]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/transaction.c
Btrfs: kill trans_mutex
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30
31 #define BTRFS_ROOT_TRANS_TAG 0
32
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35 WARN_ON(atomic_read(&transaction->use_count) == 0);
36 if (atomic_dec_and_test(&transaction->use_count)) {
37 BUG_ON(!list_empty(&transaction->list));
38 memset(transaction, 0, sizeof(*transaction));
39 kmem_cache_free(btrfs_transaction_cachep, transaction);
40 }
41 }
42
43 static noinline void switch_commit_root(struct btrfs_root *root)
44 {
45 free_extent_buffer(root->commit_root);
46 root->commit_root = btrfs_root_node(root);
47 }
48
49 /*
50 * either allocate a new transaction or hop into the existing one
51 */
52 static noinline int join_transaction(struct btrfs_root *root, int nofail)
53 {
54 struct btrfs_transaction *cur_trans;
55
56 spin_lock(&root->fs_info->trans_lock);
57 if (root->fs_info->trans_no_join) {
58 if (!nofail) {
59 spin_unlock(&root->fs_info->trans_lock);
60 return -EBUSY;
61 }
62 }
63
64 cur_trans = root->fs_info->running_transaction;
65 if (cur_trans) {
66 atomic_inc(&cur_trans->use_count);
67 atomic_inc(&cur_trans->num_writers);
68 cur_trans->num_joined++;
69 spin_unlock(&root->fs_info->trans_lock);
70 return 0;
71 }
72 spin_unlock(&root->fs_info->trans_lock);
73
74 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
75 if (!cur_trans)
76 return -ENOMEM;
77 spin_lock(&root->fs_info->trans_lock);
78 if (root->fs_info->running_transaction) {
79 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
80 cur_trans = root->fs_info->running_transaction;
81 atomic_inc(&cur_trans->use_count);
82 atomic_inc(&cur_trans->num_writers);
83 cur_trans->num_joined++;
84 spin_unlock(&root->fs_info->trans_lock);
85 return 0;
86 }
87 atomic_set(&cur_trans->num_writers, 1);
88 cur_trans->num_joined = 0;
89 init_waitqueue_head(&cur_trans->writer_wait);
90 init_waitqueue_head(&cur_trans->commit_wait);
91 cur_trans->in_commit = 0;
92 cur_trans->blocked = 0;
93 /*
94 * One for this trans handle, one so it will live on until we
95 * commit the transaction.
96 */
97 atomic_set(&cur_trans->use_count, 2);
98 cur_trans->commit_done = 0;
99 cur_trans->start_time = get_seconds();
100
101 cur_trans->delayed_refs.root = RB_ROOT;
102 cur_trans->delayed_refs.num_entries = 0;
103 cur_trans->delayed_refs.num_heads_ready = 0;
104 cur_trans->delayed_refs.num_heads = 0;
105 cur_trans->delayed_refs.flushing = 0;
106 cur_trans->delayed_refs.run_delayed_start = 0;
107 spin_lock_init(&cur_trans->commit_lock);
108 spin_lock_init(&cur_trans->delayed_refs.lock);
109
110 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
111 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
112 extent_io_tree_init(&cur_trans->dirty_pages,
113 root->fs_info->btree_inode->i_mapping,
114 GFP_NOFS);
115 root->fs_info->generation++;
116 cur_trans->transid = root->fs_info->generation;
117 root->fs_info->running_transaction = cur_trans;
118 spin_unlock(&root->fs_info->trans_lock);
119
120 return 0;
121 }
122
123 /*
124 * this does all the record keeping required to make sure that a reference
125 * counted root is properly recorded in a given transaction. This is required
126 * to make sure the old root from before we joined the transaction is deleted
127 * when the transaction commits
128 */
129 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
130 struct btrfs_root *root)
131 {
132 if (root->ref_cows && root->last_trans < trans->transid) {
133 WARN_ON(root == root->fs_info->extent_root);
134 WARN_ON(root->commit_root != root->node);
135
136 spin_lock(&root->fs_info->fs_roots_radix_lock);
137 if (root->last_trans == trans->transid) {
138 spin_unlock(&root->fs_info->fs_roots_radix_lock);
139 return 0;
140 }
141 root->last_trans = trans->transid;
142 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
143 (unsigned long)root->root_key.objectid,
144 BTRFS_ROOT_TRANS_TAG);
145 spin_unlock(&root->fs_info->fs_roots_radix_lock);
146 btrfs_init_reloc_root(trans, root);
147 }
148 return 0;
149 }
150
151 /* wait for commit against the current transaction to become unblocked
152 * when this is done, it is safe to start a new transaction, but the current
153 * transaction might not be fully on disk.
