]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/transaction.c
Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 kmem_cache_free(btrfs_transaction_cachep, transaction);
79 }
80 }
81
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 spin_lock(&tree->lock);
85 while (!RB_EMPTY_ROOT(&tree->state)) {
86 struct rb_node *node;
87 struct extent_state *state;
88
89 node = rb_first(&tree->state);
90 state = rb_entry(node, struct extent_state, rb_node);
91 rb_erase(&state->rb_node, &tree->state);
92 RB_CLEAR_NODE(&state->rb_node);
93 /*
94 * btree io trees aren't supposed to have tasks waiting for
95 * changes in the flags of extent states ever.
96 */
97 ASSERT(!waitqueue_active(&state->wq));
98 free_extent_state(state);
99
100 cond_resched_lock(&tree->lock);
101 }
102 spin_unlock(&tree->lock);
103 }
104
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 struct btrfs_fs_info *fs_info)
107 {
108 struct btrfs_root *root, *tmp;
109
110 down_write(&fs_info->commit_root_sem);
111 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 dirty_list) {
113 list_del_init(&root->dirty_list);
114 free_extent_buffer(root->commit_root);
115 root->commit_root = btrfs_root_node(root);
116 if (is_fstree(root->objectid))
117 btrfs_unpin_free_ino(root);
118 clear_btree_io_tree(&root->dirty_log_pages);
119 }
120
121 /* We can free old roots now. */
122 spin_lock(&trans->dropped_roots_lock);
123 while (!list_empty(&trans->dropped_roots)) {
124 root = list_first_entry(&trans->dropped_roots,
125 struct btrfs_root, root_list);
126 list_del_init(&root->root_list);
127 spin_unlock(&trans->dropped_roots_lock);
128 btrfs_drop_and_free_fs_root(fs_info, root);
129 spin_lock(&trans->dropped_roots_lock);
130 }
131 spin_unlock(&trans->dropped_roots_lock);
132 up_write(&fs_info->commit_root_sem);
133 }
134
135 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
136 unsigned int type)
137 {
138 if (type & TRANS_EXTWRITERS)
139 atomic_inc(&trans->num_extwriters);
140 }
141
142 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
143 unsigned int type)
144 {
145 if (type & TRANS_EXTWRITERS)
146 atomic_dec(&trans->num_extwriters);
147 }
148
149 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
150 unsigned int type)
151 {
152 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
153 }
154
155 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
156 {
157 return atomic_read(&trans->num_extwriters);
158 }
159
160 /*
161 * either allocate a new transaction or hop into the existing one
162 */
163 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
164 {
165 struct btrfs_transaction *cur_trans;
166 struct btrfs_fs_info *fs_info = root->fs_info;
167
168 spin_lock(&fs_info->trans_lock);
169 loop:
170 /* The file system has been taken offline. No new transactions. */
171 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
172 spin_unlock(&fs_info->trans_lock);
173 return -EROFS;
174 }
175
176 cur_trans = fs_info->running_transaction;
177 if (cur_trans) {
178 if (cur_trans->aborted) {
179 spin_unlock(&fs_info->trans_lock);
180 return cur_trans->aborted;
181 }
182 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
183 spin_unlock(&fs_info->trans_lock);
184 return -EBUSY;
185 }
186 atomic_inc(&cur_trans->use_count);
187 atomic_inc(&cur_trans->num_writers);
188 extwriter_counter_inc(cur_trans, type);
189 spin_unlock(&fs_info->trans_lock);
190 return 0;
191 }
192 spin_unlock(&fs_info->trans_lock);
193
194 /*
195 * If we are ATTACH, we just want to catch the current transaction,
196 * and commit it. If there is no transaction, just return ENOENT.
197 */
198 if (type == TRANS_ATTACH)
199 return -ENOENT;
200
201 /*
202 * JOIN_NOLOCK only happens during the transaction commit, so
203 * it is impossible that ->running_transaction is NULL
204 */
205 BUG_ON(type == TRANS_JOIN_NOLOCK);
206
207 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
208 if (!cur_trans)
209 return -ENOMEM;
210
211 spin_lock(&fs_info->trans_lock);
212 if (fs_info->running_transaction) {
213 /*
214 * someone started a transaction after we unlocked. Make sure
215 * to redo the checks above
216 */
217 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
218 goto loop;
219 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
220 spin_unlock(&fs_info->trans_lock);
221 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
222 return -EROFS;
223 }
224
225 atomic_set(&cur_trans->num_writers, 1);
226 extwriter_counter_init(cur_trans, type);
227 init_waitqueue_head(&cur_trans->writer_wait);
228 init_waitqueue_head(&cur_trans->commit_wait);
229 cur_trans->state = TRANS_STATE_RUNNING;
230 /*
231 * One for this trans handle, one so it will live on until we
232 * commit the transaction.
233 */
234 atomic_set(&cur_trans->use_count, 2);
235 cur_trans->have_free_bgs = 0;
236 cur_trans->start_time = get_seconds();
237 cur_trans->dirty_bg_run = 0;
238
239 cur_trans->delayed_refs.href_root = RB_ROOT;
240 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
241 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
242 cur_trans->delayed_refs.num_heads_ready = 0;
243 cur_trans->delayed_refs.pending_csums = 0;
244 cur_trans->delayed_refs.num_heads = 0;
245 cur_trans->delayed_refs.flushing = 0;
246 cur_trans->delayed_refs.run_delayed_start = 0;
247 cur_trans->delayed_refs.qgroup_to_skip = 0;
248
249 /*
250 * although the tree mod log is per file system and not per transaction,
251 * the log must never go across transaction boundaries.
252 */
253 smp_mb();
254 if (!list_empty(&fs_info->tree_mod_seq_list))
255 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
256 "creating a fresh transaction\n");
257 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
258 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
259 "creating a fresh transaction\n");
260 atomic64_set(&fs_info->tree_mod_seq, 0);
261
262 spin_lock_init(&cur_trans->delayed_refs.lock);
263
264 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
265 INIT_LIST_HEAD(&cur_trans->pending_chunks);
266 INIT_LIST_HEAD(&cur_trans->switch_commits);
267 INIT_LIST_HEAD(&cur_trans->pending_ordered);
268 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
269 INIT_LIST_HEAD(&cur_trans->io_bgs);
270 INIT_LIST_HEAD(&cur_trans->dropped_roots);
271 mutex_init(&cur_trans->cache_write_mutex);
272 cur_trans->num_dirty_bgs = 0;
273 spin_lock_init(&cur_trans->dirty_bgs_lock);
274 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
275 spin_lock_init(&cur_trans->deleted_bgs_lock);
276 spin_lock_init(&cur_trans->dropped_roots_lock);
277 list_add_tail(&cur_trans->list, &fs_info->trans_list);
278 extent_io_tree_init(&cur_trans->dirty_pages,
279 fs_info->btree_inode->i_mapping);
280 fs_info->generation++;
281 cur_trans->transid = fs_info->generation;
282 fs_info->running_transaction = cur_trans;
283 cur_trans->aborted = 0;
284 spin_unlock(&fs_info->trans_lock);
285
286 return 0;
287 }
288
289 /*
290 * this does all the record keeping required to make sure that a reference
291 * counted root is properly recorded in a given transaction. This is required
292 * to make sure the old root from before we joined the transaction is deleted
293 * when the transaction commits
294 */
295 static int record_root_in_trans(struct btrfs_trans_handle *trans,
296 struct btrfs_root *root)
297 {
298 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
299 root->last_trans < trans->transid) {
300 WARN_ON(root == root->fs_info->extent_root);
301 WARN_ON(root->commit_root != root->node);
302
303 /*
304 * see below for IN_TRANS_SETUP usage rules
305 * we have the reloc mutex held now, so there
306 * is only one writer in this function
307 */
308 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
309
310 /* make sure readers find IN_TRANS_SETUP before
311 * they find our root->last_trans update
312 */
313 smp_wmb();
314
315 spin_lock(&root->fs_info->fs_roots_radix_lock);
316 if (root->last_trans == trans->transid) {
317 spin_unlock(&root->fs_info->fs_roots_radix_lock);
318 return 0;
319 }
320 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
321 (unsigned long)root->root_key.objectid,
322 BTRFS_ROOT_TRANS_TAG);
323 spin_unlock(&root->fs_info->fs_roots_radix_lock);
324 root->last_trans = trans->transid;
325
326 /* this is pretty tricky. We don't want to
327 * take the relocation lock in btrfs_record_root_in_trans
328 * unless we're really doing the first setup for this root in
329 * this transaction.
330 *
331 * Normally we'd use root->last_trans as a flag to decide
332 * if we want to take the expensive mutex.
