]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/transaction.c
Btrfs: make add_pinned_bytes() take an s64 num_bytes instead of u64
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(refcount_read(&transaction->use_count) == 0);
64 if (refcount_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 btrfs_err(transaction->fs_info,
69 "pending csums is %llu",
70 transaction->delayed_refs.pending_csums);
71 while (!list_empty(&transaction->pending_chunks)) {
72 struct extent_map *em;
73
74 em = list_first_entry(&transaction->pending_chunks,
75 struct extent_map, list);
76 list_del_init(&em->list);
77 free_extent_map(em);
78 }
79 /*
80 * If any block groups are found in ->deleted_bgs then it's
81 * because the transaction was aborted and a commit did not
82 * happen (things failed before writing the new superblock
83 * and calling btrfs_finish_extent_commit()), so we can not
84 * discard the physical locations of the block groups.
85 */
86 while (!list_empty(&transaction->deleted_bgs)) {
87 struct btrfs_block_group_cache *cache;
88
89 cache = list_first_entry(&transaction->deleted_bgs,
90 struct btrfs_block_group_cache,
91 bg_list);
92 list_del_init(&cache->bg_list);
93 btrfs_put_block_group_trimming(cache);
94 btrfs_put_block_group(cache);
95 }
96 kfree(transaction);
97 }
98 }
99
100 static void clear_btree_io_tree(struct extent_io_tree *tree)
101 {
102 spin_lock(&tree->lock);
103 /*
104 * Do a single barrier for the waitqueue_active check here, the state
105 * of the waitqueue should not change once clear_btree_io_tree is
106 * called.
107 */
108 smp_mb();
109 while (!RB_EMPTY_ROOT(&tree->state)) {
110 struct rb_node *node;
111 struct extent_state *state;
112
113 node = rb_first(&tree->state);
114 state = rb_entry(node, struct extent_state, rb_node);
115 rb_erase(&state->rb_node, &tree->state);
116 RB_CLEAR_NODE(&state->rb_node);
117 /*
118 * btree io trees aren't supposed to have tasks waiting for
119 * changes in the flags of extent states ever.
120 */
121 ASSERT(!waitqueue_active(&state->wq));
122 free_extent_state(state);
123
124 cond_resched_lock(&tree->lock);
125 }
126 spin_unlock(&tree->lock);
127 }
128
129 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 struct btrfs_fs_info *fs_info)
131 {
132 struct btrfs_root *root, *tmp;
133
134 down_write(&fs_info->commit_root_sem);
135 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136 dirty_list) {
137 list_del_init(&root->dirty_list);
138 free_extent_buffer(root->commit_root);
139 root->commit_root = btrfs_root_node(root);
140 if (is_fstree(root->objectid))
141 btrfs_unpin_free_ino(root);
142 clear_btree_io_tree(&root->dirty_log_pages);
143 }
144
145 /* We can free old roots now. */
146 spin_lock(&trans->dropped_roots_lock);
147 while (!list_empty(&trans->dropped_roots)) {
148 root = list_first_entry(&trans->dropped_roots,
149 struct btrfs_root, root_list);
150 list_del_init(&root->root_list);
151 spin_unlock(&trans->dropped_roots_lock);
152 btrfs_drop_and_free_fs_root(fs_info, root);
153 spin_lock(&trans->dropped_roots_lock);
154 }
155 spin_unlock(&trans->dropped_roots_lock);
156 up_write(&fs_info->commit_root_sem);
157 }
158
159 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160 unsigned int type)
161 {
162 if (type & TRANS_EXTWRITERS)
163 atomic_inc(&trans->num_extwriters);
164 }
165
166 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167 unsigned int type)
168 {
169 if (type & TRANS_EXTWRITERS)
170 atomic_dec(&trans->num_extwriters);
171 }
172
173 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174 unsigned int type)
175 {
176 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
177 }
178
179 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180 {
181 return atomic_read(&trans->num_extwriters);
182 }
183
184 /*
185 * either allocate a new transaction or hop into the existing one
186 */
187 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
188 unsigned int type)
189 {
190 struct btrfs_transaction *cur_trans;
191
192 spin_lock(&fs_info->trans_lock);
193 loop:
194 /* The file system has been taken offline. No new transactions. */
195 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 spin_unlock(&fs_info->trans_lock);
197 return -EROFS;
198 }
199
200 cur_trans = fs_info->running_transaction;
201 if (cur_trans) {
202 if (cur_trans->aborted) {
203 spin_unlock(&fs_info->trans_lock);
204 return cur_trans->aborted;
205 }
206 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 spin_unlock(&fs_info->trans_lock);
208 return -EBUSY;
209 }
210 refcount_inc(&cur_trans->use_count);
211 atomic_inc(&cur_trans->num_writers);
212 extwriter_counter_inc(cur_trans, type);
213 spin_unlock(&fs_info->trans_lock);
214 return 0;
215 }
216 spin_unlock(&fs_info->trans_lock);
217
218 /*
219 * If we are ATTACH, we just want to catch the current transaction,
220 * and commit it. If there is no transaction, just return ENOENT.
221 */
222 if (type == TRANS_ATTACH)
223 return -ENOENT;
224
225 /*
226 * JOIN_NOLOCK only happens during the transaction commit, so
227 * it is impossible that ->running_transaction is NULL
228 */
229 BUG_ON(type == TRANS_JOIN_NOLOCK);
230
231 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
232 if (!cur_trans)
233 return -ENOMEM;
234
235 spin_lock(&fs_info->trans_lock);
236 if (fs_info->running_transaction) {
237 /*
238 * someone started a transaction after we unlocked. Make sure
239 * to redo the checks above
240 */
241 kfree(cur_trans);
242 goto loop;
243 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 spin_unlock(&fs_info->trans_lock);
245 kfree(cur_trans);
246 return -EROFS;
247 }
248
249 cur_trans->fs_info = fs_info;
250 atomic_set(&cur_trans->num_writers, 1);
251 extwriter_counter_init(cur_trans, type);
252 init_waitqueue_head(&cur_trans->writer_wait);
253 init_waitqueue_head(&cur_trans->commit_wait);
254 init_waitqueue_head(&cur_trans->pending_wait);
255 cur_trans->state = TRANS_STATE_RUNNING;
256 /*
257 * One for this trans handle, one so it will live on until we
258 * commit the transaction.
259 */
260 refcount_set(&cur_trans->use_count, 2);
261 atomic_set(&cur_trans->pending_ordered, 0);
262 cur_trans->flags = 0;
263 cur_trans->start_time = get_seconds();
264
265 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
266
267 cur_trans->delayed_refs.href_root = RB_ROOT;
268 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270
271 /*
272 * although the tree mod log is per file system and not per transaction,
273 * the log must never go across transaction boundaries.
274 */
275 smp_mb();
276 if (!list_empty(&fs_info->tree_mod_seq_list))
277 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
281
282 spin_lock_init(&cur_trans->delayed_refs.lock);
283
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
303
304 return 0;
305 }
306
307 /*
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
312 */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
315 int force)
316 {
317 struct btrfs_fs_info *fs_info = root->fs_info;
318
319 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
320 root->last_trans < trans->transid) || force) {
321 WARN_ON(root == fs_info->extent_root);
322 WARN_ON(root->commit_root != root->node);
323
324 /*
325 * see below for IN_TRANS_SETUP usage rules
326 * we have the reloc mutex held now, so there
327 * is only one writer in this function
328 */
329 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330
331 /* make sure readers find IN_TRANS_SETUP before
332 * they find our root->last_trans update
333 */
334 smp_wmb();
335
336 spin_lock(&fs_info->fs_roots_radix_lock);
337 if (root->last_trans == trans->transid && !force) {
338 spin_unlock(&fs_info->fs_roots_radix_lock);
339 return 0;
340 }
341 radix_tree_tag_set(&fs_info->fs_roots_radix,
342 (unsigned long)root->root_key.objectid,
343 BTRFS_ROOT_TRANS_TAG);
344 spin_unlock(&fs_info->fs_roots_radix_lock);
345 root->last_trans = trans->transid;
346
347 /* this is pretty tricky. We don't want to
348 * take the relocation lock in btrfs_record_root_in_trans
349 * unless we're really doing the first setup for this root in
350 * this transaction.
351 *
352 * Normally we'd use root->last_trans as a flag to decide
353 * if we want to take the expensive mutex.
354 *
355 * But, we have to set root->last_trans before we
356 * init the relocation root, otherwise, we trip over warnings
357 * in ctree.c. The solution used here is to flag ourselves
358 * with root IN_TRANS_SETUP. When this is 1, we're still
359 * fixing up the reloc trees and everyone must wait.