154 */
155 static void wait_current_trans(struct btrfs_root *root)
156 {
157 struct btrfs_transaction *cur_trans;
158
159 spin_lock(&root->fs_info->trans_lock);
160 cur_trans = root->fs_info->running_transaction;
161 if (cur_trans && cur_trans->blocked) {
162 DEFINE_WAIT(wait);
163 atomic_inc(&cur_trans->use_count);
164 spin_unlock(&root->fs_info->trans_lock);
165 while (1) {
166 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
167 TASK_UNINTERRUPTIBLE);
168 if (!cur_trans->blocked)
169 break;
170 schedule();
171 }
172 finish_wait(&root->fs_info->transaction_wait, &wait);
173 put_transaction(cur_trans);
174 } else {
175 spin_unlock(&root->fs_info->trans_lock);
176 }
177 }
178
179 enum btrfs_trans_type {
180 TRANS_START,
181 TRANS_JOIN,
182 TRANS_USERSPACE,
183 TRANS_JOIN_NOLOCK,
184 };
185
186 static int may_wait_transaction(struct btrfs_root *root, int type)
187 {
188 if (root->fs_info->log_root_recovering)
189 return 0;
190
191 if (type == TRANS_USERSPACE)
192 return 1;
193
194 if (type == TRANS_START &&
195 !atomic_read(&root->fs_info->open_ioctl_trans))
196 return 1;
197
198 return 0;
199 }
200
201 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
202 u64 num_items, int type)
203 {
204 struct btrfs_trans_handle *h;
205 struct btrfs_transaction *cur_trans;
206 int retries = 0;
207 int ret;
208
209 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
210 return ERR_PTR(-EROFS);
211
212 if (current->journal_info) {
213 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
214 h = current->journal_info;
215 h->use_count++;
216 h->orig_rsv = h->block_rsv;
217 h->block_rsv = NULL;
218 goto got_it;
219 }
220 again:
221 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
222 if (!h)
223 return ERR_PTR(-ENOMEM);
224
225 if (may_wait_transaction(root, type))
226 wait_current_trans(root);
227
228 do {
229 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
230 if (ret == -EBUSY)
231 wait_current_trans(root);
232 } while (ret == -EBUSY);
233
234 if (ret < 0) {
235 kmem_cache_free(btrfs_trans_handle_cachep, h);
236 return ERR_PTR(ret);
237 }
238
239 cur_trans = root->fs_info->running_transaction;
240
241 h->transid = cur_trans->transid;
242 h->transaction = cur_trans;
243 h->blocks_used = 0;
244 h->block_group = 0;
245 h->bytes_reserved = 0;
246 h->delayed_ref_updates = 0;
247 h->use_count = 1;
248 h->block_rsv = NULL;
249 h->orig_rsv = NULL;
250
251 smp_mb();
252 if (cur_trans->blocked && may_wait_transaction(root, type)) {
253 btrfs_commit_transaction(h, root);
254 goto again;
255 }
256
257 if (num_items > 0) {
258 ret = btrfs_trans_reserve_metadata(h, root, num_items);
259 if (ret == -EAGAIN && !retries) {
260 retries++;
261 btrfs_commit_transaction(h, root);
262 goto again;
263 } else if (ret == -EAGAIN) {
264 /*
265 * We have already retried and got EAGAIN, so really we
266 * don't have space, so set ret to -ENOSPC.
267 */
268 ret = -ENOSPC;
269 }
270
271 if (ret < 0) {
272 btrfs_end_transaction(h, root);
273 return ERR_PTR(ret);
274 }
275 }
276
277 got_it:
278 btrfs_record_root_in_trans(h, root);
279
280 if (!current->journal_info && type != TRANS_USERSPACE)
281 current->journal_info = h;
282 return h;
283 }
284
285 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
286 int num_items)
287 {
288 return start_transaction(root, num_items, TRANS_START);
289 }
290 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
291 {
292 return start_transaction(root, 0, TRANS_JOIN);
293 }
294
295 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
296 {
297 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
298 }
299
300 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
301 {
302 return start_transaction(root, 0, TRANS_USERSPACE);
303 }
304
305 /* wait for a transaction commit to be fully complete */
306 static noinline int wait_for_commit(struct btrfs_root *root,
307 struct btrfs_transaction *commit)
308 {
309 DEFINE_WAIT(wait);
310 while (!commit->commit_done) {
311 prepare_to_wait(&commit->commit_wait, &wait,
312 TASK_UNINTERRUPTIBLE);
313 if (commit->commit_done)
314 break;
315 schedule();
316 }
317 finish_wait(&commit->commit_wait, &wait);
318 return 0;
319 }
320
321 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
322 {
323 struct btrfs_transaction *cur_trans = NULL, *t;
324 int ret;
325
326 ret = 0;
327 if (transid) {
328 if (transid <= root->fs_info->last_trans_committed)
329 goto out;
330
331 /* find specified transaction */
332 spin_lock(&root->fs_info->trans_lock);
333 list_for_each_entry(t, &root->fs_info->trans_list, list) {
334 if (t->transid == transid) {
335 cur_trans = t;
336 atomic_inc(&cur_trans->use_count);
337 break;
338 }
339 if (t->transid > transid)
340 break;
341 }
342 spin_unlock(&root->fs_info->trans_lock);
343 ret = -EINVAL;
344 if (!cur_trans)
345 goto out; /* bad transid */
346 } else {
347 /* find newest transaction that is committing | committed */
348 spin_lock(&root->fs_info->trans_lock);
349 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
350 list) {
351 if (t->in_commit) {
352 if (t->commit_done)
353 goto out;
354 cur_trans = t;
355 atomic_inc(&cur_trans->use_count);
356 break;
357 }
358 }
359 spin_unlock(&root->fs_info->trans_lock);
360 if (!cur_trans)
361 goto out; /* nothing committing|committed */
362 }
363
364 wait_for_commit(root, cur_trans);
365
366 put_transaction(cur_trans);
367 ret = 0;
368 out:
369 return ret;
370 }
371
372 #if 0
373 /*
374 * rate limit against the drop_snapshot code. This helps to slow down new
375 * operations if the drop_snapshot code isn't able to keep up.
