]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/btrfs/transaction.c
Btrfs: fix race of using total_bytes_pinned
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 while (!list_empty(&transaction->pending_chunks)) {
68 struct extent_map *em;
69
70 em = list_first_entry(&transaction->pending_chunks,
71 struct extent_map, list);
72 list_del_init(&em->list);
73 free_extent_map(em);
74 }
75 kmem_cache_free(btrfs_transaction_cachep, transaction);
76 }
77 }
78
79 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
80 struct btrfs_fs_info *fs_info)
81 {
82 struct btrfs_root *root, *tmp;
83
84 down_write(&fs_info->commit_root_sem);
85 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
86 dirty_list) {
87 list_del_init(&root->dirty_list);
88 free_extent_buffer(root->commit_root);
89 root->commit_root = btrfs_root_node(root);
90 if (is_fstree(root->objectid))
91 btrfs_unpin_free_ino(root);
92 }
93 up_write(&fs_info->commit_root_sem);
94 }
95
96 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
97 unsigned int type)
98 {
99 if (type & TRANS_EXTWRITERS)
100 atomic_inc(&trans->num_extwriters);
101 }
102
103 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
104 unsigned int type)
105 {
106 if (type & TRANS_EXTWRITERS)
107 atomic_dec(&trans->num_extwriters);
108 }
109
110 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
111 unsigned int type)
112 {
113 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
114 }
115
116 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
117 {
118 return atomic_read(&trans->num_extwriters);
119 }
120
121 /*
122 * either allocate a new transaction or hop into the existing one
123 */
124 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
125 {
126 struct btrfs_transaction *cur_trans;
127 struct btrfs_fs_info *fs_info = root->fs_info;
128
129 spin_lock(&fs_info->trans_lock);
130 loop:
131 /* The file system has been taken offline. No new transactions. */
132 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
133 spin_unlock(&fs_info->trans_lock);
134 return -EROFS;
135 }
136
137 cur_trans = fs_info->running_transaction;
138 if (cur_trans) {
139 if (cur_trans->aborted) {
140 spin_unlock(&fs_info->trans_lock);
141 return cur_trans->aborted;
142 }
143 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
144 spin_unlock(&fs_info->trans_lock);
145 return -EBUSY;
146 }
147 atomic_inc(&cur_trans->use_count);
148 atomic_inc(&cur_trans->num_writers);
149 extwriter_counter_inc(cur_trans, type);
150 spin_unlock(&fs_info->trans_lock);
151 return 0;
152 }
153 spin_unlock(&fs_info->trans_lock);
154
155 /*
156 * If we are ATTACH, we just want to catch the current transaction,
157 * and commit it. If there is no transaction, just return ENOENT.
158 */
159 if (type == TRANS_ATTACH)
160 return -ENOENT;
161
162 /*
163 * JOIN_NOLOCK only happens during the transaction commit, so
164 * it is impossible that ->running_transaction is NULL
165 */
166 BUG_ON(type == TRANS_JOIN_NOLOCK);
167
168 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
169 if (!cur_trans)
170 return -ENOMEM;
171
172 spin_lock(&fs_info->trans_lock);
173 if (fs_info->running_transaction) {
174 /*
175 * someone started a transaction after we unlocked. Make sure
176 * to redo the checks above
177 */
178 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
179 goto loop;
180 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
181 spin_unlock(&fs_info->trans_lock);
182 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
183 return -EROFS;
184 }
185
186 atomic_set(&cur_trans->num_writers, 1);
187 extwriter_counter_init(cur_trans, type);
188 init_waitqueue_head(&cur_trans->writer_wait);
189 init_waitqueue_head(&cur_trans->commit_wait);
190 cur_trans->state = TRANS_STATE_RUNNING;
191 /*
192 * One for this trans handle, one so it will live on until we
193 * commit the transaction.
194 */
195 atomic_set(&cur_trans->use_count, 2);
196 cur_trans->start_time = get_seconds();
197
198 cur_trans->delayed_refs.href_root = RB_ROOT;
199 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
200 cur_trans->delayed_refs.num_heads_ready = 0;
201 cur_trans->delayed_refs.num_heads = 0;
202 cur_trans->delayed_refs.flushing = 0;
203 cur_trans->delayed_refs.run_delayed_start = 0;
204
205 /*
206 * although the tree mod log is per file system and not per transaction,
207 * the log must never go across transaction boundaries.
208 */
209 smp_mb();
210 if (!list_empty(&fs_info->tree_mod_seq_list))
211 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
212 "creating a fresh transaction\n");
213 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
214 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
215 "creating a fresh transaction\n");
216 atomic64_set(&fs_info->tree_mod_seq, 0);
217
218 spin_lock_init(&cur_trans->delayed_refs.lock);
219
220 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
221 INIT_LIST_HEAD(&cur_trans->ordered_operations);
222 INIT_LIST_HEAD(&cur_trans->pending_chunks);
223 INIT_LIST_HEAD(&cur_trans->switch_commits);
224 list_add_tail(&cur_trans->list, &fs_info->trans_list);
225 extent_io_tree_init(&cur_trans->dirty_pages,
226 fs_info->btree_inode->i_mapping);
227 fs_info->generation++;
228 cur_trans->transid = fs_info->generation;
229 fs_info->running_transaction = cur_trans;
230 cur_trans->aborted = 0;
231 spin_unlock(&fs_info->trans_lock);
232
233 return 0;
234 }
235
236 /*
237 * this does all the record keeping required to make sure that a reference
238 * counted root is properly recorded in a given transaction. This is required
239 * to make sure the old root from before we joined the transaction is deleted
240 * when the transaction commits
241 */
242 static int record_root_in_trans(struct btrfs_trans_handle *trans,
243 struct btrfs_root *root)
244 {
245 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
246 root->last_trans < trans->transid) {
247 WARN_ON(root == root->fs_info->extent_root);
248 WARN_ON(root->commit_root != root->node);
249
250 /*
251 * see below for IN_TRANS_SETUP usage rules
252 * we have the reloc mutex held now, so there
253 * is only one writer in this function
254 */
255 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
256
257 /* make sure readers find IN_TRANS_SETUP before
258 * they find our root->last_trans update
259 */
260 smp_wmb();
261
262 spin_lock(&root->fs_info->fs_roots_radix_lock);
263 if (root->last_trans == trans->transid) {
264 spin_unlock(&root->fs_info->fs_roots_radix_lock);
265 return 0;
266 }
267 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
268 (unsigned long)root->root_key.objectid,
269 BTRFS_ROOT_TRANS_TAG);
270 spin_unlock(&root->fs_info->fs_roots_radix_lock);
271 root->last_trans = trans->transid;
272
273 /* this is pretty tricky. We don't want to
274 * take the relocation lock in btrfs_record_root_in_trans
275 * unless we're really doing the first setup for this root in
276 * this transaction.