333 *
334 * But, we have to set root->last_trans before we
335 * init the relocation root, otherwise, we trip over warnings
336 * in ctree.c. The solution used here is to flag ourselves
337 * with root IN_TRANS_SETUP. When this is 1, we're still
338 * fixing up the reloc trees and everyone must wait.
339 *
340 * When this is zero, they can trust root->last_trans and fly
341 * through btrfs_record_root_in_trans without having to take the
342 * lock. smp_wmb() makes sure that all the writes above are
343 * done before we pop in the zero below
344 */
345 btrfs_init_reloc_root(trans, root);
346 smp_mb__before_atomic();
347 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
348 }
349 return 0;
350 }
351
352
353 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
354 struct btrfs_root *root)
355 {
356 struct btrfs_transaction *cur_trans = trans->transaction;
357
358 /* Add ourselves to the transaction dropped list */
359 spin_lock(&cur_trans->dropped_roots_lock);
360 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
361 spin_unlock(&cur_trans->dropped_roots_lock);
362
363 /* Make sure we don't try to update the root at commit time */
364 spin_lock(&root->fs_info->fs_roots_radix_lock);
365 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
366 (unsigned long)root->root_key.objectid,
367 BTRFS_ROOT_TRANS_TAG);
368 spin_unlock(&root->fs_info->fs_roots_radix_lock);
369 }
370
371 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
372 struct btrfs_root *root)
373 {
374 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
375 return 0;
376
377 /*
378 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
379 * and barriers
380 */
381 smp_rmb();
382 if (root->last_trans == trans->transid &&
383 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
384 return 0;
385
386 mutex_lock(&root->fs_info->reloc_mutex);
387 record_root_in_trans(trans, root);
388 mutex_unlock(&root->fs_info->reloc_mutex);
389
390 return 0;
391 }
392
393 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
394 {
395 return (trans->state >= TRANS_STATE_BLOCKED &&
396 trans->state < TRANS_STATE_UNBLOCKED &&
397 !trans->aborted);
398 }
399
400 /* wait for commit against the current transaction to become unblocked
401 * when this is done, it is safe to start a new transaction, but the current
402 * transaction might not be fully on disk.
403 */
404 static void wait_current_trans(struct btrfs_root *root)
405 {
406 struct btrfs_transaction *cur_trans;
407
408 spin_lock(&root->fs_info->trans_lock);
409 cur_trans = root->fs_info->running_transaction;
410 if (cur_trans && is_transaction_blocked(cur_trans)) {
411 atomic_inc(&cur_trans->use_count);
412 spin_unlock(&root->fs_info->trans_lock);
413
414 wait_event(root->fs_info->transaction_wait,
415 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
416 cur_trans->aborted);
417 btrfs_put_transaction(cur_trans);
418 } else {
419 spin_unlock(&root->fs_info->trans_lock);
420 }
421 }
422
423 static int may_wait_transaction(struct btrfs_root *root, int type)
424 {
425 if (root->fs_info->log_root_recovering)
426 return 0;
427
428 if (type == TRANS_USERSPACE)
429 return 1;
430
431 if (type == TRANS_START &&
432 !atomic_read(&root->fs_info->open_ioctl_trans))
433 return 1;
434
435 return 0;
436 }
437
438 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
439 {
440 if (!root->fs_info->reloc_ctl ||
441 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
442 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
443 root->reloc_root)
444 return false;
445
446 return true;
447 }
448
449 static struct btrfs_trans_handle *
450 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
451 enum btrfs_reserve_flush_enum flush)
452 {
453 struct btrfs_trans_handle *h;
454 struct btrfs_transaction *cur_trans;
455 u64 num_bytes = 0;
456 u64 qgroup_reserved = 0;
457 bool reloc_reserved = false;
458 int ret;
459
460 /* Send isn't supposed to start transactions. */
461 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
462
463 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
464 return ERR_PTR(-EROFS);
465
466 if (current->journal_info) {
467 WARN_ON(type & TRANS_EXTWRITERS);
468 h = current->journal_info;
469 h->use_count++;
470 WARN_ON(h->use_count > 2);
471 h->orig_rsv = h->block_rsv;
472 h->block_rsv = NULL;
473 goto got_it;
474 }
475
476 /*
477 * Do the reservation before we join the transaction so we can do all
478 * the appropriate flushing if need be.
479 */
480 if (num_items > 0 && root != root->fs_info->chunk_root) {
481 if (root->fs_info->quota_enabled &&
482 is_fstree(root->root_key.objectid)) {
483 qgroup_reserved = num_items * root->nodesize;
484 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
485 if (ret)
486 return ERR_PTR(ret);
487 }
488
489 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
490 /*
491 * Do the reservation for the relocation root creation
492 */
493 if (need_reserve_reloc_root(root)) {
494 num_bytes += root->nodesize;
495 reloc_reserved = true;
496 }
497
498 ret = btrfs_block_rsv_add(root,
499 &root->fs_info->trans_block_rsv,
500 num_bytes, flush);
501 if (ret)
502 goto reserve_fail;
503 }
504 again:
505 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
506 if (!h) {
507 ret = -ENOMEM;
508 goto alloc_fail;
509 }
510
511 /*
512 * If we are JOIN_NOLOCK we're already committing a transaction and
513 * waiting on this guy, so we don't need to do the sb_start_intwrite
514 * because we're already holding a ref. We need this because we could
515 * have raced in and did an fsync() on a file which can kick a commit
516 * and then we deadlock with somebody doing a freeze.
517 *
518 * If we are ATTACH, it means we just want to catch the current
519 * transaction and commit it, so we needn't do sb_start_intwrite().
520 */
521 if (type & __TRANS_FREEZABLE)
522 sb_start_intwrite(root->fs_info->sb);
523
524 if (may_wait_transaction(root, type))
525 wait_current_trans(root);
526
527 do {
528 ret = join_transaction(root, type);
529 if (ret == -EBUSY) {
530 wait_current_trans(root);
531 if (unlikely(type == TRANS_ATTACH))
532 ret = -ENOENT;
533 }
534 } while (ret == -EBUSY);
535
536 if (ret < 0) {
537 /* We must get the transaction if we are JOIN_NOLOCK. */
538 BUG_ON(type == TRANS_JOIN_NOLOCK);
539 goto join_fail;
540 }
541
542 cur_trans = root->fs_info->running_transaction;
543
544 h->transid = cur_trans->transid;
545 h->transaction = cur_trans;
546 h->blocks_used = 0;
547 h->bytes_reserved = 0;
548 h->chunk_bytes_reserved = 0;
549 h->root = root;
550 h->delayed_ref_updates = 0;
551 h->use_count = 1;
552 h->adding_csums = 0;
553 h->block_rsv = NULL;
554 h->orig_rsv = NULL;
555 h->aborted = 0;
556 h->qgroup_reserved = 0;
557 h->delayed_ref_elem.seq = 0;
558 h->type = type;
559 h->allocating_chunk = false;
560 h->reloc_reserved = false;
561 h->sync = false;
562 INIT_LIST_HEAD(&h->qgroup_ref_list);
563 INIT_LIST_HEAD(&h->new_bgs);
564 INIT_LIST_HEAD(&h->ordered);
565
566 smp_mb();
567 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
568 may_wait_transaction(root, type)) {
569 current->journal_info = h;
570 btrfs_commit_transaction(h, root);
571 goto again;
572 }
573
574 if (num_bytes) {
575 trace_btrfs_space_reservation(root->fs_info, "transaction",
576 h->transid, num_bytes, 1);
577 h->block_rsv = &root->fs_info->trans_block_rsv;
578 h->bytes_reserved = num_bytes;
579 h->reloc_reserved = reloc_reserved;
580 }
581 h->qgroup_reserved = qgroup_reserved;
582
583 got_it:
584 btrfs_record_root_in_trans(h, root);
585
586 if (!current->journal_info && type != TRANS_USERSPACE)
587 current->journal_info = h;
588 return h;
589
590 join_fail:
591 if (type & __TRANS_FREEZABLE)
592 sb_end_intwrite(root->fs_info->sb);
593 kmem_cache_free(btrfs_trans_handle_cachep, h);
594 alloc_fail:
595 if (num_bytes)
596 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
597 num_bytes);
598 reserve_fail:
599 if (qgroup_reserved)
600 btrfs_qgroup_free(root, qgroup_reserved);
601 return ERR_PTR(ret);
602 }
603
604 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
605 int num_items)
606 {
607 return start_transaction(root, num_items, TRANS_START,
608 BTRFS_RESERVE_FLUSH_ALL);
609 }
610
611 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
612 struct btrfs_root *root, int num_items)
613 {
614 return start_transaction(root, num_items, TRANS_START,
615 BTRFS_RESERVE_FLUSH_LIMIT);
616 }
617
618 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
619 {
620 return start_transaction(root, 0, TRANS_JOIN, 0);
621 }
622
623 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
624 {
625 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
626 }
627
628 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
629 {
630 return start_transaction(root, 0, TRANS_USERSPACE, 0);
631 }
632
633 /*
634 * btrfs_attach_transaction() - catch the running transaction
635 *
636 * It is used when we want to commit the current the transaction, but
637 * don't want to start a new one.
