]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/transaction.c
Merge tag 'for-4.15-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(refcount_read(&transaction->use_count) == 0);
64 if (refcount_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 btrfs_err(transaction->fs_info,
69 "pending csums is %llu",
70 transaction->delayed_refs.pending_csums);
71 while (!list_empty(&transaction->pending_chunks)) {
72 struct extent_map *em;
73
74 em = list_first_entry(&transaction->pending_chunks,
75 struct extent_map, list);
76 list_del_init(&em->list);
77 free_extent_map(em);
78 }
79 /*
80 * If any block groups are found in ->deleted_bgs then it's
81 * because the transaction was aborted and a commit did not
82 * happen (things failed before writing the new superblock
83 * and calling btrfs_finish_extent_commit()), so we can not
84 * discard the physical locations of the block groups.
85 */
86 while (!list_empty(&transaction->deleted_bgs)) {
87 struct btrfs_block_group_cache *cache;
88
89 cache = list_first_entry(&transaction->deleted_bgs,
90 struct btrfs_block_group_cache,
91 bg_list);
92 list_del_init(&cache->bg_list);
93 btrfs_put_block_group_trimming(cache);
94 btrfs_put_block_group(cache);
95 }
96 kfree(transaction);
97 }
98 }
99
100 static void clear_btree_io_tree(struct extent_io_tree *tree)
101 {
102 spin_lock(&tree->lock);
103 /*
104 * Do a single barrier for the waitqueue_active check here, the state
105 * of the waitqueue should not change once clear_btree_io_tree is
106 * called.
107 */
108 smp_mb();
109 while (!RB_EMPTY_ROOT(&tree->state)) {
110 struct rb_node *node;
111 struct extent_state *state;
112
113 node = rb_first(&tree->state);
114 state = rb_entry(node, struct extent_state, rb_node);
115 rb_erase(&state->rb_node, &tree->state);
116 RB_CLEAR_NODE(&state->rb_node);
117 /*
118 * btree io trees aren't supposed to have tasks waiting for
119 * changes in the flags of extent states ever.
120 */
121 ASSERT(!waitqueue_active(&state->wq));
122 free_extent_state(state);
123
124 cond_resched_lock(&tree->lock);
125 }
126 spin_unlock(&tree->lock);
127 }
128
129 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 struct btrfs_fs_info *fs_info)
131 {
132 struct btrfs_root *root, *tmp;
133
134 down_write(&fs_info->commit_root_sem);
135 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136 dirty_list) {
137 list_del_init(&root->dirty_list);
138 free_extent_buffer(root->commit_root);
139 root->commit_root = btrfs_root_node(root);
140 if (is_fstree(root->objectid))
141 btrfs_unpin_free_ino(root);
142 clear_btree_io_tree(&root->dirty_log_pages);
143 }
144
145 /* We can free old roots now. */
146 spin_lock(&trans->dropped_roots_lock);
147 while (!list_empty(&trans->dropped_roots)) {
148 root = list_first_entry(&trans->dropped_roots,
149 struct btrfs_root, root_list);
150 list_del_init(&root->root_list);
151 spin_unlock(&trans->dropped_roots_lock);
152 btrfs_drop_and_free_fs_root(fs_info, root);
153 spin_lock(&trans->dropped_roots_lock);
154 }
155 spin_unlock(&trans->dropped_roots_lock);
156 up_write(&fs_info->commit_root_sem);
157 }
158
159 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160 unsigned int type)
161 {
162 if (type & TRANS_EXTWRITERS)
163 atomic_inc(&trans->num_extwriters);
164 }
165
166 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167 unsigned int type)
168 {
169 if (type & TRANS_EXTWRITERS)
170 atomic_dec(&trans->num_extwriters);
171 }
172
173 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174 unsigned int type)
175 {
176 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
177 }
178
179 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180 {
181 return atomic_read(&trans->num_extwriters);
182 }
183
184 /*
185 * either allocate a new transaction or hop into the existing one
186 */
187 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
188 unsigned int type)
189 {
190 struct btrfs_transaction *cur_trans;
191
192 spin_lock(&fs_info->trans_lock);
193 loop:
194 /* The file system has been taken offline. No new transactions. */
195 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 spin_unlock(&fs_info->trans_lock);
197 return -EROFS;
198 }
199
200 cur_trans = fs_info->running_transaction;
201 if (cur_trans) {
202 if (cur_trans->aborted) {
203 spin_unlock(&fs_info->trans_lock);
204 return cur_trans->aborted;
205 }
206 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 spin_unlock(&fs_info->trans_lock);
208 return -EBUSY;
209 }
210 refcount_inc(&cur_trans->use_count);
211 atomic_inc(&cur_trans->num_writers);
212 extwriter_counter_inc(cur_trans, type);
213 spin_unlock(&fs_info->trans_lock);
214 return 0;
215 }
216 spin_unlock(&fs_info->trans_lock);
217
218 /*
219 * If we are ATTACH, we just want to catch the current transaction,
220 * and commit it. If there is no transaction, just return ENOENT.
221 */
222 if (type == TRANS_ATTACH)
223 return -ENOENT;
224
225 /*
226 * JOIN_NOLOCK only happens during the transaction commit, so
227 * it is impossible that ->running_transaction is NULL
228 */
229 BUG_ON(type == TRANS_JOIN_NOLOCK);
230
231 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
232 if (!cur_trans)
233 return -ENOMEM;
234
235 spin_lock(&fs_info->trans_lock);
236 if (fs_info->running_transaction) {
237 /*
238 * someone started a transaction after we unlocked. Make sure
239 * to redo the checks above
240 */
241 kfree(cur_trans);
242 goto loop;
243 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 spin_unlock(&fs_info->trans_lock);
245 kfree(cur_trans);
246 return -EROFS;
247 }
248
249 cur_trans->fs_info = fs_info;
250 atomic_set(&cur_trans->num_writers, 1);
251 extwriter_counter_init(cur_trans, type);
252 init_waitqueue_head(&cur_trans->writer_wait);
253 init_waitqueue_head(&cur_trans->commit_wait);
254 init_waitqueue_head(&cur_trans->pending_wait);
255 cur_trans->state = TRANS_STATE_RUNNING;
256 /*
257 * One for this trans handle, one so it will live on until we
258 * commit the transaction.
259 */
260 refcount_set(&cur_trans->use_count, 2);
261 atomic_set(&cur_trans->pending_ordered, 0);
262 cur_trans->flags = 0;
263 cur_trans->start_time = get_seconds();
264
265 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
266
267 cur_trans->delayed_refs.href_root = RB_ROOT;
268 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270
271 /*
272 * although the tree mod log is per file system and not per transaction,
273 * the log must never go across transaction boundaries.
274 */
275 smp_mb();
276 if (!list_empty(&fs_info->tree_mod_seq_list))
277 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
281
282 spin_lock_init(&cur_trans->delayed_refs.lock);
283
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
303
304 return 0;
305 }
306
307 /*
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
312 */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
315 int force)
316 {
317 struct btrfs_fs_info *fs_info = root->fs_info;
318
319 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
320 root->last_trans < trans->transid) || force) {
321 WARN_ON(root == fs_info->extent_root);
322 WARN_ON(root->commit_root != root->node);
323
324 /*
325 * see below for IN_TRANS_SETUP usage rules
326 * we have the reloc mutex held now, so there
327 * is only one writer in this function
328 */
329 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330
331 /* make sure readers find IN_TRANS_SETUP before
332 * they find our root->last_trans update
333 */
334 smp_wmb();
335
336 spin_lock(&fs_info->fs_roots_radix_lock);
337 if (root->last_trans == trans->transid && !force) {
338 spin_unlock(&fs_info->fs_roots_radix_lock);
339 return 0;
340 }
341 radix_tree_tag_set(&fs_info->fs_roots_radix,
342 (unsigned long)root->root_key.objectid,
343 BTRFS_ROOT_TRANS_TAG);
344 spin_unlock(&fs_info->fs_roots_radix_lock);
345 root->last_trans = trans->transid;
346
347 /* this is pretty tricky. We don't want to
348 * take the relocation lock in btrfs_record_root_in_trans
349 * unless we're really doing the first setup for this root in
350 * this transaction.
351 *
352 * Normally we'd use root->last_trans as a flag to decide
353 * if we want to take the expensive mutex.
354 *
355 * But, we have to set root->last_trans before we
356 * init the relocation root, otherwise, we trip over warnings
357 * in ctree.c. The solution used here is to flag ourselves
358 * with root IN_TRANS_SETUP. When this is 1, we're still
359 * fixing up the reloc trees and everyone must wait.
