]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/transaction.c
btrfs: fix return value check of btrfs_join_transaction()
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30
31 #define BTRFS_ROOT_TRANS_TAG 0
32
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35 WARN_ON(transaction->use_count == 0);
36 transaction->use_count--;
37 if (transaction->use_count == 0) {
38 list_del_init(&transaction->list);
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
41 }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51 * either allocate a new transaction or hop into the existing one
52 */
53 static noinline int join_transaction(struct btrfs_root *root)
54 {
55 struct btrfs_transaction *cur_trans;
56 cur_trans = root->fs_info->running_transaction;
57 if (!cur_trans) {
58 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 GFP_NOFS);
60 BUG_ON(!cur_trans);
61 root->fs_info->generation++;
62 cur_trans->num_writers = 1;
63 cur_trans->num_joined = 0;
64 cur_trans->transid = root->fs_info->generation;
65 init_waitqueue_head(&cur_trans->writer_wait);
66 init_waitqueue_head(&cur_trans->commit_wait);
67 cur_trans->in_commit = 0;
68 cur_trans->blocked = 0;
69 cur_trans->use_count = 1;
70 cur_trans->commit_done = 0;
71 cur_trans->start_time = get_seconds();
72
73 cur_trans->delayed_refs.root = RB_ROOT;
74 cur_trans->delayed_refs.num_entries = 0;
75 cur_trans->delayed_refs.num_heads_ready = 0;
76 cur_trans->delayed_refs.num_heads = 0;
77 cur_trans->delayed_refs.flushing = 0;
78 cur_trans->delayed_refs.run_delayed_start = 0;
79 spin_lock_init(&cur_trans->delayed_refs.lock);
80
81 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83 extent_io_tree_init(&cur_trans->dirty_pages,
84 root->fs_info->btree_inode->i_mapping,
85 GFP_NOFS);
86 spin_lock(&root->fs_info->new_trans_lock);
87 root->fs_info->running_transaction = cur_trans;
88 spin_unlock(&root->fs_info->new_trans_lock);
89 } else {
90 cur_trans->num_writers++;
91 cur_trans->num_joined++;
92 }
93
94 return 0;
95 }
96
97 /*
98 * this does all the record keeping required to make sure that a reference
99 * counted root is properly recorded in a given transaction. This is required
100 * to make sure the old root from before we joined the transaction is deleted
101 * when the transaction commits
102 */
103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root)
105 {
106 if (root->ref_cows && root->last_trans < trans->transid) {
107 WARN_ON(root == root->fs_info->extent_root);
108 WARN_ON(root->commit_root != root->node);
109
110 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 (unsigned long)root->root_key.objectid,
112 BTRFS_ROOT_TRANS_TAG);
113 root->last_trans = trans->transid;
114 btrfs_init_reloc_root(trans, root);
115 }
116 return 0;
117 }
118
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 struct btrfs_root *root)
121 {
122 if (!root->ref_cows)
123 return 0;
124
125 mutex_lock(&root->fs_info->trans_mutex);
126 if (root->last_trans == trans->transid) {
127 mutex_unlock(&root->fs_info->trans_mutex);
128 return 0;
129 }
130
131 record_root_in_trans(trans, root);
132 mutex_unlock(&root->fs_info->trans_mutex);
133 return 0;
134 }
135
136 /* wait for commit against the current transaction to become unblocked
137 * when this is done, it is safe to start a new transaction, but the current
138 * transaction might not be fully on disk.
139 */
140 static void wait_current_trans(struct btrfs_root *root)
141 {
142 struct btrfs_transaction *cur_trans;
143
144 cur_trans = root->fs_info->running_transaction;
145 if (cur_trans && cur_trans->blocked) {
146 DEFINE_WAIT(wait);
147 cur_trans->use_count++;
148 while (1) {
149 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 TASK_UNINTERRUPTIBLE);
151 if (!cur_trans->blocked)
152 break;
153 mutex_unlock(&root->fs_info->trans_mutex);
154 schedule();
155 mutex_lock(&root->fs_info->trans_mutex);
156 }
157 finish_wait(&root->fs_info->transaction_wait, &wait);
158 put_transaction(cur_trans);
159 }
160 }
161
162 enum btrfs_trans_type {
163 TRANS_START,
164 TRANS_JOIN,
165 TRANS_USERSPACE,
166 TRANS_JOIN_NOLOCK,
167 };
168
169 static int may_wait_transaction(struct btrfs_root *root, int type)
170 {
171 if (!root->fs_info->log_root_recovering &&
172 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
173 type == TRANS_USERSPACE))
174 return 1;
