]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/transaction.c
Merge branch 'misc-for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 /*
79 * If any block groups are found in ->deleted_bgs then it's
80 * because the transaction was aborted and a commit did not
81 * happen (things failed before writing the new superblock
82 * and calling btrfs_finish_extent_commit()), so we can not
83 * discard the physical locations of the block groups.
84 */
85 while (!list_empty(&transaction->deleted_bgs)) {
86 struct btrfs_block_group_cache *cache;
87
88 cache = list_first_entry(&transaction->deleted_bgs,
89 struct btrfs_block_group_cache,
90 bg_list);
91 list_del_init(&cache->bg_list);
92 btrfs_put_block_group_trimming(cache);
93 btrfs_put_block_group(cache);
94 }
95 kmem_cache_free(btrfs_transaction_cachep, transaction);
96 }
97 }
98
99 static void clear_btree_io_tree(struct extent_io_tree *tree)
100 {
101 spin_lock(&tree->lock);
102 /*
103 * Do a single barrier for the waitqueue_active check here, the state
104 * of the waitqueue should not change once clear_btree_io_tree is
105 * called.
106 */
107 smp_mb();
108 while (!RB_EMPTY_ROOT(&tree->state)) {
109 struct rb_node *node;
110 struct extent_state *state;
111
112 node = rb_first(&tree->state);
113 state = rb_entry(node, struct extent_state, rb_node);
114 rb_erase(&state->rb_node, &tree->state);
115 RB_CLEAR_NODE(&state->rb_node);
116 /*
117 * btree io trees aren't supposed to have tasks waiting for
118 * changes in the flags of extent states ever.
119 */
120 ASSERT(!waitqueue_active(&state->wq));
121 free_extent_state(state);
122
123 cond_resched_lock(&tree->lock);
124 }
125 spin_unlock(&tree->lock);
126 }
127
128 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129 struct btrfs_fs_info *fs_info)
130 {
131 struct btrfs_root *root, *tmp;
132
133 down_write(&fs_info->commit_root_sem);
134 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
135 dirty_list) {
136 list_del_init(&root->dirty_list);
137 free_extent_buffer(root->commit_root);
138 root->commit_root = btrfs_root_node(root);
139 if (is_fstree(root->objectid))
140 btrfs_unpin_free_ino(root);
141 clear_btree_io_tree(&root->dirty_log_pages);
142 }
143
144 /* We can free old roots now. */
145 spin_lock(&trans->dropped_roots_lock);
146 while (!list_empty(&trans->dropped_roots)) {
147 root = list_first_entry(&trans->dropped_roots,
148 struct btrfs_root, root_list);
149 list_del_init(&root->root_list);
150 spin_unlock(&trans->dropped_roots_lock);
151 btrfs_drop_and_free_fs_root(fs_info, root);
152 spin_lock(&trans->dropped_roots_lock);
153 }
154 spin_unlock(&trans->dropped_roots_lock);
155 up_write(&fs_info->commit_root_sem);
156 }
157
158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
159 unsigned int type)
160 {
161 if (type & TRANS_EXTWRITERS)
162 atomic_inc(&trans->num_extwriters);
163 }
164
165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
166 unsigned int type)
167 {
168 if (type & TRANS_EXTWRITERS)
169 atomic_dec(&trans->num_extwriters);
170 }
171
172 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
173 unsigned int type)
174 {
175 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
176 }
177
178 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
179 {
180 return atomic_read(&trans->num_extwriters);
181 }
182
183 /*
184 * either allocate a new transaction or hop into the existing one
185 */
186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
187 {
188 struct btrfs_transaction *cur_trans;
189 struct btrfs_fs_info *fs_info = root->fs_info;
190
191 spin_lock(&fs_info->trans_lock);
192 loop:
193 /* The file system has been taken offline. No new transactions. */
194 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195 spin_unlock(&fs_info->trans_lock);
196 return -EROFS;
197 }
198
199 cur_trans = fs_info->running_transaction;
200 if (cur_trans) {
201 if (cur_trans->aborted) {
202 spin_unlock(&fs_info->trans_lock);
203 return cur_trans->aborted;
204 }
205 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206 spin_unlock(&fs_info->trans_lock);
207 return -EBUSY;
208 }
209 atomic_inc(&cur_trans->use_count);
210 atomic_inc(&cur_trans->num_writers);
211 extwriter_counter_inc(cur_trans, type);
212 spin_unlock(&fs_info->trans_lock);
213 return 0;
214 }
215 spin_unlock(&fs_info->trans_lock);
216
217 /*
218 * If we are ATTACH, we just want to catch the current transaction,
219 * and commit it. If there is no transaction, just return ENOENT.
220 */
221 if (type == TRANS_ATTACH)
222 return -ENOENT;
223
224 /*
225 * JOIN_NOLOCK only happens during the transaction commit, so
226 * it is impossible that ->running_transaction is NULL
227 */
228 BUG_ON(type == TRANS_JOIN_NOLOCK);
229
230 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
231 if (!cur_trans)
232 return -ENOMEM;
233
234 spin_lock(&fs_info->trans_lock);
235 if (fs_info->running_transaction) {
236 /*
237 * someone started a transaction after we unlocked. Make sure
238 * to redo the checks above
239 */
240 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
241 goto loop;
242 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243 spin_unlock(&fs_info->trans_lock);
244 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
245 return -EROFS;
246 }
247
248 atomic_set(&cur_trans->num_writers, 1);
249 extwriter_counter_init(cur_trans, type);
250 init_waitqueue_head(&cur_trans->writer_wait);
251 init_waitqueue_head(&cur_trans->commit_wait);
252 init_waitqueue_head(&cur_trans->pending_wait);
253 cur_trans->state = TRANS_STATE_RUNNING;
254 /*
255 * One for this trans handle, one so it will live on until we
256 * commit the transaction.
257 */
258 atomic_set(&cur_trans->use_count, 2);
259 atomic_set(&cur_trans->pending_ordered, 0);
260 cur_trans->flags = 0;
261 cur_trans->start_time = get_seconds();
262
263 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
264
265 cur_trans->delayed_refs.href_root = RB_ROOT;
266 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
268
269 /*
270 * although the tree mod log is per file system and not per transaction,
271 * the log must never go across transaction boundaries.
272 */
273 smp_mb();
274 if (!list_empty(&fs_info->tree_mod_seq_list))
275 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276 "creating a fresh transaction\n");
277 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279 "creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
281
282 spin_lock_init(&cur_trans->delayed_refs.lock);
283
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode->i_mapping);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
303
304 return 0;
305 }
306
307 /*
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
312 */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root)
315 {
316 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
317 root->last_trans < trans->transid) {
318 WARN_ON(root == root->fs_info->extent_root);
319 WARN_ON(root->commit_root != root->node);
320
321 /*
322 * see below for IN_TRANS_SETUP usage rules
323 * we have the reloc mutex held now, so there
324 * is only one writer in this function
325 */
326 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
327
328 /* make sure readers find IN_TRANS_SETUP before
329 * they find our root->last_trans update
330 */
331 smp_wmb();
332
333 spin_lock(&root->fs_info->fs_roots_radix_lock);
334 if (root->last_trans == trans->transid) {
335 spin_unlock(&root->fs_info->fs_roots_radix_lock);
336 return 0;
337 }
338 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
339 (unsigned long)root->root_key.objectid,
340 BTRFS_ROOT_TRANS_TAG);
341 spin_unlock(&root->fs_info->fs_roots_radix_lock);
342 root->last_trans = trans->transid;
343
344 /* this is pretty tricky. We don't want to
345 * take the relocation lock in btrfs_record_root_in_trans
346 * unless we're really doing the first setup for this root in
347 * this transaction.
348 *
349 * Normally we'd use root->last_trans as a flag to decide
350 * if we want to take the expensive mutex.
351 *
352 * But, we have to set root->last_trans before we
353 * init the relocation root, otherwise, we trip over warnings
354 * in ctree.c. The solution used here is to flag ourselves
355 * with root IN_TRANS_SETUP. When this is 1, we're still
356 * fixing up the reloc trees and everyone must wait.