360 *
361 * When this is zero, they can trust root->last_trans and fly
362 * through btrfs_record_root_in_trans without having to take the
363 * lock. smp_wmb() makes sure that all the writes above are
364 * done before we pop in the zero below
365 */
366 btrfs_init_reloc_root(trans, root);
367 smp_mb__before_atomic();
368 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
369 }
370 return 0;
371 }
372
373
374 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
375 struct btrfs_root *root)
376 {
377 struct btrfs_fs_info *fs_info = root->fs_info;
378 struct btrfs_transaction *cur_trans = trans->transaction;
379
380 /* Add ourselves to the transaction dropped list */
381 spin_lock(&cur_trans->dropped_roots_lock);
382 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
383 spin_unlock(&cur_trans->dropped_roots_lock);
384
385 /* Make sure we don't try to update the root at commit time */
386 spin_lock(&fs_info->fs_roots_radix_lock);
387 radix_tree_tag_clear(&fs_info->fs_roots_radix,
388 (unsigned long)root->root_key.objectid,
389 BTRFS_ROOT_TRANS_TAG);
390 spin_unlock(&fs_info->fs_roots_radix_lock);
391 }
392
393 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
394 struct btrfs_root *root)
395 {
396 struct btrfs_fs_info *fs_info = root->fs_info;
397
398 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
399 return 0;
400
401 /*
402 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
403 * and barriers
404 */
405 smp_rmb();
406 if (root->last_trans == trans->transid &&
407 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
408 return 0;
409
410 mutex_lock(&fs_info->reloc_mutex);
411 record_root_in_trans(trans, root, 0);
412 mutex_unlock(&fs_info->reloc_mutex);
413
414 return 0;
415 }
416
417 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
418 {
419 return (trans->state >= TRANS_STATE_BLOCKED &&
420 trans->state < TRANS_STATE_UNBLOCKED &&
421 !trans->aborted);
422 }
423
424 /* wait for commit against the current transaction to become unblocked
425 * when this is done, it is safe to start a new transaction, but the current
426 * transaction might not be fully on disk.
427 */
428 static void wait_current_trans(struct btrfs_fs_info *fs_info)
429 {
430 struct btrfs_transaction *cur_trans;
431
432 spin_lock(&fs_info->trans_lock);
433 cur_trans = fs_info->running_transaction;
434 if (cur_trans && is_transaction_blocked(cur_trans)) {
435 refcount_inc(&cur_trans->use_count);
436 spin_unlock(&fs_info->trans_lock);
437
438 wait_event(fs_info->transaction_wait,
439 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
440 cur_trans->aborted);
441 btrfs_put_transaction(cur_trans);
442 } else {
443 spin_unlock(&fs_info->trans_lock);
444 }
445 }
446
447 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
448 {
449 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
450 return 0;
451
452 if (type == TRANS_USERSPACE)
453 return 1;
454
455 if (type == TRANS_START &&
456 !atomic_read(&fs_info->open_ioctl_trans))
457 return 1;
458
459 return 0;
460 }
461
462 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
463 {
464 struct btrfs_fs_info *fs_info = root->fs_info;
465
466 if (!fs_info->reloc_ctl ||
467 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
468 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
469 root->reloc_root)
470 return false;
471
472 return true;
473 }
474
475 static struct btrfs_trans_handle *
476 start_transaction(struct btrfs_root *root, unsigned int num_items,
477 unsigned int type, enum btrfs_reserve_flush_enum flush,
478 bool enforce_qgroups)
479 {
480 struct btrfs_fs_info *fs_info = root->fs_info;
481
482 struct btrfs_trans_handle *h;
483 struct btrfs_transaction *cur_trans;
484 u64 num_bytes = 0;
485 u64 qgroup_reserved = 0;
486 bool reloc_reserved = false;
487 int ret;
488
489 /* Send isn't supposed to start transactions. */
490 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
491
492 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
493 return ERR_PTR(-EROFS);
494
495 if (current->journal_info) {
496 WARN_ON(type & TRANS_EXTWRITERS);
497 h = current->journal_info;
498 h->use_count++;
499 WARN_ON(h->use_count > 2);
500 h->orig_rsv = h->block_rsv;
501 h->block_rsv = NULL;
502 goto got_it;
503 }
504
505 /*
506 * Do the reservation before we join the transaction so we can do all
507 * the appropriate flushing if need be.
508 */
509 if (num_items && root != fs_info->chunk_root) {
510 qgroup_reserved = num_items * fs_info->nodesize;
511 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved,
512 enforce_qgroups);
513 if (ret)
514 return ERR_PTR(ret);
515
516 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
517 /*
518 * Do the reservation for the relocation root creation
519 */
520 if (need_reserve_reloc_root(root)) {
521 num_bytes += fs_info->nodesize;
522 reloc_reserved = true;
523 }
524
525 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
526 num_bytes, flush);
527 if (ret)
528 goto reserve_fail;
529 }
530 again:
531 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
532 if (!h) {
533 ret = -ENOMEM;
534 goto alloc_fail;
535 }
536
537 /*
538 * If we are JOIN_NOLOCK we're already committing a transaction and
539 * waiting on this guy, so we don't need to do the sb_start_intwrite
540 * because we're already holding a ref. We need this because we could
541 * have raced in and did an fsync() on a file which can kick a commit
542 * and then we deadlock with somebody doing a freeze.
543 *
544 * If we are ATTACH, it means we just want to catch the current
545 * transaction and commit it, so we needn't do sb_start_intwrite().
546 */
547 if (type & __TRANS_FREEZABLE)
548 sb_start_intwrite(fs_info->sb);
549
550 if (may_wait_transaction(fs_info, type))
551 wait_current_trans(fs_info);
552
553 do {
554 ret = join_transaction(fs_info, type);
555 if (ret == -EBUSY) {
556 wait_current_trans(fs_info);
557 if (unlikely(type == TRANS_ATTACH))
558 ret = -ENOENT;
559 }
560 } while (ret == -EBUSY);
561
562 if (ret < 0)
563 goto join_fail;
564
565 cur_trans = fs_info->running_transaction;
566
567 h->transid = cur_trans->transid;
568 h->transaction = cur_trans;
569 h->root = root;
570 h->use_count = 1;
571 h->fs_info = root->fs_info;
572
573 h->type = type;
574 h->can_flush_pending_bgs = true;
575 INIT_LIST_HEAD(&h->new_bgs);
576
577 smp_mb();
578 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
579 may_wait_transaction(fs_info, type)) {
580 current->journal_info = h;
581 btrfs_commit_transaction(h);
582 goto again;
583 }
584
585 if (num_bytes) {
586 trace_btrfs_space_reservation(fs_info, "transaction",
587 h->transid, num_bytes, 1);
588 h->block_rsv = &fs_info->trans_block_rsv;
589 h->bytes_reserved = num_bytes;
590 h->reloc_reserved = reloc_reserved;
591 }
592
593 got_it:
594 btrfs_record_root_in_trans(h, root);
595
596 if (!current->journal_info && type != TRANS_USERSPACE)
597 current->journal_info = h;
598 return h;
599
600 join_fail:
601 if (type & __TRANS_FREEZABLE)
602 sb_end_intwrite(fs_info->sb);
603 kmem_cache_free(btrfs_trans_handle_cachep, h);
604 alloc_fail:
605 if (num_bytes)
606 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
607 num_bytes);
608 reserve_fail:
609 btrfs_qgroup_free_meta(root, qgroup_reserved);
610 return ERR_PTR(ret);
611 }
612
613 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
614 unsigned int num_items)
615 {
616 return start_transaction(root, num_items, TRANS_START,
617 BTRFS_RESERVE_FLUSH_ALL, true);
618 }
619
620 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
621 struct btrfs_root *root,
622 unsigned int num_items,
623 int min_factor)
624 {
625 struct btrfs_fs_info *fs_info = root->fs_info;
626 struct btrfs_trans_handle *trans;
627 u64 num_bytes;
628 int ret;
629
630 /*
631 * We have two callers: unlink and block group removal. The
632 * former should succeed even if we will temporarily exceed
633 * quota and the latter operates on the extent root so
634 * qgroup enforcement is ignored anyway.
635 */
636 trans = start_transaction(root, num_items, TRANS_START,
637 BTRFS_RESERVE_FLUSH_ALL, false);
638 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
639 return trans;
640
641 trans = btrfs_start_transaction(root, 0);
642 if (IS_ERR(trans))
643 return trans;
644
645 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
646 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
647 num_bytes, min_factor);
648 if (ret) {
649 btrfs_end_transaction(trans);
650 return ERR_PTR(ret);
651 }
652
653 trans->block_rsv = &fs_info->trans_block_rsv;
654 trans->bytes_reserved = num_bytes;
655 trace_btrfs_space_reservation(fs_info, "transaction",
656 trans->transid, num_bytes, 1);
657
658 return trans;
659 }
660
661 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
662 struct btrfs_root *root,
663 unsigned int num_items)
664 {
665 return start_transaction(root, num_items, TRANS_START,
666 BTRFS_RESERVE_FLUSH_LIMIT, true);
667 }
668
669 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
670 {
671 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
672 true);
673 }
674
675 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
676 {
677 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
678 BTRFS_RESERVE_NO_FLUSH, true);
679 }
680
681 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
682 {
683 return start_transaction(root, 0, TRANS_USERSPACE,
684 BTRFS_RESERVE_NO_FLUSH, true);
685 }
686
687 /*
688 * btrfs_attach_transaction() - catch the running transaction
689 *
690 * It is used when we want to commit the current the transaction, but
691 * don't want to start a new one.
