]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/btrfs/transaction.c
3c5b1f72129acf05bb7c3bb0f60aef0f4794cc02
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25
26 #define BTRFS_ROOT_TRANS_TAG 0
27
28 /*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * | Call btrfs_commit_transaction() on any trans handle attached to
43 * | transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * | Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | Transaction N+1
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
83 * | super blocks. |
84 * | |
85 * | At this stage, new transaction is allowed to |
86 * | start. |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
89 * | |
90 * | To next stage: |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
93 * V |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
98 */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 [TRANS_STATE_RUNNING] = 0U,
101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
103 __TRANS_ATTACH |
104 __TRANS_JOIN |
105 __TRANS_JOIN_NOSTART),
106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
107 __TRANS_ATTACH |
108 __TRANS_JOIN |
109 __TRANS_JOIN_NOLOCK |
110 __TRANS_JOIN_NOSTART),
111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
112 __TRANS_ATTACH |
113 __TRANS_JOIN |
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
116 [TRANS_STATE_COMPLETED] = (__TRANS_START |
117 __TRANS_ATTACH |
118 __TRANS_JOIN |
119 __TRANS_JOIN_NOLOCK |
120 __TRANS_JOIN_NOSTART),
121 };
122
123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125 WARN_ON(refcount_read(&transaction->use_count) == 0);
126 if (refcount_dec_and_test(&transaction->use_count)) {
127 BUG_ON(!list_empty(&transaction->list));
128 WARN_ON(!RB_EMPTY_ROOT(
129 &transaction->delayed_refs.href_root.rb_root));
130 WARN_ON(!RB_EMPTY_ROOT(
131 &transaction->delayed_refs.dirty_extent_root));
132 if (transaction->delayed_refs.pending_csums)
133 btrfs_err(transaction->fs_info,
134 "pending csums is %llu",
135 transaction->delayed_refs.pending_csums);
136 /*
137 * If any block groups are found in ->deleted_bgs then it's
138 * because the transaction was aborted and a commit did not
139 * happen (things failed before writing the new superblock
140 * and calling btrfs_finish_extent_commit()), so we can not
141 * discard the physical locations of the block groups.
142 */
143 while (!list_empty(&transaction->deleted_bgs)) {
144 struct btrfs_block_group *cache;
145
146 cache = list_first_entry(&transaction->deleted_bgs,
147 struct btrfs_block_group,
148 bg_list);
149 list_del_init(&cache->bg_list);
150 btrfs_unfreeze_block_group(cache);
151 btrfs_put_block_group(cache);
152 }
153 WARN_ON(!list_empty(&transaction->dev_update_list));
154 kfree(transaction);
155 }
156 }
157
158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160 struct btrfs_transaction *cur_trans = trans->transaction;
161 struct btrfs_fs_info *fs_info = trans->fs_info;
162 struct btrfs_root *root, *tmp;
163 struct btrfs_caching_control *caching_ctl, *next;
164
165 down_write(&fs_info->commit_root_sem);
166 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
167 dirty_list) {
168 list_del_init(&root->dirty_list);
169 free_extent_buffer(root->commit_root);
170 root->commit_root = btrfs_root_node(root);
171 extent_io_tree_release(&root->dirty_log_pages);
172 btrfs_qgroup_clean_swapped_blocks(root);
173 }
174
175 /* We can free old roots now. */
176 spin_lock(&cur_trans->dropped_roots_lock);
177 while (!list_empty(&cur_trans->dropped_roots)) {
178 root = list_first_entry(&cur_trans->dropped_roots,
179 struct btrfs_root, root_list);
180 list_del_init(&root->root_list);
181 spin_unlock(&cur_trans->dropped_roots_lock);
182 btrfs_free_log(trans, root);
183 btrfs_drop_and_free_fs_root(fs_info, root);
184 spin_lock(&cur_trans->dropped_roots_lock);
185 }
186 spin_unlock(&cur_trans->dropped_roots_lock);
187
188 /*
189 * We have to update the last_byte_to_unpin under the commit_root_sem,
190 * at the same time we swap out the commit roots.
191 *
192 * This is because we must have a real view of the last spot the caching
193 * kthreads were while caching. Consider the following views of the
194 * extent tree for a block group
195 *
196 * commit root
197 * +----+----+----+----+----+----+----+
198 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
199 * +----+----+----+----+----+----+----+
200 * 0 1 2 3 4 5 6 7
201 *
202 * new commit root
203 * +----+----+----+----+----+----+----+
204 * | | | |\\\\| | |\\\\|
205 * +----+----+----+----+----+----+----+
206 * 0 1 2 3 4 5 6 7
207 *
208 * If the cache_ctl->progress was at 3, then we are only allowed to
209 * unpin [0,1) and [2,3], because the caching thread has already
210 * processed those extents. We are not allowed to unpin [5,6), because
211 * the caching thread will re-start it's search from 3, and thus find
212 * the hole from [4,6) to add to the free space cache.
213 */
214 spin_lock(&fs_info->block_group_cache_lock);
215 list_for_each_entry_safe(caching_ctl, next,
216 &fs_info->caching_block_groups, list) {
217 struct btrfs_block_group *cache = caching_ctl->block_group;
218
219 if (btrfs_block_group_done(cache)) {
220 cache->last_byte_to_unpin = (u64)-1;
221 list_del_init(&caching_ctl->list);
222 btrfs_put_caching_control(caching_ctl);
223 } else {
224 cache->last_byte_to_unpin = caching_ctl->progress;
225 }
226 }
227 spin_unlock(&fs_info->block_group_cache_lock);
228 up_write(&fs_info->commit_root_sem);
229 }
230
231 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
232 unsigned int type)
233 {
234 if (type & TRANS_EXTWRITERS)
235 atomic_inc(&trans->num_extwriters);
236 }
237
238 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
239 unsigned int type)
240 {
241 if (type & TRANS_EXTWRITERS)
242 atomic_dec(&trans->num_extwriters);
243 }
244
245 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
246 unsigned int type)
247 {
248 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
249 }
250
251 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
252 {
253 return atomic_read(&trans->num_extwriters);
254 }
255
256 /*
257 * To be called after doing the chunk btree updates right after allocating a new
258 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
259 * chunk after all chunk btree updates and after finishing the second phase of
260 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
261 * group had its chunk item insertion delayed to the second phase.
262 */
263 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
264 {
265 struct btrfs_fs_info *fs_info = trans->fs_info;
266
267 if (!trans->chunk_bytes_reserved)
268 return;
269
270 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
271 trans->chunk_bytes_reserved, NULL);
272 trans->chunk_bytes_reserved = 0;
273 }
274
275 /*
276 * either allocate a new transaction or hop into the existing one
277 */
278 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
279 unsigned int type)
280 {
281 struct btrfs_transaction *cur_trans;
282
283 spin_lock(&fs_info->trans_lock);
284 loop:
285 /* The file system has been taken offline. No new transactions. */
286 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
287 spin_unlock(&fs_info->trans_lock);
288 return -EROFS;
289 }
290
291 cur_trans = fs_info->running_transaction;
292 if (cur_trans) {
293 if (TRANS_ABORTED(cur_trans)) {
294 spin_unlock(&fs_info->trans_lock);
295 return cur_trans->aborted;
296 }
297 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
298 spin_unlock(&fs_info->trans_lock);
299 return -EBUSY;
300 }
301 refcount_inc(&cur_trans->use_count);
302 atomic_inc(&cur_trans->num_writers);
303 extwriter_counter_inc(cur_trans, type);
304 spin_unlock(&fs_info->trans_lock);
305 return 0;
306 }
307 spin_unlock(&fs_info->trans_lock);
308
309 /*
310 * If we are ATTACH, we just want to catch the current transaction,
311 * and commit it. If there is no transaction, just return ENOENT.
312 */
313 if (type == TRANS_ATTACH)
314 return -ENOENT;
315
316 /*
317 * JOIN_NOLOCK only happens during the transaction commit, so
318 * it is impossible that ->running_transaction is NULL
319 */
320 BUG_ON(type == TRANS_JOIN_NOLOCK);
321
322 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
323 if (!cur_trans)
324 return -ENOMEM;
325
326 spin_lock(&fs_info->trans_lock);
327 if (fs_info->running_transaction) {
328 /*
329 * someone started a transaction after we unlocked. Make sure
330 * to redo the checks above
331 */
332 kfree(cur_trans);
333 goto loop;
334 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
335 spin_unlock(&fs_info->trans_lock);
336 kfree(cur_trans);
337 return -EROFS;
338 }
339
340 cur_trans->fs_info = fs_info;
341 atomic_set(&cur_trans->pending_ordered, 0);
342 init_waitqueue_head(&cur_trans->pending_wait);
343 atomic_set(&cur_trans->num_writers, 1);
344 extwriter_counter_init(cur_trans, type);
345 init_waitqueue_head(&cur_trans->writer_wait);
346 init_waitqueue_head(&cur_trans->commit_wait);
347 cur_trans->state = TRANS_STATE_RUNNING;
348 /*
349 * One for this trans handle, one so it will live on until we
350 * commit the transaction.
351 */
352 refcount_set(&cur_trans->use_count, 2);
353 cur_trans->flags = 0;
354 cur_trans->start_time = ktime_get_seconds();
355
356 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
357
358 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
359 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
360 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
361
362 /*
363 * although the tree mod log is per file system and not per transaction,
364 * the log must never go across transaction boundaries.
