]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/btrfs/transaction.c
Merge tag 'for-rc-adfs' of git://git.armlinux.org.uk/~rmk/linux-arm
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "locking.h"
17 #include "tree-log.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22
23 #define BTRFS_ROOT_TRANS_TAG 0
24
25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 [TRANS_STATE_RUNNING] = 0U,
27 [TRANS_STATE_BLOCKED] = __TRANS_START,
28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
30 __TRANS_ATTACH |
31 __TRANS_JOIN),
32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
33 __TRANS_ATTACH |
34 __TRANS_JOIN |
35 __TRANS_JOIN_NOLOCK),
36 [TRANS_STATE_COMPLETED] = (__TRANS_START |
37 __TRANS_ATTACH |
38 __TRANS_JOIN |
39 __TRANS_JOIN_NOLOCK),
40 };
41
42 void btrfs_put_transaction(struct btrfs_transaction *transaction)
43 {
44 WARN_ON(refcount_read(&transaction->use_count) == 0);
45 if (refcount_dec_and_test(&transaction->use_count)) {
46 BUG_ON(!list_empty(&transaction->list));
47 WARN_ON(!RB_EMPTY_ROOT(
48 &transaction->delayed_refs.href_root.rb_root));
49 if (transaction->delayed_refs.pending_csums)
50 btrfs_err(transaction->fs_info,
51 "pending csums is %llu",
52 transaction->delayed_refs.pending_csums);
53 /*
54 * If any block groups are found in ->deleted_bgs then it's
55 * because the transaction was aborted and a commit did not
56 * happen (things failed before writing the new superblock
57 * and calling btrfs_finish_extent_commit()), so we can not
58 * discard the physical locations of the block groups.
59 */
60 while (!list_empty(&transaction->deleted_bgs)) {
61 struct btrfs_block_group_cache *cache;
62
63 cache = list_first_entry(&transaction->deleted_bgs,
64 struct btrfs_block_group_cache,
65 bg_list);
66 list_del_init(&cache->bg_list);
67 btrfs_put_block_group_trimming(cache);
68 btrfs_put_block_group(cache);
69 }
70 WARN_ON(!list_empty(&transaction->dev_update_list));
71 kfree(transaction);
72 }
73 }
74
75 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
76 {
77 struct btrfs_fs_info *fs_info = trans->fs_info;
78 struct btrfs_root *root, *tmp;
79
80 down_write(&fs_info->commit_root_sem);
81 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
82 dirty_list) {
83 list_del_init(&root->dirty_list);
84 free_extent_buffer(root->commit_root);
85 root->commit_root = btrfs_root_node(root);
86 if (is_fstree(root->root_key.objectid))
87 btrfs_unpin_free_ino(root);
88 extent_io_tree_release(&root->dirty_log_pages);
89 btrfs_qgroup_clean_swapped_blocks(root);
90 }
91
92 /* We can free old roots now. */
93 spin_lock(&trans->dropped_roots_lock);
94 while (!list_empty(&trans->dropped_roots)) {
95 root = list_first_entry(&trans->dropped_roots,
96 struct btrfs_root, root_list);
97 list_del_init(&root->root_list);
98 spin_unlock(&trans->dropped_roots_lock);
99 btrfs_drop_and_free_fs_root(fs_info, root);
100 spin_lock(&trans->dropped_roots_lock);
101 }
102 spin_unlock(&trans->dropped_roots_lock);
103 up_write(&fs_info->commit_root_sem);
104 }
105
106 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
107 unsigned int type)
108 {
109 if (type & TRANS_EXTWRITERS)
110 atomic_inc(&trans->num_extwriters);
111 }
112
113 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
114 unsigned int type)
115 {
116 if (type & TRANS_EXTWRITERS)
117 atomic_dec(&trans->num_extwriters);
118 }
119
120 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
121 unsigned int type)
122 {
123 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
124 }
125
126 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
127 {
128 return atomic_read(&trans->num_extwriters);
129 }
130
131 /*
132 * either allocate a new transaction or hop into the existing one
133 */
134 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
135 unsigned int type)
136 {
137 struct btrfs_transaction *cur_trans;
138
139 spin_lock(&fs_info->trans_lock);
140 loop:
141 /* The file system has been taken offline. No new transactions. */
142 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
143 spin_unlock(&fs_info->trans_lock);
144 return -EROFS;
145 }
146
147 cur_trans = fs_info->running_transaction;
148 if (cur_trans) {
149 if (cur_trans->aborted) {
150 spin_unlock(&fs_info->trans_lock);
151 return cur_trans->aborted;
152 }
153 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
154 spin_unlock(&fs_info->trans_lock);
155 return -EBUSY;
156 }
157 refcount_inc(&cur_trans->use_count);
158 atomic_inc(&cur_trans->num_writers);
159 extwriter_counter_inc(cur_trans, type);
160 spin_unlock(&fs_info->trans_lock);
161 return 0;
162 }
163 spin_unlock(&fs_info->trans_lock);
164
165 /*
166 * If we are ATTACH, we just want to catch the current transaction,
167 * and commit it. If there is no transaction, just return ENOENT.
168 */
169 if (type == TRANS_ATTACH)
170 return -ENOENT;
171
172 /*
173 * JOIN_NOLOCK only happens during the transaction commit, so
174 * it is impossible that ->running_transaction is NULL
175 */
176 BUG_ON(type == TRANS_JOIN_NOLOCK);
177
178 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
179 if (!cur_trans)
180 return -ENOMEM;
181
182 spin_lock(&fs_info->trans_lock);
183 if (fs_info->running_transaction) {
184 /*
185 * someone started a transaction after we unlocked. Make sure
186 * to redo the checks above
187 */
188 kfree(cur_trans);
189 goto loop;
190 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
191 spin_unlock(&fs_info->trans_lock);
192 kfree(cur_trans);
193 return -EROFS;
194 }
195
196 cur_trans->fs_info = fs_info;
197 atomic_set(&cur_trans->num_writers, 1);
198 extwriter_counter_init(cur_trans, type);
199 init_waitqueue_head(&cur_trans->writer_wait);
200 init_waitqueue_head(&cur_trans->commit_wait);
201 cur_trans->state = TRANS_STATE_RUNNING;
202 /*
203 * One for this trans handle, one so it will live on until we
204 * commit the transaction.
205 */
206 refcount_set(&cur_trans->use_count, 2);
207 cur_trans->flags = 0;
208 cur_trans->start_time = ktime_get_seconds();
209
210 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
211
212 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
213 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
214 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
215
216 /*
217 * although the tree mod log is per file system and not per transaction,
218 * the log must never go across transaction boundaries.
219 */
220 smp_mb();
221 if (!list_empty(&fs_info->tree_mod_seq_list))
222 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
223 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
224 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
225 atomic64_set(&fs_info->tree_mod_seq, 0);
226
227 spin_lock_init(&cur_trans->delayed_refs.lock);
228
229 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
230 INIT_LIST_HEAD(&cur_trans->dev_update_list);
231 INIT_LIST_HEAD(&cur_trans->switch_commits);
232 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
233 INIT_LIST_HEAD(&cur_trans->io_bgs);
234 INIT_LIST_HEAD(&cur_trans->dropped_roots);
235 mutex_init(&cur_trans->cache_write_mutex);
236 spin_lock_init(&cur_trans->dirty_bgs_lock);
237 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
238 spin_lock_init(&cur_trans->dropped_roots_lock);
239 list_add_tail(&cur_trans->list, &fs_info->trans_list);
240 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
241 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
242 fs_info->generation++;
243 cur_trans->transid = fs_info->generation;
244 fs_info->running_transaction = cur_trans;
245 cur_trans->aborted = 0;
246 spin_unlock(&fs_info->trans_lock);
247
248 return 0;
249 }
250
251 /*
252 * this does all the record keeping required to make sure that a reference
253 * counted root is properly recorded in a given transaction. This is required
254 * to make sure the old root from before we joined the transaction is deleted
255 * when the transaction commits
256 */
257 static int record_root_in_trans(struct btrfs_trans_handle *trans,
258 struct btrfs_root *root,
259 int force)
260 {
261 struct btrfs_fs_info *fs_info = root->fs_info;
262
263 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
264 root->last_trans < trans->transid) || force) {
265 WARN_ON(root == fs_info->extent_root);
266 WARN_ON(!force && root->commit_root != root->node);
267
268 /*
269 * see below for IN_TRANS_SETUP usage rules
270 * we have the reloc mutex held now, so there
271 * is only one writer in this function
272 */
273 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
274
275 /* make sure readers find IN_TRANS_SETUP before
276 * they find our root->last_trans update
277 */
278 smp_wmb();
279
280 spin_lock(&fs_info->fs_roots_radix_lock);
281 if (root->last_trans == trans->transid && !force) {
282 spin_unlock(&fs_info->fs_roots_radix_lock);
283 return 0;
284 }
285 radix_tree_tag_set(&fs_info->fs_roots_radix,
286 (unsigned long)root->root_key.objectid,
287 BTRFS_ROOT_TRANS_TAG);
288 spin_unlock(&fs_info->fs_roots_radix_lock);
289 root->last_trans = trans->transid;
290
291 /* this is pretty tricky. We don't want to
292 * take the relocation lock in btrfs_record_root_in_trans
293 * unless we're really doing the first setup for this root in
294 * this transaction.