376 */
377 static void throttle_on_drops(struct btrfs_root *root)
378 {
379 struct btrfs_fs_info *info = root->fs_info;
380 int harder_count = 0;
381
382 harder:
383 if (atomic_read(&info->throttles)) {
384 DEFINE_WAIT(wait);
385 int thr;
386 thr = atomic_read(&info->throttle_gen);
387
388 do {
389 prepare_to_wait(&info->transaction_throttle,
390 &wait, TASK_UNINTERRUPTIBLE);
391 if (!atomic_read(&info->throttles)) {
392 finish_wait(&info->transaction_throttle, &wait);
393 break;
394 }
395 schedule();
396 finish_wait(&info->transaction_throttle, &wait);
397 } while (thr == atomic_read(&info->throttle_gen));
398 harder_count++;
399
400 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
401 harder_count < 2)
402 goto harder;
403
404 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
405 harder_count < 10)
406 goto harder;
407
408 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
409 harder_count < 20)
410 goto harder;
411 }
412 }
413 #endif
414
415 void btrfs_throttle(struct btrfs_root *root)
416 {
417 if (!atomic_read(&root->fs_info->open_ioctl_trans))
418 wait_current_trans(root);
419 }
420
421 static int should_end_transaction(struct btrfs_trans_handle *trans,
422 struct btrfs_root *root)
423 {
424 int ret;
425 ret = btrfs_block_rsv_check(trans, root,
426 &root->fs_info->global_block_rsv, 0, 5);
427 return ret ? 1 : 0;
428 }
429
430 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
431 struct btrfs_root *root)
432 {
433 struct btrfs_transaction *cur_trans = trans->transaction;
434 int updates;
435
436 smp_mb();
437 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
438 return 1;
439
440 updates = trans->delayed_ref_updates;
441 trans->delayed_ref_updates = 0;
442 if (updates)
443 btrfs_run_delayed_refs(trans, root, updates);
444
445 return should_end_transaction(trans, root);
446 }
447
448 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
449 struct btrfs_root *root, int throttle, int lock)
450 {
451 struct btrfs_transaction *cur_trans = trans->transaction;
452 struct btrfs_fs_info *info = root->fs_info;
453 int count = 0;
454
455 if (--trans->use_count) {
456 trans->block_rsv = trans->orig_rsv;
457 return 0;
458 }
459
460 while (count < 4) {
461 unsigned long cur = trans->delayed_ref_updates;
462 trans->delayed_ref_updates = 0;
463 if (cur &&
464 trans->transaction->delayed_refs.num_heads_ready > 64) {
465 trans->delayed_ref_updates = 0;
466
467 /*
468 * do a full flush if the transaction is trying
469 * to close
470 */
471 if (trans->transaction->delayed_refs.flushing)
472 cur = 0;
473 btrfs_run_delayed_refs(trans, root, cur);
474 } else {
475 break;
476 }
477 count++;
478 }
479
480 btrfs_trans_release_metadata(trans, root);
481
482 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
483 should_end_transaction(trans, root)) {
484 trans->transaction->blocked = 1;
485 smp_wmb();
486 }
487
488 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
489 if (throttle)
490 return btrfs_commit_transaction(trans, root);
491 else
492 wake_up_process(info->transaction_kthread);
493 }
494
495 WARN_ON(cur_trans != info->running_transaction);
496 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
497 atomic_dec(&cur_trans->num_writers);
498
499 smp_mb();
500 if (waitqueue_active(&cur_trans->writer_wait))
501 wake_up(&cur_trans->writer_wait);
502 put_transaction(cur_trans);
503
504 if (current->journal_info == trans)
505 current->journal_info = NULL;
506 memset(trans, 0, sizeof(*trans));
507 kmem_cache_free(btrfs_trans_handle_cachep, trans);
508
509 if (throttle)
510 btrfs_run_delayed_iputs(root);
511
512 return 0;
513 }
514
515 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
516 struct btrfs_root *root)
517 {
518 return __btrfs_end_transaction(trans, root, 0, 1);
519 }
520
521 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
522 struct btrfs_root *root)
523 {
524 return __btrfs_end_transaction(trans, root, 1, 1);
525 }
526
527 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
528 struct btrfs_root *root)
529 {
530 return __btrfs_end_transaction(trans, root, 0, 0);
531 }
532
533 /*
534 * when btree blocks are allocated, they have some corresponding bits set for
535 * them in one of two extent_io trees. This is used to make sure all of
536 * those extents are sent to disk but does not wait on them
537 */
538 int btrfs_write_marked_extents(struct btrfs_root *root,
539 struct extent_io_tree *dirty_pages, int mark)
540 {
541 int ret;
542 int err = 0;
543 int werr = 0;
544 struct page *page;
545 struct inode *btree_inode = root->fs_info->btree_inode;
546 u64 start = 0;
547 u64 end;
548 unsigned long index;
549
550 while (1) {
551 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
552 mark);
553 if (ret)
554 break;
555 while (start <= end) {
556 cond_resched();
557
558 index = start >> PAGE_CACHE_SHIFT;
559 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
560 page = find_get_page(btree_inode->i_mapping, index);
561 if (!page)
562 continue;
563
564 btree_lock_page_hook(page);
565 if (!page->mapping) {
566 unlock_page(page);
567 page_cache_release(page);
568 continue;
569 }
570
571 if (PageWriteback(page)) {
572 if (PageDirty(page))
573 wait_on_page_writeback(page);
574 else {
575 unlock_page(page);
576 page_cache_release(page);
577 continue;
578 }
579 }
580 err = write_one_page(page, 0);
581 if (err)
582 werr = err;
583 page_cache_release(page);
584 }
585 }
586 if (err)
587 werr = err;
588 return werr;
589 }
590
591 /*
592 * when btree blocks are allocated, they have some corresponding bits set for
593 * them in one of two extent_io trees. This is used to make sure all of
594 * those extents are on disk for transaction or log commit. We wait
595 * on all the pages and clear them from the dirty pages state tree
596 */
597 int btrfs_wait_marked_extents(struct btrfs_root *root,
598 struct extent_io_tree *dirty_pages, int mark)
599 {
600 int ret;
601 int err = 0;
602 int werr = 0;