360 *
361 * When this is zero, they can trust root->last_trans and fly
362 * through btrfs_record_root_in_trans without having to take the
363 * lock. smp_wmb() makes sure that all the writes above are
364 * done before we pop in the zero below
365 */
366 btrfs_init_reloc_root(trans, root);
367 smp_mb__before_atomic();
368 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
369 }
370 return 0;
371 }
372
373
374 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
375 struct btrfs_root *root)
376 {
377 struct btrfs_fs_info *fs_info = root->fs_info;
378 struct btrfs_transaction *cur_trans = trans->transaction;
379
380 /* Add ourselves to the transaction dropped list */
381 spin_lock(&cur_trans->dropped_roots_lock);
382 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
383 spin_unlock(&cur_trans->dropped_roots_lock);
384
385 /* Make sure we don't try to update the root at commit time */
386 spin_lock(&fs_info->fs_roots_radix_lock);
387 radix_tree_tag_clear(&fs_info->fs_roots_radix,
388 (unsigned long)root->root_key.objectid,
389 BTRFS_ROOT_TRANS_TAG);
390 spin_unlock(&fs_info->fs_roots_radix_lock);
391 }
392
393 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
394 struct btrfs_root *root)
395 {
396 struct btrfs_fs_info *fs_info = root->fs_info;
397
398 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
399 return 0;
400
401 /*
402 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
403 * and barriers
404 */
405 smp_rmb();
406 if (root->last_trans == trans->transid &&
407 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
408 return 0;
409
410 mutex_lock(&fs_info->reloc_mutex);
411 record_root_in_trans(trans, root, 0);
412 mutex_unlock(&fs_info->reloc_mutex);
413
414 return 0;
415 }
416
417 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
418 {
419 return (trans->state >= TRANS_STATE_BLOCKED &&
420 trans->state < TRANS_STATE_UNBLOCKED &&
421 !trans->aborted);
422 }
423
424 /* wait for commit against the current transaction to become unblocked
425 * when this is done, it is safe to start a new transaction, but the current
426 * transaction might not be fully on disk.
427 */
428 static void wait_current_trans(struct btrfs_fs_info *fs_info)
429 {
430 struct btrfs_transaction *cur_trans;
431
432 spin_lock(&fs_info->trans_lock);
433 cur_trans = fs_info->running_transaction;
434 if (cur_trans && is_transaction_blocked(cur_trans)) {
435 refcount_inc(&cur_trans->use_count);
436 spin_unlock(&fs_info->trans_lock);
437
438 wait_event(fs_info->transaction_wait,
439 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
440 cur_trans->aborted);
441 btrfs_put_transaction(cur_trans);
442 } else {
443 spin_unlock(&fs_info->trans_lock);
444 }
445 }
446
447 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
448 {
449 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
450 return 0;
451
452 if (type == TRANS_USERSPACE)
453 return 1;
454
455 if (type == TRANS_START &&
456 !atomic_read(&fs_info->open_ioctl_trans))
457 return 1;
458
459 return 0;
460 }
461
462 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
463 {
464 struct btrfs_fs_info *fs_info = root->fs_info;
465
466 if (!fs_info->reloc_ctl ||
467 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
468 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
469 root->reloc_root)
470 return false;
471
472 return true;
473 }
474
475 static struct btrfs_trans_handle *
476 start_transaction(struct btrfs_root *root, unsigned int num_items,
477 unsigned int type, enum btrfs_reserve_flush_enum flush,
478 bool enforce_qgroups)
479 {
480 struct btrfs_fs_info *fs_info = root->fs_info;
481
482 struct btrfs_trans_handle *h;
483 struct btrfs_transaction *cur_trans;
484 u64 num_bytes = 0;
485 u64 qgroup_reserved = 0;
486 bool reloc_reserved = false;
487 int ret;
488
489 /* Send isn't supposed to start transactions. */
490 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
491
492 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
493 return ERR_PTR(-EROFS);
494
495 if (current->journal_info) {
496 WARN_ON(type & TRANS_EXTWRITERS);
497 h = current->journal_info;
498 h->use_count++;
499 WARN_ON(h->use_count > 2);
500 h->orig_rsv = h->block_rsv;
501 h->block_rsv = NULL;
502 goto got_it;
503 }
504
505 /*
506 * Do the reservation before we join the transaction so we can do all
507 * the appropriate flushing if need be.
508 */
509 if (num_items && root != fs_info->chunk_root) {
510 qgroup_reserved = num_items * fs_info->nodesize;
511 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved,
512 enforce_qgroups);
513 if (ret)
514 return ERR_PTR(ret);
515
516 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
517 /*
518 * Do the reservation for the relocation root creation
519 */
520 if (need_reserve_reloc_root(root)) {
521 num_bytes += fs_info->nodesize;
522 reloc_reserved = true;
523 }
524
525 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
526 num_bytes, flush);
527 if (ret)
528 goto reserve_fail;
529 }
530 again:
531 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
532 if (!h) {
533 ret = -ENOMEM;
534 goto alloc_fail;
535 }
536
537 /*
538 * If we are JOIN_NOLOCK we're already committing a transaction and
539 * waiting on this guy, so we don't need to do the sb_start_intwrite
540 * because we're already holding a ref. We need this because we could
541 * have raced in and did an fsync() on a file which can kick a commit
542 * and then we deadlock with somebody doing a freeze.
543 *
544 * If we are ATTACH, it means we just want to catch the current
545 * transaction and commit it, so we needn't do sb_start_intwrite().
546 */
547 if (type & __TRANS_FREEZABLE)
548 sb_start_intwrite(fs_info->sb);
549
550 if (may_wait_transaction(fs_info, type))
551 wait_current_trans(fs_info);
552
553 do {
554 ret = join_transaction(fs_info, type);
555 if (ret == -EBUSY) {
556 wait_current_trans(fs_info);
557 if (unlikely(type == TRANS_ATTACH))
558 ret = -ENOENT;
559 }
560 } while (ret == -EBUSY);
561
562 if (ret < 0)
563 goto join_fail;
564
565 cur_trans = fs_info->running_transaction;
566
567 h->transid = cur_trans->transid;
568 h->transaction = cur_trans;
569 h->root = root;
570 h->use_count = 1;
571 h->fs_info = root->fs_info;
572
573 h->type = type;
574 h->can_flush_pending_bgs = true;
575 INIT_LIST_HEAD(&h->new_bgs);
576
577 smp_mb();
578 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
579 may_wait_transaction(fs_info, type)) {
580 current->journal_info = h;
581 btrfs_commit_transaction(h);
582 goto again;
583 }
584
585 if (num_bytes) {
586 trace_btrfs_space_reservation(fs_info, "transaction",
587 h->transid, num_bytes, 1);
588 h->block_rsv = &fs_info->trans_block_rsv;
589 h->bytes_reserved = num_bytes;
590 h->reloc_reserved = reloc_reserved;
591 }
592
593 got_it:
594 btrfs_record_root_in_trans(h, root);
595
596 if (!current->journal_info && type != TRANS_USERSPACE)
597 current->journal_info = h;
598 return h;
599
600 join_fail:
601 if (type & __TRANS_FREEZABLE)
602 sb_end_intwrite(fs_info->sb);
603 kmem_cache_free(btrfs_trans_handle_cachep, h);
604 alloc_fail:
605 if (num_bytes)
606 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
607 num_bytes);
608 reserve_fail:
609 btrfs_qgroup_free_meta(root, qgroup_reserved);
610 return ERR_PTR(ret);
611 }
612
613 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
614 unsigned int num_items)
615 {
616 return start_transaction(root, num_items, TRANS_START,
617 BTRFS_RESERVE_FLUSH_ALL, true);
618 }
619
620 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
621 struct btrfs_root *root,
622 unsigned int num_items,
623 int min_factor)
624 {
625 struct btrfs_fs_info *fs_info = root->fs_info;
626 struct btrfs_trans_handle *trans;
627 u64 num_bytes;
628 int ret;
629
630 /*
631 * We have two callers: unlink and block group removal. The
632 * former should succeed even if we will temporarily exceed
633 * quota and the latter operates on the extent root so
634 * qgroup enforcement is ignored anyway.
635 */
636 trans = start_transaction(root, num_items, TRANS_START,
637 BTRFS_RESERVE_FLUSH_ALL, false);
638 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
639 return trans;
640
641 trans = btrfs_start_transaction(root, 0);
642 if (IS_ERR(trans))
643 return trans;
644
645 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
646 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
647 num_bytes, min_factor);
648 if (ret) {
649 btrfs_end_transaction(trans);
650 return ERR_PTR(ret);
651 }
652
653 trans->block_rsv = &fs_info->trans_block_rsv;
654 trans->bytes_reserved = num_bytes;
655 trace_btrfs_space_reservation(fs_info, "transaction",
656 trans->transid, num_bytes, 1);
657
658 return trans;
659 }
660
661 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
662 struct btrfs_root *root,
663 unsigned int num_items)
664 {
665 return start_transaction(root, num_items, TRANS_START,
666 BTRFS_RESERVE_FLUSH_LIMIT, true);
667 }
668
669 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
670 {
671 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
672 true);
673 }
674
675 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
676 {
677 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
678 BTRFS_RESERVE_NO_FLUSH, true);
679 }
680
681 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
682 {
683 return start_transaction(root, 0, TRANS_USERSPACE,
684 BTRFS_RESERVE_NO_FLUSH, true);
685 }
686
687 /*
688 * btrfs_attach_transaction() - catch the running transaction
689 *
690 * It is used when we want to commit the current the transaction, but
691 * don't want to start a new one.