692 *
693 * Note: If this function return -ENOENT, it just means there is no
694 * running transaction. But it is possible that the inactive transaction
695 * is still in the memory, not fully on disk. If you hope there is no
696 * inactive transaction in the fs when -ENOENT is returned, you should
697 * invoke
698 * btrfs_attach_transaction_barrier()
699 */
700 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
701 {
702 return start_transaction(root, 0, TRANS_ATTACH,
703 BTRFS_RESERVE_NO_FLUSH, true);
704 }
705
706 /*
707 * btrfs_attach_transaction_barrier() - catch the running transaction
708 *
709 * It is similar to the above function, the differentia is this one
710 * will wait for all the inactive transactions until they fully
711 * complete.
712 */
713 struct btrfs_trans_handle *
714 btrfs_attach_transaction_barrier(struct btrfs_root *root)
715 {
716 struct btrfs_trans_handle *trans;
717
718 trans = start_transaction(root, 0, TRANS_ATTACH,
719 BTRFS_RESERVE_NO_FLUSH, true);
720 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
721 btrfs_wait_for_commit(root->fs_info, 0);
722
723 return trans;
724 }
725
726 /* wait for a transaction commit to be fully complete */
727 static noinline void wait_for_commit(struct btrfs_transaction *commit)
728 {
729 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
730 }
731
732 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
733 {
734 struct btrfs_transaction *cur_trans = NULL, *t;
735 int ret = 0;
736
737 if (transid) {
738 if (transid <= fs_info->last_trans_committed)
739 goto out;
740
741 /* find specified transaction */
742 spin_lock(&fs_info->trans_lock);
743 list_for_each_entry(t, &fs_info->trans_list, list) {
744 if (t->transid == transid) {
745 cur_trans = t;
746 refcount_inc(&cur_trans->use_count);
747 ret = 0;
748 break;
749 }
750 if (t->transid > transid) {
751 ret = 0;
752 break;
753 }
754 }
755 spin_unlock(&fs_info->trans_lock);
756
757 /*
758 * The specified transaction doesn't exist, or we
759 * raced with btrfs_commit_transaction
760 */
761 if (!cur_trans) {
762 if (transid > fs_info->last_trans_committed)
763 ret = -EINVAL;
764 goto out;
765 }
766 } else {
767 /* find newest transaction that is committing | committed */
768 spin_lock(&fs_info->trans_lock);
769 list_for_each_entry_reverse(t, &fs_info->trans_list,
770 list) {
771 if (t->state >= TRANS_STATE_COMMIT_START) {
772 if (t->state == TRANS_STATE_COMPLETED)
773 break;
774 cur_trans = t;
775 refcount_inc(&cur_trans->use_count);
776 break;
777 }
778 }
779 spin_unlock(&fs_info->trans_lock);
780 if (!cur_trans)
781 goto out; /* nothing committing|committed */
782 }
783
784 wait_for_commit(cur_trans);
785 btrfs_put_transaction(cur_trans);
786 out:
787 return ret;
788 }
789
790 void btrfs_throttle(struct btrfs_fs_info *fs_info)
791 {
792 if (!atomic_read(&fs_info->open_ioctl_trans))
793 wait_current_trans(fs_info);
794 }
795
796 static int should_end_transaction(struct btrfs_trans_handle *trans)
797 {
798 struct btrfs_fs_info *fs_info = trans->fs_info;
799
800 if (btrfs_check_space_for_delayed_refs(trans, fs_info))
801 return 1;
802
803 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
804 }
805
806 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
807 {
808 struct btrfs_transaction *cur_trans = trans->transaction;
809 struct btrfs_fs_info *fs_info = trans->fs_info;
810 int updates;
811 int err;
812
813 smp_mb();
814 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
815 cur_trans->delayed_refs.flushing)
816 return 1;
817
818 updates = trans->delayed_ref_updates;
819 trans->delayed_ref_updates = 0;
820 if (updates) {
821 err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
822 if (err) /* Error code will also eval true */
823 return err;
824 }
825
826 return should_end_transaction(trans);
827 }
828
829 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
830 int throttle)
831 {
832 struct btrfs_fs_info *info = trans->fs_info;
833 struct btrfs_transaction *cur_trans = trans->transaction;
834 u64 transid = trans->transid;
835 unsigned long cur = trans->delayed_ref_updates;
836 int lock = (trans->type != TRANS_JOIN_NOLOCK);
837 int err = 0;
838 int must_run_delayed_refs = 0;
839
840 if (trans->use_count > 1) {
841 trans->use_count--;
842 trans->block_rsv = trans->orig_rsv;
843 return 0;
844 }
845
846 btrfs_trans_release_metadata(trans, info);
847 trans->block_rsv = NULL;
848
849 if (!list_empty(&trans->new_bgs))
850 btrfs_create_pending_block_groups(trans, info);
851
852 trans->delayed_ref_updates = 0;
853 if (!trans->sync) {
854 must_run_delayed_refs =
855 btrfs_should_throttle_delayed_refs(trans, info);
856 cur = max_t(unsigned long, cur, 32);
857
858 /*
859 * don't make the caller wait if they are from a NOLOCK
860 * or ATTACH transaction, it will deadlock with commit
861 */
862 if (must_run_delayed_refs == 1 &&
863 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
864 must_run_delayed_refs = 2;
865 }
866
867 btrfs_trans_release_metadata(trans, info);
868 trans->block_rsv = NULL;
869
870 if (!list_empty(&trans->new_bgs))
871 btrfs_create_pending_block_groups(trans, info);
872
873 btrfs_trans_release_chunk_metadata(trans);
874
875 if (lock && !atomic_read(&info->open_ioctl_trans) &&
876 should_end_transaction(trans) &&
877 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
878 spin_lock(&info->trans_lock);
879 if (cur_trans->state == TRANS_STATE_RUNNING)
880 cur_trans->state = TRANS_STATE_BLOCKED;
881 spin_unlock(&info->trans_lock);
882 }
883
884 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
885 if (throttle)
886 return btrfs_commit_transaction(trans);
887 else
888 wake_up_process(info->transaction_kthread);
889 }
890
891 if (trans->type & __TRANS_FREEZABLE)
892 sb_end_intwrite(info->sb);
893
894 WARN_ON(cur_trans != info->running_transaction);
895 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
896 atomic_dec(&cur_trans->num_writers);
897 extwriter_counter_dec(cur_trans, trans->type);
898
899 /*
900 * Make sure counter is updated before we wake up waiters.
901 */
902 smp_mb();
903 if (waitqueue_active(&cur_trans->writer_wait))
904 wake_up(&cur_trans->writer_wait);
905 btrfs_put_transaction(cur_trans);
906
907 if (current->journal_info == trans)
908 current->journal_info = NULL;
909
910 if (throttle)
911 btrfs_run_delayed_iputs(info);
912
913 if (trans->aborted ||
914 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
915 wake_up_process(info->transaction_kthread);
916 err = -EIO;
917 }
918
919 kmem_cache_free(btrfs_trans_handle_cachep, trans);
920 if (must_run_delayed_refs) {
921 btrfs_async_run_delayed_refs(info, cur, transid,
922 must_run_delayed_refs == 1);
923 }
924 return err;
925 }
926
927 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
928 {
929 return __btrfs_end_transaction(trans, 0);
930 }
931
932 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
933 {
934 return __btrfs_end_transaction(trans, 1);
935 }
936
937 /*
938 * when btree blocks are allocated, they have some corresponding bits set for
939 * them in one of two extent_io trees. This is used to make sure all of
940 * those extents are sent to disk but does not wait on them
941 */
942 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
943 struct extent_io_tree *dirty_pages, int mark)
944 {
945 int err = 0;
946 int werr = 0;
947 struct address_space *mapping = fs_info->btree_inode->i_mapping;
948 struct extent_state *cached_state = NULL;
949 u64 start = 0;
950 u64 end;
951
952 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
953 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
954 mark, &cached_state)) {
955 bool wait_writeback = false;
956
957 err = convert_extent_bit(dirty_pages, start, end,
958 EXTENT_NEED_WAIT,
959 mark, &cached_state);
960 /*
961 * convert_extent_bit can return -ENOMEM, which is most of the
962 * time a temporary error. So when it happens, ignore the error
963 * and wait for writeback of this range to finish - because we
964 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
965 * to __btrfs_wait_marked_extents() would not know that
966 * writeback for this range started and therefore wouldn't
967 * wait for it to finish - we don't want to commit a
968 * superblock that points to btree nodes/leafs for which
969 * writeback hasn't finished yet (and without errors).
970 * We cleanup any entries left in the io tree when committing
971 * the transaction (through clear_btree_io_tree()).