357 *
358 * When this is zero, they can trust root->last_trans and fly
359 * through btrfs_record_root_in_trans without having to take the
360 * lock. smp_wmb() makes sure that all the writes above are
361 * done before we pop in the zero below
362 */
363 btrfs_init_reloc_root(trans, root);
364 smp_mb__before_atomic();
365 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
366 }
367 return 0;
368 }
369
370
371 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
372 struct btrfs_root *root)
373 {
374 struct btrfs_transaction *cur_trans = trans->transaction;
375
376 /* Add ourselves to the transaction dropped list */
377 spin_lock(&cur_trans->dropped_roots_lock);
378 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
379 spin_unlock(&cur_trans->dropped_roots_lock);
380
381 /* Make sure we don't try to update the root at commit time */
382 spin_lock(&root->fs_info->fs_roots_radix_lock);
383 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
384 (unsigned long)root->root_key.objectid,
385 BTRFS_ROOT_TRANS_TAG);
386 spin_unlock(&root->fs_info->fs_roots_radix_lock);
387 }
388
389 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
390 struct btrfs_root *root)
391 {
392 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
393 return 0;
394
395 /*
396 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
397 * and barriers
398 */
399 smp_rmb();
400 if (root->last_trans == trans->transid &&
401 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
402 return 0;
403
404 mutex_lock(&root->fs_info->reloc_mutex);
405 record_root_in_trans(trans, root);
406 mutex_unlock(&root->fs_info->reloc_mutex);
407
408 return 0;
409 }
410
411 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
412 {
413 return (trans->state >= TRANS_STATE_BLOCKED &&
414 trans->state < TRANS_STATE_UNBLOCKED &&
415 !trans->aborted);
416 }
417
418 /* wait for commit against the current transaction to become unblocked
419 * when this is done, it is safe to start a new transaction, but the current
420 * transaction might not be fully on disk.
421 */
422 static void wait_current_trans(struct btrfs_root *root)
423 {
424 struct btrfs_transaction *cur_trans;
425
426 spin_lock(&root->fs_info->trans_lock);
427 cur_trans = root->fs_info->running_transaction;
428 if (cur_trans && is_transaction_blocked(cur_trans)) {
429 atomic_inc(&cur_trans->use_count);
430 spin_unlock(&root->fs_info->trans_lock);
431
432 wait_event(root->fs_info->transaction_wait,
433 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
434 cur_trans->aborted);
435 btrfs_put_transaction(cur_trans);
436 } else {
437 spin_unlock(&root->fs_info->trans_lock);
438 }
439 }
440
441 static int may_wait_transaction(struct btrfs_root *root, int type)
442 {
443 if (root->fs_info->log_root_recovering)
444 return 0;
445
446 if (type == TRANS_USERSPACE)
447 return 1;
448
449 if (type == TRANS_START &&
450 !atomic_read(&root->fs_info->open_ioctl_trans))
451 return 1;
452
453 return 0;
454 }
455
456 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
457 {
458 if (!root->fs_info->reloc_ctl ||
459 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
460 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
461 root->reloc_root)
462 return false;
463
464 return true;
465 }
466
467 static struct btrfs_trans_handle *
468 start_transaction(struct btrfs_root *root, unsigned int num_items,
469 unsigned int type, enum btrfs_reserve_flush_enum flush)
470 {
471 struct btrfs_trans_handle *h;
472 struct btrfs_transaction *cur_trans;
473 u64 num_bytes = 0;
474 u64 qgroup_reserved = 0;
475 bool reloc_reserved = false;
476 int ret;
477
478 /* Send isn't supposed to start transactions. */
479 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
480
481 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
482 return ERR_PTR(-EROFS);
483
484 if (current->journal_info) {
485 WARN_ON(type & TRANS_EXTWRITERS);
486 h = current->journal_info;
487 h->use_count++;
488 WARN_ON(h->use_count > 2);
489 h->orig_rsv = h->block_rsv;
490 h->block_rsv = NULL;
491 goto got_it;
492 }
493
494 /*
495 * Do the reservation before we join the transaction so we can do all
496 * the appropriate flushing if need be.
497 */
498 if (num_items > 0 && root != root->fs_info->chunk_root) {
499 qgroup_reserved = num_items * root->nodesize;
500 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
501 if (ret)
502 return ERR_PTR(ret);
503
504 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
505 /*
506 * Do the reservation for the relocation root creation
507 */
508 if (need_reserve_reloc_root(root)) {
509 num_bytes += root->nodesize;
510 reloc_reserved = true;
511 }
512
513 ret = btrfs_block_rsv_add(root,
514 &root->fs_info->trans_block_rsv,
515 num_bytes, flush);
516 if (ret)
517 goto reserve_fail;
518 }
519 again:
520 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
521 if (!h) {
522 ret = -ENOMEM;
523 goto alloc_fail;
524 }
525
526 /*
527 * If we are JOIN_NOLOCK we're already committing a transaction and
528 * waiting on this guy, so we don't need to do the sb_start_intwrite
529 * because we're already holding a ref. We need this because we could
530 * have raced in and did an fsync() on a file which can kick a commit
531 * and then we deadlock with somebody doing a freeze.
532 *
533 * If we are ATTACH, it means we just want to catch the current
534 * transaction and commit it, so we needn't do sb_start_intwrite().
535 */
536 if (type & __TRANS_FREEZABLE)
537 sb_start_intwrite(root->fs_info->sb);
538
539 if (may_wait_transaction(root, type))
540 wait_current_trans(root);
541
542 do {
543 ret = join_transaction(root, type);
544 if (ret == -EBUSY) {
545 wait_current_trans(root);
546 if (unlikely(type == TRANS_ATTACH))
547 ret = -ENOENT;
548 }
549 } while (ret == -EBUSY);
550
551 if (ret < 0) {
552 /* We must get the transaction if we are JOIN_NOLOCK. */
553 BUG_ON(type == TRANS_JOIN_NOLOCK);
554 goto join_fail;
555 }
556
557 cur_trans = root->fs_info->running_transaction;
558
559 h->transid = cur_trans->transid;
560 h->transaction = cur_trans;
561 h->root = root;
562 h->use_count = 1;
563
564 h->type = type;
565 h->can_flush_pending_bgs = true;
566 INIT_LIST_HEAD(&h->qgroup_ref_list);
567 INIT_LIST_HEAD(&h->new_bgs);
568
569 smp_mb();
570 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
571 may_wait_transaction(root, type)) {
572 current->journal_info = h;
573 btrfs_commit_transaction(h, root);
574 goto again;
575 }
576
577 if (num_bytes) {
578 trace_btrfs_space_reservation(root->fs_info, "transaction",
579 h->transid, num_bytes, 1);
580 h->block_rsv = &root->fs_info->trans_block_rsv;
581 h->bytes_reserved = num_bytes;
582 h->reloc_reserved = reloc_reserved;
583 }
584
585 got_it:
586 btrfs_record_root_in_trans(h, root);
587
588 if (!current->journal_info && type != TRANS_USERSPACE)
589 current->journal_info = h;
590 return h;
591
592 join_fail:
593 if (type & __TRANS_FREEZABLE)
594 sb_end_intwrite(root->fs_info->sb);
595 kmem_cache_free(btrfs_trans_handle_cachep, h);
596 alloc_fail:
597 if (num_bytes)
598 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
599 num_bytes);
600 reserve_fail:
601 btrfs_qgroup_free_meta(root, qgroup_reserved);
602 return ERR_PTR(ret);
603 }
604
605 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
606 unsigned int num_items)
607 {
608 return start_transaction(root, num_items, TRANS_START,
609 BTRFS_RESERVE_FLUSH_ALL);
610 }
611 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
612 struct btrfs_root *root,
613 unsigned int num_items,
614 int min_factor)
615 {
616 struct btrfs_trans_handle *trans;
617 u64 num_bytes;
618 int ret;
619
620 trans = btrfs_start_transaction(root, num_items);
621 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
622 return trans;
623
624 trans = btrfs_start_transaction(root, 0);
625 if (IS_ERR(trans))
626 return trans;
627
628 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
629 ret = btrfs_cond_migrate_bytes(root->fs_info,
630 &root->fs_info->trans_block_rsv,
631 num_bytes,
632 min_factor);
633 if (ret) {
634 btrfs_end_transaction(trans, root);
635 return ERR_PTR(ret);
636 }
637
638 trans->block_rsv = &root->fs_info->trans_block_rsv;
639 trans->bytes_reserved = num_bytes;
640
641 return trans;
642 }
643
644 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
645 struct btrfs_root *root,
646 unsigned int num_items)
647 {
648 return start_transaction(root, num_items, TRANS_START,
649 BTRFS_RESERVE_FLUSH_LIMIT);
650 }
651
652 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
653 {
654 return start_transaction(root, 0, TRANS_JOIN, 0);
655 }
656
657 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
658 {
659 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
660 }
661
662 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
663 {
664 return start_transaction(root, 0, TRANS_USERSPACE, 0);
665 }
666
667 /*
668 * btrfs_attach_transaction() - catch the running transaction
669 *
670 * It is used when we want to commit the current the transaction, but
671 * don't want to start a new one.