692 *
693 * Note: If this function return -ENOENT, it just means there is no
694 * running transaction. But it is possible that the inactive transaction
695 * is still in the memory, not fully on disk. If you hope there is no
696 * inactive transaction in the fs when -ENOENT is returned, you should
697 * invoke
698 * btrfs_attach_transaction_barrier()
699 */
700 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
701 {
702 return start_transaction(root, 0, TRANS_ATTACH,
703 BTRFS_RESERVE_NO_FLUSH, true);
704 }
705
706 /*
707 * btrfs_attach_transaction_barrier() - catch the running transaction
708 *
709 * It is similar to the above function, the differentia is this one
710 * will wait for all the inactive transactions until they fully
711 * complete.
712 */
713 struct btrfs_trans_handle *
714 btrfs_attach_transaction_barrier(struct btrfs_root *root)
715 {
716 struct btrfs_trans_handle *trans;
717
718 trans = start_transaction(root, 0, TRANS_ATTACH,
719 BTRFS_RESERVE_NO_FLUSH, true);
720 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
721 btrfs_wait_for_commit(root->fs_info, 0);
722
723 return trans;
724 }
725
726 /* wait for a transaction commit to be fully complete */
727 static noinline void wait_for_commit(struct btrfs_transaction *commit)
728 {
729 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
730 }
731
732 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
733 {
734 struct btrfs_transaction *cur_trans = NULL, *t;
735 int ret = 0;
736
737 if (transid) {
738 if (transid <= fs_info->last_trans_committed)
739 goto out;
740
741 /* find specified transaction */
742 spin_lock(&fs_info->trans_lock);
743 list_for_each_entry(t, &fs_info->trans_list, list) {
744 if (t->transid == transid) {
745 cur_trans = t;
746 refcount_inc(&cur_trans->use_count);
747 ret = 0;
748 break;
749 }
750 if (t->transid > transid) {
751 ret = 0;
752 break;
753 }
754 }
755 spin_unlock(&fs_info->trans_lock);
756
757 /*
758 * The specified transaction doesn't exist, or we
759 * raced with btrfs_commit_transaction
760 */
761 if (!cur_trans) {
762 if (transid > fs_info->last_trans_committed)
763 ret = -EINVAL;
764 goto out;
765 }
766 } else {
767 /* find newest transaction that is committing | committed */
768 spin_lock(&fs_info->trans_lock);
769 list_for_each_entry_reverse(t, &fs_info->trans_list,
770 list) {
771 if (t->state >= TRANS_STATE_COMMIT_START) {
772 if (t->state == TRANS_STATE_COMPLETED)
773 break;
774 cur_trans = t;
775 refcount_inc(&cur_trans->use_count);
776 break;
777 }
778 }
779 spin_unlock(&fs_info->trans_lock);
780 if (!cur_trans)
781 goto out; /* nothing committing|committed */
782 }
783
784 wait_for_commit(cur_trans);
785 btrfs_put_transaction(cur_trans);
786 out:
787 return ret;
788 }
789
790 void btrfs_throttle(struct btrfs_fs_info *fs_info)
791 {
792 if (!atomic_read(&fs_info->open_ioctl_trans))
793 wait_current_trans(fs_info);
794 }
795
796 static int should_end_transaction(struct btrfs_trans_handle *trans)
797 {
798 struct btrfs_fs_info *fs_info = trans->fs_info;
799
800 if (fs_info->global_block_rsv.space_info->full &&
801 btrfs_check_space_for_delayed_refs(trans, fs_info))
802 return 1;
803
804 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
805 }
806
807 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
808 {
809 struct btrfs_transaction *cur_trans = trans->transaction;
810 struct btrfs_fs_info *fs_info = trans->fs_info;
811 int updates;
812 int err;
813
814 smp_mb();
815 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
816 cur_trans->delayed_refs.flushing)
817 return 1;
818
819 updates = trans->delayed_ref_updates;
820 trans->delayed_ref_updates = 0;
821 if (updates) {
822 err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
823 if (err) /* Error code will also eval true */
824 return err;
825 }
826
827 return should_end_transaction(trans);
828 }
829
830 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
831 int throttle)
832 {
833 struct btrfs_fs_info *info = trans->fs_info;
834 struct btrfs_transaction *cur_trans = trans->transaction;
835 u64 transid = trans->transid;
836 unsigned long cur = trans->delayed_ref_updates;
837 int lock = (trans->type != TRANS_JOIN_NOLOCK);
838 int err = 0;
839 int must_run_delayed_refs = 0;
840
841 if (trans->use_count > 1) {
842 trans->use_count--;
843 trans->block_rsv = trans->orig_rsv;
844 return 0;
845 }
846
847 btrfs_trans_release_metadata(trans, info);
848 trans->block_rsv = NULL;
849
850 if (!list_empty(&trans->new_bgs))
851 btrfs_create_pending_block_groups(trans, info);
852
853 trans->delayed_ref_updates = 0;
854 if (!trans->sync) {
855 must_run_delayed_refs =
856 btrfs_should_throttle_delayed_refs(trans, info);
857 cur = max_t(unsigned long, cur, 32);
858
859 /*
860 * don't make the caller wait if they are from a NOLOCK
861 * or ATTACH transaction, it will deadlock with commit
862 */
863 if (must_run_delayed_refs == 1 &&
864 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
865 must_run_delayed_refs = 2;
866 }
867
868 btrfs_trans_release_metadata(trans, info);
869 trans->block_rsv = NULL;
870
871 if (!list_empty(&trans->new_bgs))
872 btrfs_create_pending_block_groups(trans, info);
873
874 btrfs_trans_release_chunk_metadata(trans);
875
876 if (lock && !atomic_read(&info->open_ioctl_trans) &&
877 should_end_transaction(trans) &&
878 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
879 spin_lock(&info->trans_lock);
880 if (cur_trans->state == TRANS_STATE_RUNNING)
881 cur_trans->state = TRANS_STATE_BLOCKED;
882 spin_unlock(&info->trans_lock);
883 }
884
885 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
886 if (throttle)
887 return btrfs_commit_transaction(trans);
888 else
889 wake_up_process(info->transaction_kthread);
890 }
891
892 if (trans->type & __TRANS_FREEZABLE)
893 sb_end_intwrite(info->sb);
894
895 WARN_ON(cur_trans != info->running_transaction);
896 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
897 atomic_dec(&cur_trans->num_writers);
898 extwriter_counter_dec(cur_trans, trans->type);
899
900 /*
901 * Make sure counter is updated before we wake up waiters.
902 */
903 smp_mb();
904 if (waitqueue_active(&cur_trans->writer_wait))
905 wake_up(&cur_trans->writer_wait);
906 btrfs_put_transaction(cur_trans);
907
908 if (current->journal_info == trans)
909 current->journal_info = NULL;
910
911 if (throttle)
912 btrfs_run_delayed_iputs(info);
913
914 if (trans->aborted ||
915 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
916 wake_up_process(info->transaction_kthread);
917 err = -EIO;
918 }
919
920 kmem_cache_free(btrfs_trans_handle_cachep, trans);
921 if (must_run_delayed_refs) {
922 btrfs_async_run_delayed_refs(info, cur, transid,
923 must_run_delayed_refs == 1);
924 }
925 return err;
926 }
927
928 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
929 {
930 return __btrfs_end_transaction(trans, 0);
931 }
932
933 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
934 {
935 return __btrfs_end_transaction(trans, 1);
936 }
937
938 /*
939 * when btree blocks are allocated, they have some corresponding bits set for
940 * them in one of two extent_io trees. This is used to make sure all of
941 * those extents are sent to disk but does not wait on them
942 */
943 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
944 struct extent_io_tree *dirty_pages, int mark)
945 {
946 int err = 0;
947 int werr = 0;
948 struct address_space *mapping = fs_info->btree_inode->i_mapping;
949 struct extent_state *cached_state = NULL;
950 u64 start = 0;
951 u64 end;
952
953 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
954 mark, &cached_state)) {
955 bool wait_writeback = false;
956
957 err = convert_extent_bit(dirty_pages, start, end,
958 EXTENT_NEED_WAIT,
959 mark, &cached_state);
960 /*
961 * convert_extent_bit can return -ENOMEM, which is most of the
962 * time a temporary error. So when it happens, ignore the error
963 * and wait for writeback of this range to finish - because we
964 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
965 * to __btrfs_wait_marked_extents() would not know that
966 * writeback for this range started and therefore wouldn't
967 * wait for it to finish - we don't want to commit a
968 * superblock that points to btree nodes/leafs for which
969 * writeback hasn't finished yet (and without errors).
970 * We cleanup any entries left in the io tree when committing
971 * the transaction (through clear_btree_io_tree()).
