2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
39 [TRANS_STATE_RUNNING
] = 0U,
40 [TRANS_STATE_BLOCKED
] = (__TRANS_USERSPACE
|
42 [TRANS_STATE_COMMIT_START
] = (__TRANS_USERSPACE
|
45 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_USERSPACE
|
49 [TRANS_STATE_UNBLOCKED
] = (__TRANS_USERSPACE
|
54 [TRANS_STATE_COMPLETED
] = (__TRANS_USERSPACE
|
61 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
63 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
64 if (atomic_dec_and_test(&transaction
->use_count
)) {
65 BUG_ON(!list_empty(&transaction
->list
));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction
->delayed_refs
.href_root
));
67 if (transaction
->delayed_refs
.pending_csums
)
68 printk(KERN_ERR
"pending csums is %llu\n",
69 transaction
->delayed_refs
.pending_csums
);
70 while (!list_empty(&transaction
->pending_chunks
)) {
71 struct extent_map
*em
;
73 em
= list_first_entry(&transaction
->pending_chunks
,
74 struct extent_map
, list
);
75 list_del_init(&em
->list
);
78 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
82 static void clear_btree_io_tree(struct extent_io_tree
*tree
)
84 spin_lock(&tree
->lock
);
85 while (!RB_EMPTY_ROOT(&tree
->state
)) {
87 struct extent_state
*state
;
89 node
= rb_first(&tree
->state
);
90 state
= rb_entry(node
, struct extent_state
, rb_node
);
91 rb_erase(&state
->rb_node
, &tree
->state
);
92 RB_CLEAR_NODE(&state
->rb_node
);
94 * btree io trees aren't supposed to have tasks waiting for
95 * changes in the flags of extent states ever.
97 ASSERT(!waitqueue_active(&state
->wq
));
98 free_extent_state(state
);
100 cond_resched_lock(&tree
->lock
);
102 spin_unlock(&tree
->lock
);
105 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
,
106 struct btrfs_fs_info
*fs_info
)
108 struct btrfs_root
*root
, *tmp
;
110 down_write(&fs_info
->commit_root_sem
);
111 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
113 list_del_init(&root
->dirty_list
);
114 free_extent_buffer(root
->commit_root
);
115 root
->commit_root
= btrfs_root_node(root
);
116 if (is_fstree(root
->objectid
))
117 btrfs_unpin_free_ino(root
);
118 clear_btree_io_tree(&root
->dirty_log_pages
);
120 up_write(&fs_info
->commit_root_sem
);
123 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
126 if (type
& TRANS_EXTWRITERS
)
127 atomic_inc(&trans
->num_extwriters
);
130 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
133 if (type
& TRANS_EXTWRITERS
)
134 atomic_dec(&trans
->num_extwriters
);
137 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
140 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
143 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
145 return atomic_read(&trans
->num_extwriters
);
149 * either allocate a new transaction or hop into the existing one
151 static noinline
int join_transaction(struct btrfs_root
*root
, unsigned int type
)
153 struct btrfs_transaction
*cur_trans
;
154 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
156 spin_lock(&fs_info
->trans_lock
);
158 /* The file system has been taken offline. No new transactions. */
159 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
160 spin_unlock(&fs_info
->trans_lock
);
164 cur_trans
= fs_info
->running_transaction
;
166 if (cur_trans
->aborted
) {
167 spin_unlock(&fs_info
->trans_lock
);
168 return cur_trans
->aborted
;
170 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
171 spin_unlock(&fs_info
->trans_lock
);
174 atomic_inc(&cur_trans
->use_count
);
175 atomic_inc(&cur_trans
->num_writers
);
176 extwriter_counter_inc(cur_trans
, type
);
177 spin_unlock(&fs_info
->trans_lock
);
180 spin_unlock(&fs_info
->trans_lock
);
183 * If we are ATTACH, we just want to catch the current transaction,
184 * and commit it. If there is no transaction, just return ENOENT.
186 if (type
== TRANS_ATTACH
)
190 * JOIN_NOLOCK only happens during the transaction commit, so
191 * it is impossible that ->running_transaction is NULL
193 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
195 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
199 spin_lock(&fs_info
->trans_lock
);
200 if (fs_info
->running_transaction
) {
202 * someone started a transaction after we unlocked. Make sure
203 * to redo the checks above
205 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
207 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
208 spin_unlock(&fs_info
->trans_lock
);
209 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
213 atomic_set(&cur_trans
->num_writers
, 1);
214 extwriter_counter_init(cur_trans
, type
);
215 init_waitqueue_head(&cur_trans
->writer_wait
);
216 init_waitqueue_head(&cur_trans
->commit_wait
);
217 cur_trans
->state
= TRANS_STATE_RUNNING
;
219 * One for this trans handle, one so it will live on until we
220 * commit the transaction.
222 atomic_set(&cur_trans
->use_count
, 2);
223 cur_trans
->have_free_bgs
= 0;
224 cur_trans
->start_time
= get_seconds();
225 cur_trans
->dirty_bg_run
= 0;
227 cur_trans
->delayed_refs
.href_root
= RB_ROOT
;
228 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
229 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
230 cur_trans
->delayed_refs
.num_heads_ready
= 0;
231 cur_trans
->delayed_refs
.pending_csums
= 0;
232 cur_trans
->delayed_refs
.num_heads
= 0;
233 cur_trans
->delayed_refs
.flushing
= 0;
234 cur_trans
->delayed_refs
.run_delayed_start
= 0;
235 cur_trans
->delayed_refs
.qgroup_to_skip
= 0;
238 * although the tree mod log is per file system and not per transaction,
239 * the log must never go across transaction boundaries.
242 if (!list_empty(&fs_info
->tree_mod_seq_list
))
243 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when "
244 "creating a fresh transaction\n");
245 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
246 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when "
247 "creating a fresh transaction\n");
248 atomic64_set(&fs_info
->tree_mod_seq
, 0);
250 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
252 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
253 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
254 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
255 INIT_LIST_HEAD(&cur_trans
->pending_ordered
);
256 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
257 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
258 mutex_init(&cur_trans
->cache_write_mutex
);
259 cur_trans
->num_dirty_bgs
= 0;
260 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
261 INIT_LIST_HEAD(&cur_trans
->deleted_bgs
);
262 spin_lock_init(&cur_trans
->deleted_bgs_lock
);
263 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
264 extent_io_tree_init(&cur_trans
->dirty_pages
,
265 fs_info
->btree_inode
->i_mapping
);
266 fs_info
->generation
++;
267 cur_trans
->transid
= fs_info
->generation
;
268 fs_info
->running_transaction
= cur_trans
;
269 cur_trans
->aborted
= 0;
270 spin_unlock(&fs_info
->trans_lock
);
276 * this does all the record keeping required to make sure that a reference
277 * counted root is properly recorded in a given transaction. This is required
278 * to make sure the old root from before we joined the transaction is deleted
279 * when the transaction commits
281 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
282 struct btrfs_root
*root
)
284 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
285 root
->last_trans
< trans
->transid
) {
286 WARN_ON(root
== root
->fs_info
->extent_root
);
287 WARN_ON(root
->commit_root
!= root
->node
);
290 * see below for IN_TRANS_SETUP usage rules
291 * we have the reloc mutex held now, so there
292 * is only one writer in this function
294 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
296 /* make sure readers find IN_TRANS_SETUP before
297 * they find our root->last_trans update
301 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
302 if (root
->last_trans
== trans
->transid
) {
303 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
306 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
307 (unsigned long)root
->root_key
.objectid
,
308 BTRFS_ROOT_TRANS_TAG
);
309 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
310 root
->last_trans
= trans
->transid
;
312 /* this is pretty tricky. We don't want to
313 * take the relocation lock in btrfs_record_root_in_trans
314 * unless we're really doing the first setup for this root in
317 * Normally we'd use root->last_trans as a flag to decide
318 * if we want to take the expensive mutex.