672 *
673 * Note: If this function return -ENOENT, it just means there is no
674 * running transaction. But it is possible that the inactive transaction
675 * is still in the memory, not fully on disk. If you hope there is no
676 * inactive transaction in the fs when -ENOENT is returned, you should
677 * invoke
678 * btrfs_attach_transaction_barrier()
679 */
680 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
681 {
682 return start_transaction(root, 0, TRANS_ATTACH, 0);
683 }
684
685 /*
686 * btrfs_attach_transaction_barrier() - catch the running transaction
687 *
688 * It is similar to the above function, the differentia is this one
689 * will wait for all the inactive transactions until they fully
690 * complete.
691 */
692 struct btrfs_trans_handle *
693 btrfs_attach_transaction_barrier(struct btrfs_root *root)
694 {
695 struct btrfs_trans_handle *trans;
696
697 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
698 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
699 btrfs_wait_for_commit(root, 0);
700
701 return trans;
702 }
703
704 /* wait for a transaction commit to be fully complete */
705 static noinline void wait_for_commit(struct btrfs_root *root,
706 struct btrfs_transaction *commit)
707 {
708 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
709 }
710
711 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
712 {
713 struct btrfs_transaction *cur_trans = NULL, *t;
714 int ret = 0;
715
716 if (transid) {
717 if (transid <= root->fs_info->last_trans_committed)
718 goto out;
719
720 /* find specified transaction */
721 spin_lock(&root->fs_info->trans_lock);
722 list_for_each_entry(t, &root->fs_info->trans_list, list) {
723 if (t->transid == transid) {
724 cur_trans = t;
725 atomic_inc(&cur_trans->use_count);
726 ret = 0;
727 break;
728 }
729 if (t->transid > transid) {
730 ret = 0;
731 break;
732 }
733 }
734 spin_unlock(&root->fs_info->trans_lock);
735
736 /*
737 * The specified transaction doesn't exist, or we
738 * raced with btrfs_commit_transaction
739 */
740 if (!cur_trans) {
741 if (transid > root->fs_info->last_trans_committed)
742 ret = -EINVAL;
743 goto out;
744 }
745 } else {
746 /* find newest transaction that is committing | committed */
747 spin_lock(&root->fs_info->trans_lock);
748 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
749 list) {
750 if (t->state >= TRANS_STATE_COMMIT_START) {
751 if (t->state == TRANS_STATE_COMPLETED)
752 break;
753 cur_trans = t;
754 atomic_inc(&cur_trans->use_count);
755 break;
756 }
757 }
758 spin_unlock(&root->fs_info->trans_lock);
759 if (!cur_trans)
760 goto out; /* nothing committing|committed */
761 }
762
763 wait_for_commit(root, cur_trans);
764 btrfs_put_transaction(cur_trans);
765 out:
766 return ret;
767 }
768
769 void btrfs_throttle(struct btrfs_root *root)
770 {
771 if (!atomic_read(&root->fs_info->open_ioctl_trans))
772 wait_current_trans(root);
773 }
774
775 static int should_end_transaction(struct btrfs_trans_handle *trans,
776 struct btrfs_root *root)
777 {
778 if (root->fs_info->global_block_rsv.space_info->full &&
779 btrfs_check_space_for_delayed_refs(trans, root))
780 return 1;
781
782 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
783 }
784
785 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
786 struct btrfs_root *root)
787 {
788 struct btrfs_transaction *cur_trans = trans->transaction;
789 int updates;
790 int err;
791
792 smp_mb();
793 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
794 cur_trans->delayed_refs.flushing)
795 return 1;
796
797 updates = trans->delayed_ref_updates;
798 trans->delayed_ref_updates = 0;
799 if (updates) {
800 err = btrfs_run_delayed_refs(trans, root, updates * 2);
801 if (err) /* Error code will also eval true */
802 return err;
803 }
804
805 return should_end_transaction(trans, root);
806 }
807
808 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
809 struct btrfs_root *root, int throttle)
810 {
811 struct btrfs_transaction *cur_trans = trans->transaction;
812 struct btrfs_fs_info *info = root->fs_info;
813 unsigned long cur = trans->delayed_ref_updates;
814 int lock = (trans->type != TRANS_JOIN_NOLOCK);
815 int err = 0;
816 int must_run_delayed_refs = 0;
817
818 if (trans->use_count > 1) {
819 trans->use_count--;
820 trans->block_rsv = trans->orig_rsv;
821 return 0;
822 }
823
824 btrfs_trans_release_metadata(trans, root);
825 trans->block_rsv = NULL;
826
827 if (!list_empty(&trans->new_bgs))
828 btrfs_create_pending_block_groups(trans, root);
829
830 trans->delayed_ref_updates = 0;
831 if (!trans->sync) {
832 must_run_delayed_refs =
833 btrfs_should_throttle_delayed_refs(trans, root);
834 cur = max_t(unsigned long, cur, 32);
835
836 /*
837 * don't make the caller wait if they are from a NOLOCK
838 * or ATTACH transaction, it will deadlock with commit
839 */
840 if (must_run_delayed_refs == 1 &&
841 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
842 must_run_delayed_refs = 2;
843 }
844
845 btrfs_trans_release_metadata(trans, root);
846 trans->block_rsv = NULL;
847
848 if (!list_empty(&trans->new_bgs))
849 btrfs_create_pending_block_groups(trans, root);
850
851 btrfs_trans_release_chunk_metadata(trans);
852
853 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
854 should_end_transaction(trans, root) &&
855 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
856 spin_lock(&info->trans_lock);
857 if (cur_trans->state == TRANS_STATE_RUNNING)
858 cur_trans->state = TRANS_STATE_BLOCKED;
859 spin_unlock(&info->trans_lock);
860 }
861
862 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
863 if (throttle)
864 return btrfs_commit_transaction(trans, root);
865 else
866 wake_up_process(info->transaction_kthread);
867 }
868
869 if (trans->type & __TRANS_FREEZABLE)
870 sb_end_intwrite(root->fs_info->sb);
871
872 WARN_ON(cur_trans != info->running_transaction);
873 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
874 atomic_dec(&cur_trans->num_writers);
875 extwriter_counter_dec(cur_trans, trans->type);
876
877 /*
878 * Make sure counter is updated before we wake up waiters.
879 */
880 smp_mb();
881 if (waitqueue_active(&cur_trans->writer_wait))
882 wake_up(&cur_trans->writer_wait);
883 btrfs_put_transaction(cur_trans);
884
885 if (current->journal_info == trans)
886 current->journal_info = NULL;
887
888 if (throttle)
889 btrfs_run_delayed_iputs(root);
890
891 if (trans->aborted ||
892 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
893 wake_up_process(info->transaction_kthread);
894 err = -EIO;
895 }
896 assert_qgroups_uptodate(trans);
897
898 kmem_cache_free(btrfs_trans_handle_cachep, trans);
899 if (must_run_delayed_refs) {
900 btrfs_async_run_delayed_refs(root, cur,
901 must_run_delayed_refs == 1);
902 }
903 return err;
904 }
905
906 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
907 struct btrfs_root *root)
908 {
909 return __btrfs_end_transaction(trans, root, 0);
910 }
911
912 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
913 struct btrfs_root *root)
914 {
915 return __btrfs_end_transaction(trans, root, 1);
916 }
917
918 /*
919 * when btree blocks are allocated, they have some corresponding bits set for
920 * them in one of two extent_io trees. This is used to make sure all of
921 * those extents are sent to disk but does not wait on them
922 */
923 int btrfs_write_marked_extents(struct btrfs_root *root,
924 struct extent_io_tree *dirty_pages, int mark)
925 {
926 int err = 0;
927 int werr = 0;
928 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
929 struct extent_state *cached_state = NULL;
930 u64 start = 0;
931 u64 end;
932
933 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
934 mark, &cached_state)) {
935 bool wait_writeback = false;
936
937 err = convert_extent_bit(dirty_pages, start, end,
938 EXTENT_NEED_WAIT,
939 mark, &cached_state, GFP_NOFS);
940 /*
941 * convert_extent_bit can return -ENOMEM, which is most of the
942 * time a temporary error. So when it happens, ignore the error
943 * and wait for writeback of this range to finish - because we
944 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
945 * to btrfs_wait_marked_extents() would not know that writeback
946 * for this range started and therefore wouldn't wait for it to
947 * finish - we don't want to commit a superblock that points to
948 * btree nodes/leafs for which writeback hasn't finished yet
949 * (and without errors).