972 */
973 if (err == -ENOMEM) {
974 err = 0;
975 wait_writeback = true;
976 }
977 if (!err)
978 err = filemap_fdatawrite_range(mapping, start, end);
979 if (err)
980 werr = err;
981 else if (wait_writeback)
982 werr = filemap_fdatawait_range(mapping, start, end);
983 free_extent_state(cached_state);
984 cached_state = NULL;
985 cond_resched();
986 start = end + 1;
987 }
988 return werr;
989 }
990
991 /*
992 * when btree blocks are allocated, they have some corresponding bits set for
993 * them in one of two extent_io trees. This is used to make sure all of
994 * those extents are on disk for transaction or log commit. We wait
995 * on all the pages and clear them from the dirty pages state tree
996 */
997 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
998 struct extent_io_tree *dirty_pages)
999 {
1000 int err = 0;
1001 int werr = 0;
1002 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1003 struct extent_state *cached_state = NULL;
1004 u64 start = 0;
1005 u64 end;
1006
1007 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1008 EXTENT_NEED_WAIT, &cached_state)) {
1009 /*
1010 * Ignore -ENOMEM errors returned by clear_extent_bit().
1011 * When committing the transaction, we'll remove any entries
1012 * left in the io tree. For a log commit, we don't remove them
1013 * after committing the log because the tree can be accessed
1014 * concurrently - we do it only at transaction commit time when
1015 * it's safe to do it (through clear_btree_io_tree()).
1016 */
1017 err = clear_extent_bit(dirty_pages, start, end,
1018 EXTENT_NEED_WAIT,
1019 0, 0, &cached_state, GFP_NOFS);
1020 if (err == -ENOMEM)
1021 err = 0;
1022 if (!err)
1023 err = filemap_fdatawait_range(mapping, start, end);
1024 if (err)
1025 werr = err;
1026 free_extent_state(cached_state);
1027 cached_state = NULL;
1028 cond_resched();
1029 start = end + 1;
1030 }
1031 if (err)
1032 werr = err;
1033 return werr;
1034 }
1035
1036 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1037 struct extent_io_tree *dirty_pages)
1038 {
1039 bool errors = false;
1040 int err;
1041
1042 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1043 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1044 errors = true;
1045
1046 if (errors && !err)
1047 err = -EIO;
1048 return err;
1049 }
1050
1051 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1052 {
1053 struct btrfs_fs_info *fs_info = log_root->fs_info;
1054 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1055 bool errors = false;
1056 int err;
1057
1058 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1059
1060 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1061 if ((mark & EXTENT_DIRTY) &&
1062 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1063 errors = true;
1064
1065 if ((mark & EXTENT_NEW) &&
1066 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1067 errors = true;
1068
1069 if (errors && !err)
1070 err = -EIO;
1071 return err;
1072 }
1073
1074 /*
1075 * when btree blocks are allocated, they have some corresponding bits set for
1076 * them in one of two extent_io trees. This is used to make sure all of
1077 * those extents are on disk for transaction or log commit
1078 */
1079 static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info *fs_info,
1080 struct extent_io_tree *dirty_pages, int mark)
1081 {
1082 int ret;
1083 int ret2;
1084 struct blk_plug plug;
1085
1086 blk_start_plug(&plug);
1087 ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark);
1088 blk_finish_plug(&plug);
1089 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1090
1091 if (ret)
1092 return ret;
1093 if (ret2)
1094 return ret2;
1095 return 0;
1096 }
1097
1098 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1099 struct btrfs_fs_info *fs_info)
1100 {
1101 int ret;
1102
1103 ret = btrfs_write_and_wait_marked_extents(fs_info,
1104 &trans->transaction->dirty_pages,
1105 EXTENT_DIRTY);
1106 clear_btree_io_tree(&trans->transaction->dirty_pages);
1107
1108 return ret;
1109 }
1110
1111 /*
1112 * this is used to update the root pointer in the tree of tree roots.
1113 *
1114 * But, in the case of the extent allocation tree, updating the root
1115 * pointer may allocate blocks which may change the root of the extent
1116 * allocation tree.
1117 *
1118 * So, this loops and repeats and makes sure the cowonly root didn't
1119 * change while the root pointer was being updated in the metadata.
1120 */
1121 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1122 struct btrfs_root *root)
1123 {
1124 int ret;
1125 u64 old_root_bytenr;
1126 u64 old_root_used;
1127 struct btrfs_fs_info *fs_info = root->fs_info;
1128 struct btrfs_root *tree_root = fs_info->tree_root;
1129
1130 old_root_used = btrfs_root_used(&root->root_item);
1131
1132 while (1) {
1133 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1134 if (old_root_bytenr == root->node->start &&
1135 old_root_used == btrfs_root_used(&root->root_item))
1136 break;
1137
1138 btrfs_set_root_node(&root->root_item, root->node);
1139 ret = btrfs_update_root(trans, tree_root,
1140 &root->root_key,
1141 &root->root_item);
1142 if (ret)
1143 return ret;
1144
1145 old_root_used = btrfs_root_used(&root->root_item);
1146 }
1147
1148 return 0;
1149 }
1150
1151 /*
1152 * update all the cowonly tree roots on disk
1153 *
1154 * The error handling in this function may not be obvious. Any of the
1155 * failures will cause the file system to go offline. We still need
1156 * to clean up the delayed refs.
1157 */
1158 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1159 struct btrfs_fs_info *fs_info)
1160 {
1161 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1162 struct list_head *io_bgs = &trans->transaction->io_bgs;
1163 struct list_head *next;
1164 struct extent_buffer *eb;
1165 int ret;
1166
1167 eb = btrfs_lock_root_node(fs_info->tree_root);
1168 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1169 0, &eb);
1170 btrfs_tree_unlock(eb);
1171 free_extent_buffer(eb);
1172
1173 if (ret)
1174 return ret;
1175
1176 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1177 if (ret)
1178 return ret;
1179
1180 ret = btrfs_run_dev_stats(trans, fs_info);
1181 if (ret)
1182 return ret;
1183 ret = btrfs_run_dev_replace(trans, fs_info);
1184 if (ret)
1185 return ret;
1186 ret = btrfs_run_qgroups(trans, fs_info);
1187 if (ret)
1188 return ret;
1189
1190 ret = btrfs_setup_space_cache(trans, fs_info);
1191 if (ret)
1192 return ret;
1193
1194 /* run_qgroups might have added some more refs */
1195 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1196 if (ret)
1197 return ret;
1198 again:
1199 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1200 struct btrfs_root *root;
1201 next = fs_info->dirty_cowonly_roots.next;
1202 list_del_init(next);
1203 root = list_entry(next, struct btrfs_root, dirty_list);
1204 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1205
1206 if (root != fs_info->extent_root)
1207 list_add_tail(&root->dirty_list,
1208 &trans->transaction->switch_commits);
1209 ret = update_cowonly_root(trans, root);
1210 if (ret)
1211 return ret;
1212 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1213 if (ret)
1214 return ret;
1215 }
1216
1217 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1218 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1219 if (ret)
1220 return ret;
1221 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1222 if (ret)
1223 return ret;
1224 }
1225
1226 if (!list_empty(&fs_info->dirty_cowonly_roots))
1227 goto again;
1228
1229 list_add_tail(&fs_info->extent_root->dirty_list,
1230 &trans->transaction->switch_commits);
1231 btrfs_after_dev_replace_commit(fs_info);
1232
1233 return 0;
1234 }
1235
1236 /*
1237 * dead roots are old snapshots that need to be deleted. This allocates
1238 * a dirty root struct and adds it into the list of dead roots that need to
1239 * be deleted
1240 */
1241 void btrfs_add_dead_root(struct btrfs_root *root)
1242 {
1243 struct btrfs_fs_info *fs_info = root->fs_info;
1244
1245 spin_lock(&fs_info->trans_lock);
1246 if (list_empty(&root->root_list))
1247 list_add_tail(&root->root_list, &fs_info->dead_roots);
1248 spin_unlock(&fs_info->trans_lock);
1249 }
1250
1251 /*
1252 * update all the cowonly tree roots on disk
1253 */
1254 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1255 struct btrfs_fs_info *fs_info)
1256 {
1257 struct btrfs_root *gang[8];
1258 int i;
1259 int ret;
1260 int err = 0;
1261
1262 spin_lock(&fs_info->fs_roots_radix_lock);
1263 while (1) {
1264 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1265 (void **)gang, 0,
1266 ARRAY_SIZE(gang),
1267 BTRFS_ROOT_TRANS_TAG);
1268 if (ret == 0)
1269 break;
1270 for (i = 0; i < ret; i++) {
1271 struct btrfs_root *root = gang[i];
1272 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1273 (unsigned long)root->root_key.objectid,
1274 BTRFS_ROOT_TRANS_TAG);
1275 spin_unlock(&fs_info->fs_roots_radix_lock);
1276
1277 btrfs_free_log(trans, root);
1278 btrfs_update_reloc_root(trans, root);
1279 btrfs_orphan_commit_root(trans, root);
1280
1281 btrfs_save_ino_cache(root, trans);
1282
1283 /* see comments in should_cow_block() */
1284 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1285 smp_mb__after_atomic();
1286
1287 if (root->commit_root != root->node) {
1288 list_add_tail(&root->dirty_list,
1289 &trans->transaction->switch_commits);
1290 btrfs_set_root_node(&root->root_item,
1291 root->node);
1292 }
1293
1294 err = btrfs_update_root(trans, fs_info->tree_root,
1295 &root->root_key,
1296 &root->root_item);
1297 spin_lock(&fs_info->fs_roots_radix_lock);
1298 if (err)
1299 break;
1300 btrfs_qgroup_free_meta_all(root);
1301 }
1302 }
1303 spin_unlock(&fs_info->fs_roots_radix_lock);
1304 return err;
1305 }
1306
1307 /*
1308 * defrag a given btree.