295 *
296 * Normally we'd use root->last_trans as a flag to decide
297 * if we want to take the expensive mutex.
298 *
299 * But, we have to set root->last_trans before we
300 * init the relocation root, otherwise, we trip over warnings
301 * in ctree.c. The solution used here is to flag ourselves
302 * with root IN_TRANS_SETUP. When this is 1, we're still
303 * fixing up the reloc trees and everyone must wait.
304 *
305 * When this is zero, they can trust root->last_trans and fly
306 * through btrfs_record_root_in_trans without having to take the
307 * lock. smp_wmb() makes sure that all the writes above are
308 * done before we pop in the zero below
309 */
310 btrfs_init_reloc_root(trans, root);
311 smp_mb__before_atomic();
312 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
313 }
314 return 0;
315 }
316
317
318 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
319 struct btrfs_root *root)
320 {
321 struct btrfs_fs_info *fs_info = root->fs_info;
322 struct btrfs_transaction *cur_trans = trans->transaction;
323
324 /* Add ourselves to the transaction dropped list */
325 spin_lock(&cur_trans->dropped_roots_lock);
326 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
327 spin_unlock(&cur_trans->dropped_roots_lock);
328
329 /* Make sure we don't try to update the root at commit time */
330 spin_lock(&fs_info->fs_roots_radix_lock);
331 radix_tree_tag_clear(&fs_info->fs_roots_radix,
332 (unsigned long)root->root_key.objectid,
333 BTRFS_ROOT_TRANS_TAG);
334 spin_unlock(&fs_info->fs_roots_radix_lock);
335 }
336
337 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
338 struct btrfs_root *root)
339 {
340 struct btrfs_fs_info *fs_info = root->fs_info;
341
342 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
343 return 0;
344
345 /*
346 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
347 * and barriers
348 */
349 smp_rmb();
350 if (root->last_trans == trans->transid &&
351 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
352 return 0;
353
354 mutex_lock(&fs_info->reloc_mutex);
355 record_root_in_trans(trans, root, 0);
356 mutex_unlock(&fs_info->reloc_mutex);
357
358 return 0;
359 }
360
361 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
362 {
363 return (trans->state >= TRANS_STATE_BLOCKED &&
364 trans->state < TRANS_STATE_UNBLOCKED &&
365 !trans->aborted);
366 }
367
368 /* wait for commit against the current transaction to become unblocked
369 * when this is done, it is safe to start a new transaction, but the current
370 * transaction might not be fully on disk.
371 */
372 static void wait_current_trans(struct btrfs_fs_info *fs_info)
373 {
374 struct btrfs_transaction *cur_trans;
375
376 spin_lock(&fs_info->trans_lock);
377 cur_trans = fs_info->running_transaction;
378 if (cur_trans && is_transaction_blocked(cur_trans)) {
379 refcount_inc(&cur_trans->use_count);
380 spin_unlock(&fs_info->trans_lock);
381
382 wait_event(fs_info->transaction_wait,
383 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
384 cur_trans->aborted);
385 btrfs_put_transaction(cur_trans);
386 } else {
387 spin_unlock(&fs_info->trans_lock);
388 }
389 }
390
391 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
392 {
393 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
394 return 0;
395
396 if (type == TRANS_START)
397 return 1;
398
399 return 0;
400 }
401
402 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
403 {
404 struct btrfs_fs_info *fs_info = root->fs_info;
405
406 if (!fs_info->reloc_ctl ||
407 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
408 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
409 root->reloc_root)
410 return false;
411
412 return true;
413 }
414
415 static struct btrfs_trans_handle *
416 start_transaction(struct btrfs_root *root, unsigned int num_items,
417 unsigned int type, enum btrfs_reserve_flush_enum flush,
418 bool enforce_qgroups)
419 {
420 struct btrfs_fs_info *fs_info = root->fs_info;
421 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
422 struct btrfs_trans_handle *h;
423 struct btrfs_transaction *cur_trans;
424 u64 num_bytes = 0;
425 u64 qgroup_reserved = 0;
426 bool reloc_reserved = false;
427 int ret;
428
429 /* Send isn't supposed to start transactions. */
430 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
431
432 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
433 return ERR_PTR(-EROFS);
434
435 if (current->journal_info) {
436 WARN_ON(type & TRANS_EXTWRITERS);
437 h = current->journal_info;
438 refcount_inc(&h->use_count);
439 WARN_ON(refcount_read(&h->use_count) > 2);
440 h->orig_rsv = h->block_rsv;
441 h->block_rsv = NULL;
442 goto got_it;
443 }
444
445 /*
446 * Do the reservation before we join the transaction so we can do all
447 * the appropriate flushing if need be.
448 */
449 if (num_items && root != fs_info->chunk_root) {
450 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
451 u64 delayed_refs_bytes = 0;
452
453 qgroup_reserved = num_items * fs_info->nodesize;
454 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
455 enforce_qgroups);
456 if (ret)
457 return ERR_PTR(ret);
458
459 /*
460 * We want to reserve all the bytes we may need all at once, so
461 * we only do 1 enospc flushing cycle per transaction start. We
462 * accomplish this by simply assuming we'll do 2 x num_items
463 * worth of delayed refs updates in this trans handle, and
464 * refill that amount for whatever is missing in the reserve.
465 */
466 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
467 if (delayed_refs_rsv->full == 0) {
468 delayed_refs_bytes = num_bytes;
469 num_bytes <<= 1;
470 }
471
472 /*
473 * Do the reservation for the relocation root creation
474 */
475 if (need_reserve_reloc_root(root)) {
476 num_bytes += fs_info->nodesize;
477 reloc_reserved = true;
478 }
479
480 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
481 if (ret)
482 goto reserve_fail;
483 if (delayed_refs_bytes) {
484 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
485 delayed_refs_bytes);
486 num_bytes -= delayed_refs_bytes;
487 }
488 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
489 !delayed_refs_rsv->full) {
490 /*
491 * Some people call with btrfs_start_transaction(root, 0)
492 * because they can be throttled, but have some other mechanism
493 * for reserving space. We still want these guys to refill the
494 * delayed block_rsv so just add 1 items worth of reservation
495 * here.
496 */
497 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
498 if (ret)
499 goto reserve_fail;
500 }
501 again:
502 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
503 if (!h) {
504 ret = -ENOMEM;
505 goto alloc_fail;
506 }
507
508 /*
509 * If we are JOIN_NOLOCK we're already committing a transaction and
510 * waiting on this guy, so we don't need to do the sb_start_intwrite
511 * because we're already holding a ref. We need this because we could
512 * have raced in and did an fsync() on a file which can kick a commit
513 * and then we deadlock with somebody doing a freeze.
514 *
515 * If we are ATTACH, it means we just want to catch the current
516 * transaction and commit it, so we needn't do sb_start_intwrite().
517 */
518 if (type & __TRANS_FREEZABLE)
519 sb_start_intwrite(fs_info->sb);
520
521 if (may_wait_transaction(fs_info, type))
522 wait_current_trans(fs_info);
523
524 do {
525 ret = join_transaction(fs_info, type);
526 if (ret == -EBUSY) {
527 wait_current_trans(fs_info);
528 if (unlikely(type == TRANS_ATTACH))
529 ret = -ENOENT;
530 }
531 } while (ret == -EBUSY);
532
533 if (ret < 0)
534 goto join_fail;
535
536 cur_trans = fs_info->running_transaction;
537
538 h->transid = cur_trans->transid;
539 h->transaction = cur_trans;
540 h->root = root;
541 refcount_set(&h->use_count, 1);
542 h->fs_info = root->fs_info;
543
544 h->type = type;
545 h->can_flush_pending_bgs = true;
546 INIT_LIST_HEAD(&h->new_bgs);
547
548 smp_mb();
549 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
550 may_wait_transaction(fs_info, type)) {
551 current->journal_info = h;
552 btrfs_commit_transaction(h);
553 goto again;
554 }
555
556 if (num_bytes) {
557 trace_btrfs_space_reservation(fs_info, "transaction",
558 h->transid, num_bytes, 1);
559 h->block_rsv = &fs_info->trans_block_rsv;
560 h->bytes_reserved = num_bytes;
561 h->reloc_reserved = reloc_reserved;
562 }
563
564 got_it:
565 btrfs_record_root_in_trans(h, root);
566
567 if (!current->journal_info)
568 current->journal_info = h;
569 return h;
570
571 join_fail:
572 if (type & __TRANS_FREEZABLE)
573 sb_end_intwrite(fs_info->sb);
574 kmem_cache_free(btrfs_trans_handle_cachep, h);
575 alloc_fail:
576 if (num_bytes)
577 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
578 num_bytes);
579 reserve_fail:
580 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
581 return ERR_PTR(ret);
582 }
583
584 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
585 unsigned int num_items)
586 {
587 return start_transaction(root, num_items, TRANS_START,
588 BTRFS_RESERVE_FLUSH_ALL, true);
589 }
590
591 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
592 struct btrfs_root *root,
593 unsigned int num_items,
594 int min_factor)
595 {
596 struct btrfs_fs_info *fs_info = root->fs_info;
597 struct btrfs_trans_handle *trans;
598 u64 num_bytes;
599 int ret;
600
601 /*
602 * We have two callers: unlink and block group removal. The
603 * former should succeed even if we will temporarily exceed
604 * quota and the latter operates on the extent root so
605 * qgroup enforcement is ignored anyway.