365 */
366 smp_mb();
367 if (!list_empty(&fs_info->tree_mod_seq_list))
368 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
369 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
370 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
371 atomic64_set(&fs_info->tree_mod_seq, 0);
372
373 spin_lock_init(&cur_trans->delayed_refs.lock);
374
375 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
376 INIT_LIST_HEAD(&cur_trans->dev_update_list);
377 INIT_LIST_HEAD(&cur_trans->switch_commits);
378 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
379 INIT_LIST_HEAD(&cur_trans->io_bgs);
380 INIT_LIST_HEAD(&cur_trans->dropped_roots);
381 mutex_init(&cur_trans->cache_write_mutex);
382 spin_lock_init(&cur_trans->dirty_bgs_lock);
383 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
384 spin_lock_init(&cur_trans->dropped_roots_lock);
385 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
386 spin_lock_init(&cur_trans->releasing_ebs_lock);
387 list_add_tail(&cur_trans->list, &fs_info->trans_list);
388 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
389 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
390 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
391 IO_TREE_FS_PINNED_EXTENTS, NULL);
392 fs_info->generation++;
393 cur_trans->transid = fs_info->generation;
394 fs_info->running_transaction = cur_trans;
395 cur_trans->aborted = 0;
396 spin_unlock(&fs_info->trans_lock);
397
398 return 0;
399 }
400
401 /*
402 * This does all the record keeping required to make sure that a shareable root
403 * is properly recorded in a given transaction. This is required to make sure
404 * the old root from before we joined the transaction is deleted when the
405 * transaction commits.
406 */
407 static int record_root_in_trans(struct btrfs_trans_handle *trans,
408 struct btrfs_root *root,
409 int force)
410 {
411 struct btrfs_fs_info *fs_info = root->fs_info;
412 int ret = 0;
413
414 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
415 root->last_trans < trans->transid) || force) {
416 WARN_ON(root == fs_info->extent_root);
417 WARN_ON(!force && root->commit_root != root->node);
418
419 /*
420 * see below for IN_TRANS_SETUP usage rules
421 * we have the reloc mutex held now, so there
422 * is only one writer in this function
423 */
424 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
425
426 /* make sure readers find IN_TRANS_SETUP before
427 * they find our root->last_trans update
428 */
429 smp_wmb();
430
431 spin_lock(&fs_info->fs_roots_radix_lock);
432 if (root->last_trans == trans->transid && !force) {
433 spin_unlock(&fs_info->fs_roots_radix_lock);
434 return 0;
435 }
436 radix_tree_tag_set(&fs_info->fs_roots_radix,
437 (unsigned long)root->root_key.objectid,
438 BTRFS_ROOT_TRANS_TAG);
439 spin_unlock(&fs_info->fs_roots_radix_lock);
440 root->last_trans = trans->transid;
441
442 /* this is pretty tricky. We don't want to
443 * take the relocation lock in btrfs_record_root_in_trans
444 * unless we're really doing the first setup for this root in
445 * this transaction.
446 *
447 * Normally we'd use root->last_trans as a flag to decide
448 * if we want to take the expensive mutex.
449 *
450 * But, we have to set root->last_trans before we
451 * init the relocation root, otherwise, we trip over warnings
452 * in ctree.c. The solution used here is to flag ourselves
453 * with root IN_TRANS_SETUP. When this is 1, we're still
454 * fixing up the reloc trees and everyone must wait.
455 *
456 * When this is zero, they can trust root->last_trans and fly
457 * through btrfs_record_root_in_trans without having to take the
458 * lock. smp_wmb() makes sure that all the writes above are
459 * done before we pop in the zero below
460 */
461 ret = btrfs_init_reloc_root(trans, root);
462 smp_mb__before_atomic();
463 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
464 }
465 return ret;
466 }
467
468
469 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
470 struct btrfs_root *root)
471 {
472 struct btrfs_fs_info *fs_info = root->fs_info;
473 struct btrfs_transaction *cur_trans = trans->transaction;
474
475 /* Add ourselves to the transaction dropped list */
476 spin_lock(&cur_trans->dropped_roots_lock);
477 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
478 spin_unlock(&cur_trans->dropped_roots_lock);
479
480 /* Make sure we don't try to update the root at commit time */
481 spin_lock(&fs_info->fs_roots_radix_lock);
482 radix_tree_tag_clear(&fs_info->fs_roots_radix,
483 (unsigned long)root->root_key.objectid,
484 BTRFS_ROOT_TRANS_TAG);
485 spin_unlock(&fs_info->fs_roots_radix_lock);
486 }
487
488 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
489 struct btrfs_root *root)
490 {
491 struct btrfs_fs_info *fs_info = root->fs_info;
492 int ret;
493
494 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
495 return 0;
496
497 /*
498 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
499 * and barriers
500 */
501 smp_rmb();
502 if (root->last_trans == trans->transid &&
503 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
504 return 0;
505
506 mutex_lock(&fs_info->reloc_mutex);
507 ret = record_root_in_trans(trans, root, 0);
508 mutex_unlock(&fs_info->reloc_mutex);
509
510 return ret;
511 }
512
513 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
514 {
515 return (trans->state >= TRANS_STATE_COMMIT_START &&
516 trans->state < TRANS_STATE_UNBLOCKED &&
517 !TRANS_ABORTED(trans));
518 }
519
520 /* wait for commit against the current transaction to become unblocked
521 * when this is done, it is safe to start a new transaction, but the current
522 * transaction might not be fully on disk.
523 */
524 static void wait_current_trans(struct btrfs_fs_info *fs_info)
525 {
526 struct btrfs_transaction *cur_trans;
527
528 spin_lock(&fs_info->trans_lock);
529 cur_trans = fs_info->running_transaction;
530 if (cur_trans && is_transaction_blocked(cur_trans)) {
531 refcount_inc(&cur_trans->use_count);
532 spin_unlock(&fs_info->trans_lock);
533
534 wait_event(fs_info->transaction_wait,
535 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
536 TRANS_ABORTED(cur_trans));
537 btrfs_put_transaction(cur_trans);
538 } else {
539 spin_unlock(&fs_info->trans_lock);
540 }
541 }
542
543 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
544 {
545 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
546 return 0;
547
548 if (type == TRANS_START)
549 return 1;
550
551 return 0;
552 }
553
554 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
555 {
556 struct btrfs_fs_info *fs_info = root->fs_info;
557
558 if (!fs_info->reloc_ctl ||
559 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
560 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
561 root->reloc_root)
562 return false;
563
564 return true;
565 }
566
567 static struct btrfs_trans_handle *
568 start_transaction(struct btrfs_root *root, unsigned int num_items,
569 unsigned int type, enum btrfs_reserve_flush_enum flush,
570 bool enforce_qgroups)
571 {
572 struct btrfs_fs_info *fs_info = root->fs_info;
573 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
574 struct btrfs_trans_handle *h;
575 struct btrfs_transaction *cur_trans;
576 u64 num_bytes = 0;
577 u64 qgroup_reserved = 0;
578 bool reloc_reserved = false;
579 bool do_chunk_alloc = false;
580 int ret;
581
582 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
583 return ERR_PTR(-EROFS);
584
585 if (current->journal_info) {
586 WARN_ON(type & TRANS_EXTWRITERS);
587 h = current->journal_info;
588 refcount_inc(&h->use_count);
589 WARN_ON(refcount_read(&h->use_count) > 2);
590 h->orig_rsv = h->block_rsv;
591 h->block_rsv = NULL;
592 goto got_it;
593 }
594
595 /*
596 * Do the reservation before we join the transaction so we can do all
597 * the appropriate flushing if need be.
598 */
599 if (num_items && root != fs_info->chunk_root) {
600 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
601 u64 delayed_refs_bytes = 0;
602
603 qgroup_reserved = num_items * fs_info->nodesize;
604 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
605 enforce_qgroups);
606 if (ret)
607 return ERR_PTR(ret);
608
609 /*
610 * We want to reserve all the bytes we may need all at once, so
611 * we only do 1 enospc flushing cycle per transaction start. We
612 * accomplish this by simply assuming we'll do 2 x num_items
613 * worth of delayed refs updates in this trans handle, and
614 * refill that amount for whatever is missing in the reserve.
615 */
616 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
617 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
618 delayed_refs_rsv->full == 0) {
619 delayed_refs_bytes = num_bytes;
620 num_bytes <<= 1;
621 }
622
623 /*
624 * Do the reservation for the relocation root creation
625 */
626 if (need_reserve_reloc_root(root)) {
627 num_bytes += fs_info->nodesize;
628 reloc_reserved = true;
629 }
630
631 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
632 if (ret)
633 goto reserve_fail;
634 if (delayed_refs_bytes) {
635 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
636 delayed_refs_bytes);
637 num_bytes -= delayed_refs_bytes;
638 }
639
640 if (rsv->space_info->force_alloc)
641 do_chunk_alloc = true;
642 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
643 !delayed_refs_rsv->full) {
644 /*
645 * Some people call with btrfs_start_transaction(root, 0)
646 * because they can be throttled, but have some other mechanism
647 * for reserving space. We still want these guys to refill the
648 * delayed block_rsv so just add 1 items worth of reservation
649 * here.
650 */
651 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
652 if (ret)
653 goto reserve_fail;
654 }
655 again:
656 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
657 if (!h) {
658 ret = -ENOMEM;
659 goto alloc_fail;
660 }
661
662 /*
663 * If we are JOIN_NOLOCK we're already committing a transaction and
664 * waiting on this guy, so we don't need to do the sb_start_intwrite
665 * because we're already holding a ref. We need this because we could
666 * have raced in and did an fsync() on a file which can kick a commit
667 * and then we deadlock with somebody doing a freeze.
668 *
669 * If we are ATTACH, it means we just want to catch the current
670 * transaction and commit it, so we needn't do sb_start_intwrite().