1309 * Every leaf in the btree is read and defragged.
1310 */
1311 int btrfs_defrag_root(struct btrfs_root *root)
1312 {
1313 struct btrfs_fs_info *info = root->fs_info;
1314 struct btrfs_trans_handle *trans;
1315 int ret;
1316
1317 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1318 return 0;
1319
1320 while (1) {
1321 trans = btrfs_start_transaction(root, 0);
1322 if (IS_ERR(trans))
1323 return PTR_ERR(trans);
1324
1325 ret = btrfs_defrag_leaves(trans, root);
1326
1327 btrfs_end_transaction(trans);
1328 btrfs_btree_balance_dirty(info);
1329 cond_resched();
1330
1331 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1332 break;
1333
1334 if (btrfs_defrag_cancelled(info)) {
1335 btrfs_debug(info, "defrag_root cancelled");
1336 ret = -EAGAIN;
1337 break;
1338 }
1339 }
1340 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1341 return ret;
1342 }
1343
1344 /*
1345 * Do all special snapshot related qgroup dirty hack.
1346 *
1347 * Will do all needed qgroup inherit and dirty hack like switch commit
1348 * roots inside one transaction and write all btree into disk, to make
1349 * qgroup works.
1350 */
1351 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1352 struct btrfs_root *src,
1353 struct btrfs_root *parent,
1354 struct btrfs_qgroup_inherit *inherit,
1355 u64 dst_objectid)
1356 {
1357 struct btrfs_fs_info *fs_info = src->fs_info;
1358 int ret;
1359
1360 /*
1361 * Save some performance in the case that qgroups are not
1362 * enabled. If this check races with the ioctl, rescan will
1363 * kick in anyway.
1364 */
1365 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1366 return 0;
1367
1368 /*
1369 * We are going to commit transaction, see btrfs_commit_transaction()
1370 * comment for reason locking tree_log_mutex
1371 */
1372 mutex_lock(&fs_info->tree_log_mutex);
1373
1374 ret = commit_fs_roots(trans, fs_info);
1375 if (ret)
1376 goto out;
1377 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1378 if (ret < 0)
1379 goto out;
1380 ret = btrfs_qgroup_account_extents(trans, fs_info);
1381 if (ret < 0)
1382 goto out;
1383
1384 /* Now qgroup are all updated, we can inherit it to new qgroups */
1385 ret = btrfs_qgroup_inherit(trans, fs_info,
1386 src->root_key.objectid, dst_objectid,
1387 inherit);
1388 if (ret < 0)
1389 goto out;
1390
1391 /*
1392 * Now we do a simplified commit transaction, which will:
1393 * 1) commit all subvolume and extent tree
1394 * To ensure all subvolume and extent tree have a valid
1395 * commit_root to accounting later insert_dir_item()
1396 * 2) write all btree blocks onto disk
1397 * This is to make sure later btree modification will be cowed
1398 * Or commit_root can be populated and cause wrong qgroup numbers
1399 * In this simplified commit, we don't really care about other trees
1400 * like chunk and root tree, as they won't affect qgroup.
1401 * And we don't write super to avoid half committed status.
1402 */
1403 ret = commit_cowonly_roots(trans, fs_info);
1404 if (ret)
1405 goto out;
1406 switch_commit_roots(trans->transaction, fs_info);
1407 ret = btrfs_write_and_wait_transaction(trans, fs_info);
1408 if (ret)
1409 btrfs_handle_fs_error(fs_info, ret,
1410 "Error while writing out transaction for qgroup");
1411
1412 out:
1413 mutex_unlock(&fs_info->tree_log_mutex);
1414
1415 /*
1416 * Force parent root to be updated, as we recorded it before so its
1417 * last_trans == cur_transid.
1418 * Or it won't be committed again onto disk after later
1419 * insert_dir_item()
1420 */
1421 if (!ret)
1422 record_root_in_trans(trans, parent, 1);
1423 return ret;
1424 }
1425
1426 /*
1427 * new snapshots need to be created at a very specific time in the
1428 * transaction commit. This does the actual creation.
1429 *
1430 * Note:
1431 * If the error which may affect the commitment of the current transaction
1432 * happens, we should return the error number. If the error which just affect
1433 * the creation of the pending snapshots, just return 0.
1434 */
1435 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1436 struct btrfs_fs_info *fs_info,
1437 struct btrfs_pending_snapshot *pending)
1438 {
1439 struct btrfs_key key;
1440 struct btrfs_root_item *new_root_item;
1441 struct btrfs_root *tree_root = fs_info->tree_root;
1442 struct btrfs_root *root = pending->root;
1443 struct btrfs_root *parent_root;
1444 struct btrfs_block_rsv *rsv;
1445 struct inode *parent_inode;
1446 struct btrfs_path *path;
1447 struct btrfs_dir_item *dir_item;
1448 struct dentry *dentry;
1449 struct extent_buffer *tmp;
1450 struct extent_buffer *old;
1451 struct timespec cur_time;
1452 int ret = 0;
1453 u64 to_reserve = 0;
1454 u64 index = 0;
1455 u64 objectid;
1456 u64 root_flags;
1457 uuid_le new_uuid;
1458
1459 ASSERT(pending->path);
1460 path = pending->path;
1461
1462 ASSERT(pending->root_item);
1463 new_root_item = pending->root_item;
1464
1465 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1466 if (pending->error)
1467 goto no_free_objectid;
1468
1469 /*
1470 * Make qgroup to skip current new snapshot's qgroupid, as it is
1471 * accounted by later btrfs_qgroup_inherit().
1472 */
1473 btrfs_set_skip_qgroup(trans, objectid);
1474
1475 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1476
1477 if (to_reserve > 0) {
1478 pending->error = btrfs_block_rsv_add(root,
1479 &pending->block_rsv,
1480 to_reserve,
1481 BTRFS_RESERVE_NO_FLUSH);
1482 if (pending->error)
1483 goto clear_skip_qgroup;
1484 }
1485
1486 key.objectid = objectid;
1487 key.offset = (u64)-1;
1488 key.type = BTRFS_ROOT_ITEM_KEY;
1489
1490 rsv = trans->block_rsv;
1491 trans->block_rsv = &pending->block_rsv;
1492 trans->bytes_reserved = trans->block_rsv->reserved;
1493 trace_btrfs_space_reservation(fs_info, "transaction",
1494 trans->transid,
1495 trans->bytes_reserved, 1);
1496 dentry = pending->dentry;
1497 parent_inode = pending->dir;
1498 parent_root = BTRFS_I(parent_inode)->root;
1499 record_root_in_trans(trans, parent_root, 0);
1500
1501 cur_time = current_time(parent_inode);
1502
1503 /*
1504 * insert the directory item
1505 */
1506 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1507 BUG_ON(ret); /* -ENOMEM */
1508
1509 /* check if there is a file/dir which has the same name. */
1510 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1511 btrfs_ino(BTRFS_I(parent_inode)),
1512 dentry->d_name.name,
1513 dentry->d_name.len, 0);
1514 if (dir_item != NULL && !IS_ERR(dir_item)) {
1515 pending->error = -EEXIST;
1516 goto dir_item_existed;
1517 } else if (IS_ERR(dir_item)) {
1518 ret = PTR_ERR(dir_item);
1519 btrfs_abort_transaction(trans, ret);
1520 goto fail;
1521 }
1522 btrfs_release_path(path);
1523
1524 /*
1525 * pull in the delayed directory update
1526 * and the delayed inode item
1527 * otherwise we corrupt the FS during
1528 * snapshot
1529 */
1530 ret = btrfs_run_delayed_items(trans, fs_info);
1531 if (ret) { /* Transaction aborted */
1532 btrfs_abort_transaction(trans, ret);
1533 goto fail;
1534 }
1535
1536 record_root_in_trans(trans, root, 0);
1537 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1538 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1539 btrfs_check_and_init_root_item(new_root_item);
1540
1541 root_flags = btrfs_root_flags(new_root_item);
1542 if (pending->readonly)
1543 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1544 else
1545 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1546 btrfs_set_root_flags(new_root_item, root_flags);
1547
1548 btrfs_set_root_generation_v2(new_root_item,
1549 trans->transid);
1550 uuid_le_gen(&new_uuid);
1551 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1552 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1553 BTRFS_UUID_SIZE);
1554 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1555 memset(new_root_item->received_uuid, 0,
1556 sizeof(new_root_item->received_uuid));
1557 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1558 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1559 btrfs_set_root_stransid(new_root_item, 0);
1560 btrfs_set_root_rtransid(new_root_item, 0);
1561 }
1562 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1563 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1564 btrfs_set_root_otransid(new_root_item, trans->transid);
1565
1566 old = btrfs_lock_root_node(root);
1567 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1568 if (ret) {
1569 btrfs_tree_unlock(old);
1570 free_extent_buffer(old);
1571 btrfs_abort_transaction(trans, ret);
1572 goto fail;
1573 }
1574
1575 btrfs_set_lock_blocking(old);
1576
1577 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1578 /* clean up in any case */
1579 btrfs_tree_unlock(old);
1580 free_extent_buffer(old);
1581 if (ret) {
1582 btrfs_abort_transaction(trans, ret);
1583 goto fail;
1584 }
1585 /* see comments in should_cow_block() */
1586 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1587 smp_wmb();
1588
1589 btrfs_set_root_node(new_root_item, tmp);
1590 /* record when the snapshot was created in key.offset */
1591 key.offset = trans->transid;
1592 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1593 btrfs_tree_unlock(tmp);
1594 free_extent_buffer(tmp);
1595 if (ret) {
1596 btrfs_abort_transaction(trans, ret);
1597 goto fail;
1598 }
1599
1600 /*
1601 * insert root back/forward references
1602 */
1603 ret = btrfs_add_root_ref(trans, fs_info, objectid,
1604 parent_root->root_key.objectid,
1605 btrfs_ino(BTRFS_I(parent_inode)), index,
1606 dentry->d_name.name, dentry->d_name.len);
1607 if (ret) {
1608 btrfs_abort_transaction(trans, ret);
1609 goto fail;
1610 }
1611
1612 key.offset = (u64)-1;
1613 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1614 if (IS_ERR(pending->snap)) {
1615 ret = PTR_ERR(pending->snap);
1616 btrfs_abort_transaction(trans, ret);
1617 goto fail;
1618 }
1619
1620 ret = btrfs_reloc_post_snapshot(trans, pending);
1621 if (ret) {
1622 btrfs_abort_transaction(trans, ret);
1623 goto fail;
1624 }
1625
1626 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1627 if (ret) {
1628 btrfs_abort_transaction(trans, ret);
1629 goto fail;
1630 }
1631
1632 /*
1633 * Do special qgroup accounting for snapshot, as we do some qgroup
1634 * snapshot hack to do fast snapshot.
