]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/btrfs/transaction.c
Btrfs: fix transid verify errors when recovering log tree
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 [TRANS_STATE_RUNNING] = 0U,
39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
40 __TRANS_START),
41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
42 __TRANS_START |
43 __TRANS_ATTACH),
44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
45 __TRANS_START |
46 __TRANS_ATTACH |
47 __TRANS_JOIN),
48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
49 __TRANS_START |
50 __TRANS_ATTACH |
51 __TRANS_JOIN |
52 __TRANS_JOIN_NOLOCK),
53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
54 __TRANS_START |
55 __TRANS_ATTACH |
56 __TRANS_JOIN |
57 __TRANS_JOIN_NOLOCK),
58 };
59
60 static void put_transaction(struct btrfs_transaction *transaction)
61 {
62 WARN_ON(atomic_read(&transaction->use_count) == 0);
63 if (atomic_dec_and_test(&transaction->use_count)) {
64 BUG_ON(!list_empty(&transaction->list));
65 WARN_ON(transaction->delayed_refs.root.rb_node);
66 while (!list_empty(&transaction->pending_chunks)) {
67 struct extent_map *em;
68
69 em = list_first_entry(&transaction->pending_chunks,
70 struct extent_map, list);
71 list_del_init(&em->list);
72 free_extent_map(em);
73 }
74 kmem_cache_free(btrfs_transaction_cachep, transaction);
75 }
76 }
77
78 static noinline void switch_commit_root(struct btrfs_root *root)
79 {
80 free_extent_buffer(root->commit_root);
81 root->commit_root = btrfs_root_node(root);
82 }
83
84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
85 unsigned int type)
86 {
87 if (type & TRANS_EXTWRITERS)
88 atomic_inc(&trans->num_extwriters);
89 }
90
91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
92 unsigned int type)
93 {
94 if (type & TRANS_EXTWRITERS)
95 atomic_dec(&trans->num_extwriters);
96 }
97
98 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
99 unsigned int type)
100 {
101 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
102 }
103
104 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
105 {
106 return atomic_read(&trans->num_extwriters);
107 }
108
109 /*
110 * either allocate a new transaction or hop into the existing one
111 */
112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
113 {
114 struct btrfs_transaction *cur_trans;
115 struct btrfs_fs_info *fs_info = root->fs_info;
116
117 spin_lock(&fs_info->trans_lock);
118 loop:
119 /* The file system has been taken offline. No new transactions. */
120 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
121 spin_unlock(&fs_info->trans_lock);
122 return -EROFS;
123 }
124
125 cur_trans = fs_info->running_transaction;
126 if (cur_trans) {
127 if (cur_trans->aborted) {
128 spin_unlock(&fs_info->trans_lock);
129 return cur_trans->aborted;
130 }
131 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
132 spin_unlock(&fs_info->trans_lock);
133 return -EBUSY;
134 }
135 atomic_inc(&cur_trans->use_count);
136 atomic_inc(&cur_trans->num_writers);
137 extwriter_counter_inc(cur_trans, type);
138 spin_unlock(&fs_info->trans_lock);
139 return 0;
140 }
141 spin_unlock(&fs_info->trans_lock);
142
143 /*
144 * If we are ATTACH, we just want to catch the current transaction,
145 * and commit it. If there is no transaction, just return ENOENT.
146 */
147 if (type == TRANS_ATTACH)
148 return -ENOENT;
149
150 /*
151 * JOIN_NOLOCK only happens during the transaction commit, so
152 * it is impossible that ->running_transaction is NULL
153 */
154 BUG_ON(type == TRANS_JOIN_NOLOCK);
155
156 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
157 if (!cur_trans)
158 return -ENOMEM;
159
160 spin_lock(&fs_info->trans_lock);
161 if (fs_info->running_transaction) {
162 /*
163 * someone started a transaction after we unlocked. Make sure
164 * to redo the checks above
165 */
166 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
167 goto loop;
168 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
169 spin_unlock(&fs_info->trans_lock);
170 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
171 return -EROFS;
172 }
173
174 atomic_set(&cur_trans->num_writers, 1);
175 extwriter_counter_init(cur_trans, type);
176 init_waitqueue_head(&cur_trans->writer_wait);
177 init_waitqueue_head(&cur_trans->commit_wait);
178 cur_trans->state = TRANS_STATE_RUNNING;
179 /*
180 * One for this trans handle, one so it will live on until we
181 * commit the transaction.
182 */
183 atomic_set(&cur_trans->use_count, 2);
184 cur_trans->start_time = get_seconds();
185
186 cur_trans->delayed_refs.root = RB_ROOT;
187 cur_trans->delayed_refs.num_entries = 0;
188 cur_trans->delayed_refs.num_heads_ready = 0;
189 cur_trans->delayed_refs.num_heads = 0;
190 cur_trans->delayed_refs.flushing = 0;
191 cur_trans->delayed_refs.run_delayed_start = 0;
192
193 /*
194 * although the tree mod log is per file system and not per transaction,
195 * the log must never go across transaction boundaries.
196 */
197 smp_mb();
198 if (!list_empty(&fs_info->tree_mod_seq_list))
199 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
200 "creating a fresh transaction\n");
201 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
202 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
203 "creating a fresh transaction\n");
204 atomic64_set(&fs_info->tree_mod_seq, 0);
205
206 spin_lock_init(&cur_trans->delayed_refs.lock);
207 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
208 atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
209 init_waitqueue_head(&cur_trans->delayed_refs.wait);
210
211 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
212 INIT_LIST_HEAD(&cur_trans->ordered_operations);
213 INIT_LIST_HEAD(&cur_trans->pending_chunks);
214 list_add_tail(&cur_trans->list, &fs_info->trans_list);
215 extent_io_tree_init(&cur_trans->dirty_pages,
216 fs_info->btree_inode->i_mapping);
217 fs_info->generation++;
218 cur_trans->transid = fs_info->generation;
219 fs_info->running_transaction = cur_trans;
220 cur_trans->aborted = 0;
221 spin_unlock(&fs_info->trans_lock);
222
223 return 0;
224 }
225
226 /*
227 * this does all the record keeping required to make sure that a reference
228 * counted root is properly recorded in a given transaction. This is required
229 * to make sure the old root from before we joined the transaction is deleted
230 * when the transaction commits
231 */
232 static int record_root_in_trans(struct btrfs_trans_handle *trans,
233 struct btrfs_root *root)
234 {
235 if (root->ref_cows && root->last_trans < trans->transid) {
236 WARN_ON(root == root->fs_info->extent_root);
237 WARN_ON(root->commit_root != root->node);
238
239 /*
240 * see below for in_trans_setup usage rules
241 * we have the reloc mutex held now, so there
242 * is only one writer in this function
243 */
244 root->in_trans_setup = 1;
245
246 /* make sure readers find in_trans_setup before
247 * they find our root->last_trans update
248 */
249 smp_wmb();
250
251 spin_lock(&root->fs_info->fs_roots_radix_lock);
252 if (root->last_trans == trans->transid) {
253 spin_unlock(&root->fs_info->fs_roots_radix_lock);
254 return 0;
255 }
256 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
257 (unsigned long)root->root_key.objectid,
258 BTRFS_ROOT_TRANS_TAG);
259 spin_unlock(&root->fs_info->fs_roots_radix_lock);
260 root->last_trans = trans->transid;
261
262 /* this is pretty tricky. We don't want to
263 * take the relocation lock in btrfs_record_root_in_trans
264 * unless we're really doing the first setup for this root in
265 * this transaction.
