]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/transaction.c
Btrfs: convert printk to btrfs_ and fix BTRFS prefix
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 [TRANS_STATE_RUNNING] = 0U,
39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
40 __TRANS_START),
41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
42 __TRANS_START |
43 __TRANS_ATTACH),
44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
45 __TRANS_START |
46 __TRANS_ATTACH |
47 __TRANS_JOIN),
48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
49 __TRANS_START |
50 __TRANS_ATTACH |
51 __TRANS_JOIN |
52 __TRANS_JOIN_NOLOCK),
53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
54 __TRANS_START |
55 __TRANS_ATTACH |
56 __TRANS_JOIN |
57 __TRANS_JOIN_NOLOCK),
58 };
59
60 void btrfs_put_transaction(struct btrfs_transaction *transaction)
61 {
62 WARN_ON(atomic_read(&transaction->use_count) == 0);
63 if (atomic_dec_and_test(&transaction->use_count)) {
64 BUG_ON(!list_empty(&transaction->list));
65 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.root));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 while (!list_empty(&transaction->pending_chunks)) {
68 struct extent_map *em;
69
70 em = list_first_entry(&transaction->pending_chunks,
71 struct extent_map, list);
72 list_del_init(&em->list);
73 free_extent_map(em);
74 }
75 kmem_cache_free(btrfs_transaction_cachep, transaction);
76 }
77 }
78
79 static noinline void switch_commit_root(struct btrfs_root *root)
80 {
81 free_extent_buffer(root->commit_root);
82 root->commit_root = btrfs_root_node(root);
83 }
84
85 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
86 unsigned int type)
87 {
88 if (type & TRANS_EXTWRITERS)
89 atomic_inc(&trans->num_extwriters);
90 }
91
92 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
93 unsigned int type)
94 {
95 if (type & TRANS_EXTWRITERS)
96 atomic_dec(&trans->num_extwriters);
97 }
98
99 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
100 unsigned int type)
101 {
102 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
103 }
104
105 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
106 {
107 return atomic_read(&trans->num_extwriters);
108 }
109
110 /*
111 * either allocate a new transaction or hop into the existing one
112 */
113 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
114 {
115 struct btrfs_transaction *cur_trans;
116 struct btrfs_fs_info *fs_info = root->fs_info;
117
118 spin_lock(&fs_info->trans_lock);
119 loop:
120 /* The file system has been taken offline. No new transactions. */
121 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
122 spin_unlock(&fs_info->trans_lock);
123 return -EROFS;
124 }
125
126 cur_trans = fs_info->running_transaction;
127 if (cur_trans) {
128 if (cur_trans->aborted) {
129 spin_unlock(&fs_info->trans_lock);
130 return cur_trans->aborted;
131 }
132 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
133 spin_unlock(&fs_info->trans_lock);
134 return -EBUSY;
135 }
136 atomic_inc(&cur_trans->use_count);
137 atomic_inc(&cur_trans->num_writers);
138 extwriter_counter_inc(cur_trans, type);
139 spin_unlock(&fs_info->trans_lock);
140 return 0;
141 }
142 spin_unlock(&fs_info->trans_lock);
143
144 /*
145 * If we are ATTACH, we just want to catch the current transaction,
146 * and commit it. If there is no transaction, just return ENOENT.
147 */
148 if (type == TRANS_ATTACH)
149 return -ENOENT;
150
151 /*
152 * JOIN_NOLOCK only happens during the transaction commit, so
153 * it is impossible that ->running_transaction is NULL
154 */
155 BUG_ON(type == TRANS_JOIN_NOLOCK);
156
157 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
158 if (!cur_trans)
159 return -ENOMEM;
160
161 spin_lock(&fs_info->trans_lock);
162 if (fs_info->running_transaction) {
163 /*
164 * someone started a transaction after we unlocked. Make sure
165 * to redo the checks above
166 */
167 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
168 goto loop;
169 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
170 spin_unlock(&fs_info->trans_lock);
171 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
172 return -EROFS;
173 }
174
175 atomic_set(&cur_trans->num_writers, 1);
176 extwriter_counter_init(cur_trans, type);
177 init_waitqueue_head(&cur_trans->writer_wait);
178 init_waitqueue_head(&cur_trans->commit_wait);
179 cur_trans->state = TRANS_STATE_RUNNING;
180 /*
181 * One for this trans handle, one so it will live on until we
182 * commit the transaction.
183 */
184 atomic_set(&cur_trans->use_count, 2);
185 cur_trans->start_time = get_seconds();
186
187 cur_trans->delayed_refs.root = RB_ROOT;
188 cur_trans->delayed_refs.href_root = RB_ROOT;
189 cur_trans->delayed_refs.num_entries = 0;
190 cur_trans->delayed_refs.num_heads_ready = 0;
191 cur_trans->delayed_refs.num_heads = 0;
192 cur_trans->delayed_refs.flushing = 0;
193 cur_trans->delayed_refs.run_delayed_start = 0;
194
195 /*
196 * although the tree mod log is per file system and not per transaction,
197 * the log must never go across transaction boundaries.
198 */
199 smp_mb();
200 if (!list_empty(&fs_info->tree_mod_seq_list))
201 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
202 "creating a fresh transaction\n");
203 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
204 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
205 "creating a fresh transaction\n");
206 atomic64_set(&fs_info->tree_mod_seq, 0);
207
208 spin_lock_init(&cur_trans->delayed_refs.lock);
209 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
210 atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
211 init_waitqueue_head(&cur_trans->delayed_refs.wait);
212
213 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
214 INIT_LIST_HEAD(&cur_trans->ordered_operations);
215 INIT_LIST_HEAD(&cur_trans->pending_chunks);
216 list_add_tail(&cur_trans->list, &fs_info->trans_list);
217 extent_io_tree_init(&cur_trans->dirty_pages,
218 fs_info->btree_inode->i_mapping);
219 fs_info->generation++;
220 cur_trans->transid = fs_info->generation;
221 fs_info->running_transaction = cur_trans;
222 cur_trans->aborted = 0;
223 spin_unlock(&fs_info->trans_lock);
224
225 return 0;
226 }
227
228 /*
229 * this does all the record keeping required to make sure that a reference
230 * counted root is properly recorded in a given transaction. This is required
231 * to make sure the old root from before we joined the transaction is deleted
232 * when the transaction commits
233 */
234 static int record_root_in_trans(struct btrfs_trans_handle *trans,
235 struct btrfs_root *root)
236 {
237 if (root->ref_cows && root->last_trans < trans->transid) {
238 WARN_ON(root == root->fs_info->extent_root);
239 WARN_ON(root->commit_root != root->node);
240
241 /*
242 * see below for in_trans_setup usage rules
243 * we have the reloc mutex held now, so there
244 * is only one writer in this function
245 */
246 root->in_trans_setup = 1;
247
248 /* make sure readers find in_trans_setup before
249 * they find our root->last_trans update
250 */
251 smp_wmb();
252
253 spin_lock(&root->fs_info->fs_roots_radix_lock);
254 if (root->last_trans == trans->transid) {
255 spin_unlock(&root->fs_info->fs_roots_radix_lock);
256 return 0;
257 }
258 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
259 (unsigned long)root->root_key.objectid,
260 BTRFS_ROOT_TRANS_TAG);
261 spin_unlock(&root->fs_info->fs_roots_radix_lock);
262 root->last_trans = trans->transid;
263
264 /* this is pretty tricky. We don't want to
265 * take the relocation lock in btrfs_record_root_in_trans
266 * unless we're really doing the first setup for this root in
267 * this transaction.
268 *
269 * Normally we'd use root->last_trans as a flag to decide
270 * if we want to take the expensive mutex.