320 * But, we have to set root->last_trans before we
321 * init the relocation root, otherwise, we trip over warnings
322 * in ctree.c. The solution used here is to flag ourselves
323 * with root IN_TRANS_SETUP. When this is 1, we're still
324 * fixing up the reloc trees and everyone must wait.
326 * When this is zero, they can trust root->last_trans and fly
327 * through btrfs_record_root_in_trans without having to take the
328 * lock. smp_wmb() makes sure that all the writes above are
329 * done before we pop in the zero below
331 btrfs_init_reloc_root(trans
, root
);
332 smp_mb__before_atomic();
333 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
339 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
340 struct btrfs_root
*root
)
342 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
346 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
350 if (root
->last_trans
== trans
->transid
&&
351 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
354 mutex_lock(&root
->fs_info
->reloc_mutex
);
355 record_root_in_trans(trans
, root
);
356 mutex_unlock(&root
->fs_info
->reloc_mutex
);
361 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
363 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
364 trans
->state
< TRANS_STATE_UNBLOCKED
&&
368 /* wait for commit against the current transaction to become unblocked
369 * when this is done, it is safe to start a new transaction, but the current
370 * transaction might not be fully on disk.
372 static void wait_current_trans(struct btrfs_root
*root
)
374 struct btrfs_transaction
*cur_trans
;
376 spin_lock(&root
->fs_info
->trans_lock
);
377 cur_trans
= root
->fs_info
->running_transaction
;
378 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
379 atomic_inc(&cur_trans
->use_count
);
380 spin_unlock(&root
->fs_info
->trans_lock
);
382 wait_event(root
->fs_info
->transaction_wait
,
383 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
385 btrfs_put_transaction(cur_trans
);
387 spin_unlock(&root
->fs_info
->trans_lock
);
391 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
393 if (root
->fs_info
->log_root_recovering
)
396 if (type
== TRANS_USERSPACE
)
399 if (type
== TRANS_START
&&
400 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
406 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
408 if (!root
->fs_info
->reloc_ctl
||
409 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
410 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
417 static struct btrfs_trans_handle
*
418 start_transaction(struct btrfs_root
*root
, u64 num_items
, unsigned int type
,
419 enum btrfs_reserve_flush_enum flush
)
421 struct btrfs_trans_handle
*h
;
422 struct btrfs_transaction
*cur_trans
;
424 u64 qgroup_reserved
= 0;
425 bool reloc_reserved
= false;
428 /* Send isn't supposed to start transactions. */
429 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
431 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
432 return ERR_PTR(-EROFS
);
434 if (current
->journal_info
) {
435 WARN_ON(type
& TRANS_EXTWRITERS
);
436 h
= current
->journal_info
;
438 WARN_ON(h
->use_count
> 2);
439 h
->orig_rsv
= h
->block_rsv
;
445 * Do the reservation before we join the transaction so we can do all
446 * the appropriate flushing if need be.
448 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
449 if (root
->fs_info
->quota_enabled
&&
450 is_fstree(root
->root_key
.objectid
)) {
451 qgroup_reserved
= num_items
* root
->nodesize
;
452 ret
= btrfs_qgroup_reserve(root
, qgroup_reserved
);
457 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
459 * Do the reservation for the relocation root creation
461 if (need_reserve_reloc_root(root
)) {
462 num_bytes
+= root
->nodesize
;
463 reloc_reserved
= true;
466 ret
= btrfs_block_rsv_add(root
,
467 &root
->fs_info
->trans_block_rsv
,
473 h
= kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
480 * If we are JOIN_NOLOCK we're already committing a transaction and
481 * waiting on this guy, so we don't need to do the sb_start_intwrite
482 * because we're already holding a ref. We need this because we could
483 * have raced in and did an fsync() on a file which can kick a commit
484 * and then we deadlock with somebody doing a freeze.
486 * If we are ATTACH, it means we just want to catch the current
487 * transaction and commit it, so we needn't do sb_start_intwrite().
489 if (type
& __TRANS_FREEZABLE
)
490 sb_start_intwrite(root
->fs_info
->sb
);
492 if (may_wait_transaction(root
, type
))
493 wait_current_trans(root
);
496 ret
= join_transaction(root
, type
);
498 wait_current_trans(root
);
499 if (unlikely(type
== TRANS_ATTACH
))
502 } while (ret
== -EBUSY
);
505 /* We must get the transaction if we are JOIN_NOLOCK. */
506 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
510 cur_trans
= root
->fs_info
->running_transaction
;
512 h
->transid
= cur_trans
->transid
;
513 h
->transaction
= cur_trans
;
515 h
->bytes_reserved
= 0;
516 h
->chunk_bytes_reserved
= 0;
518 h
->delayed_ref_updates
= 0;
524 h
->qgroup_reserved
= 0;
525 h
->delayed_ref_elem
.seq
= 0;
527 h
->allocating_chunk
= false;
528 h
->reloc_reserved
= false;
530 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
531 INIT_LIST_HEAD(&h
->new_bgs
);
532 INIT_LIST_HEAD(&h
->ordered
);
535 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
536 may_wait_transaction(root
, type
)) {
537 current
->journal_info
= h
;
538 btrfs_commit_transaction(h
, root
);
543 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
544 h
->transid
, num_bytes
, 1);
545 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
546 h
->bytes_reserved
= num_bytes
;
547 h
->reloc_reserved
= reloc_reserved
;
549 h
->qgroup_reserved
= qgroup_reserved
;
552 btrfs_record_root_in_trans(h
, root
);
554 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
555 current
->journal_info
= h
;
559 if (type
& __TRANS_FREEZABLE
)
560 sb_end_intwrite(root
->fs_info
->sb
);
561 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
564 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
568 btrfs_qgroup_free(root
, qgroup_reserved
);
572 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
575 return start_transaction(root
, num_items
, TRANS_START
,
576 BTRFS_RESERVE_FLUSH_ALL
);
579 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
580 struct btrfs_root
*root
, int num_items
)
582 return start_transaction(root
, num_items
, TRANS_START
,
583 BTRFS_RESERVE_FLUSH_LIMIT
);
586 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
588 return start_transaction(root
, 0, TRANS_JOIN
, 0);
591 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
593 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
, 0);
596 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
598 return start_transaction(root
, 0, TRANS_USERSPACE
, 0);
602 * btrfs_attach_transaction() - catch the running transaction
604 * It is used when we want to commit the current the transaction, but
605 * don't want to start a new one.