1635 * To co-operate with that hack, we do hack again.
1636 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1637 */
1638 ret = qgroup_account_snapshot(trans, root, parent_root,
1639 pending->inherit, objectid);
1640 if (ret < 0)
1641 goto fail;
1642
1643 ret = btrfs_insert_dir_item(trans, parent_root,
1644 dentry->d_name.name, dentry->d_name.len,
1645 BTRFS_I(parent_inode), &key,
1646 BTRFS_FT_DIR, index);
1647 /* We have check then name at the beginning, so it is impossible. */
1648 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1649 if (ret) {
1650 btrfs_abort_transaction(trans, ret);
1651 goto fail;
1652 }
1653
1654 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1655 dentry->d_name.len * 2);
1656 parent_inode->i_mtime = parent_inode->i_ctime =
1657 current_time(parent_inode);
1658 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1659 if (ret) {
1660 btrfs_abort_transaction(trans, ret);
1661 goto fail;
1662 }
1663 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1664 BTRFS_UUID_KEY_SUBVOL, objectid);
1665 if (ret) {
1666 btrfs_abort_transaction(trans, ret);
1667 goto fail;
1668 }
1669 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1670 ret = btrfs_uuid_tree_add(trans, fs_info,
1671 new_root_item->received_uuid,
1672 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1673 objectid);
1674 if (ret && ret != -EEXIST) {
1675 btrfs_abort_transaction(trans, ret);
1676 goto fail;
1677 }
1678 }
1679
1680 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1681 if (ret) {
1682 btrfs_abort_transaction(trans, ret);
1683 goto fail;
1684 }
1685
1686 fail:
1687 pending->error = ret;
1688 dir_item_existed:
1689 trans->block_rsv = rsv;
1690 trans->bytes_reserved = 0;
1691 clear_skip_qgroup:
1692 btrfs_clear_skip_qgroup(trans);
1693 no_free_objectid:
1694 kfree(new_root_item);
1695 pending->root_item = NULL;
1696 btrfs_free_path(path);
1697 pending->path = NULL;
1698
1699 return ret;
1700 }
1701
1702 /*
1703 * create all the snapshots we've scheduled for creation
1704 */
1705 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1706 struct btrfs_fs_info *fs_info)
1707 {
1708 struct btrfs_pending_snapshot *pending, *next;
1709 struct list_head *head = &trans->transaction->pending_snapshots;
1710 int ret = 0;
1711
1712 list_for_each_entry_safe(pending, next, head, list) {
1713 list_del(&pending->list);
1714 ret = create_pending_snapshot(trans, fs_info, pending);
1715 if (ret)
1716 break;
1717 }
1718 return ret;
1719 }
1720
1721 static void update_super_roots(struct btrfs_fs_info *fs_info)
1722 {
1723 struct btrfs_root_item *root_item;
1724 struct btrfs_super_block *super;
1725
1726 super = fs_info->super_copy;
1727
1728 root_item = &fs_info->chunk_root->root_item;
1729 super->chunk_root = root_item->bytenr;
1730 super->chunk_root_generation = root_item->generation;
1731 super->chunk_root_level = root_item->level;
1732
1733 root_item = &fs_info->tree_root->root_item;
1734 super->root = root_item->bytenr;
1735 super->generation = root_item->generation;
1736 super->root_level = root_item->level;
1737 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1738 super->cache_generation = root_item->generation;
1739 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1740 super->uuid_tree_generation = root_item->generation;
1741 }
1742
1743 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1744 {
1745 struct btrfs_transaction *trans;
1746 int ret = 0;
1747
1748 spin_lock(&info->trans_lock);
1749 trans = info->running_transaction;
1750 if (trans)
1751 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1752 spin_unlock(&info->trans_lock);
1753 return ret;
1754 }
1755
1756 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1757 {
1758 struct btrfs_transaction *trans;
1759 int ret = 0;
1760
1761 spin_lock(&info->trans_lock);
1762 trans = info->running_transaction;
1763 if (trans)
1764 ret = is_transaction_blocked(trans);
1765 spin_unlock(&info->trans_lock);
1766 return ret;
1767 }
1768
1769 /*
1770 * wait for the current transaction commit to start and block subsequent
1771 * transaction joins
1772 */
1773 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1774 struct btrfs_transaction *trans)
1775 {
1776 wait_event(fs_info->transaction_blocked_wait,
1777 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1778 }
1779
1780 /*
1781 * wait for the current transaction to start and then become unblocked.
1782 * caller holds ref.
1783 */
1784 static void wait_current_trans_commit_start_and_unblock(
1785 struct btrfs_fs_info *fs_info,
1786 struct btrfs_transaction *trans)
1787 {
1788 wait_event(fs_info->transaction_wait,
1789 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1790 }
1791
1792 /*
1793 * commit transactions asynchronously. once btrfs_commit_transaction_async
1794 * returns, any subsequent transaction will not be allowed to join.
1795 */
1796 struct btrfs_async_commit {
1797 struct btrfs_trans_handle *newtrans;
1798 struct work_struct work;
1799 };
1800
1801 static void do_async_commit(struct work_struct *work)
1802 {
1803 struct btrfs_async_commit *ac =
1804 container_of(work, struct btrfs_async_commit, work);
1805
1806 /*
1807 * We've got freeze protection passed with the transaction.
1808 * Tell lockdep about it.
1809 */
1810 if (ac->newtrans->type & __TRANS_FREEZABLE)
1811 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1812
1813 current->journal_info = ac->newtrans;
1814
1815 btrfs_commit_transaction(ac->newtrans);
1816 kfree(ac);
1817 }
1818
1819 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1820 int wait_for_unblock)
1821 {
1822 struct btrfs_fs_info *fs_info = trans->fs_info;
1823 struct btrfs_async_commit *ac;
1824 struct btrfs_transaction *cur_trans;
1825
1826 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1827 if (!ac)
1828 return -ENOMEM;
1829
1830 INIT_WORK(&ac->work, do_async_commit);
1831 ac->newtrans = btrfs_join_transaction(trans->root);
1832 if (IS_ERR(ac->newtrans)) {
1833 int err = PTR_ERR(ac->newtrans);
1834 kfree(ac);
1835 return err;
1836 }
1837
1838 /* take transaction reference */
1839 cur_trans = trans->transaction;
1840 refcount_inc(&cur_trans->use_count);
1841
1842 btrfs_end_transaction(trans);
1843
1844 /*
1845 * Tell lockdep we've released the freeze rwsem, since the
1846 * async commit thread will be the one to unlock it.