175 return 0;
176 }
177
178 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
179 u64 num_items, int type)
180 {
181 struct btrfs_trans_handle *h;
182 struct btrfs_transaction *cur_trans;
183 int ret;
184
185 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
186 return ERR_PTR(-EROFS);
187 again:
188 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
189 if (!h)
190 return ERR_PTR(-ENOMEM);
191
192 if (type != TRANS_JOIN_NOLOCK)
193 mutex_lock(&root->fs_info->trans_mutex);
194 if (may_wait_transaction(root, type))
195 wait_current_trans(root);
196
197 ret = join_transaction(root);
198 BUG_ON(ret);
199
200 cur_trans = root->fs_info->running_transaction;
201 cur_trans->use_count++;
202 if (type != TRANS_JOIN_NOLOCK)
203 mutex_unlock(&root->fs_info->trans_mutex);
204
205 h->transid = cur_trans->transid;
206 h->transaction = cur_trans;
207 h->blocks_used = 0;
208 h->block_group = 0;
209 h->bytes_reserved = 0;
210 h->delayed_ref_updates = 0;
211 h->block_rsv = NULL;
212
213 smp_mb();
214 if (cur_trans->blocked && may_wait_transaction(root, type)) {
215 btrfs_commit_transaction(h, root);
216 goto again;
217 }
218
219 if (num_items > 0) {
220 ret = btrfs_trans_reserve_metadata(h, root, num_items);
221 if (ret == -EAGAIN) {
222 btrfs_commit_transaction(h, root);
223 goto again;
224 }
225 if (ret < 0) {
226 btrfs_end_transaction(h, root);
227 return ERR_PTR(ret);
228 }
229 }
230
231 if (type != TRANS_JOIN_NOLOCK)
232 mutex_lock(&root->fs_info->trans_mutex);
233 record_root_in_trans(h, root);
234 if (type != TRANS_JOIN_NOLOCK)
235 mutex_unlock(&root->fs_info->trans_mutex);
236
237 if (!current->journal_info && type != TRANS_USERSPACE)
238 current->journal_info = h;
239 return h;
240 }
241
242 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
243 int num_items)
244 {
245 return start_transaction(root, num_items, TRANS_START);
246 }
247 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
248 int num_blocks)
249 {
250 return start_transaction(root, 0, TRANS_JOIN);
251 }
252
253 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root,
254 int num_blocks)
255 {
256 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
257 }
258
259 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
260 int num_blocks)
261 {
262 return start_transaction(r, 0, TRANS_USERSPACE);
263 }
264
265 /* wait for a transaction commit to be fully complete */
266 static noinline int wait_for_commit(struct btrfs_root *root,
267 struct btrfs_transaction *commit)
268 {
269 DEFINE_WAIT(wait);
270 mutex_lock(&root->fs_info->trans_mutex);
271 while (!commit->commit_done) {
272 prepare_to_wait(&commit->commit_wait, &wait,
273 TASK_UNINTERRUPTIBLE);
274 if (commit->commit_done)
275 break;
276 mutex_unlock(&root->fs_info->trans_mutex);
277 schedule();
278 mutex_lock(&root->fs_info->trans_mutex);
279 }
280 mutex_unlock(&root->fs_info->trans_mutex);
281 finish_wait(&commit->commit_wait, &wait);
282 return 0;
283 }
284
285 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
286 {
287 struct btrfs_transaction *cur_trans = NULL, *t;
288 int ret;
289
290 mutex_lock(&root->fs_info->trans_mutex);
291
292 ret = 0;
293 if (transid) {
294 if (transid <= root->fs_info->last_trans_committed)
295 goto out_unlock;
296
297 /* find specified transaction */
298 list_for_each_entry(t, &root->fs_info->trans_list, list) {
299 if (t->transid == transid) {
300 cur_trans = t;
301 break;
302 }
303 if (t->transid > transid)
304 break;
305 }
306 ret = -EINVAL;
307 if (!cur_trans)
308 goto out_unlock; /* bad transid */
309 } else {
310 /* find newest transaction that is committing | committed */
311 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
312 list) {
313 if (t->in_commit) {
314 if (t->commit_done)
315 goto out_unlock;
316 cur_trans = t;
317 break;
318 }
319 }
320 if (!cur_trans)
321 goto out_unlock; /* nothing committing|committed */
322 }
323
324 cur_trans->use_count++;
325 mutex_unlock(&root->fs_info->trans_mutex);
326
327 wait_for_commit(root, cur_trans);
328
329 mutex_lock(&root->fs_info->trans_mutex);
330 put_transaction(cur_trans);
331 ret = 0;
332 out_unlock:
333 mutex_unlock(&root->fs_info->trans_mutex);
334 return ret;
335 }
336
337 #if 0
338 /*
339 * rate limit against the drop_snapshot code. This helps to slow down new
340 * operations if the drop_snapshot code isn't able to keep up.