607 * Note: If this function return -ENOENT, it just means there is no
608 * running transaction. But it is possible that the inactive transaction
609 * is still in the memory, not fully on disk. If you hope there is no
610 * inactive transaction in the fs when -ENOENT is returned, you should
612 * btrfs_attach_transaction_barrier()
614 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
616 return start_transaction(root
, 0, TRANS_ATTACH
, 0);
620 * btrfs_attach_transaction_barrier() - catch the running transaction
622 * It is similar to the above function, the differentia is this one
623 * will wait for all the inactive transactions until they fully
626 struct btrfs_trans_handle
*
627 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
629 struct btrfs_trans_handle
*trans
;
631 trans
= start_transaction(root
, 0, TRANS_ATTACH
, 0);
632 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
633 btrfs_wait_for_commit(root
, 0);
638 /* wait for a transaction commit to be fully complete */
639 static noinline
void wait_for_commit(struct btrfs_root
*root
,
640 struct btrfs_transaction
*commit
)
642 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
645 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
647 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
651 if (transid
<= root
->fs_info
->last_trans_committed
)
654 /* find specified transaction */
655 spin_lock(&root
->fs_info
->trans_lock
);
656 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
657 if (t
->transid
== transid
) {
659 atomic_inc(&cur_trans
->use_count
);
663 if (t
->transid
> transid
) {
668 spin_unlock(&root
->fs_info
->trans_lock
);
671 * The specified transaction doesn't exist, or we
672 * raced with btrfs_commit_transaction
675 if (transid
> root
->fs_info
->last_trans_committed
)
680 /* find newest transaction that is committing | committed */
681 spin_lock(&root
->fs_info
->trans_lock
);
682 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
684 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
685 if (t
->state
== TRANS_STATE_COMPLETED
)
688 atomic_inc(&cur_trans
->use_count
);
692 spin_unlock(&root
->fs_info
->trans_lock
);
694 goto out
; /* nothing committing|committed */
697 wait_for_commit(root
, cur_trans
);
698 btrfs_put_transaction(cur_trans
);
703 void btrfs_throttle(struct btrfs_root
*root
)
705 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
706 wait_current_trans(root
);
709 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
710 struct btrfs_root
*root
)
712 if (root
->fs_info
->global_block_rsv
.space_info
->full
&&
713 btrfs_check_space_for_delayed_refs(trans
, root
))
716 return !!btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
719 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
720 struct btrfs_root
*root
)
722 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
727 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
728 cur_trans
->delayed_refs
.flushing
)
731 updates
= trans
->delayed_ref_updates
;
732 trans
->delayed_ref_updates
= 0;
734 err
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
735 if (err
) /* Error code will also eval true */
739 return should_end_transaction(trans
, root
);
742 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
743 struct btrfs_root
*root
, int throttle
)
745 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
746 struct btrfs_fs_info
*info
= root
->fs_info
;
747 unsigned long cur
= trans
->delayed_ref_updates
;
748 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
750 int must_run_delayed_refs
= 0;
752 if (trans
->use_count
> 1) {
754 trans
->block_rsv
= trans
->orig_rsv
;
758 btrfs_trans_release_metadata(trans
, root
);
759 trans
->block_rsv
= NULL
;
761 if (!list_empty(&trans
->new_bgs
))
762 btrfs_create_pending_block_groups(trans
, root
);
764 if (!list_empty(&trans
->ordered
)) {
765 spin_lock(&info
->trans_lock
);
766 list_splice_init(&trans
->ordered
, &cur_trans
->pending_ordered
);
767 spin_unlock(&info
->trans_lock
);
770 trans
->delayed_ref_updates
= 0;
772 must_run_delayed_refs
=
773 btrfs_should_throttle_delayed_refs(trans
, root
);
774 cur
= max_t(unsigned long, cur
, 32);
777 * don't make the caller wait if they are from a NOLOCK
778 * or ATTACH transaction, it will deadlock with commit
780 if (must_run_delayed_refs
== 1 &&
781 (trans
->type
& (__TRANS_JOIN_NOLOCK
| __TRANS_ATTACH
)))
782 must_run_delayed_refs
= 2;
785 if (trans
->qgroup_reserved
) {
787 * the same root has to be passed here between start_transaction
788 * and end_transaction. Subvolume quota depends on this.
790 btrfs_qgroup_free(trans
->root
, trans
->qgroup_reserved
);
791 trans
->qgroup_reserved
= 0;
794 btrfs_trans_release_metadata(trans
, root
);
795 trans
->block_rsv
= NULL
;
797 if (!list_empty(&trans
->new_bgs
))
798 btrfs_create_pending_block_groups(trans
, root
);
800 btrfs_trans_release_chunk_metadata(trans
);
802 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
803 should_end_transaction(trans
, root
) &&
804 ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
805 spin_lock(&info
->trans_lock
);
806 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
807 cur_trans
->state
= TRANS_STATE_BLOCKED
;
808 spin_unlock(&info
->trans_lock
);
811 if (lock
&& ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
813 return btrfs_commit_transaction(trans
, root
);
815 wake_up_process(info
->transaction_kthread
);
818 if (trans
->type
& __TRANS_FREEZABLE
)
819 sb_end_intwrite(root
->fs_info
->sb
);
821 WARN_ON(cur_trans
!= info
->running_transaction
);
822 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
823 atomic_dec(&cur_trans
->num_writers
);
824 extwriter_counter_dec(cur_trans
, trans
->type
);
827 if (waitqueue_active(&cur_trans
->writer_wait
))
828 wake_up(&cur_trans
->writer_wait
);
829 btrfs_put_transaction(cur_trans
);
831 if (current
->journal_info
== trans
)
832 current
->journal_info
= NULL
;
835 btrfs_run_delayed_iputs(root
);
837 if (trans
->aborted
||
838 test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
839 wake_up_process(info
->transaction_kthread
);
842 assert_qgroups_uptodate(trans
);
844 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
845 if (must_run_delayed_refs
) {
846 btrfs_async_run_delayed_refs(root
, cur
,
847 must_run_delayed_refs
== 1);
852 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
853 struct btrfs_root
*root
)
855 return __btrfs_end_transaction(trans
, root
, 0);
858 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
859 struct btrfs_root
*root
)
861 return __btrfs_end_transaction(trans
, root
, 1);
865 * when btree blocks are allocated, they have some corresponding bits set for
866 * them in one of two extent_io trees. This is used to make sure all of
867 * those extents are sent to disk but does not wait on them
869 int btrfs_write_marked_extents(struct btrfs_root
*root
,
870 struct extent_io_tree
*dirty_pages
, int mark
)
874 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
875 struct extent_state
*cached_state
= NULL
;
879 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
880 mark
, &cached_state
)) {
881 bool wait_writeback
= false;
883 err
= convert_extent_bit(dirty_pages
, start
, end
,
885 mark
, &cached_state
, GFP_NOFS
);
887 * convert_extent_bit can return -ENOMEM, which is most of the
888 * time a temporary error. So when it happens, ignore the error
889 * and wait for writeback of this range to finish - because we
890 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
891 * to btrfs_wait_marked_extents() would not know that writeback
892 * for this range started and therefore wouldn't wait for it to
893 * finish - we don't want to commit a superblock that points to
894 * btree nodes/leafs for which writeback hasn't finished yet
895 * (and without errors).
