]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/transaction.c
btrfs: replace EINVAL with EOPNOTSUPP for dev_replace raid56
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 while (!list_empty(&transaction->pending_chunks)) {
68 struct extent_map *em;
69
70 em = list_first_entry(&transaction->pending_chunks,
71 struct extent_map, list);
72 list_del_init(&em->list);
73 free_extent_map(em);
74 }
75 kmem_cache_free(btrfs_transaction_cachep, transaction);
76 }
77 }
78
79 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
80 struct btrfs_fs_info *fs_info)
81 {
82 struct btrfs_root *root, *tmp;
83
84 down_write(&fs_info->commit_root_sem);
85 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
86 dirty_list) {
87 list_del_init(&root->dirty_list);
88 free_extent_buffer(root->commit_root);
89 root->commit_root = btrfs_root_node(root);
90 if (is_fstree(root->objectid))
91 btrfs_unpin_free_ino(root);
92 }
93 up_write(&fs_info->commit_root_sem);
94 }
95
96 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
97 unsigned int type)
98 {
99 if (type & TRANS_EXTWRITERS)
100 atomic_inc(&trans->num_extwriters);
101 }
102
103 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
104 unsigned int type)
105 {
106 if (type & TRANS_EXTWRITERS)
107 atomic_dec(&trans->num_extwriters);
108 }
109
110 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
111 unsigned int type)
112 {
113 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
114 }
115
116 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
117 {
118 return atomic_read(&trans->num_extwriters);
119 }
120
121 /*
122 * either allocate a new transaction or hop into the existing one
123 */
124 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
125 {
126 struct btrfs_transaction *cur_trans;
127 struct btrfs_fs_info *fs_info = root->fs_info;
128
129 spin_lock(&fs_info->trans_lock);
130 loop:
131 /* The file system has been taken offline. No new transactions. */
132 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
133 spin_unlock(&fs_info->trans_lock);
134 return -EROFS;
135 }
136
137 cur_trans = fs_info->running_transaction;
138 if (cur_trans) {
139 if (cur_trans->aborted) {
140 spin_unlock(&fs_info->trans_lock);
141 return cur_trans->aborted;
142 }
143 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
144 spin_unlock(&fs_info->trans_lock);
145 return -EBUSY;
146 }
147 atomic_inc(&cur_trans->use_count);
148 atomic_inc(&cur_trans->num_writers);
149 extwriter_counter_inc(cur_trans, type);
150 spin_unlock(&fs_info->trans_lock);
151 return 0;
152 }
153 spin_unlock(&fs_info->trans_lock);
154
155 /*
156 * If we are ATTACH, we just want to catch the current transaction,
157 * and commit it. If there is no transaction, just return ENOENT.
158 */
159 if (type == TRANS_ATTACH)
160 return -ENOENT;
161
162 /*
163 * JOIN_NOLOCK only happens during the transaction commit, so
164 * it is impossible that ->running_transaction is NULL
165 */
166 BUG_ON(type == TRANS_JOIN_NOLOCK);
167
168 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
169 if (!cur_trans)
170 return -ENOMEM;
171
172 spin_lock(&fs_info->trans_lock);
173 if (fs_info->running_transaction) {
174 /*
175 * someone started a transaction after we unlocked. Make sure
176 * to redo the checks above
177 */
178 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
179 goto loop;
180 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
181 spin_unlock(&fs_info->trans_lock);
182 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
183 return -EROFS;
184 }
185
186 atomic_set(&cur_trans->num_writers, 1);
187 extwriter_counter_init(cur_trans, type);
188 init_waitqueue_head(&cur_trans->writer_wait);
189 init_waitqueue_head(&cur_trans->commit_wait);
190 cur_trans->state = TRANS_STATE_RUNNING;
191 /*
192 * One for this trans handle, one so it will live on until we
193 * commit the transaction.
194 */
195 atomic_set(&cur_trans->use_count, 2);
196 cur_trans->start_time = get_seconds();
197
198 cur_trans->delayed_refs.href_root = RB_ROOT;
199 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
200 cur_trans->delayed_refs.num_heads_ready = 0;
201 cur_trans->delayed_refs.num_heads = 0;
202 cur_trans->delayed_refs.flushing = 0;
203 cur_trans->delayed_refs.run_delayed_start = 0;
204
205 /*
206 * although the tree mod log is per file system and not per transaction,
207 * the log must never go across transaction boundaries.
208 */
209 smp_mb();
210 if (!list_empty(&fs_info->tree_mod_seq_list))
211 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
212 "creating a fresh transaction\n");
213 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
214 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
215 "creating a fresh transaction\n");
216 atomic64_set(&fs_info->tree_mod_seq, 0);
217
218 spin_lock_init(&cur_trans->delayed_refs.lock);
219
220 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
221 INIT_LIST_HEAD(&cur_trans->ordered_operations);
222 INIT_LIST_HEAD(&cur_trans->pending_chunks);
223 INIT_LIST_HEAD(&cur_trans->switch_commits);
224 list_add_tail(&cur_trans->list, &fs_info->trans_list);
225 extent_io_tree_init(&cur_trans->dirty_pages,
226 fs_info->btree_inode->i_mapping);
227 fs_info->generation++;
228 cur_trans->transid = fs_info->generation;
229 fs_info->running_transaction = cur_trans;
230 cur_trans->aborted = 0;
231 spin_unlock(&fs_info->trans_lock);
232
233 return 0;
234 }
235
236 /*
237 * this does all the record keeping required to make sure that a reference
238 * counted root is properly recorded in a given transaction. This is required
239 * to make sure the old root from before we joined the transaction is deleted
240 * when the transaction commits
241 */
242 static int record_root_in_trans(struct btrfs_trans_handle *trans,
243 struct btrfs_root *root)
244 {
245 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
246 root->last_trans < trans->transid) {
247 WARN_ON(root == root->fs_info->extent_root);
248 WARN_ON(root->commit_root != root->node);
249
250 /*
251 * see below for IN_TRANS_SETUP usage rules
252 * we have the reloc mutex held now, so there
253 * is only one writer in this function
254 */
255 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
256
257 /* make sure readers find IN_TRANS_SETUP before
258 * they find our root->last_trans update
259 */
260 smp_wmb();
261
262 spin_lock(&root->fs_info->fs_roots_radix_lock);
263 if (root->last_trans == trans->transid) {
264 spin_unlock(&root->fs_info->fs_roots_radix_lock);
265 return 0;
266 }
267 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
268 (unsigned long)root->root_key.objectid,
269 BTRFS_ROOT_TRANS_TAG);
270 spin_unlock(&root->fs_info->fs_roots_radix_lock);
271 root->last_trans = trans->transid;
272
273 /* this is pretty tricky. We don't want to
274 * take the relocation lock in btrfs_record_root_in_trans
275 * unless we're really doing the first setup for this root in
276 * this transaction.
277 *
278 * Normally we'd use root->last_trans as a flag to decide
279 * if we want to take the expensive mutex.
280 *
281 * But, we have to set root->last_trans before we
282 * init the relocation root, otherwise, we trip over warnings
283 * in ctree.c. The solution used here is to flag ourselves
284 * with root IN_TRANS_SETUP. When this is 1, we're still
285 * fixing up the reloc trees and everyone must wait.