671 */
672 if (type & __TRANS_FREEZABLE)
673 sb_start_intwrite(fs_info->sb);
674
675 if (may_wait_transaction(fs_info, type))
676 wait_current_trans(fs_info);
677
678 do {
679 ret = join_transaction(fs_info, type);
680 if (ret == -EBUSY) {
681 wait_current_trans(fs_info);
682 if (unlikely(type == TRANS_ATTACH ||
683 type == TRANS_JOIN_NOSTART))
684 ret = -ENOENT;
685 }
686 } while (ret == -EBUSY);
687
688 if (ret < 0)
689 goto join_fail;
690
691 cur_trans = fs_info->running_transaction;
692
693 h->transid = cur_trans->transid;
694 h->transaction = cur_trans;
695 h->root = root;
696 refcount_set(&h->use_count, 1);
697 h->fs_info = root->fs_info;
698
699 h->type = type;
700 INIT_LIST_HEAD(&h->new_bgs);
701
702 smp_mb();
703 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
704 may_wait_transaction(fs_info, type)) {
705 current->journal_info = h;
706 btrfs_commit_transaction(h);
707 goto again;
708 }
709
710 if (num_bytes) {
711 trace_btrfs_space_reservation(fs_info, "transaction",
712 h->transid, num_bytes, 1);
713 h->block_rsv = &fs_info->trans_block_rsv;
714 h->bytes_reserved = num_bytes;
715 h->reloc_reserved = reloc_reserved;
716 }
717
718 got_it:
719 if (!current->journal_info)
720 current->journal_info = h;
721
722 /*
723 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
724 * ALLOC_FORCE the first run through, and then we won't allocate for
725 * anybody else who races in later. We don't care about the return
726 * value here.
727 */
728 if (do_chunk_alloc && num_bytes) {
729 u64 flags = h->block_rsv->space_info->flags;
730
731 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
732 CHUNK_ALLOC_NO_FORCE);
733 }
734
735 /*
736 * btrfs_record_root_in_trans() needs to alloc new extents, and may
737 * call btrfs_join_transaction() while we're also starting a
738 * transaction.
739 *
740 * Thus it need to be called after current->journal_info initialized,
741 * or we can deadlock.
742 */
743 ret = btrfs_record_root_in_trans(h, root);
744 if (ret) {
745 /*
746 * The transaction handle is fully initialized and linked with
747 * other structures so it needs to be ended in case of errors,
748 * not just freed.
749 */
750 btrfs_end_transaction(h);
751 return ERR_PTR(ret);
752 }
753
754 return h;
755
756 join_fail:
757 if (type & __TRANS_FREEZABLE)
758 sb_end_intwrite(fs_info->sb);
759 kmem_cache_free(btrfs_trans_handle_cachep, h);
760 alloc_fail:
761 if (num_bytes)
762 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
763 num_bytes, NULL);
764 reserve_fail:
765 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
766 return ERR_PTR(ret);
767 }
768
769 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
770 unsigned int num_items)
771 {
772 return start_transaction(root, num_items, TRANS_START,
773 BTRFS_RESERVE_FLUSH_ALL, true);
774 }
775
776 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
777 struct btrfs_root *root,
778 unsigned int num_items)
779 {
780 return start_transaction(root, num_items, TRANS_START,
781 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
782 }
783
784 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
785 {
786 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
787 true);
788 }
789
790 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
791 {
792 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
793 BTRFS_RESERVE_NO_FLUSH, true);
794 }
795
796 /*
797 * Similar to regular join but it never starts a transaction when none is
798 * running or after waiting for the current one to finish.
799 */
800 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
801 {
802 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
803 BTRFS_RESERVE_NO_FLUSH, true);
804 }
805
806 /*
807 * btrfs_attach_transaction() - catch the running transaction
808 *
809 * It is used when we want to commit the current the transaction, but
810 * don't want to start a new one.
811 *
812 * Note: If this function return -ENOENT, it just means there is no
813 * running transaction. But it is possible that the inactive transaction
814 * is still in the memory, not fully on disk. If you hope there is no
815 * inactive transaction in the fs when -ENOENT is returned, you should
816 * invoke
817 * btrfs_attach_transaction_barrier()
818 */
819 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
820 {
821 return start_transaction(root, 0, TRANS_ATTACH,
822 BTRFS_RESERVE_NO_FLUSH, true);
823 }
824
825 /*
826 * btrfs_attach_transaction_barrier() - catch the running transaction
827 *
828 * It is similar to the above function, the difference is this one
829 * will wait for all the inactive transactions until they fully
830 * complete.
831 */
832 struct btrfs_trans_handle *
833 btrfs_attach_transaction_barrier(struct btrfs_root *root)
834 {
835 struct btrfs_trans_handle *trans;
836
837 trans = start_transaction(root, 0, TRANS_ATTACH,
838 BTRFS_RESERVE_NO_FLUSH, true);
839 if (trans == ERR_PTR(-ENOENT))
840 btrfs_wait_for_commit(root->fs_info, 0);
841
842 return trans;
843 }
844
845 /* Wait for a transaction commit to reach at least the given state. */
846 static noinline void wait_for_commit(struct btrfs_transaction *commit,
847 const enum btrfs_trans_state min_state)
848 {
849 struct btrfs_fs_info *fs_info = commit->fs_info;
850 u64 transid = commit->transid;
851 bool put = false;
852
853 while (1) {
854 wait_event(commit->commit_wait, commit->state >= min_state);
855 if (put)
856 btrfs_put_transaction(commit);
857
858 if (min_state < TRANS_STATE_COMPLETED)
859 break;
860
861 /*
862 * A transaction isn't really completed until all of the
863 * previous transactions are completed, but with fsync we can
864 * end up with SUPER_COMMITTED transactions before a COMPLETED
865 * transaction. Wait for those.
866 */
867
868 spin_lock(&fs_info->trans_lock);
869 commit = list_first_entry_or_null(&fs_info->trans_list,
870 struct btrfs_transaction,
871 list);
872 if (!commit || commit->transid > transid) {
873 spin_unlock(&fs_info->trans_lock);
874 break;
875 }
876 refcount_inc(&commit->use_count);
877 put = true;
878 spin_unlock(&fs_info->trans_lock);
879 }
880 }
881
882 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
883 {
884 struct btrfs_transaction *cur_trans = NULL, *t;
885 int ret = 0;
886
887 if (transid) {
888 if (transid <= fs_info->last_trans_committed)
889 goto out;
890
891 /* find specified transaction */
892 spin_lock(&fs_info->trans_lock);
893 list_for_each_entry(t, &fs_info->trans_list, list) {
894 if (t->transid == transid) {
895 cur_trans = t;
896 refcount_inc(&cur_trans->use_count);
897 ret = 0;
898 break;
899 }
900 if (t->transid > transid) {
901 ret = 0;
902 break;
903 }
904 }
905 spin_unlock(&fs_info->trans_lock);
906
907 /*
908 * The specified transaction doesn't exist, or we
909 * raced with btrfs_commit_transaction
910 */
911 if (!cur_trans) {
912 if (transid > fs_info->last_trans_committed)
913 ret = -EINVAL;
914 goto out;
915 }
916 } else {
917 /* find newest transaction that is committing | committed */
918 spin_lock(&fs_info->trans_lock);
919 list_for_each_entry_reverse(t, &fs_info->trans_list,
920 list) {
921 if (t->state >= TRANS_STATE_COMMIT_START) {
922 if (t->state == TRANS_STATE_COMPLETED)
923 break;
924 cur_trans = t;
925 refcount_inc(&cur_trans->use_count);
926 break;
927 }
928 }
929 spin_unlock(&fs_info->trans_lock);
930 if (!cur_trans)
931 goto out; /* nothing committing|committed */
932 }
933
934 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
935 btrfs_put_transaction(cur_trans);
936 out:
937 return ret;
938 }
939
940 void btrfs_throttle(struct btrfs_fs_info *fs_info)
941 {
942 wait_current_trans(fs_info);
943 }
944
945 static bool should_end_transaction(struct btrfs_trans_handle *trans)
946 {
947 struct btrfs_fs_info *fs_info = trans->fs_info;
948
949 if (btrfs_check_space_for_delayed_refs(fs_info))
950 return true;
951
952 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
953 }
954
955 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
956 {
957 struct btrfs_transaction *cur_trans = trans->transaction;
958
959 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
960 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
961 return true;
962
963 return should_end_transaction(trans);
964 }
965
966 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
967
968 {
969 struct btrfs_fs_info *fs_info = trans->fs_info;
970
971 if (!trans->block_rsv) {
972 ASSERT(!trans->bytes_reserved);
973 return;
974 }
975
976 if (!trans->bytes_reserved)
977 return;
978
979 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
980 trace_btrfs_space_reservation(fs_info, "transaction",
981 trans->transid, trans->bytes_reserved, 0);
982 btrfs_block_rsv_release(fs_info, trans->block_rsv,
983 trans->bytes_reserved, NULL);
984 trans->bytes_reserved = 0;
985 }
986
987 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
988 int throttle)
989 {
990 struct btrfs_fs_info *info = trans->fs_info;
991 struct btrfs_transaction *cur_trans = trans->transaction;
992 int err = 0;
993
994 if (refcount_read(&trans->use_count) > 1) {
995 refcount_dec(&trans->use_count);
996 trans->block_rsv = trans->orig_rsv;
997 return 0;
998 }
999
1000 btrfs_trans_release_metadata(trans);
1001 trans->block_rsv = NULL;
1002
1003 btrfs_create_pending_block_groups(trans);
1004
1005 btrfs_trans_release_chunk_metadata(trans);
1006
1007 if (trans->type & __TRANS_FREEZABLE)
1008 sb_end_intwrite(info->sb);
1009
1010 WARN_ON(cur_trans != info->running_transaction);
1011 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1012 atomic_dec(&cur_trans->num_writers);
1013 extwriter_counter_dec(cur_trans, trans->type);
1014
1015 cond_wake_up(&cur_trans->writer_wait);
1016 btrfs_put_transaction(cur_trans);
1017
1018 if (current->journal_info == trans)
1019 current->journal_info = NULL;
1020
1021 if (throttle)
1022 btrfs_run_delayed_iputs(info);
1023
1024 if (TRANS_ABORTED(trans) ||
1025 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
1026 wake_up_process(info->transaction_kthread);
1027 if (TRANS_ABORTED(trans))
1028 err = trans->aborted;
1029 else
1030 err = -EROFS;
1031 }
1032
1033 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1034 return err;
1035 }
1036
1037 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1038 {
1039 return __btrfs_end_transaction(trans, 0);
1040 }
1041
1042 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1043 {
1044 return __btrfs_end_transaction(trans, 1);
1045 }
1046
1047 /*
1048 * when btree blocks are allocated, they have some corresponding bits set for
1049 * them in one of two extent_io trees. This is used to make sure all of
1050 * those extents are sent to disk but does not wait on them
1051 */
1052 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1053 struct extent_io_tree *dirty_pages, int mark)
1054 {
1055 int err = 0;
1056 int werr = 0;
1057 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1058 struct extent_state *cached_state = NULL;
1059 u64 start = 0;
1060 u64 end;
1061
1062 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1063 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1064 mark, &cached_state)) {
1065 bool wait_writeback = false;
1066
1067 err = convert_extent_bit(dirty_pages, start, end,
1068 EXTENT_NEED_WAIT,
1069 mark, &cached_state);
1070 /*
1071 * convert_extent_bit can return -ENOMEM, which is most of the
1072 * time a temporary error. So when it happens, ignore the error
1073 * and wait for writeback of this range to finish - because we
1074 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1075 * to __btrfs_wait_marked_extents() would not know that
1076 * writeback for this range started and therefore wouldn't
1077 * wait for it to finish - we don't want to commit a
1078 * superblock that points to btree nodes/leafs for which
1079 * writeback hasn't finished yet (and without errors).