896 * We cleanup any entries left in the io tree when committing
897 * the transaction (through clear_btree_io_tree()).
899 if (err
== -ENOMEM
) {
901 wait_writeback
= true;
904 err
= filemap_fdatawrite_range(mapping
, start
, end
);
907 else if (wait_writeback
)
908 werr
= filemap_fdatawait_range(mapping
, start
, end
);
909 free_extent_state(cached_state
);
918 * when btree blocks are allocated, they have some corresponding bits set for
919 * them in one of two extent_io trees. This is used to make sure all of
920 * those extents are on disk for transaction or log commit. We wait
921 * on all the pages and clear them from the dirty pages state tree
923 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
924 struct extent_io_tree
*dirty_pages
, int mark
)
928 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
929 struct extent_state
*cached_state
= NULL
;
932 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
935 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
936 EXTENT_NEED_WAIT
, &cached_state
)) {
938 * Ignore -ENOMEM errors returned by clear_extent_bit().
939 * When committing the transaction, we'll remove any entries
940 * left in the io tree. For a log commit, we don't remove them
941 * after committing the log because the tree can be accessed
942 * concurrently - we do it only at transaction commit time when
943 * it's safe to do it (through clear_btree_io_tree()).
945 err
= clear_extent_bit(dirty_pages
, start
, end
,
947 0, 0, &cached_state
, GFP_NOFS
);
951 err
= filemap_fdatawait_range(mapping
, start
, end
);
954 free_extent_state(cached_state
);
962 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
963 if ((mark
& EXTENT_DIRTY
) &&
964 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
,
965 &btree_ino
->runtime_flags
))
968 if ((mark
& EXTENT_NEW
) &&
969 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
,
970 &btree_ino
->runtime_flags
))
973 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR
,
974 &btree_ino
->runtime_flags
))
985 * when btree blocks are allocated, they have some corresponding bits set for
986 * them in one of two extent_io trees. This is used to make sure all of
987 * those extents are on disk for transaction or log commit
989 static int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
990 struct extent_io_tree
*dirty_pages
, int mark
)
994 struct blk_plug plug
;
996 blk_start_plug(&plug
);
997 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
998 blk_finish_plug(&plug
);
999 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
1008 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
1009 struct btrfs_root
*root
)
1013 ret
= btrfs_write_and_wait_marked_extents(root
,
1014 &trans
->transaction
->dirty_pages
,
1016 clear_btree_io_tree(&trans
->transaction
->dirty_pages
);
1022 * this is used to update the root pointer in the tree of tree roots.
1024 * But, in the case of the extent allocation tree, updating the root
1025 * pointer may allocate blocks which may change the root of the extent
1028 * So, this loops and repeats and makes sure the cowonly root didn't
1029 * change while the root pointer was being updated in the metadata.
1031 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1032 struct btrfs_root
*root
)
1035 u64 old_root_bytenr
;
1037 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
1039 old_root_used
= btrfs_root_used(&root
->root_item
);
1042 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1043 if (old_root_bytenr
== root
->node
->start
&&
1044 old_root_used
== btrfs_root_used(&root
->root_item
))
1047 btrfs_set_root_node(&root
->root_item
, root
->node
);
1048 ret
= btrfs_update_root(trans
, tree_root
,
1054 old_root_used
= btrfs_root_used(&root
->root_item
);
1061 * update all the cowonly tree roots on disk
1063 * The error handling in this function may not be obvious. Any of the
1064 * failures will cause the file system to go offline. We still need
1065 * to clean up the delayed refs.
1067 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
1068 struct btrfs_root
*root
)
1070 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1071 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1072 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1073 struct list_head
*next
;
1074 struct extent_buffer
*eb
;
1077 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1078 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1080 btrfs_tree_unlock(eb
);
1081 free_extent_buffer(eb
);
1086 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1090 ret
= btrfs_run_dev_stats(trans
, root
->fs_info
);
1093 ret
= btrfs_run_dev_replace(trans
, root
->fs_info
);
1096 ret
= btrfs_run_qgroups(trans
, root
->fs_info
);
1100 ret
= btrfs_setup_space_cache(trans
, root
);
1104 /* run_qgroups might have added some more refs */
1105 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1109 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1110 next
= fs_info
->dirty_cowonly_roots
.next
;
1111 list_del_init(next
);
1112 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1113 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1115 if (root
!= fs_info
->extent_root
)
1116 list_add_tail(&root
->dirty_list
,
1117 &trans
->transaction
->switch_commits
);
1118 ret
= update_cowonly_root(trans
, root
);
1121 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1126 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1127 ret
= btrfs_write_dirty_block_groups(trans
, root
);
1130 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1135 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1138 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1139 &trans
->transaction
->switch_commits
);
1140 btrfs_after_dev_replace_commit(fs_info
);
1146 * dead roots are old snapshots that need to be deleted. This allocates
1147 * a dirty root struct and adds it into the list of dead roots that need to
1150 void btrfs_add_dead_root(struct btrfs_root
*root
)
1152 spin_lock(&root
->fs_info
->trans_lock
);
1153 if (list_empty(&root
->root_list
))
1154 list_add_tail(&root
->root_list
, &root
->fs_info
->dead_roots
);
1155 spin_unlock(&root
->fs_info
->trans_lock
);
1159 * update all the cowonly tree roots on disk
1161 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
1162 struct btrfs_root
*root
)
1164 struct btrfs_root
*gang
[8];
1165 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1170 spin_lock(&fs_info
->fs_roots_radix_lock
);
1172 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1175 BTRFS_ROOT_TRANS_TAG
);
1178 for (i
= 0; i
< ret
; i
++) {
1180 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1181 (unsigned long)root
->root_key
.objectid
,
1182 BTRFS_ROOT_TRANS_TAG
);
1183 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1185 btrfs_free_log(trans
, root
);
1186 btrfs_update_reloc_root(trans
, root
);
1187 btrfs_orphan_commit_root(trans
, root
);
1189 btrfs_save_ino_cache(root
, trans
);
1191 /* see comments in should_cow_block() */
1192 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1193 smp_mb__after_atomic();
1195 if (root
->commit_root
!= root
->node
) {
1196 list_add_tail(&root
->dirty_list
,
1197 &trans
->transaction
->switch_commits
);
1198 btrfs_set_root_node(&root
->root_item
,
1202 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1205 spin_lock(&fs_info
->fs_roots_radix_lock
);
1210 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1215 * defrag a given btree.