286 *
287 * When this is zero, they can trust root->last_trans and fly
288 * through btrfs_record_root_in_trans without having to take the
289 * lock. smp_wmb() makes sure that all the writes above are
290 * done before we pop in the zero below
291 */
292 btrfs_init_reloc_root(trans, root);
293 smp_mb__before_clear_bit();
294 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
295 }
296 return 0;
297 }
298
299
300 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
301 struct btrfs_root *root)
302 {
303 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
304 return 0;
305
306 /*
307 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
308 * and barriers
309 */
310 smp_rmb();
311 if (root->last_trans == trans->transid &&
312 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
313 return 0;
314
315 mutex_lock(&root->fs_info->reloc_mutex);
316 record_root_in_trans(trans, root);
317 mutex_unlock(&root->fs_info->reloc_mutex);
318
319 return 0;
320 }
321
322 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
323 {
324 return (trans->state >= TRANS_STATE_BLOCKED &&
325 trans->state < TRANS_STATE_UNBLOCKED &&
326 !trans->aborted);
327 }
328
329 /* wait for commit against the current transaction to become unblocked
330 * when this is done, it is safe to start a new transaction, but the current
331 * transaction might not be fully on disk.
332 */
333 static void wait_current_trans(struct btrfs_root *root)
334 {
335 struct btrfs_transaction *cur_trans;
336
337 spin_lock(&root->fs_info->trans_lock);
338 cur_trans = root->fs_info->running_transaction;
339 if (cur_trans && is_transaction_blocked(cur_trans)) {
340 atomic_inc(&cur_trans->use_count);
341 spin_unlock(&root->fs_info->trans_lock);
342
343 wait_event(root->fs_info->transaction_wait,
344 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
345 cur_trans->aborted);
346 btrfs_put_transaction(cur_trans);
347 } else {
348 spin_unlock(&root->fs_info->trans_lock);
349 }
350 }
351
352 static int may_wait_transaction(struct btrfs_root *root, int type)
353 {
354 if (root->fs_info->log_root_recovering)
355 return 0;
356
357 if (type == TRANS_USERSPACE)
358 return 1;
359
360 if (type == TRANS_START &&
361 !atomic_read(&root->fs_info->open_ioctl_trans))
362 return 1;
363
364 return 0;
365 }
366
367 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
368 {
369 if (!root->fs_info->reloc_ctl ||
370 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
371 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
372 root->reloc_root)
373 return false;
374
375 return true;
376 }
377
378 static struct btrfs_trans_handle *
379 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
380 enum btrfs_reserve_flush_enum flush)
381 {
382 struct btrfs_trans_handle *h;
383 struct btrfs_transaction *cur_trans;
384 u64 num_bytes = 0;
385 u64 qgroup_reserved = 0;
386 bool reloc_reserved = false;
387 int ret;
388
389 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
390 return ERR_PTR(-EROFS);
391
392 if (current->journal_info &&
393 current->journal_info != (void *)BTRFS_SEND_TRANS_STUB) {
394 WARN_ON(type & TRANS_EXTWRITERS);
395 h = current->journal_info;
396 h->use_count++;
397 WARN_ON(h->use_count > 2);
398 h->orig_rsv = h->block_rsv;
399 h->block_rsv = NULL;
400 goto got_it;
401 }
402
403 /*
404 * Do the reservation before we join the transaction so we can do all
405 * the appropriate flushing if need be.
406 */
407 if (num_items > 0 && root != root->fs_info->chunk_root) {
408 if (root->fs_info->quota_enabled &&
409 is_fstree(root->root_key.objectid)) {
410 qgroup_reserved = num_items * root->leafsize;
411 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
412 if (ret)
413 return ERR_PTR(ret);
414 }
415
416 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
417 /*
418 * Do the reservation for the relocation root creation
419 */
420 if (unlikely(need_reserve_reloc_root(root))) {
421 num_bytes += root->nodesize;
422 reloc_reserved = true;
423 }
424
425 ret = btrfs_block_rsv_add(root,
426 &root->fs_info->trans_block_rsv,
427 num_bytes, flush);
428 if (ret)
429 goto reserve_fail;
430 }
431 again:
432 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
433 if (!h) {
434 ret = -ENOMEM;
435 goto alloc_fail;
436 }
437
438 /*
439 * If we are JOIN_NOLOCK we're already committing a transaction and
440 * waiting on this guy, so we don't need to do the sb_start_intwrite
441 * because we're already holding a ref. We need this because we could
442 * have raced in and did an fsync() on a file which can kick a commit
443 * and then we deadlock with somebody doing a freeze.
444 *
445 * If we are ATTACH, it means we just want to catch the current
446 * transaction and commit it, so we needn't do sb_start_intwrite().
447 */
448 if (type & __TRANS_FREEZABLE)
449 sb_start_intwrite(root->fs_info->sb);
450
451 if (may_wait_transaction(root, type))
452 wait_current_trans(root);
453
454 do {
455 ret = join_transaction(root, type);
456 if (ret == -EBUSY) {
457 wait_current_trans(root);
458 if (unlikely(type == TRANS_ATTACH))
459 ret = -ENOENT;
460 }
461 } while (ret == -EBUSY);
462
463 if (ret < 0) {
464 /* We must get the transaction if we are JOIN_NOLOCK. */
465 BUG_ON(type == TRANS_JOIN_NOLOCK);
466 goto join_fail;
467 }
468
469 cur_trans = root->fs_info->running_transaction;
470
471 h->transid = cur_trans->transid;
472 h->transaction = cur_trans;
473 h->blocks_used = 0;
474 h->bytes_reserved = 0;
475 h->root = root;
476 h->delayed_ref_updates = 0;
477 h->use_count = 1;
478 h->adding_csums = 0;
479 h->block_rsv = NULL;
480 h->orig_rsv = NULL;
481 h->aborted = 0;
482 h->qgroup_reserved = 0;
483 h->delayed_ref_elem.seq = 0;
484 h->type = type;
485 h->allocating_chunk = false;
486 h->reloc_reserved = false;
487 h->sync = false;
488 INIT_LIST_HEAD(&h->qgroup_ref_list);
489 INIT_LIST_HEAD(&h->new_bgs);
490
491 smp_mb();
492 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
493 may_wait_transaction(root, type)) {
494 btrfs_commit_transaction(h, root);
495 goto again;
496 }
497
498 if (num_bytes) {
499 trace_btrfs_space_reservation(root->fs_info, "transaction",
500 h->transid, num_bytes, 1);
501 h->block_rsv = &root->fs_info->trans_block_rsv;
502 h->bytes_reserved = num_bytes;
503 h->reloc_reserved = reloc_reserved;
504 }
505 h->qgroup_reserved = qgroup_reserved;
506
507 got_it:
508 btrfs_record_root_in_trans(h, root);
509
510 if (!current->journal_info && type != TRANS_USERSPACE)
511 current->journal_info = h;
512 return h;
513
514 join_fail:
515 if (type & __TRANS_FREEZABLE)
516 sb_end_intwrite(root->fs_info->sb);
517 kmem_cache_free(btrfs_trans_handle_cachep, h);
518 alloc_fail:
519 if (num_bytes)
520 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
521 num_bytes);
522 reserve_fail:
523 if (qgroup_reserved)
524 btrfs_qgroup_free(root, qgroup_reserved);
525 return ERR_PTR(ret);
526 }
527
528 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
529 int num_items)
530 {
531 return start_transaction(root, num_items, TRANS_START,
532 BTRFS_RESERVE_FLUSH_ALL);
533 }
534
535 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
536 struct btrfs_root *root, int num_items)
537 {
538 return start_transaction(root, num_items, TRANS_START,
539 BTRFS_RESERVE_FLUSH_LIMIT);
540 }
541
542 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
543 {
544 return start_transaction(root, 0, TRANS_JOIN, 0);
545 }
546
547 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
548 {
549 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
550 }
551
552 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
553 {
554 return start_transaction(root, 0, TRANS_USERSPACE, 0);
555 }
556
557 /*
558 * btrfs_attach_transaction() - catch the running transaction
559 *
560 * It is used when we want to commit the current the transaction, but
561 * don't want to start a new one.