638 *
639 * Note: If this function return -ENOENT, it just means there is no
640 * running transaction. But it is possible that the inactive transaction
641 * is still in the memory, not fully on disk. If you hope there is no
642 * inactive transaction in the fs when -ENOENT is returned, you should
643 * invoke
644 * btrfs_attach_transaction_barrier()
645 */
646 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
647 {
648 return start_transaction(root, 0, TRANS_ATTACH, 0);
649 }
650
651 /*
652 * btrfs_attach_transaction_barrier() - catch the running transaction
653 *
654 * It is similar to the above function, the differentia is this one
655 * will wait for all the inactive transactions until they fully
656 * complete.
657 */
658 struct btrfs_trans_handle *
659 btrfs_attach_transaction_barrier(struct btrfs_root *root)
660 {
661 struct btrfs_trans_handle *trans;
662
663 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
664 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
665 btrfs_wait_for_commit(root, 0);
666
667 return trans;
668 }
669
670 /* wait for a transaction commit to be fully complete */
671 static noinline void wait_for_commit(struct btrfs_root *root,
672 struct btrfs_transaction *commit)
673 {
674 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
675 }
676
677 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
678 {
679 struct btrfs_transaction *cur_trans = NULL, *t;
680 int ret = 0;
681
682 if (transid) {
683 if (transid <= root->fs_info->last_trans_committed)
684 goto out;
685
686 /* find specified transaction */
687 spin_lock(&root->fs_info->trans_lock);
688 list_for_each_entry(t, &root->fs_info->trans_list, list) {
689 if (t->transid == transid) {
690 cur_trans = t;
691 atomic_inc(&cur_trans->use_count);
692 ret = 0;
693 break;
694 }
695 if (t->transid > transid) {
696 ret = 0;
697 break;
698 }
699 }
700 spin_unlock(&root->fs_info->trans_lock);
701
702 /*
703 * The specified transaction doesn't exist, or we
704 * raced with btrfs_commit_transaction
705 */
706 if (!cur_trans) {
707 if (transid > root->fs_info->last_trans_committed)
708 ret = -EINVAL;
709 goto out;
710 }
711 } else {
712 /* find newest transaction that is committing | committed */
713 spin_lock(&root->fs_info->trans_lock);
714 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
715 list) {
716 if (t->state >= TRANS_STATE_COMMIT_START) {
717 if (t->state == TRANS_STATE_COMPLETED)
718 break;
719 cur_trans = t;
720 atomic_inc(&cur_trans->use_count);
721 break;
722 }
723 }
724 spin_unlock(&root->fs_info->trans_lock);
725 if (!cur_trans)
726 goto out; /* nothing committing|committed */
727 }
728
729 wait_for_commit(root, cur_trans);
730 btrfs_put_transaction(cur_trans);
731 out:
732 return ret;
733 }
734
735 void btrfs_throttle(struct btrfs_root *root)
736 {
737 if (!atomic_read(&root->fs_info->open_ioctl_trans))
738 wait_current_trans(root);
739 }
740
741 static int should_end_transaction(struct btrfs_trans_handle *trans,
742 struct btrfs_root *root)
743 {
744 if (root->fs_info->global_block_rsv.space_info->full &&
745 btrfs_check_space_for_delayed_refs(trans, root))
746 return 1;
747
748 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
749 }
750
751 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
752 struct btrfs_root *root)
753 {
754 struct btrfs_transaction *cur_trans = trans->transaction;
755 int updates;
756 int err;
757
758 smp_mb();
759 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
760 cur_trans->delayed_refs.flushing)
761 return 1;
762
763 updates = trans->delayed_ref_updates;
764 trans->delayed_ref_updates = 0;
765 if (updates) {
766 err = btrfs_run_delayed_refs(trans, root, updates * 2);
767 if (err) /* Error code will also eval true */
768 return err;
769 }
770
771 return should_end_transaction(trans, root);
772 }
773
774 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
775 struct btrfs_root *root, int throttle)
776 {
777 struct btrfs_transaction *cur_trans = trans->transaction;
778 struct btrfs_fs_info *info = root->fs_info;
779 unsigned long cur = trans->delayed_ref_updates;
780 int lock = (trans->type != TRANS_JOIN_NOLOCK);
781 int err = 0;
782 int must_run_delayed_refs = 0;
783
784 if (trans->use_count > 1) {
785 trans->use_count--;
786 trans->block_rsv = trans->orig_rsv;
787 return 0;
788 }
789
790 btrfs_trans_release_metadata(trans, root);
791 trans->block_rsv = NULL;
792
793 if (!list_empty(&trans->new_bgs))
794 btrfs_create_pending_block_groups(trans, root);
795
796 if (!list_empty(&trans->ordered)) {
797 spin_lock(&info->trans_lock);
798 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
799 spin_unlock(&info->trans_lock);
800 }
801
802 trans->delayed_ref_updates = 0;
803 if (!trans->sync) {
804 must_run_delayed_refs =
805 btrfs_should_throttle_delayed_refs(trans, root);
806 cur = max_t(unsigned long, cur, 32);
807
808 /*
809 * don't make the caller wait if they are from a NOLOCK
810 * or ATTACH transaction, it will deadlock with commit
811 */
812 if (must_run_delayed_refs == 1 &&
813 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
814 must_run_delayed_refs = 2;
815 }
816
817 if (trans->qgroup_reserved) {
818 /*
819 * the same root has to be passed here between start_transaction
820 * and end_transaction. Subvolume quota depends on this.
821 */
822 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
823 trans->qgroup_reserved = 0;
824 }
825
826 btrfs_trans_release_metadata(trans, root);
827 trans->block_rsv = NULL;
828
829 if (!list_empty(&trans->new_bgs))
830 btrfs_create_pending_block_groups(trans, root);
831
832 btrfs_trans_release_chunk_metadata(trans);
833
834 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
835 should_end_transaction(trans, root) &&
836 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
837 spin_lock(&info->trans_lock);
838 if (cur_trans->state == TRANS_STATE_RUNNING)
839 cur_trans->state = TRANS_STATE_BLOCKED;
840 spin_unlock(&info->trans_lock);
841 }
842
843 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
844 if (throttle)
845 return btrfs_commit_transaction(trans, root);
846 else
847 wake_up_process(info->transaction_kthread);
848 }
849
850 if (trans->type & __TRANS_FREEZABLE)
851 sb_end_intwrite(root->fs_info->sb);
852
853 WARN_ON(cur_trans != info->running_transaction);
854 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
855 atomic_dec(&cur_trans->num_writers);
856 extwriter_counter_dec(cur_trans, trans->type);
857
858 smp_mb();
859 if (waitqueue_active(&cur_trans->writer_wait))
860 wake_up(&cur_trans->writer_wait);
861 btrfs_put_transaction(cur_trans);
862
863 if (current->journal_info == trans)
864 current->journal_info = NULL;
865
866 if (throttle)
867 btrfs_run_delayed_iputs(root);
868
869 if (trans->aborted ||
870 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
871 wake_up_process(info->transaction_kthread);
872 err = -EIO;
873 }
874 assert_qgroups_uptodate(trans);
875
876 kmem_cache_free(btrfs_trans_handle_cachep, trans);
877 if (must_run_delayed_refs) {
878 btrfs_async_run_delayed_refs(root, cur,
879 must_run_delayed_refs == 1);
880 }
881 return err;
882 }
883
884 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
885 struct btrfs_root *root)
886 {
887 return __btrfs_end_transaction(trans, root, 0);
888 }
889
890 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
891 struct btrfs_root *root)
892 {
893 return __btrfs_end_transaction(trans, root, 1);
894 }
895
896 /*
897 * when btree blocks are allocated, they have some corresponding bits set for
898 * them in one of two extent_io trees. This is used to make sure all of
899 * those extents are sent to disk but does not wait on them
900 */
901 int btrfs_write_marked_extents(struct btrfs_root *root,
902 struct extent_io_tree *dirty_pages, int mark)
903 {
904 int err = 0;
905 int werr = 0;
906 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
907 struct extent_state *cached_state = NULL;
908 u64 start = 0;
909 u64 end;
910
911 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
912 mark, &cached_state)) {
913 bool wait_writeback = false;
914
915 err = convert_extent_bit(dirty_pages, start, end,
916 EXTENT_NEED_WAIT,
917 mark, &cached_state, GFP_NOFS);
918 /*
919 * convert_extent_bit can return -ENOMEM, which is most of the
920 * time a temporary error. So when it happens, ignore the error
921 * and wait for writeback of this range to finish - because we
922 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
923 * to btrfs_wait_marked_extents() would not know that writeback
924 * for this range started and therefore wouldn't wait for it to
925 * finish - we don't want to commit a superblock that points to
926 * btree nodes/leafs for which writeback hasn't finished yet
927 * (and without errors).