277 *
278 * Normally we'd use root->last_trans as a flag to decide
279 * if we want to take the expensive mutex.
280 *
281 * But, we have to set root->last_trans before we
282 * init the relocation root, otherwise, we trip over warnings
283 * in ctree.c. The solution used here is to flag ourselves
284 * with root IN_TRANS_SETUP. When this is 1, we're still
285 * fixing up the reloc trees and everyone must wait.
286 *
287 * When this is zero, they can trust root->last_trans and fly
288 * through btrfs_record_root_in_trans without having to take the
289 * lock. smp_wmb() makes sure that all the writes above are
290 * done before we pop in the zero below
291 */
292 btrfs_init_reloc_root(trans, root);
293 smp_mb__before_atomic();
294 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
295 }
296 return 0;
297 }
298
299
300 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
301 struct btrfs_root *root)
302 {
303 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
304 return 0;
305
306 /*
307 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
308 * and barriers
309 */
310 smp_rmb();
311 if (root->last_trans == trans->transid &&
312 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
313 return 0;
314
315 mutex_lock(&root->fs_info->reloc_mutex);
316 record_root_in_trans(trans, root);
317 mutex_unlock(&root->fs_info->reloc_mutex);
318
319 return 0;
320 }
321
322 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
323 {
324 return (trans->state >= TRANS_STATE_BLOCKED &&
325 trans->state < TRANS_STATE_UNBLOCKED &&
326 !trans->aborted);
327 }
328
329 /* wait for commit against the current transaction to become unblocked
330 * when this is done, it is safe to start a new transaction, but the current
331 * transaction might not be fully on disk.
332 */
333 static void wait_current_trans(struct btrfs_root *root)
334 {
335 struct btrfs_transaction *cur_trans;
336
337 spin_lock(&root->fs_info->trans_lock);
338 cur_trans = root->fs_info->running_transaction;
339 if (cur_trans && is_transaction_blocked(cur_trans)) {
340 atomic_inc(&cur_trans->use_count);
341 spin_unlock(&root->fs_info->trans_lock);
342
343 wait_event(root->fs_info->transaction_wait,
344 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
345 cur_trans->aborted);
346 btrfs_put_transaction(cur_trans);
347 } else {
348 spin_unlock(&root->fs_info->trans_lock);
349 }
350 }
351
352 static int may_wait_transaction(struct btrfs_root *root, int type)
353 {
354 if (root->fs_info->log_root_recovering)
355 return 0;
356
357 if (type == TRANS_USERSPACE)
358 return 1;
359
360 if (type == TRANS_START &&
361 !atomic_read(&root->fs_info->open_ioctl_trans))
362 return 1;
363
364 return 0;
365 }
366
367 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
368 {
369 if (!root->fs_info->reloc_ctl ||
370 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
371 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
372 root->reloc_root)
373 return false;
374
375 return true;
376 }
377
378 static struct btrfs_trans_handle *
379 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
380 enum btrfs_reserve_flush_enum flush)
381 {
382 struct btrfs_trans_handle *h;
383 struct btrfs_transaction *cur_trans;
384 u64 num_bytes = 0;
385 u64 qgroup_reserved = 0;
386 bool reloc_reserved = false;
387 int ret;
388
389 /* Send isn't supposed to start transactions. */
390 ASSERT(current->journal_info != (void *)BTRFS_SEND_TRANS_STUB);
391
392 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
393 return ERR_PTR(-EROFS);
394
395 if (current->journal_info) {
396 WARN_ON(type & TRANS_EXTWRITERS);
397 h = current->journal_info;
398 h->use_count++;
399 WARN_ON(h->use_count > 2);
400 h->orig_rsv = h->block_rsv;
401 h->block_rsv = NULL;
402 goto got_it;
403 }
404
405 /*
406 * Do the reservation before we join the transaction so we can do all
407 * the appropriate flushing if need be.
408 */
409 if (num_items > 0 && root != root->fs_info->chunk_root) {
410 if (root->fs_info->quota_enabled &&
411 is_fstree(root->root_key.objectid)) {
412 qgroup_reserved = num_items * root->leafsize;
413 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
414 if (ret)
415 return ERR_PTR(ret);
416 }
417
418 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
419 /*
420 * Do the reservation for the relocation root creation
421 */
422 if (unlikely(need_reserve_reloc_root(root))) {
423 num_bytes += root->nodesize;
424 reloc_reserved = true;
425 }
426
427 ret = btrfs_block_rsv_add(root,
428 &root->fs_info->trans_block_rsv,
429 num_bytes, flush);
430 if (ret)
431 goto reserve_fail;
432 }
433 again:
434 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
435 if (!h) {
436 ret = -ENOMEM;
437 goto alloc_fail;
438 }
439
440 /*
441 * If we are JOIN_NOLOCK we're already committing a transaction and
442 * waiting on this guy, so we don't need to do the sb_start_intwrite
443 * because we're already holding a ref. We need this because we could
444 * have raced in and did an fsync() on a file which can kick a commit
445 * and then we deadlock with somebody doing a freeze.
446 *
447 * If we are ATTACH, it means we just want to catch the current
448 * transaction and commit it, so we needn't do sb_start_intwrite().