341 */
342 static void throttle_on_drops(struct btrfs_root *root)
343 {
344 struct btrfs_fs_info *info = root->fs_info;
345 int harder_count = 0;
346
347 harder:
348 if (atomic_read(&info->throttles)) {
349 DEFINE_WAIT(wait);
350 int thr;
351 thr = atomic_read(&info->throttle_gen);
352
353 do {
354 prepare_to_wait(&info->transaction_throttle,
355 &wait, TASK_UNINTERRUPTIBLE);
356 if (!atomic_read(&info->throttles)) {
357 finish_wait(&info->transaction_throttle, &wait);
358 break;
359 }
360 schedule();
361 finish_wait(&info->transaction_throttle, &wait);
362 } while (thr == atomic_read(&info->throttle_gen));
363 harder_count++;
364
365 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
366 harder_count < 2)
367 goto harder;
368
369 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
370 harder_count < 10)
371 goto harder;
372
373 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
374 harder_count < 20)
375 goto harder;
376 }
377 }
378 #endif
379
380 void btrfs_throttle(struct btrfs_root *root)
381 {
382 mutex_lock(&root->fs_info->trans_mutex);
383 if (!root->fs_info->open_ioctl_trans)
384 wait_current_trans(root);
385 mutex_unlock(&root->fs_info->trans_mutex);
386 }
387
388 static int should_end_transaction(struct btrfs_trans_handle *trans,
389 struct btrfs_root *root)
390 {
391 int ret;
392 ret = btrfs_block_rsv_check(trans, root,
393 &root->fs_info->global_block_rsv, 0, 5);
394 return ret ? 1 : 0;
395 }
396
397 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
398 struct btrfs_root *root)
399 {
400 struct btrfs_transaction *cur_trans = trans->transaction;
401 int updates;
402
403 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
404 return 1;
405
406 updates = trans->delayed_ref_updates;
407 trans->delayed_ref_updates = 0;
408 if (updates)
409 btrfs_run_delayed_refs(trans, root, updates);
410
411 return should_end_transaction(trans, root);
412 }
413
414 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
415 struct btrfs_root *root, int throttle, int lock)
416 {
417 struct btrfs_transaction *cur_trans = trans->transaction;
418 struct btrfs_fs_info *info = root->fs_info;
419 int count = 0;
420
421 while (count < 4) {
422 unsigned long cur = trans->delayed_ref_updates;
423 trans->delayed_ref_updates = 0;
424 if (cur &&
425 trans->transaction->delayed_refs.num_heads_ready > 64) {
426 trans->delayed_ref_updates = 0;
427
428 /*
429 * do a full flush if the transaction is trying
430 * to close
431 */
432 if (trans->transaction->delayed_refs.flushing)
433 cur = 0;
434 btrfs_run_delayed_refs(trans, root, cur);
435 } else {
436 break;
437 }
438 count++;
439 }
440
441 btrfs_trans_release_metadata(trans, root);
442
443 if (lock && !root->fs_info->open_ioctl_trans &&
444 should_end_transaction(trans, root))
445 trans->transaction->blocked = 1;
446
447 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
448 if (throttle)
449 return btrfs_commit_transaction(trans, root);
450 else
451 wake_up_process(info->transaction_kthread);
452 }
453
454 if (lock)
455 mutex_lock(&info->trans_mutex);
456 WARN_ON(cur_trans != info->running_transaction);
457 WARN_ON(cur_trans->num_writers < 1);
458 cur_trans->num_writers--;
459
460 smp_mb();
461 if (waitqueue_active(&cur_trans->writer_wait))
462 wake_up(&cur_trans->writer_wait);
463 put_transaction(cur_trans);
464 if (lock)
465 mutex_unlock(&info->trans_mutex);
466
467 if (current->journal_info == trans)
468 current->journal_info = NULL;
469 memset(trans, 0, sizeof(*trans));
470 kmem_cache_free(btrfs_trans_handle_cachep, trans);
471
472 if (throttle)
473 btrfs_run_delayed_iputs(root);
474
475 return 0;
476 }
477
478 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
479 struct btrfs_root *root)
480 {
481 return __btrfs_end_transaction(trans, root, 0, 1);
482 }
483
484 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
485 struct btrfs_root *root)
486 {
487 return __btrfs_end_transaction(trans, root, 1, 1);
488 }
489
490 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
491 struct btrfs_root *root)
492 {
493 return __btrfs_end_transaction(trans, root, 0, 0);
494 }
495
496 /*
497 * when btree blocks are allocated, they have some corresponding bits set for
498 * them in one of two extent_io trees. This is used to make sure all of
499 * those extents are sent to disk but does not wait on them
500 */
501 int btrfs_write_marked_extents(struct btrfs_root *root,
502 struct extent_io_tree *dirty_pages, int mark)
503 {
504 int ret;
505 int err = 0;
506 int werr = 0;
507 struct page *page;
508 struct inode *btree_inode = root->fs_info->btree_inode;
509 u64 start = 0;
510 u64 end;
511 unsigned long index;
512
513 while (1) {
514 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
515 mark);
516 if (ret)
517 break;
518 while (start <= end) {
519 cond_resched();
520
521 index = start >> PAGE_CACHE_SHIFT;
522 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
523 page = find_get_page(btree_inode->i_mapping, index);
524 if (!page)
525 continue;
526
527 btree_lock_page_hook(page);
528 if (!page->mapping) {
529 unlock_page(page);
530 page_cache_release(page);
531 continue;
532 }
533
534 if (PageWriteback(page)) {
535 if (PageDirty(page))
536 wait_on_page_writeback(page);
537 else {
538 unlock_page(page);
539 page_cache_release(page);
540 continue;
541 }
542 }
543 err = write_one_page(page, 0);
544 if (err)
545 werr = err;
546 page_cache_release(page);
547 }
548 }
549 if (err)
550 werr = err;
551 return werr;
552 }
553
554 /*
555 * when btree blocks are allocated, they have some corresponding bits set for
556 * them in one of two extent_io trees. This is used to make sure all of
557 * those extents are on disk for transaction or log commit. We wait
558 * on all the pages and clear them from the dirty pages state tree
559 */
560 int btrfs_wait_marked_extents(struct btrfs_root *root,
561 struct extent_io_tree *dirty_pages, int mark)
562 {
563 int ret;
564 int err = 0;
565 int werr = 0;
566 struct page *page;
567 struct inode *btree_inode = root->fs_info->btree_inode;
568 u64 start = 0;
569 u64 end;
570 unsigned long index;
571
572 while (1) {
573 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
574 mark);
575 if (ret)
576 break;
577
578 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
579 while (start <= end) {
580 index = start >> PAGE_CACHE_SHIFT;
581 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
582 page = find_get_page(btree_inode->i_mapping, index);
583 if (!page)
584 continue;
585 if (PageDirty(page)) {
586 btree_lock_page_hook(page);
587 wait_on_page_writeback(page);
588 err = write_one_page(page, 0);
589 if (err)
590 werr = err;
591 }
592 wait_on_page_writeback(page);
593 page_cache_release(page);
594 cond_resched();
595 }
596 }
597 if (err)
598 werr = err;
599 return werr;
600 }
601
602 /*
603 * when btree blocks are allocated, they have some corresponding bits set for
604 * them in one of two extent_io trees. This is used to make sure all of
605 * those extents are on disk for transaction or log commit
606 */
607 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
608 struct extent_io_tree *dirty_pages, int mark)
609 {
610 int ret;
611 int ret2;
612
613 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
614 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
615 return ret || ret2;
616 }
617
618 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
619 struct btrfs_root *root)
620 {
621 if (!trans || !trans->transaction) {
622 struct inode *btree_inode;
623 btree_inode = root->fs_info->btree_inode;
624 return filemap_write_and_wait(btree_inode->i_mapping);
625 }
626 return btrfs_write_and_wait_marked_extents(root,
627 &trans->transaction->dirty_pages,
628 EXTENT_DIRTY);
629 }
630
631 /*
632 * this is used to update the root pointer in the tree of tree roots.