1216 * Every leaf in the btree is read and defragged.
1218 int btrfs_defrag_root(struct btrfs_root
*root
)
1220 struct btrfs_fs_info
*info
= root
->fs_info
;
1221 struct btrfs_trans_handle
*trans
;
1224 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1228 trans
= btrfs_start_transaction(root
, 0);
1230 return PTR_ERR(trans
);
1232 ret
= btrfs_defrag_leaves(trans
, root
);
1234 btrfs_end_transaction(trans
, root
);
1235 btrfs_btree_balance_dirty(info
->tree_root
);
1238 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
1241 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1242 pr_debug("BTRFS: defrag_root cancelled\n");
1247 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1252 * new snapshots need to be created at a very specific time in the
1253 * transaction commit. This does the actual creation.
1256 * If the error which may affect the commitment of the current transaction
1257 * happens, we should return the error number. If the error which just affect
1258 * the creation of the pending snapshots, just return 0.
1260 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1261 struct btrfs_fs_info
*fs_info
,
1262 struct btrfs_pending_snapshot
*pending
)
1264 struct btrfs_key key
;
1265 struct btrfs_root_item
*new_root_item
;
1266 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1267 struct btrfs_root
*root
= pending
->root
;
1268 struct btrfs_root
*parent_root
;
1269 struct btrfs_block_rsv
*rsv
;
1270 struct inode
*parent_inode
;
1271 struct btrfs_path
*path
;
1272 struct btrfs_dir_item
*dir_item
;
1273 struct dentry
*dentry
;
1274 struct extent_buffer
*tmp
;
1275 struct extent_buffer
*old
;
1276 struct timespec cur_time
= CURRENT_TIME
;
1284 path
= btrfs_alloc_path();
1286 pending
->error
= -ENOMEM
;
1290 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
1291 if (!new_root_item
) {
1292 pending
->error
= -ENOMEM
;
1293 goto root_item_alloc_fail
;
1296 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1298 goto no_free_objectid
;
1301 * Make qgroup to skip current new snapshot's qgroupid, as it is
1302 * accounted by later btrfs_qgroup_inherit().
1304 btrfs_set_skip_qgroup(trans
, objectid
);
1306 btrfs_reloc_pre_snapshot(pending
, &to_reserve
);
1308 if (to_reserve
> 0) {
1309 pending
->error
= btrfs_block_rsv_add(root
,
1310 &pending
->block_rsv
,
1312 BTRFS_RESERVE_NO_FLUSH
);
1314 goto clear_skip_qgroup
;
1317 key
.objectid
= objectid
;
1318 key
.offset
= (u64
)-1;
1319 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1321 rsv
= trans
->block_rsv
;
1322 trans
->block_rsv
= &pending
->block_rsv
;
1323 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1325 dentry
= pending
->dentry
;
1326 parent_inode
= pending
->dir
;
1327 parent_root
= BTRFS_I(parent_inode
)->root
;
1328 record_root_in_trans(trans
, parent_root
);
1331 * insert the directory item
1333 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1334 BUG_ON(ret
); /* -ENOMEM */
1336 /* check if there is a file/dir which has the same name. */
1337 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1338 btrfs_ino(parent_inode
),
1339 dentry
->d_name
.name
,
1340 dentry
->d_name
.len
, 0);
1341 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1342 pending
->error
= -EEXIST
;
1343 goto dir_item_existed
;
1344 } else if (IS_ERR(dir_item
)) {
1345 ret
= PTR_ERR(dir_item
);
1346 btrfs_abort_transaction(trans
, root
, ret
);
1349 btrfs_release_path(path
);
1352 * pull in the delayed directory update
1353 * and the delayed inode item
1354 * otherwise we corrupt the FS during
1357 ret
= btrfs_run_delayed_items(trans
, root
);
1358 if (ret
) { /* Transaction aborted */
1359 btrfs_abort_transaction(trans
, root
, ret
);
1363 record_root_in_trans(trans
, root
);
1364 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1365 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1366 btrfs_check_and_init_root_item(new_root_item
);
1368 root_flags
= btrfs_root_flags(new_root_item
);
1369 if (pending
->readonly
)
1370 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1372 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1373 btrfs_set_root_flags(new_root_item
, root_flags
);
1375 btrfs_set_root_generation_v2(new_root_item
,
1377 uuid_le_gen(&new_uuid
);
1378 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1379 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1381 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1382 memset(new_root_item
->received_uuid
, 0,
1383 sizeof(new_root_item
->received_uuid
));
1384 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1385 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1386 btrfs_set_root_stransid(new_root_item
, 0);
1387 btrfs_set_root_rtransid(new_root_item
, 0);
1389 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1390 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1391 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1393 old
= btrfs_lock_root_node(root
);
1394 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1396 btrfs_tree_unlock(old
);
1397 free_extent_buffer(old
);
1398 btrfs_abort_transaction(trans
, root
, ret
);
1402 btrfs_set_lock_blocking(old
);
1404 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1405 /* clean up in any case */
1406 btrfs_tree_unlock(old
);
1407 free_extent_buffer(old
);
1409 btrfs_abort_transaction(trans
, root
, ret
);
1412 /* see comments in should_cow_block() */
1413 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1416 btrfs_set_root_node(new_root_item
, tmp
);
1417 /* record when the snapshot was created in key.offset */
1418 key
.offset
= trans
->transid
;
1419 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1420 btrfs_tree_unlock(tmp
);
1421 free_extent_buffer(tmp
);
1423 btrfs_abort_transaction(trans
, root
, ret
);
1428 * insert root back/forward references
1430 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1431 parent_root
->root_key
.objectid
,
1432 btrfs_ino(parent_inode
), index
,
1433 dentry
->d_name
.name
, dentry
->d_name
.len
);
1435 btrfs_abort_transaction(trans
, root
, ret
);
1439 key
.offset
= (u64
)-1;
1440 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1441 if (IS_ERR(pending
->snap
)) {
1442 ret
= PTR_ERR(pending
->snap
);
1443 btrfs_abort_transaction(trans
, root
, ret
);
1447 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1449 btrfs_abort_transaction(trans
, root
, ret
);
1453 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1455 btrfs_abort_transaction(trans
, root
, ret
);