449 */
450 if (type & __TRANS_FREEZABLE)
451 sb_start_intwrite(root->fs_info->sb);
452
453 if (may_wait_transaction(root, type))
454 wait_current_trans(root);
455
456 do {
457 ret = join_transaction(root, type);
458 if (ret == -EBUSY) {
459 wait_current_trans(root);
460 if (unlikely(type == TRANS_ATTACH))
461 ret = -ENOENT;
462 }
463 } while (ret == -EBUSY);
464
465 if (ret < 0) {
466 /* We must get the transaction if we are JOIN_NOLOCK. */
467 BUG_ON(type == TRANS_JOIN_NOLOCK);
468 goto join_fail;
469 }
470
471 cur_trans = root->fs_info->running_transaction;
472
473 h->transid = cur_trans->transid;
474 h->transaction = cur_trans;
475 h->blocks_used = 0;
476 h->bytes_reserved = 0;
477 h->root = root;
478 h->delayed_ref_updates = 0;
479 h->use_count = 1;
480 h->adding_csums = 0;
481 h->block_rsv = NULL;
482 h->orig_rsv = NULL;
483 h->aborted = 0;
484 h->qgroup_reserved = 0;
485 h->delayed_ref_elem.seq = 0;
486 h->type = type;
487 h->allocating_chunk = false;
488 h->reloc_reserved = false;
489 h->sync = false;
490 INIT_LIST_HEAD(&h->qgroup_ref_list);
491 INIT_LIST_HEAD(&h->new_bgs);
492
493 smp_mb();
494 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
495 may_wait_transaction(root, type)) {
496 btrfs_commit_transaction(h, root);
497 goto again;
498 }
499
500 if (num_bytes) {
501 trace_btrfs_space_reservation(root->fs_info, "transaction",
502 h->transid, num_bytes, 1);
503 h->block_rsv = &root->fs_info->trans_block_rsv;
504 h->bytes_reserved = num_bytes;
505 h->reloc_reserved = reloc_reserved;
506 }
507 h->qgroup_reserved = qgroup_reserved;
508
509 got_it:
510 btrfs_record_root_in_trans(h, root);
511
512 if (!current->journal_info && type != TRANS_USERSPACE)
513 current->journal_info = h;
514 return h;
515
516 join_fail:
517 if (type & __TRANS_FREEZABLE)
518 sb_end_intwrite(root->fs_info->sb);
519 kmem_cache_free(btrfs_trans_handle_cachep, h);
520 alloc_fail:
521 if (num_bytes)
522 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
523 num_bytes);
524 reserve_fail:
525 if (qgroup_reserved)
526 btrfs_qgroup_free(root, qgroup_reserved);
527 return ERR_PTR(ret);
528 }
529
530 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
531 int num_items)
532 {
533 return start_transaction(root, num_items, TRANS_START,
534 BTRFS_RESERVE_FLUSH_ALL);
535 }
536
537 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
538 struct btrfs_root *root, int num_items)
539 {
540 return start_transaction(root, num_items, TRANS_START,
541 BTRFS_RESERVE_FLUSH_LIMIT);
542 }
543
544 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
545 {
546 return start_transaction(root, 0, TRANS_JOIN, 0);
547 }
548
549 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
550 {
551 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
552 }
553
554 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
555 {
556 return start_transaction(root, 0, TRANS_USERSPACE, 0);
557 }
558
559 /*
560 * btrfs_attach_transaction() - catch the running transaction
561 *
562 * It is used when we want to commit the current the transaction, but
563 * don't want to start a new one.
564 *
565 * Note: If this function return -ENOENT, it just means there is no
566 * running transaction. But it is possible that the inactive transaction
567 * is still in the memory, not fully on disk. If you hope there is no
568 * inactive transaction in the fs when -ENOENT is returned, you should
569 * invoke
570 * btrfs_attach_transaction_barrier()
571 */
572 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
573 {
574 return start_transaction(root, 0, TRANS_ATTACH, 0);
575 }
576
577 /*
578 * btrfs_attach_transaction_barrier() - catch the running transaction
579 *
580 * It is similar to the above function, the differentia is this one
581 * will wait for all the inactive transactions until they fully
582 * complete.
583 */
584 struct btrfs_trans_handle *
585 btrfs_attach_transaction_barrier(struct btrfs_root *root)
586 {
587 struct btrfs_trans_handle *trans;
588
589 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
590 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
591 btrfs_wait_for_commit(root, 0);
592
593 return trans;
594 }
595
596 /* wait for a transaction commit to be fully complete */
597 static noinline void wait_for_commit(struct btrfs_root *root,
598 struct btrfs_transaction *commit)
599 {
600 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
601 }
602
603 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
604 {
605 struct btrfs_transaction *cur_trans = NULL, *t;
606 int ret = 0;
607
608 if (transid) {
609 if (transid <= root->fs_info->last_trans_committed)
610 goto out;
611
612 ret = -EINVAL;
613 /* find specified transaction */
614 spin_lock(&root->fs_info->trans_lock);
615 list_for_each_entry(t, &root->fs_info->trans_list, list) {
616 if (t->transid == transid) {
617 cur_trans = t;
618 atomic_inc(&cur_trans->use_count);
619 ret = 0;
620 break;
621 }
622 if (t->transid > transid) {
623 ret = 0;
624 break;
625 }
626 }
627 spin_unlock(&root->fs_info->trans_lock);
628 /* The specified transaction doesn't exist */
629 if (!cur_trans)
630 goto out;
631 } else {
632 /* find newest transaction that is committing | committed */
633 spin_lock(&root->fs_info->trans_lock);
634 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
635 list) {
636 if (t->state >= TRANS_STATE_COMMIT_START) {
637 if (t->state == TRANS_STATE_COMPLETED)
638 break;
639 cur_trans = t;
640 atomic_inc(&cur_trans->use_count);
641 break;
642 }
643 }
644 spin_unlock(&root->fs_info->trans_lock);
645 if (!cur_trans)
646 goto out; /* nothing committing|committed */
647 }
648
649 wait_for_commit(root, cur_trans);
650 btrfs_put_transaction(cur_trans);
651 out:
652 return ret;
653 }
654
655 void btrfs_throttle(struct btrfs_root *root)
656 {
657 if (!atomic_read(&root->fs_info->open_ioctl_trans))
658 wait_current_trans(root);
659 }
660
661 static int should_end_transaction(struct btrfs_trans_handle *trans,
662 struct btrfs_root *root)
663 {
664 if (root->fs_info->global_block_rsv.space_info->full &&
665 btrfs_check_space_for_delayed_refs(trans, root))
666 return 1;
667
668 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
669 }
670
671 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
672 struct btrfs_root *root)
673 {
674 struct btrfs_transaction *cur_trans = trans->transaction;
675 int updates;
676 int err;
677
678 smp_mb();
679 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
680 cur_trans->delayed_refs.flushing)
681 return 1;
682
683 updates = trans->delayed_ref_updates;
684 trans->delayed_ref_updates = 0;
685 if (updates) {
686 err = btrfs_run_delayed_refs(trans, root, updates);
687 if (err) /* Error code will also eval true */
688 return err;
689 }
690
691 return should_end_transaction(trans, root);
692 }
693
694 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
695 struct btrfs_root *root, int throttle)
696 {
697 struct btrfs_transaction *cur_trans = trans->transaction;
698 struct btrfs_fs_info *info = root->fs_info;
699 unsigned long cur = trans->delayed_ref_updates;
700 int lock = (trans->type != TRANS_JOIN_NOLOCK);
701 int err = 0;
702 int must_run_delayed_refs = 0;
703
704 if (trans->use_count > 1) {
705 trans->use_count--;
706 trans->block_rsv = trans->orig_rsv;
707 return 0;
708 }
709
710 btrfs_trans_release_metadata(trans, root);
711 trans->block_rsv = NULL;
712
713 if (!list_empty(&trans->new_bgs))
714 btrfs_create_pending_block_groups(trans, root);
715
716 trans->delayed_ref_updates = 0;
717 if (!trans->sync) {
718 must_run_delayed_refs =
719 btrfs_should_throttle_delayed_refs(trans, root);
720 cur = max_t(unsigned long, cur, 32);
721
722 /*
723 * don't make the caller wait if they are from a NOLOCK
724 * or ATTACH transaction, it will deadlock with commit
725 */
726 if (must_run_delayed_refs == 1 &&
727 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
728 must_run_delayed_refs = 2;
729 }
730
731 if (trans->qgroup_reserved) {
732 /*
733 * the same root has to be passed here between start_transaction
734 * and end_transaction. Subvolume quota depends on this.