562 *
563 * Note: If this function return -ENOENT, it just means there is no
564 * running transaction. But it is possible that the inactive transaction
565 * is still in the memory, not fully on disk. If you hope there is no
566 * inactive transaction in the fs when -ENOENT is returned, you should
567 * invoke
568 * btrfs_attach_transaction_barrier()
569 */
570 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
571 {
572 return start_transaction(root, 0, TRANS_ATTACH, 0);
573 }
574
575 /*
576 * btrfs_attach_transaction_barrier() - catch the running transaction
577 *
578 * It is similar to the above function, the differentia is this one
579 * will wait for all the inactive transactions until they fully
580 * complete.
581 */
582 struct btrfs_trans_handle *
583 btrfs_attach_transaction_barrier(struct btrfs_root *root)
584 {
585 struct btrfs_trans_handle *trans;
586
587 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
588 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
589 btrfs_wait_for_commit(root, 0);
590
591 return trans;
592 }
593
594 /* wait for a transaction commit to be fully complete */
595 static noinline void wait_for_commit(struct btrfs_root *root,
596 struct btrfs_transaction *commit)
597 {
598 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
599 }
600
601 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
602 {
603 struct btrfs_transaction *cur_trans = NULL, *t;
604 int ret = 0;
605
606 if (transid) {
607 if (transid <= root->fs_info->last_trans_committed)
608 goto out;
609
610 ret = -EINVAL;
611 /* find specified transaction */
612 spin_lock(&root->fs_info->trans_lock);
613 list_for_each_entry(t, &root->fs_info->trans_list, list) {
614 if (t->transid == transid) {
615 cur_trans = t;
616 atomic_inc(&cur_trans->use_count);
617 ret = 0;
618 break;
619 }
620 if (t->transid > transid) {
621 ret = 0;
622 break;
623 }
624 }
625 spin_unlock(&root->fs_info->trans_lock);
626 /* The specified transaction doesn't exist */
627 if (!cur_trans)
628 goto out;
629 } else {
630 /* find newest transaction that is committing | committed */
631 spin_lock(&root->fs_info->trans_lock);
632 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
633 list) {
634 if (t->state >= TRANS_STATE_COMMIT_START) {
635 if (t->state == TRANS_STATE_COMPLETED)
636 break;
637 cur_trans = t;
638 atomic_inc(&cur_trans->use_count);
639 break;
640 }
641 }
642 spin_unlock(&root->fs_info->trans_lock);
643 if (!cur_trans)
644 goto out; /* nothing committing|committed */
645 }
646
647 wait_for_commit(root, cur_trans);
648 btrfs_put_transaction(cur_trans);
649 out:
650 return ret;
651 }
652
653 void btrfs_throttle(struct btrfs_root *root)
654 {
655 if (!atomic_read(&root->fs_info->open_ioctl_trans))
656 wait_current_trans(root);
657 }
658
659 static int should_end_transaction(struct btrfs_trans_handle *trans,
660 struct btrfs_root *root)
661 {
662 if (root->fs_info->global_block_rsv.space_info->full &&
663 btrfs_check_space_for_delayed_refs(trans, root))
664 return 1;
665
666 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
667 }
668
669 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
670 struct btrfs_root *root)
671 {
672 struct btrfs_transaction *cur_trans = trans->transaction;
673 int updates;
674 int err;
675
676 smp_mb();
677 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
678 cur_trans->delayed_refs.flushing)
679 return 1;
680
681 updates = trans->delayed_ref_updates;
682 trans->delayed_ref_updates = 0;
683 if (updates) {
684 err = btrfs_run_delayed_refs(trans, root, updates);
685 if (err) /* Error code will also eval true */
686 return err;
687 }
688
689 return should_end_transaction(trans, root);
690 }
691
692 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
693 struct btrfs_root *root, int throttle)
694 {
695 struct btrfs_transaction *cur_trans = trans->transaction;
696 struct btrfs_fs_info *info = root->fs_info;
697 unsigned long cur = trans->delayed_ref_updates;
698 int lock = (trans->type != TRANS_JOIN_NOLOCK);
699 int err = 0;
700 int must_run_delayed_refs = 0;
701
702 if (trans->use_count > 1) {
703 trans->use_count--;
704 trans->block_rsv = trans->orig_rsv;
705 return 0;
706 }
707
708 btrfs_trans_release_metadata(trans, root);
709 trans->block_rsv = NULL;
710
711 if (!list_empty(&trans->new_bgs))
712 btrfs_create_pending_block_groups(trans, root);
713
714 trans->delayed_ref_updates = 0;
715 if (!trans->sync) {
716 must_run_delayed_refs =
717 btrfs_should_throttle_delayed_refs(trans, root);
718 cur = max_t(unsigned long, cur, 32);
719
720 /*
721 * don't make the caller wait if they are from a NOLOCK
722 * or ATTACH transaction, it will deadlock with commit
723 */
724 if (must_run_delayed_refs == 1 &&
725 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
726 must_run_delayed_refs = 2;
727 }
728
729 if (trans->qgroup_reserved) {
730 /*
731 * the same root has to be passed here between start_transaction
732 * and end_transaction. Subvolume quota depends on this.
733 */
734 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
735 trans->qgroup_reserved = 0;
736 }
737
738 btrfs_trans_release_metadata(trans, root);
739 trans->block_rsv = NULL;
740
741 if (!list_empty(&trans->new_bgs))
742 btrfs_create_pending_block_groups(trans, root);
743
744 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
745 should_end_transaction(trans, root) &&
746 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
747 spin_lock(&info->trans_lock);
748 if (cur_trans->state == TRANS_STATE_RUNNING)
749 cur_trans->state = TRANS_STATE_BLOCKED;
750 spin_unlock(&info->trans_lock);
751 }
752
753 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
754 if (throttle)
755 return btrfs_commit_transaction(trans, root);
756 else
757 wake_up_process(info->transaction_kthread);
758 }
759
760 if (trans->type & __TRANS_FREEZABLE)
761 sb_end_intwrite(root->fs_info->sb);
762
763 WARN_ON(cur_trans != info->running_transaction);
764 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
765 atomic_dec(&cur_trans->num_writers);
766 extwriter_counter_dec(cur_trans, trans->type);
767
768 smp_mb();
769 if (waitqueue_active(&cur_trans->writer_wait))
770 wake_up(&cur_trans->writer_wait);
771 btrfs_put_transaction(cur_trans);
772
773 if (current->journal_info == trans)
774 current->journal_info = NULL;
775
776 if (throttle)
777 btrfs_run_delayed_iputs(root);
778
779 if (trans->aborted ||
780 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
781 wake_up_process(info->transaction_kthread);
782 err = -EIO;
783 }
784 assert_qgroups_uptodate(trans);
785
786 kmem_cache_free(btrfs_trans_handle_cachep, trans);
787 if (must_run_delayed_refs) {
788 btrfs_async_run_delayed_refs(root, cur,
789 must_run_delayed_refs == 1);
790 }
791 return err;
792 }
793
794 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
795 struct btrfs_root *root)
796 {
797 return __btrfs_end_transaction(trans, root, 0);
798 }
799
800 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
801 struct btrfs_root *root)
802 {
803 return __btrfs_end_transaction(trans, root, 1);
804 }
805
806 /*
807 * when btree blocks are allocated, they have some corresponding bits set for
808 * them in one of two extent_io trees. This is used to make sure all of
809 * those extents are sent to disk but does not wait on them
810 */
811 int btrfs_write_marked_extents(struct btrfs_root *root,
812 struct extent_io_tree *dirty_pages, int mark)
813 {
814 int err = 0;
815 int werr = 0;
816 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
817 struct extent_state *cached_state = NULL;
818 u64 start = 0;
819 u64 end;
820