603 struct page *page;
604 struct inode *btree_inode = root->fs_info->btree_inode;
605 u64 start = 0;
606 u64 end;
607 unsigned long index;
608
609 while (1) {
610 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
611 mark);
612 if (ret)
613 break;
614
615 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
616 while (start <= end) {
617 index = start >> PAGE_CACHE_SHIFT;
618 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
619 page = find_get_page(btree_inode->i_mapping, index);
620 if (!page)
621 continue;
622 if (PageDirty(page)) {
623 btree_lock_page_hook(page);
624 wait_on_page_writeback(page);
625 err = write_one_page(page, 0);
626 if (err)
627 werr = err;
628 }
629 wait_on_page_writeback(page);
630 page_cache_release(page);
631 cond_resched();
632 }
633 }
634 if (err)
635 werr = err;
636 return werr;
637 }
638
639 /*
640 * when btree blocks are allocated, they have some corresponding bits set for
641 * them in one of two extent_io trees. This is used to make sure all of
642 * those extents are on disk for transaction or log commit
643 */
644 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
645 struct extent_io_tree *dirty_pages, int mark)
646 {
647 int ret;
648 int ret2;
649
650 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
651 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
652 return ret || ret2;
653 }
654
655 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
656 struct btrfs_root *root)
657 {
658 if (!trans || !trans->transaction) {
659 struct inode *btree_inode;
660 btree_inode = root->fs_info->btree_inode;
661 return filemap_write_and_wait(btree_inode->i_mapping);
662 }
663 return btrfs_write_and_wait_marked_extents(root,
664 &trans->transaction->dirty_pages,
665 EXTENT_DIRTY);
666 }
667
668 /*
669 * this is used to update the root pointer in the tree of tree roots.
670 *
671 * But, in the case of the extent allocation tree, updating the root
672 * pointer may allocate blocks which may change the root of the extent
673 * allocation tree.
674 *
675 * So, this loops and repeats and makes sure the cowonly root didn't
676 * change while the root pointer was being updated in the metadata.
677 */
678 static int update_cowonly_root(struct btrfs_trans_handle *trans,
679 struct btrfs_root *root)
680 {
681 int ret;
682 u64 old_root_bytenr;
683 u64 old_root_used;
684 struct btrfs_root *tree_root = root->fs_info->tree_root;
685
686 old_root_used = btrfs_root_used(&root->root_item);
687 btrfs_write_dirty_block_groups(trans, root);
688
689 while (1) {
690 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
691 if (old_root_bytenr == root->node->start &&
692 old_root_used == btrfs_root_used(&root->root_item))
693 break;
694
695 btrfs_set_root_node(&root->root_item, root->node);
696 ret = btrfs_update_root(trans, tree_root,
697 &root->root_key,
698 &root->root_item);
699 BUG_ON(ret);
700
701 old_root_used = btrfs_root_used(&root->root_item);
702 ret = btrfs_write_dirty_block_groups(trans, root);
703 BUG_ON(ret);
704 }
705
706 if (root != root->fs_info->extent_root)
707 switch_commit_root(root);
708
709 return 0;
710 }
711
712 /*
713 * update all the cowonly tree roots on disk
714 */
715 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
716 struct btrfs_root *root)
717 {
718 struct btrfs_fs_info *fs_info = root->fs_info;
719 struct list_head *next;
720 struct extent_buffer *eb;
721 int ret;
722
723 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
724 BUG_ON(ret);
725
726 eb = btrfs_lock_root_node(fs_info->tree_root);
727 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
728 btrfs_tree_unlock(eb);
729 free_extent_buffer(eb);
730
731 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
732 BUG_ON(ret);
733
734 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
735 next = fs_info->dirty_cowonly_roots.next;
736 list_del_init(next);
737 root = list_entry(next, struct btrfs_root, dirty_list);
738
739 update_cowonly_root(trans, root);
740 }
741
742 down_write(&fs_info->extent_commit_sem);
743 switch_commit_root(fs_info->extent_root);
744 up_write(&fs_info->extent_commit_sem);
745
746 return 0;
747 }
748
749 /*
750 * dead roots are old snapshots that need to be deleted. This allocates
751 * a dirty root struct and adds it into the list of dead roots that need to
752 * be deleted
753 */
754 int btrfs_add_dead_root(struct btrfs_root *root)
755 {
756 spin_lock(&root->fs_info->trans_lock);
757 list_add(&root->root_list, &root->fs_info->dead_roots);
758 spin_unlock(&root->fs_info->trans_lock);
759 return 0;
760 }
761
762 /*
763 * update all the cowonly tree roots on disk
764 */
765 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
766 struct btrfs_root *root)
767 {
768 struct btrfs_root *gang[8];
769 struct btrfs_fs_info *fs_info = root->fs_info;
770 int i;
771 int ret;
772 int err = 0;
773
774 spin_lock(&fs_info->fs_roots_radix_lock);
775 while (1) {
776 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
777 (void **)gang, 0,
778 ARRAY_SIZE(gang),
779 BTRFS_ROOT_TRANS_TAG);
780 if (ret == 0)
781 break;
782 for (i = 0; i < ret; i++) {
783 root = gang[i];
784 radix_tree_tag_clear(&fs_info->fs_roots_radix,
785 (unsigned long)root->root_key.objectid,
786 BTRFS_ROOT_TRANS_TAG);
787 spin_unlock(&fs_info->fs_roots_radix_lock);
788
789 btrfs_free_log(trans, root);
790 btrfs_update_reloc_root(trans, root);
791 btrfs_orphan_commit_root(trans, root);
792
793 if (root->commit_root != root->node) {
794 switch_commit_root(root);
795 btrfs_set_root_node(&root->root_item,
796 root->node);
797 }
798
799 err = btrfs_update_root(trans, fs_info->tree_root,
800 &root->root_key,
801 &root->root_item);
802 spin_lock(&fs_info->fs_roots_radix_lock);
803 if (err)
804 break;
805 }
806 }
807 spin_unlock(&fs_info->fs_roots_radix_lock);
808 return err;
809 }
810
811 /*
812 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
813 * otherwise every leaf in the btree is read and defragged.