1080 * We cleanup any entries left in the io tree when committing
1081 * the transaction (through extent_io_tree_release()).
1082 */
1083 if (err == -ENOMEM) {
1084 err = 0;
1085 wait_writeback = true;
1086 }
1087 if (!err)
1088 err = filemap_fdatawrite_range(mapping, start, end);
1089 if (err)
1090 werr = err;
1091 else if (wait_writeback)
1092 werr = filemap_fdatawait_range(mapping, start, end);
1093 free_extent_state(cached_state);
1094 cached_state = NULL;
1095 cond_resched();
1096 start = end + 1;
1097 }
1098 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1099 return werr;
1100 }
1101
1102 /*
1103 * when btree blocks are allocated, they have some corresponding bits set for
1104 * them in one of two extent_io trees. This is used to make sure all of
1105 * those extents are on disk for transaction or log commit. We wait
1106 * on all the pages and clear them from the dirty pages state tree
1107 */
1108 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1109 struct extent_io_tree *dirty_pages)
1110 {
1111 int err = 0;
1112 int werr = 0;
1113 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1114 struct extent_state *cached_state = NULL;
1115 u64 start = 0;
1116 u64 end;
1117
1118 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1119 EXTENT_NEED_WAIT, &cached_state)) {
1120 /*
1121 * Ignore -ENOMEM errors returned by clear_extent_bit().
1122 * When committing the transaction, we'll remove any entries
1123 * left in the io tree. For a log commit, we don't remove them
1124 * after committing the log because the tree can be accessed
1125 * concurrently - we do it only at transaction commit time when
1126 * it's safe to do it (through extent_io_tree_release()).
1127 */
1128 err = clear_extent_bit(dirty_pages, start, end,
1129 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1130 if (err == -ENOMEM)
1131 err = 0;
1132 if (!err)
1133 err = filemap_fdatawait_range(mapping, start, end);
1134 if (err)
1135 werr = err;
1136 free_extent_state(cached_state);
1137 cached_state = NULL;
1138 cond_resched();
1139 start = end + 1;
1140 }
1141 if (err)
1142 werr = err;
1143 return werr;
1144 }
1145
1146 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1147 struct extent_io_tree *dirty_pages)
1148 {
1149 bool errors = false;
1150 int err;
1151
1152 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1153 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1154 errors = true;
1155
1156 if (errors && !err)
1157 err = -EIO;
1158 return err;
1159 }
1160
1161 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1162 {
1163 struct btrfs_fs_info *fs_info = log_root->fs_info;
1164 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1165 bool errors = false;
1166 int err;
1167
1168 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1169
1170 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1171 if ((mark & EXTENT_DIRTY) &&
1172 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1173 errors = true;
1174
1175 if ((mark & EXTENT_NEW) &&
1176 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1177 errors = true;
1178
1179 if (errors && !err)
1180 err = -EIO;
1181 return err;
1182 }
1183
1184 /*
1185 * When btree blocks are allocated the corresponding extents are marked dirty.
1186 * This function ensures such extents are persisted on disk for transaction or
1187 * log commit.
1188 *
1189 * @trans: transaction whose dirty pages we'd like to write
1190 */
1191 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1192 {
1193 int ret;
1194 int ret2;
1195 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1196 struct btrfs_fs_info *fs_info = trans->fs_info;
1197 struct blk_plug plug;
1198
1199 blk_start_plug(&plug);
1200 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1201 blk_finish_plug(&plug);
1202 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1203
1204 extent_io_tree_release(&trans->transaction->dirty_pages);
1205
1206 if (ret)
1207 return ret;
1208 else if (ret2)
1209 return ret2;
1210 else
1211 return 0;
1212 }
1213
1214 /*
1215 * this is used to update the root pointer in the tree of tree roots.
1216 *
1217 * But, in the case of the extent allocation tree, updating the root
1218 * pointer may allocate blocks which may change the root of the extent
1219 * allocation tree.
1220 *
1221 * So, this loops and repeats and makes sure the cowonly root didn't
1222 * change while the root pointer was being updated in the metadata.
1223 */
1224 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1225 struct btrfs_root *root)
1226 {
1227 int ret;
1228 u64 old_root_bytenr;
1229 u64 old_root_used;
1230 struct btrfs_fs_info *fs_info = root->fs_info;
1231 struct btrfs_root *tree_root = fs_info->tree_root;
1232
1233 old_root_used = btrfs_root_used(&root->root_item);
1234
1235 while (1) {
1236 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1237 if (old_root_bytenr == root->node->start &&
1238 old_root_used == btrfs_root_used(&root->root_item))
1239 break;
1240
1241 btrfs_set_root_node(&root->root_item, root->node);
1242 ret = btrfs_update_root(trans, tree_root,
1243 &root->root_key,
1244 &root->root_item);
1245 if (ret)
1246 return ret;
1247
1248 old_root_used = btrfs_root_used(&root->root_item);
1249 }
1250
1251 return 0;
1252 }
1253
1254 /*
1255 * update all the cowonly tree roots on disk
1256 *
1257 * The error handling in this function may not be obvious. Any of the
1258 * failures will cause the file system to go offline. We still need
1259 * to clean up the delayed refs.
1260 */
1261 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1262 {
1263 struct btrfs_fs_info *fs_info = trans->fs_info;
1264 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1265 struct list_head *io_bgs = &trans->transaction->io_bgs;
1266 struct list_head *next;
1267 struct extent_buffer *eb;
1268 int ret;
1269
1270 eb = btrfs_lock_root_node(fs_info->tree_root);
1271 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1272 0, &eb, BTRFS_NESTING_COW);
1273 btrfs_tree_unlock(eb);
1274 free_extent_buffer(eb);
1275
1276 if (ret)
1277 return ret;
1278
1279 ret = btrfs_run_dev_stats(trans);
1280 if (ret)
1281 return ret;
1282 ret = btrfs_run_dev_replace(trans);
1283 if (ret)
1284 return ret;
1285 ret = btrfs_run_qgroups(trans);
1286 if (ret)
1287 return ret;
1288
1289 ret = btrfs_setup_space_cache(trans);
1290 if (ret)
1291 return ret;
1292
1293 again:
1294 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1295 struct btrfs_root *root;
1296 next = fs_info->dirty_cowonly_roots.next;
1297 list_del_init(next);
1298 root = list_entry(next, struct btrfs_root, dirty_list);
1299 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1300
1301 if (root != fs_info->extent_root)
1302 list_add_tail(&root->dirty_list,
1303 &trans->transaction->switch_commits);
1304 ret = update_cowonly_root(trans, root);
1305 if (ret)
1306 return ret;
1307 }
1308
1309 /* Now flush any delayed refs generated by updating all of the roots */
1310 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1311 if (ret)
1312 return ret;
1313
1314 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1315 ret = btrfs_write_dirty_block_groups(trans);
1316 if (ret)
1317 return ret;
1318
1319 /*
1320 * We're writing the dirty block groups, which could generate
1321 * delayed refs, which could generate more dirty block groups,
1322 * so we want to keep this flushing in this loop to make sure
1323 * everything gets run.