271 *
272 * But, we have to set root->last_trans before we
273 * init the relocation root, otherwise, we trip over warnings
274 * in ctree.c. The solution used here is to flag ourselves
275 * with root->in_trans_setup. When this is 1, we're still
276 * fixing up the reloc trees and everyone must wait.
277 *
278 * When this is zero, they can trust root->last_trans and fly
279 * through btrfs_record_root_in_trans without having to take the
280 * lock. smp_wmb() makes sure that all the writes above are
281 * done before we pop in the zero below
282 */
283 btrfs_init_reloc_root(trans, root);
284 smp_wmb();
285 root->in_trans_setup = 0;
286 }
287 return 0;
288 }
289
290
291 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
292 struct btrfs_root *root)
293 {
294 if (!root->ref_cows)
295 return 0;
296
297 /*
298 * see record_root_in_trans for comments about in_trans_setup usage
299 * and barriers
300 */
301 smp_rmb();
302 if (root->last_trans == trans->transid &&
303 !root->in_trans_setup)
304 return 0;
305
306 mutex_lock(&root->fs_info->reloc_mutex);
307 record_root_in_trans(trans, root);
308 mutex_unlock(&root->fs_info->reloc_mutex);
309
310 return 0;
311 }
312
313 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
314 {
315 return (trans->state >= TRANS_STATE_BLOCKED &&
316 trans->state < TRANS_STATE_UNBLOCKED &&
317 !trans->aborted);
318 }
319
320 /* wait for commit against the current transaction to become unblocked
321 * when this is done, it is safe to start a new transaction, but the current
322 * transaction might not be fully on disk.
323 */
324 static void wait_current_trans(struct btrfs_root *root)
325 {
326 struct btrfs_transaction *cur_trans;
327
328 spin_lock(&root->fs_info->trans_lock);
329 cur_trans = root->fs_info->running_transaction;
330 if (cur_trans && is_transaction_blocked(cur_trans)) {
331 atomic_inc(&cur_trans->use_count);
332 spin_unlock(&root->fs_info->trans_lock);
333
334 wait_event(root->fs_info->transaction_wait,
335 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
336 cur_trans->aborted);
337 btrfs_put_transaction(cur_trans);
338 } else {
339 spin_unlock(&root->fs_info->trans_lock);
340 }
341 }
342
343 static int may_wait_transaction(struct btrfs_root *root, int type)
344 {
345 if (root->fs_info->log_root_recovering)
346 return 0;
347
348 if (type == TRANS_USERSPACE)
349 return 1;
350
351 if (type == TRANS_START &&
352 !atomic_read(&root->fs_info->open_ioctl_trans))
353 return 1;
354
355 return 0;
356 }
357
358 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
359 {
360 if (!root->fs_info->reloc_ctl ||
361 !root->ref_cows ||
362 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
363 root->reloc_root)
364 return false;
365
366 return true;
367 }
368
369 static struct btrfs_trans_handle *
370 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
371 enum btrfs_reserve_flush_enum flush)
372 {
373 struct btrfs_trans_handle *h;
374 struct btrfs_transaction *cur_trans;
375 u64 num_bytes = 0;
376 u64 qgroup_reserved = 0;
377 bool reloc_reserved = false;
378 int ret;
379
380 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
381 return ERR_PTR(-EROFS);
382
383 if (current->journal_info) {
384 WARN_ON(type & TRANS_EXTWRITERS);
385 h = current->journal_info;
386 h->use_count++;
387 WARN_ON(h->use_count > 2);
388 h->orig_rsv = h->block_rsv;
389 h->block_rsv = NULL;
390 goto got_it;
391 }
392
393 /*
394 * Do the reservation before we join the transaction so we can do all
395 * the appropriate flushing if need be.
396 */
397 if (num_items > 0 && root != root->fs_info->chunk_root) {
398 if (root->fs_info->quota_enabled &&
399 is_fstree(root->root_key.objectid)) {
400 qgroup_reserved = num_items * root->leafsize;
401 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
402 if (ret)
403 return ERR_PTR(ret);
404 }
405
406 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
407 /*
408 * Do the reservation for the relocation root creation
409 */
410 if (unlikely(need_reserve_reloc_root(root))) {
411 num_bytes += root->nodesize;
412 reloc_reserved = true;
413 }
414
415 ret = btrfs_block_rsv_add(root,
416 &root->fs_info->trans_block_rsv,
417 num_bytes, flush);
418 if (ret)
419 goto reserve_fail;
420 }
421 again:
422 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
423 if (!h) {
424 ret = -ENOMEM;
425 goto alloc_fail;
426 }
427
428 /*
429 * If we are JOIN_NOLOCK we're already committing a transaction and
430 * waiting on this guy, so we don't need to do the sb_start_intwrite
431 * because we're already holding a ref. We need this because we could
432 * have raced in and did an fsync() on a file which can kick a commit
433 * and then we deadlock with somebody doing a freeze.
434 *
435 * If we are ATTACH, it means we just want to catch the current
436 * transaction and commit it, so we needn't do sb_start_intwrite().
437 */
438 if (type & __TRANS_FREEZABLE)
439 sb_start_intwrite(root->fs_info->sb);
440
441 if (may_wait_transaction(root, type))
442 wait_current_trans(root);
443
444 do {
445 ret = join_transaction(root, type);
446 if (ret == -EBUSY) {
447 wait_current_trans(root);
448 if (unlikely(type == TRANS_ATTACH))
449 ret = -ENOENT;
450 }
451 } while (ret == -EBUSY);
452
453 if (ret < 0) {
454 /* We must get the transaction if we are JOIN_NOLOCK. */
455 BUG_ON(type == TRANS_JOIN_NOLOCK);
456 goto join_fail;
457 }
458
459 cur_trans = root->fs_info->running_transaction;
460
461 h->transid = cur_trans->transid;
462 h->transaction = cur_trans;
463 h->blocks_used = 0;
464 h->bytes_reserved = 0;
465 h->root = root;
466 h->delayed_ref_updates = 0;
467 h->use_count = 1;
468 h->adding_csums = 0;
469 h->block_rsv = NULL;
470 h->orig_rsv = NULL;
471 h->aborted = 0;
472 h->qgroup_reserved = 0;
473 h->delayed_ref_elem.seq = 0;
474 h->type = type;
475 h->allocating_chunk = false;
476 h->reloc_reserved = false;
477 INIT_LIST_HEAD(&h->qgroup_ref_list);
478 INIT_LIST_HEAD(&h->new_bgs);
479
480 smp_mb();
481 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
482 may_wait_transaction(root, type)) {
483 btrfs_commit_transaction(h, root);
484 goto again;
485 }
486
487 if (num_bytes) {
488 trace_btrfs_space_reservation(root->fs_info, "transaction",
489 h->transid, num_bytes, 1);
490 h->block_rsv = &root->fs_info->trans_block_rsv;
491 h->bytes_reserved = num_bytes;
492 h->reloc_reserved = reloc_reserved;
493 }
494 h->qgroup_reserved = qgroup_reserved;
495
496 got_it:
497 btrfs_record_root_in_trans(h, root);
498
499 if (!current->journal_info && type != TRANS_USERSPACE)
500 current->journal_info = h;
501 return h;
502
503 join_fail:
504 if (type & __TRANS_FREEZABLE)
505 sb_end_intwrite(root->fs_info->sb);
506 kmem_cache_free(btrfs_trans_handle_cachep, h);
507 alloc_fail:
508 if (num_bytes)
509 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
510 num_bytes);
511 reserve_fail:
512 if (qgroup_reserved)
513 btrfs_qgroup_free(root, qgroup_reserved);
514 return ERR_PTR(ret);
515 }
516
517 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
518 int num_items)
519 {
520 return start_transaction(root, num_items, TRANS_START,
521 BTRFS_RESERVE_FLUSH_ALL);
522 }
523
524 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
525 struct btrfs_root *root, int num_items)
526 {
527 return start_transaction(root, num_items, TRANS_START,
528 BTRFS_RESERVE_FLUSH_LIMIT);
529 }
530
531 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
532 {
533 return start_transaction(root, 0, TRANS_JOIN, 0);
534 }
535
536 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
537 {
538 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
539 }
540
541 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
542 {
543 return start_transaction(root, 0, TRANS_USERSPACE, 0);
544 }
545
546 /*
547 * btrfs_attach_transaction() - catch the running transaction
548 *
549 * It is used when we want to commit the current the transaction, but
550 * don't want to start a new one.