972 */
973 if (err == -ENOMEM) {
974 err = 0;
975 wait_writeback = true;
976 }
977 if (!err)
978 err = filemap_fdatawrite_range(mapping, start, end);
979 if (err)
980 werr = err;
981 else if (wait_writeback)
982 werr = filemap_fdatawait_range(mapping, start, end);
983 free_extent_state(cached_state);
984 cached_state = NULL;
985 cond_resched();
986 start = end + 1;
987 }
988 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
989 return werr;
990 }
991
992 /*
993 * when btree blocks are allocated, they have some corresponding bits set for
994 * them in one of two extent_io trees. This is used to make sure all of
995 * those extents are on disk for transaction or log commit. We wait
996 * on all the pages and clear them from the dirty pages state tree
997 */
998 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
999 struct extent_io_tree *dirty_pages)
1000 {
1001 int err = 0;
1002 int werr = 0;
1003 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1004 struct extent_state *cached_state = NULL;
1005 u64 start = 0;
1006 u64 end;
1007
1008 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1009 EXTENT_NEED_WAIT, &cached_state)) {
1010 /*
1011 * Ignore -ENOMEM errors returned by clear_extent_bit().
1012 * When committing the transaction, we'll remove any entries
1013 * left in the io tree. For a log commit, we don't remove them
1014 * after committing the log because the tree can be accessed
1015 * concurrently - we do it only at transaction commit time when
1016 * it's safe to do it (through clear_btree_io_tree()).
1017 */
1018 err = clear_extent_bit(dirty_pages, start, end,
1019 EXTENT_NEED_WAIT,
1020 0, 0, &cached_state, GFP_NOFS);
1021 if (err == -ENOMEM)
1022 err = 0;
1023 if (!err)
1024 err = filemap_fdatawait_range(mapping, start, end);
1025 if (err)
1026 werr = err;
1027 free_extent_state(cached_state);
1028 cached_state = NULL;
1029 cond_resched();
1030 start = end + 1;
1031 }
1032 if (err)
1033 werr = err;
1034 return werr;
1035 }
1036
1037 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1038 struct extent_io_tree *dirty_pages)
1039 {
1040 bool errors = false;
1041 int err;
1042
1043 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1044 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1045 errors = true;
1046
1047 if (errors && !err)
1048 err = -EIO;
1049 return err;
1050 }
1051
1052 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1053 {
1054 struct btrfs_fs_info *fs_info = log_root->fs_info;
1055 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1056 bool errors = false;
1057 int err;
1058
1059 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1060
1061 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1062 if ((mark & EXTENT_DIRTY) &&
1063 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1064 errors = true;
1065
1066 if ((mark & EXTENT_NEW) &&
1067 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1068 errors = true;
1069
1070 if (errors && !err)
1071 err = -EIO;
1072 return err;
1073 }
1074
1075 /*
1076 * when btree blocks are allocated, they have some corresponding bits set for
1077 * them in one of two extent_io trees. This is used to make sure all of
1078 * those extents are on disk for transaction or log commit
1079 */
1080 static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info *fs_info,
1081 struct extent_io_tree *dirty_pages, int mark)
1082 {
1083 int ret;
1084 int ret2;
1085 struct blk_plug plug;
1086
1087 blk_start_plug(&plug);
1088 ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark);
1089 blk_finish_plug(&plug);
1090 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1091
1092 if (ret)
1093 return ret;
1094 if (ret2)
1095 return ret2;
1096 return 0;
1097 }
1098
1099 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1100 struct btrfs_fs_info *fs_info)
1101 {
1102 int ret;
1103
1104 ret = btrfs_write_and_wait_marked_extents(fs_info,
1105 &trans->transaction->dirty_pages,
1106 EXTENT_DIRTY);
1107 clear_btree_io_tree(&trans->transaction->dirty_pages);
1108
1109 return ret;
1110 }
1111
1112 /*
1113 * this is used to update the root pointer in the tree of tree roots.
1114 *
1115 * But, in the case of the extent allocation tree, updating the root
1116 * pointer may allocate blocks which may change the root of the extent
1117 * allocation tree.
1118 *
1119 * So, this loops and repeats and makes sure the cowonly root didn't
1120 * change while the root pointer was being updated in the metadata.
1121 */
1122 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1123 struct btrfs_root *root)
1124 {
1125 int ret;
1126 u64 old_root_bytenr;
1127 u64 old_root_used;
1128 struct btrfs_fs_info *fs_info = root->fs_info;
1129 struct btrfs_root *tree_root = fs_info->tree_root;
1130
1131 old_root_used = btrfs_root_used(&root->root_item);
1132
1133 while (1) {
1134 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1135 if (old_root_bytenr == root->node->start &&
1136 old_root_used == btrfs_root_used(&root->root_item))
1137 break;
1138
1139 btrfs_set_root_node(&root->root_item, root->node);
1140 ret = btrfs_update_root(trans, tree_root,
1141 &root->root_key,
1142 &root->root_item);
1143 if (ret)
1144 return ret;
1145
1146 old_root_used = btrfs_root_used(&root->root_item);
1147 }
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * update all the cowonly tree roots on disk
1154 *
1155 * The error handling in this function may not be obvious. Any of the
1156 * failures will cause the file system to go offline. We still need
1157 * to clean up the delayed refs.
1158 */
1159 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1160 struct btrfs_fs_info *fs_info)
1161 {
1162 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1163 struct list_head *io_bgs = &trans->transaction->io_bgs;
1164 struct list_head *next;
1165 struct extent_buffer *eb;
1166 int ret;
1167
1168 eb = btrfs_lock_root_node(fs_info->tree_root);
1169 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1170 0, &eb);
1171 btrfs_tree_unlock(eb);
1172 free_extent_buffer(eb);
1173
1174 if (ret)
1175 return ret;
1176
1177 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1178 if (ret)
1179 return ret;
1180
1181 ret = btrfs_run_dev_stats(trans, fs_info);
1182 if (ret)
1183 return ret;
1184 ret = btrfs_run_dev_replace(trans, fs_info);
1185 if (ret)
1186 return ret;
1187 ret = btrfs_run_qgroups(trans, fs_info);
1188 if (ret)
1189 return ret;
1190
1191 ret = btrfs_setup_space_cache(trans, fs_info);
1192 if (ret)
1193 return ret;
1194
1195 /* run_qgroups might have added some more refs */
1196 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1197 if (ret)
1198 return ret;
1199 again:
1200 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1201 struct btrfs_root *root;
1202 next = fs_info->dirty_cowonly_roots.next;
1203 list_del_init(next);
1204 root = list_entry(next, struct btrfs_root, dirty_list);
1205 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1206
1207 if (root != fs_info->extent_root)
1208 list_add_tail(&root->dirty_list,
1209 &trans->transaction->switch_commits);
1210 ret = update_cowonly_root(trans, root);
1211 if (ret)
1212 return ret;
1213 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1214 if (ret)
1215 return ret;
1216 }
1217
1218 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1219 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1220 if (ret)
1221 return ret;
1222 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1223 if (ret)
1224 return ret;
1225 }
1226
1227 if (!list_empty(&fs_info->dirty_cowonly_roots))
1228 goto again;
1229
1230 list_add_tail(&fs_info->extent_root->dirty_list,
1231 &trans->transaction->switch_commits);
1232 btrfs_after_dev_replace_commit(fs_info);
1233
1234 return 0;
1235 }
1236
1237 /*
1238 * dead roots are old snapshots that need to be deleted. This allocates
1239 * a dirty root struct and adds it into the list of dead roots that need to
1240 * be deleted
1241 */
1242 void btrfs_add_dead_root(struct btrfs_root *root)
1243 {
1244 struct btrfs_fs_info *fs_info = root->fs_info;
1245
1246 spin_lock(&fs_info->trans_lock);
1247 if (list_empty(&root->root_list))
1248 list_add_tail(&root->root_list, &fs_info->dead_roots);
1249 spin_unlock(&fs_info->trans_lock);
1250 }
1251
1252 /*
1253 * update all the cowonly tree roots on disk
1254 */
1255 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1256 struct btrfs_fs_info *fs_info)
1257 {
1258 struct btrfs_root *gang[8];
1259 int i;
1260 int ret;
1261 int err = 0;
1262
1263 spin_lock(&fs_info->fs_roots_radix_lock);
1264 while (1) {
1265 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1266 (void **)gang, 0,
1267 ARRAY_SIZE(gang),
1268 BTRFS_ROOT_TRANS_TAG);
1269 if (ret == 0)
1270 break;
1271 for (i = 0; i < ret; i++) {
1272 struct btrfs_root *root = gang[i];
1273 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1274 (unsigned long)root->root_key.objectid,
1275 BTRFS_ROOT_TRANS_TAG);
1276 spin_unlock(&fs_info->fs_roots_radix_lock);
1277
1278 btrfs_free_log(trans, root);
1279 btrfs_update_reloc_root(trans, root);
1280 btrfs_orphan_commit_root(trans, root);
1281
1282 btrfs_save_ino_cache(root, trans);
1283
1284 /* see comments in should_cow_block() */
1285 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1286 smp_mb__after_atomic();
1287
1288 if (root->commit_root != root->node) {
1289 list_add_tail(&root->dirty_list,
1290 &trans->transaction->switch_commits);
1291 btrfs_set_root_node(&root->root_item,
1292 root->node);
1293 }
1294
1295 err = btrfs_update_root(trans, fs_info->tree_root,
1296 &root->root_key,
1297 &root->root_item);
1298 spin_lock(&fs_info->fs_roots_radix_lock);
1299 if (err)
1300 break;
1301 btrfs_qgroup_free_meta_all(root);
1302 }
1303 }
1304 spin_unlock(&fs_info->fs_roots_radix_lock);
1305 return err;
1306 }
1307
1308 /*
1309 * defrag a given btree.