814 */
815 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
816 {
817 struct btrfs_fs_info *info = root->fs_info;
818 struct btrfs_trans_handle *trans;
819 int ret;
820 unsigned long nr;
821
822 if (xchg(&root->defrag_running, 1))
823 return 0;
824
825 while (1) {
826 trans = btrfs_start_transaction(root, 0);
827 if (IS_ERR(trans))
828 return PTR_ERR(trans);
829
830 ret = btrfs_defrag_leaves(trans, root, cacheonly);
831
832 nr = trans->blocks_used;
833 btrfs_end_transaction(trans, root);
834 btrfs_btree_balance_dirty(info->tree_root, nr);
835 cond_resched();
836
837 if (root->fs_info->closing || ret != -EAGAIN)
838 break;
839 }
840 root->defrag_running = 0;
841 return ret;
842 }
843
844 #if 0
845 /*
846 * when dropping snapshots, we generate a ton of delayed refs, and it makes
847 * sense not to join the transaction while it is trying to flush the current
848 * queue of delayed refs out.
849 *
850 * This is used by the drop snapshot code only
851 */
852 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
853 {
854 DEFINE_WAIT(wait);
855
856 mutex_lock(&info->trans_mutex);
857 while (info->running_transaction &&
858 info->running_transaction->delayed_refs.flushing) {
859 prepare_to_wait(&info->transaction_wait, &wait,
860 TASK_UNINTERRUPTIBLE);
861 mutex_unlock(&info->trans_mutex);
862
863 schedule();
864
865 mutex_lock(&info->trans_mutex);
866 finish_wait(&info->transaction_wait, &wait);
867 }
868 mutex_unlock(&info->trans_mutex);
869 return 0;
870 }
871
872 /*
873 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
874 * all of them
875 */
876 int btrfs_drop_dead_root(struct btrfs_root *root)
877 {
878 struct btrfs_trans_handle *trans;
879 struct btrfs_root *tree_root = root->fs_info->tree_root;
880 unsigned long nr;
881 int ret;
882
883 while (1) {
884 /*
885 * we don't want to jump in and create a bunch of
886 * delayed refs if the transaction is starting to close
887 */
888 wait_transaction_pre_flush(tree_root->fs_info);
889 trans = btrfs_start_transaction(tree_root, 1);
890
891 /*
892 * we've joined a transaction, make sure it isn't
893 * closing right now
894 */
895 if (trans->transaction->delayed_refs.flushing) {
896 btrfs_end_transaction(trans, tree_root);
897 continue;
898 }
899
900 ret = btrfs_drop_snapshot(trans, root);
901 if (ret != -EAGAIN)
902 break;
903
904 ret = btrfs_update_root(trans, tree_root,
905 &root->root_key,
906 &root->root_item);
907 if (ret)
908 break;
909
910 nr = trans->blocks_used;
911 ret = btrfs_end_transaction(trans, tree_root);
912 BUG_ON(ret);
913
914 btrfs_btree_balance_dirty(tree_root, nr);
915 cond_resched();
916 }
917 BUG_ON(ret);
918
919 ret = btrfs_del_root(trans, tree_root, &root->root_key);
920 BUG_ON(ret);
921
922 nr = trans->blocks_used;
923 ret = btrfs_end_transaction(trans, tree_root);
924 BUG_ON(ret);
925
926 free_extent_buffer(root->node);
927 free_extent_buffer(root->commit_root);
928 kfree(root);
929
930 btrfs_btree_balance_dirty(tree_root, nr);
931 return ret;
932 }
933 #endif
934
935 /*
936 * new snapshots need to be created at a very specific time in the
937 * transaction commit. This does the actual creation
938 */
939 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
940 struct btrfs_fs_info *fs_info,
941 struct btrfs_pending_snapshot *pending)
942 {
943 struct btrfs_key key;
944 struct btrfs_root_item *new_root_item;
945 struct btrfs_root *tree_root = fs_info->tree_root;
946 struct btrfs_root *root = pending->root;
947 struct btrfs_root *parent_root;
948 struct inode *parent_inode;
949 struct dentry *parent;
950 struct dentry *dentry;
951 struct extent_buffer *tmp;
952 struct extent_buffer *old;
953 int ret;
954 u64 to_reserve = 0;
955 u64 index = 0;
956 u64 objectid;
957 u64 root_flags;
958
959 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
960 if (!new_root_item) {
961 pending->error = -ENOMEM;
962 goto fail;
963 }
964
965 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
966 if (ret) {
967 pending->error = ret;
968 goto fail;
969 }
970
971 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
972 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
973
974 if (to_reserve > 0) {
975 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
976 to_reserve);
977 if (ret) {
978 pending->error = ret;
979 goto fail;
980 }
981 }
982
983 key.objectid = objectid;
984 key.offset = (u64)-1;
985 key.type = BTRFS_ROOT_ITEM_KEY;
986
987 trans->block_rsv = &pending->block_rsv;
988
989 dentry = pending->dentry;
990 parent = dget_parent(dentry);
991 parent_inode = parent->d_inode;
992 parent_root = BTRFS_I(parent_inode)->root;