1847 */
1848 if (ac->newtrans->type & __TRANS_FREEZABLE)
1849 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1850
1851 schedule_work(&ac->work);
1852
1853 /* wait for transaction to start and unblock */
1854 if (wait_for_unblock)
1855 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1856 else
1857 wait_current_trans_commit_start(fs_info, cur_trans);
1858
1859 if (current->journal_info == trans)
1860 current->journal_info = NULL;
1861
1862 btrfs_put_transaction(cur_trans);
1863 return 0;
1864 }
1865
1866
1867 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1868 struct btrfs_root *root, int err)
1869 {
1870 struct btrfs_fs_info *fs_info = root->fs_info;
1871 struct btrfs_transaction *cur_trans = trans->transaction;
1872 DEFINE_WAIT(wait);
1873
1874 WARN_ON(trans->use_count > 1);
1875
1876 btrfs_abort_transaction(trans, err);
1877
1878 spin_lock(&fs_info->trans_lock);
1879
1880 /*
1881 * If the transaction is removed from the list, it means this
1882 * transaction has been committed successfully, so it is impossible
1883 * to call the cleanup function.
1884 */
1885 BUG_ON(list_empty(&cur_trans->list));
1886
1887 list_del_init(&cur_trans->list);
1888 if (cur_trans == fs_info->running_transaction) {
1889 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1890 spin_unlock(&fs_info->trans_lock);
1891 wait_event(cur_trans->writer_wait,
1892 atomic_read(&cur_trans->num_writers) == 1);
1893
1894 spin_lock(&fs_info->trans_lock);
1895 }
1896 spin_unlock(&fs_info->trans_lock);
1897
1898 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1899
1900 spin_lock(&fs_info->trans_lock);
1901 if (cur_trans == fs_info->running_transaction)
1902 fs_info->running_transaction = NULL;
1903 spin_unlock(&fs_info->trans_lock);
1904
1905 if (trans->type & __TRANS_FREEZABLE)
1906 sb_end_intwrite(fs_info->sb);
1907 btrfs_put_transaction(cur_trans);
1908 btrfs_put_transaction(cur_trans);
1909
1910 trace_btrfs_transaction_commit(root);
1911
1912 if (current->journal_info == trans)
1913 current->journal_info = NULL;
1914 btrfs_scrub_cancel(fs_info);
1915
1916 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1917 }
1918
1919 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1920 {
1921 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1922 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1923 return 0;
1924 }
1925
1926 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1927 {
1928 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1929 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1930 }
1931
1932 static inline void
1933 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1934 {
1935 wait_event(cur_trans->pending_wait,
1936 atomic_read(&cur_trans->pending_ordered) == 0);
1937 }
1938
1939 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1940 {
1941 struct btrfs_fs_info *fs_info = trans->fs_info;
1942 struct btrfs_transaction *cur_trans = trans->transaction;
1943 struct btrfs_transaction *prev_trans = NULL;
1944 int ret;
1945
1946 /* Stop the commit early if ->aborted is set */
1947 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1948 ret = cur_trans->aborted;
1949 btrfs_end_transaction(trans);
1950 return ret;
1951 }
1952
1953 /* make a pass through all the delayed refs we have so far
1954 * any runnings procs may add more while we are here
1955 */
1956 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1957 if (ret) {
1958 btrfs_end_transaction(trans);
1959 return ret;
1960 }
1961
1962 btrfs_trans_release_metadata(trans, fs_info);
1963 trans->block_rsv = NULL;
1964
1965 cur_trans = trans->transaction;
1966
1967 /*
1968 * set the flushing flag so procs in this transaction have to
1969 * start sending their work down.
1970 */
1971 cur_trans->delayed_refs.flushing = 1;
1972 smp_wmb();
1973
1974 if (!list_empty(&trans->new_bgs))
1975 btrfs_create_pending_block_groups(trans, fs_info);
1976
1977 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1978 if (ret) {
1979 btrfs_end_transaction(trans);
1980 return ret;
1981 }
1982
1983 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1984 int run_it = 0;
1985
1986 /* this mutex is also taken before trying to set
1987 * block groups readonly. We need to make sure
1988 * that nobody has set a block group readonly
1989 * after a extents from that block group have been
1990 * allocated for cache files. btrfs_set_block_group_ro
1991 * will wait for the transaction to commit if it
1992 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1993 *
1994 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1995 * only one process starts all the block group IO. It wouldn't
1996 * hurt to have more than one go through, but there's no
1997 * real advantage to it either.
1998 */
1999 mutex_lock(&fs_info->ro_block_group_mutex);
2000 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2001 &cur_trans->flags))
2002 run_it = 1;
2003 mutex_unlock(&fs_info->ro_block_group_mutex);
2004
2005 if (run_it)
2006 ret = btrfs_start_dirty_block_groups(trans, fs_info);
2007 }
2008 if (ret) {
2009 btrfs_end_transaction(trans);
2010 return ret;
2011 }
2012
2013 spin_lock(&fs_info->trans_lock);
2014 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2015 spin_unlock(&fs_info->trans_lock);
2016 refcount_inc(&cur_trans->use_count);
2017 ret = btrfs_end_transaction(trans);
2018
2019 wait_for_commit(cur_trans);
2020
2021 if (unlikely(cur_trans->aborted))
2022 ret = cur_trans->aborted;
2023
2024 btrfs_put_transaction(cur_trans);
2025
2026 return ret;
2027 }
2028
2029 cur_trans->state = TRANS_STATE_COMMIT_START;
2030 wake_up(&fs_info->transaction_blocked_wait);
2031
2032 if (cur_trans->list.prev != &fs_info->trans_list) {
2033 prev_trans = list_entry(cur_trans->list.prev,
2034 struct btrfs_transaction, list);
2035 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2036 refcount_inc(&prev_trans->use_count);
2037 spin_unlock(&fs_info->trans_lock);
2038
2039 wait_for_commit(prev_trans);
2040 ret = prev_trans->aborted;
2041
2042 btrfs_put_transaction(prev_trans);
2043 if (ret)
2044 goto cleanup_transaction;
2045 } else {
2046 spin_unlock(&fs_info->trans_lock);
2047 }
2048 } else {
2049 spin_unlock(&fs_info->trans_lock);
2050 }
2051
2052 extwriter_counter_dec(cur_trans, trans->type);
2053
2054 ret = btrfs_start_delalloc_flush(fs_info);
2055 if (ret)
2056 goto cleanup_transaction;
2057
2058 ret = btrfs_run_delayed_items(trans, fs_info);
2059 if (ret)
2060 goto cleanup_transaction;
2061
2062 wait_event(cur_trans->writer_wait,
2063 extwriter_counter_read(cur_trans) == 0);
2064
2065 /* some pending stuffs might be added after the previous flush. */
2066 ret = btrfs_run_delayed_items(trans, fs_info);
2067 if (ret)
2068 goto cleanup_transaction;
2069
2070 btrfs_wait_delalloc_flush(fs_info);
2071
2072 btrfs_wait_pending_ordered(cur_trans);
2073
2074 btrfs_scrub_pause(fs_info);
2075 /*
2076 * Ok now we need to make sure to block out any other joins while we
2077 * commit the transaction. We could have started a join before setting
2078 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2079 */
2080 spin_lock(&fs_info->trans_lock);
2081 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2082 spin_unlock(&fs_info->trans_lock);
2083 wait_event(cur_trans->writer_wait,
2084 atomic_read(&cur_trans->num_writers) == 1);
2085
2086 /* ->aborted might be set after the previous check, so check it */
2087 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2088 ret = cur_trans->aborted;
2089 goto scrub_continue;
2090 }
2091 /*
2092 * the reloc mutex makes sure that we stop
2093 * the balancing code from coming in and moving
2094 * extents around in the middle of the commit
2095 */
2096 mutex_lock(&fs_info->reloc_mutex);
2097
2098 /*
2099 * We needn't worry about the delayed items because we will
2100 * deal with them in create_pending_snapshot(), which is the
2101 * core function of the snapshot creation.
2102 */
2103 ret = create_pending_snapshots(trans, fs_info);
2104 if (ret) {
2105 mutex_unlock(&fs_info->reloc_mutex);
2106 goto scrub_continue;
2107 }
2108
2109 /*
2110 * We insert the dir indexes of the snapshots and update the inode
2111 * of the snapshots' parents after the snapshot creation, so there
2112 * are some delayed items which are not dealt with. Now deal with
2113 * them.
2114 *
2115 * We needn't worry that this operation will corrupt the snapshots,
2116 * because all the tree which are snapshoted will be forced to COW
2117 * the nodes and leaves.
2118 */
2119 ret = btrfs_run_delayed_items(trans, fs_info);
2120 if (ret) {
2121 mutex_unlock(&fs_info->reloc_mutex);
2122 goto scrub_continue;
2123 }
2124
2125 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2126 if (ret) {
2127 mutex_unlock(&fs_info->reloc_mutex);
2128 goto scrub_continue;
2129 }
2130
2131 /*
2132 * make sure none of the code above managed to slip in a
2133 * delayed item
2134 */
2135 btrfs_assert_delayed_root_empty(fs_info);
2136
2137 WARN_ON(cur_trans != trans->transaction);
2138
2139 /* btrfs_commit_tree_roots is responsible for getting the
2140 * various roots consistent with each other. Every pointer
2141 * in the tree of tree roots has to point to the most up to date
2142 * root for every subvolume and other tree. So, we have to keep
2143 * the tree logging code from jumping in and changing any
2144 * of the trees.