633 *
634 * But, in the case of the extent allocation tree, updating the root
635 * pointer may allocate blocks which may change the root of the extent
636 * allocation tree.
637 *
638 * So, this loops and repeats and makes sure the cowonly root didn't
639 * change while the root pointer was being updated in the metadata.
640 */
641 static int update_cowonly_root(struct btrfs_trans_handle *trans,
642 struct btrfs_root *root)
643 {
644 int ret;
645 u64 old_root_bytenr;
646 u64 old_root_used;
647 struct btrfs_root *tree_root = root->fs_info->tree_root;
648
649 old_root_used = btrfs_root_used(&root->root_item);
650 btrfs_write_dirty_block_groups(trans, root);
651
652 while (1) {
653 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
654 if (old_root_bytenr == root->node->start &&
655 old_root_used == btrfs_root_used(&root->root_item))
656 break;
657
658 btrfs_set_root_node(&root->root_item, root->node);
659 ret = btrfs_update_root(trans, tree_root,
660 &root->root_key,
661 &root->root_item);
662 BUG_ON(ret);
663
664 old_root_used = btrfs_root_used(&root->root_item);
665 ret = btrfs_write_dirty_block_groups(trans, root);
666 BUG_ON(ret);
667 }
668
669 if (root != root->fs_info->extent_root)
670 switch_commit_root(root);
671
672 return 0;
673 }
674
675 /*
676 * update all the cowonly tree roots on disk
677 */
678 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
679 struct btrfs_root *root)
680 {
681 struct btrfs_fs_info *fs_info = root->fs_info;
682 struct list_head *next;
683 struct extent_buffer *eb;
684 int ret;
685
686 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
687 BUG_ON(ret);
688
689 eb = btrfs_lock_root_node(fs_info->tree_root);
690 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
691 btrfs_tree_unlock(eb);
692 free_extent_buffer(eb);
693
694 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
695 BUG_ON(ret);
696
697 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
698 next = fs_info->dirty_cowonly_roots.next;
699 list_del_init(next);
700 root = list_entry(next, struct btrfs_root, dirty_list);
701
702 update_cowonly_root(trans, root);
703 }
704
705 down_write(&fs_info->extent_commit_sem);
706 switch_commit_root(fs_info->extent_root);
707 up_write(&fs_info->extent_commit_sem);
708
709 return 0;
710 }
711
712 /*
713 * dead roots are old snapshots that need to be deleted. This allocates
714 * a dirty root struct and adds it into the list of dead roots that need to
715 * be deleted
716 */
717 int btrfs_add_dead_root(struct btrfs_root *root)
718 {
719 mutex_lock(&root->fs_info->trans_mutex);
720 list_add(&root->root_list, &root->fs_info->dead_roots);
721 mutex_unlock(&root->fs_info->trans_mutex);
722 return 0;
723 }
724
725 /*
726 * update all the cowonly tree roots on disk
727 */
728 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
729 struct btrfs_root *root)
730 {
731 struct btrfs_root *gang[8];
732 struct btrfs_fs_info *fs_info = root->fs_info;
733 int i;
734 int ret;
735 int err = 0;
736
737 while (1) {
738 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
739 (void **)gang, 0,
740 ARRAY_SIZE(gang),
741 BTRFS_ROOT_TRANS_TAG);
742 if (ret == 0)
743 break;
744 for (i = 0; i < ret; i++) {
745 root = gang[i];
746 radix_tree_tag_clear(&fs_info->fs_roots_radix,
747 (unsigned long)root->root_key.objectid,
748 BTRFS_ROOT_TRANS_TAG);
749
750 btrfs_free_log(trans, root);
751 btrfs_update_reloc_root(trans, root);
752 btrfs_orphan_commit_root(trans, root);
753
754 if (root->commit_root != root->node) {
755 switch_commit_root(root);
756 btrfs_set_root_node(&root->root_item,
757 root->node);
758 }
759
760 err = btrfs_update_root(trans, fs_info->tree_root,
761 &root->root_key,
762 &root->root_item);
763 if (err)
764 break;
765 }
766 }
767 return err;
768 }
769
770 /*
771 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
772 * otherwise every leaf in the btree is read and defragged.