266 *
267 * Normally we'd use root->last_trans as a flag to decide
268 * if we want to take the expensive mutex.
269 *
270 * But, we have to set root->last_trans before we
271 * init the relocation root, otherwise, we trip over warnings
272 * in ctree.c. The solution used here is to flag ourselves
273 * with root->in_trans_setup. When this is 1, we're still
274 * fixing up the reloc trees and everyone must wait.
275 *
276 * When this is zero, they can trust root->last_trans and fly
277 * through btrfs_record_root_in_trans without having to take the
278 * lock. smp_wmb() makes sure that all the writes above are
279 * done before we pop in the zero below
280 */
281 btrfs_init_reloc_root(trans, root);
282 smp_wmb();
283 root->in_trans_setup = 0;
284 }
285 return 0;
286 }
287
288
289 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
290 struct btrfs_root *root)
291 {
292 if (!root->ref_cows)
293 return 0;
294
295 /*
296 * see record_root_in_trans for comments about in_trans_setup usage
297 * and barriers
298 */
299 smp_rmb();
300 if (root->last_trans == trans->transid &&
301 !root->in_trans_setup)
302 return 0;
303
304 mutex_lock(&root->fs_info->reloc_mutex);
305 record_root_in_trans(trans, root);
306 mutex_unlock(&root->fs_info->reloc_mutex);
307
308 return 0;
309 }
310
311 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
312 {
313 return (trans->state >= TRANS_STATE_BLOCKED &&
314 trans->state < TRANS_STATE_UNBLOCKED &&
315 !trans->aborted);
316 }
317
318 /* wait for commit against the current transaction to become unblocked
319 * when this is done, it is safe to start a new transaction, but the current
320 * transaction might not be fully on disk.
321 */
322 static void wait_current_trans(struct btrfs_root *root)
323 {
324 struct btrfs_transaction *cur_trans;
325
326 spin_lock(&root->fs_info->trans_lock);
327 cur_trans = root->fs_info->running_transaction;
328 if (cur_trans && is_transaction_blocked(cur_trans)) {
329 atomic_inc(&cur_trans->use_count);
330 spin_unlock(&root->fs_info->trans_lock);
331
332 wait_event(root->fs_info->transaction_wait,
333 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
334 cur_trans->aborted);
335 put_transaction(cur_trans);
336 } else {
337 spin_unlock(&root->fs_info->trans_lock);
338 }
339 }
340
341 static int may_wait_transaction(struct btrfs_root *root, int type)
342 {
343 if (root->fs_info->log_root_recovering)
344 return 0;
345
346 if (type == TRANS_USERSPACE)
347 return 1;
348
349 if (type == TRANS_START &&
350 !atomic_read(&root->fs_info->open_ioctl_trans))
351 return 1;
352
353 return 0;
354 }
355
356 static struct btrfs_trans_handle *
357 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
358 enum btrfs_reserve_flush_enum flush)
359 {
360 struct btrfs_trans_handle *h;
361 struct btrfs_transaction *cur_trans;
362 u64 num_bytes = 0;
363 int ret;
364 u64 qgroup_reserved = 0;
365
366 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
367 return ERR_PTR(-EROFS);
368
369 if (current->journal_info) {
370 WARN_ON(type & TRANS_EXTWRITERS);
371 h = current->journal_info;
372 h->use_count++;
373 WARN_ON(h->use_count > 2);
374 h->orig_rsv = h->block_rsv;
375 h->block_rsv = NULL;
376 goto got_it;
377 }
378
379 /*
380 * Do the reservation before we join the transaction so we can do all
381 * the appropriate flushing if need be.
382 */
383 if (num_items > 0 && root != root->fs_info->chunk_root) {
384 if (root->fs_info->quota_enabled &&
385 is_fstree(root->root_key.objectid)) {
386 qgroup_reserved = num_items * root->leafsize;
387 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
388 if (ret)
389 return ERR_PTR(ret);
390 }
391
392 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
393 ret = btrfs_block_rsv_add(root,
394 &root->fs_info->trans_block_rsv,
395 num_bytes, flush);
396 if (ret)
397 goto reserve_fail;
398 }
399 again:
400 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
401 if (!h) {
402 ret = -ENOMEM;
403 goto alloc_fail;
404 }
405
406 /*
407 * If we are JOIN_NOLOCK we're already committing a transaction and
408 * waiting on this guy, so we don't need to do the sb_start_intwrite
409 * because we're already holding a ref. We need this because we could
410 * have raced in and did an fsync() on a file which can kick a commit
411 * and then we deadlock with somebody doing a freeze.
412 *
413 * If we are ATTACH, it means we just want to catch the current
414 * transaction and commit it, so we needn't do sb_start_intwrite().
415 */
416 if (type & __TRANS_FREEZABLE)
417 sb_start_intwrite(root->fs_info->sb);
418
419 if (may_wait_transaction(root, type))
420 wait_current_trans(root);
421
422 do {
423 ret = join_transaction(root, type);
424 if (ret == -EBUSY) {
425 wait_current_trans(root);
426 if (unlikely(type == TRANS_ATTACH))
427 ret = -ENOENT;
428 }
429 } while (ret == -EBUSY);
430
431 if (ret < 0) {
432 /* We must get the transaction if we are JOIN_NOLOCK. */
433 BUG_ON(type == TRANS_JOIN_NOLOCK);
434 goto join_fail;
435 }
436
437 cur_trans = root->fs_info->running_transaction;
438
439 h->transid = cur_trans->transid;
440 h->transaction = cur_trans;
441 h->blocks_used = 0;
442 h->bytes_reserved = 0;
443 h->root = root;
444 h->delayed_ref_updates = 0;
445 h->use_count = 1;
446 h->adding_csums = 0;
447 h->block_rsv = NULL;
448 h->orig_rsv = NULL;
449 h->aborted = 0;
450 h->qgroup_reserved = 0;
451 h->delayed_ref_elem.seq = 0;
452 h->type = type;
453 h->allocating_chunk = false;
454 INIT_LIST_HEAD(&h->qgroup_ref_list);
455 INIT_LIST_HEAD(&h->new_bgs);
456
457 smp_mb();
458 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
459 may_wait_transaction(root, type)) {
460 btrfs_commit_transaction(h, root);
461 goto again;
462 }
463
464 if (num_bytes) {
465 trace_btrfs_space_reservation(root->fs_info, "transaction",
466 h->transid, num_bytes, 1);
467 h->block_rsv = &root->fs_info->trans_block_rsv;
468 h->bytes_reserved = num_bytes;
469 }
470 h->qgroup_reserved = qgroup_reserved;
471
472 got_it:
473 btrfs_record_root_in_trans(h, root);
474
475 if (!current->journal_info && type != TRANS_USERSPACE)
476 current->journal_info = h;
477 return h;
478
479 join_fail:
480 if (type & __TRANS_FREEZABLE)
481 sb_end_intwrite(root->fs_info->sb);
482 kmem_cache_free(btrfs_trans_handle_cachep, h);
483 alloc_fail:
484 if (num_bytes)
485 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
486 num_bytes);
487 reserve_fail:
488 if (qgroup_reserved)
489 btrfs_qgroup_free(root, qgroup_reserved);
490 return ERR_PTR(ret);
491 }
492
493 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
494 int num_items)
495 {
496 return start_transaction(root, num_items, TRANS_START,
497 BTRFS_RESERVE_FLUSH_ALL);
498 }
499
500 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
501 struct btrfs_root *root, int num_items)
502 {
503 return start_transaction(root, num_items, TRANS_START,
504 BTRFS_RESERVE_FLUSH_LIMIT);
505 }
506
507 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
508 {
509 return start_transaction(root, 0, TRANS_JOIN, 0);
510 }
511
512 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
513 {
514 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
515 }
516
517 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
518 {
519 return start_transaction(root, 0, TRANS_USERSPACE, 0);
520 }
521
522 /*
523 * btrfs_attach_transaction() - catch the running transaction
524 *
525 * It is used when we want to commit the current the transaction, but
526 * don't want to start a new one.