551 *
552 * Note: If this function return -ENOENT, it just means there is no
553 * running transaction. But it is possible that the inactive transaction
554 * is still in the memory, not fully on disk. If you hope there is no
555 * inactive transaction in the fs when -ENOENT is returned, you should
556 * invoke
557 * btrfs_attach_transaction_barrier()
558 */
559 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
560 {
561 return start_transaction(root, 0, TRANS_ATTACH, 0);
562 }
563
564 /*
565 * btrfs_attach_transaction_barrier() - catch the running transaction
566 *
567 * It is similar to the above function, the differentia is this one
568 * will wait for all the inactive transactions until they fully
569 * complete.
570 */
571 struct btrfs_trans_handle *
572 btrfs_attach_transaction_barrier(struct btrfs_root *root)
573 {
574 struct btrfs_trans_handle *trans;
575
576 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
577 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
578 btrfs_wait_for_commit(root, 0);
579
580 return trans;
581 }
582
583 /* wait for a transaction commit to be fully complete */
584 static noinline void wait_for_commit(struct btrfs_root *root,
585 struct btrfs_transaction *commit)
586 {
587 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
588 }
589
590 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
591 {
592 struct btrfs_transaction *cur_trans = NULL, *t;
593 int ret = 0;
594
595 if (transid) {
596 if (transid <= root->fs_info->last_trans_committed)
597 goto out;
598
599 ret = -EINVAL;
600 /* find specified transaction */
601 spin_lock(&root->fs_info->trans_lock);
602 list_for_each_entry(t, &root->fs_info->trans_list, list) {
603 if (t->transid == transid) {
604 cur_trans = t;
605 atomic_inc(&cur_trans->use_count);
606 ret = 0;
607 break;
608 }
609 if (t->transid > transid) {
610 ret = 0;
611 break;
612 }
613 }
614 spin_unlock(&root->fs_info->trans_lock);
615 /* The specified transaction doesn't exist */
616 if (!cur_trans)
617 goto out;
618 } else {
619 /* find newest transaction that is committing | committed */
620 spin_lock(&root->fs_info->trans_lock);
621 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
622 list) {
623 if (t->state >= TRANS_STATE_COMMIT_START) {
624 if (t->state == TRANS_STATE_COMPLETED)
625 break;
626 cur_trans = t;
627 atomic_inc(&cur_trans->use_count);
628 break;
629 }
630 }
631 spin_unlock(&root->fs_info->trans_lock);
632 if (!cur_trans)
633 goto out; /* nothing committing|committed */
634 }
635
636 wait_for_commit(root, cur_trans);
637 btrfs_put_transaction(cur_trans);
638 out:
639 return ret;
640 }
641
642 void btrfs_throttle(struct btrfs_root *root)
643 {
644 if (!atomic_read(&root->fs_info->open_ioctl_trans))
645 wait_current_trans(root);
646 }
647
648 static int should_end_transaction(struct btrfs_trans_handle *trans,
649 struct btrfs_root *root)
650 {
651 if (root->fs_info->global_block_rsv.space_info->full &&
652 btrfs_should_throttle_delayed_refs(trans, root))
653 return 1;
654
655 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
656 }
657
658 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
659 struct btrfs_root *root)
660 {
661 struct btrfs_transaction *cur_trans = trans->transaction;
662 int updates;
663 int err;
664
665 smp_mb();
666 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
667 cur_trans->delayed_refs.flushing)
668 return 1;
669
670 updates = trans->delayed_ref_updates;
671 trans->delayed_ref_updates = 0;
672 if (updates) {
673 err = btrfs_run_delayed_refs(trans, root, updates);
674 if (err) /* Error code will also eval true */
675 return err;
676 }
677
678 return should_end_transaction(trans, root);
679 }
680
681 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
682 struct btrfs_root *root, int throttle)
683 {
684 struct btrfs_transaction *cur_trans = trans->transaction;
685 struct btrfs_fs_info *info = root->fs_info;
686 unsigned long cur = trans->delayed_ref_updates;
687 int lock = (trans->type != TRANS_JOIN_NOLOCK);
688 int err = 0;
689
690 if (--trans->use_count) {
691 trans->block_rsv = trans->orig_rsv;
692 return 0;
693 }
694
695 /*
696 * do the qgroup accounting as early as possible
697 */
698 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
699
700 btrfs_trans_release_metadata(trans, root);
701 trans->block_rsv = NULL;
702
703 if (trans->qgroup_reserved) {
704 /*
705 * the same root has to be passed here between start_transaction
706 * and end_transaction. Subvolume quota depends on this.
707 */
708 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
709 trans->qgroup_reserved = 0;
710 }
711
712 if (!list_empty(&trans->new_bgs))
713 btrfs_create_pending_block_groups(trans, root);
714
715 trans->delayed_ref_updates = 0;
716 if (btrfs_should_throttle_delayed_refs(trans, root)) {
717 cur = max_t(unsigned long, cur, 1);
718 trans->delayed_ref_updates = 0;
719 btrfs_run_delayed_refs(trans, root, cur);
720 }
721
722 btrfs_trans_release_metadata(trans, root);
723 trans->block_rsv = NULL;
724
725 if (!list_empty(&trans->new_bgs))
726 btrfs_create_pending_block_groups(trans, root);
727
728 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
729 should_end_transaction(trans, root) &&
730 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
731 spin_lock(&info->trans_lock);
732 if (cur_trans->state == TRANS_STATE_RUNNING)
733 cur_trans->state = TRANS_STATE_BLOCKED;
734 spin_unlock(&info->trans_lock);
735 }
736
737 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
738 if (throttle) {
739 /*
740 * We may race with somebody else here so end up having
741 * to call end_transaction on ourselves again, so inc
742 * our use_count.