1310 * Every leaf in the btree is read and defragged.
1311 */
1312 int btrfs_defrag_root(struct btrfs_root *root)
1313 {
1314 struct btrfs_fs_info *info = root->fs_info;
1315 struct btrfs_trans_handle *trans;
1316 int ret;
1317
1318 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1319 return 0;
1320
1321 while (1) {
1322 trans = btrfs_start_transaction(root, 0);
1323 if (IS_ERR(trans))
1324 return PTR_ERR(trans);
1325
1326 ret = btrfs_defrag_leaves(trans, root);
1327
1328 btrfs_end_transaction(trans);
1329 btrfs_btree_balance_dirty(info);
1330 cond_resched();
1331
1332 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1333 break;
1334
1335 if (btrfs_defrag_cancelled(info)) {
1336 btrfs_debug(info, "defrag_root cancelled");
1337 ret = -EAGAIN;
1338 break;
1339 }
1340 }
1341 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1342 return ret;
1343 }
1344
1345 /*
1346 * Do all special snapshot related qgroup dirty hack.
1347 *
1348 * Will do all needed qgroup inherit and dirty hack like switch commit
1349 * roots inside one transaction and write all btree into disk, to make
1350 * qgroup works.
1351 */
1352 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1353 struct btrfs_root *src,
1354 struct btrfs_root *parent,
1355 struct btrfs_qgroup_inherit *inherit,
1356 u64 dst_objectid)
1357 {
1358 struct btrfs_fs_info *fs_info = src->fs_info;
1359 int ret;
1360
1361 /*
1362 * Save some performance in the case that qgroups are not
1363 * enabled. If this check races with the ioctl, rescan will
1364 * kick in anyway.
1365 */
1366 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1367 return 0;
1368
1369 /*
1370 * We are going to commit transaction, see btrfs_commit_transaction()
1371 * comment for reason locking tree_log_mutex
1372 */
1373 mutex_lock(&fs_info->tree_log_mutex);
1374
1375 ret = commit_fs_roots(trans, fs_info);
1376 if (ret)
1377 goto out;
1378 ret = btrfs_qgroup_account_extents(trans, fs_info);
1379 if (ret < 0)
1380 goto out;
1381
1382 /* Now qgroup are all updated, we can inherit it to new qgroups */
1383 ret = btrfs_qgroup_inherit(trans, fs_info,
1384 src->root_key.objectid, dst_objectid,
1385 inherit);
1386 if (ret < 0)
1387 goto out;
1388
1389 /*
1390 * Now we do a simplified commit transaction, which will:
1391 * 1) commit all subvolume and extent tree
1392 * To ensure all subvolume and extent tree have a valid
1393 * commit_root to accounting later insert_dir_item()
1394 * 2) write all btree blocks onto disk
1395 * This is to make sure later btree modification will be cowed
1396 * Or commit_root can be populated and cause wrong qgroup numbers
1397 * In this simplified commit, we don't really care about other trees
1398 * like chunk and root tree, as they won't affect qgroup.
1399 * And we don't write super to avoid half committed status.
1400 */
1401 ret = commit_cowonly_roots(trans, fs_info);
1402 if (ret)
1403 goto out;
1404 switch_commit_roots(trans->transaction, fs_info);
1405 ret = btrfs_write_and_wait_transaction(trans, fs_info);
1406 if (ret)
1407 btrfs_handle_fs_error(fs_info, ret,
1408 "Error while writing out transaction for qgroup");
1409
1410 out:
1411 mutex_unlock(&fs_info->tree_log_mutex);
1412
1413 /*
1414 * Force parent root to be updated, as we recorded it before so its
1415 * last_trans == cur_transid.
1416 * Or it won't be committed again onto disk after later
1417 * insert_dir_item()
1418 */
1419 if (!ret)
1420 record_root_in_trans(trans, parent, 1);
1421 return ret;
1422 }
1423
1424 /*
1425 * new snapshots need to be created at a very specific time in the
1426 * transaction commit. This does the actual creation.
1427 *
1428 * Note:
1429 * If the error which may affect the commitment of the current transaction
1430 * happens, we should return the error number. If the error which just affect
1431 * the creation of the pending snapshots, just return 0.
1432 */
1433 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1434 struct btrfs_fs_info *fs_info,
1435 struct btrfs_pending_snapshot *pending)
1436 {
1437 struct btrfs_key key;
1438 struct btrfs_root_item *new_root_item;
1439 struct btrfs_root *tree_root = fs_info->tree_root;
1440 struct btrfs_root *root = pending->root;
1441 struct btrfs_root *parent_root;
1442 struct btrfs_block_rsv *rsv;
1443 struct inode *parent_inode;
1444 struct btrfs_path *path;
1445 struct btrfs_dir_item *dir_item;
1446 struct dentry *dentry;
1447 struct extent_buffer *tmp;
1448 struct extent_buffer *old;
1449 struct timespec cur_time;
1450 int ret = 0;
1451 u64 to_reserve = 0;
1452 u64 index = 0;
1453 u64 objectid;
1454 u64 root_flags;
1455 uuid_le new_uuid;
1456
1457 ASSERT(pending->path);
1458 path = pending->path;
1459
1460 ASSERT(pending->root_item);
1461 new_root_item = pending->root_item;
1462
1463 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1464 if (pending->error)
1465 goto no_free_objectid;
1466
1467 /*
1468 * Make qgroup to skip current new snapshot's qgroupid, as it is
1469 * accounted by later btrfs_qgroup_inherit().
1470 */
1471 btrfs_set_skip_qgroup(trans, objectid);
1472
1473 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1474
1475 if (to_reserve > 0) {
1476 pending->error = btrfs_block_rsv_add(root,
1477 &pending->block_rsv,
1478 to_reserve,
1479 BTRFS_RESERVE_NO_FLUSH);
1480 if (pending->error)
1481 goto clear_skip_qgroup;
1482 }
1483
1484 key.objectid = objectid;
1485 key.offset = (u64)-1;
1486 key.type = BTRFS_ROOT_ITEM_KEY;
1487
1488 rsv = trans->block_rsv;
1489 trans->block_rsv = &pending->block_rsv;
1490 trans->bytes_reserved = trans->block_rsv->reserved;
1491 trace_btrfs_space_reservation(fs_info, "transaction",
1492 trans->transid,
1493 trans->bytes_reserved, 1);
1494 dentry = pending->dentry;
1495 parent_inode = pending->dir;
1496 parent_root = BTRFS_I(parent_inode)->root;
1497 record_root_in_trans(trans, parent_root, 0);
1498
1499 cur_time = current_time(parent_inode);
1500
1501 /*
1502 * insert the directory item
1503 */
1504 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1505 BUG_ON(ret); /* -ENOMEM */
1506
1507 /* check if there is a file/dir which has the same name. */
1508 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1509 btrfs_ino(BTRFS_I(parent_inode)),
1510 dentry->d_name.name,
1511 dentry->d_name.len, 0);
1512 if (dir_item != NULL && !IS_ERR(dir_item)) {
1513 pending->error = -EEXIST;
1514 goto dir_item_existed;
1515 } else if (IS_ERR(dir_item)) {
1516 ret = PTR_ERR(dir_item);
1517 btrfs_abort_transaction(trans, ret);
1518 goto fail;
1519 }
1520 btrfs_release_path(path);
1521
1522 /*
1523 * pull in the delayed directory update
1524 * and the delayed inode item
1525 * otherwise we corrupt the FS during
1526 * snapshot
1527 */
1528 ret = btrfs_run_delayed_items(trans, fs_info);
1529 if (ret) { /* Transaction aborted */
1530 btrfs_abort_transaction(trans, ret);
1531 goto fail;
1532 }
1533
1534 record_root_in_trans(trans, root, 0);
1535 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1536 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1537 btrfs_check_and_init_root_item(new_root_item);
1538
1539 root_flags = btrfs_root_flags(new_root_item);
1540 if (pending->readonly)
1541 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1542 else
1543 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1544 btrfs_set_root_flags(new_root_item, root_flags);
1545
1546 btrfs_set_root_generation_v2(new_root_item,
1547 trans->transid);
1548 uuid_le_gen(&new_uuid);
1549 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1550 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1551 BTRFS_UUID_SIZE);
1552 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1553 memset(new_root_item->received_uuid, 0,
1554 sizeof(new_root_item->received_uuid));
1555 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1556 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1557 btrfs_set_root_stransid(new_root_item, 0);
1558 btrfs_set_root_rtransid(new_root_item, 0);
1559 }
1560 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1561 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1562 btrfs_set_root_otransid(new_root_item, trans->transid);
1563
1564 old = btrfs_lock_root_node(root);
1565 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1566 if (ret) {
1567 btrfs_tree_unlock(old);
1568 free_extent_buffer(old);
1569 btrfs_abort_transaction(trans, ret);
1570 goto fail;
1571 }
1572
1573 btrfs_set_lock_blocking(old);
1574
1575 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1576 /* clean up in any case */
1577 btrfs_tree_unlock(old);
1578 free_extent_buffer(old);
1579 if (ret) {
1580 btrfs_abort_transaction(trans, ret);
1581 goto fail;
1582 }
1583 /* see comments in should_cow_block() */
1584 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1585 smp_wmb();
1586
1587 btrfs_set_root_node(new_root_item, tmp);
1588 /* record when the snapshot was created in key.offset */
1589 key.offset = trans->transid;
1590 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1591 btrfs_tree_unlock(tmp);
1592 free_extent_buffer(tmp);
1593 if (ret) {
1594 btrfs_abort_transaction(trans, ret);
1595 goto fail;
1596 }
1597
1598 /*
1599 * insert root back/forward references
1600 */
1601 ret = btrfs_add_root_ref(trans, fs_info, objectid,
1602 parent_root->root_key.objectid,
1603 btrfs_ino(BTRFS_I(parent_inode)), index,
1604 dentry->d_name.name, dentry->d_name.len);
1605 if (ret) {
1606 btrfs_abort_transaction(trans, ret);
1607 goto fail;
1608 }
1609
1610 key.offset = (u64)-1;
1611 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1612 if (IS_ERR(pending->snap)) {
1613 ret = PTR_ERR(pending->snap);
1614 btrfs_abort_transaction(trans, ret);
1615 goto fail;
1616 }
1617
1618 ret = btrfs_reloc_post_snapshot(trans, pending);
1619 if (ret) {
1620 btrfs_abort_transaction(trans, ret);
1621 goto fail;
1622 }
1623
1624 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1625 if (ret) {
1626 btrfs_abort_transaction(trans, ret);
1627 goto fail;
1628 }
1629
1630 /*
1631 * Do special qgroup accounting for snapshot, as we do some qgroup
1632 * snapshot hack to do fast snapshot.