735 */
736 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
737 trans->qgroup_reserved = 0;
738 }
739
740 btrfs_trans_release_metadata(trans, root);
741 trans->block_rsv = NULL;
742
743 if (!list_empty(&trans->new_bgs))
744 btrfs_create_pending_block_groups(trans, root);
745
746 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
747 should_end_transaction(trans, root) &&
748 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
749 spin_lock(&info->trans_lock);
750 if (cur_trans->state == TRANS_STATE_RUNNING)
751 cur_trans->state = TRANS_STATE_BLOCKED;
752 spin_unlock(&info->trans_lock);
753 }
754
755 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
756 if (throttle)
757 return btrfs_commit_transaction(trans, root);
758 else
759 wake_up_process(info->transaction_kthread);
760 }
761
762 if (trans->type & __TRANS_FREEZABLE)
763 sb_end_intwrite(root->fs_info->sb);
764
765 WARN_ON(cur_trans != info->running_transaction);
766 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
767 atomic_dec(&cur_trans->num_writers);
768 extwriter_counter_dec(cur_trans, trans->type);
769
770 smp_mb();
771 if (waitqueue_active(&cur_trans->writer_wait))
772 wake_up(&cur_trans->writer_wait);
773 btrfs_put_transaction(cur_trans);
774
775 if (current->journal_info == trans)
776 current->journal_info = NULL;
777
778 if (throttle)
779 btrfs_run_delayed_iputs(root);
780
781 if (trans->aborted ||
782 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
783 wake_up_process(info->transaction_kthread);
784 err = -EIO;
785 }
786 assert_qgroups_uptodate(trans);
787
788 kmem_cache_free(btrfs_trans_handle_cachep, trans);
789 if (must_run_delayed_refs) {
790 btrfs_async_run_delayed_refs(root, cur,
791 must_run_delayed_refs == 1);
792 }
793 return err;
794 }
795
796 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
797 struct btrfs_root *root)
798 {
799 return __btrfs_end_transaction(trans, root, 0);
800 }
801
802 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
803 struct btrfs_root *root)
804 {
805 return __btrfs_end_transaction(trans, root, 1);
806 }
807
808 /*
809 * when btree blocks are allocated, they have some corresponding bits set for
810 * them in one of two extent_io trees. This is used to make sure all of
811 * those extents are sent to disk but does not wait on them
812 */
813 int btrfs_write_marked_extents(struct btrfs_root *root,
814 struct extent_io_tree *dirty_pages, int mark)
815 {
816 int err = 0;
817 int werr = 0;
818 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
819 struct extent_state *cached_state = NULL;
820 u64 start = 0;
821 u64 end;
822
823 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
824 mark, &cached_state)) {
825 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
826 mark, &cached_state, GFP_NOFS);
827 cached_state = NULL;
828 err = filemap_fdatawrite_range(mapping, start, end);
829 if (err)
830 werr = err;
831 cond_resched();
832 start = end + 1;
833 }
834 if (err)
835 werr = err;
836 return werr;
837 }
838
839 /*
840 * when btree blocks are allocated, they have some corresponding bits set for
841 * them in one of two extent_io trees. This is used to make sure all of
842 * those extents are on disk for transaction or log commit. We wait
843 * on all the pages and clear them from the dirty pages state tree
844 */
845 int btrfs_wait_marked_extents(struct btrfs_root *root,
846 struct extent_io_tree *dirty_pages, int mark)
847 {
848 int err = 0;
849 int werr = 0;
850 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
851 struct extent_state *cached_state = NULL;
852 u64 start = 0;
853 u64 end;
854
855 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
856 EXTENT_NEED_WAIT, &cached_state)) {
857 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
858 0, 0, &cached_state, GFP_NOFS);
859 err = filemap_fdatawait_range(mapping, start, end);
860 if (err)
861 werr = err;
862 cond_resched();
863 start = end + 1;
864 }
865 if (err)
866 werr = err;
867 return werr;
868 }
869
870 /*
871 * when btree blocks are allocated, they have some corresponding bits set for
872 * them in one of two extent_io trees. This is used to make sure all of
873 * those extents are on disk for transaction or log commit
874 */
875 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
876 struct extent_io_tree *dirty_pages, int mark)
877 {
878 int ret;
879 int ret2;
880 struct blk_plug plug;
881
882 blk_start_plug(&plug);
883 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
884 blk_finish_plug(&plug);
885 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
886
887 if (ret)
888 return ret;
889 if (ret2)
890 return ret2;
891 return 0;
892 }
893
894 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
895 struct btrfs_root *root)
896 {
897 if (!trans || !trans->transaction) {
898 struct inode *btree_inode;
899 btree_inode = root->fs_info->btree_inode;
900 return filemap_write_and_wait(btree_inode->i_mapping);
901 }
902 return btrfs_write_and_wait_marked_extents(root,
903 &trans->transaction->dirty_pages,
904 EXTENT_DIRTY);
905 }
906
907 /*
908 * this is used to update the root pointer in the tree of tree roots.
909 *
910 * But, in the case of the extent allocation tree, updating the root
911 * pointer may allocate blocks which may change the root of the extent
912 * allocation tree.
913 *
914 * So, this loops and repeats and makes sure the cowonly root didn't
915 * change while the root pointer was being updated in the metadata.