743 */
744 trans->use_count++;
745 return btrfs_commit_transaction(trans, root);
746 } else {
747 wake_up_process(info->transaction_kthread);
748 }
749 }
750
751 if (trans->type & __TRANS_FREEZABLE)
752 sb_end_intwrite(root->fs_info->sb);
753
754 WARN_ON(cur_trans != info->running_transaction);
755 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
756 atomic_dec(&cur_trans->num_writers);
757 extwriter_counter_dec(cur_trans, trans->type);
758
759 smp_mb();
760 if (waitqueue_active(&cur_trans->writer_wait))
761 wake_up(&cur_trans->writer_wait);
762 btrfs_put_transaction(cur_trans);
763
764 if (current->journal_info == trans)
765 current->journal_info = NULL;
766
767 if (throttle)
768 btrfs_run_delayed_iputs(root);
769
770 if (trans->aborted ||
771 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
772 wake_up_process(info->transaction_kthread);
773 err = -EIO;
774 }
775 assert_qgroups_uptodate(trans);
776
777 kmem_cache_free(btrfs_trans_handle_cachep, trans);
778 return err;
779 }
780
781 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
782 struct btrfs_root *root)
783 {
784 return __btrfs_end_transaction(trans, root, 0);
785 }
786
787 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
788 struct btrfs_root *root)
789 {
790 return __btrfs_end_transaction(trans, root, 1);
791 }
792
793 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
794 struct btrfs_root *root)
795 {
796 return __btrfs_end_transaction(trans, root, 1);
797 }
798
799 /*
800 * when btree blocks are allocated, they have some corresponding bits set for
801 * them in one of two extent_io trees. This is used to make sure all of
802 * those extents are sent to disk but does not wait on them
803 */
804 int btrfs_write_marked_extents(struct btrfs_root *root,
805 struct extent_io_tree *dirty_pages, int mark)
806 {
807 int err = 0;
808 int werr = 0;
809 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
810 struct extent_state *cached_state = NULL;
811 u64 start = 0;
812 u64 end;
813
814 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
815 mark, &cached_state)) {
816 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
817 mark, &cached_state, GFP_NOFS);
818 cached_state = NULL;
819 err = filemap_fdatawrite_range(mapping, start, end);
820 if (err)
821 werr = err;
822 cond_resched();
823 start = end + 1;
824 }
825 if (err)
826 werr = err;
827 return werr;
828 }
829
830 /*
831 * when btree blocks are allocated, they have some corresponding bits set for
832 * them in one of two extent_io trees. This is used to make sure all of
833 * those extents are on disk for transaction or log commit. We wait
834 * on all the pages and clear them from the dirty pages state tree
835 */
836 int btrfs_wait_marked_extents(struct btrfs_root *root,
837 struct extent_io_tree *dirty_pages, int mark)
838 {
839 int err = 0;
840 int werr = 0;
841 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
842 struct extent_state *cached_state = NULL;
843 u64 start = 0;
844 u64 end;
845
846 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
847 EXTENT_NEED_WAIT, &cached_state)) {
848 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
849 0, 0, &cached_state, GFP_NOFS);
850 err = filemap_fdatawait_range(mapping, start, end);
851 if (err)
852 werr = err;
853 cond_resched();
854 start = end + 1;
855 }
856 if (err)
857 werr = err;
858 return werr;
859 }
860
861 /*
862 * when btree blocks are allocated, they have some corresponding bits set for
863 * them in one of two extent_io trees. This is used to make sure all of
864 * those extents are on disk for transaction or log commit
865 */
866 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
867 struct extent_io_tree *dirty_pages, int mark)
868 {
869 int ret;
870 int ret2;
871 struct blk_plug plug;
872
873 blk_start_plug(&plug);
874 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
875 blk_finish_plug(&plug);
876 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
877
878 if (ret)
879 return ret;
880 if (ret2)
881 return ret2;
882 return 0;
883 }
884
885 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
886 struct btrfs_root *root)
887 {
888 if (!trans || !trans->transaction) {
889 struct inode *btree_inode;
890 btree_inode = root->fs_info->btree_inode;
891 return filemap_write_and_wait(btree_inode->i_mapping);
892 }
893 return btrfs_write_and_wait_marked_extents(root,
894 &trans->transaction->dirty_pages,
895 EXTENT_DIRTY);
896 }
897
898 /*
899 * this is used to update the root pointer in the tree of tree roots.
900 *
901 * But, in the case of the extent allocation tree, updating the root
902 * pointer may allocate blocks which may change the root of the extent
903 * allocation tree.
904 *
905 * So, this loops and repeats and makes sure the cowonly root didn't
906 * change while the root pointer was being updated in the metadata.
907 */
908 static int update_cowonly_root(struct btrfs_trans_handle *trans,
909 struct btrfs_root *root)
910 {
911 int ret;
912 u64 old_root_bytenr;
913 u64 old_root_used;
914 struct btrfs_root *tree_root = root->fs_info->tree_root;
915
916 old_root_used = btrfs_root_used(&root->root_item);
917 btrfs_write_dirty_block_groups(trans, root);
918
919 while (1) {
920 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
921 if (old_root_bytenr == root->node->start &&
922 old_root_used == btrfs_root_used(&root->root_item))
923 break;
924
925 btrfs_set_root_node(&root->root_item, root->node);
926 ret = btrfs_update_root(trans, tree_root,
927 &root->root_key,
928 &root->root_item);
929 if (ret)
930 return ret;
931
932 old_root_used = btrfs_root_used(&root->root_item);
933 ret = btrfs_write_dirty_block_groups(trans, root);
934 if (ret)
935 return ret;
936 }
937
938 if (root != root->fs_info->extent_root)
939 switch_commit_root(root);
940
941 return 0;
942 }
943
944 /*
945 * update all the cowonly tree roots on disk
946 *
947 * The error handling in this function may not be obvious. Any of the
948 * failures will cause the file system to go offline. We still need
949 * to clean up the delayed refs.
950 */
951 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
952 struct btrfs_root *root)
953 {
954 struct btrfs_fs_info *fs_info = root->fs_info;
955 struct list_head *next;
956 struct extent_buffer *eb;
957 int ret;
958
959 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
960 if (ret)
961 return ret;
962
963 eb = btrfs_lock_root_node(fs_info->tree_root);
964 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
965 0, &eb);
966 btrfs_tree_unlock(eb);
967 free_extent_buffer(eb);
968
969 if (ret)
970 return ret;
971
972 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
973 if (ret)
974 return ret;
975
976 ret = btrfs_run_dev_stats(trans, root->fs_info);
977 if (ret)
978 return ret;
979 ret = btrfs_run_dev_replace(trans, root->fs_info);
980 if (ret)
981 return ret;
982 ret = btrfs_run_qgroups(trans, root->fs_info);
983 if (ret)
984 return ret;
985
986 /* run_qgroups might have added some more refs */
987 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
988 if (ret)
989 return ret;
990
991 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
992 next = fs_info->dirty_cowonly_roots.next;
993 list_del_init(next);
994 root = list_entry(next, struct btrfs_root, dirty_list);
995
996 ret = update_cowonly_root(trans, root);
997 if (ret)
998 return ret;
999 }
1000
1001 down_write(&fs_info->extent_commit_sem);
1002 switch_commit_root(fs_info->extent_root);
1003 up_write(&fs_info->extent_commit_sem);
1004
1005 btrfs_after_dev_replace_commit(fs_info);
1006
1007 return 0;
1008 }
1009
1010 /*
1011 * dead roots are old snapshots that need to be deleted. This allocates
1012 * a dirty root struct and adds it into the list of dead roots that need to
1013 * be deleted
1014 */
1015 void btrfs_add_dead_root(struct btrfs_root *root)
1016 {
1017 spin_lock(&root->fs_info->trans_lock);
1018 if (list_empty(&root->root_list))
1019 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1020 spin_unlock(&root->fs_info->trans_lock);
1021 }
1022
1023 /*
1024 * update all the cowonly tree roots on disk
1025 */
1026 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1027 struct btrfs_root *root)
1028 {
1029 struct btrfs_root *gang[8];
1030 struct btrfs_fs_info *fs_info = root->fs_info;
1031 int i;
1032 int ret;
1033 int err = 0;
1034
1035 spin_lock(&fs_info->fs_roots_radix_lock);
1036 while (1) {
1037 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1038 (void **)gang, 0,
1039 ARRAY_SIZE(gang),
1040 BTRFS_ROOT_TRANS_TAG);
1041 if (ret == 0)
1042 break;
1043 for (i = 0; i < ret; i++) {
1044 root = gang[i];
1045 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1046 (unsigned long)root->root_key.objectid,
1047 BTRFS_ROOT_TRANS_TAG);
1048 spin_unlock(&fs_info->fs_roots_radix_lock);
1049
1050 btrfs_free_log(trans, root);
1051 btrfs_update_reloc_root(trans, root);
1052 btrfs_orphan_commit_root(trans, root);
1053
1054 btrfs_save_ino_cache(root, trans);
1055
1056 /* see comments in should_cow_block() */
1057 root->force_cow = 0;
1058 smp_wmb();
1059
1060 if (root->commit_root != root->node) {
1061 mutex_lock(&root->fs_commit_mutex);
1062 switch_commit_root(root);
1063 btrfs_unpin_free_ino(root);
1064 mutex_unlock(&root->fs_commit_mutex);
1065
1066 btrfs_set_root_node(&root->root_item,
1067 root->node);
1068 }
1069
1070 err = btrfs_update_root(trans, fs_info->tree_root,
1071 &root->root_key,
1072 &root->root_item);
1073 spin_lock(&fs_info->fs_roots_radix_lock);
1074 if (err)
1075 break;
1076 }
1077 }
1078 spin_unlock(&fs_info->fs_roots_radix_lock);
1079 return err;
1080 }
1081
1082 /*
1083 * defrag a given btree.