928 * We cleanup any entries left in the io tree when committing
929 * the transaction (through clear_btree_io_tree()).
930 */
931 if (err == -ENOMEM) {
932 err = 0;
933 wait_writeback = true;
934 }
935 if (!err)
936 err = filemap_fdatawrite_range(mapping, start, end);
937 if (err)
938 werr = err;
939 else if (wait_writeback)
940 werr = filemap_fdatawait_range(mapping, start, end);
941 free_extent_state(cached_state);
942 cached_state = NULL;
943 cond_resched();
944 start = end + 1;
945 }
946 return werr;
947 }
948
949 /*
950 * when btree blocks are allocated, they have some corresponding bits set for
951 * them in one of two extent_io trees. This is used to make sure all of
952 * those extents are on disk for transaction or log commit. We wait
953 * on all the pages and clear them from the dirty pages state tree
954 */
955 int btrfs_wait_marked_extents(struct btrfs_root *root,
956 struct extent_io_tree *dirty_pages, int mark)
957 {
958 int err = 0;
959 int werr = 0;
960 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
961 struct extent_state *cached_state = NULL;
962 u64 start = 0;
963 u64 end;
964 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
965 bool errors = false;
966
967 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
968 EXTENT_NEED_WAIT, &cached_state)) {
969 /*
970 * Ignore -ENOMEM errors returned by clear_extent_bit().
971 * When committing the transaction, we'll remove any entries
972 * left in the io tree. For a log commit, we don't remove them
973 * after committing the log because the tree can be accessed
974 * concurrently - we do it only at transaction commit time when
975 * it's safe to do it (through clear_btree_io_tree()).
976 */
977 err = clear_extent_bit(dirty_pages, start, end,
978 EXTENT_NEED_WAIT,
979 0, 0, &cached_state, GFP_NOFS);
980 if (err == -ENOMEM)
981 err = 0;
982 if (!err)
983 err = filemap_fdatawait_range(mapping, start, end);
984 if (err)
985 werr = err;
986 free_extent_state(cached_state);
987 cached_state = NULL;
988 cond_resched();
989 start = end + 1;
990 }
991 if (err)
992 werr = err;
993
994 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
995 if ((mark & EXTENT_DIRTY) &&
996 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
997 &btree_ino->runtime_flags))
998 errors = true;
999
1000 if ((mark & EXTENT_NEW) &&
1001 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1002 &btree_ino->runtime_flags))
1003 errors = true;
1004 } else {
1005 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1006 &btree_ino->runtime_flags))
1007 errors = true;
1008 }
1009
1010 if (errors && !werr)
1011 werr = -EIO;
1012
1013 return werr;
1014 }
1015
1016 /*
1017 * when btree blocks are allocated, they have some corresponding bits set for
1018 * them in one of two extent_io trees. This is used to make sure all of
1019 * those extents are on disk for transaction or log commit
1020 */
1021 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1022 struct extent_io_tree *dirty_pages, int mark)
1023 {
1024 int ret;
1025 int ret2;
1026 struct blk_plug plug;
1027
1028 blk_start_plug(&plug);
1029 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1030 blk_finish_plug(&plug);
1031 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1032
1033 if (ret)
1034 return ret;
1035 if (ret2)
1036 return ret2;
1037 return 0;
1038 }
1039
1040 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1041 struct btrfs_root *root)
1042 {
1043 int ret;
1044
1045 ret = btrfs_write_and_wait_marked_extents(root,
1046 &trans->transaction->dirty_pages,
1047 EXTENT_DIRTY);
1048 clear_btree_io_tree(&trans->transaction->dirty_pages);
1049
1050 return ret;
1051 }
1052
1053 /*
1054 * this is used to update the root pointer in the tree of tree roots.
1055 *
1056 * But, in the case of the extent allocation tree, updating the root
1057 * pointer may allocate blocks which may change the root of the extent
1058 * allocation tree.
1059 *
1060 * So, this loops and repeats and makes sure the cowonly root didn't
1061 * change while the root pointer was being updated in the metadata.
1062 */
1063 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1064 struct btrfs_root *root)
1065 {
1066 int ret;
1067 u64 old_root_bytenr;
1068 u64 old_root_used;
1069 struct btrfs_root *tree_root = root->fs_info->tree_root;
1070
1071 old_root_used = btrfs_root_used(&root->root_item);
1072
1073 while (1) {
1074 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1075 if (old_root_bytenr == root->node->start &&
1076 old_root_used == btrfs_root_used(&root->root_item))
1077 break;
1078
1079 btrfs_set_root_node(&root->root_item, root->node);
1080 ret = btrfs_update_root(trans, tree_root,
1081 &root->root_key,
1082 &root->root_item);
1083 if (ret)
1084 return ret;
1085
1086 old_root_used = btrfs_root_used(&root->root_item);
1087 }
1088
1089 return 0;
1090 }
1091
1092 /*
1093 * update all the cowonly tree roots on disk
1094 *
1095 * The error handling in this function may not be obvious. Any of the
1096 * failures will cause the file system to go offline. We still need
1097 * to clean up the delayed refs.
1098 */
1099 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1100 struct btrfs_root *root)
1101 {
1102 struct btrfs_fs_info *fs_info = root->fs_info;
1103 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1104 struct list_head *io_bgs = &trans->transaction->io_bgs;
1105 struct list_head *next;
1106 struct extent_buffer *eb;
1107 int ret;
1108
1109 eb = btrfs_lock_root_node(fs_info->tree_root);
1110 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1111 0, &eb);
1112 btrfs_tree_unlock(eb);
1113 free_extent_buffer(eb);
1114
1115 if (ret)
1116 return ret;
1117
1118 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1119 if (ret)
1120 return ret;
1121
1122 ret = btrfs_run_dev_stats(trans, root->fs_info);
1123 if (ret)
1124 return ret;
1125 ret = btrfs_run_dev_replace(trans, root->fs_info);
1126 if (ret)
1127 return ret;
1128 ret = btrfs_run_qgroups(trans, root->fs_info);
1129 if (ret)
1130 return ret;
1131
1132 ret = btrfs_setup_space_cache(trans, root);
1133 if (ret)
1134 return ret;
1135
1136 /* run_qgroups might have added some more refs */
1137 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1138 if (ret)
1139 return ret;
1140 again:
1141 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1142 next = fs_info->dirty_cowonly_roots.next;
1143 list_del_init(next);
1144 root = list_entry(next, struct btrfs_root, dirty_list);
1145 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1146
1147 if (root != fs_info->extent_root)
1148 list_add_tail(&root->dirty_list,
1149 &trans->transaction->switch_commits);
1150 ret = update_cowonly_root(trans, root);
1151 if (ret)
1152 return ret;
1153 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1154 if (ret)
1155 return ret;
1156 }
1157
1158 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1159 ret = btrfs_write_dirty_block_groups(trans, root);
1160 if (ret)
1161 return ret;
1162 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1163 if (ret)
1164 return ret;
1165 }
1166
1167 if (!list_empty(&fs_info->dirty_cowonly_roots))
1168 goto again;
1169
1170 list_add_tail(&fs_info->extent_root->dirty_list,
1171 &trans->transaction->switch_commits);
1172 btrfs_after_dev_replace_commit(fs_info);
1173
1174 return 0;
1175 }
1176
1177 /*
1178 * dead roots are old snapshots that need to be deleted. This allocates
1179 * a dirty root struct and adds it into the list of dead roots that need to
1180 * be deleted
1181 */
1182 void btrfs_add_dead_root(struct btrfs_root *root)
1183 {
1184 spin_lock(&root->fs_info->trans_lock);
1185 if (list_empty(&root->root_list))
1186 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1187 spin_unlock(&root->fs_info->trans_lock);
1188 }
1189
1190 /*
1191 * update all the cowonly tree roots on disk
1192 */
1193 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1194 struct btrfs_root *root)
1195 {
1196 struct btrfs_root *gang[8];
1197 struct btrfs_fs_info *fs_info = root->fs_info;
1198 int i;
1199 int ret;
1200 int err = 0;
1201
1202 spin_lock(&fs_info->fs_roots_radix_lock);
1203 while (1) {
1204 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1205 (void **)gang, 0,
1206 ARRAY_SIZE(gang),
1207 BTRFS_ROOT_TRANS_TAG);
1208 if (ret == 0)
1209 break;
1210 for (i = 0; i < ret; i++) {
1211 root = gang[i];
1212 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1213 (unsigned long)root->root_key.objectid,
1214 BTRFS_ROOT_TRANS_TAG);
1215 spin_unlock(&fs_info->fs_roots_radix_lock);
1216
1217 btrfs_free_log(trans, root);
1218 btrfs_update_reloc_root(trans, root);
1219 btrfs_orphan_commit_root(trans, root);
1220
1221 btrfs_save_ino_cache(root, trans);
1222
1223 /* see comments in should_cow_block() */
1224 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1225 smp_mb__after_atomic();
1226
1227 if (root->commit_root != root->node) {
1228 list_add_tail(&root->dirty_list,
1229 &trans->transaction->switch_commits);
1230 btrfs_set_root_node(&root->root_item,
1231 root->node);
1232 }
1233
1234 err = btrfs_update_root(trans, fs_info->tree_root,
1235 &root->root_key,
1236 &root->root_item);
1237 spin_lock(&fs_info->fs_roots_radix_lock);
1238 if (err)
1239 break;
1240 }
1241 }
1242 spin_unlock(&fs_info->fs_roots_radix_lock);
1243 return err;
1244 }
1245
1246 /*
1247 * defrag a given btree.