950 * We cleanup any entries left in the io tree when committing
951 * the transaction (through clear_btree_io_tree()).
952 */
953 if (err == -ENOMEM) {
954 err = 0;
955 wait_writeback = true;
956 }
957 if (!err)
958 err = filemap_fdatawrite_range(mapping, start, end);
959 if (err)
960 werr = err;
961 else if (wait_writeback)
962 werr = filemap_fdatawait_range(mapping, start, end);
963 free_extent_state(cached_state);
964 cached_state = NULL;
965 cond_resched();
966 start = end + 1;
967 }
968 return werr;
969 }
970
971 /*
972 * when btree blocks are allocated, they have some corresponding bits set for
973 * them in one of two extent_io trees. This is used to make sure all of
974 * those extents are on disk for transaction or log commit. We wait
975 * on all the pages and clear them from the dirty pages state tree
976 */
977 int btrfs_wait_marked_extents(struct btrfs_root *root,
978 struct extent_io_tree *dirty_pages, int mark)
979 {
980 int err = 0;
981 int werr = 0;
982 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
983 struct extent_state *cached_state = NULL;
984 u64 start = 0;
985 u64 end;
986 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
987 bool errors = false;
988
989 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
990 EXTENT_NEED_WAIT, &cached_state)) {
991 /*
992 * Ignore -ENOMEM errors returned by clear_extent_bit().
993 * When committing the transaction, we'll remove any entries
994 * left in the io tree. For a log commit, we don't remove them
995 * after committing the log because the tree can be accessed
996 * concurrently - we do it only at transaction commit time when
997 * it's safe to do it (through clear_btree_io_tree()).
998 */
999 err = clear_extent_bit(dirty_pages, start, end,
1000 EXTENT_NEED_WAIT,
1001 0, 0, &cached_state, GFP_NOFS);
1002 if (err == -ENOMEM)
1003 err = 0;
1004 if (!err)
1005 err = filemap_fdatawait_range(mapping, start, end);
1006 if (err)
1007 werr = err;
1008 free_extent_state(cached_state);
1009 cached_state = NULL;
1010 cond_resched();
1011 start = end + 1;
1012 }
1013 if (err)
1014 werr = err;
1015
1016 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1017 if ((mark & EXTENT_DIRTY) &&
1018 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1019 &btree_ino->runtime_flags))
1020 errors = true;
1021
1022 if ((mark & EXTENT_NEW) &&
1023 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1024 &btree_ino->runtime_flags))
1025 errors = true;
1026 } else {
1027 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1028 &btree_ino->runtime_flags))
1029 errors = true;
1030 }
1031
1032 if (errors && !werr)
1033 werr = -EIO;
1034
1035 return werr;
1036 }
1037
1038 /*
1039 * when btree blocks are allocated, they have some corresponding bits set for
1040 * them in one of two extent_io trees. This is used to make sure all of
1041 * those extents are on disk for transaction or log commit
1042 */
1043 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1044 struct extent_io_tree *dirty_pages, int mark)
1045 {
1046 int ret;
1047 int ret2;
1048 struct blk_plug plug;
1049
1050 blk_start_plug(&plug);
1051 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1052 blk_finish_plug(&plug);
1053 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1054
1055 if (ret)
1056 return ret;
1057 if (ret2)
1058 return ret2;
1059 return 0;
1060 }
1061
1062 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1063 struct btrfs_root *root)
1064 {
1065 int ret;
1066
1067 ret = btrfs_write_and_wait_marked_extents(root,
1068 &trans->transaction->dirty_pages,
1069 EXTENT_DIRTY);
1070 clear_btree_io_tree(&trans->transaction->dirty_pages);
1071
1072 return ret;
1073 }
1074
1075 /*
1076 * this is used to update the root pointer in the tree of tree roots.
1077 *
1078 * But, in the case of the extent allocation tree, updating the root
1079 * pointer may allocate blocks which may change the root of the extent
1080 * allocation tree.
1081 *
1082 * So, this loops and repeats and makes sure the cowonly root didn't
1083 * change while the root pointer was being updated in the metadata.
1084 */
1085 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1086 struct btrfs_root *root)
1087 {
1088 int ret;
1089 u64 old_root_bytenr;
1090 u64 old_root_used;
1091 struct btrfs_root *tree_root = root->fs_info->tree_root;
1092
1093 old_root_used = btrfs_root_used(&root->root_item);
1094
1095 while (1) {
1096 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1097 if (old_root_bytenr == root->node->start &&
1098 old_root_used == btrfs_root_used(&root->root_item))
1099 break;
1100
1101 btrfs_set_root_node(&root->root_item, root->node);
1102 ret = btrfs_update_root(trans, tree_root,
1103 &root->root_key,
1104 &root->root_item);
1105 if (ret)
1106 return ret;
1107
1108 old_root_used = btrfs_root_used(&root->root_item);
1109 }
1110
1111 return 0;
1112 }
1113
1114 /*
1115 * update all the cowonly tree roots on disk
1116 *
1117 * The error handling in this function may not be obvious. Any of the
1118 * failures will cause the file system to go offline. We still need
1119 * to clean up the delayed refs.
1120 */
1121 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1122 struct btrfs_root *root)
1123 {
1124 struct btrfs_fs_info *fs_info = root->fs_info;
1125 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1126 struct list_head *io_bgs = &trans->transaction->io_bgs;
1127 struct list_head *next;
1128 struct extent_buffer *eb;
1129 int ret;
1130
1131 eb = btrfs_lock_root_node(fs_info->tree_root);
1132 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1133 0, &eb);
1134 btrfs_tree_unlock(eb);
1135 free_extent_buffer(eb);
1136
1137 if (ret)
1138 return ret;
1139
1140 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1141 if (ret)
1142 return ret;
1143
1144 ret = btrfs_run_dev_stats(trans, root->fs_info);
1145 if (ret)
1146 return ret;
1147 ret = btrfs_run_dev_replace(trans, root->fs_info);
1148 if (ret)
1149 return ret;
1150 ret = btrfs_run_qgroups(trans, root->fs_info);
1151 if (ret)
1152 return ret;
1153
1154 ret = btrfs_setup_space_cache(trans, root);
1155 if (ret)
1156 return ret;
1157
1158 /* run_qgroups might have added some more refs */
1159 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1160 if (ret)
1161 return ret;
1162 again:
1163 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1164 next = fs_info->dirty_cowonly_roots.next;
1165 list_del_init(next);
1166 root = list_entry(next, struct btrfs_root, dirty_list);
1167 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1168
1169 if (root != fs_info->extent_root)
1170 list_add_tail(&root->dirty_list,
1171 &trans->transaction->switch_commits);
1172 ret = update_cowonly_root(trans, root);
1173 if (ret)
1174 return ret;
1175 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1176 if (ret)
1177 return ret;
1178 }
1179
1180 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1181 ret = btrfs_write_dirty_block_groups(trans, root);
1182 if (ret)
1183 return ret;
1184 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1185 if (ret)
1186 return ret;
1187 }
1188
1189 if (!list_empty(&fs_info->dirty_cowonly_roots))
1190 goto again;
1191
1192 list_add_tail(&fs_info->extent_root->dirty_list,
1193 &trans->transaction->switch_commits);
1194 btrfs_after_dev_replace_commit(fs_info);
1195
1196 return 0;
1197 }
1198
1199 /*
1200 * dead roots are old snapshots that need to be deleted. This allocates
1201 * a dirty root struct and adds it into the list of dead roots that need to
1202 * be deleted
1203 */
1204 void btrfs_add_dead_root(struct btrfs_root *root)
1205 {
1206 spin_lock(&root->fs_info->trans_lock);
1207 if (list_empty(&root->root_list))
1208 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1209 spin_unlock(&root->fs_info->trans_lock);
1210 }
1211
1212 /*
1213 * update all the cowonly tree roots on disk
1214 */
1215 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1216 struct btrfs_root *root)
1217 {
1218 struct btrfs_root *gang[8];
1219 struct btrfs_fs_info *fs_info = root->fs_info;
1220 int i;
1221 int ret;
1222 int err = 0;
1223
1224 spin_lock(&fs_info->fs_roots_radix_lock);
1225 while (1) {
1226 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1227 (void **)gang, 0,
1228 ARRAY_SIZE(gang),
1229 BTRFS_ROOT_TRANS_TAG);
1230 if (ret == 0)
1231 break;
1232 for (i = 0; i < ret; i++) {
1233 root = gang[i];
1234 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1235 (unsigned long)root->root_key.objectid,
1236 BTRFS_ROOT_TRANS_TAG);
1237 spin_unlock(&fs_info->fs_roots_radix_lock);
1238
1239 btrfs_free_log(trans, root);
1240 btrfs_update_reloc_root(trans, root);
1241 btrfs_orphan_commit_root(trans, root);
1242
1243 btrfs_save_ino_cache(root, trans);
1244
1245 /* see comments in should_cow_block() */
1246 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1247 smp_mb__after_atomic();
1248
1249 if (root->commit_root != root->node) {
1250 list_add_tail(&root->dirty_list,
1251 &trans->transaction->switch_commits);
1252 btrfs_set_root_node(&root->root_item,
1253 root->node);
1254 }
1255
1256 err = btrfs_update_root(trans, fs_info->tree_root,
1257 &root->root_key,
1258 &root->root_item);
1259 spin_lock(&fs_info->fs_roots_radix_lock);
1260 if (err)
1261 break;
1262 btrfs_qgroup_free_meta_all(root);
1263 }
1264 }
1265 spin_unlock(&fs_info->fs_roots_radix_lock);
1266 return err;
1267 }
1268
1269 /*
1270 * defrag a given btree.