1084 * Every leaf in the btree is read and defragged.
1085 */
1086 int btrfs_defrag_root(struct btrfs_root *root)
1087 {
1088 struct btrfs_fs_info *info = root->fs_info;
1089 struct btrfs_trans_handle *trans;
1090 int ret;
1091
1092 if (xchg(&root->defrag_running, 1))
1093 return 0;
1094
1095 while (1) {
1096 trans = btrfs_start_transaction(root, 0);
1097 if (IS_ERR(trans))
1098 return PTR_ERR(trans);
1099
1100 ret = btrfs_defrag_leaves(trans, root);
1101
1102 btrfs_end_transaction(trans, root);
1103 btrfs_btree_balance_dirty(info->tree_root);
1104 cond_resched();
1105
1106 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1107 break;
1108
1109 if (btrfs_defrag_cancelled(root->fs_info)) {
1110 pr_debug("BTRFS: defrag_root cancelled\n");
1111 ret = -EAGAIN;
1112 break;
1113 }
1114 }
1115 root->defrag_running = 0;
1116 return ret;
1117 }
1118
1119 /*
1120 * new snapshots need to be created at a very specific time in the
1121 * transaction commit. This does the actual creation.
1122 *
1123 * Note:
1124 * If the error which may affect the commitment of the current transaction
1125 * happens, we should return the error number. If the error which just affect
1126 * the creation of the pending snapshots, just return 0.
1127 */
1128 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1129 struct btrfs_fs_info *fs_info,
1130 struct btrfs_pending_snapshot *pending)
1131 {
1132 struct btrfs_key key;
1133 struct btrfs_root_item *new_root_item;
1134 struct btrfs_root *tree_root = fs_info->tree_root;
1135 struct btrfs_root *root = pending->root;
1136 struct btrfs_root *parent_root;
1137 struct btrfs_block_rsv *rsv;
1138 struct inode *parent_inode;
1139 struct btrfs_path *path;
1140 struct btrfs_dir_item *dir_item;
1141 struct dentry *dentry;
1142 struct extent_buffer *tmp;
1143 struct extent_buffer *old;
1144 struct timespec cur_time = CURRENT_TIME;
1145 int ret = 0;
1146 u64 to_reserve = 0;
1147 u64 index = 0;
1148 u64 objectid;
1149 u64 root_flags;
1150 uuid_le new_uuid;
1151
1152 path = btrfs_alloc_path();
1153 if (!path) {
1154 pending->error = -ENOMEM;
1155 return 0;
1156 }
1157
1158 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1159 if (!new_root_item) {
1160 pending->error = -ENOMEM;
1161 goto root_item_alloc_fail;
1162 }
1163
1164 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1165 if (pending->error)
1166 goto no_free_objectid;
1167
1168 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1169
1170 if (to_reserve > 0) {
1171 pending->error = btrfs_block_rsv_add(root,
1172 &pending->block_rsv,
1173 to_reserve,
1174 BTRFS_RESERVE_NO_FLUSH);
1175 if (pending->error)
1176 goto no_free_objectid;
1177 }
1178
1179 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1180 root->root_key.objectid,
1181 objectid, pending->inherit);
1182 if (pending->error)
1183 goto no_free_objectid;
1184
1185 key.objectid = objectid;
1186 key.offset = (u64)-1;
1187 key.type = BTRFS_ROOT_ITEM_KEY;
1188
1189 rsv = trans->block_rsv;
1190 trans->block_rsv = &pending->block_rsv;
1191 trans->bytes_reserved = trans->block_rsv->reserved;
1192
1193 dentry = pending->dentry;
1194 parent_inode = pending->dir;
1195 parent_root = BTRFS_I(parent_inode)->root;
1196 record_root_in_trans(trans, parent_root);
1197
1198 /*
1199 * insert the directory item
1200 */
1201 ret = btrfs_set_inode_index(parent_inode, &index);
1202 BUG_ON(ret); /* -ENOMEM */
1203
1204 /* check if there is a file/dir which has the same name. */
1205 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1206 btrfs_ino(parent_inode),
1207 dentry->d_name.name,
1208 dentry->d_name.len, 0);
1209 if (dir_item != NULL && !IS_ERR(dir_item)) {
1210 pending->error = -EEXIST;
1211 goto dir_item_existed;
1212 } else if (IS_ERR(dir_item)) {
1213 ret = PTR_ERR(dir_item);
1214 btrfs_abort_transaction(trans, root, ret);
1215 goto fail;
1216 }
1217 btrfs_release_path(path);
1218
1219 /*
1220 * pull in the delayed directory update
1221 * and the delayed inode item
1222 * otherwise we corrupt the FS during
1223 * snapshot
1224 */
1225 ret = btrfs_run_delayed_items(trans, root);
1226 if (ret) { /* Transaction aborted */
1227 btrfs_abort_transaction(trans, root, ret);
1228 goto fail;
1229 }
1230
1231 record_root_in_trans(trans, root);
1232 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1233 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1234 btrfs_check_and_init_root_item(new_root_item);
1235
1236 root_flags = btrfs_root_flags(new_root_item);
1237 if (pending->readonly)
1238 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1239 else
1240 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1241 btrfs_set_root_flags(new_root_item, root_flags);
1242
1243 btrfs_set_root_generation_v2(new_root_item,
1244 trans->transid);
1245 uuid_le_gen(&new_uuid);
1246 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1247 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1248 BTRFS_UUID_SIZE);
1249 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1250 memset(new_root_item->received_uuid, 0,
1251 sizeof(new_root_item->received_uuid));
1252 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1253 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1254 btrfs_set_root_stransid(new_root_item, 0);
1255 btrfs_set_root_rtransid(new_root_item, 0);
1256 }
1257 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1258 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1259 btrfs_set_root_otransid(new_root_item, trans->transid);
1260
1261 old = btrfs_lock_root_node(root);
1262 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1263 if (ret) {
1264 btrfs_tree_unlock(old);
1265 free_extent_buffer(old);
1266 btrfs_abort_transaction(trans, root, ret);
1267 goto fail;
1268 }
1269
1270 btrfs_set_lock_blocking(old);
1271
1272 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1273 /* clean up in any case */
1274 btrfs_tree_unlock(old);
1275 free_extent_buffer(old);
1276 if (ret) {
1277 btrfs_abort_transaction(trans, root, ret);
1278 goto fail;
1279 }
1280
1281 /* see comments in should_cow_block() */
1282 root->force_cow = 1;
1283 smp_wmb();
1284
1285 btrfs_set_root_node(new_root_item, tmp);
1286 /* record when the snapshot was created in key.offset */
1287 key.offset = trans->transid;
1288 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1289 btrfs_tree_unlock(tmp);
1290 free_extent_buffer(tmp);
1291 if (ret) {
1292 btrfs_abort_transaction(trans, root, ret);
1293 goto fail;
1294 }
1295
1296 /*
1297 * insert root back/forward references
1298 */
1299 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1300 parent_root->root_key.objectid,