1459 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1460 dentry
->d_name
.name
, dentry
->d_name
.len
,
1462 BTRFS_FT_DIR
, index
);
1463 /* We have check then name at the beginning, so it is impossible. */
1464 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1466 btrfs_abort_transaction(trans
, root
, ret
);
1470 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1471 dentry
->d_name
.len
* 2);
1472 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
1473 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1475 btrfs_abort_transaction(trans
, root
, ret
);
1478 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
, new_uuid
.b
,
1479 BTRFS_UUID_KEY_SUBVOL
, objectid
);
1481 btrfs_abort_transaction(trans
, root
, ret
);
1484 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1485 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
1486 new_root_item
->received_uuid
,
1487 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1489 if (ret
&& ret
!= -EEXIST
) {
1490 btrfs_abort_transaction(trans
, root
, ret
);
1495 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1497 btrfs_abort_transaction(trans
, root
, ret
);
1502 * account qgroup counters before qgroup_inherit()
1504 ret
= btrfs_qgroup_prepare_account_extents(trans
, fs_info
);
1507 ret
= btrfs_qgroup_account_extents(trans
, fs_info
);
1510 ret
= btrfs_qgroup_inherit(trans
, fs_info
,
1511 root
->root_key
.objectid
,
1512 objectid
, pending
->inherit
);
1514 btrfs_abort_transaction(trans
, root
, ret
);
1519 pending
->error
= ret
;
1521 trans
->block_rsv
= rsv
;
1522 trans
->bytes_reserved
= 0;
1524 btrfs_clear_skip_qgroup(trans
);
1526 kfree(new_root_item
);
1527 root_item_alloc_fail
:
1528 btrfs_free_path(path
);
1533 * create all the snapshots we've scheduled for creation
1535 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1536 struct btrfs_fs_info
*fs_info
)
1538 struct btrfs_pending_snapshot
*pending
, *next
;
1539 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1542 list_for_each_entry_safe(pending
, next
, head
, list
) {
1543 list_del(&pending
->list
);
1544 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1551 static void update_super_roots(struct btrfs_root
*root
)
1553 struct btrfs_root_item
*root_item
;
1554 struct btrfs_super_block
*super
;
1556 super
= root
->fs_info
->super_copy
;
1558 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1559 super
->chunk_root
= root_item
->bytenr
;
1560 super
->chunk_root_generation
= root_item
->generation
;
1561 super
->chunk_root_level
= root_item
->level
;
1563 root_item
= &root
->fs_info
->tree_root
->root_item
;
1564 super
->root
= root_item
->bytenr
;
1565 super
->generation
= root_item
->generation
;
1566 super
->root_level
= root_item
->level
;
1567 if (btrfs_test_opt(root
, SPACE_CACHE
))
1568 super
->cache_generation
= root_item
->generation
;
1569 if (root
->fs_info
->update_uuid_tree_gen
)
1570 super
->uuid_tree_generation
= root_item
->generation
;
1573 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1575 struct btrfs_transaction
*trans
;
1578 spin_lock(&info
->trans_lock
);
1579 trans
= info
->running_transaction
;
1581 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1582 spin_unlock(&info
->trans_lock
);
1586 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1588 struct btrfs_transaction
*trans
;
1591 spin_lock(&info
->trans_lock
);
1592 trans
= info
->running_transaction
;
1594 ret
= is_transaction_blocked(trans
);
1595 spin_unlock(&info
->trans_lock
);
1600 * wait for the current transaction commit to start and block subsequent
1603 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1604 struct btrfs_transaction
*trans
)
1606 wait_event(root
->fs_info
->transaction_blocked_wait
,
1607 trans
->state
>= TRANS_STATE_COMMIT_START
||
1612 * wait for the current transaction to start and then become unblocked.
1615 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1616 struct btrfs_transaction
*trans
)
1618 wait_event(root
->fs_info
->transaction_wait
,
1619 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1624 * commit transactions asynchronously. once btrfs_commit_transaction_async
1625 * returns, any subsequent transaction will not be allowed to join.
1627 struct btrfs_async_commit
{
1628 struct btrfs_trans_handle
*newtrans
;
1629 struct btrfs_root
*root
;
1630 struct work_struct work
;
1633 static void do_async_commit(struct work_struct
*work
)
1635 struct btrfs_async_commit
*ac
=
1636 container_of(work
, struct btrfs_async_commit
, work
);
1639 * We've got freeze protection passed with the transaction.
1640 * Tell lockdep about it.
1642 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1644 &ac
->root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1647 current
->journal_info
= ac
->newtrans
;
1649 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1653 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1654 struct btrfs_root
*root
,
1655 int wait_for_unblock
)
1657 struct btrfs_async_commit
*ac
;
1658 struct btrfs_transaction
*cur_trans
;
1660 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1664 INIT_WORK(&ac
->work
, do_async_commit
);
1666 ac
->newtrans
= btrfs_join_transaction(root
);
1667 if (IS_ERR(ac
->newtrans
)) {
1668 int err
= PTR_ERR(ac
->newtrans
);
1673 /* take transaction reference */
1674 cur_trans
= trans
->transaction
;
1675 atomic_inc(&cur_trans
->use_count
);
1677 btrfs_end_transaction(trans
, root
);
1680 * Tell lockdep we've released the freeze rwsem, since the
1681 * async commit thread will be the one to unlock it.
1683 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1685 &root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1688 schedule_work(&ac
->work
);
1690 /* wait for transaction to start and unblock */
1691 if (wait_for_unblock
)
1692 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1694 wait_current_trans_commit_start(root
, cur_trans
);
1696 if (current
->journal_info
== trans
)
1697 current
->journal_info
= NULL
;
1699 btrfs_put_transaction(cur_trans
);
1704 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1705 struct btrfs_root
*root
, int err
)
1707 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1710 WARN_ON(trans
->use_count
> 1);
1712 btrfs_abort_transaction(trans
, root
, err
);
1714 spin_lock(&root
->fs_info
->trans_lock
);
1717 * If the transaction is removed from the list, it means this
1718 * transaction has been committed successfully, so it is impossible
1719 * to call the cleanup function.