821 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
822 mark, &cached_state)) {
823 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
824 mark, &cached_state, GFP_NOFS);
825 cached_state = NULL;
826 err = filemap_fdatawrite_range(mapping, start, end);
827 if (err)
828 werr = err;
829 cond_resched();
830 start = end + 1;
831 }
832 if (err)
833 werr = err;
834 return werr;
835 }
836
837 /*
838 * when btree blocks are allocated, they have some corresponding bits set for
839 * them in one of two extent_io trees. This is used to make sure all of
840 * those extents are on disk for transaction or log commit. We wait
841 * on all the pages and clear them from the dirty pages state tree
842 */
843 int btrfs_wait_marked_extents(struct btrfs_root *root,
844 struct extent_io_tree *dirty_pages, int mark)
845 {
846 int err = 0;
847 int werr = 0;
848 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
849 struct extent_state *cached_state = NULL;
850 u64 start = 0;
851 u64 end;
852
853 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
854 EXTENT_NEED_WAIT, &cached_state)) {
855 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
856 0, 0, &cached_state, GFP_NOFS);
857 err = filemap_fdatawait_range(mapping, start, end);
858 if (err)
859 werr = err;
860 cond_resched();
861 start = end + 1;
862 }
863 if (err)
864 werr = err;
865 return werr;
866 }
867
868 /*
869 * when btree blocks are allocated, they have some corresponding bits set for
870 * them in one of two extent_io trees. This is used to make sure all of
871 * those extents are on disk for transaction or log commit
872 */
873 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
874 struct extent_io_tree *dirty_pages, int mark)
875 {
876 int ret;
877 int ret2;
878 struct blk_plug plug;
879
880 blk_start_plug(&plug);
881 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
882 blk_finish_plug(&plug);
883 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
884
885 if (ret)
886 return ret;
887 if (ret2)
888 return ret2;
889 return 0;
890 }
891
892 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
893 struct btrfs_root *root)
894 {
895 if (!trans || !trans->transaction) {
896 struct inode *btree_inode;
897 btree_inode = root->fs_info->btree_inode;
898 return filemap_write_and_wait(btree_inode->i_mapping);
899 }
900 return btrfs_write_and_wait_marked_extents(root,
901 &trans->transaction->dirty_pages,
902 EXTENT_DIRTY);
903 }
904
905 /*
906 * this is used to update the root pointer in the tree of tree roots.
907 *
908 * But, in the case of the extent allocation tree, updating the root
909 * pointer may allocate blocks which may change the root of the extent
910 * allocation tree.
911 *
912 * So, this loops and repeats and makes sure the cowonly root didn't
913 * change while the root pointer was being updated in the metadata.
914 */
915 static int update_cowonly_root(struct btrfs_trans_handle *trans,
916 struct btrfs_root *root)
917 {
918 int ret;
919 u64 old_root_bytenr;
920 u64 old_root_used;
921 struct btrfs_root *tree_root = root->fs_info->tree_root;
922
923 old_root_used = btrfs_root_used(&root->root_item);
924 btrfs_write_dirty_block_groups(trans, root);
925
926 while (1) {
927 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
928 if (old_root_bytenr == root->node->start &&
929 old_root_used == btrfs_root_used(&root->root_item))
930 break;
931
932 btrfs_set_root_node(&root->root_item, root->node);
933 ret = btrfs_update_root(trans, tree_root,
934 &root->root_key,
935 &root->root_item);
936 if (ret)
937 return ret;
938
939 old_root_used = btrfs_root_used(&root->root_item);
940 ret = btrfs_write_dirty_block_groups(trans, root);
941 if (ret)
942 return ret;
943 }
944
945 return 0;
946 }
947
948 /*
949 * update all the cowonly tree roots on disk
950 *
951 * The error handling in this function may not be obvious. Any of the
952 * failures will cause the file system to go offline. We still need
953 * to clean up the delayed refs.
954 */
955 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
956 struct btrfs_root *root)
957 {
958 struct btrfs_fs_info *fs_info = root->fs_info;
959 struct list_head *next;
960 struct extent_buffer *eb;
961 int ret;
962
963 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
964 if (ret)
965 return ret;
966
967 eb = btrfs_lock_root_node(fs_info->tree_root);
968 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
969 0, &eb);
970 btrfs_tree_unlock(eb);
971 free_extent_buffer(eb);
972
973 if (ret)
974 return ret;
975
976 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
977 if (ret)
978 return ret;
979
980 ret = btrfs_run_dev_stats(trans, root->fs_info);
981 if (ret)
982 return ret;
983 ret = btrfs_run_dev_replace(trans, root->fs_info);
984 if (ret)
985 return ret;
986 ret = btrfs_run_qgroups(trans, root->fs_info);
987 if (ret)
988 return ret;
989
990 /* run_qgroups might have added some more refs */
991 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
992 if (ret)
993 return ret;
994
995 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
996 next = fs_info->dirty_cowonly_roots.next;
997 list_del_init(next);
998 root = list_entry(next, struct btrfs_root, dirty_list);
999
1000 if (root != fs_info->extent_root)
1001 list_add_tail(&root->dirty_list,
1002 &trans->transaction->switch_commits);
1003 ret = update_cowonly_root(trans, root);
1004 if (ret)
1005 return ret;
1006 }
1007
1008 list_add_tail(&fs_info->extent_root->dirty_list,
1009 &trans->transaction->switch_commits);
1010 btrfs_after_dev_replace_commit(fs_info);
1011
1012 return 0;
1013 }
1014
1015 /*
1016 * dead roots are old snapshots that need to be deleted. This allocates
1017 * a dirty root struct and adds it into the list of dead roots that need to
1018 * be deleted
1019 */
1020 void btrfs_add_dead_root(struct btrfs_root *root)
1021 {
1022 spin_lock(&root->fs_info->trans_lock);
1023 if (list_empty(&root->root_list))
1024 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1025 spin_unlock(&root->fs_info->trans_lock);
1026 }
1027
1028 /*
1029 * update all the cowonly tree roots on disk
1030 */
1031 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1032 struct btrfs_root *root)
1033 {
1034 struct btrfs_root *gang[8];
1035 struct btrfs_fs_info *fs_info = root->fs_info;
1036 int i;
1037 int ret;
1038 int err = 0;
1039
1040 spin_lock(&fs_info->fs_roots_radix_lock);
1041 while (1) {
1042 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1043 (void **)gang, 0,
1044 ARRAY_SIZE(gang),
1045 BTRFS_ROOT_TRANS_TAG);
1046 if (ret == 0)
1047 break;
1048 for (i = 0; i < ret; i++) {
1049 root = gang[i];
1050 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1051 (unsigned long)root->root_key.objectid,
1052 BTRFS_ROOT_TRANS_TAG);
1053 spin_unlock(&fs_info->fs_roots_radix_lock);
1054
1055 btrfs_free_log(trans, root);
1056 btrfs_update_reloc_root(trans, root);
1057 btrfs_orphan_commit_root(trans, root);
1058
1059 btrfs_save_ino_cache(root, trans);
1060
1061 /* see comments in should_cow_block() */
1062 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1063 smp_mb__after_clear_bit();
1064
1065 if (root->commit_root != root->node) {
1066 list_add_tail(&root->dirty_list,
1067 &trans->transaction->switch_commits);
1068 btrfs_set_root_node(&root->root_item,
1069 root->node);
1070 }
1071
1072 err = btrfs_update_root(trans, fs_info->tree_root,
1073 &root->root_key,
1074 &root->root_item);
1075 spin_lock(&fs_info->fs_roots_radix_lock);
1076 if (err)
1077 break;
1078 }
1079 }
1080 spin_unlock(&fs_info->fs_roots_radix_lock);
1081 return err;
1082 }
1083
1084 /*
1085 * defrag a given btree.