1301 btrfs_ino(parent_inode), index,
1302 dentry->d_name.name, dentry->d_name.len);
1303 if (ret) {
1304 btrfs_abort_transaction(trans, root, ret);
1305 goto fail;
1306 }
1307
1308 key.offset = (u64)-1;
1309 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1310 if (IS_ERR(pending->snap)) {
1311 ret = PTR_ERR(pending->snap);
1312 btrfs_abort_transaction(trans, root, ret);
1313 goto fail;
1314 }
1315
1316 ret = btrfs_reloc_post_snapshot(trans, pending);
1317 if (ret) {
1318 btrfs_abort_transaction(trans, root, ret);
1319 goto fail;
1320 }
1321
1322 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1323 if (ret) {
1324 btrfs_abort_transaction(trans, root, ret);
1325 goto fail;
1326 }
1327
1328 ret = btrfs_insert_dir_item(trans, parent_root,
1329 dentry->d_name.name, dentry->d_name.len,
1330 parent_inode, &key,
1331 BTRFS_FT_DIR, index);
1332 /* We have check then name at the beginning, so it is impossible. */
1333 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1334 if (ret) {
1335 btrfs_abort_transaction(trans, root, ret);
1336 goto fail;
1337 }
1338
1339 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1340 dentry->d_name.len * 2);
1341 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1342 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1343 if (ret) {
1344 btrfs_abort_transaction(trans, root, ret);
1345 goto fail;
1346 }
1347 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1348 BTRFS_UUID_KEY_SUBVOL, objectid);
1349 if (ret) {
1350 btrfs_abort_transaction(trans, root, ret);
1351 goto fail;
1352 }
1353 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1354 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1355 new_root_item->received_uuid,
1356 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1357 objectid);
1358 if (ret && ret != -EEXIST) {
1359 btrfs_abort_transaction(trans, root, ret);
1360 goto fail;
1361 }
1362 }
1363 fail:
1364 pending->error = ret;
1365 dir_item_existed:
1366 trans->block_rsv = rsv;
1367 trans->bytes_reserved = 0;
1368 no_free_objectid:
1369 kfree(new_root_item);
1370 root_item_alloc_fail:
1371 btrfs_free_path(path);
1372 return ret;
1373 }
1374
1375 /*
1376 * create all the snapshots we've scheduled for creation
1377 */
1378 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1379 struct btrfs_fs_info *fs_info)
1380 {
1381 struct btrfs_pending_snapshot *pending, *next;
1382 struct list_head *head = &trans->transaction->pending_snapshots;
1383 int ret = 0;
1384
1385 list_for_each_entry_safe(pending, next, head, list) {
1386 list_del(&pending->list);
1387 ret = create_pending_snapshot(trans, fs_info, pending);
1388 if (ret)
1389 break;
1390 }
1391 return ret;
1392 }
1393
1394 static void update_super_roots(struct btrfs_root *root)
1395 {
1396 struct btrfs_root_item *root_item;
1397 struct btrfs_super_block *super;
1398
1399 super = root->fs_info->super_copy;
1400
1401 root_item = &root->fs_info->chunk_root->root_item;
1402 super->chunk_root = root_item->bytenr;
1403 super->chunk_root_generation = root_item->generation;
1404 super->chunk_root_level = root_item->level;
1405
1406 root_item = &root->fs_info->tree_root->root_item;
1407 super->root = root_item->bytenr;
1408 super->generation = root_item->generation;
1409 super->root_level = root_item->level;
1410 if (btrfs_test_opt(root, SPACE_CACHE))
1411 super->cache_generation = root_item->generation;
1412 if (root->fs_info->update_uuid_tree_gen)
1413 super->uuid_tree_generation = root_item->generation;
1414 }
1415
1416 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1417 {
1418 struct btrfs_transaction *trans;
1419 int ret = 0;
1420
1421 spin_lock(&info->trans_lock);
1422 trans = info->running_transaction;
1423 if (trans)
1424 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1425 spin_unlock(&info->trans_lock);
1426 return ret;
1427 }
1428
1429 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1430 {
1431 struct btrfs_transaction *trans;
1432 int ret = 0;
1433
1434 spin_lock(&info->trans_lock);
1435 trans = info->running_transaction;
1436 if (trans)
1437 ret = is_transaction_blocked(trans);
1438 spin_unlock(&info->trans_lock);
1439 return ret;
1440 }
1441
1442 /*
1443 * wait for the current transaction commit to start and block subsequent
1444 * transaction joins
1445 */
1446 static void wait_current_trans_commit_start(struct btrfs_root *root,
1447 struct btrfs_transaction *trans)
1448 {
1449 wait_event(root->fs_info->transaction_blocked_wait,
1450 trans->state >= TRANS_STATE_COMMIT_START ||
1451 trans->aborted);
1452 }
1453
1454 /*
1455 * wait for the current transaction to start and then become unblocked.
1456 * caller holds ref.
1457 */
1458 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1459 struct btrfs_transaction *trans)
1460 {
1461 wait_event(root->fs_info->transaction_wait,
1462 trans->state >= TRANS_STATE_UNBLOCKED ||
1463 trans->aborted);
1464 }
1465
1466 /*
1467 * commit transactions asynchronously. once btrfs_commit_transaction_async
1468 * returns, any subsequent transaction will not be allowed to join.
1469 */
1470 struct btrfs_async_commit {
1471 struct btrfs_trans_handle *newtrans;
1472 struct btrfs_root *root;
1473 struct work_struct work;
1474 };
1475
1476 static void do_async_commit(struct work_struct *work)
1477 {
1478 struct btrfs_async_commit *ac =
1479 container_of(work, struct btrfs_async_commit, work);
1480
1481 /*
1482 * We've got freeze protection passed with the transaction.
1483 * Tell lockdep about it.
1484 */
1485 if (ac->newtrans->type & __TRANS_FREEZABLE)
1486 rwsem_acquire_read(
1487 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1488 0, 1, _THIS_IP_);
1489
1490 current->journal_info = ac->newtrans;
1491
1492 btrfs_commit_transaction(ac->newtrans, ac->root);
1493 kfree(ac);
1494 }
1495
1496 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1497 struct btrfs_root *root,
1498 int wait_for_unblock)
1499 {
1500 struct btrfs_async_commit *ac;
1501 struct btrfs_transaction *cur_trans;
1502
1503 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1504 if (!ac)
1505 return -ENOMEM;
1506
1507 INIT_WORK(&ac->work, do_async_commit);
1508 ac->root = root;
1509 ac->newtrans = btrfs_join_transaction(root);
1510 if (IS_ERR(ac->newtrans)) {
1511 int err = PTR_ERR(ac->newtrans);
1512 kfree(ac);
1513 return err;
1514 }
1515
1516 /* take transaction reference */
1517 cur_trans = trans->transaction;
1518 atomic_inc(&cur_trans->use_count);
1519
1520 btrfs_end_transaction(trans, root);
1521
1522 /*
1523 * Tell lockdep we've released the freeze rwsem, since the
1524 * async commit thread will be the one to unlock it.