1633 * To co-operate with that hack, we do hack again.
1634 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1635 */
1636 ret = qgroup_account_snapshot(trans, root, parent_root,
1637 pending->inherit, objectid);
1638 if (ret < 0)
1639 goto fail;
1640
1641 ret = btrfs_insert_dir_item(trans, parent_root,
1642 dentry->d_name.name, dentry->d_name.len,
1643 BTRFS_I(parent_inode), &key,
1644 BTRFS_FT_DIR, index);
1645 /* We have check then name at the beginning, so it is impossible. */
1646 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1647 if (ret) {
1648 btrfs_abort_transaction(trans, ret);
1649 goto fail;
1650 }
1651
1652 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1653 dentry->d_name.len * 2);
1654 parent_inode->i_mtime = parent_inode->i_ctime =
1655 current_time(parent_inode);
1656 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1657 if (ret) {
1658 btrfs_abort_transaction(trans, ret);
1659 goto fail;
1660 }
1661 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1662 BTRFS_UUID_KEY_SUBVOL, objectid);
1663 if (ret) {
1664 btrfs_abort_transaction(trans, ret);
1665 goto fail;
1666 }
1667 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1668 ret = btrfs_uuid_tree_add(trans, fs_info,
1669 new_root_item->received_uuid,
1670 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1671 objectid);
1672 if (ret && ret != -EEXIST) {
1673 btrfs_abort_transaction(trans, ret);
1674 goto fail;
1675 }
1676 }
1677
1678 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1679 if (ret) {
1680 btrfs_abort_transaction(trans, ret);
1681 goto fail;
1682 }
1683
1684 fail:
1685 pending->error = ret;
1686 dir_item_existed:
1687 trans->block_rsv = rsv;
1688 trans->bytes_reserved = 0;
1689 clear_skip_qgroup:
1690 btrfs_clear_skip_qgroup(trans);
1691 no_free_objectid:
1692 kfree(new_root_item);
1693 pending->root_item = NULL;
1694 btrfs_free_path(path);
1695 pending->path = NULL;
1696
1697 return ret;
1698 }
1699
1700 /*
1701 * create all the snapshots we've scheduled for creation
1702 */
1703 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1704 struct btrfs_fs_info *fs_info)
1705 {
1706 struct btrfs_pending_snapshot *pending, *next;
1707 struct list_head *head = &trans->transaction->pending_snapshots;
1708 int ret = 0;
1709
1710 list_for_each_entry_safe(pending, next, head, list) {
1711 list_del(&pending->list);
1712 ret = create_pending_snapshot(trans, fs_info, pending);
1713 if (ret)
1714 break;
1715 }
1716 return ret;
1717 }
1718
1719 static void update_super_roots(struct btrfs_fs_info *fs_info)
1720 {
1721 struct btrfs_root_item *root_item;
1722 struct btrfs_super_block *super;
1723
1724 super = fs_info->super_copy;
1725
1726 root_item = &fs_info->chunk_root->root_item;
1727 super->chunk_root = root_item->bytenr;
1728 super->chunk_root_generation = root_item->generation;
1729 super->chunk_root_level = root_item->level;
1730
1731 root_item = &fs_info->tree_root->root_item;
1732 super->root = root_item->bytenr;
1733 super->generation = root_item->generation;
1734 super->root_level = root_item->level;
1735 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1736 super->cache_generation = root_item->generation;
1737 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1738 super->uuid_tree_generation = root_item->generation;
1739 }
1740
1741 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1742 {
1743 struct btrfs_transaction *trans;
1744 int ret = 0;
1745
1746 spin_lock(&info->trans_lock);
1747 trans = info->running_transaction;
1748 if (trans)
1749 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1750 spin_unlock(&info->trans_lock);
1751 return ret;
1752 }
1753
1754 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1755 {
1756 struct btrfs_transaction *trans;
1757 int ret = 0;
1758
1759 spin_lock(&info->trans_lock);
1760 trans = info->running_transaction;
1761 if (trans)
1762 ret = is_transaction_blocked(trans);
1763 spin_unlock(&info->trans_lock);
1764 return ret;
1765 }
1766
1767 /*
1768 * wait for the current transaction commit to start and block subsequent
1769 * transaction joins
1770 */
1771 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1772 struct btrfs_transaction *trans)
1773 {
1774 wait_event(fs_info->transaction_blocked_wait,
1775 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1776 }
1777
1778 /*
1779 * wait for the current transaction to start and then become unblocked.
1780 * caller holds ref.
1781 */
1782 static void wait_current_trans_commit_start_and_unblock(
1783 struct btrfs_fs_info *fs_info,
1784 struct btrfs_transaction *trans)
1785 {
1786 wait_event(fs_info->transaction_wait,
1787 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1788 }
1789
1790 /*
1791 * commit transactions asynchronously. once btrfs_commit_transaction_async
1792 * returns, any subsequent transaction will not be allowed to join.
1793 */
1794 struct btrfs_async_commit {
1795 struct btrfs_trans_handle *newtrans;
1796 struct work_struct work;
1797 };
1798
1799 static void do_async_commit(struct work_struct *work)
1800 {
1801 struct btrfs_async_commit *ac =
1802 container_of(work, struct btrfs_async_commit, work);
1803
1804 /*
1805 * We've got freeze protection passed with the transaction.
1806 * Tell lockdep about it.
1807 */
1808 if (ac->newtrans->type & __TRANS_FREEZABLE)
1809 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1810
1811 current->journal_info = ac->newtrans;
1812
1813 btrfs_commit_transaction(ac->newtrans);
1814 kfree(ac);
1815 }
1816
1817 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1818 int wait_for_unblock)
1819 {
1820 struct btrfs_fs_info *fs_info = trans->fs_info;
1821 struct btrfs_async_commit *ac;
1822 struct btrfs_transaction *cur_trans;
1823
1824 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1825 if (!ac)
1826 return -ENOMEM;
1827
1828 INIT_WORK(&ac->work, do_async_commit);
1829 ac->newtrans = btrfs_join_transaction(trans->root);
1830 if (IS_ERR(ac->newtrans)) {
1831 int err = PTR_ERR(ac->newtrans);
1832 kfree(ac);
1833 return err;
1834 }
1835
1836 /* take transaction reference */
1837 cur_trans = trans->transaction;
1838 refcount_inc(&cur_trans->use_count);
1839
1840 btrfs_end_transaction(trans);
1841
1842 /*
1843 * Tell lockdep we've released the freeze rwsem, since the
1844 * async commit thread will be the one to unlock it.