606 */
607 trans = start_transaction(root, num_items, TRANS_START,
608 BTRFS_RESERVE_FLUSH_ALL, false);
609 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
610 return trans;
611
612 trans = btrfs_start_transaction(root, 0);
613 if (IS_ERR(trans))
614 return trans;
615
616 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
617 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
618 num_bytes, min_factor);
619 if (ret) {
620 btrfs_end_transaction(trans);
621 return ERR_PTR(ret);
622 }
623
624 trans->block_rsv = &fs_info->trans_block_rsv;
625 trans->bytes_reserved = num_bytes;
626 trace_btrfs_space_reservation(fs_info, "transaction",
627 trans->transid, num_bytes, 1);
628
629 return trans;
630 }
631
632 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
633 {
634 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
635 true);
636 }
637
638 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
639 {
640 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
641 BTRFS_RESERVE_NO_FLUSH, true);
642 }
643
644 /*
645 * btrfs_attach_transaction() - catch the running transaction
646 *
647 * It is used when we want to commit the current the transaction, but
648 * don't want to start a new one.
649 *
650 * Note: If this function return -ENOENT, it just means there is no
651 * running transaction. But it is possible that the inactive transaction
652 * is still in the memory, not fully on disk. If you hope there is no
653 * inactive transaction in the fs when -ENOENT is returned, you should
654 * invoke
655 * btrfs_attach_transaction_barrier()
656 */
657 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
658 {
659 return start_transaction(root, 0, TRANS_ATTACH,
660 BTRFS_RESERVE_NO_FLUSH, true);
661 }
662
663 /*
664 * btrfs_attach_transaction_barrier() - catch the running transaction
665 *
666 * It is similar to the above function, the difference is this one
667 * will wait for all the inactive transactions until they fully
668 * complete.
669 */
670 struct btrfs_trans_handle *
671 btrfs_attach_transaction_barrier(struct btrfs_root *root)
672 {
673 struct btrfs_trans_handle *trans;
674
675 trans = start_transaction(root, 0, TRANS_ATTACH,
676 BTRFS_RESERVE_NO_FLUSH, true);
677 if (trans == ERR_PTR(-ENOENT))
678 btrfs_wait_for_commit(root->fs_info, 0);
679
680 return trans;
681 }
682
683 /* wait for a transaction commit to be fully complete */
684 static noinline void wait_for_commit(struct btrfs_transaction *commit)
685 {
686 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
687 }
688
689 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
690 {
691 struct btrfs_transaction *cur_trans = NULL, *t;
692 int ret = 0;
693
694 if (transid) {
695 if (transid <= fs_info->last_trans_committed)
696 goto out;
697
698 /* find specified transaction */
699 spin_lock(&fs_info->trans_lock);
700 list_for_each_entry(t, &fs_info->trans_list, list) {
701 if (t->transid == transid) {
702 cur_trans = t;
703 refcount_inc(&cur_trans->use_count);
704 ret = 0;
705 break;
706 }
707 if (t->transid > transid) {
708 ret = 0;
709 break;
710 }
711 }
712 spin_unlock(&fs_info->trans_lock);
713
714 /*
715 * The specified transaction doesn't exist, or we
716 * raced with btrfs_commit_transaction
717 */
718 if (!cur_trans) {
719 if (transid > fs_info->last_trans_committed)
720 ret = -EINVAL;
721 goto out;
722 }
723 } else {
724 /* find newest transaction that is committing | committed */
725 spin_lock(&fs_info->trans_lock);
726 list_for_each_entry_reverse(t, &fs_info->trans_list,
727 list) {
728 if (t->state >= TRANS_STATE_COMMIT_START) {
729 if (t->state == TRANS_STATE_COMPLETED)
730 break;
731 cur_trans = t;
732 refcount_inc(&cur_trans->use_count);
733 break;
734 }
735 }
736 spin_unlock(&fs_info->trans_lock);
737 if (!cur_trans)
738 goto out; /* nothing committing|committed */
739 }
740
741 wait_for_commit(cur_trans);
742 btrfs_put_transaction(cur_trans);
743 out:
744 return ret;
745 }
746
747 void btrfs_throttle(struct btrfs_fs_info *fs_info)
748 {
749 wait_current_trans(fs_info);
750 }
751
752 static int should_end_transaction(struct btrfs_trans_handle *trans)
753 {
754 struct btrfs_fs_info *fs_info = trans->fs_info;
755
756 if (btrfs_check_space_for_delayed_refs(fs_info))
757 return 1;
758
759 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
760 }
761
762 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
763 {
764 struct btrfs_transaction *cur_trans = trans->transaction;
765
766 smp_mb();
767 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
768 cur_trans->delayed_refs.flushing)
769 return 1;
770
771 return should_end_transaction(trans);
772 }
773
774 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
775
776 {
777 struct btrfs_fs_info *fs_info = trans->fs_info;
778
779 if (!trans->block_rsv) {
780 ASSERT(!trans->bytes_reserved);
781 return;
782 }
783
784 if (!trans->bytes_reserved)
785 return;
786
787 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
788 trace_btrfs_space_reservation(fs_info, "transaction",
789 trans->transid, trans->bytes_reserved, 0);
790 btrfs_block_rsv_release(fs_info, trans->block_rsv,
791 trans->bytes_reserved);
792 trans->bytes_reserved = 0;
793 }
794
795 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
796 int throttle)
797 {
798 struct btrfs_fs_info *info = trans->fs_info;
799 struct btrfs_transaction *cur_trans = trans->transaction;
800 int lock = (trans->type != TRANS_JOIN_NOLOCK);
801 int err = 0;
802
803 if (refcount_read(&trans->use_count) > 1) {
804 refcount_dec(&trans->use_count);
805 trans->block_rsv = trans->orig_rsv;
806 return 0;
807 }
808
809 btrfs_trans_release_metadata(trans);
810 trans->block_rsv = NULL;
811
812 btrfs_create_pending_block_groups(trans);
813
814 btrfs_trans_release_chunk_metadata(trans);
815
816 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
817 if (throttle)
818 return btrfs_commit_transaction(trans);
819 else
820 wake_up_process(info->transaction_kthread);
821 }
822
823 if (trans->type & __TRANS_FREEZABLE)
824 sb_end_intwrite(info->sb);
825
826 WARN_ON(cur_trans != info->running_transaction);
827 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
828 atomic_dec(&cur_trans->num_writers);
829 extwriter_counter_dec(cur_trans, trans->type);
830
831 cond_wake_up(&cur_trans->writer_wait);
832 btrfs_put_transaction(cur_trans);
833
834 if (current->journal_info == trans)
835 current->journal_info = NULL;
836
837 if (throttle)
838 btrfs_run_delayed_iputs(info);
839
840 if (trans->aborted ||
841 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
842 wake_up_process(info->transaction_kthread);
843 err = -EIO;
844 }
845
846 kmem_cache_free(btrfs_trans_handle_cachep, trans);
847 return err;
848 }
849
850 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
851 {
852 return __btrfs_end_transaction(trans, 0);
853 }
854
855 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
856 {
857 return __btrfs_end_transaction(trans, 1);
858 }
859
860 /*
861 * when btree blocks are allocated, they have some corresponding bits set for
862 * them in one of two extent_io trees. This is used to make sure all of
863 * those extents are sent to disk but does not wait on them
864 */
865 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
866 struct extent_io_tree *dirty_pages, int mark)
867 {
868 int err = 0;
869 int werr = 0;
870 struct address_space *mapping = fs_info->btree_inode->i_mapping;
871 struct extent_state *cached_state = NULL;
872 u64 start = 0;
873 u64 end;
874
875 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
876 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
877 mark, &cached_state)) {
878 bool wait_writeback = false;
879
880 err = convert_extent_bit(dirty_pages, start, end,
881 EXTENT_NEED_WAIT,
882 mark, &cached_state);
883 /*
884 * convert_extent_bit can return -ENOMEM, which is most of the
885 * time a temporary error. So when it happens, ignore the error
886 * and wait for writeback of this range to finish - because we
887 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
888 * to __btrfs_wait_marked_extents() would not know that
889 * writeback for this range started and therefore wouldn't
890 * wait for it to finish - we don't want to commit a
891 * superblock that points to btree nodes/leafs for which
892 * writeback hasn't finished yet (and without errors).
893 * We cleanup any entries left in the io tree when committing
894 * the transaction (through extent_io_tree_release()).