527 *
528 * Note: If this function return -ENOENT, it just means there is no
529 * running transaction. But it is possible that the inactive transaction
530 * is still in the memory, not fully on disk. If you hope there is no
531 * inactive transaction in the fs when -ENOENT is returned, you should
532 * invoke
533 * btrfs_attach_transaction_barrier()
534 */
535 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
536 {
537 return start_transaction(root, 0, TRANS_ATTACH, 0);
538 }
539
540 /*
541 * btrfs_attach_transaction_barrier() - catch the running transaction
542 *
543 * It is similar to the above function, the differentia is this one
544 * will wait for all the inactive transactions until they fully
545 * complete.
546 */
547 struct btrfs_trans_handle *
548 btrfs_attach_transaction_barrier(struct btrfs_root *root)
549 {
550 struct btrfs_trans_handle *trans;
551
552 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
553 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
554 btrfs_wait_for_commit(root, 0);
555
556 return trans;
557 }
558
559 /* wait for a transaction commit to be fully complete */
560 static noinline void wait_for_commit(struct btrfs_root *root,
561 struct btrfs_transaction *commit)
562 {
563 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
564 }
565
566 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
567 {
568 struct btrfs_transaction *cur_trans = NULL, *t;
569 int ret = 0;
570
571 if (transid) {
572 if (transid <= root->fs_info->last_trans_committed)
573 goto out;
574
575 ret = -EINVAL;
576 /* find specified transaction */
577 spin_lock(&root->fs_info->trans_lock);
578 list_for_each_entry(t, &root->fs_info->trans_list, list) {
579 if (t->transid == transid) {
580 cur_trans = t;
581 atomic_inc(&cur_trans->use_count);
582 ret = 0;
583 break;
584 }
585 if (t->transid > transid) {
586 ret = 0;
587 break;
588 }
589 }
590 spin_unlock(&root->fs_info->trans_lock);
591 /* The specified transaction doesn't exist */
592 if (!cur_trans)
593 goto out;
594 } else {
595 /* find newest transaction that is committing | committed */
596 spin_lock(&root->fs_info->trans_lock);
597 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
598 list) {
599 if (t->state >= TRANS_STATE_COMMIT_START) {
600 if (t->state == TRANS_STATE_COMPLETED)
601 break;
602 cur_trans = t;
603 atomic_inc(&cur_trans->use_count);
604 break;
605 }
606 }
607 spin_unlock(&root->fs_info->trans_lock);
608 if (!cur_trans)
609 goto out; /* nothing committing|committed */
610 }
611
612 wait_for_commit(root, cur_trans);
613 put_transaction(cur_trans);
614 out:
615 return ret;
616 }
617
618 void btrfs_throttle(struct btrfs_root *root)
619 {
620 if (!atomic_read(&root->fs_info->open_ioctl_trans))
621 wait_current_trans(root);
622 }
623
624 static int should_end_transaction(struct btrfs_trans_handle *trans,
625 struct btrfs_root *root)
626 {
627 if (root->fs_info->global_block_rsv.space_info->full &&
628 btrfs_should_throttle_delayed_refs(trans, root))
629 return 1;
630
631 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
632 }
633
634 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
635 struct btrfs_root *root)
636 {
637 struct btrfs_transaction *cur_trans = trans->transaction;
638 int updates;
639 int err;
640
641 smp_mb();
642 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
643 cur_trans->delayed_refs.flushing)
644 return 1;
645
646 updates = trans->delayed_ref_updates;
647 trans->delayed_ref_updates = 0;
648 if (updates) {
649 err = btrfs_run_delayed_refs(trans, root, updates);
650 if (err) /* Error code will also eval true */
651 return err;
652 }
653
654 return should_end_transaction(trans, root);
655 }
656
657 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
658 struct btrfs_root *root, int throttle)
659 {
660 struct btrfs_transaction *cur_trans = trans->transaction;
661 struct btrfs_fs_info *info = root->fs_info;
662 unsigned long cur = trans->delayed_ref_updates;
663 int lock = (trans->type != TRANS_JOIN_NOLOCK);
664 int err = 0;
665
666 if (--trans->use_count) {
667 trans->block_rsv = trans->orig_rsv;
668 return 0;
669 }
670
671 /*
672 * do the qgroup accounting as early as possible
673 */
674 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
675
676 btrfs_trans_release_metadata(trans, root);
677 trans->block_rsv = NULL;
678
679 if (trans->qgroup_reserved) {
680 /*
681 * the same root has to be passed here between start_transaction
682 * and end_transaction. Subvolume quota depends on this.
683 */
684 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
685 trans->qgroup_reserved = 0;
686 }
687
688 if (!list_empty(&trans->new_bgs))
689 btrfs_create_pending_block_groups(trans, root);
690
691 trans->delayed_ref_updates = 0;
692 if (btrfs_should_throttle_delayed_refs(trans, root)) {
693 cur = max_t(unsigned long, cur, 1);
694 trans->delayed_ref_updates = 0;
695 btrfs_run_delayed_refs(trans, root, cur);
696 }
697
698 btrfs_trans_release_metadata(trans, root);
699 trans->block_rsv = NULL;
700
701 if (!list_empty(&trans->new_bgs))
702 btrfs_create_pending_block_groups(trans, root);
703
704 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
705 should_end_transaction(trans, root) &&
706 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
707 spin_lock(&info->trans_lock);
708 if (cur_trans->state == TRANS_STATE_RUNNING)
709 cur_trans->state = TRANS_STATE_BLOCKED;
710 spin_unlock(&info->trans_lock);
711 }
712
713 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
714 if (throttle) {
715 /*
716 * We may race with somebody else here so end up having
717 * to call end_transaction on ourselves again, so inc
718 * our use_count.