1248 * Every leaf in the btree is read and defragged.
1249 */
1250 int btrfs_defrag_root(struct btrfs_root *root)
1251 {
1252 struct btrfs_fs_info *info = root->fs_info;
1253 struct btrfs_trans_handle *trans;
1254 int ret;
1255
1256 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1257 return 0;
1258
1259 while (1) {
1260 trans = btrfs_start_transaction(root, 0);
1261 if (IS_ERR(trans))
1262 return PTR_ERR(trans);
1263
1264 ret = btrfs_defrag_leaves(trans, root);
1265
1266 btrfs_end_transaction(trans, root);
1267 btrfs_btree_balance_dirty(info->tree_root);
1268 cond_resched();
1269
1270 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1271 break;
1272
1273 if (btrfs_defrag_cancelled(root->fs_info)) {
1274 pr_debug("BTRFS: defrag_root cancelled\n");
1275 ret = -EAGAIN;
1276 break;
1277 }
1278 }
1279 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1280 return ret;
1281 }
1282
1283 /*
1284 * new snapshots need to be created at a very specific time in the
1285 * transaction commit. This does the actual creation.
1286 *
1287 * Note:
1288 * If the error which may affect the commitment of the current transaction
1289 * happens, we should return the error number. If the error which just affect
1290 * the creation of the pending snapshots, just return 0.
1291 */
1292 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1293 struct btrfs_fs_info *fs_info,
1294 struct btrfs_pending_snapshot *pending)
1295 {
1296 struct btrfs_key key;
1297 struct btrfs_root_item *new_root_item;
1298 struct btrfs_root *tree_root = fs_info->tree_root;
1299 struct btrfs_root *root = pending->root;
1300 struct btrfs_root *parent_root;
1301 struct btrfs_block_rsv *rsv;
1302 struct inode *parent_inode;
1303 struct btrfs_path *path;
1304 struct btrfs_dir_item *dir_item;
1305 struct dentry *dentry;
1306 struct extent_buffer *tmp;
1307 struct extent_buffer *old;
1308 struct timespec cur_time = CURRENT_TIME;
1309 int ret = 0;
1310 u64 to_reserve = 0;
1311 u64 index = 0;
1312 u64 objectid;
1313 u64 root_flags;
1314 uuid_le new_uuid;
1315
1316 path = btrfs_alloc_path();
1317 if (!path) {
1318 pending->error = -ENOMEM;
1319 return 0;
1320 }
1321
1322 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1323 if (!new_root_item) {
1324 pending->error = -ENOMEM;
1325 goto root_item_alloc_fail;
1326 }
1327
1328 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1329 if (pending->error)
1330 goto no_free_objectid;
1331
1332 /*
1333 * Make qgroup to skip current new snapshot's qgroupid, as it is
1334 * accounted by later btrfs_qgroup_inherit().
1335 */
1336 btrfs_set_skip_qgroup(trans, objectid);
1337
1338 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1339
1340 if (to_reserve > 0) {
1341 pending->error = btrfs_block_rsv_add(root,
1342 &pending->block_rsv,
1343 to_reserve,
1344 BTRFS_RESERVE_NO_FLUSH);
1345 if (pending->error)
1346 goto clear_skip_qgroup;
1347 }
1348
1349 key.objectid = objectid;
1350 key.offset = (u64)-1;
1351 key.type = BTRFS_ROOT_ITEM_KEY;
1352
1353 rsv = trans->block_rsv;
1354 trans->block_rsv = &pending->block_rsv;
1355 trans->bytes_reserved = trans->block_rsv->reserved;
1356
1357 dentry = pending->dentry;
1358 parent_inode = pending->dir;
1359 parent_root = BTRFS_I(parent_inode)->root;
1360 record_root_in_trans(trans, parent_root);
1361
1362 /*
1363 * insert the directory item
1364 */
1365 ret = btrfs_set_inode_index(parent_inode, &index);
1366 BUG_ON(ret); /* -ENOMEM */
1367
1368 /* check if there is a file/dir which has the same name. */
1369 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1370 btrfs_ino(parent_inode),
1371 dentry->d_name.name,
1372 dentry->d_name.len, 0);
1373 if (dir_item != NULL && !IS_ERR(dir_item)) {
1374 pending->error = -EEXIST;
1375 goto dir_item_existed;
1376 } else if (IS_ERR(dir_item)) {
1377 ret = PTR_ERR(dir_item);
1378 btrfs_abort_transaction(trans, root, ret);
1379 goto fail;
1380 }
1381 btrfs_release_path(path);
1382
1383 /*
1384 * pull in the delayed directory update
1385 * and the delayed inode item
1386 * otherwise we corrupt the FS during
1387 * snapshot
1388 */
1389 ret = btrfs_run_delayed_items(trans, root);
1390 if (ret) { /* Transaction aborted */
1391 btrfs_abort_transaction(trans, root, ret);
1392 goto fail;
1393 }
1394
1395 record_root_in_trans(trans, root);
1396 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1397 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1398 btrfs_check_and_init_root_item(new_root_item);
1399
1400 root_flags = btrfs_root_flags(new_root_item);
1401 if (pending->readonly)
1402 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1403 else
1404 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1405 btrfs_set_root_flags(new_root_item, root_flags);
1406
1407 btrfs_set_root_generation_v2(new_root_item,
1408 trans->transid);
1409 uuid_le_gen(&new_uuid);
1410 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1411 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1412 BTRFS_UUID_SIZE);
1413 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1414 memset(new_root_item->received_uuid, 0,
1415 sizeof(new_root_item->received_uuid));
1416 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1417 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1418 btrfs_set_root_stransid(new_root_item, 0);
1419 btrfs_set_root_rtransid(new_root_item, 0);
1420 }
1421 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1422 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1423 btrfs_set_root_otransid(new_root_item, trans->transid);
1424
1425 old = btrfs_lock_root_node(root);
1426 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1427 if (ret) {
1428 btrfs_tree_unlock(old);
1429 free_extent_buffer(old);
1430 btrfs_abort_transaction(trans, root, ret);
1431 goto fail;
1432 }
1433
1434 btrfs_set_lock_blocking(old);
1435
1436 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1437 /* clean up in any case */
1438 btrfs_tree_unlock(old);
1439 free_extent_buffer(old);
1440 if (ret) {
1441 btrfs_abort_transaction(trans, root, ret);
1442 goto fail;
1443 }
1444 /* see comments in should_cow_block() */
1445 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1446 smp_wmb();
1447
1448 btrfs_set_root_node(new_root_item, tmp);
1449 /* record when the snapshot was created in key.offset */
1450 key.offset = trans->transid;
1451 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1452 btrfs_tree_unlock(tmp);
1453 free_extent_buffer(tmp);
1454 if (ret) {
1455 btrfs_abort_transaction(trans, root, ret);
1456 goto fail;
1457 }
1458
1459 /*
1460 * insert root back/forward references
1461 */
1462 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1463 parent_root->root_key.objectid,
1464 btrfs_ino(parent_inode), index,
1465 dentry->d_name.name, dentry->d_name.len);
1466 if (ret) {
1467 btrfs_abort_transaction(trans, root, ret);
1468 goto fail;
1469 }
1470
1471 key.offset = (u64)-1;
1472 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1473 if (IS_ERR(pending->snap)) {
1474 ret = PTR_ERR(pending->snap);
1475 btrfs_abort_transaction(trans, root, ret);
1476 goto fail;
1477 }
1478
1479 ret = btrfs_reloc_post_snapshot(trans, pending);
1480 if (ret) {
1481 btrfs_abort_transaction(trans, root, ret);
1482 goto fail;
1483 }
1484
1485 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1486 if (ret) {
1487 btrfs_abort_transaction(trans, root, ret);
1488 goto fail;
1489 }
1490
1491 ret = btrfs_insert_dir_item(trans, parent_root,
1492 dentry->d_name.name, dentry->d_name.len,