1721 BUG_ON(list_empty(&cur_trans
->list
));
1723 list_del_init(&cur_trans
->list
);
1724 if (cur_trans
== root
->fs_info
->running_transaction
) {
1725 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1726 spin_unlock(&root
->fs_info
->trans_lock
);
1727 wait_event(cur_trans
->writer_wait
,
1728 atomic_read(&cur_trans
->num_writers
) == 1);
1730 spin_lock(&root
->fs_info
->trans_lock
);
1732 spin_unlock(&root
->fs_info
->trans_lock
);
1734 btrfs_cleanup_one_transaction(trans
->transaction
, root
);
1736 spin_lock(&root
->fs_info
->trans_lock
);
1737 if (cur_trans
== root
->fs_info
->running_transaction
)
1738 root
->fs_info
->running_transaction
= NULL
;
1739 spin_unlock(&root
->fs_info
->trans_lock
);
1741 if (trans
->type
& __TRANS_FREEZABLE
)
1742 sb_end_intwrite(root
->fs_info
->sb
);
1743 btrfs_put_transaction(cur_trans
);
1744 btrfs_put_transaction(cur_trans
);
1746 trace_btrfs_transaction_commit(root
);
1748 if (current
->journal_info
== trans
)
1749 current
->journal_info
= NULL
;
1750 btrfs_scrub_cancel(root
->fs_info
);
1752 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1755 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1757 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1758 return btrfs_start_delalloc_roots(fs_info
, 1, -1);
1762 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1764 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1765 btrfs_wait_ordered_roots(fs_info
, -1);
1769 btrfs_wait_pending_ordered(struct btrfs_transaction
*cur_trans
,
1770 struct btrfs_fs_info
*fs_info
)
1772 struct btrfs_ordered_extent
*ordered
;
1774 spin_lock(&fs_info
->trans_lock
);
1775 while (!list_empty(&cur_trans
->pending_ordered
)) {
1776 ordered
= list_first_entry(&cur_trans
->pending_ordered
,
1777 struct btrfs_ordered_extent
,
1779 list_del_init(&ordered
->trans_list
);
1780 spin_unlock(&fs_info
->trans_lock
);
1782 wait_event(ordered
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
1784 btrfs_put_ordered_extent(ordered
);
1785 spin_lock(&fs_info
->trans_lock
);
1787 spin_unlock(&fs_info
->trans_lock
);
1790 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1791 struct btrfs_root
*root
)
1793 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1794 struct btrfs_transaction
*prev_trans
= NULL
;
1795 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
1798 /* Stop the commit early if ->aborted is set */
1799 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1800 ret
= cur_trans
->aborted
;
1801 btrfs_end_transaction(trans
, root
);
1805 /* make a pass through all the delayed refs we have so far
1806 * any runnings procs may add more while we are here
1808 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1810 btrfs_end_transaction(trans
, root
);
1814 btrfs_trans_release_metadata(trans
, root
);
1815 trans
->block_rsv
= NULL
;
1816 if (trans
->qgroup_reserved
) {
1817 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
1818 trans
->qgroup_reserved
= 0;
1821 cur_trans
= trans
->transaction
;
1824 * set the flushing flag so procs in this transaction have to
1825 * start sending their work down.
1827 cur_trans
->delayed_refs
.flushing
= 1;
1830 if (!list_empty(&trans
->new_bgs
))
1831 btrfs_create_pending_block_groups(trans
, root
);
1833 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1835 btrfs_end_transaction(trans
, root
);
1839 if (!cur_trans
->dirty_bg_run
) {
1842 /* this mutex is also taken before trying to set
1843 * block groups readonly. We need to make sure
1844 * that nobody has set a block group readonly
1845 * after a extents from that block group have been
1846 * allocated for cache files. btrfs_set_block_group_ro
1847 * will wait for the transaction to commit if it
1848 * finds dirty_bg_run = 1
1850 * The dirty_bg_run flag is also used to make sure only
1851 * one process starts all the block group IO. It wouldn't
1852 * hurt to have more than one go through, but there's no
1853 * real advantage to it either.
1855 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
1856 if (!cur_trans
->dirty_bg_run
) {
1858 cur_trans
->dirty_bg_run
= 1;
1860 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
1863 ret
= btrfs_start_dirty_block_groups(trans
, root
);
1866 btrfs_end_transaction(trans
, root
);
1870 spin_lock(&root
->fs_info
->trans_lock
);
1871 list_splice_init(&trans
->ordered
, &cur_trans
->pending_ordered
);
1872 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1873 spin_unlock(&root
->fs_info
->trans_lock
);
1874 atomic_inc(&cur_trans
->use_count
);
1875 ret
= btrfs_end_transaction(trans
, root
);
1877 wait_for_commit(root
, cur_trans
);
1879 if (unlikely(cur_trans
->aborted
))
1880 ret
= cur_trans
->aborted
;
1882 btrfs_put_transaction(cur_trans
);
1887 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
1888 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1890 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1891 prev_trans
= list_entry(cur_trans
->list
.prev
,
1892 struct btrfs_transaction
, list
);
1893 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
1894 atomic_inc(&prev_trans
->use_count
);
1895 spin_unlock(&root
->fs_info
->trans_lock
);
1897 wait_for_commit(root
, prev_trans
);
1899 btrfs_put_transaction(prev_trans
);
1901 spin_unlock(&root
->fs_info
->trans_lock
);
1904 spin_unlock(&root
->fs_info
->trans_lock
);
1907 extwriter_counter_dec(cur_trans
, trans
->type
);
1909 ret
= btrfs_start_delalloc_flush(root
->fs_info
);
1911 goto cleanup_transaction
;
1913 ret
= btrfs_run_delayed_items(trans
, root
);
1915 goto cleanup_transaction
;
1917 wait_event(cur_trans
->writer_wait
,
1918 extwriter_counter_read(cur_trans
) == 0);
1920 /* some pending stuffs might be added after the previous flush. */
1921 ret
= btrfs_run_delayed_items(trans
, root
);
1923 goto cleanup_transaction
;
1925 btrfs_wait_delalloc_flush(root
->fs_info
);
1927 btrfs_wait_pending_ordered(cur_trans
, root
->fs_info
);
1929 btrfs_scrub_pause(root
);
1931 * Ok now we need to make sure to block out any other joins while we
1932 * commit the transaction. We could have started a join before setting
1933 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1935 spin_lock(&root
->fs_info
->trans_lock
);
1936 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1937 spin_unlock(&root
->fs_info
->trans_lock
);
1938 wait_event(cur_trans
->writer_wait
,
1939 atomic_read(&cur_trans
->num_writers
) == 1);
1941 /* ->aborted might be set after the previous check, so check it */
1942 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1943 ret
= cur_trans
->aborted
;
1944 goto scrub_continue
;
1947 * the reloc mutex makes sure that we stop
1948 * the balancing code from coming in and moving
1949 * extents around in the middle of the commit
1951 mutex_lock(&root
->fs_info
->reloc_mutex
);
1954 * We needn't worry about the delayed items because we will
1955 * deal with them in create_pending_snapshot(), which is the
1956 * core function of the snapshot creation.
1958 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1960 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1961 goto scrub_continue
;
1965 * We insert the dir indexes of the snapshots and update the inode
1966 * of the snapshots' parents after the snapshot creation, so there
1967 * are some delayed items which are not dealt with. Now deal with
1970 * We needn't worry that this operation will corrupt the snapshots,
1971 * because all the tree which are snapshoted will be forced to COW
1972 * the nodes and leaves.