1845 */
1846 if (ac->newtrans->type & __TRANS_FREEZABLE)
1847 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1848
1849 schedule_work(&ac->work);
1850
1851 /* wait for transaction to start and unblock */
1852 if (wait_for_unblock)
1853 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1854 else
1855 wait_current_trans_commit_start(fs_info, cur_trans);
1856
1857 if (current->journal_info == trans)
1858 current->journal_info = NULL;
1859
1860 btrfs_put_transaction(cur_trans);
1861 return 0;
1862 }
1863
1864
1865 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root, int err)
1867 {
1868 struct btrfs_fs_info *fs_info = root->fs_info;
1869 struct btrfs_transaction *cur_trans = trans->transaction;
1870 DEFINE_WAIT(wait);
1871
1872 WARN_ON(trans->use_count > 1);
1873
1874 btrfs_abort_transaction(trans, err);
1875
1876 spin_lock(&fs_info->trans_lock);
1877
1878 /*
1879 * If the transaction is removed from the list, it means this
1880 * transaction has been committed successfully, so it is impossible
1881 * to call the cleanup function.
1882 */
1883 BUG_ON(list_empty(&cur_trans->list));
1884
1885 list_del_init(&cur_trans->list);
1886 if (cur_trans == fs_info->running_transaction) {
1887 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1888 spin_unlock(&fs_info->trans_lock);
1889 wait_event(cur_trans->writer_wait,
1890 atomic_read(&cur_trans->num_writers) == 1);
1891
1892 spin_lock(&fs_info->trans_lock);
1893 }
1894 spin_unlock(&fs_info->trans_lock);
1895
1896 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1897
1898 spin_lock(&fs_info->trans_lock);
1899 if (cur_trans == fs_info->running_transaction)
1900 fs_info->running_transaction = NULL;
1901 spin_unlock(&fs_info->trans_lock);
1902
1903 if (trans->type & __TRANS_FREEZABLE)
1904 sb_end_intwrite(fs_info->sb);
1905 btrfs_put_transaction(cur_trans);
1906 btrfs_put_transaction(cur_trans);
1907
1908 trace_btrfs_transaction_commit(root);
1909
1910 if (current->journal_info == trans)
1911 current->journal_info = NULL;
1912 btrfs_scrub_cancel(fs_info);
1913
1914 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1915 }
1916
1917 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1918 {
1919 /*
1920 * We use writeback_inodes_sb here because if we used
1921 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1922 * Currently are holding the fs freeze lock, if we do an async flush
1923 * we'll do btrfs_join_transaction() and deadlock because we need to
1924 * wait for the fs freeze lock. Using the direct flushing we benefit
1925 * from already being in a transaction and our join_transaction doesn't
1926 * have to re-take the fs freeze lock.
1927 */
1928 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1929 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1930 return 0;
1931 }
1932
1933 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1934 {
1935 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1936 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1937 }
1938
1939 static inline void
1940 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1941 {
1942 wait_event(cur_trans->pending_wait,
1943 atomic_read(&cur_trans->pending_ordered) == 0);
1944 }
1945
1946 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1947 {
1948 struct btrfs_fs_info *fs_info = trans->fs_info;
1949 struct btrfs_transaction *cur_trans = trans->transaction;
1950 struct btrfs_transaction *prev_trans = NULL;
1951 int ret;
1952
1953 /* Stop the commit early if ->aborted is set */
1954 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1955 ret = cur_trans->aborted;
1956 btrfs_end_transaction(trans);
1957 return ret;
1958 }
1959
1960 /* make a pass through all the delayed refs we have so far
1961 * any runnings procs may add more while we are here
1962 */
1963 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1964 if (ret) {
1965 btrfs_end_transaction(trans);
1966 return ret;
1967 }
1968
1969 btrfs_trans_release_metadata(trans, fs_info);
1970 trans->block_rsv = NULL;
1971
1972 cur_trans = trans->transaction;
1973
1974 /*
1975 * set the flushing flag so procs in this transaction have to
1976 * start sending their work down.
1977 */
1978 cur_trans->delayed_refs.flushing = 1;
1979 smp_wmb();
1980
1981 if (!list_empty(&trans->new_bgs))
1982 btrfs_create_pending_block_groups(trans, fs_info);
1983
1984 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1985 if (ret) {
1986 btrfs_end_transaction(trans);
1987 return ret;
1988 }
1989
1990 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1991 int run_it = 0;
1992
1993 /* this mutex is also taken before trying to set
1994 * block groups readonly. We need to make sure
1995 * that nobody has set a block group readonly
1996 * after a extents from that block group have been
1997 * allocated for cache files. btrfs_set_block_group_ro
1998 * will wait for the transaction to commit if it
1999 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2000 *
2001 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2002 * only one process starts all the block group IO. It wouldn't
2003 * hurt to have more than one go through, but there's no
2004 * real advantage to it either.
2005 */
2006 mutex_lock(&fs_info->ro_block_group_mutex);
2007 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2008 &cur_trans->flags))
2009 run_it = 1;
2010 mutex_unlock(&fs_info->ro_block_group_mutex);
2011
2012 if (run_it)
2013 ret = btrfs_start_dirty_block_groups(trans, fs_info);
2014 }
2015 if (ret) {
2016 btrfs_end_transaction(trans);
2017 return ret;
2018 }
2019
2020 spin_lock(&fs_info->trans_lock);
2021 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2022 spin_unlock(&fs_info->trans_lock);
2023 refcount_inc(&cur_trans->use_count);
2024 ret = btrfs_end_transaction(trans);
2025
2026 wait_for_commit(cur_trans);
2027
2028 if (unlikely(cur_trans->aborted))
2029 ret = cur_trans->aborted;
2030
2031 btrfs_put_transaction(cur_trans);
2032
2033 return ret;
2034 }
2035
2036 cur_trans->state = TRANS_STATE_COMMIT_START;
2037 wake_up(&fs_info->transaction_blocked_wait);
2038
2039 if (cur_trans->list.prev != &fs_info->trans_list) {
2040 prev_trans = list_entry(cur_trans->list.prev,
2041 struct btrfs_transaction, list);
2042 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2043 refcount_inc(&prev_trans->use_count);
2044 spin_unlock(&fs_info->trans_lock);
2045
2046 wait_for_commit(prev_trans);
2047 ret = prev_trans->aborted;
2048
2049 btrfs_put_transaction(prev_trans);
2050 if (ret)
2051 goto cleanup_transaction;
2052 } else {
2053 spin_unlock(&fs_info->trans_lock);
2054 }
2055 } else {
2056 spin_unlock(&fs_info->trans_lock);
2057 }
2058
2059 extwriter_counter_dec(cur_trans, trans->type);
2060
2061 ret = btrfs_start_delalloc_flush(fs_info);
2062 if (ret)
2063 goto cleanup_transaction;
2064
2065 ret = btrfs_run_delayed_items(trans, fs_info);
2066 if (ret)
2067 goto cleanup_transaction;
2068
2069 wait_event(cur_trans->writer_wait,
2070 extwriter_counter_read(cur_trans) == 0);
2071
2072 /* some pending stuffs might be added after the previous flush. */
2073 ret = btrfs_run_delayed_items(trans, fs_info);
2074 if (ret)
2075 goto cleanup_transaction;
2076
2077 btrfs_wait_delalloc_flush(fs_info);
2078
2079 btrfs_wait_pending_ordered(cur_trans);
2080
2081 btrfs_scrub_pause(fs_info);
2082 /*
2083 * Ok now we need to make sure to block out any other joins while we
2084 * commit the transaction. We could have started a join before setting
2085 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2086 */
2087 spin_lock(&fs_info->trans_lock);
2088 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2089 spin_unlock(&fs_info->trans_lock);
2090 wait_event(cur_trans->writer_wait,
2091 atomic_read(&cur_trans->num_writers) == 1);
2092
2093 /* ->aborted might be set after the previous check, so check it */
2094 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2095 ret = cur_trans->aborted;
2096 goto scrub_continue;
2097 }
2098 /*
2099 * the reloc mutex makes sure that we stop
2100 * the balancing code from coming in and moving
2101 * extents around in the middle of the commit
2102 */
2103 mutex_lock(&fs_info->reloc_mutex);
2104
2105 /*
2106 * We needn't worry about the delayed items because we will
2107 * deal with them in create_pending_snapshot(), which is the
2108 * core function of the snapshot creation.
2109 */
2110 ret = create_pending_snapshots(trans, fs_info);
2111 if (ret) {
2112 mutex_unlock(&fs_info->reloc_mutex);
2113 goto scrub_continue;
2114 }
2115
2116 /*
2117 * We insert the dir indexes of the snapshots and update the inode
2118 * of the snapshots' parents after the snapshot creation, so there
2119 * are some delayed items which are not dealt with. Now deal with
2120 * them.
2121 *
2122 * We needn't worry that this operation will corrupt the snapshots,
2123 * because all the tree which are snapshoted will be forced to COW
2124 * the nodes and leaves.