773 */
774 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
775 {
776 struct btrfs_fs_info *info = root->fs_info;
777 struct btrfs_trans_handle *trans;
778 int ret;
779 unsigned long nr;
780
781 if (xchg(&root->defrag_running, 1))
782 return 0;
783
784 while (1) {
785 trans = btrfs_start_transaction(root, 0);
786 if (IS_ERR(trans))
787 return PTR_ERR(trans);
788
789 ret = btrfs_defrag_leaves(trans, root, cacheonly);
790
791 nr = trans->blocks_used;
792 btrfs_end_transaction(trans, root);
793 btrfs_btree_balance_dirty(info->tree_root, nr);
794 cond_resched();
795
796 if (root->fs_info->closing || ret != -EAGAIN)
797 break;
798 }
799 root->defrag_running = 0;
800 return ret;
801 }
802
803 #if 0
804 /*
805 * when dropping snapshots, we generate a ton of delayed refs, and it makes
806 * sense not to join the transaction while it is trying to flush the current
807 * queue of delayed refs out.
808 *
809 * This is used by the drop snapshot code only
810 */
811 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
812 {
813 DEFINE_WAIT(wait);
814
815 mutex_lock(&info->trans_mutex);
816 while (info->running_transaction &&
817 info->running_transaction->delayed_refs.flushing) {
818 prepare_to_wait(&info->transaction_wait, &wait,
819 TASK_UNINTERRUPTIBLE);
820 mutex_unlock(&info->trans_mutex);
821
822 schedule();
823
824 mutex_lock(&info->trans_mutex);
825 finish_wait(&info->transaction_wait, &wait);
826 }
827 mutex_unlock(&info->trans_mutex);
828 return 0;
829 }
830
831 /*
832 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
833 * all of them
834 */
835 int btrfs_drop_dead_root(struct btrfs_root *root)
836 {
837 struct btrfs_trans_handle *trans;
838 struct btrfs_root *tree_root = root->fs_info->tree_root;
839 unsigned long nr;
840 int ret;
841
842 while (1) {
843 /*
844 * we don't want to jump in and create a bunch of
845 * delayed refs if the transaction is starting to close
846 */
847 wait_transaction_pre_flush(tree_root->fs_info);
848 trans = btrfs_start_transaction(tree_root, 1);
849
850 /*
851 * we've joined a transaction, make sure it isn't
852 * closing right now
853 */
854 if (trans->transaction->delayed_refs.flushing) {
855 btrfs_end_transaction(trans, tree_root);
856 continue;
857 }
858
859 ret = btrfs_drop_snapshot(trans, root);
860 if (ret != -EAGAIN)
861 break;
862
863 ret = btrfs_update_root(trans, tree_root,
864 &root->root_key,
865 &root->root_item);
866 if (ret)
867 break;
868
869 nr = trans->blocks_used;
870 ret = btrfs_end_transaction(trans, tree_root);
871 BUG_ON(ret);
872
873 btrfs_btree_balance_dirty(tree_root, nr);
874 cond_resched();
875 }
876 BUG_ON(ret);
877
878 ret = btrfs_del_root(trans, tree_root, &root->root_key);
879 BUG_ON(ret);
880
881 nr = trans->blocks_used;
882 ret = btrfs_end_transaction(trans, tree_root);
883 BUG_ON(ret);
884
885 free_extent_buffer(root->node);
886 free_extent_buffer(root->commit_root);
887 kfree(root);
888
889 btrfs_btree_balance_dirty(tree_root, nr);
890 return ret;
891 }
892 #endif
893
894 /*
895 * new snapshots need to be created at a very specific time in the
896 * transaction commit. This does the actual creation
897 */
898 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
899 struct btrfs_fs_info *fs_info,
900 struct btrfs_pending_snapshot *pending)
901 {
902 struct btrfs_key key;
903 struct btrfs_root_item *new_root_item;
904 struct btrfs_root *tree_root = fs_info->tree_root;
905 struct btrfs_root *root = pending->root;
906 struct btrfs_root *parent_root;
907 struct inode *parent_inode;
908 struct dentry *parent;
909 struct dentry *dentry;
910 struct extent_buffer *tmp;
911 struct extent_buffer *old;
912 int ret;
913 u64 to_reserve = 0;
914 u64 index = 0;
915 u64 objectid;
916 u64 root_flags;
917
918 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
919 if (!new_root_item) {
920 pending->error = -ENOMEM;
921 goto fail;
922 }
923
924 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
925 if (ret) {
926 pending->error = ret;
927 goto fail;
928 }
929
930 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
931 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
932
933 if (to_reserve > 0) {
934 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
935 to_reserve);
936 if (ret) {
937 pending->error = ret;
938 goto fail;
939 }
940 }
941
942 key.objectid = objectid;
943 key.offset = (u64)-1;
944 key.type = BTRFS_ROOT_ITEM_KEY;
945
946 trans->block_rsv = &pending->block_rsv;
947
948 dentry = pending->dentry;
949 parent = dget_parent(dentry);
950 parent_inode = parent->d_inode;
951 parent_root = BTRFS_I(parent_inode)->root;
952 record_root_in_trans(trans, parent_root);