1086 * Every leaf in the btree is read and defragged.
1087 */
1088 int btrfs_defrag_root(struct btrfs_root *root)
1089 {
1090 struct btrfs_fs_info *info = root->fs_info;
1091 struct btrfs_trans_handle *trans;
1092 int ret;
1093
1094 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1095 return 0;
1096
1097 while (1) {
1098 trans = btrfs_start_transaction(root, 0);
1099 if (IS_ERR(trans))
1100 return PTR_ERR(trans);
1101
1102 ret = btrfs_defrag_leaves(trans, root);
1103
1104 btrfs_end_transaction(trans, root);
1105 btrfs_btree_balance_dirty(info->tree_root);
1106 cond_resched();
1107
1108 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1109 break;
1110
1111 if (btrfs_defrag_cancelled(root->fs_info)) {
1112 pr_debug("BTRFS: defrag_root cancelled\n");
1113 ret = -EAGAIN;
1114 break;
1115 }
1116 }
1117 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1118 return ret;
1119 }
1120
1121 /*
1122 * new snapshots need to be created at a very specific time in the
1123 * transaction commit. This does the actual creation.
1124 *
1125 * Note:
1126 * If the error which may affect the commitment of the current transaction
1127 * happens, we should return the error number. If the error which just affect
1128 * the creation of the pending snapshots, just return 0.
1129 */
1130 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1131 struct btrfs_fs_info *fs_info,
1132 struct btrfs_pending_snapshot *pending)
1133 {
1134 struct btrfs_key key;
1135 struct btrfs_root_item *new_root_item;
1136 struct btrfs_root *tree_root = fs_info->tree_root;
1137 struct btrfs_root *root = pending->root;
1138 struct btrfs_root *parent_root;
1139 struct btrfs_block_rsv *rsv;
1140 struct inode *parent_inode;
1141 struct btrfs_path *path;
1142 struct btrfs_dir_item *dir_item;
1143 struct dentry *dentry;
1144 struct extent_buffer *tmp;
1145 struct extent_buffer *old;
1146 struct timespec cur_time = CURRENT_TIME;
1147 int ret = 0;
1148 u64 to_reserve = 0;
1149 u64 index = 0;
1150 u64 objectid;
1151 u64 root_flags;
1152 uuid_le new_uuid;
1153
1154 path = btrfs_alloc_path();
1155 if (!path) {
1156 pending->error = -ENOMEM;
1157 return 0;
1158 }
1159
1160 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1161 if (!new_root_item) {
1162 pending->error = -ENOMEM;
1163 goto root_item_alloc_fail;
1164 }
1165
1166 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1167 if (pending->error)
1168 goto no_free_objectid;
1169
1170 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1171
1172 if (to_reserve > 0) {
1173 pending->error = btrfs_block_rsv_add(root,
1174 &pending->block_rsv,
1175 to_reserve,
1176 BTRFS_RESERVE_NO_FLUSH);
1177 if (pending->error)
1178 goto no_free_objectid;
1179 }
1180
1181 key.objectid = objectid;
1182 key.offset = (u64)-1;
1183 key.type = BTRFS_ROOT_ITEM_KEY;
1184
1185 rsv = trans->block_rsv;
1186 trans->block_rsv = &pending->block_rsv;
1187 trans->bytes_reserved = trans->block_rsv->reserved;
1188
1189 dentry = pending->dentry;
1190 parent_inode = pending->dir;
1191 parent_root = BTRFS_I(parent_inode)->root;
1192 record_root_in_trans(trans, parent_root);
1193
1194 /*
1195 * insert the directory item
1196 */
1197 ret = btrfs_set_inode_index(parent_inode, &index);
1198 BUG_ON(ret); /* -ENOMEM */
1199
1200 /* check if there is a file/dir which has the same name. */
1201 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1202 btrfs_ino(parent_inode),
1203 dentry->d_name.name,
1204 dentry->d_name.len, 0);
1205 if (dir_item != NULL && !IS_ERR(dir_item)) {
1206 pending->error = -EEXIST;
1207 goto dir_item_existed;
1208 } else if (IS_ERR(dir_item)) {
1209 ret = PTR_ERR(dir_item);
1210 btrfs_abort_transaction(trans, root, ret);
1211 goto fail;
1212 }
1213 btrfs_release_path(path);
1214
1215 /*
1216 * pull in the delayed directory update
1217 * and the delayed inode item
1218 * otherwise we corrupt the FS during
1219 * snapshot
1220 */
1221 ret = btrfs_run_delayed_items(trans, root);
1222 if (ret) { /* Transaction aborted */
1223 btrfs_abort_transaction(trans, root, ret);
1224 goto fail;
1225 }
1226
1227 record_root_in_trans(trans, root);
1228 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1229 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1230 btrfs_check_and_init_root_item(new_root_item);
1231
1232 root_flags = btrfs_root_flags(new_root_item);
1233 if (pending->readonly)
1234 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1235 else
1236 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1237 btrfs_set_root_flags(new_root_item, root_flags);
1238
1239 btrfs_set_root_generation_v2(new_root_item,
1240 trans->transid);
1241 uuid_le_gen(&new_uuid);
1242 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1243 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1244 BTRFS_UUID_SIZE);
1245 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1246 memset(new_root_item->received_uuid, 0,
1247 sizeof(new_root_item->received_uuid));
1248 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1249 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1250 btrfs_set_root_stransid(new_root_item, 0);
1251 btrfs_set_root_rtransid(new_root_item, 0);
1252 }
1253 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1254 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1255 btrfs_set_root_otransid(new_root_item, trans->transid);
1256
1257 old = btrfs_lock_root_node(root);
1258 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1259 if (ret) {
1260 btrfs_tree_unlock(old);
1261 free_extent_buffer(old);
1262 btrfs_abort_transaction(trans, root, ret);
1263 goto fail;
1264 }
1265
1266 btrfs_set_lock_blocking(old);
1267
1268 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1269 /* clean up in any case */
1270 btrfs_tree_unlock(old);
1271 free_extent_buffer(old);
1272 if (ret) {
1273 btrfs_abort_transaction(trans, root, ret);
1274 goto fail;
1275 }
1276
1277 /*
1278 * We need to flush delayed refs in order to make sure all of our quota
1279 * operations have been done before we call btrfs_qgroup_inherit.