1271 * Every leaf in the btree is read and defragged.
1272 */
1273 int btrfs_defrag_root(struct btrfs_root *root)
1274 {
1275 struct btrfs_fs_info *info = root->fs_info;
1276 struct btrfs_trans_handle *trans;
1277 int ret;
1278
1279 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1280 return 0;
1281
1282 while (1) {
1283 trans = btrfs_start_transaction(root, 0);
1284 if (IS_ERR(trans))
1285 return PTR_ERR(trans);
1286
1287 ret = btrfs_defrag_leaves(trans, root);
1288
1289 btrfs_end_transaction(trans, root);
1290 btrfs_btree_balance_dirty(info->tree_root);
1291 cond_resched();
1292
1293 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1294 break;
1295
1296 if (btrfs_defrag_cancelled(root->fs_info)) {
1297 pr_debug("BTRFS: defrag_root cancelled\n");
1298 ret = -EAGAIN;
1299 break;
1300 }
1301 }
1302 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1303 return ret;
1304 }
1305
1306 /*
1307 * new snapshots need to be created at a very specific time in the
1308 * transaction commit. This does the actual creation.
1309 *
1310 * Note:
1311 * If the error which may affect the commitment of the current transaction
1312 * happens, we should return the error number. If the error which just affect
1313 * the creation of the pending snapshots, just return 0.
1314 */
1315 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1316 struct btrfs_fs_info *fs_info,
1317 struct btrfs_pending_snapshot *pending)
1318 {
1319 struct btrfs_key key;
1320 struct btrfs_root_item *new_root_item;
1321 struct btrfs_root *tree_root = fs_info->tree_root;
1322 struct btrfs_root *root = pending->root;
1323 struct btrfs_root *parent_root;
1324 struct btrfs_block_rsv *rsv;
1325 struct inode *parent_inode;
1326 struct btrfs_path *path;
1327 struct btrfs_dir_item *dir_item;
1328 struct dentry *dentry;
1329 struct extent_buffer *tmp;
1330 struct extent_buffer *old;
1331 struct timespec cur_time = CURRENT_TIME;
1332 int ret = 0;
1333 u64 to_reserve = 0;
1334 u64 index = 0;
1335 u64 objectid;
1336 u64 root_flags;
1337 uuid_le new_uuid;
1338
1339 ASSERT(pending->path);
1340 path = pending->path;
1341
1342 ASSERT(pending->root_item);
1343 new_root_item = pending->root_item;
1344
1345 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1346 if (pending->error)
1347 goto no_free_objectid;
1348
1349 /*
1350 * Make qgroup to skip current new snapshot's qgroupid, as it is
1351 * accounted by later btrfs_qgroup_inherit().
1352 */
1353 btrfs_set_skip_qgroup(trans, objectid);
1354
1355 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1356
1357 if (to_reserve > 0) {
1358 pending->error = btrfs_block_rsv_add(root,
1359 &pending->block_rsv,
1360 to_reserve,
1361 BTRFS_RESERVE_NO_FLUSH);
1362 if (pending->error)
1363 goto clear_skip_qgroup;
1364 }
1365
1366 key.objectid = objectid;
1367 key.offset = (u64)-1;
1368 key.type = BTRFS_ROOT_ITEM_KEY;
1369
1370 rsv = trans->block_rsv;
1371 trans->block_rsv = &pending->block_rsv;
1372 trans->bytes_reserved = trans->block_rsv->reserved;
1373
1374 dentry = pending->dentry;
1375 parent_inode = pending->dir;
1376 parent_root = BTRFS_I(parent_inode)->root;
1377 record_root_in_trans(trans, parent_root);
1378
1379 /*
1380 * insert the directory item
1381 */
1382 ret = btrfs_set_inode_index(parent_inode, &index);
1383 BUG_ON(ret); /* -ENOMEM */
1384
1385 /* check if there is a file/dir which has the same name. */
1386 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1387 btrfs_ino(parent_inode),
1388 dentry->d_name.name,
1389 dentry->d_name.len, 0);
1390 if (dir_item != NULL && !IS_ERR(dir_item)) {
1391 pending->error = -EEXIST;
1392 goto dir_item_existed;
1393 } else if (IS_ERR(dir_item)) {
1394 ret = PTR_ERR(dir_item);
1395 btrfs_abort_transaction(trans, root, ret);
1396 goto fail;
1397 }
1398 btrfs_release_path(path);
1399
1400 /*
1401 * pull in the delayed directory update
1402 * and the delayed inode item
1403 * otherwise we corrupt the FS during
1404 * snapshot
1405 */
1406 ret = btrfs_run_delayed_items(trans, root);
1407 if (ret) { /* Transaction aborted */
1408 btrfs_abort_transaction(trans, root, ret);
1409 goto fail;
1410 }
1411
1412 record_root_in_trans(trans, root);
1413 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1414 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1415 btrfs_check_and_init_root_item(new_root_item);
1416
1417 root_flags = btrfs_root_flags(new_root_item);
1418 if (pending->readonly)
1419 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1420 else
1421 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1422 btrfs_set_root_flags(new_root_item, root_flags);
1423
1424 btrfs_set_root_generation_v2(new_root_item,
1425 trans->transid);
1426 uuid_le_gen(&new_uuid);
1427 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1428 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1429 BTRFS_UUID_SIZE);
1430 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1431 memset(new_root_item->received_uuid, 0,
1432 sizeof(new_root_item->received_uuid));
1433 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1434 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1435 btrfs_set_root_stransid(new_root_item, 0);
1436 btrfs_set_root_rtransid(new_root_item, 0);
1437 }
1438 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1439 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1440 btrfs_set_root_otransid(new_root_item, trans->transid);
1441
1442 old = btrfs_lock_root_node(root);
1443 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1444 if (ret) {
1445 btrfs_tree_unlock(old);
1446 free_extent_buffer(old);
1447 btrfs_abort_transaction(trans, root, ret);
1448 goto fail;
1449 }
1450
1451 btrfs_set_lock_blocking(old);
1452
1453 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1454 /* clean up in any case */
1455 btrfs_tree_unlock(old);
1456 free_extent_buffer(old);
1457 if (ret) {
1458 btrfs_abort_transaction(trans, root, ret);
1459 goto fail;
1460 }
1461 /* see comments in should_cow_block() */
1462 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1463 smp_wmb();
1464
1465 btrfs_set_root_node(new_root_item, tmp);
1466 /* record when the snapshot was created in key.offset */
1467 key.offset = trans->transid;
1468 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1469 btrfs_tree_unlock(tmp);
1470 free_extent_buffer(tmp);
1471 if (ret) {
1472 btrfs_abort_transaction(trans, root, ret);
1473 goto fail;
1474 }
1475
1476 /*
1477 * insert root back/forward references
1478 */
1479 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1480 parent_root->root_key.objectid,
1481 btrfs_ino(parent_inode), index,
1482 dentry->d_name.name, dentry->d_name.len);
1483 if (ret) {
1484 btrfs_abort_transaction(trans, root, ret);
1485 goto fail;
1486 }
1487
1488 key.offset = (u64)-1;
1489 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1490 if (IS_ERR(pending->snap)) {
1491 ret = PTR_ERR(pending->snap);
1492 btrfs_abort_transaction(trans, root, ret);
1493 goto fail;
1494 }
1495
1496 ret = btrfs_reloc_post_snapshot(trans, pending);
1497 if (ret) {
1498 btrfs_abort_transaction(trans, root, ret);
1499 goto fail;
1500 }
1501
1502 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1503 if (ret) {
1504 btrfs_abort_transaction(trans, root, ret);
1505 goto fail;
1506 }
1507
1508 ret = btrfs_insert_dir_item(trans, parent_root,
1509 dentry->d_name.name, dentry->d_name.len,
1510 parent_inode, &key,
1511 BTRFS_FT_DIR, index);