719 */
720 trans->use_count++;
721 return btrfs_commit_transaction(trans, root);
722 } else {
723 wake_up_process(info->transaction_kthread);
724 }
725 }
726
727 if (trans->type & __TRANS_FREEZABLE)
728 sb_end_intwrite(root->fs_info->sb);
729
730 WARN_ON(cur_trans != info->running_transaction);
731 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
732 atomic_dec(&cur_trans->num_writers);
733 extwriter_counter_dec(cur_trans, trans->type);
734
735 smp_mb();
736 if (waitqueue_active(&cur_trans->writer_wait))
737 wake_up(&cur_trans->writer_wait);
738 put_transaction(cur_trans);
739
740 if (current->journal_info == trans)
741 current->journal_info = NULL;
742
743 if (throttle)
744 btrfs_run_delayed_iputs(root);
745
746 if (trans->aborted ||
747 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
748 err = -EIO;
749 assert_qgroups_uptodate(trans);
750
751 kmem_cache_free(btrfs_trans_handle_cachep, trans);
752 return err;
753 }
754
755 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
756 struct btrfs_root *root)
757 {
758 return __btrfs_end_transaction(trans, root, 0);
759 }
760
761 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
762 struct btrfs_root *root)
763 {
764 return __btrfs_end_transaction(trans, root, 1);
765 }
766
767 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
768 struct btrfs_root *root)
769 {
770 return __btrfs_end_transaction(trans, root, 1);
771 }
772
773 /*
774 * when btree blocks are allocated, they have some corresponding bits set for
775 * them in one of two extent_io trees. This is used to make sure all of
776 * those extents are sent to disk but does not wait on them
777 */
778 int btrfs_write_marked_extents(struct btrfs_root *root,
779 struct extent_io_tree *dirty_pages, int mark)
780 {
781 int err = 0;
782 int werr = 0;
783 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
784 struct extent_state *cached_state = NULL;
785 u64 start = 0;
786 u64 end;
787
788 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
789 mark, &cached_state)) {
790 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
791 mark, &cached_state, GFP_NOFS);
792 cached_state = NULL;
793 err = filemap_fdatawrite_range(mapping, start, end);
794 if (err)
795 werr = err;
796 cond_resched();
797 start = end + 1;
798 }
799 if (err)
800 werr = err;
801 return werr;
802 }
803
804 /*
805 * when btree blocks are allocated, they have some corresponding bits set for
806 * them in one of two extent_io trees. This is used to make sure all of
807 * those extents are on disk for transaction or log commit. We wait
808 * on all the pages and clear them from the dirty pages state tree
809 */
810 int btrfs_wait_marked_extents(struct btrfs_root *root,
811 struct extent_io_tree *dirty_pages, int mark)
812 {
813 int err = 0;
814 int werr = 0;
815 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
816 struct extent_state *cached_state = NULL;
817 u64 start = 0;
818 u64 end;
819
820 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
821 EXTENT_NEED_WAIT, &cached_state)) {
822 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
823 0, 0, &cached_state, GFP_NOFS);
824 err = filemap_fdatawait_range(mapping, start, end);
825 if (err)
826 werr = err;
827 cond_resched();
828 start = end + 1;
829 }
830 if (err)
831 werr = err;
832 return werr;
833 }
834
835 /*
836 * when btree blocks are allocated, they have some corresponding bits set for
837 * them in one of two extent_io trees. This is used to make sure all of
838 * those extents are on disk for transaction or log commit
839 */
840 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
841 struct extent_io_tree *dirty_pages, int mark)
842 {
843 int ret;
844 int ret2;
845 struct blk_plug plug;
846
847 blk_start_plug(&plug);
848 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
849 blk_finish_plug(&plug);
850 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
851
852 if (ret)
853 return ret;
854 if (ret2)
855 return ret2;
856 return 0;
857 }
858
859 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
860 struct btrfs_root *root)
861 {
862 if (!trans || !trans->transaction) {
863 struct inode *btree_inode;
864 btree_inode = root->fs_info->btree_inode;
865 return filemap_write_and_wait(btree_inode->i_mapping);
866 }
867 return btrfs_write_and_wait_marked_extents(root,
868 &trans->transaction->dirty_pages,
869 EXTENT_DIRTY);
870 }
871
872 /*
873 * this is used to update the root pointer in the tree of tree roots.
874 *
875 * But, in the case of the extent allocation tree, updating the root
876 * pointer may allocate blocks which may change the root of the extent
877 * allocation tree.
878 *
879 * So, this loops and repeats and makes sure the cowonly root didn't
880 * change while the root pointer was being updated in the metadata.
881 */
882 static int update_cowonly_root(struct btrfs_trans_handle *trans,
883 struct btrfs_root *root)
884 {
885 int ret;
886 u64 old_root_bytenr;
887 u64 old_root_used;
888 struct btrfs_root *tree_root = root->fs_info->tree_root;
889
890 old_root_used = btrfs_root_used(&root->root_item);
891 btrfs_write_dirty_block_groups(trans, root);
892
893 while (1) {
894 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
895 if (old_root_bytenr == root->node->start &&
896 old_root_used == btrfs_root_used(&root->root_item))
897 break;
898
899 btrfs_set_root_node(&root->root_item, root->node);
900 ret = btrfs_update_root(trans, tree_root,
901 &root->root_key,
902 &root->root_item);
903 if (ret)
904 return ret;
905
906 old_root_used = btrfs_root_used(&root->root_item);
907 ret = btrfs_write_dirty_block_groups(trans, root);
908 if (ret)
909 return ret;
910 }
911
912 if (root != root->fs_info->extent_root)
913 switch_commit_root(root);
914
915 return 0;
916 }
917
918 /*
919 * update all the cowonly tree roots on disk
920 *
921 * The error handling in this function may not be obvious. Any of the
922 * failures will cause the file system to go offline. We still need
923 * to clean up the delayed refs.
924 */
925 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
926 struct btrfs_root *root)
927 {
928 struct btrfs_fs_info *fs_info = root->fs_info;
929 struct list_head *next;
930 struct extent_buffer *eb;
931 int ret;
932
933 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
934 if (ret)
935 return ret;
936
937 eb = btrfs_lock_root_node(fs_info->tree_root);
938 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
939 0, &eb);
940 btrfs_tree_unlock(eb);
941 free_extent_buffer(eb);
942
943 if (ret)
944 return ret;
945
946 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
947 if (ret)
948 return ret;
949
950 ret = btrfs_run_dev_stats(trans, root->fs_info);
951 WARN_ON(ret);
952 ret = btrfs_run_dev_replace(trans, root->fs_info);
953 WARN_ON(ret);
954
955 ret = btrfs_run_qgroups(trans, root->fs_info);
956 BUG_ON(ret);
957
958 /* run_qgroups might have added some more refs */
959 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
960 BUG_ON(ret);
961
962 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
963 next = fs_info->dirty_cowonly_roots.next;
964 list_del_init(next);
965 root = list_entry(next, struct btrfs_root, dirty_list);
966
967 ret = update_cowonly_root(trans, root);
968 if (ret)
969 return ret;
970 }
971
972 down_write(&fs_info->extent_commit_sem);
973 switch_commit_root(fs_info->extent_root);
974 up_write(&fs_info->extent_commit_sem);
975
976 btrfs_after_dev_replace_commit(fs_info);
977
978 return 0;
979 }
980
981 /*
982 * dead roots are old snapshots that need to be deleted. This allocates
983 * a dirty root struct and adds it into the list of dead roots that need to
984 * be deleted
985 */
986 void btrfs_add_dead_root(struct btrfs_root *root)
987 {
988 spin_lock(&root->fs_info->trans_lock);
989 if (list_empty(&root->root_list))
990 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
991 spin_unlock(&root->fs_info->trans_lock);
992 }
993
994 /*
995 * update all the cowonly tree roots on disk
996 */
997 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
998 struct btrfs_root *root)
999 {
1000 struct btrfs_root *gang[8];
1001 struct btrfs_fs_info *fs_info = root->fs_info;
1002 int i;
1003 int ret;
1004 int err = 0;
1005
1006 spin_lock(&fs_info->fs_roots_radix_lock);
1007 while (1) {
1008 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1009 (void **)gang, 0,
1010 ARRAY_SIZE(gang),
1011 BTRFS_ROOT_TRANS_TAG);
1012 if (ret == 0)
1013 break;
1014 for (i = 0; i < ret; i++) {
1015 root = gang[i];
1016 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1017 (unsigned long)root->root_key.objectid,
1018 BTRFS_ROOT_TRANS_TAG);
1019 spin_unlock(&fs_info->fs_roots_radix_lock);
1020
1021 btrfs_free_log(trans, root);
1022 btrfs_update_reloc_root(trans, root);
1023 btrfs_orphan_commit_root(trans, root);
1024
1025 btrfs_save_ino_cache(root, trans);
1026
1027 /* see comments in should_cow_block() */
1028 root->force_cow = 0;
1029 smp_wmb();
1030
1031 if (root->commit_root != root->node) {
1032 mutex_lock(&root->fs_commit_mutex);
1033 switch_commit_root(root);
1034 btrfs_unpin_free_ino(root);
1035 mutex_unlock(&root->fs_commit_mutex);
1036
1037 btrfs_set_root_node(&root->root_item,
1038 root->node);
1039 }
1040
1041 err = btrfs_update_root(trans, fs_info->tree_root,
1042 &root->root_key,
1043 &root->root_item);
1044 spin_lock(&fs_info->fs_roots_radix_lock);
1045 if (err)
1046 break;
1047 }
1048 }
1049 spin_unlock(&fs_info->fs_roots_radix_lock);
1050 return err;
1051 }
1052
1053 /*
1054 * defrag a given btree.