1280 */
1281 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1282 if (ret) {
1283 btrfs_abort_transaction(trans, root, ret);
1284 goto fail;
1285 }
1286
1287 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1288 root->root_key.objectid,
1289 objectid, pending->inherit);
1290 if (pending->error)
1291 goto no_free_objectid;
1292
1293 /* see comments in should_cow_block() */
1294 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1295 smp_wmb();
1296
1297 btrfs_set_root_node(new_root_item, tmp);
1298 /* record when the snapshot was created in key.offset */
1299 key.offset = trans->transid;
1300 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1301 btrfs_tree_unlock(tmp);
1302 free_extent_buffer(tmp);
1303 if (ret) {
1304 btrfs_abort_transaction(trans, root, ret);
1305 goto fail;
1306 }
1307
1308 /*
1309 * insert root back/forward references
1310 */
1311 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1312 parent_root->root_key.objectid,
1313 btrfs_ino(parent_inode), index,
1314 dentry->d_name.name, dentry->d_name.len);
1315 if (ret) {
1316 btrfs_abort_transaction(trans, root, ret);
1317 goto fail;
1318 }
1319
1320 key.offset = (u64)-1;
1321 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1322 if (IS_ERR(pending->snap)) {
1323 ret = PTR_ERR(pending->snap);
1324 btrfs_abort_transaction(trans, root, ret);
1325 goto fail;
1326 }
1327
1328 ret = btrfs_reloc_post_snapshot(trans, pending);
1329 if (ret) {
1330 btrfs_abort_transaction(trans, root, ret);
1331 goto fail;
1332 }
1333
1334 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1335 if (ret) {
1336 btrfs_abort_transaction(trans, root, ret);
1337 goto fail;
1338 }
1339
1340 ret = btrfs_insert_dir_item(trans, parent_root,
1341 dentry->d_name.name, dentry->d_name.len,
1342 parent_inode, &key,
1343 BTRFS_FT_DIR, index);
1344 /* We have check then name at the beginning, so it is impossible. */
1345 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1346 if (ret) {
1347 btrfs_abort_transaction(trans, root, ret);
1348 goto fail;
1349 }
1350
1351 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1352 dentry->d_name.len * 2);
1353 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1354 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1355 if (ret) {
1356 btrfs_abort_transaction(trans, root, ret);
1357 goto fail;
1358 }
1359 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1360 BTRFS_UUID_KEY_SUBVOL, objectid);
1361 if (ret) {
1362 btrfs_abort_transaction(trans, root, ret);
1363 goto fail;
1364 }
1365 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1366 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1367 new_root_item->received_uuid,
1368 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1369 objectid);
1370 if (ret && ret != -EEXIST) {
1371 btrfs_abort_transaction(trans, root, ret);
1372 goto fail;
1373 }
1374 }
1375 fail:
1376 pending->error = ret;
1377 dir_item_existed:
1378 trans->block_rsv = rsv;
1379 trans->bytes_reserved = 0;
1380 no_free_objectid:
1381 kfree(new_root_item);
1382 root_item_alloc_fail:
1383 btrfs_free_path(path);
1384 return ret;
1385 }
1386
1387 /*
1388 * create all the snapshots we've scheduled for creation
1389 */
1390 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1391 struct btrfs_fs_info *fs_info)
1392 {
1393 struct btrfs_pending_snapshot *pending, *next;
1394 struct list_head *head = &trans->transaction->pending_snapshots;
1395 int ret = 0;
1396
1397 list_for_each_entry_safe(pending, next, head, list) {
1398 list_del(&pending->list);
1399 ret = create_pending_snapshot(trans, fs_info, pending);
1400 if (ret)
1401 break;
1402 }
1403 return ret;
1404 }
1405
1406 static void update_super_roots(struct btrfs_root *root)
1407 {
1408 struct btrfs_root_item *root_item;
1409 struct btrfs_super_block *super;
1410
1411 super = root->fs_info->super_copy;
1412
1413 root_item = &root->fs_info->chunk_root->root_item;
1414 super->chunk_root = root_item->bytenr;
1415 super->chunk_root_generation = root_item->generation;
1416 super->chunk_root_level = root_item->level;
1417
1418 root_item = &root->fs_info->tree_root->root_item;
1419 super->root = root_item->bytenr;
1420 super->generation = root_item->generation;
1421 super->root_level = root_item->level;
1422 if (btrfs_test_opt(root, SPACE_CACHE))
1423 super->cache_generation = root_item->generation;
1424 if (root->fs_info->update_uuid_tree_gen)
1425 super->uuid_tree_generation = root_item->generation;
1426 }
1427
1428 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1429 {
1430 struct btrfs_transaction *trans;
1431 int ret = 0;
1432
1433 spin_lock(&info->trans_lock);
1434 trans = info->running_transaction;
1435 if (trans)
1436 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1437 spin_unlock(&info->trans_lock);
1438 return ret;
1439 }
1440
1441 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1442 {
1443 struct btrfs_transaction *trans;
1444 int ret = 0;
1445
1446 spin_lock(&info->trans_lock);
1447 trans = info->running_transaction;
1448 if (trans)
1449 ret = is_transaction_blocked(trans);
1450 spin_unlock(&info->trans_lock);
1451 return ret;
1452 }
1453
1454 /*
1455 * wait for the current transaction commit to start and block subsequent
1456 * transaction joins
1457 */
1458 static void wait_current_trans_commit_start(struct btrfs_root *root,
1459 struct btrfs_transaction *trans)
1460 {
1461 wait_event(root->fs_info->transaction_blocked_wait,
1462 trans->state >= TRANS_STATE_COMMIT_START ||
1463 trans->aborted);
1464 }
1465
1466 /*
1467 * wait for the current transaction to start and then become unblocked.
1468 * caller holds ref.
1469 */
1470 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1471 struct btrfs_transaction *trans)
1472 {
1473 wait_event(root->fs_info->transaction_wait,
1474 trans->state >= TRANS_STATE_UNBLOCKED ||
1475 trans->aborted);
1476 }
1477
1478 /*
1479 * commit transactions asynchronously. once btrfs_commit_transaction_async
1480 * returns, any subsequent transaction will not be allowed to join.
1481 */
1482 struct btrfs_async_commit {
1483 struct btrfs_trans_handle *newtrans;
1484 struct btrfs_root *root;
1485 struct work_struct work;
1486 };
1487
1488 static void do_async_commit(struct work_struct *work)
1489 {
1490 struct btrfs_async_commit *ac =
1491 container_of(work, struct btrfs_async_commit, work);
1492
1493 /*
1494 * We've got freeze protection passed with the transaction.
1495 * Tell lockdep about it.
1496 */
1497 if (ac->newtrans->type & __TRANS_FREEZABLE)
1498 rwsem_acquire_read(
1499 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1500 0, 1, _THIS_IP_);
1501
1502 current->journal_info = ac->newtrans;
1503
1504 btrfs_commit_transaction(ac->newtrans, ac->root);
1505 kfree(ac);
1506 }
1507
1508 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1509 struct btrfs_root *root,
1510 int wait_for_unblock)
1511 {
1512 struct btrfs_async_commit *ac;
1513 struct btrfs_transaction *cur_trans;
1514
1515 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1516 if (!ac)
1517 return -ENOMEM;
1518
1519 INIT_WORK(&ac->work, do_async_commit);
1520 ac->root = root;
1521 ac->newtrans = btrfs_join_transaction(root);
1522 if (IS_ERR(ac->newtrans)) {
1523 int err = PTR_ERR(ac->newtrans);
1524 kfree(ac);
1525 return err;
1526 }
1527
1528 /* take transaction reference */
1529 cur_trans = trans->transaction;
1530 atomic_inc(&cur_trans->use_count);
1531
1532 btrfs_end_transaction(trans, root);
1533
1534 /*
1535 * Tell lockdep we've released the freeze rwsem, since the
1536 * async commit thread will be the one to unlock it.
1537 */
1538 if (ac->newtrans->type & __TRANS_FREEZABLE)
1539 rwsem_release(
1540 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1541 1, _THIS_IP_);
1542
1543 schedule_work(&ac->work);
1544
1545 /* wait for transaction to start and unblock */
1546 if (wait_for_unblock)
1547 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1548 else
1549 wait_current_trans_commit_start(root, cur_trans);
1550
1551 if (current->journal_info == trans)
1552 current->journal_info = NULL;
1553
1554 btrfs_put_transaction(cur_trans);
1555 return 0;
1556 }
1557
1558
1559 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1560 struct btrfs_root *root, int err)
1561 {
1562 struct btrfs_transaction *cur_trans = trans->transaction;
1563 DEFINE_WAIT(wait);
1564
1565 WARN_ON(trans->use_count > 1);
1566
1567 btrfs_abort_transaction(trans, root, err);
1568
1569 spin_lock(&root->fs_info->trans_lock);
1570
1571 /*
1572 * If the transaction is removed from the list, it means this
1573 * transaction has been committed successfully, so it is impossible
1574 * to call the cleanup function.