895 */
896 if (err == -ENOMEM) {
897 err = 0;
898 wait_writeback = true;
899 }
900 if (!err)
901 err = filemap_fdatawrite_range(mapping, start, end);
902 if (err)
903 werr = err;
904 else if (wait_writeback)
905 werr = filemap_fdatawait_range(mapping, start, end);
906 free_extent_state(cached_state);
907 cached_state = NULL;
908 cond_resched();
909 start = end + 1;
910 }
911 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
912 return werr;
913 }
914
915 /*
916 * when btree blocks are allocated, they have some corresponding bits set for
917 * them in one of two extent_io trees. This is used to make sure all of
918 * those extents are on disk for transaction or log commit. We wait
919 * on all the pages and clear them from the dirty pages state tree
920 */
921 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
922 struct extent_io_tree *dirty_pages)
923 {
924 int err = 0;
925 int werr = 0;
926 struct address_space *mapping = fs_info->btree_inode->i_mapping;
927 struct extent_state *cached_state = NULL;
928 u64 start = 0;
929 u64 end;
930
931 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
932 EXTENT_NEED_WAIT, &cached_state)) {
933 /*
934 * Ignore -ENOMEM errors returned by clear_extent_bit().
935 * When committing the transaction, we'll remove any entries
936 * left in the io tree. For a log commit, we don't remove them
937 * after committing the log because the tree can be accessed
938 * concurrently - we do it only at transaction commit time when
939 * it's safe to do it (through extent_io_tree_release()).
940 */
941 err = clear_extent_bit(dirty_pages, start, end,
942 EXTENT_NEED_WAIT, 0, 0, &cached_state);
943 if (err == -ENOMEM)
944 err = 0;
945 if (!err)
946 err = filemap_fdatawait_range(mapping, start, end);
947 if (err)
948 werr = err;
949 free_extent_state(cached_state);
950 cached_state = NULL;
951 cond_resched();
952 start = end + 1;
953 }
954 if (err)
955 werr = err;
956 return werr;
957 }
958
959 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
960 struct extent_io_tree *dirty_pages)
961 {
962 bool errors = false;
963 int err;
964
965 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
966 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
967 errors = true;
968
969 if (errors && !err)
970 err = -EIO;
971 return err;
972 }
973
974 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
975 {
976 struct btrfs_fs_info *fs_info = log_root->fs_info;
977 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
978 bool errors = false;
979 int err;
980
981 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
982
983 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
984 if ((mark & EXTENT_DIRTY) &&
985 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
986 errors = true;
987
988 if ((mark & EXTENT_NEW) &&
989 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
990 errors = true;
991
992 if (errors && !err)
993 err = -EIO;
994 return err;
995 }
996
997 /*
998 * When btree blocks are allocated the corresponding extents are marked dirty.
999 * This function ensures such extents are persisted on disk for transaction or
1000 * log commit.
1001 *
1002 * @trans: transaction whose dirty pages we'd like to write
1003 */
1004 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1005 {
1006 int ret;
1007 int ret2;
1008 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1009 struct btrfs_fs_info *fs_info = trans->fs_info;
1010 struct blk_plug plug;
1011
1012 blk_start_plug(&plug);
1013 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1014 blk_finish_plug(&plug);
1015 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1016
1017 extent_io_tree_release(&trans->transaction->dirty_pages);
1018
1019 if (ret)
1020 return ret;
1021 else if (ret2)
1022 return ret2;
1023 else
1024 return 0;
1025 }
1026
1027 /*
1028 * this is used to update the root pointer in the tree of tree roots.
1029 *
1030 * But, in the case of the extent allocation tree, updating the root
1031 * pointer may allocate blocks which may change the root of the extent
1032 * allocation tree.
1033 *
1034 * So, this loops and repeats and makes sure the cowonly root didn't
1035 * change while the root pointer was being updated in the metadata.
1036 */
1037 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1038 struct btrfs_root *root)
1039 {
1040 int ret;
1041 u64 old_root_bytenr;
1042 u64 old_root_used;
1043 struct btrfs_fs_info *fs_info = root->fs_info;
1044 struct btrfs_root *tree_root = fs_info->tree_root;
1045
1046 old_root_used = btrfs_root_used(&root->root_item);
1047
1048 while (1) {
1049 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1050 if (old_root_bytenr == root->node->start &&
1051 old_root_used == btrfs_root_used(&root->root_item))
1052 break;
1053
1054 btrfs_set_root_node(&root->root_item, root->node);
1055 ret = btrfs_update_root(trans, tree_root,
1056 &root->root_key,
1057 &root->root_item);
1058 if (ret)
1059 return ret;
1060
1061 old_root_used = btrfs_root_used(&root->root_item);
1062 }
1063
1064 return 0;
1065 }
1066
1067 /*
1068 * update all the cowonly tree roots on disk
1069 *
1070 * The error handling in this function may not be obvious. Any of the
1071 * failures will cause the file system to go offline. We still need
1072 * to clean up the delayed refs.
1073 */
1074 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1075 {
1076 struct btrfs_fs_info *fs_info = trans->fs_info;
1077 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1078 struct list_head *io_bgs = &trans->transaction->io_bgs;
1079 struct list_head *next;
1080 struct extent_buffer *eb;
1081 int ret;
1082
1083 eb = btrfs_lock_root_node(fs_info->tree_root);
1084 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1085 0, &eb);
1086 btrfs_tree_unlock(eb);
1087 free_extent_buffer(eb);
1088
1089 if (ret)
1090 return ret;
1091
1092 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1093 if (ret)
1094 return ret;
1095
1096 ret = btrfs_run_dev_stats(trans);
1097 if (ret)
1098 return ret;
1099 ret = btrfs_run_dev_replace(trans);
1100 if (ret)
1101 return ret;
1102 ret = btrfs_run_qgroups(trans);
1103 if (ret)
1104 return ret;
1105
1106 ret = btrfs_setup_space_cache(trans);
1107 if (ret)
1108 return ret;
1109
1110 /* run_qgroups might have added some more refs */
1111 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1112 if (ret)
1113 return ret;
1114 again:
1115 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1116 struct btrfs_root *root;
1117 next = fs_info->dirty_cowonly_roots.next;
1118 list_del_init(next);
1119 root = list_entry(next, struct btrfs_root, dirty_list);
1120 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1121
1122 if (root != fs_info->extent_root)
1123 list_add_tail(&root->dirty_list,
1124 &trans->transaction->switch_commits);
1125 ret = update_cowonly_root(trans, root);
1126 if (ret)
1127 return ret;
1128 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1129 if (ret)
1130 return ret;
1131 }
1132
1133 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1134 ret = btrfs_write_dirty_block_groups(trans);
1135 if (ret)
1136 return ret;
1137 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1138 if (ret)
1139 return ret;
1140 }
1141
1142 if (!list_empty(&fs_info->dirty_cowonly_roots))
1143 goto again;
1144
1145 list_add_tail(&fs_info->extent_root->dirty_list,
1146 &trans->transaction->switch_commits);
1147
1148 /* Update dev-replace pointer once everything is committed */
1149 fs_info->dev_replace.committed_cursor_left =
1150 fs_info->dev_replace.cursor_left_last_write_of_item;
1151
1152 return 0;
1153 }
1154
1155 /*
1156 * dead roots are old snapshots that need to be deleted. This allocates
1157 * a dirty root struct and adds it into the list of dead roots that need to
1158 * be deleted
1159 */
1160 void btrfs_add_dead_root(struct btrfs_root *root)
1161 {
1162 struct btrfs_fs_info *fs_info = root->fs_info;
1163
1164 spin_lock(&fs_info->trans_lock);
1165 if (list_empty(&root->root_list))
1166 list_add_tail(&root->root_list, &fs_info->dead_roots);
1167 spin_unlock(&fs_info->trans_lock);
1168 }
1169
1170 /*
1171 * update all the cowonly tree roots on disk
1172 */
1173 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1174 {
1175 struct btrfs_fs_info *fs_info = trans->fs_info;
1176 struct btrfs_root *gang[8];
1177 int i;
1178 int ret;
1179 int err = 0;
1180
1181 spin_lock(&fs_info->fs_roots_radix_lock);
1182 while (1) {
1183 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1184 (void **)gang, 0,
1185 ARRAY_SIZE(gang),
1186 BTRFS_ROOT_TRANS_TAG);
1187 if (ret == 0)
1188 break;
1189 for (i = 0; i < ret; i++) {
1190 struct btrfs_root *root = gang[i];
1191 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1192 (unsigned long)root->root_key.objectid,
1193 BTRFS_ROOT_TRANS_TAG);
1194 spin_unlock(&fs_info->fs_roots_radix_lock);
1195
1196 btrfs_free_log(trans, root);
1197 btrfs_update_reloc_root(trans, root);
1198
1199 btrfs_save_ino_cache(root, trans);
1200
1201 /* see comments in should_cow_block() */
1202 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1203 smp_mb__after_atomic();
1204
1205 if (root->commit_root != root->node) {
1206 list_add_tail(&root->dirty_list,
1207 &trans->transaction->switch_commits);
1208 btrfs_set_root_node(&root->root_item,
1209 root->node);
1210 }
1211
1212 err = btrfs_update_root(trans, fs_info->tree_root,
1213 &root->root_key,
1214 &root->root_item);
1215 spin_lock(&fs_info->fs_roots_radix_lock);
1216 if (err)
1217 break;
1218 btrfs_qgroup_free_meta_all_pertrans(root);
1219 }
1220 }
1221 spin_unlock(&fs_info->fs_roots_radix_lock);
1222 return err;
1223 }
1224
1225 /*
1226 * defrag a given btree.