2125 */
2126 ret = btrfs_run_delayed_items(trans, fs_info);
2127 if (ret) {
2128 mutex_unlock(&fs_info->reloc_mutex);
2129 goto scrub_continue;
2130 }
2131
2132 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2133 if (ret) {
2134 mutex_unlock(&fs_info->reloc_mutex);
2135 goto scrub_continue;
2136 }
2137
2138 /*
2139 * make sure none of the code above managed to slip in a
2140 * delayed item
2141 */
2142 btrfs_assert_delayed_root_empty(fs_info);
2143
2144 WARN_ON(cur_trans != trans->transaction);
2145
2146 /* btrfs_commit_tree_roots is responsible for getting the
2147 * various roots consistent with each other. Every pointer
2148 * in the tree of tree roots has to point to the most up to date
2149 * root for every subvolume and other tree. So, we have to keep
2150 * the tree logging code from jumping in and changing any
2151 * of the trees.
2152 *
2153 * At this point in the commit, there can't be any tree-log
2154 * writers, but a little lower down we drop the trans mutex
2155 * and let new people in. By holding the tree_log_mutex
2156 * from now until after the super is written, we avoid races
2157 * with the tree-log code.
2158 */
2159 mutex_lock(&fs_info->tree_log_mutex);
2160
2161 ret = commit_fs_roots(trans, fs_info);
2162 if (ret) {
2163 mutex_unlock(&fs_info->tree_log_mutex);
2164 mutex_unlock(&fs_info->reloc_mutex);
2165 goto scrub_continue;
2166 }
2167
2168 /*
2169 * Since the transaction is done, we can apply the pending changes
2170 * before the next transaction.
2171 */
2172 btrfs_apply_pending_changes(fs_info);
2173
2174 /* commit_fs_roots gets rid of all the tree log roots, it is now
2175 * safe to free the root of tree log roots
2176 */
2177 btrfs_free_log_root_tree(trans, fs_info);
2178
2179 /*
2180 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2181 * new delayed refs. Must handle them or qgroup can be wrong.
2182 */
2183 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2184 if (ret) {
2185 mutex_unlock(&fs_info->tree_log_mutex);
2186 mutex_unlock(&fs_info->reloc_mutex);
2187 goto scrub_continue;
2188 }
2189
2190 /*
2191 * Since fs roots are all committed, we can get a quite accurate
2192 * new_roots. So let's do quota accounting.
2193 */
2194 ret = btrfs_qgroup_account_extents(trans, fs_info);
2195 if (ret < 0) {
2196 mutex_unlock(&fs_info->tree_log_mutex);
2197 mutex_unlock(&fs_info->reloc_mutex);
2198 goto scrub_continue;
2199 }
2200
2201 ret = commit_cowonly_roots(trans, fs_info);
2202 if (ret) {
2203 mutex_unlock(&fs_info->tree_log_mutex);
2204 mutex_unlock(&fs_info->reloc_mutex);
2205 goto scrub_continue;
2206 }
2207
2208 /*
2209 * The tasks which save the space cache and inode cache may also
2210 * update ->aborted, check it.
2211 */
2212 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2213 ret = cur_trans->aborted;
2214 mutex_unlock(&fs_info->tree_log_mutex);
2215 mutex_unlock(&fs_info->reloc_mutex);
2216 goto scrub_continue;
2217 }
2218
2219 btrfs_prepare_extent_commit(fs_info);
2220
2221 cur_trans = fs_info->running_transaction;
2222
2223 btrfs_set_root_node(&fs_info->tree_root->root_item,
2224 fs_info->tree_root->node);
2225 list_add_tail(&fs_info->tree_root->dirty_list,
2226 &cur_trans->switch_commits);
2227
2228 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2229 fs_info->chunk_root->node);
2230 list_add_tail(&fs_info->chunk_root->dirty_list,
2231 &cur_trans->switch_commits);
2232
2233 switch_commit_roots(cur_trans, fs_info);
2234
2235 ASSERT(list_empty(&cur_trans->dirty_bgs));
2236 ASSERT(list_empty(&cur_trans->io_bgs));
2237 update_super_roots(fs_info);
2238
2239 btrfs_set_super_log_root(fs_info->super_copy, 0);
2240 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2241 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2242 sizeof(*fs_info->super_copy));
2243
2244 btrfs_update_commit_device_size(fs_info);
2245 btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2246
2247 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2248 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2249
2250 btrfs_trans_release_chunk_metadata(trans);
2251
2252 spin_lock(&fs_info->trans_lock);
2253 cur_trans->state = TRANS_STATE_UNBLOCKED;
2254 fs_info->running_transaction = NULL;
2255 spin_unlock(&fs_info->trans_lock);
2256 mutex_unlock(&fs_info->reloc_mutex);
2257
2258 wake_up(&fs_info->transaction_wait);
2259
2260 ret = btrfs_write_and_wait_transaction(trans, fs_info);
2261 if (ret) {
2262 btrfs_handle_fs_error(fs_info, ret,
2263 "Error while writing out transaction");
2264 mutex_unlock(&fs_info->tree_log_mutex);
2265 goto scrub_continue;
2266 }
2267
2268 ret = write_all_supers(fs_info, 0);
2269 if (ret) {
2270 mutex_unlock(&fs_info->tree_log_mutex);
2271 goto scrub_continue;
2272 }
2273
2274 /*
2275 * the super is written, we can safely allow the tree-loggers
2276 * to go about their business
2277 */
2278 mutex_unlock(&fs_info->tree_log_mutex);
2279
2280 btrfs_finish_extent_commit(trans, fs_info);
2281
2282 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2283 btrfs_clear_space_info_full(fs_info);
2284
2285 fs_info->last_trans_committed = cur_trans->transid;
2286 /*
2287 * We needn't acquire the lock here because there is no other task
2288 * which can change it.
2289 */
2290 cur_trans->state = TRANS_STATE_COMPLETED;
2291 wake_up(&cur_trans->commit_wait);
2292
2293 spin_lock(&fs_info->trans_lock);
2294 list_del_init(&cur_trans->list);
2295 spin_unlock(&fs_info->trans_lock);
2296
2297 btrfs_put_transaction(cur_trans);
2298 btrfs_put_transaction(cur_trans);
2299
2300 if (trans->type & __TRANS_FREEZABLE)
2301 sb_end_intwrite(fs_info->sb);
2302
2303 trace_btrfs_transaction_commit(trans->root);
2304
2305 btrfs_scrub_continue(fs_info);
2306
2307 if (current->journal_info == trans)
2308 current->journal_info = NULL;
2309
2310 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2311
2312 /*
2313 * If fs has been frozen, we can not handle delayed iputs, otherwise
2314 * it'll result in deadlock about SB_FREEZE_FS.
2315 */
2316 if (current != fs_info->transaction_kthread &&
2317 current != fs_info->cleaner_kthread &&
2318 !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2319 btrfs_run_delayed_iputs(fs_info);
2320
2321 return ret;
2322
2323 scrub_continue:
2324 btrfs_scrub_continue(fs_info);
2325 cleanup_transaction:
2326 btrfs_trans_release_metadata(trans, fs_info);
2327 btrfs_trans_release_chunk_metadata(trans);
2328 trans->block_rsv = NULL;
2329 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2330 if (current->journal_info == trans)
2331 current->journal_info = NULL;
2332 cleanup_transaction(trans, trans->root, ret);
2333
2334 return ret;
2335 }
2336
2337 /*
2338 * return < 0 if error
2339 * 0 if there are no more dead_roots at the time of call
2340 * 1 there are more to be processed, call me again
2341 *
2342 * The return value indicates there are certainly more snapshots to delete, but
2343 * if there comes a new one during processing, it may return 0. We don't mind,
2344 * because btrfs_commit_super will poke cleaner thread and it will process it a
2345 * few seconds later.
2346 */
2347 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2348 {
2349 int ret;
2350 struct btrfs_fs_info *fs_info = root->fs_info;
2351
2352 spin_lock(&fs_info->trans_lock);
2353 if (list_empty(&fs_info->dead_roots)) {
2354 spin_unlock(&fs_info->trans_lock);
2355 return 0;
2356 }
2357 root = list_first_entry(&fs_info->dead_roots,
2358 struct btrfs_root, root_list);
2359 list_del_init(&root->root_list);
2360 spin_unlock(&fs_info->trans_lock);
2361
2362 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2363
2364 btrfs_kill_all_delayed_nodes(root);
2365
2366 if (btrfs_header_backref_rev(root->node) <
2367 BTRFS_MIXED_BACKREF_REV)
2368 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2369 else
2370 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2371
2372 return (ret < 0) ? 0 : 1;
2373 }
2374
2375 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2376 {
2377 unsigned long prev;
2378 unsigned long bit;
2379
2380 prev = xchg(&fs_info->pending_changes, 0);
2381 if (!prev)
2382 return;
2383
2384 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2385 if (prev & bit)
2386 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2387 prev &= ~bit;
2388
2389 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2390 if (prev & bit)
2391 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2392 prev &= ~bit;
2393
2394 bit = 1 << BTRFS_PENDING_COMMIT;
2395 if (prev & bit)
2396 btrfs_debug(fs_info, "pending commit done");
2397 prev &= ~bit;
2398
2399 if (prev)
2400 btrfs_warn(fs_info,
2401 "unknown pending changes left 0x%lx, ignoring", prev);
2402 }