916 */
917 static int update_cowonly_root(struct btrfs_trans_handle *trans,
918 struct btrfs_root *root)
919 {
920 int ret;
921 u64 old_root_bytenr;
922 u64 old_root_used;
923 struct btrfs_root *tree_root = root->fs_info->tree_root;
924
925 old_root_used = btrfs_root_used(&root->root_item);
926 btrfs_write_dirty_block_groups(trans, root);
927
928 while (1) {
929 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
930 if (old_root_bytenr == root->node->start &&
931 old_root_used == btrfs_root_used(&root->root_item))
932 break;
933
934 btrfs_set_root_node(&root->root_item, root->node);
935 ret = btrfs_update_root(trans, tree_root,
936 &root->root_key,
937 &root->root_item);
938 if (ret)
939 return ret;
940
941 old_root_used = btrfs_root_used(&root->root_item);
942 ret = btrfs_write_dirty_block_groups(trans, root);
943 if (ret)
944 return ret;
945 }
946
947 return 0;
948 }
949
950 /*
951 * update all the cowonly tree roots on disk
952 *
953 * The error handling in this function may not be obvious. Any of the
954 * failures will cause the file system to go offline. We still need
955 * to clean up the delayed refs.
956 */
957 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
958 struct btrfs_root *root)
959 {
960 struct btrfs_fs_info *fs_info = root->fs_info;
961 struct list_head *next;
962 struct extent_buffer *eb;
963 int ret;
964
965 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
966 if (ret)
967 return ret;
968
969 eb = btrfs_lock_root_node(fs_info->tree_root);
970 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
971 0, &eb);
972 btrfs_tree_unlock(eb);
973 free_extent_buffer(eb);
974
975 if (ret)
976 return ret;
977
978 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
979 if (ret)
980 return ret;
981
982 ret = btrfs_run_dev_stats(trans, root->fs_info);
983 if (ret)
984 return ret;
985 ret = btrfs_run_dev_replace(trans, root->fs_info);
986 if (ret)
987 return ret;
988 ret = btrfs_run_qgroups(trans, root->fs_info);
989 if (ret)
990 return ret;
991
992 /* run_qgroups might have added some more refs */
993 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
994 if (ret)
995 return ret;
996
997 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
998 next = fs_info->dirty_cowonly_roots.next;
999 list_del_init(next);
1000 root = list_entry(next, struct btrfs_root, dirty_list);
1001
1002 if (root != fs_info->extent_root)
1003 list_add_tail(&root->dirty_list,
1004 &trans->transaction->switch_commits);
1005 ret = update_cowonly_root(trans, root);
1006 if (ret)
1007 return ret;
1008 }
1009
1010 list_add_tail(&fs_info->extent_root->dirty_list,
1011 &trans->transaction->switch_commits);
1012 btrfs_after_dev_replace_commit(fs_info);
1013
1014 return 0;
1015 }
1016
1017 /*
1018 * dead roots are old snapshots that need to be deleted. This allocates
1019 * a dirty root struct and adds it into the list of dead roots that need to
1020 * be deleted
1021 */
1022 void btrfs_add_dead_root(struct btrfs_root *root)
1023 {
1024 spin_lock(&root->fs_info->trans_lock);
1025 if (list_empty(&root->root_list))
1026 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1027 spin_unlock(&root->fs_info->trans_lock);
1028 }
1029
1030 /*
1031 * update all the cowonly tree roots on disk
1032 */
1033 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1034 struct btrfs_root *root)
1035 {
1036 struct btrfs_root *gang[8];
1037 struct btrfs_fs_info *fs_info = root->fs_info;
1038 int i;
1039 int ret;
1040 int err = 0;
1041
1042 spin_lock(&fs_info->fs_roots_radix_lock);
1043 while (1) {
1044 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1045 (void **)gang, 0,
1046 ARRAY_SIZE(gang),
1047 BTRFS_ROOT_TRANS_TAG);
1048 if (ret == 0)
1049 break;
1050 for (i = 0; i < ret; i++) {
1051 root = gang[i];
1052 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1053 (unsigned long)root->root_key.objectid,
1054 BTRFS_ROOT_TRANS_TAG);
1055 spin_unlock(&fs_info->fs_roots_radix_lock);
1056
1057 btrfs_free_log(trans, root);
1058 btrfs_update_reloc_root(trans, root);
1059 btrfs_orphan_commit_root(trans, root);
1060
1061 btrfs_save_ino_cache(root, trans);
1062
1063 /* see comments in should_cow_block() */
1064 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1065 smp_mb__after_atomic();
1066
1067 if (root->commit_root != root->node) {
1068 list_add_tail(&root->dirty_list,
1069 &trans->transaction->switch_commits);
1070 btrfs_set_root_node(&root->root_item,
1071 root->node);
1072 }
1073
1074 err = btrfs_update_root(trans, fs_info->tree_root,
1075 &root->root_key,
1076 &root->root_item);
1077 spin_lock(&fs_info->fs_roots_radix_lock);
1078 if (err)
1079 break;
1080 }
1081 }
1082 spin_unlock(&fs_info->fs_roots_radix_lock);
1083 return err;
1084 }
1085
1086 /*
1087 * defrag a given btree.
1088 * Every leaf in the btree is read and defragged.
1089 */
1090 int btrfs_defrag_root(struct btrfs_root *root)
1091 {
1092 struct btrfs_fs_info *info = root->fs_info;
1093 struct btrfs_trans_handle *trans;
1094 int ret;
1095
1096 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1097 return 0;
1098
1099 while (1) {
1100 trans = btrfs_start_transaction(root, 0);
1101 if (IS_ERR(trans))
1102 return PTR_ERR(trans);
1103
1104 ret = btrfs_defrag_leaves(trans, root);
1105
1106 btrfs_end_transaction(trans, root);
1107 btrfs_btree_balance_dirty(info->tree_root);
1108 cond_resched();
1109
1110 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1111 break;
1112
1113 if (btrfs_defrag_cancelled(root->fs_info)) {
1114 pr_debug("BTRFS: defrag_root cancelled\n");
1115 ret = -EAGAIN;
1116 break;
1117 }
1118 }
1119 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1120 return ret;
1121 }
1122
1123 /*
1124 * new snapshots need to be created at a very specific time in the
1125 * transaction commit. This does the actual creation.
1126 *
1127 * Note:
1128 * If the error which may affect the commitment of the current transaction
1129 * happens, we should return the error number. If the error which just affect
1130 * the creation of the pending snapshots, just return 0.