1227 * Every leaf in the btree is read and defragged.
1228 */
1229 int btrfs_defrag_root(struct btrfs_root *root)
1230 {
1231 struct btrfs_fs_info *info = root->fs_info;
1232 struct btrfs_trans_handle *trans;
1233 int ret;
1234
1235 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1236 return 0;
1237
1238 while (1) {
1239 trans = btrfs_start_transaction(root, 0);
1240 if (IS_ERR(trans))
1241 return PTR_ERR(trans);
1242
1243 ret = btrfs_defrag_leaves(trans, root);
1244
1245 btrfs_end_transaction(trans);
1246 btrfs_btree_balance_dirty(info);
1247 cond_resched();
1248
1249 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1250 break;
1251
1252 if (btrfs_defrag_cancelled(info)) {
1253 btrfs_debug(info, "defrag_root cancelled");
1254 ret = -EAGAIN;
1255 break;
1256 }
1257 }
1258 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1259 return ret;
1260 }
1261
1262 /*
1263 * Do all special snapshot related qgroup dirty hack.
1264 *
1265 * Will do all needed qgroup inherit and dirty hack like switch commit
1266 * roots inside one transaction and write all btree into disk, to make
1267 * qgroup works.
1268 */
1269 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1270 struct btrfs_root *src,
1271 struct btrfs_root *parent,
1272 struct btrfs_qgroup_inherit *inherit,
1273 u64 dst_objectid)
1274 {
1275 struct btrfs_fs_info *fs_info = src->fs_info;
1276 int ret;
1277
1278 /*
1279 * Save some performance in the case that qgroups are not
1280 * enabled. If this check races with the ioctl, rescan will
1281 * kick in anyway.
1282 */
1283 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1284 return 0;
1285
1286 /*
1287 * Ensure dirty @src will be committed. Or, after coming
1288 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1289 * recorded root will never be updated again, causing an outdated root
1290 * item.
1291 */
1292 record_root_in_trans(trans, src, 1);
1293
1294 /*
1295 * We are going to commit transaction, see btrfs_commit_transaction()
1296 * comment for reason locking tree_log_mutex
1297 */
1298 mutex_lock(&fs_info->tree_log_mutex);
1299
1300 ret = commit_fs_roots(trans);
1301 if (ret)
1302 goto out;
1303 ret = btrfs_qgroup_account_extents(trans);
1304 if (ret < 0)
1305 goto out;
1306
1307 /* Now qgroup are all updated, we can inherit it to new qgroups */
1308 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1309 inherit);
1310 if (ret < 0)
1311 goto out;
1312
1313 /*
1314 * Now we do a simplified commit transaction, which will:
1315 * 1) commit all subvolume and extent tree
1316 * To ensure all subvolume and extent tree have a valid
1317 * commit_root to accounting later insert_dir_item()
1318 * 2) write all btree blocks onto disk
1319 * This is to make sure later btree modification will be cowed
1320 * Or commit_root can be populated and cause wrong qgroup numbers
1321 * In this simplified commit, we don't really care about other trees
1322 * like chunk and root tree, as they won't affect qgroup.
1323 * And we don't write super to avoid half committed status.
1324 */
1325 ret = commit_cowonly_roots(trans);
1326 if (ret)
1327 goto out;
1328 switch_commit_roots(trans->transaction);
1329 ret = btrfs_write_and_wait_transaction(trans);
1330 if (ret)
1331 btrfs_handle_fs_error(fs_info, ret,
1332 "Error while writing out transaction for qgroup");
1333
1334 out:
1335 mutex_unlock(&fs_info->tree_log_mutex);
1336
1337 /*
1338 * Force parent root to be updated, as we recorded it before so its
1339 * last_trans == cur_transid.
1340 * Or it won't be committed again onto disk after later
1341 * insert_dir_item()
1342 */
1343 if (!ret)
1344 record_root_in_trans(trans, parent, 1);
1345 return ret;
1346 }
1347
1348 /*
1349 * new snapshots need to be created at a very specific time in the
1350 * transaction commit. This does the actual creation.
1351 *
1352 * Note:
1353 * If the error which may affect the commitment of the current transaction
1354 * happens, we should return the error number. If the error which just affect
1355 * the creation of the pending snapshots, just return 0.
1356 */
1357 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1358 struct btrfs_pending_snapshot *pending)
1359 {
1360
1361 struct btrfs_fs_info *fs_info = trans->fs_info;
1362 struct btrfs_key key;
1363 struct btrfs_root_item *new_root_item;
1364 struct btrfs_root *tree_root = fs_info->tree_root;
1365 struct btrfs_root *root = pending->root;
1366 struct btrfs_root *parent_root;
1367 struct btrfs_block_rsv *rsv;
1368 struct inode *parent_inode;
1369 struct btrfs_path *path;
1370 struct btrfs_dir_item *dir_item;
1371 struct dentry *dentry;
1372 struct extent_buffer *tmp;
1373 struct extent_buffer *old;
1374 struct timespec64 cur_time;
1375 int ret = 0;
1376 u64 to_reserve = 0;
1377 u64 index = 0;
1378 u64 objectid;
1379 u64 root_flags;
1380 uuid_le new_uuid;
1381
1382 ASSERT(pending->path);
1383 path = pending->path;
1384
1385 ASSERT(pending->root_item);
1386 new_root_item = pending->root_item;
1387
1388 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1389 if (pending->error)
1390 goto no_free_objectid;
1391
1392 /*
1393 * Make qgroup to skip current new snapshot's qgroupid, as it is
1394 * accounted by later btrfs_qgroup_inherit().
1395 */
1396 btrfs_set_skip_qgroup(trans, objectid);
1397
1398 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1399
1400 if (to_reserve > 0) {
1401 pending->error = btrfs_block_rsv_add(root,
1402 &pending->block_rsv,
1403 to_reserve,
1404 BTRFS_RESERVE_NO_FLUSH);
1405 if (pending->error)
1406 goto clear_skip_qgroup;
1407 }
1408
1409 key.objectid = objectid;
1410 key.offset = (u64)-1;
1411 key.type = BTRFS_ROOT_ITEM_KEY;
1412
1413 rsv = trans->block_rsv;
1414 trans->block_rsv = &pending->block_rsv;
1415 trans->bytes_reserved = trans->block_rsv->reserved;
1416 trace_btrfs_space_reservation(fs_info, "transaction",
1417 trans->transid,
1418 trans->bytes_reserved, 1);
1419 dentry = pending->dentry;
1420 parent_inode = pending->dir;
1421 parent_root = BTRFS_I(parent_inode)->root;
1422 record_root_in_trans(trans, parent_root, 0);
1423
1424 cur_time = current_time(parent_inode);
1425
1426 /*
1427 * insert the directory item
1428 */
1429 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1430 BUG_ON(ret); /* -ENOMEM */
1431
1432 /* check if there is a file/dir which has the same name. */
1433 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1434 btrfs_ino(BTRFS_I(parent_inode)),
1435 dentry->d_name.name,
1436 dentry->d_name.len, 0);
1437 if (dir_item != NULL && !IS_ERR(dir_item)) {
1438 pending->error = -EEXIST;
1439 goto dir_item_existed;
1440 } else if (IS_ERR(dir_item)) {
1441 ret = PTR_ERR(dir_item);
1442 btrfs_abort_transaction(trans, ret);
1443 goto fail;
1444 }
1445 btrfs_release_path(path);
1446
1447 /*
1448 * pull in the delayed directory update
1449 * and the delayed inode item
1450 * otherwise we corrupt the FS during
1451 * snapshot
1452 */
1453 ret = btrfs_run_delayed_items(trans);
1454 if (ret) { /* Transaction aborted */
1455 btrfs_abort_transaction(trans, ret);
1456 goto fail;
1457 }
1458
1459 record_root_in_trans(trans, root, 0);
1460 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1461 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1462 btrfs_check_and_init_root_item(new_root_item);
1463
1464 root_flags = btrfs_root_flags(new_root_item);
1465 if (pending->readonly)
1466 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1467 else
1468 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1469 btrfs_set_root_flags(new_root_item, root_flags);
1470
1471 btrfs_set_root_generation_v2(new_root_item,
1472 trans->transid);
1473 uuid_le_gen(&new_uuid);
1474 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1475 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1476 BTRFS_UUID_SIZE);
1477 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1478 memset(new_root_item->received_uuid, 0,
1479 sizeof(new_root_item->received_uuid));
1480 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1481 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1482 btrfs_set_root_stransid(new_root_item, 0);
1483 btrfs_set_root_rtransid(new_root_item, 0);
1484 }
1485 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1486 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1487 btrfs_set_root_otransid(new_root_item, trans->transid);
1488
1489 old = btrfs_lock_root_node(root);
1490 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1491 if (ret) {
1492 btrfs_tree_unlock(old);
1493 free_extent_buffer(old);
1494 btrfs_abort_transaction(trans, ret);
1495 goto fail;
1496 }
1497
1498 btrfs_set_lock_blocking_write(old);
1499
1500 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1501 /* clean up in any case */
1502 btrfs_tree_unlock(old);
1503 free_extent_buffer(old);
1504 if (ret) {
1505 btrfs_abort_transaction(trans, ret);
1506 goto fail;
1507 }
1508 /* see comments in should_cow_block() */
1509 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1510 smp_wmb();
1511
1512 btrfs_set_root_node(new_root_item, tmp);
1513 /* record when the snapshot was created in key.offset */
1514 key.offset = trans->transid;
1515 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1516 btrfs_tree_unlock(tmp);
1517 free_extent_buffer(tmp);
1518 if (ret) {
1519 btrfs_abort_transaction(trans, ret);
1520 goto fail;
1521 }
1522
1523 /*
1524 * insert root back/forward references
1525 */
1526 ret = btrfs_add_root_ref(trans, objectid,
1527 parent_root->root_key.objectid,
1528 btrfs_ino(BTRFS_I(parent_inode)), index,
1529 dentry->d_name.name, dentry->d_name.len);
1530 if (ret) {
1531 btrfs_abort_transaction(trans, ret);
1532 goto fail;
1533 }
1534
1535 key.offset = (u64)-1;
1536 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1537 if (IS_ERR(pending->snap)) {
1538 ret = PTR_ERR(pending->snap);
1539 btrfs_abort_transaction(trans, ret);
1540 goto fail;
1541 }
1542
1543 ret = btrfs_reloc_post_snapshot(trans, pending);
1544 if (ret) {
1545 btrfs_abort_transaction(trans, ret);
1546 goto fail;
1547 }
1548
1549 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1550 if (ret) {
1551 btrfs_abort_transaction(trans, ret);
1552 goto fail;
1553 }
1554
1555 /*
1556 * Do special qgroup accounting for snapshot, as we do some qgroup
1557 * snapshot hack to do fast snapshot.