1974 ret
= btrfs_run_delayed_items(trans
, root
);
1976 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1977 goto scrub_continue
;
1980 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1982 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1983 goto scrub_continue
;
1986 /* Reocrd old roots for later qgroup accounting */
1987 ret
= btrfs_qgroup_prepare_account_extents(trans
, root
->fs_info
);
1989 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1990 goto scrub_continue
;
1994 * make sure none of the code above managed to slip in a
1997 btrfs_assert_delayed_root_empty(root
);
1999 WARN_ON(cur_trans
!= trans
->transaction
);
2001 /* btrfs_commit_tree_roots is responsible for getting the
2002 * various roots consistent with each other. Every pointer
2003 * in the tree of tree roots has to point to the most up to date
2004 * root for every subvolume and other tree. So, we have to keep
2005 * the tree logging code from jumping in and changing any
2008 * At this point in the commit, there can't be any tree-log
2009 * writers, but a little lower down we drop the trans mutex
2010 * and let new people in. By holding the tree_log_mutex
2011 * from now until after the super is written, we avoid races
2012 * with the tree-log code.
2014 mutex_lock(&root
->fs_info
->tree_log_mutex
);
2016 ret
= commit_fs_roots(trans
, root
);
2018 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2019 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2020 goto scrub_continue
;
2024 * Since the transaction is done, we can apply the pending changes
2025 * before the next transaction.
2027 btrfs_apply_pending_changes(root
->fs_info
);
2029 /* commit_fs_roots gets rid of all the tree log roots, it is now
2030 * safe to free the root of tree log roots
2032 btrfs_free_log_root_tree(trans
, root
->fs_info
);
2035 * Since fs roots are all committed, we can get a quite accurate
2036 * new_roots. So let's do quota accounting.
2038 ret
= btrfs_qgroup_account_extents(trans
, root
->fs_info
);
2040 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2041 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2042 goto scrub_continue
;
2045 ret
= commit_cowonly_roots(trans
, root
);
2047 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2048 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2049 goto scrub_continue
;
2053 * The tasks which save the space cache and inode cache may also
2054 * update ->aborted, check it.
2056 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
2057 ret
= cur_trans
->aborted
;
2058 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2059 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2060 goto scrub_continue
;
2063 btrfs_prepare_extent_commit(trans
, root
);
2065 cur_trans
= root
->fs_info
->running_transaction
;
2067 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
2068 root
->fs_info
->tree_root
->node
);
2069 list_add_tail(&root
->fs_info
->tree_root
->dirty_list
,
2070 &cur_trans
->switch_commits
);
2072 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
2073 root
->fs_info
->chunk_root
->node
);
2074 list_add_tail(&root
->fs_info
->chunk_root
->dirty_list
,
2075 &cur_trans
->switch_commits
);
2077 switch_commit_roots(cur_trans
, root
->fs_info
);
2079 assert_qgroups_uptodate(trans
);
2080 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2081 ASSERT(list_empty(&cur_trans
->io_bgs
));
2082 update_super_roots(root
);
2084 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
2085 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
2086 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
2087 sizeof(*root
->fs_info
->super_copy
));
2089 btrfs_update_commit_device_size(root
->fs_info
);
2090 btrfs_update_commit_device_bytes_used(root
, cur_trans
);
2092 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
, &btree_ino
->runtime_flags
);
2093 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
, &btree_ino
->runtime_flags
);
2095 btrfs_trans_release_chunk_metadata(trans
);
2097 spin_lock(&root
->fs_info
->trans_lock
);
2098 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2099 root
->fs_info
->running_transaction
= NULL
;
2100 spin_unlock(&root
->fs_info
->trans_lock
);
2101 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2103 wake_up(&root
->fs_info
->transaction_wait
);
2105 ret
= btrfs_write_and_wait_transaction(trans
, root
);
2107 btrfs_error(root
->fs_info
, ret
,
2108 "Error while writing out transaction");
2109 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2110 goto scrub_continue
;
2113 ret
= write_ctree_super(trans
, root
, 0);
2115 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2116 goto scrub_continue
;
2120 * the super is written, we can safely allow the tree-loggers
2121 * to go about their business
2123 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2125 btrfs_finish_extent_commit(trans
, root
);
2127 if (cur_trans
->have_free_bgs
)
2128 btrfs_clear_space_info_full(root
->fs_info
);
2130 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
2132 * We needn't acquire the lock here because there is no other task
2133 * which can change it.
2135 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2136 wake_up(&cur_trans
->commit_wait
);
2138 spin_lock(&root
->fs_info
->trans_lock
);
2139 list_del_init(&cur_trans
->list
);
2140 spin_unlock(&root
->fs_info
->trans_lock
);
2142 btrfs_put_transaction(cur_trans
);
2143 btrfs_put_transaction(cur_trans
);
2145 if (trans
->type
& __TRANS_FREEZABLE
)
2146 sb_end_intwrite(root
->fs_info
->sb
);
2148 trace_btrfs_transaction_commit(root
);
2150 btrfs_scrub_continue(root
);
2152 if (current
->journal_info
== trans
)
2153 current
->journal_info
= NULL
;
2155 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2157 if (current
!= root
->fs_info
->transaction_kthread
&&
2158 current
!= root
->fs_info
->cleaner_kthread
)
2159 btrfs_run_delayed_iputs(root
);
2164 btrfs_scrub_continue(root
);
2165 cleanup_transaction
:
2166 btrfs_trans_release_metadata(trans
, root
);
2167 btrfs_trans_release_chunk_metadata(trans
);
2168 trans
->block_rsv
= NULL
;
2169 if (trans
->qgroup_reserved
) {
2170 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
2171 trans
->qgroup_reserved
= 0;
2173 btrfs_warn(root
->fs_info
, "Skipping commit of aborted transaction.");
2174 if (current
->journal_info
== trans
)
2175 current
->journal_info
= NULL
;
2176 cleanup_transaction(trans
, root
, ret
);
2182 * return < 0 if error
2183 * 0 if there are no more dead_roots at the time of call
2184 * 1 there are more to be processed, call me again
2186 * The return value indicates there are certainly more snapshots to delete, but
2187 * if there comes a new one during processing, it may return 0. We don't mind,
2188 * because btrfs_commit_super will poke cleaner thread and it will process it a
2189 * few seconds later.
2191 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2194 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2196 spin_lock(&fs_info
->trans_lock
);
2197 if (list_empty(&fs_info
->dead_roots
)) {
2198 spin_unlock(&fs_info
->trans_lock
);
2201 root
= list_first_entry(&fs_info
->dead_roots
,
2202 struct btrfs_root
, root_list
);
2203 list_del_init(&root
->root_list
);
2204 spin_unlock(&fs_info
->trans_lock
);
2206 pr_debug("BTRFS: cleaner removing %llu\n", root
->objectid
);
2208 btrfs_kill_all_delayed_nodes(root
);
2210 if (btrfs_header_backref_rev(root
->node
) <
2211 BTRFS_MIXED_BACKREF_REV
)
2212 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2214 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2216 return (ret
< 0) ? 0 : 1;
2219 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2224 prev
= xchg(&fs_info
->pending_changes
, 0);
2228 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2230 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2233 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2235 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2238 bit
= 1 << BTRFS_PENDING_COMMIT
;
2240 btrfs_debug(fs_info
, "pending commit done");
2245 "unknown pending changes left 0x%lx, ignoring", prev
);