .put_super = btrfs_put_super,
1182 .sync_fs = btrfs_sync_fs,
1183 .show_options = btrfs_show_options,
1184 .write_inode = btrfs_write_inode,
1185 .dirty_inode = btrfs_dirty_inode,
1186 .alloc_inode = btrfs_alloc_inode,
1187 .destroy_inode = btrfs_destroy_inode,
1188 .statfs = btrfs_statfs,
1189 .remount_fs = btrfs_remount,
1190 .freeze_fs = btrfs_freeze,
1191 .unfreeze_fs = btrfs_unfreeze,
1192 };
1193
1194 static const struct file_operations btrfs_ctl_fops = {
1195 .unlocked_ioctl = btrfs_control_ioctl,
1196 .compat_ioctl = btrfs_control_ioctl,
1197 .owner = THIS_MODULE,
1198 .llseek = noop_llseek,
1199 };
1200
1201 static struct miscdevice btrfs_misc = {
1202 .minor = BTRFS_MINOR,
1203 .name = "btrfs-control",
1204 .fops = &btrfs_ctl_fops
1205 };
1206
1207 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1208 MODULE_ALIAS("devname:btrfs-control");
1209
1210 static int btrfs_interface_init(void)
1211 {
1212 return misc_register(&btrfs_misc);
1213 }
1214
1215 static void btrfs_interface_exit(void)
1216 {
1217 if (misc_deregister(&btrfs_misc) < 0)
1218 printk(KERN_INFO "misc_deregister failed for control device");
1219 }
1220
1221 static int __init init_btrfs_fs(void)
1222 {
1223 int err;
1224
1225 err = btrfs_init_sysfs();
1226 if (err)
1227 return err;
1228
1229 err = btrfs_init_compress();
1230 if (err)
1231 goto free_sysfs;
1232
1233 err = btrfs_init_cachep();
1234 if (err)
1235 goto free_compress;
1236
1237 err = extent_io_init();
1238 if (err)
1239 goto free_cachep;
1240
1241 err = extent_map_init();
1242 if (err)
1243 goto free_extent_io;
1244
1245 err = btrfs_delayed_inode_init();
1246 if (err)
1247 goto free_extent_map;
1248
1249 err = btrfs_interface_init();
1250 if (err)
1251 goto free_delayed_inode;
1252
1253 err = register_filesystem(&btrfs_fs_type);
1254 if (err)
1255 goto unregister_ioctl;
1256
1257 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1258 return 0;
1259
1260 unregister_ioctl:
1261 btrfs_interface_exit();
1262 free_delayed_inode:
1263 btrfs_delayed_inode_exit();
1264 free_extent_map:
1265 extent_map_exit();
1266 free_extent_io:
1267 extent_io_exit();
1268 free_cachep:
1269 btrfs_destroy_cachep();
1270 free_compress:
1271 btrfs_exit_compress();
1272 free_sysfs:
1273 btrfs_exit_sysfs();
1274 return err;
1275 }
1276
1277 static void __exit exit_btrfs_fs(void)
1278 {
1279 btrfs_destroy_cachep();
1280 btrfs_delayed_inode_exit();
1281 extent_map_exit();
1282 extent_io_exit();
1283 btrfs_interface_exit();
1284 unregister_filesystem(&btrfs_fs_type);
1285 btrfs_exit_sysfs();
1286 btrfs_cleanup_fs_uuids();
1287 btrfs_exit_compress();
1288 }
1289
1290 module_init(init_btrfs_fs)
1291 module_exit(exit_btrfs_fs)
1292
1293 MODULE_LICENSE("GPL");