1324 */
1325 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1326 if (ret)
1327 return ret;
1328 }
1329
1330 if (!list_empty(&fs_info->dirty_cowonly_roots))
1331 goto again;
1332
1333 list_add_tail(&fs_info->extent_root->dirty_list,
1334 &trans->transaction->switch_commits);
1335
1336 /* Update dev-replace pointer once everything is committed */
1337 fs_info->dev_replace.committed_cursor_left =
1338 fs_info->dev_replace.cursor_left_last_write_of_item;
1339
1340 return 0;
1341 }
1342
1343 /*
1344 * dead roots are old snapshots that need to be deleted. This allocates
1345 * a dirty root struct and adds it into the list of dead roots that need to
1346 * be deleted
1347 */
1348 void btrfs_add_dead_root(struct btrfs_root *root)
1349 {
1350 struct btrfs_fs_info *fs_info = root->fs_info;
1351
1352 spin_lock(&fs_info->trans_lock);
1353 if (list_empty(&root->root_list)) {
1354 btrfs_grab_root(root);
1355 list_add_tail(&root->root_list, &fs_info->dead_roots);
1356 }
1357 spin_unlock(&fs_info->trans_lock);
1358 }
1359
1360 /*
1361 * update all the cowonly tree roots on disk
1362 */
1363 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1364 {
1365 struct btrfs_fs_info *fs_info = trans->fs_info;
1366 struct btrfs_root *gang[8];
1367 int i;
1368 int ret;
1369
1370 spin_lock(&fs_info->fs_roots_radix_lock);
1371 while (1) {
1372 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1373 (void **)gang, 0,
1374 ARRAY_SIZE(gang),
1375 BTRFS_ROOT_TRANS_TAG);
1376 if (ret == 0)
1377 break;
1378 for (i = 0; i < ret; i++) {
1379 struct btrfs_root *root = gang[i];
1380 int ret2;
1381
1382 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1383 (unsigned long)root->root_key.objectid,
1384 BTRFS_ROOT_TRANS_TAG);
1385 spin_unlock(&fs_info->fs_roots_radix_lock);
1386
1387 btrfs_free_log(trans, root);
1388 ret2 = btrfs_update_reloc_root(trans, root);
1389 if (ret2)
1390 return ret2;
1391
1392 /* see comments in should_cow_block() */
1393 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1394 smp_mb__after_atomic();
1395
1396 if (root->commit_root != root->node) {
1397 list_add_tail(&root->dirty_list,
1398 &trans->transaction->switch_commits);
1399 btrfs_set_root_node(&root->root_item,
1400 root->node);
1401 }
1402
1403 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1404 &root->root_key,
1405 &root->root_item);
1406 if (ret2)
1407 return ret2;
1408 spin_lock(&fs_info->fs_roots_radix_lock);
1409 btrfs_qgroup_free_meta_all_pertrans(root);
1410 }
1411 }
1412 spin_unlock(&fs_info->fs_roots_radix_lock);
1413 return 0;
1414 }
1415
1416 /*
1417 * defrag a given btree.
1418 * Every leaf in the btree is read and defragged.
1419 */
1420 int btrfs_defrag_root(struct btrfs_root *root)
1421 {
1422 struct btrfs_fs_info *info = root->fs_info;
1423 struct btrfs_trans_handle *trans;
1424 int ret;
1425
1426 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1427 return 0;
1428
1429 while (1) {
1430 trans = btrfs_start_transaction(root, 0);
1431 if (IS_ERR(trans)) {
1432 ret = PTR_ERR(trans);
1433 break;
1434 }
1435
1436 ret = btrfs_defrag_leaves(trans, root);
1437
1438 btrfs_end_transaction(trans);
1439 btrfs_btree_balance_dirty(info);
1440 cond_resched();
1441
1442 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1443 break;
1444
1445 if (btrfs_defrag_cancelled(info)) {
1446 btrfs_debug(info, "defrag_root cancelled");
1447 ret = -EAGAIN;
1448 break;
1449 }
1450 }
1451 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1452 return ret;
1453 }
1454
1455 /*
1456 * Do all special snapshot related qgroup dirty hack.
1457 *
1458 * Will do all needed qgroup inherit and dirty hack like switch commit
1459 * roots inside one transaction and write all btree into disk, to make
1460 * qgroup works.
1461 */
1462 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1463 struct btrfs_root *src,
1464 struct btrfs_root *parent,
1465 struct btrfs_qgroup_inherit *inherit,
1466 u64 dst_objectid)
1467 {
1468 struct btrfs_fs_info *fs_info = src->fs_info;
1469 int ret;
1470
1471 /*
1472 * Save some performance in the case that qgroups are not
1473 * enabled. If this check races with the ioctl, rescan will
1474 * kick in anyway.
1475 */
1476 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1477 return 0;
1478
1479 /*
1480 * Ensure dirty @src will be committed. Or, after coming
1481 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1482 * recorded root will never be updated again, causing an outdated root
1483 * item.
1484 */
1485 ret = record_root_in_trans(trans, src, 1);
1486 if (ret)
1487 return ret;
1488
1489 /*
1490 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1491 * src root, so we must run the delayed refs here.
1492 *
1493 * However this isn't particularly fool proof, because there's no
1494 * synchronization keeping us from changing the tree after this point
1495 * before we do the qgroup_inherit, or even from making changes while
1496 * we're doing the qgroup_inherit. But that's a problem for the future,
1497 * for now flush the delayed refs to narrow the race window where the
1498 * qgroup counters could end up wrong.
1499 */
1500 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1501 if (ret) {
1502 btrfs_abort_transaction(trans, ret);
1503 return ret;
1504 }
1505
1506 /*
1507 * We are going to commit transaction, see btrfs_commit_transaction()
1508 * comment for reason locking tree_log_mutex
1509 */
1510 mutex_lock(&fs_info->tree_log_mutex);
1511
1512 ret = commit_fs_roots(trans);
1513 if (ret)
1514 goto out;
1515 ret = btrfs_qgroup_account_extents(trans);
1516 if (ret < 0)
1517 goto out;
1518
1519 /* Now qgroup are all updated, we can inherit it to new qgroups */
1520 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1521 inherit);
1522 if (ret < 0)
1523 goto out;
1524
1525 /*
1526 * Now we do a simplified commit transaction, which will:
1527 * 1) commit all subvolume and extent tree
1528 * To ensure all subvolume and extent tree have a valid
1529 * commit_root to accounting later insert_dir_item()
1530 * 2) write all btree blocks onto disk
1531 * This is to make sure later btree modification will be cowed
1532 * Or commit_root can be populated and cause wrong qgroup numbers
1533 * In this simplified commit, we don't really care about other trees
1534 * like chunk and root tree, as they won't affect qgroup.
1535 * And we don't write super to avoid half committed status.
1536 */
1537 ret = commit_cowonly_roots(trans);
1538 if (ret)
1539 goto out;
1540 switch_commit_roots(trans);
1541 ret = btrfs_write_and_wait_transaction(trans);
1542 if (ret)
1543 btrfs_handle_fs_error(fs_info, ret,
1544 "Error while writing out transaction for qgroup");
1545
1546 out:
1547 mutex_unlock(&fs_info->tree_log_mutex);
1548
1549 /*
1550 * Force parent root to be updated, as we recorded it before so its
1551 * last_trans == cur_transid.
1552 * Or it won't be committed again onto disk after later
1553 * insert_dir_item()
1554 */
1555 if (!ret)
1556 ret = record_root_in_trans(trans, parent, 1);
1557 return ret;
1558 }
1559
1560 /*
1561 * new snapshots need to be created at a very specific time in the
1562 * transaction commit. This does the actual creation.
1563 *
1564 * Note:
1565 * If the error which may affect the commitment of the current transaction
1566 * happens, we should return the error number. If the error which just affect
1567 * the creation of the pending snapshots, just return 0.
1568 */
1569 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1570 struct btrfs_pending_snapshot *pending)
1571 {
1572
1573 struct btrfs_fs_info *fs_info = trans->fs_info;
1574 struct btrfs_key key;
1575 struct btrfs_root_item *new_root_item;
1576 struct btrfs_root *tree_root = fs_info->tree_root;
1577 struct btrfs_root *root = pending->root;
1578 struct btrfs_root *parent_root;
1579 struct btrfs_block_rsv *rsv;
1580 struct inode *parent_inode;
1581 struct btrfs_path *path;
1582 struct btrfs_dir_item *dir_item;
1583 struct dentry *dentry;
1584 struct extent_buffer *tmp;
1585 struct extent_buffer *old;
1586 struct timespec64 cur_time;
1587 int ret = 0;
1588 u64 to_reserve = 0;
1589 u64 index = 0;
1590 u64 objectid;
1591 u64 root_flags;
1592
1593 ASSERT(pending->path);
1594 path = pending->path;
1595
1596 ASSERT(pending->root_item);
1597 new_root_item = pending->root_item;
1598
1599 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1600 if (pending->error)
1601 goto no_free_objectid;
1602
1603 /*
1604 * Make qgroup to skip current new snapshot's qgroupid, as it is
1605 * accounted by later btrfs_qgroup_inherit().