953
954 /*
955 * insert the directory item
956 */
957 ret = btrfs_set_inode_index(parent_inode, &index);
958 BUG_ON(ret);
959 ret = btrfs_insert_dir_item(trans, parent_root,
960 dentry->d_name.name, dentry->d_name.len,
961 parent_inode->i_ino, &key,
962 BTRFS_FT_DIR, index);
963 BUG_ON(ret);
964
965 btrfs_i_size_write(parent_inode, parent_inode->i_size +
966 dentry->d_name.len * 2);
967 ret = btrfs_update_inode(trans, parent_root, parent_inode);
968 BUG_ON(ret);
969
970 record_root_in_trans(trans, root);
971 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
972 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
973
974 root_flags = btrfs_root_flags(new_root_item);
975 if (pending->readonly)
976 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
977 else
978 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
979 btrfs_set_root_flags(new_root_item, root_flags);
980
981 old = btrfs_lock_root_node(root);
982 btrfs_cow_block(trans, root, old, NULL, 0, &old);
983 btrfs_set_lock_blocking(old);
984
985 btrfs_copy_root(trans, root, old, &tmp, objectid);
986 btrfs_tree_unlock(old);
987 free_extent_buffer(old);
988
989 btrfs_set_root_node(new_root_item, tmp);
990 /* record when the snapshot was created in key.offset */
991 key.offset = trans->transid;
992 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
993 btrfs_tree_unlock(tmp);
994 free_extent_buffer(tmp);
995 BUG_ON(ret);
996
997 /*
998 * insert root back/forward references
999 */
1000 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1001 parent_root->root_key.objectid,
1002 parent_inode->i_ino, index,
1003 dentry->d_name.name, dentry->d_name.len);
1004 BUG_ON(ret);
1005 dput(parent);
1006
1007 key.offset = (u64)-1;
1008 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1009 BUG_ON(IS_ERR(pending->snap));
1010
1011 btrfs_reloc_post_snapshot(trans, pending);
1012 btrfs_orphan_post_snapshot(trans, pending);
1013 fail:
1014 kfree(new_root_item);
1015 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1016 return 0;
1017 }
1018
1019 /*
1020 * create all the snapshots we've scheduled for creation
1021 */
1022 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1023 struct btrfs_fs_info *fs_info)
1024 {
1025 struct btrfs_pending_snapshot *pending;
1026 struct list_head *head = &trans->transaction->pending_snapshots;
1027 int ret;
1028
1029 list_for_each_entry(pending, head, list) {
1030 ret = create_pending_snapshot(trans, fs_info, pending);
1031 BUG_ON(ret);
1032 }
1033 return 0;
1034 }
1035
1036 static void update_super_roots(struct btrfs_root *root)
1037 {
1038 struct btrfs_root_item *root_item;
1039 struct btrfs_super_block *super;
1040
1041 super = &root->fs_info->super_copy;
1042
1043 root_item = &root->fs_info->chunk_root->root_item;
1044 super->chunk_root = root_item->bytenr;
1045 super->chunk_root_generation = root_item->generation;
1046 super->chunk_root_level = root_item->level;
1047
1048 root_item = &root->fs_info->tree_root->root_item;
1049 super->root = root_item->bytenr;
1050 super->generation = root_item->generation;
1051 super->root_level = root_item->level;
1052 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1053 super->cache_generation = root_item->generation;
1054 }
1055
1056 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1057 {
1058 int ret = 0;
1059 spin_lock(&info->new_trans_lock);
1060 if (info->running_transaction)
1061 ret = info->running_transaction->in_commit;
1062 spin_unlock(&info->new_trans_lock);
1063 return ret;
1064 }
1065
1066 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1067 {
1068 int ret = 0;
1069 spin_lock(&info->new_trans_lock);
1070 if (info->running_transaction)
1071 ret = info->running_transaction->blocked;
1072 spin_unlock(&info->new_trans_lock);
1073 return ret;
1074 }
1075
1076 /*
1077 * wait for the current transaction commit to start and block subsequent
1078 * transaction joins
1079 */
1080 static void wait_current_trans_commit_start(struct btrfs_root *root,
1081 struct btrfs_transaction *trans)
1082 {
1083 DEFINE_WAIT(wait);
1084
1085 if (trans->in_commit)
1086 return;
1087
1088 while (1) {
1089 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1090 TASK_UNINTERRUPTIBLE);
1091 if (trans->in_commit) {
1092 finish_wait(&root->fs_info->transaction_blocked_wait,
1093 &wait);
1094 break;
1095 }
1096 mutex_unlock(&root->fs_info->trans_mutex);
1097 schedule();
1098 mutex_lock(&root->fs_info->trans_mutex);
1099 finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1100 }
1101 }
1102
1103 /*
1104 * wait for the current transaction to start and then become unblocked.
1105 * caller holds ref.