1575 */
1576 BUG_ON(list_empty(&cur_trans->list));
1577
1578 list_del_init(&cur_trans->list);
1579 if (cur_trans == root->fs_info->running_transaction) {
1580 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1581 spin_unlock(&root->fs_info->trans_lock);
1582 wait_event(cur_trans->writer_wait,
1583 atomic_read(&cur_trans->num_writers) == 1);
1584
1585 spin_lock(&root->fs_info->trans_lock);
1586 }
1587 spin_unlock(&root->fs_info->trans_lock);
1588
1589 btrfs_cleanup_one_transaction(trans->transaction, root);
1590
1591 spin_lock(&root->fs_info->trans_lock);
1592 if (cur_trans == root->fs_info->running_transaction)
1593 root->fs_info->running_transaction = NULL;
1594 spin_unlock(&root->fs_info->trans_lock);
1595
1596 if (trans->type & __TRANS_FREEZABLE)
1597 sb_end_intwrite(root->fs_info->sb);
1598 btrfs_put_transaction(cur_trans);
1599 btrfs_put_transaction(cur_trans);
1600
1601 trace_btrfs_transaction_commit(root);
1602
1603 if (current->journal_info == trans)
1604 current->journal_info = NULL;
1605 btrfs_scrub_cancel(root->fs_info);
1606
1607 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1608 }
1609
1610 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1611 struct btrfs_root *root)
1612 {
1613 int ret;
1614
1615 ret = btrfs_run_delayed_items(trans, root);
1616 /*
1617 * running the delayed items may have added new refs. account
1618 * them now so that they hinder processing of more delayed refs
1619 * as little as possible.
1620 */
1621 if (ret)
1622 return ret;
1623
1624 /*
1625 * rename don't use btrfs_join_transaction, so, once we
1626 * set the transaction to blocked above, we aren't going
1627 * to get any new ordered operations. We can safely run
1628 * it here and no for sure that nothing new will be added
1629 * to the list
1630 */
1631 ret = btrfs_run_ordered_operations(trans, root, 1);
1632
1633 return ret;
1634 }
1635
1636 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1637 {
1638 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1639 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1640 return 0;
1641 }
1642
1643 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1644 {
1645 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1646 btrfs_wait_ordered_roots(fs_info, -1);
1647 }
1648
1649 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1650 struct btrfs_root *root)
1651 {
1652 struct btrfs_transaction *cur_trans = trans->transaction;
1653 struct btrfs_transaction *prev_trans = NULL;
1654 int ret;
1655
1656 ret = btrfs_run_ordered_operations(trans, root, 0);
1657 if (ret) {
1658 btrfs_abort_transaction(trans, root, ret);
1659 btrfs_end_transaction(trans, root);
1660 return ret;
1661 }
1662
1663 /* Stop the commit early if ->aborted is set */
1664 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1665 ret = cur_trans->aborted;
1666 btrfs_end_transaction(trans, root);
1667 return ret;
1668 }
1669
1670 /* make a pass through all the delayed refs we have so far
1671 * any runnings procs may add more while we are here
1672 */
1673 ret = btrfs_run_delayed_refs(trans, root, 0);
1674 if (ret) {
1675 btrfs_end_transaction(trans, root);
1676 return ret;
1677 }
1678
1679 btrfs_trans_release_metadata(trans, root);
1680 trans->block_rsv = NULL;
1681 if (trans->qgroup_reserved) {
1682 btrfs_qgroup_free(root, trans->qgroup_reserved);
1683 trans->qgroup_reserved = 0;
1684 }
1685
1686 cur_trans = trans->transaction;
1687
1688 /*
1689 * set the flushing flag so procs in this transaction have to
1690 * start sending their work down.
1691 */
1692 cur_trans->delayed_refs.flushing = 1;
1693 smp_wmb();
1694
1695 if (!list_empty(&trans->new_bgs))
1696 btrfs_create_pending_block_groups(trans, root);
1697
1698 ret = btrfs_run_delayed_refs(trans, root, 0);
1699 if (ret) {
1700 btrfs_end_transaction(trans, root);
1701 return ret;
1702 }
1703
1704 spin_lock(&root->fs_info->trans_lock);
1705 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1706 spin_unlock(&root->fs_info->trans_lock);
1707 atomic_inc(&cur_trans->use_count);
1708 ret = btrfs_end_transaction(trans, root);
1709
1710 wait_for_commit(root, cur_trans);
1711
1712 btrfs_put_transaction(cur_trans);
1713
1714 return ret;
1715 }
1716
1717 cur_trans->state = TRANS_STATE_COMMIT_START;
1718 wake_up(&root->fs_info->transaction_blocked_wait);
1719
1720 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1721 prev_trans = list_entry(cur_trans->list.prev,
1722 struct btrfs_transaction, list);
1723 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1724 atomic_inc(&prev_trans->use_count);
1725 spin_unlock(&root->fs_info->trans_lock);
1726
1727 wait_for_commit(root, prev_trans);
1728
1729 btrfs_put_transaction(prev_trans);
1730 } else {
1731 spin_unlock(&root->fs_info->trans_lock);
1732 }
1733 } else {
1734 spin_unlock(&root->fs_info->trans_lock);
1735 }
1736
1737 extwriter_counter_dec(cur_trans, trans->type);
1738
1739 ret = btrfs_start_delalloc_flush(root->fs_info);
1740 if (ret)
1741 goto cleanup_transaction;
1742
1743 ret = btrfs_flush_all_pending_stuffs(trans, root);
1744 if (ret)
1745 goto cleanup_transaction;
1746
1747 wait_event(cur_trans->writer_wait,
1748 extwriter_counter_read(cur_trans) == 0);
1749
1750 /* some pending stuffs might be added after the previous flush. */
1751 ret = btrfs_flush_all_pending_stuffs(trans, root);
1752 if (ret)
1753 goto cleanup_transaction;
1754
1755 btrfs_wait_delalloc_flush(root->fs_info);
1756
1757 btrfs_scrub_pause(root);
1758 /*
1759 * Ok now we need to make sure to block out any other joins while we
1760 * commit the transaction. We could have started a join before setting
1761 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1762 */
1763 spin_lock(&root->fs_info->trans_lock);
1764 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1765 spin_unlock(&root->fs_info->trans_lock);
1766 wait_event(cur_trans->writer_wait,
1767 atomic_read(&cur_trans->num_writers) == 1);
1768
1769 /* ->aborted might be set after the previous check, so check it */
1770 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1771 ret = cur_trans->aborted;
1772 goto scrub_continue;
1773 }
1774 /*
1775 * the reloc mutex makes sure that we stop
1776 * the balancing code from coming in and moving
1777 * extents around in the middle of the commit
1778 */
1779 mutex_lock(&root->fs_info->reloc_mutex);
1780
1781 /*
1782 * We needn't worry about the delayed items because we will
1783 * deal with them in create_pending_snapshot(), which is the
1784 * core function of the snapshot creation.
1785 */
1786 ret = create_pending_snapshots(trans, root->fs_info);
1787 if (ret) {
1788 mutex_unlock(&root->fs_info->reloc_mutex);
1789 goto scrub_continue;
1790 }
1791
1792 /*
1793 * We insert the dir indexes of the snapshots and update the inode
1794 * of the snapshots' parents after the snapshot creation, so there
1795 * are some delayed items which are not dealt with. Now deal with
1796 * them.