1055 * Every leaf in the btree is read and defragged.
1056 */
1057 int btrfs_defrag_root(struct btrfs_root *root)
1058 {
1059 struct btrfs_fs_info *info = root->fs_info;
1060 struct btrfs_trans_handle *trans;
1061 int ret;
1062
1063 if (xchg(&root->defrag_running, 1))
1064 return 0;
1065
1066 while (1) {
1067 trans = btrfs_start_transaction(root, 0);
1068 if (IS_ERR(trans))
1069 return PTR_ERR(trans);
1070
1071 ret = btrfs_defrag_leaves(trans, root);
1072
1073 btrfs_end_transaction(trans, root);
1074 btrfs_btree_balance_dirty(info->tree_root);
1075 cond_resched();
1076
1077 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1078 break;
1079
1080 if (btrfs_defrag_cancelled(root->fs_info)) {
1081 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1082 ret = -EAGAIN;
1083 break;
1084 }
1085 }
1086 root->defrag_running = 0;
1087 return ret;
1088 }
1089
1090 /*
1091 * new snapshots need to be created at a very specific time in the
1092 * transaction commit. This does the actual creation.
1093 *
1094 * Note:
1095 * If the error which may affect the commitment of the current transaction
1096 * happens, we should return the error number. If the error which just affect
1097 * the creation of the pending snapshots, just return 0.
1098 */
1099 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1100 struct btrfs_fs_info *fs_info,
1101 struct btrfs_pending_snapshot *pending)
1102 {
1103 struct btrfs_key key;
1104 struct btrfs_root_item *new_root_item;
1105 struct btrfs_root *tree_root = fs_info->tree_root;
1106 struct btrfs_root *root = pending->root;
1107 struct btrfs_root *parent_root;
1108 struct btrfs_block_rsv *rsv;
1109 struct inode *parent_inode;
1110 struct btrfs_path *path;
1111 struct btrfs_dir_item *dir_item;
1112 struct dentry *dentry;
1113 struct extent_buffer *tmp;
1114 struct extent_buffer *old;
1115 struct timespec cur_time = CURRENT_TIME;
1116 int ret = 0;
1117 u64 to_reserve = 0;
1118 u64 index = 0;
1119 u64 objectid;
1120 u64 root_flags;
1121 uuid_le new_uuid;
1122
1123 path = btrfs_alloc_path();
1124 if (!path) {
1125 pending->error = -ENOMEM;
1126 return 0;
1127 }
1128
1129 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1130 if (!new_root_item) {
1131 pending->error = -ENOMEM;
1132 goto root_item_alloc_fail;
1133 }
1134
1135 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1136 if (pending->error)
1137 goto no_free_objectid;
1138
1139 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1140
1141 if (to_reserve > 0) {
1142 pending->error = btrfs_block_rsv_add(root,
1143 &pending->block_rsv,
1144 to_reserve,
1145 BTRFS_RESERVE_NO_FLUSH);
1146 if (pending->error)
1147 goto no_free_objectid;
1148 }
1149
1150 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1151 root->root_key.objectid,
1152 objectid, pending->inherit);
1153 if (pending->error)
1154 goto no_free_objectid;
1155
1156 key.objectid = objectid;
1157 key.offset = (u64)-1;
1158 key.type = BTRFS_ROOT_ITEM_KEY;
1159
1160 rsv = trans->block_rsv;
1161 trans->block_rsv = &pending->block_rsv;
1162 trans->bytes_reserved = trans->block_rsv->reserved;
1163
1164 dentry = pending->dentry;
1165 parent_inode = pending->dir;
1166 parent_root = BTRFS_I(parent_inode)->root;
1167 record_root_in_trans(trans, parent_root);
1168
1169 /*
1170 * insert the directory item
1171 */
1172 ret = btrfs_set_inode_index(parent_inode, &index);
1173 BUG_ON(ret); /* -ENOMEM */
1174
1175 /* check if there is a file/dir which has the same name. */
1176 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1177 btrfs_ino(parent_inode),
1178 dentry->d_name.name,
1179 dentry->d_name.len, 0);
1180 if (dir_item != NULL && !IS_ERR(dir_item)) {
1181 pending->error = -EEXIST;
1182 goto dir_item_existed;
1183 } else if (IS_ERR(dir_item)) {
1184 ret = PTR_ERR(dir_item);
1185 btrfs_abort_transaction(trans, root, ret);
1186 goto fail;
1187 }
1188 btrfs_release_path(path);
1189
1190 /*
1191 * pull in the delayed directory update
1192 * and the delayed inode item
1193 * otherwise we corrupt the FS during
1194 * snapshot
1195 */
1196 ret = btrfs_run_delayed_items(trans, root);
1197 if (ret) { /* Transaction aborted */
1198 btrfs_abort_transaction(trans, root, ret);
1199 goto fail;
1200 }
1201
1202 record_root_in_trans(trans, root);
1203 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1204 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1205 btrfs_check_and_init_root_item(new_root_item);
1206
1207 root_flags = btrfs_root_flags(new_root_item);
1208 if (pending->readonly)
1209 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1210 else
1211 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1212 btrfs_set_root_flags(new_root_item, root_flags);
1213
1214 btrfs_set_root_generation_v2(new_root_item,
1215 trans->transid);
1216 uuid_le_gen(&new_uuid);
1217 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1218 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1219 BTRFS_UUID_SIZE);
1220 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1221 memset(new_root_item->received_uuid, 0,
1222 sizeof(new_root_item->received_uuid));
1223 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1224 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1225 btrfs_set_root_stransid(new_root_item, 0);
1226 btrfs_set_root_rtransid(new_root_item, 0);
1227 }
1228 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1229 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1230 btrfs_set_root_otransid(new_root_item, trans->transid);
1231
1232 old = btrfs_lock_root_node(root);
1233 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1234 if (ret) {
1235 btrfs_tree_unlock(old);
1236 free_extent_buffer(old);
1237 btrfs_abort_transaction(trans, root, ret);
1238 goto fail;
1239 }
1240
1241 btrfs_set_lock_blocking(old);
1242
1243 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1244 /* clean up in any case */
1245 btrfs_tree_unlock(old);
1246 free_extent_buffer(old);
1247 if (ret) {
1248 btrfs_abort_transaction(trans, root, ret);
1249 goto fail;
1250 }
1251
1252 /* see comments in should_cow_block() */
1253 root->force_cow = 1;
1254 smp_wmb();
1255
1256 btrfs_set_root_node(new_root_item, tmp);
1257 /* record when the snapshot was created in key.offset */
1258 key.offset = trans->transid;
1259 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1260 btrfs_tree_unlock(tmp);
1261 free_extent_buffer(tmp);
1262 if (ret) {
1263 btrfs_abort_transaction(trans, root, ret);
1264 goto fail;
1265 }
1266
1267 /*
1268 * insert root back/forward references
1269 */
1270 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1271 parent_root->root_key.objectid,