993 btrfs_record_root_in_trans(trans, parent_root);
994
995 /*
996 * insert the directory item
997 */
998 ret = btrfs_set_inode_index(parent_inode, &index);
999 BUG_ON(ret);
1000 ret = btrfs_insert_dir_item(trans, parent_root,
1001 dentry->d_name.name, dentry->d_name.len,
1002 parent_inode->i_ino, &key,
1003 BTRFS_FT_DIR, index);
1004 BUG_ON(ret);
1005
1006 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1007 dentry->d_name.len * 2);
1008 ret = btrfs_update_inode(trans, parent_root, parent_inode);
1009 BUG_ON(ret);
1010
1011 btrfs_record_root_in_trans(trans, root);
1012 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1013 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1014 btrfs_check_and_init_root_item(new_root_item);
1015
1016 root_flags = btrfs_root_flags(new_root_item);
1017 if (pending->readonly)
1018 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1019 else
1020 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1021 btrfs_set_root_flags(new_root_item, root_flags);
1022
1023 old = btrfs_lock_root_node(root);
1024 btrfs_cow_block(trans, root, old, NULL, 0, &old);
1025 btrfs_set_lock_blocking(old);
1026
1027 btrfs_copy_root(trans, root, old, &tmp, objectid);
1028 btrfs_tree_unlock(old);
1029 free_extent_buffer(old);
1030
1031 btrfs_set_root_node(new_root_item, tmp);
1032 /* record when the snapshot was created in key.offset */
1033 key.offset = trans->transid;
1034 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1035 btrfs_tree_unlock(tmp);
1036 free_extent_buffer(tmp);
1037 BUG_ON(ret);
1038
1039 /*
1040 * insert root back/forward references
1041 */
1042 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1043 parent_root->root_key.objectid,
1044 parent_inode->i_ino, index,
1045 dentry->d_name.name, dentry->d_name.len);
1046 BUG_ON(ret);
1047 dput(parent);
1048
1049 key.offset = (u64)-1;
1050 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1051 BUG_ON(IS_ERR(pending->snap));
1052
1053 btrfs_reloc_post_snapshot(trans, pending);
1054 btrfs_orphan_post_snapshot(trans, pending);
1055 fail:
1056 kfree(new_root_item);
1057 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1058 return 0;
1059 }
1060
1061 /*
1062 * create all the snapshots we've scheduled for creation
1063 */
1064 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1065 struct btrfs_fs_info *fs_info)
1066 {
1067 struct btrfs_pending_snapshot *pending;
1068 struct list_head *head = &trans->transaction->pending_snapshots;
1069 int ret;
1070
1071 list_for_each_entry(pending, head, list) {
1072 ret = create_pending_snapshot(trans, fs_info, pending);
1073 BUG_ON(ret);
1074 }
1075 return 0;
1076 }
1077
1078 static void update_super_roots(struct btrfs_root *root)
1079 {
1080 struct btrfs_root_item *root_item;
1081 struct btrfs_super_block *super;
1082
1083 super = &root->fs_info->super_copy;
1084
1085 root_item = &root->fs_info->chunk_root->root_item;
1086 super->chunk_root = root_item->bytenr;
1087 super->chunk_root_generation = root_item->generation;
1088 super->chunk_root_level = root_item->level;
1089
1090 root_item = &root->fs_info->tree_root->root_item;
1091 super->root = root_item->bytenr;
1092 super->generation = root_item->generation;
1093 super->root_level = root_item->level;
1094 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1095 super->cache_generation = root_item->generation;
1096 }
1097
1098 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1099 {
1100 int ret = 0;
1101 spin_lock(&info->trans_lock);
1102 if (info->running_transaction)
1103 ret = info->running_transaction->in_commit;
1104 spin_unlock(&info->trans_lock);
1105 return ret;
1106 }
1107
1108 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1109 {
1110 int ret = 0;
1111 spin_lock(&info->trans_lock);
1112 if (info->running_transaction)
1113 ret = info->running_transaction->blocked;
1114 spin_unlock(&info->trans_lock);
1115 return ret;
1116 }
1117
1118 /*
1119 * wait for the current transaction commit to start and block subsequent
1120 * transaction joins
1121 */
1122 static void wait_current_trans_commit_start(struct btrfs_root *root,
1123 struct btrfs_transaction *trans)
1124 {
1125 DEFINE_WAIT(wait);
1126
1127 if (trans->in_commit)
1128 return;
1129
1130 while (1) {
1131 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1132 TASK_UNINTERRUPTIBLE);
1133 if (trans->in_commit) {
1134 finish_wait(&root->fs_info->transaction_blocked_wait,
1135 &wait);
1136 break;
1137 }
1138 schedule();
1139 finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1140 }
1141 }
1142
1143 /*
1144 * wait for the current transaction to start and then become unblocked.