2145 *
2146 * At this point in the commit, there can't be any tree-log
2147 * writers, but a little lower down we drop the trans mutex
2148 * and let new people in. By holding the tree_log_mutex
2149 * from now until after the super is written, we avoid races
2150 * with the tree-log code.
2151 */
2152 mutex_lock(&fs_info->tree_log_mutex);
2153
2154 ret = commit_fs_roots(trans, fs_info);
2155 if (ret) {
2156 mutex_unlock(&fs_info->tree_log_mutex);
2157 mutex_unlock(&fs_info->reloc_mutex);
2158 goto scrub_continue;
2159 }
2160
2161 /*
2162 * Since the transaction is done, we can apply the pending changes
2163 * before the next transaction.
2164 */
2165 btrfs_apply_pending_changes(fs_info);
2166
2167 /* commit_fs_roots gets rid of all the tree log roots, it is now
2168 * safe to free the root of tree log roots
2169 */
2170 btrfs_free_log_root_tree(trans, fs_info);
2171
2172 /*
2173 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2174 * new delayed refs. Must handle them or qgroup can be wrong.
2175 */
2176 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2177 if (ret) {
2178 mutex_unlock(&fs_info->tree_log_mutex);
2179 mutex_unlock(&fs_info->reloc_mutex);
2180 goto scrub_continue;
2181 }
2182
2183 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
2184 if (ret) {
2185 mutex_unlock(&fs_info->tree_log_mutex);
2186 mutex_unlock(&fs_info->reloc_mutex);
2187 goto scrub_continue;
2188 }
2189
2190 /*
2191 * Since fs roots are all committed, we can get a quite accurate
2192 * new_roots. So let's do quota accounting.
2193 */
2194 ret = btrfs_qgroup_account_extents(trans, fs_info);
2195 if (ret < 0) {
2196 mutex_unlock(&fs_info->tree_log_mutex);
2197 mutex_unlock(&fs_info->reloc_mutex);
2198 goto scrub_continue;
2199 }
2200
2201 ret = commit_cowonly_roots(trans, fs_info);
2202 if (ret) {
2203 mutex_unlock(&fs_info->tree_log_mutex);
2204 mutex_unlock(&fs_info->reloc_mutex);
2205 goto scrub_continue;
2206 }
2207
2208 /*
2209 * The tasks which save the space cache and inode cache may also
2210 * update ->aborted, check it.
2211 */
2212 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2213 ret = cur_trans->aborted;
2214 mutex_unlock(&fs_info->tree_log_mutex);
2215 mutex_unlock(&fs_info->reloc_mutex);
2216 goto scrub_continue;
2217 }
2218
2219 btrfs_prepare_extent_commit(fs_info);
2220
2221 cur_trans = fs_info->running_transaction;
2222
2223 btrfs_set_root_node(&fs_info->tree_root->root_item,
2224 fs_info->tree_root->node);
2225 list_add_tail(&fs_info->tree_root->dirty_list,
2226 &cur_trans->switch_commits);
2227
2228 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2229 fs_info->chunk_root->node);
2230 list_add_tail(&fs_info->chunk_root->dirty_list,
2231 &cur_trans->switch_commits);
2232
2233 switch_commit_roots(cur_trans, fs_info);
2234
2235 ASSERT(list_empty(&cur_trans->dirty_bgs));
2236 ASSERT(list_empty(&cur_trans->io_bgs));
2237 update_super_roots(fs_info);
2238
2239 btrfs_set_super_log_root(fs_info->super_copy, 0);
2240 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2241 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2242 sizeof(*fs_info->super_copy));
2243
2244 btrfs_update_commit_device_size(fs_info);
2245 btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2246
2247 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2248 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2249
2250 btrfs_trans_release_chunk_metadata(trans);
2251
2252 spin_lock(&fs_info->trans_lock);
2253 cur_trans->state = TRANS_STATE_UNBLOCKED;
2254 fs_info->running_transaction = NULL;
2255 spin_unlock(&fs_info->trans_lock);
2256 mutex_unlock(&fs_info->reloc_mutex);
2257
2258 wake_up(&fs_info->transaction_wait);
2259
2260 ret = btrfs_write_and_wait_transaction(trans, fs_info);
2261 if (ret) {
2262 btrfs_handle_fs_error(fs_info, ret,
2263 "Error while writing out transaction");
2264 mutex_unlock(&fs_info->tree_log_mutex);
2265 goto scrub_continue;
2266 }
2267
2268 ret = write_all_supers(fs_info, 0);
2269 if (ret) {
2270 mutex_unlock(&fs_info->tree_log_mutex);
2271 goto scrub_continue;
2272 }
2273
2274 /*
2275 * the super is written, we can safely allow the tree-loggers
2276 * to go about their business
2277 */
2278 mutex_unlock(&fs_info->tree_log_mutex);
2279
2280 btrfs_finish_extent_commit(trans, fs_info);
2281
2282 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2283 btrfs_clear_space_info_full(fs_info);
2284
2285 fs_info->last_trans_committed = cur_trans->transid;
2286 /*
2287 * We needn't acquire the lock here because there is no other task
2288 * which can change it.
2289 */
2290 cur_trans->state = TRANS_STATE_COMPLETED;
2291 wake_up(&cur_trans->commit_wait);
2292
2293 spin_lock(&fs_info->trans_lock);
2294 list_del_init(&cur_trans->list);
2295 spin_unlock(&fs_info->trans_lock);
2296
2297 btrfs_put_transaction(cur_trans);
2298 btrfs_put_transaction(cur_trans);
2299
2300 if (trans->type & __TRANS_FREEZABLE)
2301 sb_end_intwrite(fs_info->sb);
2302
2303 trace_btrfs_transaction_commit(trans->root);
2304
2305 btrfs_scrub_continue(fs_info);
2306
2307 if (current->journal_info == trans)
2308 current->journal_info = NULL;
2309
2310 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2311
2312 /*
2313 * If fs has been frozen, we can not handle delayed iputs, otherwise
2314 * it'll result in deadlock about SB_FREEZE_FS.
2315 */
2316 if (current != fs_info->transaction_kthread &&
2317 current != fs_info->cleaner_kthread &&
2318 !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2319 btrfs_run_delayed_iputs(fs_info);
2320
2321 return ret;
2322
2323 scrub_continue:
2324 btrfs_scrub_continue(fs_info);
2325 cleanup_transaction:
2326 btrfs_trans_release_metadata(trans, fs_info);
2327 btrfs_trans_release_chunk_metadata(trans);
2328 trans->block_rsv = NULL;
2329 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2330 if (current->journal_info == trans)
2331 current->journal_info = NULL;
2332 cleanup_transaction(trans, trans->root, ret);
2333
2334 return ret;
2335 }
2336
2337 /*
2338 * return < 0 if error
2339 * 0 if there are no more dead_roots at the time of call
2340 * 1 there are more to be processed, call me again
2341 *
2342 * The return value indicates there are certainly more snapshots to delete, but
2343 * if there comes a new one during processing, it may return 0. We don't mind,
2344 * because btrfs_commit_super will poke cleaner thread and it will process it a
2345 * few seconds later.
2346 */
2347 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2348 {
2349 int ret;
2350 struct btrfs_fs_info *fs_info = root->fs_info;
2351
2352 spin_lock(&fs_info->trans_lock);
2353 if (list_empty(&fs_info->dead_roots)) {
2354 spin_unlock(&fs_info->trans_lock);
2355 return 0;
2356 }
2357 root = list_first_entry(&fs_info->dead_roots,
2358 struct btrfs_root, root_list);
2359 list_del_init(&root->root_list);
2360 spin_unlock(&fs_info->trans_lock);
2361
2362 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2363
2364 btrfs_kill_all_delayed_nodes(root);
2365
2366 if (btrfs_header_backref_rev(root->node) <
2367 BTRFS_MIXED_BACKREF_REV)
2368 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2369 else
2370 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2371
2372 return (ret < 0) ? 0 : 1;
2373 }
2374
2375 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2376 {
2377 unsigned long prev;
2378 unsigned long bit;
2379
2380 prev = xchg(&fs_info->pending_changes, 0);
2381 if (!prev)
2382 return;
2383
2384 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2385 if (prev & bit)
2386 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2387 prev &= ~bit;
2388
2389 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2390 if (prev & bit)
2391 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2392 prev &= ~bit;
2393
2394 bit = 1 << BTRFS_PENDING_COMMIT;
2395 if (prev & bit)
2396 btrfs_debug(fs_info, "pending commit done");
2397 prev &= ~bit;
2398
2399 if (prev)
2400 btrfs_warn(fs_info,
2401 "unknown pending changes left 0x%lx, ignoring", prev);
2402 }