1272 btrfs_ino(parent_inode), index,
1273 dentry->d_name.name, dentry->d_name.len);
1274 if (ret) {
1275 btrfs_abort_transaction(trans, root, ret);
1276 goto fail;
1277 }
1278
1279 key.offset = (u64)-1;
1280 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1281 if (IS_ERR(pending->snap)) {
1282 ret = PTR_ERR(pending->snap);
1283 btrfs_abort_transaction(trans, root, ret);
1284 goto fail;
1285 }
1286
1287 ret = btrfs_reloc_post_snapshot(trans, pending);
1288 if (ret) {
1289 btrfs_abort_transaction(trans, root, ret);
1290 goto fail;
1291 }
1292
1293 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1294 if (ret) {
1295 btrfs_abort_transaction(trans, root, ret);
1296 goto fail;
1297 }
1298
1299 ret = btrfs_insert_dir_item(trans, parent_root,
1300 dentry->d_name.name, dentry->d_name.len,
1301 parent_inode, &key,
1302 BTRFS_FT_DIR, index);
1303 /* We have check then name at the beginning, so it is impossible. */
1304 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1305 if (ret) {
1306 btrfs_abort_transaction(trans, root, ret);
1307 goto fail;
1308 }
1309
1310 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1311 dentry->d_name.len * 2);
1312 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1313 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1314 if (ret) {
1315 btrfs_abort_transaction(trans, root, ret);
1316 goto fail;
1317 }
1318 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1319 BTRFS_UUID_KEY_SUBVOL, objectid);
1320 if (ret) {
1321 btrfs_abort_transaction(trans, root, ret);
1322 goto fail;
1323 }
1324 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1325 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1326 new_root_item->received_uuid,
1327 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1328 objectid);
1329 if (ret && ret != -EEXIST) {
1330 btrfs_abort_transaction(trans, root, ret);
1331 goto fail;
1332 }
1333 }
1334 fail:
1335 pending->error = ret;
1336 dir_item_existed:
1337 trans->block_rsv = rsv;
1338 trans->bytes_reserved = 0;
1339 no_free_objectid:
1340 kfree(new_root_item);
1341 root_item_alloc_fail:
1342 btrfs_free_path(path);
1343 return ret;
1344 }
1345
1346 /*
1347 * create all the snapshots we've scheduled for creation
1348 */
1349 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1350 struct btrfs_fs_info *fs_info)
1351 {
1352 struct btrfs_pending_snapshot *pending, *next;
1353 struct list_head *head = &trans->transaction->pending_snapshots;
1354 int ret = 0;
1355
1356 list_for_each_entry_safe(pending, next, head, list) {
1357 list_del(&pending->list);
1358 ret = create_pending_snapshot(trans, fs_info, pending);
1359 if (ret)
1360 break;
1361 }
1362 return ret;
1363 }
1364
1365 static void update_super_roots(struct btrfs_root *root)
1366 {
1367 struct btrfs_root_item *root_item;
1368 struct btrfs_super_block *super;
1369
1370 super = root->fs_info->super_copy;
1371
1372 root_item = &root->fs_info->chunk_root->root_item;
1373 super->chunk_root = root_item->bytenr;
1374 super->chunk_root_generation = root_item->generation;
1375 super->chunk_root_level = root_item->level;
1376
1377 root_item = &root->fs_info->tree_root->root_item;
1378 super->root = root_item->bytenr;
1379 super->generation = root_item->generation;
1380 super->root_level = root_item->level;
1381 if (btrfs_test_opt(root, SPACE_CACHE))
1382 super->cache_generation = root_item->generation;
1383 if (root->fs_info->update_uuid_tree_gen)
1384 super->uuid_tree_generation = root_item->generation;
1385 }
1386
1387 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1388 {
1389 struct btrfs_transaction *trans;
1390 int ret = 0;
1391
1392 spin_lock(&info->trans_lock);
1393 trans = info->running_transaction;
1394 if (trans)
1395 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1396 spin_unlock(&info->trans_lock);
1397 return ret;
1398 }
1399
1400 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1401 {
1402 struct btrfs_transaction *trans;
1403 int ret = 0;
1404
1405 spin_lock(&info->trans_lock);
1406 trans = info->running_transaction;
1407 if (trans)
1408 ret = is_transaction_blocked(trans);
1409 spin_unlock(&info->trans_lock);
1410 return ret;
1411 }
1412
1413 /*
1414 * wait for the current transaction commit to start and block subsequent
1415 * transaction joins
1416 */
1417 static void wait_current_trans_commit_start(struct btrfs_root *root,
1418 struct btrfs_transaction *trans)
1419 {
1420 wait_event(root->fs_info->transaction_blocked_wait,
1421 trans->state >= TRANS_STATE_COMMIT_START ||
1422 trans->aborted);
1423 }
1424
1425 /*
1426 * wait for the current transaction to start and then become unblocked.
1427 * caller holds ref.
1428 */
1429 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1430 struct btrfs_transaction *trans)
1431 {
1432 wait_event(root->fs_info->transaction_wait,
1433 trans->state >= TRANS_STATE_UNBLOCKED ||
1434 trans->aborted);
1435 }
1436
1437 /*
1438 * commit transactions asynchronously. once btrfs_commit_transaction_async
1439 * returns, any subsequent transaction will not be allowed to join.
1440 */
1441 struct btrfs_async_commit {
1442 struct btrfs_trans_handle *newtrans;
1443 struct btrfs_root *root;
1444 struct work_struct work;
1445 };
1446
1447 static void do_async_commit(struct work_struct *work)
1448 {
1449 struct btrfs_async_commit *ac =
1450 container_of(work, struct btrfs_async_commit, work);
1451
1452 /*
1453 * We've got freeze protection passed with the transaction.
1454 * Tell lockdep about it.
1455 */
1456 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1457 rwsem_acquire_read(
1458 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1459 0, 1, _THIS_IP_);
1460
1461 current->journal_info = ac->newtrans;
1462
1463 btrfs_commit_transaction(ac->newtrans, ac->root);
1464 kfree(ac);
1465 }
1466
1467 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1468 struct btrfs_root *root,
1469 int wait_for_unblock)
1470 {
1471 struct btrfs_async_commit *ac;
1472 struct btrfs_transaction *cur_trans;
1473
1474 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1475 if (!ac)
1476 return -ENOMEM;
1477
1478 INIT_WORK(&ac->work, do_async_commit);
1479 ac->root = root;
1480 ac->newtrans = btrfs_join_transaction(root);
1481 if (IS_ERR(ac->newtrans)) {
1482 int err = PTR_ERR(ac->newtrans);
1483 kfree(ac);
1484 return err;
1485 }
1486
1487 /* take transaction reference */
1488 cur_trans = trans->transaction;
1489 atomic_inc(&cur_trans->use_count);
1490
1491 btrfs_end_transaction(trans, root);
1492
1493 /*
1494 * Tell lockdep we've released the freeze rwsem, since the
1495 * async commit thread will be the one to unlock it.