1145 * caller holds ref.
1146 */
1147 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1148 struct btrfs_transaction *trans)
1149 {
1150 DEFINE_WAIT(wait);
1151
1152 if (trans->commit_done || (trans->in_commit && !trans->blocked))
1153 return;
1154
1155 while (1) {
1156 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1157 TASK_UNINTERRUPTIBLE);
1158 if (trans->commit_done ||
1159 (trans->in_commit && !trans->blocked)) {
1160 finish_wait(&root->fs_info->transaction_wait,
1161 &wait);
1162 break;
1163 }
1164 schedule();
1165 finish_wait(&root->fs_info->transaction_wait,
1166 &wait);
1167 }
1168 }
1169
1170 /*
1171 * commit transactions asynchronously. once btrfs_commit_transaction_async
1172 * returns, any subsequent transaction will not be allowed to join.
1173 */
1174 struct btrfs_async_commit {
1175 struct btrfs_trans_handle *newtrans;
1176 struct btrfs_root *root;
1177 struct delayed_work work;
1178 };
1179
1180 static void do_async_commit(struct work_struct *work)
1181 {
1182 struct btrfs_async_commit *ac =
1183 container_of(work, struct btrfs_async_commit, work.work);
1184
1185 btrfs_commit_transaction(ac->newtrans, ac->root);
1186 kfree(ac);
1187 }
1188
1189 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1190 struct btrfs_root *root,
1191 int wait_for_unblock)
1192 {
1193 struct btrfs_async_commit *ac;
1194 struct btrfs_transaction *cur_trans;
1195
1196 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1197 if (!ac)
1198 return -ENOMEM;
1199
1200 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1201 ac->root = root;
1202 ac->newtrans = btrfs_join_transaction(root);
1203 if (IS_ERR(ac->newtrans)) {
1204 int err = PTR_ERR(ac->newtrans);
1205 kfree(ac);
1206 return err;
1207 }
1208
1209 /* take transaction reference */
1210 cur_trans = trans->transaction;
1211 atomic_inc(&cur_trans->use_count);
1212
1213 btrfs_end_transaction(trans, root);
1214 schedule_delayed_work(&ac->work, 0);
1215
1216 /* wait for transaction to start and unblock */
1217 if (wait_for_unblock)
1218 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1219 else
1220 wait_current_trans_commit_start(root, cur_trans);
1221 put_transaction(cur_trans);
1222
1223 return 0;
1224 }
1225
1226 /*
1227 * btrfs_transaction state sequence:
1228 * in_commit = 0, blocked = 0 (initial)
1229 * in_commit = 1, blocked = 1
1230 * blocked = 0
1231 * commit_done = 1
1232 */
1233 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1234 struct btrfs_root *root)
1235 {
1236 unsigned long joined = 0;
1237 struct btrfs_transaction *cur_trans;
1238 struct btrfs_transaction *prev_trans = NULL;
1239 DEFINE_WAIT(wait);
1240 int ret;
1241 int should_grow = 0;
1242 unsigned long now = get_seconds();
1243 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1244
1245 btrfs_run_ordered_operations(root, 0);
1246
1247 /* make a pass through all the delayed refs we have so far
1248 * any runnings procs may add more while we are here
1249 */
1250 ret = btrfs_run_delayed_refs(trans, root, 0);
1251 BUG_ON(ret);
1252
1253 btrfs_trans_release_metadata(trans, root);
1254
1255 cur_trans = trans->transaction;
1256 /*
1257 * set the flushing flag so procs in this transaction have to
1258 * start sending their work down.
1259 */
1260 cur_trans->delayed_refs.flushing = 1;
1261
1262 ret = btrfs_run_delayed_refs(trans, root, 0);
1263 BUG_ON(ret);
1264
1265 spin_lock(&cur_trans->commit_lock);
1266 if (cur_trans->in_commit) {
1267 spin_unlock(&cur_trans->commit_lock);
1268 atomic_inc(&cur_trans->use_count);
1269 btrfs_end_transaction(trans, root);
1270
1271 ret = wait_for_commit(root, cur_trans);
1272 BUG_ON(ret);
1273
1274 put_transaction(cur_trans);
1275
1276 return 0;
1277 }
1278
1279 trans->transaction->in_commit = 1;
1280 trans->transaction->blocked = 1;
1281 spin_unlock(&cur_trans->commit_lock);
1282 wake_up(&root->fs_info->transaction_blocked_wait);
1283
1284 spin_lock(&root->fs_info->trans_lock);
1285 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1286 prev_trans = list_entry(cur_trans->list.prev,
1287 struct btrfs_transaction, list);
1288 if (!prev_trans->commit_done) {
1289 atomic_inc(&prev_trans->use_count);
1290 spin_unlock(&root->fs_info->trans_lock);
1291
1292 wait_for_commit(root, prev_trans);
1293
1294 put_transaction(prev_trans);
1295 } else {
1296 spin_unlock(&root->fs_info->trans_lock);
1297 }
1298 } else {
1299 spin_unlock(&root->fs_info->trans_lock);
1300 }
1301
1302 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1303 should_grow = 1;
1304
1305 do {
1306 int snap_pending = 0;
1307
1308 joined = cur_trans->num_joined;
1309 if (!list_empty(&trans->transaction->pending_snapshots))
1310 snap_pending = 1;
1311
1312 WARN_ON(cur_trans != trans->transaction);
1313
1314 if (flush_on_commit || snap_pending) {
1315 btrfs_start_delalloc_inodes(root, 1);
1316 ret = btrfs_wait_ordered_extents(root, 0, 1);