1131 */
1132 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1133 struct btrfs_fs_info *fs_info,
1134 struct btrfs_pending_snapshot *pending)
1135 {
1136 struct btrfs_key key;
1137 struct btrfs_root_item *new_root_item;
1138 struct btrfs_root *tree_root = fs_info->tree_root;
1139 struct btrfs_root *root = pending->root;
1140 struct btrfs_root *parent_root;
1141 struct btrfs_block_rsv *rsv;
1142 struct inode *parent_inode;
1143 struct btrfs_path *path;
1144 struct btrfs_dir_item *dir_item;
1145 struct dentry *dentry;
1146 struct extent_buffer *tmp;
1147 struct extent_buffer *old;
1148 struct timespec cur_time = CURRENT_TIME;
1149 int ret = 0;
1150 u64 to_reserve = 0;
1151 u64 index = 0;
1152 u64 objectid;
1153 u64 root_flags;
1154 uuid_le new_uuid;
1155
1156 path = btrfs_alloc_path();
1157 if (!path) {
1158 pending->error = -ENOMEM;
1159 return 0;
1160 }
1161
1162 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1163 if (!new_root_item) {
1164 pending->error = -ENOMEM;
1165 goto root_item_alloc_fail;
1166 }
1167
1168 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1169 if (pending->error)
1170 goto no_free_objectid;
1171
1172 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1173
1174 if (to_reserve > 0) {
1175 pending->error = btrfs_block_rsv_add(root,
1176 &pending->block_rsv,
1177 to_reserve,
1178 BTRFS_RESERVE_NO_FLUSH);
1179 if (pending->error)
1180 goto no_free_objectid;
1181 }
1182
1183 key.objectid = objectid;
1184 key.offset = (u64)-1;
1185 key.type = BTRFS_ROOT_ITEM_KEY;
1186
1187 rsv = trans->block_rsv;
1188 trans->block_rsv = &pending->block_rsv;
1189 trans->bytes_reserved = trans->block_rsv->reserved;
1190
1191 dentry = pending->dentry;
1192 parent_inode = pending->dir;
1193 parent_root = BTRFS_I(parent_inode)->root;
1194 record_root_in_trans(trans, parent_root);
1195
1196 /*
1197 * insert the directory item
1198 */
1199 ret = btrfs_set_inode_index(parent_inode, &index);
1200 BUG_ON(ret); /* -ENOMEM */
1201
1202 /* check if there is a file/dir which has the same name. */
1203 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1204 btrfs_ino(parent_inode),
1205 dentry->d_name.name,
1206 dentry->d_name.len, 0);
1207 if (dir_item != NULL && !IS_ERR(dir_item)) {
1208 pending->error = -EEXIST;
1209 goto dir_item_existed;
1210 } else if (IS_ERR(dir_item)) {
1211 ret = PTR_ERR(dir_item);
1212 btrfs_abort_transaction(trans, root, ret);
1213 goto fail;
1214 }
1215 btrfs_release_path(path);
1216
1217 /*
1218 * pull in the delayed directory update
1219 * and the delayed inode item
1220 * otherwise we corrupt the FS during
1221 * snapshot
1222 */
1223 ret = btrfs_run_delayed_items(trans, root);
1224 if (ret) { /* Transaction aborted */
1225 btrfs_abort_transaction(trans, root, ret);
1226 goto fail;
1227 }
1228
1229 record_root_in_trans(trans, root);
1230 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1231 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1232 btrfs_check_and_init_root_item(new_root_item);
1233
1234 root_flags = btrfs_root_flags(new_root_item);
1235 if (pending->readonly)
1236 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1237 else
1238 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1239 btrfs_set_root_flags(new_root_item, root_flags);
1240
1241 btrfs_set_root_generation_v2(new_root_item,
1242 trans->transid);
1243 uuid_le_gen(&new_uuid);
1244 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1245 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1246 BTRFS_UUID_SIZE);
1247 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1248 memset(new_root_item->received_uuid, 0,
1249 sizeof(new_root_item->received_uuid));
1250 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1251 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1252 btrfs_set_root_stransid(new_root_item, 0);
1253 btrfs_set_root_rtransid(new_root_item, 0);
1254 }
1255 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1256 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1257 btrfs_set_root_otransid(new_root_item, trans->transid);
1258
1259 old = btrfs_lock_root_node(root);
1260 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1261 if (ret) {
1262 btrfs_tree_unlock(old);
1263 free_extent_buffer(old);
1264 btrfs_abort_transaction(trans, root, ret);
1265 goto fail;
1266 }
1267
1268 btrfs_set_lock_blocking(old);
1269
1270 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1271 /* clean up in any case */
1272 btrfs_tree_unlock(old);
1273 free_extent_buffer(old);
1274 if (ret) {
1275 btrfs_abort_transaction(trans, root, ret);
1276 goto fail;
1277 }
1278
1279 /*
1280 * We need to flush delayed refs in order to make sure all of our quota
1281 * operations have been done before we call btrfs_qgroup_inherit.