1525 */
1526 if (ac->newtrans->type & __TRANS_FREEZABLE)
1527 rwsem_release(
1528 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1529 1, _THIS_IP_);
1530
1531 schedule_work(&ac->work);
1532
1533 /* wait for transaction to start and unblock */
1534 if (wait_for_unblock)
1535 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1536 else
1537 wait_current_trans_commit_start(root, cur_trans);
1538
1539 if (current->journal_info == trans)
1540 current->journal_info = NULL;
1541
1542 btrfs_put_transaction(cur_trans);
1543 return 0;
1544 }
1545
1546
1547 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root, int err)
1549 {
1550 struct btrfs_transaction *cur_trans = trans->transaction;
1551 DEFINE_WAIT(wait);
1552
1553 WARN_ON(trans->use_count > 1);
1554
1555 btrfs_abort_transaction(trans, root, err);
1556
1557 spin_lock(&root->fs_info->trans_lock);
1558
1559 /*
1560 * If the transaction is removed from the list, it means this
1561 * transaction has been committed successfully, so it is impossible
1562 * to call the cleanup function.
1563 */
1564 BUG_ON(list_empty(&cur_trans->list));
1565
1566 list_del_init(&cur_trans->list);
1567 if (cur_trans == root->fs_info->running_transaction) {
1568 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1569 spin_unlock(&root->fs_info->trans_lock);
1570 wait_event(cur_trans->writer_wait,
1571 atomic_read(&cur_trans->num_writers) == 1);
1572
1573 spin_lock(&root->fs_info->trans_lock);
1574 }
1575 spin_unlock(&root->fs_info->trans_lock);
1576
1577 btrfs_cleanup_one_transaction(trans->transaction, root);
1578
1579 spin_lock(&root->fs_info->trans_lock);
1580 if (cur_trans == root->fs_info->running_transaction)
1581 root->fs_info->running_transaction = NULL;
1582 spin_unlock(&root->fs_info->trans_lock);
1583
1584 if (trans->type & __TRANS_FREEZABLE)
1585 sb_end_intwrite(root->fs_info->sb);
1586 btrfs_put_transaction(cur_trans);
1587 btrfs_put_transaction(cur_trans);
1588
1589 trace_btrfs_transaction_commit(root);
1590
1591 btrfs_scrub_continue(root);
1592
1593 if (current->journal_info == trans)
1594 current->journal_info = NULL;
1595
1596 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1597 }
1598
1599 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1600 struct btrfs_root *root)
1601 {
1602 int ret;
1603
1604 ret = btrfs_run_delayed_items(trans, root);
1605 /*
1606 * running the delayed items may have added new refs. account
1607 * them now so that they hinder processing of more delayed refs
1608 * as little as possible.
1609 */
1610 if (ret) {
1611 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1612 return ret;
1613 }
1614
1615 ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1616 if (ret)
1617 return ret;
1618
1619 /*
1620 * rename don't use btrfs_join_transaction, so, once we
1621 * set the transaction to blocked above, we aren't going
1622 * to get any new ordered operations. We can safely run
1623 * it here and no for sure that nothing new will be added
1624 * to the list
1625 */
1626 ret = btrfs_run_ordered_operations(trans, root, 1);
1627
1628 return ret;
1629 }
1630
1631 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1632 {
1633 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1634 return btrfs_start_delalloc_roots(fs_info, 1);
1635 return 0;
1636 }
1637
1638 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1639 {
1640 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1641 btrfs_wait_ordered_roots(fs_info, -1);
1642 }
1643
1644 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1645 struct btrfs_root *root)
1646 {
1647 struct btrfs_transaction *cur_trans = trans->transaction;
1648 struct btrfs_transaction *prev_trans = NULL;
1649 int ret;
1650
1651 ret = btrfs_run_ordered_operations(trans, root, 0);
1652 if (ret) {
1653 btrfs_abort_transaction(trans, root, ret);
1654 btrfs_end_transaction(trans, root);
1655 return ret;
1656 }
1657
1658 /* Stop the commit early if ->aborted is set */
1659 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1660 ret = cur_trans->aborted;
1661 btrfs_end_transaction(trans, root);
1662 return ret;
1663 }
1664
1665 /* make a pass through all the delayed refs we have so far
1666 * any runnings procs may add more while we are here
1667 */
1668 ret = btrfs_run_delayed_refs(trans, root, 0);
1669 if (ret) {
1670 btrfs_end_transaction(trans, root);
1671 return ret;
1672 }
1673
1674 btrfs_trans_release_metadata(trans, root);
1675 trans->block_rsv = NULL;
1676 if (trans->qgroup_reserved) {
1677 btrfs_qgroup_free(root, trans->qgroup_reserved);
1678 trans->qgroup_reserved = 0;
1679 }
1680
1681 cur_trans = trans->transaction;
1682
1683 /*
1684 * set the flushing flag so procs in this transaction have to
1685 * start sending their work down.
1686 */
1687 cur_trans->delayed_refs.flushing = 1;
1688 smp_wmb();
1689
1690 if (!list_empty(&trans->new_bgs))
1691 btrfs_create_pending_block_groups(trans, root);
1692
1693 ret = btrfs_run_delayed_refs(trans, root, 0);
1694 if (ret) {
1695 btrfs_end_transaction(trans, root);
1696 return ret;
1697 }
1698
1699 spin_lock(&root->fs_info->trans_lock);
1700 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1701 spin_unlock(&root->fs_info->trans_lock);
1702 atomic_inc(&cur_trans->use_count);
1703 ret = btrfs_end_transaction(trans, root);
1704
1705 wait_for_commit(root, cur_trans);
1706
1707 btrfs_put_transaction(cur_trans);
1708
1709 return ret;
1710 }
1711
1712 cur_trans->state = TRANS_STATE_COMMIT_START;
1713 wake_up(&root->fs_info->transaction_blocked_wait);
1714
1715 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1716 prev_trans = list_entry(cur_trans->list.prev,
1717 struct btrfs_transaction, list);
1718 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1719 atomic_inc(&prev_trans->use_count);
1720 spin_unlock(&root->fs_info->trans_lock);
1721
1722 wait_for_commit(root, prev_trans);
1723
1724 btrfs_put_transaction(prev_trans);
1725 } else {
1726 spin_unlock(&root->fs_info->trans_lock);
1727 }
1728 } else {
1729 spin_unlock(&root->fs_info->trans_lock);
1730 }
1731
1732 extwriter_counter_dec(cur_trans, trans->type);
1733
1734 ret = btrfs_start_delalloc_flush(root->fs_info);
1735 if (ret)
1736 goto cleanup_transaction;
1737
1738 ret = btrfs_flush_all_pending_stuffs(trans, root);
1739 if (ret)
1740 goto cleanup_transaction;
1741
1742 wait_event(cur_trans->writer_wait,
1743 extwriter_counter_read(cur_trans) == 0);
1744
1745 /* some pending stuffs might be added after the previous flush. */
1746 ret = btrfs_flush_all_pending_stuffs(trans, root);
1747 if (ret)
1748 goto cleanup_transaction;
1749
1750 btrfs_wait_delalloc_flush(root->fs_info);
1751
1752 btrfs_scrub_pause(root);
1753 /*
1754 * Ok now we need to make sure to block out any other joins while we
1755 * commit the transaction. We could have started a join before setting
1756 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1757 */
1758 spin_lock(&root->fs_info->trans_lock);
1759 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1760 spin_unlock(&root->fs_info->trans_lock);
1761 wait_event(cur_trans->writer_wait,
1762 atomic_read(&cur_trans->num_writers) == 1);
1763
1764 /* ->aborted might be set after the previous check, so check it */
1765 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1766 ret = cur_trans->aborted;
1767 goto cleanup_transaction;
1768 }
1769 /*
1770 * the reloc mutex makes sure that we stop
1771 * the balancing code from coming in and moving
1772 * extents around in the middle of the commit
1773 */
1774 mutex_lock(&root->fs_info->reloc_mutex);
1775
1776 /*
1777 * We needn't worry about the delayed items because we will
1778 * deal with them in create_pending_snapshot(), which is the
1779 * core function of the snapshot creation.