1558 * To co-operate with that hack, we do hack again.
1559 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1560 */
1561 ret = qgroup_account_snapshot(trans, root, parent_root,
1562 pending->inherit, objectid);
1563 if (ret < 0)
1564 goto fail;
1565
1566 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1567 dentry->d_name.len, BTRFS_I(parent_inode),
1568 &key, BTRFS_FT_DIR, index);
1569 /* We have check then name at the beginning, so it is impossible. */
1570 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1571 if (ret) {
1572 btrfs_abort_transaction(trans, ret);
1573 goto fail;
1574 }
1575
1576 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1577 dentry->d_name.len * 2);
1578 parent_inode->i_mtime = parent_inode->i_ctime =
1579 current_time(parent_inode);
1580 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1581 if (ret) {
1582 btrfs_abort_transaction(trans, ret);
1583 goto fail;
1584 }
1585 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1586 objectid);
1587 if (ret) {
1588 btrfs_abort_transaction(trans, ret);
1589 goto fail;
1590 }
1591 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1592 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1593 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1594 objectid);
1595 if (ret && ret != -EEXIST) {
1596 btrfs_abort_transaction(trans, ret);
1597 goto fail;
1598 }
1599 }
1600
1601 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1602 if (ret) {
1603 btrfs_abort_transaction(trans, ret);
1604 goto fail;
1605 }
1606
1607 fail:
1608 pending->error = ret;
1609 dir_item_existed:
1610 trans->block_rsv = rsv;
1611 trans->bytes_reserved = 0;
1612 clear_skip_qgroup:
1613 btrfs_clear_skip_qgroup(trans);
1614 no_free_objectid:
1615 kfree(new_root_item);
1616 pending->root_item = NULL;
1617 btrfs_free_path(path);
1618 pending->path = NULL;
1619
1620 return ret;
1621 }
1622
1623 /*
1624 * create all the snapshots we've scheduled for creation
1625 */
1626 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1627 {
1628 struct btrfs_pending_snapshot *pending, *next;
1629 struct list_head *head = &trans->transaction->pending_snapshots;
1630 int ret = 0;
1631
1632 list_for_each_entry_safe(pending, next, head, list) {
1633 list_del(&pending->list);
1634 ret = create_pending_snapshot(trans, pending);
1635 if (ret)
1636 break;
1637 }
1638 return ret;
1639 }
1640
1641 static void update_super_roots(struct btrfs_fs_info *fs_info)
1642 {
1643 struct btrfs_root_item *root_item;
1644 struct btrfs_super_block *super;
1645
1646 super = fs_info->super_copy;
1647
1648 root_item = &fs_info->chunk_root->root_item;
1649 super->chunk_root = root_item->bytenr;
1650 super->chunk_root_generation = root_item->generation;
1651 super->chunk_root_level = root_item->level;
1652
1653 root_item = &fs_info->tree_root->root_item;
1654 super->root = root_item->bytenr;
1655 super->generation = root_item->generation;
1656 super->root_level = root_item->level;
1657 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1658 super->cache_generation = root_item->generation;
1659 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1660 super->uuid_tree_generation = root_item->generation;
1661 }
1662
1663 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1664 {
1665 struct btrfs_transaction *trans;
1666 int ret = 0;
1667
1668 spin_lock(&info->trans_lock);
1669 trans = info->running_transaction;
1670 if (trans)
1671 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1672 spin_unlock(&info->trans_lock);
1673 return ret;
1674 }
1675
1676 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1677 {
1678 struct btrfs_transaction *trans;
1679 int ret = 0;
1680
1681 spin_lock(&info->trans_lock);
1682 trans = info->running_transaction;
1683 if (trans)
1684 ret = is_transaction_blocked(trans);
1685 spin_unlock(&info->trans_lock);
1686 return ret;
1687 }
1688
1689 /*
1690 * wait for the current transaction commit to start and block subsequent
1691 * transaction joins
1692 */
1693 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1694 struct btrfs_transaction *trans)
1695 {
1696 wait_event(fs_info->transaction_blocked_wait,
1697 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1698 }
1699
1700 /*
1701 * wait for the current transaction to start and then become unblocked.
1702 * caller holds ref.
1703 */
1704 static void wait_current_trans_commit_start_and_unblock(
1705 struct btrfs_fs_info *fs_info,
1706 struct btrfs_transaction *trans)
1707 {
1708 wait_event(fs_info->transaction_wait,
1709 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1710 }
1711
1712 /*
1713 * commit transactions asynchronously. once btrfs_commit_transaction_async
1714 * returns, any subsequent transaction will not be allowed to join.
1715 */
1716 struct btrfs_async_commit {
1717 struct btrfs_trans_handle *newtrans;
1718 struct work_struct work;
1719 };
1720
1721 static void do_async_commit(struct work_struct *work)
1722 {
1723 struct btrfs_async_commit *ac =
1724 container_of(work, struct btrfs_async_commit, work);
1725
1726 /*
1727 * We've got freeze protection passed with the transaction.
1728 * Tell lockdep about it.
1729 */
1730 if (ac->newtrans->type & __TRANS_FREEZABLE)
1731 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1732
1733 current->journal_info = ac->newtrans;
1734
1735 btrfs_commit_transaction(ac->newtrans);
1736 kfree(ac);
1737 }
1738
1739 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1740 int wait_for_unblock)
1741 {
1742 struct btrfs_fs_info *fs_info = trans->fs_info;
1743 struct btrfs_async_commit *ac;
1744 struct btrfs_transaction *cur_trans;
1745
1746 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1747 if (!ac)
1748 return -ENOMEM;
1749
1750 INIT_WORK(&ac->work, do_async_commit);
1751 ac->newtrans = btrfs_join_transaction(trans->root);
1752 if (IS_ERR(ac->newtrans)) {
1753 int err = PTR_ERR(ac->newtrans);
1754 kfree(ac);
1755 return err;
1756 }
1757
1758 /* take transaction reference */
1759 cur_trans = trans->transaction;
1760 refcount_inc(&cur_trans->use_count);
1761
1762 btrfs_end_transaction(trans);
1763
1764 /*
1765 * Tell lockdep we've released the freeze rwsem, since the
1766 * async commit thread will be the one to unlock it.
1767 */
1768 if (ac->newtrans->type & __TRANS_FREEZABLE)
1769 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1770
1771 schedule_work(&ac->work);
1772
1773 /* wait for transaction to start and unblock */
1774 if (wait_for_unblock)
1775 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1776 else
1777 wait_current_trans_commit_start(fs_info, cur_trans);
1778
1779 if (current->journal_info == trans)
1780 current->journal_info = NULL;
1781
1782 btrfs_put_transaction(cur_trans);
1783 return 0;
1784 }
1785
1786
1787 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1788 {
1789 struct btrfs_fs_info *fs_info = trans->fs_info;
1790 struct btrfs_transaction *cur_trans = trans->transaction;
1791
1792 WARN_ON(refcount_read(&trans->use_count) > 1);
1793
1794 btrfs_abort_transaction(trans, err);
1795
1796 spin_lock(&fs_info->trans_lock);
1797
1798 /*
1799 * If the transaction is removed from the list, it means this
1800 * transaction has been committed successfully, so it is impossible
1801 * to call the cleanup function.