1106 */
1107 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1108 struct btrfs_transaction *trans)
1109 {
1110 DEFINE_WAIT(wait);
1111
1112 if (trans->commit_done || (trans->in_commit && !trans->blocked))
1113 return;
1114
1115 while (1) {
1116 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1117 TASK_UNINTERRUPTIBLE);
1118 if (trans->commit_done ||
1119 (trans->in_commit && !trans->blocked)) {
1120 finish_wait(&root->fs_info->transaction_wait,
1121 &wait);
1122 break;
1123 }
1124 mutex_unlock(&root->fs_info->trans_mutex);
1125 schedule();
1126 mutex_lock(&root->fs_info->trans_mutex);
1127 finish_wait(&root->fs_info->transaction_wait,
1128 &wait);
1129 }
1130 }
1131
1132 /*
1133 * commit transactions asynchronously. once btrfs_commit_transaction_async
1134 * returns, any subsequent transaction will not be allowed to join.
1135 */
1136 struct btrfs_async_commit {
1137 struct btrfs_trans_handle *newtrans;
1138 struct btrfs_root *root;
1139 struct delayed_work work;
1140 };
1141
1142 static void do_async_commit(struct work_struct *work)
1143 {
1144 struct btrfs_async_commit *ac =
1145 container_of(work, struct btrfs_async_commit, work.work);
1146
1147 btrfs_commit_transaction(ac->newtrans, ac->root);
1148 kfree(ac);
1149 }
1150
1151 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1152 struct btrfs_root *root,
1153 int wait_for_unblock)
1154 {
1155 struct btrfs_async_commit *ac;
1156 struct btrfs_transaction *cur_trans;
1157
1158 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1159 BUG_ON(!ac);
1160
1161 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1162 ac->root = root;
1163 ac->newtrans = btrfs_join_transaction(root, 0);
1164 if (IS_ERR(ac->newtrans)) {
1165 int err = PTR_ERR(ac->newtrans);
1166 kfree(ac);
1167 return err;
1168 }
1169
1170 /* take transaction reference */
1171 mutex_lock(&root->fs_info->trans_mutex);
1172 cur_trans = trans->transaction;
1173 cur_trans->use_count++;
1174 mutex_unlock(&root->fs_info->trans_mutex);
1175
1176 btrfs_end_transaction(trans, root);
1177 schedule_delayed_work(&ac->work, 0);
1178
1179 /* wait for transaction to start and unblock */
1180 mutex_lock(&root->fs_info->trans_mutex);
1181 if (wait_for_unblock)
1182 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1183 else
1184 wait_current_trans_commit_start(root, cur_trans);
1185 put_transaction(cur_trans);
1186 mutex_unlock(&root->fs_info->trans_mutex);
1187
1188 return 0;
1189 }
1190
1191 /*
1192 * btrfs_transaction state sequence:
1193 * in_commit = 0, blocked = 0 (initial)
1194 * in_commit = 1, blocked = 1
1195 * blocked = 0
1196 * commit_done = 1
1197 */
1198 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1199 struct btrfs_root *root)
1200 {
1201 unsigned long joined = 0;
1202 struct btrfs_transaction *cur_trans;
1203 struct btrfs_transaction *prev_trans = NULL;
1204 DEFINE_WAIT(wait);
1205 int ret;
1206 int should_grow = 0;
1207 unsigned long now = get_seconds();
1208 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1209
1210 btrfs_run_ordered_operations(root, 0);
1211
1212 /* make a pass through all the delayed refs we have so far
1213 * any runnings procs may add more while we are here
1214 */
1215 ret = btrfs_run_delayed_refs(trans, root, 0);
1216 BUG_ON(ret);
1217
1218 btrfs_trans_release_metadata(trans, root);
1219
1220 cur_trans = trans->transaction;
1221 /*
1222 * set the flushing flag so procs in this transaction have to
1223 * start sending their work down.
1224 */
1225 cur_trans->delayed_refs.flushing = 1;
1226
1227 ret = btrfs_run_delayed_refs(trans, root, 0);
1228 BUG_ON(ret);
1229
1230 mutex_lock(&root->fs_info->trans_mutex);
1231 if (cur_trans->in_commit) {
1232 cur_trans->use_count++;
1233 mutex_unlock(&root->fs_info->trans_mutex);
1234 btrfs_end_transaction(trans, root);
1235
1236 ret = wait_for_commit(root, cur_trans);
1237 BUG_ON(ret);
1238
1239 mutex_lock(&root->fs_info->trans_mutex);
1240 put_transaction(cur_trans);
1241 mutex_unlock(&root->fs_info->trans_mutex);
1242
1243 return 0;
1244 }
1245
1246 trans->transaction->in_commit = 1;
1247 trans->transaction->blocked = 1;
1248 wake_up(&root->fs_info->transaction_blocked_wait);
1249
1250 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1251 prev_trans = list_entry(cur_trans->list.prev,
1252 struct btrfs_transaction, list);
1253 if (!prev_trans->commit_done) {
1254 prev_trans->use_count++;
1255 mutex_unlock(&root->fs_info->trans_mutex);
1256
1257 wait_for_commit(root, prev_trans);
1258
1259 mutex_lock(&root->fs_info->trans_mutex);
1260 put_transaction(prev_trans);
1261 }
1262 }
1263
1264 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1265 should_grow = 1;
1266
1267 do {
1268 int snap_pending = 0;
1269 joined = cur_trans->num_joined;
1270 if (!list_empty(&trans->transaction->pending_snapshots))
1271 snap_pending = 1;
1272
1273 WARN_ON(cur_trans != trans->transaction);
1274 mutex_unlock(&root->fs_info->trans_mutex);