1512 /* We have check then name at the beginning, so it is impossible. */
1513 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1514 if (ret) {
1515 btrfs_abort_transaction(trans, root, ret);
1516 goto fail;
1517 }
1518
1519 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1520 dentry->d_name.len * 2);
1521 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1522 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1523 if (ret) {
1524 btrfs_abort_transaction(trans, root, ret);
1525 goto fail;
1526 }
1527 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1528 BTRFS_UUID_KEY_SUBVOL, objectid);
1529 if (ret) {
1530 btrfs_abort_transaction(trans, root, ret);
1531 goto fail;
1532 }
1533 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1534 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1535 new_root_item->received_uuid,
1536 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1537 objectid);
1538 if (ret && ret != -EEXIST) {
1539 btrfs_abort_transaction(trans, root, ret);
1540 goto fail;
1541 }
1542 }
1543
1544 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1545 if (ret) {
1546 btrfs_abort_transaction(trans, root, ret);
1547 goto fail;
1548 }
1549
1550 /*
1551 * account qgroup counters before qgroup_inherit()
1552 */
1553 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1554 if (ret)
1555 goto fail;
1556 ret = btrfs_qgroup_account_extents(trans, fs_info);
1557 if (ret)
1558 goto fail;
1559 ret = btrfs_qgroup_inherit(trans, fs_info,
1560 root->root_key.objectid,
1561 objectid, pending->inherit);
1562 if (ret) {
1563 btrfs_abort_transaction(trans, root, ret);
1564 goto fail;
1565 }
1566
1567 fail:
1568 pending->error = ret;
1569 dir_item_existed:
1570 trans->block_rsv = rsv;
1571 trans->bytes_reserved = 0;
1572 clear_skip_qgroup:
1573 btrfs_clear_skip_qgroup(trans);
1574 no_free_objectid:
1575 kfree(new_root_item);
1576 pending->root_item = NULL;
1577 btrfs_free_path(path);
1578 pending->path = NULL;
1579
1580 return ret;
1581 }
1582
1583 /*
1584 * create all the snapshots we've scheduled for creation
1585 */
1586 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1587 struct btrfs_fs_info *fs_info)
1588 {
1589 struct btrfs_pending_snapshot *pending, *next;
1590 struct list_head *head = &trans->transaction->pending_snapshots;
1591 int ret = 0;
1592
1593 list_for_each_entry_safe(pending, next, head, list) {
1594 list_del(&pending->list);
1595 ret = create_pending_snapshot(trans, fs_info, pending);
1596 if (ret)
1597 break;
1598 }
1599 return ret;
1600 }
1601
1602 static void update_super_roots(struct btrfs_root *root)
1603 {
1604 struct btrfs_root_item *root_item;
1605 struct btrfs_super_block *super;
1606
1607 super = root->fs_info->super_copy;
1608
1609 root_item = &root->fs_info->chunk_root->root_item;
1610 super->chunk_root = root_item->bytenr;
1611 super->chunk_root_generation = root_item->generation;
1612 super->chunk_root_level = root_item->level;
1613
1614 root_item = &root->fs_info->tree_root->root_item;
1615 super->root = root_item->bytenr;
1616 super->generation = root_item->generation;
1617 super->root_level = root_item->level;
1618 if (btrfs_test_opt(root, SPACE_CACHE))
1619 super->cache_generation = root_item->generation;
1620 if (root->fs_info->update_uuid_tree_gen)
1621 super->uuid_tree_generation = root_item->generation;
1622 }
1623
1624 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1625 {
1626 struct btrfs_transaction *trans;
1627 int ret = 0;
1628
1629 spin_lock(&info->trans_lock);
1630 trans = info->running_transaction;
1631 if (trans)
1632 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1633 spin_unlock(&info->trans_lock);
1634 return ret;
1635 }
1636
1637 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1638 {
1639 struct btrfs_transaction *trans;
1640 int ret = 0;
1641
1642 spin_lock(&info->trans_lock);
1643 trans = info->running_transaction;
1644 if (trans)
1645 ret = is_transaction_blocked(trans);
1646 spin_unlock(&info->trans_lock);
1647 return ret;
1648 }
1649
1650 /*
1651 * wait for the current transaction commit to start and block subsequent
1652 * transaction joins
1653 */
1654 static void wait_current_trans_commit_start(struct btrfs_root *root,
1655 struct btrfs_transaction *trans)
1656 {
1657 wait_event(root->fs_info->transaction_blocked_wait,
1658 trans->state >= TRANS_STATE_COMMIT_START ||
1659 trans->aborted);
1660 }
1661
1662 /*
1663 * wait for the current transaction to start and then become unblocked.
1664 * caller holds ref.
1665 */
1666 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1667 struct btrfs_transaction *trans)
1668 {
1669 wait_event(root->fs_info->transaction_wait,
1670 trans->state >= TRANS_STATE_UNBLOCKED ||
1671 trans->aborted);
1672 }
1673
1674 /*
1675 * commit transactions asynchronously. once btrfs_commit_transaction_async
1676 * returns, any subsequent transaction will not be allowed to join.
1677 */
1678 struct btrfs_async_commit {
1679 struct btrfs_trans_handle *newtrans;
1680 struct btrfs_root *root;
1681 struct work_struct work;
1682 };
1683
1684 static void do_async_commit(struct work_struct *work)
1685 {
1686 struct btrfs_async_commit *ac =
1687 container_of(work, struct btrfs_async_commit, work);
1688
1689 /*
1690 * We've got freeze protection passed with the transaction.
1691 * Tell lockdep about it.
1692 */
1693 if (ac->newtrans->type & __TRANS_FREEZABLE)
1694 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1695
1696 current->journal_info = ac->newtrans;
1697
1698 btrfs_commit_transaction(ac->newtrans, ac->root);
1699 kfree(ac);
1700 }
1701
1702 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1703 struct btrfs_root *root,
1704 int wait_for_unblock)
1705 {
1706 struct btrfs_async_commit *ac;
1707 struct btrfs_transaction *cur_trans;
1708
1709 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1710 if (!ac)
1711 return -ENOMEM;
1712
1713 INIT_WORK(&ac->work, do_async_commit);
1714 ac->root = root;
1715 ac->newtrans = btrfs_join_transaction(root);
1716 if (IS_ERR(ac->newtrans)) {
1717 int err = PTR_ERR(ac->newtrans);
1718 kfree(ac);
1719 return err;
1720 }
1721
1722 /* take transaction reference */
1723 cur_trans = trans->transaction;
1724 atomic_inc(&cur_trans->use_count);
1725
1726 btrfs_end_transaction(trans, root);
1727
1728 /*
1729 * Tell lockdep we've released the freeze rwsem, since the
1730 * async commit thread will be the one to unlock it.
1731 */
1732 if (ac->newtrans->type & __TRANS_FREEZABLE)
1733 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1734
1735 schedule_work(&ac->work);
1736
1737 /* wait for transaction to start and unblock */
1738 if (wait_for_unblock)
1739 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1740 else
1741 wait_current_trans_commit_start(root, cur_trans);
1742
1743 if (current->journal_info == trans)
1744 current->journal_info = NULL;
1745
1746 btrfs_put_transaction(cur_trans);
1747 return 0;
1748 }
1749
1750
1751 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1752 struct btrfs_root *root, int err)
1753 {
1754 struct btrfs_transaction *cur_trans = trans->transaction;
1755 DEFINE_WAIT(wait);
1756
1757 WARN_ON(trans->use_count > 1);
1758
1759 btrfs_abort_transaction(trans, root, err);
1760
1761 spin_lock(&root->fs_info->trans_lock);
1762
1763 /*
1764 * If the transaction is removed from the list, it means this
1765 * transaction has been committed successfully, so it is impossible
1766 * to call the cleanup function.