1606 */
1607 btrfs_set_skip_qgroup(trans, objectid);
1608
1609 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1610
1611 if (to_reserve > 0) {
1612 pending->error = btrfs_block_rsv_add(root,
1613 &pending->block_rsv,
1614 to_reserve,
1615 BTRFS_RESERVE_NO_FLUSH);
1616 if (pending->error)
1617 goto clear_skip_qgroup;
1618 }
1619
1620 key.objectid = objectid;
1621 key.offset = (u64)-1;
1622 key.type = BTRFS_ROOT_ITEM_KEY;
1623
1624 rsv = trans->block_rsv;
1625 trans->block_rsv = &pending->block_rsv;
1626 trans->bytes_reserved = trans->block_rsv->reserved;
1627 trace_btrfs_space_reservation(fs_info, "transaction",
1628 trans->transid,
1629 trans->bytes_reserved, 1);
1630 dentry = pending->dentry;
1631 parent_inode = pending->dir;
1632 parent_root = BTRFS_I(parent_inode)->root;
1633 ret = record_root_in_trans(trans, parent_root, 0);
1634 if (ret)
1635 goto fail;
1636 cur_time = current_time(parent_inode);
1637
1638 /*
1639 * insert the directory item
1640 */
1641 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1642 BUG_ON(ret); /* -ENOMEM */
1643
1644 /* check if there is a file/dir which has the same name. */
1645 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1646 btrfs_ino(BTRFS_I(parent_inode)),
1647 dentry->d_name.name,
1648 dentry->d_name.len, 0);
1649 if (dir_item != NULL && !IS_ERR(dir_item)) {
1650 pending->error = -EEXIST;
1651 goto dir_item_existed;
1652 } else if (IS_ERR(dir_item)) {
1653 ret = PTR_ERR(dir_item);
1654 btrfs_abort_transaction(trans, ret);
1655 goto fail;
1656 }
1657 btrfs_release_path(path);
1658
1659 /*
1660 * pull in the delayed directory update
1661 * and the delayed inode item
1662 * otherwise we corrupt the FS during
1663 * snapshot
1664 */
1665 ret = btrfs_run_delayed_items(trans);
1666 if (ret) { /* Transaction aborted */
1667 btrfs_abort_transaction(trans, ret);
1668 goto fail;
1669 }
1670
1671 ret = record_root_in_trans(trans, root, 0);
1672 if (ret) {
1673 btrfs_abort_transaction(trans, ret);
1674 goto fail;
1675 }
1676 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1677 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1678 btrfs_check_and_init_root_item(new_root_item);
1679
1680 root_flags = btrfs_root_flags(new_root_item);
1681 if (pending->readonly)
1682 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1683 else
1684 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1685 btrfs_set_root_flags(new_root_item, root_flags);
1686
1687 btrfs_set_root_generation_v2(new_root_item,
1688 trans->transid);
1689 generate_random_guid(new_root_item->uuid);
1690 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1691 BTRFS_UUID_SIZE);
1692 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1693 memset(new_root_item->received_uuid, 0,
1694 sizeof(new_root_item->received_uuid));
1695 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1696 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1697 btrfs_set_root_stransid(new_root_item, 0);
1698 btrfs_set_root_rtransid(new_root_item, 0);
1699 }
1700 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1701 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1702 btrfs_set_root_otransid(new_root_item, trans->transid);
1703
1704 old = btrfs_lock_root_node(root);
1705 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1706 BTRFS_NESTING_COW);
1707 if (ret) {
1708 btrfs_tree_unlock(old);
1709 free_extent_buffer(old);
1710 btrfs_abort_transaction(trans, ret);
1711 goto fail;
1712 }
1713
1714 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1715 /* clean up in any case */
1716 btrfs_tree_unlock(old);
1717 free_extent_buffer(old);
1718 if (ret) {
1719 btrfs_abort_transaction(trans, ret);
1720 goto fail;
1721 }
1722 /* see comments in should_cow_block() */
1723 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1724 smp_wmb();
1725
1726 btrfs_set_root_node(new_root_item, tmp);
1727 /* record when the snapshot was created in key.offset */
1728 key.offset = trans->transid;
1729 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1730 btrfs_tree_unlock(tmp);
1731 free_extent_buffer(tmp);
1732 if (ret) {
1733 btrfs_abort_transaction(trans, ret);
1734 goto fail;
1735 }
1736
1737 /*
1738 * insert root back/forward references
1739 */
1740 ret = btrfs_add_root_ref(trans, objectid,
1741 parent_root->root_key.objectid,
1742 btrfs_ino(BTRFS_I(parent_inode)), index,
1743 dentry->d_name.name, dentry->d_name.len);
1744 if (ret) {
1745 btrfs_abort_transaction(trans, ret);
1746 goto fail;
1747 }
1748
1749 key.offset = (u64)-1;
1750 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1751 if (IS_ERR(pending->snap)) {
1752 ret = PTR_ERR(pending->snap);
1753 pending->snap = NULL;
1754 btrfs_abort_transaction(trans, ret);
1755 goto fail;
1756 }
1757
1758 ret = btrfs_reloc_post_snapshot(trans, pending);
1759 if (ret) {
1760 btrfs_abort_transaction(trans, ret);
1761 goto fail;
1762 }
1763
1764 /*
1765 * Do special qgroup accounting for snapshot, as we do some qgroup
1766 * snapshot hack to do fast snapshot.
1767 * To co-operate with that hack, we do hack again.
1768 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1769 */
1770 ret = qgroup_account_snapshot(trans, root, parent_root,
1771 pending->inherit, objectid);
1772 if (ret < 0)
1773 goto fail;
1774
1775 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1776 dentry->d_name.len, BTRFS_I(parent_inode),
1777 &key, BTRFS_FT_DIR, index);
1778 /* We have check then name at the beginning, so it is impossible. */
1779 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1780 if (ret) {
1781 btrfs_abort_transaction(trans, ret);
1782 goto fail;
1783 }
1784
1785 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1786 dentry->d_name.len * 2);
1787 parent_inode->i_mtime = parent_inode->i_ctime =
1788 current_time(parent_inode);
1789 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1790 if (ret) {
1791 btrfs_abort_transaction(trans, ret);
1792 goto fail;
1793 }
1794 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1795 BTRFS_UUID_KEY_SUBVOL,
1796 objectid);
1797 if (ret) {
1798 btrfs_abort_transaction(trans, ret);
1799 goto fail;
1800 }
1801 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1802 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1803 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1804 objectid);
1805 if (ret && ret != -EEXIST) {
1806 btrfs_abort_transaction(trans, ret);
1807 goto fail;
1808 }
1809 }
1810
1811 fail:
1812 pending->error = ret;
1813 dir_item_existed:
1814 trans->block_rsv = rsv;
1815 trans->bytes_reserved = 0;
1816 clear_skip_qgroup:
1817 btrfs_clear_skip_qgroup(trans);
1818 no_free_objectid:
1819 kfree(new_root_item);
1820 pending->root_item = NULL;
1821 btrfs_free_path(path);
1822 pending->path = NULL;
1823
1824 return ret;
1825 }
1826
1827 /*
1828 * create all the snapshots we've scheduled for creation
1829 */
1830 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1831 {
1832 struct btrfs_pending_snapshot *pending, *next;
1833 struct list_head *head = &trans->transaction->pending_snapshots;
1834 int ret = 0;
1835
1836 list_for_each_entry_safe(pending, next, head, list) {
1837 list_del(&pending->list);
1838 ret = create_pending_snapshot(trans, pending);
1839 if (ret)
1840 break;
1841 }
1842 return ret;
1843 }
1844
1845 static void update_super_roots(struct btrfs_fs_info *fs_info)
1846 {
1847 struct btrfs_root_item *root_item;
1848 struct btrfs_super_block *super;
1849
1850 super = fs_info->super_copy;
1851
1852 root_item = &fs_info->chunk_root->root_item;
1853 super->chunk_root = root_item->bytenr;
1854 super->chunk_root_generation = root_item->generation;
1855 super->chunk_root_level = root_item->level;
1856
1857 root_item = &fs_info->tree_root->root_item;
1858 super->root = root_item->bytenr;
1859 super->generation = root_item->generation;
1860 super->root_level = root_item->level;
1861 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1862 super->cache_generation = root_item->generation;
1863 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1864 super->cache_generation = 0;
1865 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1866 super->uuid_tree_generation = root_item->generation;
1867 }
1868
1869 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1870 {
1871 struct btrfs_transaction *trans;
1872 int ret = 0;
1873
1874 spin_lock(&info->trans_lock);
1875 trans = info->running_transaction;
1876 if (trans)
1877 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1878 spin_unlock(&info->trans_lock);
1879 return ret;
1880 }
1881
1882 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1883 {
1884 struct btrfs_transaction *trans;
1885 int ret = 0;
1886
1887 spin_lock(&info->trans_lock);
1888 trans = info->running_transaction;
1889 if (trans)
1890 ret = is_transaction_blocked(trans);
1891 spin_unlock(&info->trans_lock);
1892 return ret;
1893 }
1894
1895 /*
1896 * commit transactions asynchronously. once btrfs_commit_transaction_async
1897 * returns, any subsequent transaction will not be allowed to join.
1898 */
1899 struct btrfs_async_commit {
1900 struct btrfs_trans_handle *newtrans;
1901 struct work_struct work;
1902 };
1903
1904 static void do_async_commit(struct work_struct *work)
1905 {
1906 struct btrfs_async_commit *ac =
1907 container_of(work, struct btrfs_async_commit, work);
1908
1909 /*
1910 * We've got freeze protection passed with the transaction.
1911 * Tell lockdep about it.
1912 */
1913 if (ac->newtrans->type & __TRANS_FREEZABLE)
1914 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1915
1916 current->journal_info = ac->newtrans;
1917
1918 btrfs_commit_transaction(ac->newtrans);
1919 kfree(ac);
1920 }
1921
1922 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1923 {
1924 struct btrfs_fs_info *fs_info = trans->fs_info;
1925 struct btrfs_async_commit *ac;
1926 struct btrfs_transaction *cur_trans;
1927
1928 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1929 if (!ac)
1930 return -ENOMEM;
1931
1932 INIT_WORK(&ac->work, do_async_commit);
1933 ac->newtrans = btrfs_join_transaction(trans->root);
1934 if (IS_ERR(ac->newtrans)) {
1935 int err = PTR_ERR(ac->newtrans);
1936 kfree(ac);
1937 return err;
1938 }
1939
1940 /* take transaction reference */
1941 cur_trans = trans->transaction;
1942 refcount_inc(&cur_trans->use_count);
1943
1944 btrfs_end_transaction(trans);
1945
1946 /*
1947 * Tell lockdep we've released the freeze rwsem, since the
1948 * async commit thread will be the one to unlock it.