1493 parent_inode, &key,
1494 BTRFS_FT_DIR, index);
1495 /* We have check then name at the beginning, so it is impossible. */
1496 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1497 if (ret) {
1498 btrfs_abort_transaction(trans, root, ret);
1499 goto fail;
1500 }
1501
1502 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1503 dentry->d_name.len * 2);
1504 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1505 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1506 if (ret) {
1507 btrfs_abort_transaction(trans, root, ret);
1508 goto fail;
1509 }
1510 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1511 BTRFS_UUID_KEY_SUBVOL, objectid);
1512 if (ret) {
1513 btrfs_abort_transaction(trans, root, ret);
1514 goto fail;
1515 }
1516 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1517 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1518 new_root_item->received_uuid,
1519 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1520 objectid);
1521 if (ret && ret != -EEXIST) {
1522 btrfs_abort_transaction(trans, root, ret);
1523 goto fail;
1524 }
1525 }
1526
1527 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1528 if (ret) {
1529 btrfs_abort_transaction(trans, root, ret);
1530 goto fail;
1531 }
1532
1533 /*
1534 * account qgroup counters before qgroup_inherit()
1535 */
1536 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1537 if (ret)
1538 goto fail;
1539 ret = btrfs_qgroup_account_extents(trans, fs_info);
1540 if (ret)
1541 goto fail;
1542 ret = btrfs_qgroup_inherit(trans, fs_info,
1543 root->root_key.objectid,
1544 objectid, pending->inherit);
1545 if (ret) {
1546 btrfs_abort_transaction(trans, root, ret);
1547 goto fail;
1548 }
1549
1550 fail:
1551 pending->error = ret;
1552 dir_item_existed:
1553 trans->block_rsv = rsv;
1554 trans->bytes_reserved = 0;
1555 clear_skip_qgroup:
1556 btrfs_clear_skip_qgroup(trans);
1557 no_free_objectid:
1558 kfree(new_root_item);
1559 root_item_alloc_fail:
1560 btrfs_free_path(path);
1561 return ret;
1562 }
1563
1564 /*
1565 * create all the snapshots we've scheduled for creation
1566 */
1567 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1568 struct btrfs_fs_info *fs_info)
1569 {
1570 struct btrfs_pending_snapshot *pending, *next;
1571 struct list_head *head = &trans->transaction->pending_snapshots;
1572 int ret = 0;
1573
1574 list_for_each_entry_safe(pending, next, head, list) {
1575 list_del(&pending->list);
1576 ret = create_pending_snapshot(trans, fs_info, pending);
1577 if (ret)
1578 break;
1579 }
1580 return ret;
1581 }
1582
1583 static void update_super_roots(struct btrfs_root *root)
1584 {
1585 struct btrfs_root_item *root_item;
1586 struct btrfs_super_block *super;
1587
1588 super = root->fs_info->super_copy;
1589
1590 root_item = &root->fs_info->chunk_root->root_item;
1591 super->chunk_root = root_item->bytenr;
1592 super->chunk_root_generation = root_item->generation;
1593 super->chunk_root_level = root_item->level;
1594
1595 root_item = &root->fs_info->tree_root->root_item;
1596 super->root = root_item->bytenr;
1597 super->generation = root_item->generation;
1598 super->root_level = root_item->level;
1599 if (btrfs_test_opt(root, SPACE_CACHE))
1600 super->cache_generation = root_item->generation;
1601 if (root->fs_info->update_uuid_tree_gen)
1602 super->uuid_tree_generation = root_item->generation;
1603 }
1604
1605 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1606 {
1607 struct btrfs_transaction *trans;
1608 int ret = 0;
1609
1610 spin_lock(&info->trans_lock);
1611 trans = info->running_transaction;
1612 if (trans)
1613 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1614 spin_unlock(&info->trans_lock);
1615 return ret;
1616 }
1617
1618 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1619 {
1620 struct btrfs_transaction *trans;
1621 int ret = 0;
1622
1623 spin_lock(&info->trans_lock);
1624 trans = info->running_transaction;
1625 if (trans)
1626 ret = is_transaction_blocked(trans);
1627 spin_unlock(&info->trans_lock);
1628 return ret;
1629 }
1630
1631 /*
1632 * wait for the current transaction commit to start and block subsequent
1633 * transaction joins
1634 */
1635 static void wait_current_trans_commit_start(struct btrfs_root *root,
1636 struct btrfs_transaction *trans)
1637 {
1638 wait_event(root->fs_info->transaction_blocked_wait,
1639 trans->state >= TRANS_STATE_COMMIT_START ||
1640 trans->aborted);
1641 }
1642
1643 /*
1644 * wait for the current transaction to start and then become unblocked.
1645 * caller holds ref.
1646 */
1647 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1648 struct btrfs_transaction *trans)
1649 {
1650 wait_event(root->fs_info->transaction_wait,
1651 trans->state >= TRANS_STATE_UNBLOCKED ||
1652 trans->aborted);
1653 }
1654
1655 /*
1656 * commit transactions asynchronously. once btrfs_commit_transaction_async
1657 * returns, any subsequent transaction will not be allowed to join.
1658 */
1659 struct btrfs_async_commit {
1660 struct btrfs_trans_handle *newtrans;
1661 struct btrfs_root *root;
1662 struct work_struct work;
1663 };
1664
1665 static void do_async_commit(struct work_struct *work)
1666 {
1667 struct btrfs_async_commit *ac =
1668 container_of(work, struct btrfs_async_commit, work);
1669
1670 /*
1671 * We've got freeze protection passed with the transaction.
1672 * Tell lockdep about it.
1673 */
1674 if (ac->newtrans->type & __TRANS_FREEZABLE)
1675 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1676
1677 current->journal_info = ac->newtrans;
1678
1679 btrfs_commit_transaction(ac->newtrans, ac->root);
1680 kfree(ac);
1681 }
1682
1683 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1684 struct btrfs_root *root,
1685 int wait_for_unblock)
1686 {
1687 struct btrfs_async_commit *ac;
1688 struct btrfs_transaction *cur_trans;
1689
1690 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1691 if (!ac)
1692 return -ENOMEM;
1693
1694 INIT_WORK(&ac->work, do_async_commit);
1695 ac->root = root;
1696 ac->newtrans = btrfs_join_transaction(root);
1697 if (IS_ERR(ac->newtrans)) {
1698 int err = PTR_ERR(ac->newtrans);
1699 kfree(ac);
1700 return err;
1701 }
1702
1703 /* take transaction reference */
1704 cur_trans = trans->transaction;
1705 atomic_inc(&cur_trans->use_count);
1706
1707 btrfs_end_transaction(trans, root);
1708
1709 /*
1710 * Tell lockdep we've released the freeze rwsem, since the
1711 * async commit thread will be the one to unlock it.
1712 */
1713 if (ac->newtrans->type & __TRANS_FREEZABLE)
1714 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1715
1716 schedule_work(&ac->work);
1717
1718 /* wait for transaction to start and unblock */
1719 if (wait_for_unblock)
1720 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1721 else
1722 wait_current_trans_commit_start(root, cur_trans);
1723
1724 if (current->journal_info == trans)
1725 current->journal_info = NULL;
1726
1727 btrfs_put_transaction(cur_trans);
1728 return 0;
1729 }
1730
1731
1732 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1733 struct btrfs_root *root, int err)
1734 {
1735 struct btrfs_transaction *cur_trans = trans->transaction;
1736 DEFINE_WAIT(wait);
1737
1738 WARN_ON(trans->use_count > 1);
1739
1740 btrfs_abort_transaction(trans, root, err);
1741
1742 spin_lock(&root->fs_info->trans_lock);
1743
1744 /*
1745 * If the transaction is removed from the list, it means this
1746 * transaction has been committed successfully, so it is impossible
1747 * to call the cleanup function.