1767 */
1768 BUG_ON(list_empty(&cur_trans->list));
1769
1770 list_del_init(&cur_trans->list);
1771 if (cur_trans == root->fs_info->running_transaction) {
1772 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1773 spin_unlock(&root->fs_info->trans_lock);
1774 wait_event(cur_trans->writer_wait,
1775 atomic_read(&cur_trans->num_writers) == 1);
1776
1777 spin_lock(&root->fs_info->trans_lock);
1778 }
1779 spin_unlock(&root->fs_info->trans_lock);
1780
1781 btrfs_cleanup_one_transaction(trans->transaction, root);
1782
1783 spin_lock(&root->fs_info->trans_lock);
1784 if (cur_trans == root->fs_info->running_transaction)
1785 root->fs_info->running_transaction = NULL;
1786 spin_unlock(&root->fs_info->trans_lock);
1787
1788 if (trans->type & __TRANS_FREEZABLE)
1789 sb_end_intwrite(root->fs_info->sb);
1790 btrfs_put_transaction(cur_trans);
1791 btrfs_put_transaction(cur_trans);
1792
1793 trace_btrfs_transaction_commit(root);
1794
1795 if (current->journal_info == trans)
1796 current->journal_info = NULL;
1797 btrfs_scrub_cancel(root->fs_info);
1798
1799 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1800 }
1801
1802 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1803 {
1804 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1805 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1806 return 0;
1807 }
1808
1809 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1810 {
1811 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1812 btrfs_wait_ordered_roots(fs_info, -1);
1813 }
1814
1815 static inline void
1816 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1817 {
1818 wait_event(cur_trans->pending_wait,
1819 atomic_read(&cur_trans->pending_ordered) == 0);
1820 }
1821
1822 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1823 struct btrfs_root *root)
1824 {
1825 struct btrfs_transaction *cur_trans = trans->transaction;
1826 struct btrfs_transaction *prev_trans = NULL;
1827 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1828 int ret;
1829
1830 /* Stop the commit early if ->aborted is set */
1831 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1832 ret = cur_trans->aborted;
1833 btrfs_end_transaction(trans, root);
1834 return ret;
1835 }
1836
1837 /* make a pass through all the delayed refs we have so far
1838 * any runnings procs may add more while we are here
1839 */
1840 ret = btrfs_run_delayed_refs(trans, root, 0);
1841 if (ret) {
1842 btrfs_end_transaction(trans, root);
1843 return ret;
1844 }
1845
1846 btrfs_trans_release_metadata(trans, root);
1847 trans->block_rsv = NULL;
1848
1849 cur_trans = trans->transaction;
1850
1851 /*
1852 * set the flushing flag so procs in this transaction have to
1853 * start sending their work down.
1854 */
1855 cur_trans->delayed_refs.flushing = 1;
1856 smp_wmb();
1857
1858 if (!list_empty(&trans->new_bgs))
1859 btrfs_create_pending_block_groups(trans, root);
1860
1861 ret = btrfs_run_delayed_refs(trans, root, 0);
1862 if (ret) {
1863 btrfs_end_transaction(trans, root);
1864 return ret;
1865 }
1866
1867 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1868 int run_it = 0;
1869
1870 /* this mutex is also taken before trying to set
1871 * block groups readonly. We need to make sure
1872 * that nobody has set a block group readonly
1873 * after a extents from that block group have been
1874 * allocated for cache files. btrfs_set_block_group_ro
1875 * will wait for the transaction to commit if it
1876 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1877 *
1878 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1879 * only one process starts all the block group IO. It wouldn't
1880 * hurt to have more than one go through, but there's no
1881 * real advantage to it either.
1882 */
1883 mutex_lock(&root->fs_info->ro_block_group_mutex);
1884 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1885 &cur_trans->flags))
1886 run_it = 1;
1887 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1888
1889 if (run_it)
1890 ret = btrfs_start_dirty_block_groups(trans, root);
1891 }
1892 if (ret) {
1893 btrfs_end_transaction(trans, root);
1894 return ret;
1895 }
1896
1897 spin_lock(&root->fs_info->trans_lock);
1898 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1899 spin_unlock(&root->fs_info->trans_lock);
1900 atomic_inc(&cur_trans->use_count);
1901 ret = btrfs_end_transaction(trans, root);
1902
1903 wait_for_commit(root, cur_trans);
1904
1905 if (unlikely(cur_trans->aborted))
1906 ret = cur_trans->aborted;
1907
1908 btrfs_put_transaction(cur_trans);
1909
1910 return ret;
1911 }
1912
1913 cur_trans->state = TRANS_STATE_COMMIT_START;
1914 wake_up(&root->fs_info->transaction_blocked_wait);
1915
1916 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1917 prev_trans = list_entry(cur_trans->list.prev,
1918 struct btrfs_transaction, list);
1919 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1920 atomic_inc(&prev_trans->use_count);
1921 spin_unlock(&root->fs_info->trans_lock);
1922
1923 wait_for_commit(root, prev_trans);
1924 ret = prev_trans->aborted;
1925
1926 btrfs_put_transaction(prev_trans);
1927 if (ret)
1928 goto cleanup_transaction;
1929 } else {
1930 spin_unlock(&root->fs_info->trans_lock);
1931 }
1932 } else {
1933 spin_unlock(&root->fs_info->trans_lock);
1934 }
1935
1936 extwriter_counter_dec(cur_trans, trans->type);
1937
1938 ret = btrfs_start_delalloc_flush(root->fs_info);
1939 if (ret)
1940 goto cleanup_transaction;
1941
1942 ret = btrfs_run_delayed_items(trans, root);
1943 if (ret)
1944 goto cleanup_transaction;
1945
1946 wait_event(cur_trans->writer_wait,
1947 extwriter_counter_read(cur_trans) == 0);
1948
1949 /* some pending stuffs might be added after the previous flush. */
1950 ret = btrfs_run_delayed_items(trans, root);
1951 if (ret)
1952 goto cleanup_transaction;
1953
1954 btrfs_wait_delalloc_flush(root->fs_info);
1955
1956 btrfs_wait_pending_ordered(cur_trans);
1957
1958 btrfs_scrub_pause(root);
1959 /*
1960 * Ok now we need to make sure to block out any other joins while we
1961 * commit the transaction. We could have started a join before setting
1962 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1963 */
1964 spin_lock(&root->fs_info->trans_lock);
1965 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1966 spin_unlock(&root->fs_info->trans_lock);
1967 wait_event(cur_trans->writer_wait,
1968 atomic_read(&cur_trans->num_writers) == 1);
1969
1970 /* ->aborted might be set after the previous check, so check it */
1971 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1972 ret = cur_trans->aborted;
1973 goto scrub_continue;
1974 }
1975 /*
1976 * the reloc mutex makes sure that we stop
1977 * the balancing code from coming in and moving
1978 * extents around in the middle of the commit
1979 */
1980 mutex_lock(&root->fs_info->reloc_mutex);
1981
1982 /*
1983 * We needn't worry about the delayed items because we will
1984 * deal with them in create_pending_snapshot(), which is the
1985 * core function of the snapshot creation.
1986 */
1987 ret = create_pending_snapshots(trans, root->fs_info);
1988 if (ret) {
1989 mutex_unlock(&root->fs_info->reloc_mutex);
1990 goto scrub_continue;
1991 }
1992
1993 /*
1994 * We insert the dir indexes of the snapshots and update the inode
1995 * of the snapshots' parents after the snapshot creation, so there
1996 * are some delayed items which are not dealt with. Now deal with
1997 * them.
1998 *
1999 * We needn't worry that this operation will corrupt the snapshots,
2000 * because all the tree which are snapshoted will be forced to COW
2001 * the nodes and leaves.