1282 */
1283 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1284 if (ret) {
1285 btrfs_abort_transaction(trans, root, ret);
1286 goto fail;
1287 }
1288
1289 ret = btrfs_qgroup_inherit(trans, fs_info,
1290 root->root_key.objectid,
1291 objectid, pending->inherit);
1292 if (ret) {
1293 btrfs_abort_transaction(trans, root, ret);
1294 goto fail;
1295 }
1296
1297 /* see comments in should_cow_block() */
1298 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1299 smp_wmb();
1300
1301 btrfs_set_root_node(new_root_item, tmp);
1302 /* record when the snapshot was created in key.offset */
1303 key.offset = trans->transid;
1304 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1305 btrfs_tree_unlock(tmp);
1306 free_extent_buffer(tmp);
1307 if (ret) {
1308 btrfs_abort_transaction(trans, root, ret);
1309 goto fail;
1310 }
1311
1312 /*
1313 * insert root back/forward references
1314 */
1315 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1316 parent_root->root_key.objectid,
1317 btrfs_ino(parent_inode), index,
1318 dentry->d_name.name, dentry->d_name.len);
1319 if (ret) {
1320 btrfs_abort_transaction(trans, root, ret);
1321 goto fail;
1322 }
1323
1324 key.offset = (u64)-1;
1325 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1326 if (IS_ERR(pending->snap)) {
1327 ret = PTR_ERR(pending->snap);
1328 btrfs_abort_transaction(trans, root, ret);
1329 goto fail;
1330 }
1331
1332 ret = btrfs_reloc_post_snapshot(trans, pending);
1333 if (ret) {
1334 btrfs_abort_transaction(trans, root, ret);
1335 goto fail;
1336 }
1337
1338 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1339 if (ret) {
1340 btrfs_abort_transaction(trans, root, ret);
1341 goto fail;
1342 }
1343
1344 ret = btrfs_insert_dir_item(trans, parent_root,
1345 dentry->d_name.name, dentry->d_name.len,
1346 parent_inode, &key,
1347 BTRFS_FT_DIR, index);
1348 /* We have check then name at the beginning, so it is impossible. */
1349 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1350 if (ret) {
1351 btrfs_abort_transaction(trans, root, ret);
1352 goto fail;
1353 }
1354
1355 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1356 dentry->d_name.len * 2);
1357 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1358 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1359 if (ret) {
1360 btrfs_abort_transaction(trans, root, ret);
1361 goto fail;
1362 }
1363 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1364 BTRFS_UUID_KEY_SUBVOL, objectid);
1365 if (ret) {
1366 btrfs_abort_transaction(trans, root, ret);
1367 goto fail;
1368 }
1369 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1370 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1371 new_root_item->received_uuid,
1372 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1373 objectid);
1374 if (ret && ret != -EEXIST) {
1375 btrfs_abort_transaction(trans, root, ret);
1376 goto fail;
1377 }
1378 }
1379 fail:
1380 pending->error = ret;
1381 dir_item_existed:
1382 trans->block_rsv = rsv;
1383 trans->bytes_reserved = 0;
1384 no_free_objectid:
1385 kfree(new_root_item);
1386 root_item_alloc_fail:
1387 btrfs_free_path(path);
1388 return ret;
1389 }
1390
1391 /*
1392 * create all the snapshots we've scheduled for creation
1393 */
1394 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1395 struct btrfs_fs_info *fs_info)
1396 {
1397 struct btrfs_pending_snapshot *pending, *next;
1398 struct list_head *head = &trans->transaction->pending_snapshots;
1399 int ret = 0;
1400
1401 list_for_each_entry_safe(pending, next, head, list) {
1402 list_del(&pending->list);
1403 ret = create_pending_snapshot(trans, fs_info, pending);
1404 if (ret)
1405 break;
1406 }
1407 return ret;
1408 }
1409
1410 static void update_super_roots(struct btrfs_root *root)
1411 {
1412 struct btrfs_root_item *root_item;
1413 struct btrfs_super_block *super;
1414
1415 super = root->fs_info->super_copy;
1416
1417 root_item = &root->fs_info->chunk_root->root_item;
1418 super->chunk_root = root_item->bytenr;
1419 super->chunk_root_generation = root_item->generation;
1420 super->chunk_root_level = root_item->level;
1421
1422 root_item = &root->fs_info->tree_root->root_item;
1423 super->root = root_item->bytenr;
1424 super->generation = root_item->generation;
1425 super->root_level = root_item->level;
1426 if (btrfs_test_opt(root, SPACE_CACHE))
1427 super->cache_generation = root_item->generation;
1428 if (root->fs_info->update_uuid_tree_gen)
1429 super->uuid_tree_generation = root_item->generation;
1430 }
1431
1432 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1433 {
1434 struct btrfs_transaction *trans;
1435 int ret = 0;
1436
1437 spin_lock(&info->trans_lock);
1438 trans = info->running_transaction;
1439 if (trans)
1440 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1441 spin_unlock(&info->trans_lock);
1442 return ret;
1443 }
1444
1445 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1446 {
1447 struct btrfs_transaction *trans;
1448 int ret = 0;
1449
1450 spin_lock(&info->trans_lock);
1451 trans = info->running_transaction;
1452 if (trans)
1453 ret = is_transaction_blocked(trans);
1454 spin_unlock(&info->trans_lock);
1455 return ret;
1456 }
1457
1458 /*
1459 * wait for the current transaction commit to start and block subsequent
1460 * transaction joins
1461 */
1462 static void wait_current_trans_commit_start(struct btrfs_root *root,
1463 struct btrfs_transaction *trans)
1464 {
1465 wait_event(root->fs_info->transaction_blocked_wait,
1466 trans->state >= TRANS_STATE_COMMIT_START ||
1467 trans->aborted);
1468 }
1469
1470 /*
1471 * wait for the current transaction to start and then become unblocked.
1472 * caller holds ref.
1473 */
1474 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1475 struct btrfs_transaction *trans)
1476 {
1477 wait_event(root->fs_info->transaction_wait,
1478 trans->state >= TRANS_STATE_UNBLOCKED ||
1479 trans->aborted);
1480 }
1481
1482 /*
1483 * commit transactions asynchronously. once btrfs_commit_transaction_async
1484 * returns, any subsequent transaction will not be allowed to join.
1485 */
1486 struct btrfs_async_commit {
1487 struct btrfs_trans_handle *newtrans;
1488 struct btrfs_root *root;
1489 struct work_struct work;
1490 };
1491
1492 static void do_async_commit(struct work_struct *work)
1493 {
1494 struct btrfs_async_commit *ac =
1495 container_of(work, struct btrfs_async_commit, work);
1496
1497 /*
1498 * We've got freeze protection passed with the transaction.
1499 * Tell lockdep about it.
1500 */
1501 if (ac->newtrans->type & __TRANS_FREEZABLE)
1502 rwsem_acquire_read(
1503 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1504 0, 1, _THIS_IP_);
1505
1506 current->journal_info = ac->newtrans;
1507
1508 btrfs_commit_transaction(ac->newtrans, ac->root);
1509 kfree(ac);
1510 }
1511
1512 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1513 struct btrfs_root *root,
1514 int wait_for_unblock)
1515 {
1516 struct btrfs_async_commit *ac;
1517 struct btrfs_transaction *cur_trans;
1518
1519 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1520 if (!ac)
1521 return -ENOMEM;
1522
1523 INIT_WORK(&ac->work, do_async_commit);
1524 ac->root = root;
1525 ac->newtrans = btrfs_join_transaction(root);
1526 if (IS_ERR(ac->newtrans)) {
1527 int err = PTR_ERR(ac->newtrans);
1528 kfree(ac);
1529 return err;
1530 }
1531
1532 /* take transaction reference */
1533 cur_trans = trans->transaction;
1534 atomic_inc(&cur_trans->use_count);
1535
1536 btrfs_end_transaction(trans, root);
1537
1538 /*
1539 * Tell lockdep we've released the freeze rwsem, since the
1540 * async commit thread will be the one to unlock it.