1748 */
1749 BUG_ON(list_empty(&cur_trans->list));
1750
1751 list_del_init(&cur_trans->list);
1752 if (cur_trans == root->fs_info->running_transaction) {
1753 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1754 spin_unlock(&root->fs_info->trans_lock);
1755 wait_event(cur_trans->writer_wait,
1756 atomic_read(&cur_trans->num_writers) == 1);
1757
1758 spin_lock(&root->fs_info->trans_lock);
1759 }
1760 spin_unlock(&root->fs_info->trans_lock);
1761
1762 btrfs_cleanup_one_transaction(trans->transaction, root);
1763
1764 spin_lock(&root->fs_info->trans_lock);
1765 if (cur_trans == root->fs_info->running_transaction)
1766 root->fs_info->running_transaction = NULL;
1767 spin_unlock(&root->fs_info->trans_lock);
1768
1769 if (trans->type & __TRANS_FREEZABLE)
1770 sb_end_intwrite(root->fs_info->sb);
1771 btrfs_put_transaction(cur_trans);
1772 btrfs_put_transaction(cur_trans);
1773
1774 trace_btrfs_transaction_commit(root);
1775
1776 if (current->journal_info == trans)
1777 current->journal_info = NULL;
1778 btrfs_scrub_cancel(root->fs_info);
1779
1780 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1781 }
1782
1783 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1784 {
1785 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1786 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1787 return 0;
1788 }
1789
1790 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1791 {
1792 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1793 btrfs_wait_ordered_roots(fs_info, -1);
1794 }
1795
1796 static inline void
1797 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1798 struct btrfs_fs_info *fs_info)
1799 {
1800 struct btrfs_ordered_extent *ordered;
1801
1802 spin_lock(&fs_info->trans_lock);
1803 while (!list_empty(&cur_trans->pending_ordered)) {
1804 ordered = list_first_entry(&cur_trans->pending_ordered,
1805 struct btrfs_ordered_extent,
1806 trans_list);
1807 list_del_init(&ordered->trans_list);
1808 spin_unlock(&fs_info->trans_lock);
1809
1810 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1811 &ordered->flags));
1812 btrfs_put_ordered_extent(ordered);
1813 spin_lock(&fs_info->trans_lock);
1814 }
1815 spin_unlock(&fs_info->trans_lock);
1816 }
1817
1818 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root)
1820 {
1821 struct btrfs_transaction *cur_trans = trans->transaction;
1822 struct btrfs_transaction *prev_trans = NULL;
1823 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1824 int ret;
1825
1826 /* Stop the commit early if ->aborted is set */
1827 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1828 ret = cur_trans->aborted;
1829 btrfs_end_transaction(trans, root);
1830 return ret;
1831 }
1832
1833 /* make a pass through all the delayed refs we have so far
1834 * any runnings procs may add more while we are here
1835 */
1836 ret = btrfs_run_delayed_refs(trans, root, 0);
1837 if (ret) {
1838 btrfs_end_transaction(trans, root);
1839 return ret;
1840 }
1841
1842 btrfs_trans_release_metadata(trans, root);
1843 trans->block_rsv = NULL;
1844 if (trans->qgroup_reserved) {
1845 btrfs_qgroup_free(root, trans->qgroup_reserved);
1846 trans->qgroup_reserved = 0;
1847 }
1848
1849 cur_trans = trans->transaction;
1850
1851 /*
1852 * set the flushing flag so procs in this transaction have to
1853 * start sending their work down.
1854 */
1855 cur_trans->delayed_refs.flushing = 1;
1856 smp_wmb();
1857
1858 if (!list_empty(&trans->new_bgs))
1859 btrfs_create_pending_block_groups(trans, root);
1860
1861 ret = btrfs_run_delayed_refs(trans, root, 0);
1862 if (ret) {
1863 btrfs_end_transaction(trans, root);
1864 return ret;
1865 }
1866
1867 if (!cur_trans->dirty_bg_run) {
1868 int run_it = 0;
1869
1870 /* this mutex is also taken before trying to set
1871 * block groups readonly. We need to make sure
1872 * that nobody has set a block group readonly
1873 * after a extents from that block group have been
1874 * allocated for cache files. btrfs_set_block_group_ro
1875 * will wait for the transaction to commit if it
1876 * finds dirty_bg_run = 1
1877 *
1878 * The dirty_bg_run flag is also used to make sure only
1879 * one process starts all the block group IO. It wouldn't
1880 * hurt to have more than one go through, but there's no
1881 * real advantage to it either.
1882 */
1883 mutex_lock(&root->fs_info->ro_block_group_mutex);
1884 if (!cur_trans->dirty_bg_run) {
1885 run_it = 1;
1886 cur_trans->dirty_bg_run = 1;
1887 }
1888 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1889
1890 if (run_it)
1891 ret = btrfs_start_dirty_block_groups(trans, root);
1892 }
1893 if (ret) {
1894 btrfs_end_transaction(trans, root);
1895 return ret;
1896 }
1897
1898 spin_lock(&root->fs_info->trans_lock);
1899 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
1900 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1901 spin_unlock(&root->fs_info->trans_lock);
1902 atomic_inc(&cur_trans->use_count);
1903 ret = btrfs_end_transaction(trans, root);
1904
1905 wait_for_commit(root, cur_trans);
1906
1907 if (unlikely(cur_trans->aborted))
1908 ret = cur_trans->aborted;
1909
1910 btrfs_put_transaction(cur_trans);
1911
1912 return ret;
1913 }
1914
1915 cur_trans->state = TRANS_STATE_COMMIT_START;
1916 wake_up(&root->fs_info->transaction_blocked_wait);
1917
1918 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1919 prev_trans = list_entry(cur_trans->list.prev,
1920 struct btrfs_transaction, list);
1921 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1922 atomic_inc(&prev_trans->use_count);
1923 spin_unlock(&root->fs_info->trans_lock);
1924
1925 wait_for_commit(root, prev_trans);
1926 ret = prev_trans->aborted;
1927
1928 btrfs_put_transaction(prev_trans);
1929 if (ret)
1930 goto cleanup_transaction;
1931 } else {
1932 spin_unlock(&root->fs_info->trans_lock);
1933 }
1934 } else {
1935 spin_unlock(&root->fs_info->trans_lock);
1936 }
1937
1938 extwriter_counter_dec(cur_trans, trans->type);
1939
1940 ret = btrfs_start_delalloc_flush(root->fs_info);
1941 if (ret)
1942 goto cleanup_transaction;
1943
1944 ret = btrfs_run_delayed_items(trans, root);
1945 if (ret)
1946 goto cleanup_transaction;
1947
1948 wait_event(cur_trans->writer_wait,
1949 extwriter_counter_read(cur_trans) == 0);
1950
1951 /* some pending stuffs might be added after the previous flush. */
1952 ret = btrfs_run_delayed_items(trans, root);
1953 if (ret)
1954 goto cleanup_transaction;
1955
1956 btrfs_wait_delalloc_flush(root->fs_info);
1957
1958 btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1959
1960 btrfs_scrub_pause(root);
1961 /*
1962 * Ok now we need to make sure to block out any other joins while we
1963 * commit the transaction. We could have started a join before setting
1964 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1965 */
1966 spin_lock(&root->fs_info->trans_lock);
1967 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1968 spin_unlock(&root->fs_info->trans_lock);
1969 wait_event(cur_trans->writer_wait,
1970 atomic_read(&cur_trans->num_writers) == 1);
1971
1972 /* ->aborted might be set after the previous check, so check it */
1973 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1974 ret = cur_trans->aborted;
1975 goto scrub_continue;
1976 }
1977 /*
1978 * the reloc mutex makes sure that we stop
1979 * the balancing code from coming in and moving
1980 * extents around in the middle of the commit
1981 */
1982 mutex_lock(&root->fs_info->reloc_mutex);
1983
1984 /*
1985 * We needn't worry about the delayed items because we will
1986 * deal with them in create_pending_snapshot(), which is the
1987 * core function of the snapshot creation.
1988 */
1989 ret = create_pending_snapshots(trans, root->fs_info);
1990 if (ret) {
1991 mutex_unlock(&root->fs_info->reloc_mutex);
1992 goto scrub_continue;
1993 }
1994
1995 /*
1996 * We insert the dir indexes of the snapshots and update the inode
1997 * of the snapshots' parents after the snapshot creation, so there
1998 * are some delayed items which are not dealt with. Now deal with
1999 * them.
2000 *
2001 * We needn't worry that this operation will corrupt the snapshots,
2002 * because all the tree which are snapshoted will be forced to COW
2003 * the nodes and leaves.