2002 */
2003 ret = btrfs_run_delayed_items(trans, root);
2004 if (ret) {
2005 mutex_unlock(&root->fs_info->reloc_mutex);
2006 goto scrub_continue;
2007 }
2008
2009 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2010 if (ret) {
2011 mutex_unlock(&root->fs_info->reloc_mutex);
2012 goto scrub_continue;
2013 }
2014
2015 /* Reocrd old roots for later qgroup accounting */
2016 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2017 if (ret) {
2018 mutex_unlock(&root->fs_info->reloc_mutex);
2019 goto scrub_continue;
2020 }
2021
2022 /*
2023 * make sure none of the code above managed to slip in a
2024 * delayed item
2025 */
2026 btrfs_assert_delayed_root_empty(root);
2027
2028 WARN_ON(cur_trans != trans->transaction);
2029
2030 /* btrfs_commit_tree_roots is responsible for getting the
2031 * various roots consistent with each other. Every pointer
2032 * in the tree of tree roots has to point to the most up to date
2033 * root for every subvolume and other tree. So, we have to keep
2034 * the tree logging code from jumping in and changing any
2035 * of the trees.
2036 *
2037 * At this point in the commit, there can't be any tree-log
2038 * writers, but a little lower down we drop the trans mutex
2039 * and let new people in. By holding the tree_log_mutex
2040 * from now until after the super is written, we avoid races
2041 * with the tree-log code.
2042 */
2043 mutex_lock(&root->fs_info->tree_log_mutex);
2044
2045 ret = commit_fs_roots(trans, root);
2046 if (ret) {
2047 mutex_unlock(&root->fs_info->tree_log_mutex);
2048 mutex_unlock(&root->fs_info->reloc_mutex);
2049 goto scrub_continue;
2050 }
2051
2052 /*
2053 * Since the transaction is done, we can apply the pending changes
2054 * before the next transaction.
2055 */
2056 btrfs_apply_pending_changes(root->fs_info);
2057
2058 /* commit_fs_roots gets rid of all the tree log roots, it is now
2059 * safe to free the root of tree log roots
2060 */
2061 btrfs_free_log_root_tree(trans, root->fs_info);
2062
2063 /*
2064 * Since fs roots are all committed, we can get a quite accurate
2065 * new_roots. So let's do quota accounting.
2066 */
2067 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2068 if (ret < 0) {
2069 mutex_unlock(&root->fs_info->tree_log_mutex);
2070 mutex_unlock(&root->fs_info->reloc_mutex);
2071 goto scrub_continue;
2072 }
2073
2074 ret = commit_cowonly_roots(trans, root);
2075 if (ret) {
2076 mutex_unlock(&root->fs_info->tree_log_mutex);
2077 mutex_unlock(&root->fs_info->reloc_mutex);
2078 goto scrub_continue;
2079 }
2080
2081 /*
2082 * The tasks which save the space cache and inode cache may also
2083 * update ->aborted, check it.
2084 */
2085 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2086 ret = cur_trans->aborted;
2087 mutex_unlock(&root->fs_info->tree_log_mutex);
2088 mutex_unlock(&root->fs_info->reloc_mutex);
2089 goto scrub_continue;
2090 }
2091
2092 btrfs_prepare_extent_commit(trans, root);
2093
2094 cur_trans = root->fs_info->running_transaction;
2095
2096 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2097 root->fs_info->tree_root->node);
2098 list_add_tail(&root->fs_info->tree_root->dirty_list,
2099 &cur_trans->switch_commits);
2100
2101 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2102 root->fs_info->chunk_root->node);
2103 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2104 &cur_trans->switch_commits);
2105
2106 switch_commit_roots(cur_trans, root->fs_info);
2107
2108 assert_qgroups_uptodate(trans);
2109 ASSERT(list_empty(&cur_trans->dirty_bgs));
2110 ASSERT(list_empty(&cur_trans->io_bgs));
2111 update_super_roots(root);
2112
2113 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2114 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2115 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2116 sizeof(*root->fs_info->super_copy));
2117
2118 btrfs_update_commit_device_size(root->fs_info);
2119 btrfs_update_commit_device_bytes_used(root, cur_trans);
2120
2121 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2122 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2123
2124 btrfs_trans_release_chunk_metadata(trans);
2125
2126 spin_lock(&root->fs_info->trans_lock);
2127 cur_trans->state = TRANS_STATE_UNBLOCKED;
2128 root->fs_info->running_transaction = NULL;
2129 spin_unlock(&root->fs_info->trans_lock);
2130 mutex_unlock(&root->fs_info->reloc_mutex);
2131
2132 wake_up(&root->fs_info->transaction_wait);
2133
2134 ret = btrfs_write_and_wait_transaction(trans, root);
2135 if (ret) {
2136 btrfs_std_error(root->fs_info, ret,
2137 "Error while writing out transaction");
2138 mutex_unlock(&root->fs_info->tree_log_mutex);
2139 goto scrub_continue;
2140 }
2141
2142 ret = write_ctree_super(trans, root, 0);
2143 if (ret) {
2144 mutex_unlock(&root->fs_info->tree_log_mutex);
2145 goto scrub_continue;
2146 }
2147
2148 /*
2149 * the super is written, we can safely allow the tree-loggers
2150 * to go about their business
2151 */
2152 mutex_unlock(&root->fs_info->tree_log_mutex);
2153
2154 btrfs_finish_extent_commit(trans, root);
2155
2156 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2157 btrfs_clear_space_info_full(root->fs_info);
2158
2159 root->fs_info->last_trans_committed = cur_trans->transid;
2160 /*
2161 * We needn't acquire the lock here because there is no other task
2162 * which can change it.
2163 */
2164 cur_trans->state = TRANS_STATE_COMPLETED;
2165 wake_up(&cur_trans->commit_wait);
2166
2167 spin_lock(&root->fs_info->trans_lock);
2168 list_del_init(&cur_trans->list);
2169 spin_unlock(&root->fs_info->trans_lock);
2170
2171 btrfs_put_transaction(cur_trans);
2172 btrfs_put_transaction(cur_trans);
2173
2174 if (trans->type & __TRANS_FREEZABLE)
2175 sb_end_intwrite(root->fs_info->sb);
2176
2177 trace_btrfs_transaction_commit(root);
2178
2179 btrfs_scrub_continue(root);
2180
2181 if (current->journal_info == trans)
2182 current->journal_info = NULL;
2183
2184 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2185
2186 if (current != root->fs_info->transaction_kthread &&
2187 current != root->fs_info->cleaner_kthread)
2188 btrfs_run_delayed_iputs(root);
2189
2190 return ret;
2191
2192 scrub_continue:
2193 btrfs_scrub_continue(root);
2194 cleanup_transaction:
2195 btrfs_trans_release_metadata(trans, root);
2196 btrfs_trans_release_chunk_metadata(trans);
2197 trans->block_rsv = NULL;
2198 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2199 if (current->journal_info == trans)
2200 current->journal_info = NULL;
2201 cleanup_transaction(trans, root, ret);
2202
2203 return ret;
2204 }
2205
2206 /*
2207 * return < 0 if error
2208 * 0 if there are no more dead_roots at the time of call
2209 * 1 there are more to be processed, call me again
2210 *
2211 * The return value indicates there are certainly more snapshots to delete, but
2212 * if there comes a new one during processing, it may return 0. We don't mind,
2213 * because btrfs_commit_super will poke cleaner thread and it will process it a
2214 * few seconds later.
2215 */
2216 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2217 {
2218 int ret;
2219 struct btrfs_fs_info *fs_info = root->fs_info;
2220
2221 spin_lock(&fs_info->trans_lock);
2222 if (list_empty(&fs_info->dead_roots)) {
2223 spin_unlock(&fs_info->trans_lock);
2224 return 0;
2225 }
2226 root = list_first_entry(&fs_info->dead_roots,
2227 struct btrfs_root, root_list);
2228 list_del_init(&root->root_list);
2229 spin_unlock(&fs_info->trans_lock);
2230
2231 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2232
2233 btrfs_kill_all_delayed_nodes(root);
2234
2235 if (btrfs_header_backref_rev(root->node) <
2236 BTRFS_MIXED_BACKREF_REV)
2237 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2238 else
2239 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2240
2241 return (ret < 0) ? 0 : 1;
2242 }
2243
2244 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2245 {
2246 unsigned long prev;
2247 unsigned long bit;
2248
2249 prev = xchg(&fs_info->pending_changes, 0);
2250 if (!prev)
2251 return;
2252
2253 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2254 if (prev & bit)
2255 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2256 prev &= ~bit;
2257
2258 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2259 if (prev & bit)
2260 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2261 prev &= ~bit;
2262
2263 bit = 1 << BTRFS_PENDING_COMMIT;
2264 if (prev & bit)
2265 btrfs_debug(fs_info, "pending commit done");
2266 prev &= ~bit;
2267
2268 if (prev)
2269 btrfs_warn(fs_info,
2270 "unknown pending changes left 0x%lx, ignoring", prev);
2271 }