1317 BUG_ON(ret);
1318 }
1319
1320 /*
1321 * rename don't use btrfs_join_transaction, so, once we
1322 * set the transaction to blocked above, we aren't going
1323 * to get any new ordered operations. We can safely run
1324 * it here and no for sure that nothing new will be added
1325 * to the list
1326 */
1327 btrfs_run_ordered_operations(root, 1);
1328
1329 prepare_to_wait(&cur_trans->writer_wait, &wait,
1330 TASK_UNINTERRUPTIBLE);
1331
1332 if (atomic_read(&cur_trans->num_writers) > 1)
1333 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1334 else if (should_grow)
1335 schedule_timeout(1);
1336
1337 finish_wait(&cur_trans->writer_wait, &wait);
1338 spin_lock(&root->fs_info->trans_lock);
1339 root->fs_info->trans_no_join = 1;
1340 spin_unlock(&root->fs_info->trans_lock);
1341 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1342 (should_grow && cur_trans->num_joined != joined));
1343
1344 ret = create_pending_snapshots(trans, root->fs_info);
1345 BUG_ON(ret);
1346
1347 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1348 BUG_ON(ret);
1349
1350 WARN_ON(cur_trans != trans->transaction);
1351
1352 /* btrfs_commit_tree_roots is responsible for getting the
1353 * various roots consistent with each other. Every pointer
1354 * in the tree of tree roots has to point to the most up to date
1355 * root for every subvolume and other tree. So, we have to keep
1356 * the tree logging code from jumping in and changing any
1357 * of the trees.
1358 *
1359 * At this point in the commit, there can't be any tree-log
1360 * writers, but a little lower down we drop the trans mutex
1361 * and let new people in. By holding the tree_log_mutex
1362 * from now until after the super is written, we avoid races
1363 * with the tree-log code.
1364 */
1365 mutex_lock(&root->fs_info->tree_log_mutex);
1366
1367 ret = commit_fs_roots(trans, root);
1368 BUG_ON(ret);
1369
1370 /* commit_fs_roots gets rid of all the tree log roots, it is now
1371 * safe to free the root of tree log roots
1372 */
1373 btrfs_free_log_root_tree(trans, root->fs_info);
1374
1375 ret = commit_cowonly_roots(trans, root);
1376 BUG_ON(ret);
1377
1378 btrfs_prepare_extent_commit(trans, root);
1379
1380 cur_trans = root->fs_info->running_transaction;
1381
1382 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1383 root->fs_info->tree_root->node);
1384 switch_commit_root(root->fs_info->tree_root);
1385
1386 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1387 root->fs_info->chunk_root->node);
1388 switch_commit_root(root->fs_info->chunk_root);
1389
1390 update_super_roots(root);
1391
1392 if (!root->fs_info->log_root_recovering) {
1393 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1394 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1395 }
1396
1397 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1398 sizeof(root->fs_info->super_copy));
1399
1400 trans->transaction->blocked = 0;
1401 spin_lock(&root->fs_info->trans_lock);
1402 root->fs_info->running_transaction = NULL;
1403 root->fs_info->trans_no_join = 0;
1404 spin_unlock(&root->fs_info->trans_lock);
1405
1406 wake_up(&root->fs_info->transaction_wait);
1407
1408 ret = btrfs_write_and_wait_transaction(trans, root);
1409 BUG_ON(ret);
1410 write_ctree_super(trans, root, 0);
1411
1412 /*
1413 * the super is written, we can safely allow the tree-loggers
1414 * to go about their business
1415 */
1416 mutex_unlock(&root->fs_info->tree_log_mutex);
1417
1418 btrfs_finish_extent_commit(trans, root);
1419
1420 cur_trans->commit_done = 1;
1421
1422 root->fs_info->last_trans_committed = cur_trans->transid;
1423
1424 wake_up(&cur_trans->commit_wait);
1425
1426 spin_lock(&root->fs_info->trans_lock);
1427 list_del_init(&cur_trans->list);
1428 spin_unlock(&root->fs_info->trans_lock);
1429
1430 put_transaction(cur_trans);
1431 put_transaction(cur_trans);
1432
1433 trace_btrfs_transaction_commit(root);
1434
1435 if (current->journal_info == trans)
1436 current->journal_info = NULL;
1437
1438 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1439
1440 if (current != root->fs_info->transaction_kthread)
1441 btrfs_run_delayed_iputs(root);
1442
1443 return ret;
1444 }
1445
1446 /*
1447 * interface function to delete all the snapshots we have scheduled for deletion
1448 */
1449 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1450 {
1451 LIST_HEAD(list);
1452 struct btrfs_fs_info *fs_info = root->fs_info;
1453
1454 spin_lock(&fs_info->trans_lock);
1455 list_splice_init(&fs_info->dead_roots, &list);
1456 spin_unlock(&fs_info->trans_lock);
1457
1458 while (!list_empty(&list)) {
1459 root = list_entry(list.next, struct btrfs_root, root_list);
1460 list_del(&root->root_list);
1461
1462 if (btrfs_header_backref_rev(root->node) <
1463 BTRFS_MIXED_BACKREF_REV)
1464 btrfs_drop_snapshot(root, NULL, 0);
1465 else
1466 btrfs_drop_snapshot(root, NULL, 1);
1467 }
1468 return 0;
1469 }