1496 */
1497 if (trans->type < TRANS_JOIN_NOLOCK)
1498 rwsem_release(
1499 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1500 1, _THIS_IP_);
1501
1502 schedule_work(&ac->work);
1503
1504 /* wait for transaction to start and unblock */
1505 if (wait_for_unblock)
1506 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1507 else
1508 wait_current_trans_commit_start(root, cur_trans);
1509
1510 if (current->journal_info == trans)
1511 current->journal_info = NULL;
1512
1513 put_transaction(cur_trans);
1514 return 0;
1515 }
1516
1517
1518 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1519 struct btrfs_root *root, int err)
1520 {
1521 struct btrfs_transaction *cur_trans = trans->transaction;
1522 DEFINE_WAIT(wait);
1523
1524 WARN_ON(trans->use_count > 1);
1525
1526 btrfs_abort_transaction(trans, root, err);
1527
1528 spin_lock(&root->fs_info->trans_lock);
1529
1530 /*
1531 * If the transaction is removed from the list, it means this
1532 * transaction has been committed successfully, so it is impossible
1533 * to call the cleanup function.
1534 */
1535 BUG_ON(list_empty(&cur_trans->list));
1536
1537 list_del_init(&cur_trans->list);
1538 if (cur_trans == root->fs_info->running_transaction) {
1539 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1540 spin_unlock(&root->fs_info->trans_lock);
1541 wait_event(cur_trans->writer_wait,
1542 atomic_read(&cur_trans->num_writers) == 1);
1543
1544 spin_lock(&root->fs_info->trans_lock);
1545 }
1546 spin_unlock(&root->fs_info->trans_lock);
1547
1548 btrfs_cleanup_one_transaction(trans->transaction, root);
1549
1550 spin_lock(&root->fs_info->trans_lock);
1551 if (cur_trans == root->fs_info->running_transaction)
1552 root->fs_info->running_transaction = NULL;
1553 spin_unlock(&root->fs_info->trans_lock);
1554
1555 put_transaction(cur_trans);
1556 put_transaction(cur_trans);
1557
1558 trace_btrfs_transaction_commit(root);
1559
1560 btrfs_scrub_continue(root);
1561
1562 if (current->journal_info == trans)
1563 current->journal_info = NULL;
1564
1565 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1566 }
1567
1568 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1569 struct btrfs_root *root)
1570 {
1571 int ret;
1572
1573 ret = btrfs_run_delayed_items(trans, root);
1574 if (ret)
1575 return ret;
1576
1577 /*
1578 * running the delayed items may have added new refs. account
1579 * them now so that they hinder processing of more delayed refs
1580 * as little as possible.
1581 */
1582 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1583
1584 /*
1585 * rename don't use btrfs_join_transaction, so, once we
1586 * set the transaction to blocked above, we aren't going
1587 * to get any new ordered operations. We can safely run
1588 * it here and no for sure that nothing new will be added
1589 * to the list
1590 */
1591 ret = btrfs_run_ordered_operations(trans, root, 1);
1592
1593 return ret;
1594 }
1595
1596 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1597 {
1598 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1599 return btrfs_start_all_delalloc_inodes(fs_info, 1);
1600 return 0;
1601 }
1602
1603 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1604 {
1605 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1606 btrfs_wait_all_ordered_extents(fs_info);
1607 }
1608
1609 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1610 struct btrfs_root *root)
1611 {
1612 struct btrfs_transaction *cur_trans = trans->transaction;
1613 struct btrfs_transaction *prev_trans = NULL;
1614 int ret;
1615
1616 ret = btrfs_run_ordered_operations(trans, root, 0);
1617 if (ret) {
1618 btrfs_abort_transaction(trans, root, ret);
1619 btrfs_end_transaction(trans, root);
1620 return ret;
1621 }
1622
1623 /* Stop the commit early if ->aborted is set */
1624 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1625 ret = cur_trans->aborted;
1626 btrfs_end_transaction(trans, root);
1627 return ret;
1628 }
1629
1630 /* make a pass through all the delayed refs we have so far
1631 * any runnings procs may add more while we are here
1632 */
1633 ret = btrfs_run_delayed_refs(trans, root, 0);
1634 if (ret) {
1635 btrfs_end_transaction(trans, root);
1636 return ret;
1637 }
1638
1639 btrfs_trans_release_metadata(trans, root);
1640 trans->block_rsv = NULL;
1641 if (trans->qgroup_reserved) {
1642 btrfs_qgroup_free(root, trans->qgroup_reserved);
1643 trans->qgroup_reserved = 0;
1644 }
1645
1646 cur_trans = trans->transaction;
1647
1648 /*
1649 * set the flushing flag so procs in this transaction have to
1650 * start sending their work down.
1651 */
1652 cur_trans->delayed_refs.flushing = 1;
1653 smp_wmb();
1654
1655 if (!list_empty(&trans->new_bgs))
1656 btrfs_create_pending_block_groups(trans, root);
1657
1658 ret = btrfs_run_delayed_refs(trans, root, 0);
1659 if (ret) {
1660 btrfs_end_transaction(trans, root);
1661 return ret;
1662 }
1663
1664 spin_lock(&root->fs_info->trans_lock);
1665 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1666 spin_unlock(&root->fs_info->trans_lock);
1667 atomic_inc(&cur_trans->use_count);
1668 ret = btrfs_end_transaction(trans, root);
1669
1670 wait_for_commit(root, cur_trans);
1671
1672 put_transaction(cur_trans);
1673
1674 return ret;
1675 }
1676
1677 cur_trans->state = TRANS_STATE_COMMIT_START;
1678 wake_up(&root->fs_info->transaction_blocked_wait);
1679
1680 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1681 prev_trans = list_entry(cur_trans->list.prev,
1682 struct btrfs_transaction, list);
1683 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1684 atomic_inc(&prev_trans->use_count);
1685 spin_unlock(&root->fs_info->trans_lock);
1686
1687 wait_for_commit(root, prev_trans);
1688
1689 put_transaction(prev_trans);
1690 } else {
1691 spin_unlock(&root->fs_info->trans_lock);
1692 }
1693 } else {
1694 spin_unlock(&root->fs_info->trans_lock);
1695 }
1696
1697 extwriter_counter_dec(cur_trans, trans->type);
1698
1699 ret = btrfs_start_delalloc_flush(root->fs_info);
1700 if (ret)
1701 goto cleanup_transaction;
1702
1703 ret = btrfs_flush_all_pending_stuffs(trans, root);
1704 if (ret)
1705 goto cleanup_transaction;
1706
1707 wait_event(cur_trans->writer_wait,
1708 extwriter_counter_read(cur_trans) == 0);
1709
1710 /* some pending stuffs might be added after the previous flush. */
1711 ret = btrfs_flush_all_pending_stuffs(trans, root);
1712 if (ret)
1713 goto cleanup_transaction;
1714
1715 btrfs_wait_delalloc_flush(root->fs_info);
1716 /*
1717 * Ok now we need to make sure to block out any other joins while we
1718 * commit the transaction. We could have started a join before setting
1719 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1720 */
1721 spin_lock(&root->fs_info->trans_lock);
1722 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1723 spin_unlock(&root->fs_info->trans_lock);
1724 wait_event(cur_trans->writer_wait,
1725 atomic_read(&cur_trans->num_writers) == 1);
1726
1727 /* ->aborted might be set after the previous check, so check it */
1728 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1729 ret = cur_trans->aborted;
1730 goto cleanup_transaction;
1731 }
1732 /*
1733 * the reloc mutex makes sure that we stop
1734 * the balancing code from coming in and moving
1735 * extents around in the middle of the commit
1736 */
1737 mutex_lock(&root->fs_info->reloc_mutex);
1738
1739 /*
1740 * We needn't worry about the delayed items because we will
1741 * deal with them in create_pending_snapshot(), which is the
1742 * core function of the snapshot creation.
1743 */
1744 ret = create_pending_snapshots(trans, root->fs_info);
1745 if (ret) {
1746 mutex_unlock(&root->fs_info->reloc_mutex);
1747 goto cleanup_transaction;
1748 }
1749
1750 /*
1751 * We insert the dir indexes of the snapshots and update the inode
1752 * of the snapshots' parents after the snapshot creation, so there
1753 * are some delayed items which are not dealt with. Now deal with
1754 * them.