1802 */
1803 BUG_ON(list_empty(&cur_trans->list));
1804
1805 list_del_init(&cur_trans->list);
1806 if (cur_trans == fs_info->running_transaction) {
1807 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1808 spin_unlock(&fs_info->trans_lock);
1809 wait_event(cur_trans->writer_wait,
1810 atomic_read(&cur_trans->num_writers) == 1);
1811
1812 spin_lock(&fs_info->trans_lock);
1813 }
1814 spin_unlock(&fs_info->trans_lock);
1815
1816 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1817
1818 spin_lock(&fs_info->trans_lock);
1819 if (cur_trans == fs_info->running_transaction)
1820 fs_info->running_transaction = NULL;
1821 spin_unlock(&fs_info->trans_lock);
1822
1823 if (trans->type & __TRANS_FREEZABLE)
1824 sb_end_intwrite(fs_info->sb);
1825 btrfs_put_transaction(cur_trans);
1826 btrfs_put_transaction(cur_trans);
1827
1828 trace_btrfs_transaction_commit(trans->root);
1829
1830 if (current->journal_info == trans)
1831 current->journal_info = NULL;
1832 btrfs_scrub_cancel(fs_info);
1833
1834 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1835 }
1836
1837 /*
1838 * Release reserved delayed ref space of all pending block groups of the
1839 * transaction and remove them from the list
1840 */
1841 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1842 {
1843 struct btrfs_fs_info *fs_info = trans->fs_info;
1844 struct btrfs_block_group_cache *block_group, *tmp;
1845
1846 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1847 btrfs_delayed_refs_rsv_release(fs_info, 1);
1848 list_del_init(&block_group->bg_list);
1849 }
1850 }
1851
1852 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1853 {
1854 struct btrfs_fs_info *fs_info = trans->fs_info;
1855
1856 /*
1857 * We use writeback_inodes_sb here because if we used
1858 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1859 * Currently are holding the fs freeze lock, if we do an async flush
1860 * we'll do btrfs_join_transaction() and deadlock because we need to
1861 * wait for the fs freeze lock. Using the direct flushing we benefit
1862 * from already being in a transaction and our join_transaction doesn't
1863 * have to re-take the fs freeze lock.
1864 */
1865 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1866 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1867 } else {
1868 struct btrfs_pending_snapshot *pending;
1869 struct list_head *head = &trans->transaction->pending_snapshots;
1870
1871 /*
1872 * Flush dellaloc for any root that is going to be snapshotted.
1873 * This is done to avoid a corrupted version of files, in the
1874 * snapshots, that had both buffered and direct IO writes (even
1875 * if they were done sequentially) due to an unordered update of
1876 * the inode's size on disk.
1877 */
1878 list_for_each_entry(pending, head, list) {
1879 int ret;
1880
1881 ret = btrfs_start_delalloc_snapshot(pending->root);
1882 if (ret)
1883 return ret;
1884 }
1885 }
1886 return 0;
1887 }
1888
1889 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1890 {
1891 struct btrfs_fs_info *fs_info = trans->fs_info;
1892
1893 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1894 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1895 } else {
1896 struct btrfs_pending_snapshot *pending;
1897 struct list_head *head = &trans->transaction->pending_snapshots;
1898
1899 /*
1900 * Wait for any dellaloc that we started previously for the roots
1901 * that are going to be snapshotted. This is to avoid a corrupted
1902 * version of files in the snapshots that had both buffered and
1903 * direct IO writes (even if they were done sequentially).
1904 */
1905 list_for_each_entry(pending, head, list)
1906 btrfs_wait_ordered_extents(pending->root,
1907 U64_MAX, 0, U64_MAX);
1908 }
1909 }
1910
1911 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1912 {
1913 struct btrfs_fs_info *fs_info = trans->fs_info;
1914 struct btrfs_transaction *cur_trans = trans->transaction;
1915 struct btrfs_transaction *prev_trans = NULL;
1916 int ret;
1917
1918 /* Stop the commit early if ->aborted is set */
1919 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1920 ret = cur_trans->aborted;
1921 btrfs_end_transaction(trans);
1922 return ret;
1923 }
1924
1925 btrfs_trans_release_metadata(trans);
1926 trans->block_rsv = NULL;
1927
1928 /* make a pass through all the delayed refs we have so far
1929 * any runnings procs may add more while we are here
1930 */
1931 ret = btrfs_run_delayed_refs(trans, 0);
1932 if (ret) {
1933 btrfs_end_transaction(trans);
1934 return ret;
1935 }
1936
1937 cur_trans = trans->transaction;
1938
1939 /*
1940 * set the flushing flag so procs in this transaction have to
1941 * start sending their work down.
1942 */
1943 cur_trans->delayed_refs.flushing = 1;
1944 smp_wmb();
1945
1946 btrfs_create_pending_block_groups(trans);
1947
1948 ret = btrfs_run_delayed_refs(trans, 0);
1949 if (ret) {
1950 btrfs_end_transaction(trans);
1951 return ret;
1952 }
1953
1954 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1955 int run_it = 0;
1956
1957 /* this mutex is also taken before trying to set
1958 * block groups readonly. We need to make sure
1959 * that nobody has set a block group readonly
1960 * after a extents from that block group have been
1961 * allocated for cache files. btrfs_set_block_group_ro
1962 * will wait for the transaction to commit if it
1963 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1964 *
1965 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1966 * only one process starts all the block group IO. It wouldn't
1967 * hurt to have more than one go through, but there's no
1968 * real advantage to it either.
1969 */
1970 mutex_lock(&fs_info->ro_block_group_mutex);
1971 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1972 &cur_trans->flags))
1973 run_it = 1;
1974 mutex_unlock(&fs_info->ro_block_group_mutex);
1975
1976 if (run_it) {
1977 ret = btrfs_start_dirty_block_groups(trans);
1978 if (ret) {
1979 btrfs_end_transaction(trans);
1980 return ret;
1981 }
1982 }
1983 }
1984
1985 spin_lock(&fs_info->trans_lock);
1986 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1987 spin_unlock(&fs_info->trans_lock);
1988 refcount_inc(&cur_trans->use_count);
1989 ret = btrfs_end_transaction(trans);
1990
1991 wait_for_commit(cur_trans);
1992
1993 if (unlikely(cur_trans->aborted))
1994 ret = cur_trans->aborted;
1995
1996 btrfs_put_transaction(cur_trans);
1997
1998 return ret;
1999 }
2000
2001 cur_trans->state = TRANS_STATE_COMMIT_START;
2002 wake_up(&fs_info->transaction_blocked_wait);
2003
2004 if (cur_trans->list.prev != &fs_info->trans_list) {
2005 prev_trans = list_entry(cur_trans->list.prev,
2006 struct btrfs_transaction, list);
2007 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2008 refcount_inc(&prev_trans->use_count);
2009 spin_unlock(&fs_info->trans_lock);
2010
2011 wait_for_commit(prev_trans);
2012 ret = prev_trans->aborted;
2013
2014 btrfs_put_transaction(prev_trans);
2015 if (ret)
2016 goto cleanup_transaction;
2017 } else {
2018 spin_unlock(&fs_info->trans_lock);
2019 }
2020 } else {
2021 spin_unlock(&fs_info->trans_lock);
2022 }
2023
2024 extwriter_counter_dec(cur_trans, trans->type);
2025
2026 ret = btrfs_start_delalloc_flush(trans);
2027 if (ret)
2028 goto cleanup_transaction;
2029
2030 ret = btrfs_run_delayed_items(trans);
2031 if (ret)
2032 goto cleanup_transaction;
2033
2034 wait_event(cur_trans->writer_wait,
2035 extwriter_counter_read(cur_trans) == 0);
2036
2037 /* some pending stuffs might be added after the previous flush. */
2038 ret = btrfs_run_delayed_items(trans);
2039 if (ret)
2040 goto cleanup_transaction;
2041
2042 btrfs_wait_delalloc_flush(trans);
2043
2044 btrfs_scrub_pause(fs_info);
2045 /*
2046 * Ok now we need to make sure to block out any other joins while we
2047 * commit the transaction. We could have started a join before setting
2048 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2049 */
2050 spin_lock(&fs_info->trans_lock);
2051 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2052 spin_unlock(&fs_info->trans_lock);
2053 wait_event(cur_trans->writer_wait,
2054 atomic_read(&cur_trans->num_writers) == 1);
2055
2056 /* ->aborted might be set after the previous check, so check it */
2057 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2058 ret = cur_trans->aborted;
2059 goto scrub_continue;
2060 }
2061 /*
2062 * the reloc mutex makes sure that we stop
2063 * the balancing code from coming in and moving
2064 * extents around in the middle of the commit
2065 */
2066 mutex_lock(&fs_info->reloc_mutex);
2067
2068 /*
2069 * We needn't worry about the delayed items because we will
2070 * deal with them in create_pending_snapshot(), which is the
2071 * core function of the snapshot creation.
2072 */
2073 ret = create_pending_snapshots(trans);
2074 if (ret) {
2075 mutex_unlock(&fs_info->reloc_mutex);
2076 goto scrub_continue;
2077 }
2078
2079 /*
2080 * We insert the dir indexes of the snapshots and update the inode
2081 * of the snapshots' parents after the snapshot creation, so there
2082 * are some delayed items which are not dealt with. Now deal with
2083 * them.