2004 */
2005 ret = btrfs_run_delayed_items(trans, root);
2006 if (ret) {
2007 mutex_unlock(&root->fs_info->reloc_mutex);
2008 goto scrub_continue;
2009 }
2010
2011 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2012 if (ret) {
2013 mutex_unlock(&root->fs_info->reloc_mutex);
2014 goto scrub_continue;
2015 }
2016
2017 /* Reocrd old roots for later qgroup accounting */
2018 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2019 if (ret) {
2020 mutex_unlock(&root->fs_info->reloc_mutex);
2021 goto scrub_continue;
2022 }
2023
2024 /*
2025 * make sure none of the code above managed to slip in a
2026 * delayed item
2027 */
2028 btrfs_assert_delayed_root_empty(root);
2029
2030 WARN_ON(cur_trans != trans->transaction);
2031
2032 /* btrfs_commit_tree_roots is responsible for getting the
2033 * various roots consistent with each other. Every pointer
2034 * in the tree of tree roots has to point to the most up to date
2035 * root for every subvolume and other tree. So, we have to keep
2036 * the tree logging code from jumping in and changing any
2037 * of the trees.
2038 *
2039 * At this point in the commit, there can't be any tree-log
2040 * writers, but a little lower down we drop the trans mutex
2041 * and let new people in. By holding the tree_log_mutex
2042 * from now until after the super is written, we avoid races
2043 * with the tree-log code.
2044 */
2045 mutex_lock(&root->fs_info->tree_log_mutex);
2046
2047 ret = commit_fs_roots(trans, root);
2048 if (ret) {
2049 mutex_unlock(&root->fs_info->tree_log_mutex);
2050 mutex_unlock(&root->fs_info->reloc_mutex);
2051 goto scrub_continue;
2052 }
2053
2054 /*
2055 * Since the transaction is done, we can apply the pending changes
2056 * before the next transaction.
2057 */
2058 btrfs_apply_pending_changes(root->fs_info);
2059
2060 /* commit_fs_roots gets rid of all the tree log roots, it is now
2061 * safe to free the root of tree log roots
2062 */
2063 btrfs_free_log_root_tree(trans, root->fs_info);
2064
2065 /*
2066 * Since fs roots are all committed, we can get a quite accurate
2067 * new_roots. So let's do quota accounting.
2068 */
2069 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2070 if (ret < 0) {
2071 mutex_unlock(&root->fs_info->tree_log_mutex);
2072 mutex_unlock(&root->fs_info->reloc_mutex);
2073 goto scrub_continue;
2074 }
2075
2076 ret = commit_cowonly_roots(trans, root);
2077 if (ret) {
2078 mutex_unlock(&root->fs_info->tree_log_mutex);
2079 mutex_unlock(&root->fs_info->reloc_mutex);
2080 goto scrub_continue;
2081 }
2082
2083 /*
2084 * The tasks which save the space cache and inode cache may also
2085 * update ->aborted, check it.
2086 */
2087 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2088 ret = cur_trans->aborted;
2089 mutex_unlock(&root->fs_info->tree_log_mutex);
2090 mutex_unlock(&root->fs_info->reloc_mutex);
2091 goto scrub_continue;
2092 }
2093
2094 btrfs_prepare_extent_commit(trans, root);
2095
2096 cur_trans = root->fs_info->running_transaction;
2097
2098 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2099 root->fs_info->tree_root->node);
2100 list_add_tail(&root->fs_info->tree_root->dirty_list,
2101 &cur_trans->switch_commits);
2102
2103 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2104 root->fs_info->chunk_root->node);
2105 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2106 &cur_trans->switch_commits);
2107
2108 switch_commit_roots(cur_trans, root->fs_info);
2109
2110 assert_qgroups_uptodate(trans);
2111 ASSERT(list_empty(&cur_trans->dirty_bgs));
2112 ASSERT(list_empty(&cur_trans->io_bgs));
2113 update_super_roots(root);
2114
2115 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2116 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2117 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2118 sizeof(*root->fs_info->super_copy));
2119
2120 btrfs_update_commit_device_size(root->fs_info);
2121 btrfs_update_commit_device_bytes_used(root, cur_trans);
2122
2123 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2124 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2125
2126 btrfs_trans_release_chunk_metadata(trans);
2127
2128 spin_lock(&root->fs_info->trans_lock);
2129 cur_trans->state = TRANS_STATE_UNBLOCKED;
2130 root->fs_info->running_transaction = NULL;
2131 spin_unlock(&root->fs_info->trans_lock);
2132 mutex_unlock(&root->fs_info->reloc_mutex);
2133
2134 wake_up(&root->fs_info->transaction_wait);
2135
2136 ret = btrfs_write_and_wait_transaction(trans, root);
2137 if (ret) {
2138 btrfs_error(root->fs_info, ret,
2139 "Error while writing out transaction");
2140 mutex_unlock(&root->fs_info->tree_log_mutex);
2141 goto scrub_continue;
2142 }
2143
2144 ret = write_ctree_super(trans, root, 0);
2145 if (ret) {
2146 mutex_unlock(&root->fs_info->tree_log_mutex);
2147 goto scrub_continue;
2148 }
2149
2150 /*
2151 * the super is written, we can safely allow the tree-loggers
2152 * to go about their business
2153 */
2154 mutex_unlock(&root->fs_info->tree_log_mutex);
2155
2156 btrfs_finish_extent_commit(trans, root);
2157
2158 if (cur_trans->have_free_bgs)
2159 btrfs_clear_space_info_full(root->fs_info);
2160
2161 root->fs_info->last_trans_committed = cur_trans->transid;
2162 /*
2163 * We needn't acquire the lock here because there is no other task
2164 * which can change it.
2165 */
2166 cur_trans->state = TRANS_STATE_COMPLETED;
2167 wake_up(&cur_trans->commit_wait);
2168
2169 spin_lock(&root->fs_info->trans_lock);
2170 list_del_init(&cur_trans->list);
2171 spin_unlock(&root->fs_info->trans_lock);
2172
2173 btrfs_put_transaction(cur_trans);
2174 btrfs_put_transaction(cur_trans);
2175
2176 if (trans->type & __TRANS_FREEZABLE)
2177 sb_end_intwrite(root->fs_info->sb);
2178
2179 trace_btrfs_transaction_commit(root);
2180
2181 btrfs_scrub_continue(root);
2182
2183 if (current->journal_info == trans)
2184 current->journal_info = NULL;
2185
2186 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2187
2188 if (current != root->fs_info->transaction_kthread &&
2189 current != root->fs_info->cleaner_kthread)
2190 btrfs_run_delayed_iputs(root);
2191
2192 return ret;
2193
2194 scrub_continue:
2195 btrfs_scrub_continue(root);
2196 cleanup_transaction:
2197 btrfs_trans_release_metadata(trans, root);
2198 btrfs_trans_release_chunk_metadata(trans);
2199 trans->block_rsv = NULL;
2200 if (trans->qgroup_reserved) {
2201 btrfs_qgroup_free(root, trans->qgroup_reserved);
2202 trans->qgroup_reserved = 0;
2203 }
2204 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2205 if (current->journal_info == trans)
2206 current->journal_info = NULL;
2207 cleanup_transaction(trans, root, ret);
2208
2209 return ret;
2210 }
2211
2212 /*
2213 * return < 0 if error
2214 * 0 if there are no more dead_roots at the time of call
2215 * 1 there are more to be processed, call me again
2216 *
2217 * The return value indicates there are certainly more snapshots to delete, but
2218 * if there comes a new one during processing, it may return 0. We don't mind,
2219 * because btrfs_commit_super will poke cleaner thread and it will process it a
2220 * few seconds later.
2221 */
2222 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2223 {
2224 int ret;
2225 struct btrfs_fs_info *fs_info = root->fs_info;
2226
2227 spin_lock(&fs_info->trans_lock);
2228 if (list_empty(&fs_info->dead_roots)) {
2229 spin_unlock(&fs_info->trans_lock);
2230 return 0;
2231 }
2232 root = list_first_entry(&fs_info->dead_roots,
2233 struct btrfs_root, root_list);
2234 list_del_init(&root->root_list);
2235 spin_unlock(&fs_info->trans_lock);
2236
2237 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2238
2239 btrfs_kill_all_delayed_nodes(root);
2240
2241 if (btrfs_header_backref_rev(root->node) <
2242 BTRFS_MIXED_BACKREF_REV)
2243 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2244 else
2245 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2246
2247 return (ret < 0) ? 0 : 1;
2248 }
2249
2250 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2251 {
2252 unsigned long prev;
2253 unsigned long bit;
2254
2255 prev = xchg(&fs_info->pending_changes, 0);
2256 if (!prev)
2257 return;
2258
2259 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2260 if (prev & bit)
2261 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2262 prev &= ~bit;
2263
2264 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2265 if (prev & bit)
2266 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2267 prev &= ~bit;
2268
2269 bit = 1 << BTRFS_PENDING_COMMIT;
2270 if (prev & bit)
2271 btrfs_debug(fs_info, "pending commit done");
2272 prev &= ~bit;
2273
2274 if (prev)
2275 btrfs_warn(fs_info,
2276 "unknown pending changes left 0x%lx, ignoring", prev);
2277 }