1780 */
1781 ret = create_pending_snapshots(trans, root->fs_info);
1782 if (ret) {
1783 mutex_unlock(&root->fs_info->reloc_mutex);
1784 goto cleanup_transaction;
1785 }
1786
1787 /*
1788 * We insert the dir indexes of the snapshots and update the inode
1789 * of the snapshots' parents after the snapshot creation, so there
1790 * are some delayed items which are not dealt with. Now deal with
1791 * them.
1792 *
1793 * We needn't worry that this operation will corrupt the snapshots,
1794 * because all the tree which are snapshoted will be forced to COW
1795 * the nodes and leaves.
1796 */
1797 ret = btrfs_run_delayed_items(trans, root);
1798 if (ret) {
1799 mutex_unlock(&root->fs_info->reloc_mutex);
1800 goto cleanup_transaction;
1801 }
1802
1803 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1804 if (ret) {
1805 mutex_unlock(&root->fs_info->reloc_mutex);
1806 goto cleanup_transaction;
1807 }
1808
1809 /*
1810 * make sure none of the code above managed to slip in a
1811 * delayed item
1812 */
1813 btrfs_assert_delayed_root_empty(root);
1814
1815 WARN_ON(cur_trans != trans->transaction);
1816
1817 /* btrfs_commit_tree_roots is responsible for getting the
1818 * various roots consistent with each other. Every pointer
1819 * in the tree of tree roots has to point to the most up to date
1820 * root for every subvolume and other tree. So, we have to keep
1821 * the tree logging code from jumping in and changing any
1822 * of the trees.
1823 *
1824 * At this point in the commit, there can't be any tree-log
1825 * writers, but a little lower down we drop the trans mutex
1826 * and let new people in. By holding the tree_log_mutex
1827 * from now until after the super is written, we avoid races
1828 * with the tree-log code.
1829 */
1830 mutex_lock(&root->fs_info->tree_log_mutex);
1831
1832 ret = commit_fs_roots(trans, root);
1833 if (ret) {
1834 mutex_unlock(&root->fs_info->tree_log_mutex);
1835 mutex_unlock(&root->fs_info->reloc_mutex);
1836 goto cleanup_transaction;
1837 }
1838
1839 /* commit_fs_roots gets rid of all the tree log roots, it is now
1840 * safe to free the root of tree log roots
1841 */
1842 btrfs_free_log_root_tree(trans, root->fs_info);
1843
1844 ret = commit_cowonly_roots(trans, root);
1845 if (ret) {
1846 mutex_unlock(&root->fs_info->tree_log_mutex);
1847 mutex_unlock(&root->fs_info->reloc_mutex);
1848 goto cleanup_transaction;
1849 }
1850
1851 /*
1852 * The tasks which save the space cache and inode cache may also
1853 * update ->aborted, check it.
1854 */
1855 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1856 ret = cur_trans->aborted;
1857 mutex_unlock(&root->fs_info->tree_log_mutex);
1858 mutex_unlock(&root->fs_info->reloc_mutex);
1859 goto cleanup_transaction;
1860 }
1861
1862 btrfs_prepare_extent_commit(trans, root);
1863
1864 cur_trans = root->fs_info->running_transaction;
1865
1866 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1867 root->fs_info->tree_root->node);
1868 switch_commit_root(root->fs_info->tree_root);
1869
1870 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1871 root->fs_info->chunk_root->node);
1872 switch_commit_root(root->fs_info->chunk_root);
1873
1874 assert_qgroups_uptodate(trans);
1875 update_super_roots(root);
1876
1877 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1878 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1879 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1880 sizeof(*root->fs_info->super_copy));
1881
1882 spin_lock(&root->fs_info->trans_lock);
1883 cur_trans->state = TRANS_STATE_UNBLOCKED;
1884 root->fs_info->running_transaction = NULL;
1885 spin_unlock(&root->fs_info->trans_lock);
1886 mutex_unlock(&root->fs_info->reloc_mutex);
1887
1888 wake_up(&root->fs_info->transaction_wait);
1889
1890 ret = btrfs_write_and_wait_transaction(trans, root);
1891 if (ret) {
1892 btrfs_error(root->fs_info, ret,
1893 "Error while writing out transaction");
1894 mutex_unlock(&root->fs_info->tree_log_mutex);
1895 goto cleanup_transaction;
1896 }
1897
1898 ret = write_ctree_super(trans, root, 0);
1899 if (ret) {
1900 mutex_unlock(&root->fs_info->tree_log_mutex);
1901 goto cleanup_transaction;
1902 }
1903
1904 /*
1905 * the super is written, we can safely allow the tree-loggers
1906 * to go about their business
1907 */
1908 mutex_unlock(&root->fs_info->tree_log_mutex);
1909
1910 btrfs_finish_extent_commit(trans, root);
1911
1912 root->fs_info->last_trans_committed = cur_trans->transid;
1913 /*
1914 * We needn't acquire the lock here because there is no other task
1915 * which can change it.
1916 */
1917 cur_trans->state = TRANS_STATE_COMPLETED;
1918 wake_up(&cur_trans->commit_wait);
1919
1920 spin_lock(&root->fs_info->trans_lock);
1921 list_del_init(&cur_trans->list);
1922 spin_unlock(&root->fs_info->trans_lock);
1923
1924 btrfs_put_transaction(cur_trans);
1925 btrfs_put_transaction(cur_trans);
1926
1927 if (trans->type & __TRANS_FREEZABLE)
1928 sb_end_intwrite(root->fs_info->sb);
1929
1930 trace_btrfs_transaction_commit(root);
1931
1932 btrfs_scrub_continue(root);
1933
1934 if (current->journal_info == trans)
1935 current->journal_info = NULL;
1936
1937 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1938
1939 if (current != root->fs_info->transaction_kthread)
1940 btrfs_run_delayed_iputs(root);
1941
1942 return ret;
1943
1944 cleanup_transaction:
1945 btrfs_trans_release_metadata(trans, root);
1946 trans->block_rsv = NULL;
1947 if (trans->qgroup_reserved) {
1948 btrfs_qgroup_free(root, trans->qgroup_reserved);
1949 trans->qgroup_reserved = 0;
1950 }
1951 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1952 if (current->journal_info == trans)
1953 current->journal_info = NULL;
1954 cleanup_transaction(trans, root, ret);
1955
1956 return ret;
1957 }
1958
1959 /*
1960 * return < 0 if error
1961 * 0 if there are no more dead_roots at the time of call
1962 * 1 there are more to be processed, call me again
1963 *
1964 * The return value indicates there are certainly more snapshots to delete, but
1965 * if there comes a new one during processing, it may return 0. We don't mind,
1966 * because btrfs_commit_super will poke cleaner thread and it will process it a
1967 * few seconds later.
1968 */
1969 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1970 {
1971 int ret;
1972 struct btrfs_fs_info *fs_info = root->fs_info;
1973
1974 spin_lock(&fs_info->trans_lock);
1975 if (list_empty(&fs_info->dead_roots)) {
1976 spin_unlock(&fs_info->trans_lock);
1977 return 0;
1978 }
1979 root = list_first_entry(&fs_info->dead_roots,
1980 struct btrfs_root, root_list);
1981 list_del_init(&root->root_list);
1982 spin_unlock(&fs_info->trans_lock);
1983
1984 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
1985
1986 btrfs_kill_all_delayed_nodes(root);
1987
1988 if (btrfs_header_backref_rev(root->node) <
1989 BTRFS_MIXED_BACKREF_REV)
1990 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1991 else
1992 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1993 /*
1994 * If we encounter a transaction abort during snapshot cleaning, we
1995 * don't want to crash here
1996 */
1997 return (ret < 0) ? 0 : 1;
1998 }