2084 *
2085 * We needn't worry that this operation will corrupt the snapshots,
2086 * because all the tree which are snapshoted will be forced to COW
2087 * the nodes and leaves.
2088 */
2089 ret = btrfs_run_delayed_items(trans);
2090 if (ret) {
2091 mutex_unlock(&fs_info->reloc_mutex);
2092 goto scrub_continue;
2093 }
2094
2095 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2096 if (ret) {
2097 mutex_unlock(&fs_info->reloc_mutex);
2098 goto scrub_continue;
2099 }
2100
2101 /*
2102 * make sure none of the code above managed to slip in a
2103 * delayed item
2104 */
2105 btrfs_assert_delayed_root_empty(fs_info);
2106
2107 WARN_ON(cur_trans != trans->transaction);
2108
2109 /* btrfs_commit_tree_roots is responsible for getting the
2110 * various roots consistent with each other. Every pointer
2111 * in the tree of tree roots has to point to the most up to date
2112 * root for every subvolume and other tree. So, we have to keep
2113 * the tree logging code from jumping in and changing any
2114 * of the trees.
2115 *
2116 * At this point in the commit, there can't be any tree-log
2117 * writers, but a little lower down we drop the trans mutex
2118 * and let new people in. By holding the tree_log_mutex
2119 * from now until after the super is written, we avoid races
2120 * with the tree-log code.
2121 */
2122 mutex_lock(&fs_info->tree_log_mutex);
2123
2124 ret = commit_fs_roots(trans);
2125 if (ret) {
2126 mutex_unlock(&fs_info->tree_log_mutex);
2127 mutex_unlock(&fs_info->reloc_mutex);
2128 goto scrub_continue;
2129 }
2130
2131 /*
2132 * Since the transaction is done, we can apply the pending changes
2133 * before the next transaction.
2134 */
2135 btrfs_apply_pending_changes(fs_info);
2136
2137 /* commit_fs_roots gets rid of all the tree log roots, it is now
2138 * safe to free the root of tree log roots
2139 */
2140 btrfs_free_log_root_tree(trans, fs_info);
2141
2142 /*
2143 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2144 * new delayed refs. Must handle them or qgroup can be wrong.
2145 */
2146 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2147 if (ret) {
2148 mutex_unlock(&fs_info->tree_log_mutex);
2149 mutex_unlock(&fs_info->reloc_mutex);
2150 goto scrub_continue;
2151 }
2152
2153 /*
2154 * Since fs roots are all committed, we can get a quite accurate
2155 * new_roots. So let's do quota accounting.
2156 */
2157 ret = btrfs_qgroup_account_extents(trans);
2158 if (ret < 0) {
2159 mutex_unlock(&fs_info->tree_log_mutex);
2160 mutex_unlock(&fs_info->reloc_mutex);
2161 goto scrub_continue;
2162 }
2163
2164 ret = commit_cowonly_roots(trans);
2165 if (ret) {
2166 mutex_unlock(&fs_info->tree_log_mutex);
2167 mutex_unlock(&fs_info->reloc_mutex);
2168 goto scrub_continue;
2169 }
2170
2171 /*
2172 * The tasks which save the space cache and inode cache may also
2173 * update ->aborted, check it.
2174 */
2175 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2176 ret = cur_trans->aborted;
2177 mutex_unlock(&fs_info->tree_log_mutex);
2178 mutex_unlock(&fs_info->reloc_mutex);
2179 goto scrub_continue;
2180 }
2181
2182 btrfs_prepare_extent_commit(fs_info);
2183
2184 cur_trans = fs_info->running_transaction;
2185
2186 btrfs_set_root_node(&fs_info->tree_root->root_item,
2187 fs_info->tree_root->node);
2188 list_add_tail(&fs_info->tree_root->dirty_list,
2189 &cur_trans->switch_commits);
2190
2191 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2192 fs_info->chunk_root->node);
2193 list_add_tail(&fs_info->chunk_root->dirty_list,
2194 &cur_trans->switch_commits);
2195
2196 switch_commit_roots(cur_trans);
2197
2198 ASSERT(list_empty(&cur_trans->dirty_bgs));
2199 ASSERT(list_empty(&cur_trans->io_bgs));
2200 update_super_roots(fs_info);
2201
2202 btrfs_set_super_log_root(fs_info->super_copy, 0);
2203 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2204 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2205 sizeof(*fs_info->super_copy));
2206
2207 btrfs_commit_device_sizes(cur_trans);
2208
2209 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2210 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2211
2212 btrfs_trans_release_chunk_metadata(trans);
2213
2214 spin_lock(&fs_info->trans_lock);
2215 cur_trans->state = TRANS_STATE_UNBLOCKED;
2216 fs_info->running_transaction = NULL;
2217 spin_unlock(&fs_info->trans_lock);
2218 mutex_unlock(&fs_info->reloc_mutex);
2219
2220 wake_up(&fs_info->transaction_wait);
2221
2222 ret = btrfs_write_and_wait_transaction(trans);
2223 if (ret) {
2224 btrfs_handle_fs_error(fs_info, ret,
2225 "Error while writing out transaction");
2226 mutex_unlock(&fs_info->tree_log_mutex);
2227 goto scrub_continue;
2228 }
2229
2230 ret = write_all_supers(fs_info, 0);
2231 /*
2232 * the super is written, we can safely allow the tree-loggers
2233 * to go about their business
2234 */
2235 mutex_unlock(&fs_info->tree_log_mutex);
2236 if (ret)
2237 goto scrub_continue;
2238
2239 btrfs_finish_extent_commit(trans);
2240
2241 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2242 btrfs_clear_space_info_full(fs_info);
2243
2244 fs_info->last_trans_committed = cur_trans->transid;
2245 /*
2246 * We needn't acquire the lock here because there is no other task
2247 * which can change it.
2248 */
2249 cur_trans->state = TRANS_STATE_COMPLETED;
2250 wake_up(&cur_trans->commit_wait);
2251 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2252
2253 spin_lock(&fs_info->trans_lock);
2254 list_del_init(&cur_trans->list);
2255 spin_unlock(&fs_info->trans_lock);
2256
2257 btrfs_put_transaction(cur_trans);
2258 btrfs_put_transaction(cur_trans);
2259
2260 if (trans->type & __TRANS_FREEZABLE)
2261 sb_end_intwrite(fs_info->sb);
2262
2263 trace_btrfs_transaction_commit(trans->root);
2264
2265 btrfs_scrub_continue(fs_info);
2266
2267 if (current->journal_info == trans)
2268 current->journal_info = NULL;
2269
2270 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2271
2272 return ret;
2273
2274 scrub_continue:
2275 btrfs_scrub_continue(fs_info);
2276 cleanup_transaction:
2277 btrfs_trans_release_metadata(trans);
2278 btrfs_cleanup_pending_block_groups(trans);
2279 btrfs_trans_release_chunk_metadata(trans);
2280 trans->block_rsv = NULL;
2281 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2282 if (current->journal_info == trans)
2283 current->journal_info = NULL;
2284 cleanup_transaction(trans, ret);
2285
2286 return ret;
2287 }
2288
2289 /*
2290 * return < 0 if error
2291 * 0 if there are no more dead_roots at the time of call
2292 * 1 there are more to be processed, call me again
2293 *
2294 * The return value indicates there are certainly more snapshots to delete, but
2295 * if there comes a new one during processing, it may return 0. We don't mind,
2296 * because btrfs_commit_super will poke cleaner thread and it will process it a
2297 * few seconds later.
2298 */
2299 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2300 {
2301 int ret;
2302 struct btrfs_fs_info *fs_info = root->fs_info;
2303
2304 spin_lock(&fs_info->trans_lock);
2305 if (list_empty(&fs_info->dead_roots)) {
2306 spin_unlock(&fs_info->trans_lock);
2307 return 0;
2308 }
2309 root = list_first_entry(&fs_info->dead_roots,
2310 struct btrfs_root, root_list);
2311 list_del_init(&root->root_list);
2312 spin_unlock(&fs_info->trans_lock);
2313
2314 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2315
2316 btrfs_kill_all_delayed_nodes(root);
2317
2318 if (btrfs_header_backref_rev(root->node) <
2319 BTRFS_MIXED_BACKREF_REV)
2320 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2321 else
2322 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2323
2324 return (ret < 0) ? 0 : 1;
2325 }
2326
2327 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2328 {
2329 unsigned long prev;
2330 unsigned long bit;
2331
2332 prev = xchg(&fs_info->pending_changes, 0);
2333 if (!prev)
2334 return;
2335
2336 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2337 if (prev & bit)
2338 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2339 prev &= ~bit;
2340
2341 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2342 if (prev & bit)
2343 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2344 prev &= ~bit;
2345
2346 bit = 1 << BTRFS_PENDING_COMMIT;
2347 if (prev & bit)
2348 btrfs_debug(fs_info, "pending commit done");
2349 prev &= ~bit;
2350
2351 if (prev)
2352 btrfs_warn(fs_info,
2353 "unknown pending changes left 0x%lx, ignoring", prev);
2354 }