1755 *
1756 * We needn't worry that this operation will corrupt the snapshots,
1757 * because all the tree which are snapshoted will be forced to COW
1758 * the nodes and leaves.
1759 */
1760 ret = btrfs_run_delayed_items(trans, root);
1761 if (ret) {
1762 mutex_unlock(&root->fs_info->reloc_mutex);
1763 goto cleanup_transaction;
1764 }
1765
1766 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1767 if (ret) {
1768 mutex_unlock(&root->fs_info->reloc_mutex);
1769 goto cleanup_transaction;
1770 }
1771
1772 /*
1773 * make sure none of the code above managed to slip in a
1774 * delayed item
1775 */
1776 btrfs_assert_delayed_root_empty(root);
1777
1778 WARN_ON(cur_trans != trans->transaction);
1779
1780 btrfs_scrub_pause(root);
1781 /* btrfs_commit_tree_roots is responsible for getting the
1782 * various roots consistent with each other. Every pointer
1783 * in the tree of tree roots has to point to the most up to date
1784 * root for every subvolume and other tree. So, we have to keep
1785 * the tree logging code from jumping in and changing any
1786 * of the trees.
1787 *
1788 * At this point in the commit, there can't be any tree-log
1789 * writers, but a little lower down we drop the trans mutex
1790 * and let new people in. By holding the tree_log_mutex
1791 * from now until after the super is written, we avoid races
1792 * with the tree-log code.
1793 */
1794 mutex_lock(&root->fs_info->tree_log_mutex);
1795
1796 ret = commit_fs_roots(trans, root);
1797 if (ret) {
1798 mutex_unlock(&root->fs_info->tree_log_mutex);
1799 mutex_unlock(&root->fs_info->reloc_mutex);
1800 goto cleanup_transaction;
1801 }
1802
1803 /* commit_fs_roots gets rid of all the tree log roots, it is now
1804 * safe to free the root of tree log roots
1805 */
1806 btrfs_free_log_root_tree(trans, root->fs_info);
1807
1808 ret = commit_cowonly_roots(trans, root);
1809 if (ret) {
1810 mutex_unlock(&root->fs_info->tree_log_mutex);
1811 mutex_unlock(&root->fs_info->reloc_mutex);
1812 goto cleanup_transaction;
1813 }
1814
1815 /*
1816 * The tasks which save the space cache and inode cache may also
1817 * update ->aborted, check it.
1818 */
1819 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1820 ret = cur_trans->aborted;
1821 mutex_unlock(&root->fs_info->tree_log_mutex);
1822 mutex_unlock(&root->fs_info->reloc_mutex);
1823 goto cleanup_transaction;
1824 }
1825
1826 btrfs_prepare_extent_commit(trans, root);
1827
1828 cur_trans = root->fs_info->running_transaction;
1829
1830 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1831 root->fs_info->tree_root->node);
1832 switch_commit_root(root->fs_info->tree_root);
1833
1834 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1835 root->fs_info->chunk_root->node);
1836 switch_commit_root(root->fs_info->chunk_root);
1837
1838 assert_qgroups_uptodate(trans);
1839 update_super_roots(root);
1840
1841 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1842 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1843 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1844 sizeof(*root->fs_info->super_copy));
1845
1846 spin_lock(&root->fs_info->trans_lock);
1847 cur_trans->state = TRANS_STATE_UNBLOCKED;
1848 root->fs_info->running_transaction = NULL;
1849 spin_unlock(&root->fs_info->trans_lock);
1850 mutex_unlock(&root->fs_info->reloc_mutex);
1851
1852 wake_up(&root->fs_info->transaction_wait);
1853
1854 ret = btrfs_write_and_wait_transaction(trans, root);
1855 if (ret) {
1856 btrfs_error(root->fs_info, ret,
1857 "Error while writing out transaction");
1858 mutex_unlock(&root->fs_info->tree_log_mutex);
1859 goto cleanup_transaction;
1860 }
1861
1862 ret = write_ctree_super(trans, root, 0);
1863 if (ret) {
1864 mutex_unlock(&root->fs_info->tree_log_mutex);
1865 goto cleanup_transaction;
1866 }
1867
1868 /*
1869 * the super is written, we can safely allow the tree-loggers
1870 * to go about their business
1871 */
1872 mutex_unlock(&root->fs_info->tree_log_mutex);
1873
1874 btrfs_finish_extent_commit(trans, root);
1875
1876 root->fs_info->last_trans_committed = cur_trans->transid;
1877 /*
1878 * We needn't acquire the lock here because there is no other task
1879 * which can change it.
1880 */
1881 cur_trans->state = TRANS_STATE_COMPLETED;
1882 wake_up(&cur_trans->commit_wait);
1883
1884 spin_lock(&root->fs_info->trans_lock);
1885 list_del_init(&cur_trans->list);
1886 spin_unlock(&root->fs_info->trans_lock);
1887
1888 put_transaction(cur_trans);
1889 put_transaction(cur_trans);
1890
1891 if (trans->type & __TRANS_FREEZABLE)
1892 sb_end_intwrite(root->fs_info->sb);
1893
1894 trace_btrfs_transaction_commit(root);
1895
1896 btrfs_scrub_continue(root);
1897
1898 if (current->journal_info == trans)
1899 current->journal_info = NULL;
1900
1901 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1902
1903 if (current != root->fs_info->transaction_kthread)
1904 btrfs_run_delayed_iputs(root);
1905
1906 return ret;
1907
1908 cleanup_transaction:
1909 btrfs_trans_release_metadata(trans, root);
1910 trans->block_rsv = NULL;
1911 if (trans->qgroup_reserved) {
1912 btrfs_qgroup_free(root, trans->qgroup_reserved);
1913 trans->qgroup_reserved = 0;
1914 }
1915 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1916 if (current->journal_info == trans)
1917 current->journal_info = NULL;
1918 cleanup_transaction(trans, root, ret);
1919
1920 return ret;
1921 }
1922
1923 /*
1924 * return < 0 if error
1925 * 0 if there are no more dead_roots at the time of call
1926 * 1 there are more to be processed, call me again
1927 *
1928 * The return value indicates there are certainly more snapshots to delete, but
1929 * if there comes a new one during processing, it may return 0. We don't mind,
1930 * because btrfs_commit_super will poke cleaner thread and it will process it a
1931 * few seconds later.
1932 */
1933 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1934 {
1935 int ret;
1936 struct btrfs_fs_info *fs_info = root->fs_info;
1937
1938 spin_lock(&fs_info->trans_lock);
1939 if (list_empty(&fs_info->dead_roots)) {
1940 spin_unlock(&fs_info->trans_lock);
1941 return 0;
1942 }
1943 root = list_first_entry(&fs_info->dead_roots,
1944 struct btrfs_root, root_list);
1945 list_del_init(&root->root_list);
1946 spin_unlock(&fs_info->trans_lock);
1947
1948 pr_debug("btrfs: cleaner removing %llu\n", root->objectid);
1949
1950 btrfs_kill_all_delayed_nodes(root);
1951
1952 if (btrfs_header_backref_rev(root->node) <
1953 BTRFS_MIXED_BACKREF_REV)
1954 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1955 else
1956 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1957 /*
1958 * If we encounter a transaction abort during snapshot cleaning, we
1959 * don't want to crash here
1960 */
1961 return (ret < 0) ? 0 : 1;
1962 }