1797 *
1798 * We needn't worry that this operation will corrupt the snapshots,
1799 * because all the tree which are snapshoted will be forced to COW
1800 * the nodes and leaves.
1801 */
1802 ret = btrfs_run_delayed_items(trans, root);
1803 if (ret) {
1804 mutex_unlock(&root->fs_info->reloc_mutex);
1805 goto scrub_continue;
1806 }
1807
1808 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1809 if (ret) {
1810 mutex_unlock(&root->fs_info->reloc_mutex);
1811 goto scrub_continue;
1812 }
1813
1814 /*
1815 * make sure none of the code above managed to slip in a
1816 * delayed item
1817 */
1818 btrfs_assert_delayed_root_empty(root);
1819
1820 WARN_ON(cur_trans != trans->transaction);
1821
1822 /* btrfs_commit_tree_roots is responsible for getting the
1823 * various roots consistent with each other. Every pointer
1824 * in the tree of tree roots has to point to the most up to date
1825 * root for every subvolume and other tree. So, we have to keep
1826 * the tree logging code from jumping in and changing any
1827 * of the trees.
1828 *
1829 * At this point in the commit, there can't be any tree-log
1830 * writers, but a little lower down we drop the trans mutex
1831 * and let new people in. By holding the tree_log_mutex
1832 * from now until after the super is written, we avoid races
1833 * with the tree-log code.
1834 */
1835 mutex_lock(&root->fs_info->tree_log_mutex);
1836
1837 ret = commit_fs_roots(trans, root);
1838 if (ret) {
1839 mutex_unlock(&root->fs_info->tree_log_mutex);
1840 mutex_unlock(&root->fs_info->reloc_mutex);
1841 goto scrub_continue;
1842 }
1843
1844 /*
1845 * Since the transaction is done, we should set the inode map cache flag
1846 * before any other comming transaction.
1847 */
1848 if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1849 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1850 else
1851 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1852
1853 /* commit_fs_roots gets rid of all the tree log roots, it is now
1854 * safe to free the root of tree log roots
1855 */
1856 btrfs_free_log_root_tree(trans, root->fs_info);
1857
1858 ret = commit_cowonly_roots(trans, root);
1859 if (ret) {
1860 mutex_unlock(&root->fs_info->tree_log_mutex);
1861 mutex_unlock(&root->fs_info->reloc_mutex);
1862 goto scrub_continue;
1863 }
1864
1865 /*
1866 * The tasks which save the space cache and inode cache may also
1867 * update ->aborted, check it.
1868 */
1869 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1870 ret = cur_trans->aborted;
1871 mutex_unlock(&root->fs_info->tree_log_mutex);
1872 mutex_unlock(&root->fs_info->reloc_mutex);
1873 goto scrub_continue;
1874 }
1875
1876 btrfs_prepare_extent_commit(trans, root);
1877
1878 cur_trans = root->fs_info->running_transaction;
1879
1880 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1881 root->fs_info->tree_root->node);
1882 list_add_tail(&root->fs_info->tree_root->dirty_list,
1883 &cur_trans->switch_commits);
1884
1885 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1886 root->fs_info->chunk_root->node);
1887 list_add_tail(&root->fs_info->chunk_root->dirty_list,
1888 &cur_trans->switch_commits);
1889
1890 switch_commit_roots(cur_trans, root->fs_info);
1891
1892 assert_qgroups_uptodate(trans);
1893 update_super_roots(root);
1894
1895 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1896 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1897 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1898 sizeof(*root->fs_info->super_copy));
1899
1900 spin_lock(&root->fs_info->trans_lock);
1901 cur_trans->state = TRANS_STATE_UNBLOCKED;
1902 root->fs_info->running_transaction = NULL;
1903 spin_unlock(&root->fs_info->trans_lock);
1904 mutex_unlock(&root->fs_info->reloc_mutex);
1905
1906 wake_up(&root->fs_info->transaction_wait);
1907
1908 ret = btrfs_write_and_wait_transaction(trans, root);
1909 if (ret) {
1910 btrfs_error(root->fs_info, ret,
1911 "Error while writing out transaction");
1912 mutex_unlock(&root->fs_info->tree_log_mutex);
1913 goto scrub_continue;
1914 }
1915
1916 ret = write_ctree_super(trans, root, 0);
1917 if (ret) {
1918 mutex_unlock(&root->fs_info->tree_log_mutex);
1919 goto scrub_continue;
1920 }
1921
1922 /*
1923 * the super is written, we can safely allow the tree-loggers
1924 * to go about their business
1925 */
1926 mutex_unlock(&root->fs_info->tree_log_mutex);
1927
1928 btrfs_finish_extent_commit(trans, root);
1929
1930 root->fs_info->last_trans_committed = cur_trans->transid;
1931 /*
1932 * We needn't acquire the lock here because there is no other task
1933 * which can change it.
1934 */
1935 cur_trans->state = TRANS_STATE_COMPLETED;
1936 wake_up(&cur_trans->commit_wait);
1937
1938 spin_lock(&root->fs_info->trans_lock);
1939 list_del_init(&cur_trans->list);
1940 spin_unlock(&root->fs_info->trans_lock);
1941
1942 btrfs_put_transaction(cur_trans);
1943 btrfs_put_transaction(cur_trans);
1944
1945 if (trans->type & __TRANS_FREEZABLE)
1946 sb_end_intwrite(root->fs_info->sb);
1947
1948 trace_btrfs_transaction_commit(root);
1949
1950 btrfs_scrub_continue(root);
1951
1952 if (current->journal_info == trans)
1953 current->journal_info = NULL;
1954
1955 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1956
1957 if (current != root->fs_info->transaction_kthread)
1958 btrfs_run_delayed_iputs(root);
1959
1960 return ret;
1961
1962 scrub_continue:
1963 btrfs_scrub_continue(root);
1964 cleanup_transaction:
1965 btrfs_trans_release_metadata(trans, root);
1966 trans->block_rsv = NULL;
1967 if (trans->qgroup_reserved) {
1968 btrfs_qgroup_free(root, trans->qgroup_reserved);
1969 trans->qgroup_reserved = 0;
1970 }
1971 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1972 if (current->journal_info == trans)
1973 current->journal_info = NULL;
1974 cleanup_transaction(trans, root, ret);
1975
1976 return ret;
1977 }
1978
1979 /*
1980 * return < 0 if error
1981 * 0 if there are no more dead_roots at the time of call
1982 * 1 there are more to be processed, call me again
1983 *
1984 * The return value indicates there are certainly more snapshots to delete, but
1985 * if there comes a new one during processing, it may return 0. We don't mind,
1986 * because btrfs_commit_super will poke cleaner thread and it will process it a
1987 * few seconds later.
1988 */
1989 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1990 {
1991 int ret;
1992 struct btrfs_fs_info *fs_info = root->fs_info;
1993
1994 spin_lock(&fs_info->trans_lock);
1995 if (list_empty(&fs_info->dead_roots)) {
1996 spin_unlock(&fs_info->trans_lock);
1997 return 0;
1998 }
1999 root = list_first_entry(&fs_info->dead_roots,
2000 struct btrfs_root, root_list);
2001 list_del_init(&root->root_list);
2002 spin_unlock(&fs_info->trans_lock);
2003
2004 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2005
2006 btrfs_kill_all_delayed_nodes(root);
2007
2008 if (btrfs_header_backref_rev(root->node) <
2009 BTRFS_MIXED_BACKREF_REV)
2010 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2011 else
2012 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2013 /*
2014 * If we encounter a transaction abort during snapshot cleaning, we
2015 * don't want to crash here
2016 */
2017 return (ret < 0) ? 0 : 1;
2018 }