1949 */
1950 if (ac->newtrans->type & __TRANS_FREEZABLE)
1951 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1952
1953 schedule_work(&ac->work);
1954 /*
1955 * Wait for the current transaction commit to start and block
1956 * subsequent transaction joins
1957 */
1958 wait_event(fs_info->transaction_blocked_wait,
1959 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1960 TRANS_ABORTED(cur_trans));
1961 if (current->journal_info == trans)
1962 current->journal_info = NULL;
1963
1964 btrfs_put_transaction(cur_trans);
1965 return 0;
1966 }
1967
1968
1969 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1970 {
1971 struct btrfs_fs_info *fs_info = trans->fs_info;
1972 struct btrfs_transaction *cur_trans = trans->transaction;
1973
1974 WARN_ON(refcount_read(&trans->use_count) > 1);
1975
1976 btrfs_abort_transaction(trans, err);
1977
1978 spin_lock(&fs_info->trans_lock);
1979
1980 /*
1981 * If the transaction is removed from the list, it means this
1982 * transaction has been committed successfully, so it is impossible
1983 * to call the cleanup function.
1984 */
1985 BUG_ON(list_empty(&cur_trans->list));
1986
1987 if (cur_trans == fs_info->running_transaction) {
1988 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1989 spin_unlock(&fs_info->trans_lock);
1990 wait_event(cur_trans->writer_wait,
1991 atomic_read(&cur_trans->num_writers) == 1);
1992
1993 spin_lock(&fs_info->trans_lock);
1994 }
1995
1996 /*
1997 * Now that we know no one else is still using the transaction we can
1998 * remove the transaction from the list of transactions. This avoids
1999 * the transaction kthread from cleaning up the transaction while some
2000 * other task is still using it, which could result in a use-after-free
2001 * on things like log trees, as it forces the transaction kthread to
2002 * wait for this transaction to be cleaned up by us.
2003 */
2004 list_del_init(&cur_trans->list);
2005
2006 spin_unlock(&fs_info->trans_lock);
2007
2008 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2009
2010 spin_lock(&fs_info->trans_lock);
2011 if (cur_trans == fs_info->running_transaction)
2012 fs_info->running_transaction = NULL;
2013 spin_unlock(&fs_info->trans_lock);
2014
2015 if (trans->type & __TRANS_FREEZABLE)
2016 sb_end_intwrite(fs_info->sb);
2017 btrfs_put_transaction(cur_trans);
2018 btrfs_put_transaction(cur_trans);
2019
2020 trace_btrfs_transaction_commit(trans->root);
2021
2022 if (current->journal_info == trans)
2023 current->journal_info = NULL;
2024 btrfs_scrub_cancel(fs_info);
2025
2026 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2027 }
2028
2029 /*
2030 * Release reserved delayed ref space of all pending block groups of the
2031 * transaction and remove them from the list
2032 */
2033 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2034 {
2035 struct btrfs_fs_info *fs_info = trans->fs_info;
2036 struct btrfs_block_group *block_group, *tmp;
2037
2038 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2039 btrfs_delayed_refs_rsv_release(fs_info, 1);
2040 list_del_init(&block_group->bg_list);
2041 }
2042 }
2043
2044 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2045 {
2046 /*
2047 * We use try_to_writeback_inodes_sb() here because if we used
2048 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2049 * Currently are holding the fs freeze lock, if we do an async flush
2050 * we'll do btrfs_join_transaction() and deadlock because we need to
2051 * wait for the fs freeze lock. Using the direct flushing we benefit
2052 * from already being in a transaction and our join_transaction doesn't
2053 * have to re-take the fs freeze lock.
2054 *
2055 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2056 * if it can read lock sb->s_umount. It will always be able to lock it,
2057 * except when the filesystem is being unmounted or being frozen, but in
2058 * those cases sync_filesystem() is called, which results in calling
2059 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2060 * Note that we don't call writeback_inodes_sb() directly, because it
2061 * will emit a warning if sb->s_umount is not locked.
2062 */
2063 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2064 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2065 return 0;
2066 }
2067
2068 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2069 {
2070 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2071 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2072 }
2073
2074 /*
2075 * Add a pending snapshot associated with the given transaction handle to the
2076 * respective handle. This must be called after the transaction commit started
2077 * and while holding fs_info->trans_lock.
2078 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2079 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2080 * returns an error.
2081 */
2082 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2083 {
2084 struct btrfs_transaction *cur_trans = trans->transaction;
2085
2086 if (!trans->pending_snapshot)
2087 return;
2088
2089 lockdep_assert_held(&trans->fs_info->trans_lock);
2090 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2091
2092 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2093 }
2094
2095 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2096 {
2097 struct btrfs_fs_info *fs_info = trans->fs_info;
2098 struct btrfs_transaction *cur_trans = trans->transaction;
2099 struct btrfs_transaction *prev_trans = NULL;
2100 int ret;
2101
2102 ASSERT(refcount_read(&trans->use_count) == 1);
2103
2104 /* Stop the commit early if ->aborted is set */
2105 if (TRANS_ABORTED(cur_trans)) {
2106 ret = cur_trans->aborted;
2107 btrfs_end_transaction(trans);
2108 return ret;
2109 }
2110
2111 btrfs_trans_release_metadata(trans);
2112 trans->block_rsv = NULL;
2113
2114 /*
2115 * We only want one transaction commit doing the flushing so we do not
2116 * waste a bunch of time on lock contention on the extent root node.
2117 */
2118 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2119 &cur_trans->delayed_refs.flags)) {
2120 /*
2121 * Make a pass through all the delayed refs we have so far.
2122 * Any running threads may add more while we are here.
2123 */
2124 ret = btrfs_run_delayed_refs(trans, 0);
2125 if (ret) {
2126 btrfs_end_transaction(trans);
2127 return ret;
2128 }
2129 }
2130
2131 btrfs_create_pending_block_groups(trans);
2132
2133 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2134 int run_it = 0;
2135
2136 /* this mutex is also taken before trying to set
2137 * block groups readonly. We need to make sure
2138 * that nobody has set a block group readonly
2139 * after a extents from that block group have been
2140 * allocated for cache files. btrfs_set_block_group_ro
2141 * will wait for the transaction to commit if it
2142 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2143 *
2144 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2145 * only one process starts all the block group IO. It wouldn't
2146 * hurt to have more than one go through, but there's no
2147 * real advantage to it either.
2148 */
2149 mutex_lock(&fs_info->ro_block_group_mutex);
2150 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2151 &cur_trans->flags))
2152 run_it = 1;
2153 mutex_unlock(&fs_info->ro_block_group_mutex);
2154
2155 if (run_it) {
2156 ret = btrfs_start_dirty_block_groups(trans);
2157 if (ret) {
2158 btrfs_end_transaction(trans);
2159 return ret;
2160 }
2161 }
2162 }
2163
2164 spin_lock(&fs_info->trans_lock);
2165 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2166 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2167
2168 add_pending_snapshot(trans);
2169
2170 spin_unlock(&fs_info->trans_lock);
2171 refcount_inc(&cur_trans->use_count);
2172
2173 if (trans->in_fsync)
2174 want_state = TRANS_STATE_SUPER_COMMITTED;
2175 ret = btrfs_end_transaction(trans);
2176 wait_for_commit(cur_trans, want_state);
2177
2178 if (TRANS_ABORTED(cur_trans))
2179 ret = cur_trans->aborted;
2180
2181 btrfs_put_transaction(cur_trans);
2182
2183 return ret;
2184 }
2185
2186 cur_trans->state = TRANS_STATE_COMMIT_START;
2187 wake_up(&fs_info->transaction_blocked_wait);
2188
2189 if (cur_trans->list.prev != &fs_info->trans_list) {
2190 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2191
2192 if (trans->in_fsync)
2193 want_state = TRANS_STATE_SUPER_COMMITTED;
2194
2195 prev_trans = list_entry(cur_trans->list.prev,
2196 struct btrfs_transaction, list);
2197 if (prev_trans->state < want_state) {
2198 refcount_inc(&prev_trans->use_count);
2199 spin_unlock(&fs_info->trans_lock);
2200
2201 wait_for_commit(prev_trans, want_state);
2202
2203 ret = READ_ONCE(prev_trans->aborted);
2204
2205 btrfs_put_transaction(prev_trans);
2206 if (ret)
2207 goto cleanup_transaction;
2208 } else {
2209 spin_unlock(&fs_info->trans_lock);
2210 }
2211 } else {
2212 spin_unlock(&fs_info->trans_lock);
2213 /*
2214 * The previous transaction was aborted and was already removed
2215 * from the list of transactions at fs_info->trans_list. So we
2216 * abort to prevent writing a new superblock that reflects a
2217 * corrupt state (pointing to trees with unwritten nodes/leafs).
2218 */
2219 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2220 ret = -EROFS;
2221 goto cleanup_transaction;
2222 }
2223 }
2224
2225 extwriter_counter_dec(cur_trans, trans->type);
2226
2227 ret = btrfs_start_delalloc_flush(fs_info);
2228 if (ret)
2229 goto cleanup_transaction;
2230
2231 ret = btrfs_run_delayed_items(trans);
2232 if (ret)
2233 goto cleanup_transaction;
2234
2235 wait_event(cur_trans->writer_wait,
2236 extwriter_counter_read(cur_trans) == 0);
2237
2238 /* some pending stuffs might be added after the previous flush. */
2239 ret = btrfs_run_delayed_items(trans);
2240 if (ret)
2241 goto cleanup_transaction;
2242
2243 btrfs_wait_delalloc_flush(fs_info);
2244
2245 /*
2246 * Wait for all ordered extents started by a fast fsync that joined this
2247 * transaction. Otherwise if this transaction commits before the ordered
2248 * extents complete we lose logged data after a power failure.