1275
1276 if (flush_on_commit || snap_pending) {
1277 btrfs_start_delalloc_inodes(root, 1);
1278 ret = btrfs_wait_ordered_extents(root, 0, 1);
1279 BUG_ON(ret);
1280 }
1281
1282 /*
1283 * rename don't use btrfs_join_transaction, so, once we
1284 * set the transaction to blocked above, we aren't going
1285 * to get any new ordered operations. We can safely run
1286 * it here and no for sure that nothing new will be added
1287 * to the list
1288 */
1289 btrfs_run_ordered_operations(root, 1);
1290
1291 prepare_to_wait(&cur_trans->writer_wait, &wait,
1292 TASK_UNINTERRUPTIBLE);
1293
1294 smp_mb();
1295 if (cur_trans->num_writers > 1)
1296 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1297 else if (should_grow)
1298 schedule_timeout(1);
1299
1300 mutex_lock(&root->fs_info->trans_mutex);
1301 finish_wait(&cur_trans->writer_wait, &wait);
1302 } while (cur_trans->num_writers > 1 ||
1303 (should_grow && cur_trans->num_joined != joined));
1304
1305 ret = create_pending_snapshots(trans, root->fs_info);
1306 BUG_ON(ret);
1307
1308 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1309 BUG_ON(ret);
1310
1311 WARN_ON(cur_trans != trans->transaction);
1312
1313 /* btrfs_commit_tree_roots is responsible for getting the
1314 * various roots consistent with each other. Every pointer
1315 * in the tree of tree roots has to point to the most up to date
1316 * root for every subvolume and other tree. So, we have to keep
1317 * the tree logging code from jumping in and changing any
1318 * of the trees.
1319 *
1320 * At this point in the commit, there can't be any tree-log
1321 * writers, but a little lower down we drop the trans mutex
1322 * and let new people in. By holding the tree_log_mutex
1323 * from now until after the super is written, we avoid races
1324 * with the tree-log code.
1325 */
1326 mutex_lock(&root->fs_info->tree_log_mutex);
1327
1328 ret = commit_fs_roots(trans, root);
1329 BUG_ON(ret);
1330
1331 /* commit_fs_roots gets rid of all the tree log roots, it is now
1332 * safe to free the root of tree log roots
1333 */
1334 btrfs_free_log_root_tree(trans, root->fs_info);
1335
1336 ret = commit_cowonly_roots(trans, root);
1337 BUG_ON(ret);
1338
1339 btrfs_prepare_extent_commit(trans, root);
1340
1341 cur_trans = root->fs_info->running_transaction;
1342 spin_lock(&root->fs_info->new_trans_lock);
1343 root->fs_info->running_transaction = NULL;
1344 spin_unlock(&root->fs_info->new_trans_lock);
1345
1346 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1347 root->fs_info->tree_root->node);
1348 switch_commit_root(root->fs_info->tree_root);
1349
1350 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1351 root->fs_info->chunk_root->node);
1352 switch_commit_root(root->fs_info->chunk_root);
1353
1354 update_super_roots(root);
1355
1356 if (!root->fs_info->log_root_recovering) {
1357 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1358 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1359 }
1360
1361 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1362 sizeof(root->fs_info->super_copy));
1363
1364 trans->transaction->blocked = 0;
1365
1366 wake_up(&root->fs_info->transaction_wait);
1367
1368 mutex_unlock(&root->fs_info->trans_mutex);
1369 ret = btrfs_write_and_wait_transaction(trans, root);
1370 BUG_ON(ret);
1371 write_ctree_super(trans, root, 0);
1372
1373 /*
1374 * the super is written, we can safely allow the tree-loggers
1375 * to go about their business
1376 */
1377 mutex_unlock(&root->fs_info->tree_log_mutex);
1378
1379 btrfs_finish_extent_commit(trans, root);
1380
1381 mutex_lock(&root->fs_info->trans_mutex);
1382
1383 cur_trans->commit_done = 1;
1384
1385 root->fs_info->last_trans_committed = cur_trans->transid;
1386
1387 wake_up(&cur_trans->commit_wait);
1388
1389 put_transaction(cur_trans);
1390 put_transaction(cur_trans);
1391
1392 mutex_unlock(&root->fs_info->trans_mutex);
1393
1394 if (current->journal_info == trans)
1395 current->journal_info = NULL;
1396
1397 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1398
1399 if (current != root->fs_info->transaction_kthread)
1400 btrfs_run_delayed_iputs(root);
1401
1402 return ret;
1403 }
1404
1405 /*
1406 * interface function to delete all the snapshots we have scheduled for deletion
1407 */
1408 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1409 {
1410 LIST_HEAD(list);
1411 struct btrfs_fs_info *fs_info = root->fs_info;
1412
1413 mutex_lock(&fs_info->trans_mutex);
1414 list_splice_init(&fs_info->dead_roots, &list);
1415 mutex_unlock(&fs_info->trans_mutex);
1416
1417 while (!list_empty(&list)) {
1418 root = list_entry(list.next, struct btrfs_root, root_list);
1419 list_del(&root->root_list);
1420
1421 if (btrfs_header_backref_rev(root->node) <
1422 BTRFS_MIXED_BACKREF_REV)
1423 btrfs_drop_snapshot(root, NULL, 0);
1424 else
1425 btrfs_drop_snapshot(root, NULL, 1);
1426 }
1427 return 0;
1428 }