2249 */
2250 wait_event(cur_trans->pending_wait,
2251 atomic_read(&cur_trans->pending_ordered) == 0);
2252
2253 btrfs_scrub_pause(fs_info);
2254 /*
2255 * Ok now we need to make sure to block out any other joins while we
2256 * commit the transaction. We could have started a join before setting
2257 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2258 */
2259 spin_lock(&fs_info->trans_lock);
2260 add_pending_snapshot(trans);
2261 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2262 spin_unlock(&fs_info->trans_lock);
2263 wait_event(cur_trans->writer_wait,
2264 atomic_read(&cur_trans->num_writers) == 1);
2265
2266 if (TRANS_ABORTED(cur_trans)) {
2267 ret = cur_trans->aborted;
2268 goto scrub_continue;
2269 }
2270 /*
2271 * the reloc mutex makes sure that we stop
2272 * the balancing code from coming in and moving
2273 * extents around in the middle of the commit
2274 */
2275 mutex_lock(&fs_info->reloc_mutex);
2276
2277 /*
2278 * We needn't worry about the delayed items because we will
2279 * deal with them in create_pending_snapshot(), which is the
2280 * core function of the snapshot creation.
2281 */
2282 ret = create_pending_snapshots(trans);
2283 if (ret)
2284 goto unlock_reloc;
2285
2286 /*
2287 * We insert the dir indexes of the snapshots and update the inode
2288 * of the snapshots' parents after the snapshot creation, so there
2289 * are some delayed items which are not dealt with. Now deal with
2290 * them.
2291 *
2292 * We needn't worry that this operation will corrupt the snapshots,
2293 * because all the tree which are snapshoted will be forced to COW
2294 * the nodes and leaves.
2295 */
2296 ret = btrfs_run_delayed_items(trans);
2297 if (ret)
2298 goto unlock_reloc;
2299
2300 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2301 if (ret)
2302 goto unlock_reloc;
2303
2304 /*
2305 * make sure none of the code above managed to slip in a
2306 * delayed item
2307 */
2308 btrfs_assert_delayed_root_empty(fs_info);
2309
2310 WARN_ON(cur_trans != trans->transaction);
2311
2312 /* btrfs_commit_tree_roots is responsible for getting the
2313 * various roots consistent with each other. Every pointer
2314 * in the tree of tree roots has to point to the most up to date
2315 * root for every subvolume and other tree. So, we have to keep
2316 * the tree logging code from jumping in and changing any
2317 * of the trees.
2318 *
2319 * At this point in the commit, there can't be any tree-log
2320 * writers, but a little lower down we drop the trans mutex
2321 * and let new people in. By holding the tree_log_mutex
2322 * from now until after the super is written, we avoid races
2323 * with the tree-log code.
2324 */
2325 mutex_lock(&fs_info->tree_log_mutex);
2326
2327 ret = commit_fs_roots(trans);
2328 if (ret)
2329 goto unlock_tree_log;
2330
2331 /*
2332 * Since the transaction is done, we can apply the pending changes
2333 * before the next transaction.
2334 */
2335 btrfs_apply_pending_changes(fs_info);
2336
2337 /* commit_fs_roots gets rid of all the tree log roots, it is now
2338 * safe to free the root of tree log roots
2339 */
2340 btrfs_free_log_root_tree(trans, fs_info);
2341
2342 /*
2343 * Since fs roots are all committed, we can get a quite accurate
2344 * new_roots. So let's do quota accounting.
2345 */
2346 ret = btrfs_qgroup_account_extents(trans);
2347 if (ret < 0)
2348 goto unlock_tree_log;
2349
2350 ret = commit_cowonly_roots(trans);
2351 if (ret)
2352 goto unlock_tree_log;
2353
2354 /*
2355 * The tasks which save the space cache and inode cache may also
2356 * update ->aborted, check it.
2357 */
2358 if (TRANS_ABORTED(cur_trans)) {
2359 ret = cur_trans->aborted;
2360 goto unlock_tree_log;
2361 }
2362
2363 cur_trans = fs_info->running_transaction;
2364
2365 btrfs_set_root_node(&fs_info->tree_root->root_item,
2366 fs_info->tree_root->node);
2367 list_add_tail(&fs_info->tree_root->dirty_list,
2368 &cur_trans->switch_commits);
2369
2370 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2371 fs_info->chunk_root->node);
2372 list_add_tail(&fs_info->chunk_root->dirty_list,
2373 &cur_trans->switch_commits);
2374
2375 switch_commit_roots(trans);
2376
2377 ASSERT(list_empty(&cur_trans->dirty_bgs));
2378 ASSERT(list_empty(&cur_trans->io_bgs));
2379 update_super_roots(fs_info);
2380
2381 btrfs_set_super_log_root(fs_info->super_copy, 0);
2382 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2383 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2384 sizeof(*fs_info->super_copy));
2385
2386 btrfs_commit_device_sizes(cur_trans);
2387
2388 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2389 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2390
2391 btrfs_trans_release_chunk_metadata(trans);
2392
2393 spin_lock(&fs_info->trans_lock);
2394 cur_trans->state = TRANS_STATE_UNBLOCKED;
2395 fs_info->running_transaction = NULL;
2396 spin_unlock(&fs_info->trans_lock);
2397 mutex_unlock(&fs_info->reloc_mutex);
2398
2399 wake_up(&fs_info->transaction_wait);
2400
2401 ret = btrfs_write_and_wait_transaction(trans);
2402 if (ret) {
2403 btrfs_handle_fs_error(fs_info, ret,
2404 "Error while writing out transaction");
2405 /*
2406 * reloc_mutex has been unlocked, tree_log_mutex is still held
2407 * but we can't jump to unlock_tree_log causing double unlock
2408 */
2409 mutex_unlock(&fs_info->tree_log_mutex);
2410 goto scrub_continue;
2411 }
2412
2413 /*
2414 * At this point, we should have written all the tree blocks allocated
2415 * in this transaction. So it's now safe to free the redirtyied extent
2416 * buffers.
2417 */
2418 btrfs_free_redirty_list(cur_trans);
2419
2420 ret = write_all_supers(fs_info, 0);
2421 /*
2422 * the super is written, we can safely allow the tree-loggers
2423 * to go about their business
2424 */
2425 mutex_unlock(&fs_info->tree_log_mutex);
2426 if (ret)
2427 goto scrub_continue;
2428
2429 /*
2430 * We needn't acquire the lock here because there is no other task
2431 * which can change it.
2432 */
2433 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2434 wake_up(&cur_trans->commit_wait);
2435
2436 btrfs_finish_extent_commit(trans);
2437
2438 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2439 btrfs_clear_space_info_full(fs_info);
2440
2441 fs_info->last_trans_committed = cur_trans->transid;
2442 /*
2443 * We needn't acquire the lock here because there is no other task
2444 * which can change it.
2445 */
2446 cur_trans->state = TRANS_STATE_COMPLETED;
2447 wake_up(&cur_trans->commit_wait);
2448
2449 spin_lock(&fs_info->trans_lock);
2450 list_del_init(&cur_trans->list);
2451 spin_unlock(&fs_info->trans_lock);
2452
2453 btrfs_put_transaction(cur_trans);
2454 btrfs_put_transaction(cur_trans);
2455
2456 if (trans->type & __TRANS_FREEZABLE)
2457 sb_end_intwrite(fs_info->sb);
2458
2459 trace_btrfs_transaction_commit(trans->root);
2460
2461 btrfs_scrub_continue(fs_info);
2462
2463 if (current->journal_info == trans)
2464 current->journal_info = NULL;
2465
2466 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2467
2468 return ret;
2469
2470 unlock_tree_log:
2471 mutex_unlock(&fs_info->tree_log_mutex);
2472 unlock_reloc:
2473 mutex_unlock(&fs_info->reloc_mutex);
2474 scrub_continue:
2475 btrfs_scrub_continue(fs_info);
2476 cleanup_transaction:
2477 btrfs_trans_release_metadata(trans);
2478 btrfs_cleanup_pending_block_groups(trans);
2479 btrfs_trans_release_chunk_metadata(trans);
2480 trans->block_rsv = NULL;
2481 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2482 if (current->journal_info == trans)
2483 current->journal_info = NULL;
2484 cleanup_transaction(trans, ret);
2485
2486 return ret;
2487 }
2488
2489 /*
2490 * return < 0 if error
2491 * 0 if there are no more dead_roots at the time of call
2492 * 1 there are more to be processed, call me again
2493 *
2494 * The return value indicates there are certainly more snapshots to delete, but
2495 * if there comes a new one during processing, it may return 0. We don't mind,
2496 * because btrfs_commit_super will poke cleaner thread and it will process it a
2497 * few seconds later.
2498 */
2499 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2500 {
2501 int ret;
2502 struct btrfs_fs_info *fs_info = root->fs_info;
2503
2504 spin_lock(&fs_info->trans_lock);
2505 if (list_empty(&fs_info->dead_roots)) {
2506 spin_unlock(&fs_info->trans_lock);
2507 return 0;
2508 }
2509 root = list_first_entry(&fs_info->dead_roots,
2510 struct btrfs_root, root_list);
2511 list_del_init(&root->root_list);
2512 spin_unlock(&fs_info->trans_lock);
2513
2514 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2515
2516 btrfs_kill_all_delayed_nodes(root);
2517
2518 if (btrfs_header_backref_rev(root->node) <
2519 BTRFS_MIXED_BACKREF_REV)
2520 ret = btrfs_drop_snapshot(root, 0, 0);
2521 else
2522 ret = btrfs_drop_snapshot(root, 1, 0);
2523
2524 btrfs_put_root(root);
2525 return (ret < 0) ? 0 : 1;
2526 }
2527
2528 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2529 {
2530 unsigned long prev;
2531 unsigned long bit;
2532
2533 prev = xchg(&fs_info->pending_changes, 0);
2534 if (!prev)
2535 return;
2536
2537 bit = 1 << BTRFS_PENDING_COMMIT;
2538 if (prev & bit)
2539 btrfs_debug(fs_info, "pending commit done");
2540 prev &= ~bit;
2541
2542 if (prev)
2543 btrfs_warn(fs_info,
2544 "unknown pending changes left 0x%lx, ignoring", prev);
2545 }