1541 */
1542 if (ac->newtrans->type & __TRANS_FREEZABLE)
1543 rwsem_release(
1544 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1545 1, _THIS_IP_);
1546
1547 schedule_work(&ac->work);
1548
1549 /* wait for transaction to start and unblock */
1550 if (wait_for_unblock)
1551 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1552 else
1553 wait_current_trans_commit_start(root, cur_trans);
1554
1555 if (current->journal_info == trans)
1556 current->journal_info = NULL;
1557
1558 btrfs_put_transaction(cur_trans);
1559 return 0;
1560 }
1561
1562
1563 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1564 struct btrfs_root *root, int err)
1565 {
1566 struct btrfs_transaction *cur_trans = trans->transaction;
1567 DEFINE_WAIT(wait);
1568
1569 WARN_ON(trans->use_count > 1);
1570
1571 btrfs_abort_transaction(trans, root, err);
1572
1573 spin_lock(&root->fs_info->trans_lock);
1574
1575 /*
1576 * If the transaction is removed from the list, it means this
1577 * transaction has been committed successfully, so it is impossible
1578 * to call the cleanup function.
1579 */
1580 BUG_ON(list_empty(&cur_trans->list));
1581
1582 list_del_init(&cur_trans->list);
1583 if (cur_trans == root->fs_info->running_transaction) {
1584 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1585 spin_unlock(&root->fs_info->trans_lock);
1586 wait_event(cur_trans->writer_wait,
1587 atomic_read(&cur_trans->num_writers) == 1);
1588
1589 spin_lock(&root->fs_info->trans_lock);
1590 }
1591 spin_unlock(&root->fs_info->trans_lock);
1592
1593 btrfs_cleanup_one_transaction(trans->transaction, root);
1594
1595 spin_lock(&root->fs_info->trans_lock);
1596 if (cur_trans == root->fs_info->running_transaction)
1597 root->fs_info->running_transaction = NULL;
1598 spin_unlock(&root->fs_info->trans_lock);
1599
1600 if (trans->type & __TRANS_FREEZABLE)
1601 sb_end_intwrite(root->fs_info->sb);
1602 btrfs_put_transaction(cur_trans);
1603 btrfs_put_transaction(cur_trans);
1604
1605 trace_btrfs_transaction_commit(root);
1606
1607 if (current->journal_info == trans)
1608 current->journal_info = NULL;
1609 btrfs_scrub_cancel(root->fs_info);
1610
1611 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1612 }
1613
1614 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1615 struct btrfs_root *root)
1616 {
1617 int ret;
1618
1619 ret = btrfs_run_delayed_items(trans, root);
1620 if (ret)
1621 return ret;
1622
1623 /*
1624 * rename don't use btrfs_join_transaction, so, once we
1625 * set the transaction to blocked above, we aren't going
1626 * to get any new ordered operations. We can safely run
1627 * it here and no for sure that nothing new will be added
1628 * to the list
1629 */
1630 ret = btrfs_run_ordered_operations(trans, root, 1);
1631
1632 return ret;
1633 }
1634
1635 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1636 {
1637 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1638 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1639 return 0;
1640 }
1641
1642 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1643 {
1644 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1645 btrfs_wait_ordered_roots(fs_info, -1);
1646 }
1647
1648 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1649 struct btrfs_root *root)
1650 {
1651 struct btrfs_transaction *cur_trans = trans->transaction;
1652 struct btrfs_transaction *prev_trans = NULL;
1653 int ret;
1654
1655 ret = btrfs_run_ordered_operations(trans, root, 0);
1656 if (ret) {
1657 btrfs_abort_transaction(trans, root, ret);
1658 btrfs_end_transaction(trans, root);
1659 return ret;
1660 }
1661
1662 /* Stop the commit early if ->aborted is set */
1663 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1664 ret = cur_trans->aborted;
1665 btrfs_end_transaction(trans, root);
1666 return ret;
1667 }
1668
1669 /* make a pass through all the delayed refs we have so far
1670 * any runnings procs may add more while we are here
1671 */
1672 ret = btrfs_run_delayed_refs(trans, root, 0);
1673 if (ret) {
1674 btrfs_end_transaction(trans, root);
1675 return ret;
1676 }
1677
1678 btrfs_trans_release_metadata(trans, root);
1679 trans->block_rsv = NULL;
1680 if (trans->qgroup_reserved) {
1681 btrfs_qgroup_free(root, trans->qgroup_reserved);
1682 trans->qgroup_reserved = 0;
1683 }
1684
1685 cur_trans = trans->transaction;
1686
1687 /*
1688 * set the flushing flag so procs in this transaction have to
1689 * start sending their work down.
1690 */
1691 cur_trans->delayed_refs.flushing = 1;
1692 smp_wmb();
1693
1694 if (!list_empty(&trans->new_bgs))
1695 btrfs_create_pending_block_groups(trans, root);
1696
1697 ret = btrfs_run_delayed_refs(trans, root, 0);
1698 if (ret) {
1699 btrfs_end_transaction(trans, root);
1700 return ret;
1701 }
1702
1703 spin_lock(&root->fs_info->trans_lock);
1704 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1705 spin_unlock(&root->fs_info->trans_lock);
1706 atomic_inc(&cur_trans->use_count);
1707 ret = btrfs_end_transaction(trans, root);
1708
1709 wait_for_commit(root, cur_trans);
1710
1711 btrfs_put_transaction(cur_trans);
1712
1713 return ret;
1714 }
1715
1716 cur_trans->state = TRANS_STATE_COMMIT_START;
1717 wake_up(&root->fs_info->transaction_blocked_wait);
1718
1719 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1720 prev_trans = list_entry(cur_trans->list.prev,
1721 struct btrfs_transaction, list);
1722 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1723 atomic_inc(&prev_trans->use_count);
1724 spin_unlock(&root->fs_info->trans_lock);
1725
1726 wait_for_commit(root, prev_trans);
1727
1728 btrfs_put_transaction(prev_trans);
1729 } else {
1730 spin_unlock(&root->fs_info->trans_lock);
1731 }
1732 } else {
1733 spin_unlock(&root->fs_info->trans_lock);
1734 }
1735
1736 extwriter_counter_dec(cur_trans, trans->type);
1737
1738 ret = btrfs_start_delalloc_flush(root->fs_info);
1739 if (ret)
1740 goto cleanup_transaction;
1741
1742 ret = btrfs_flush_all_pending_stuffs(trans, root);
1743 if (ret)
1744 goto cleanup_transaction;
1745
1746 wait_event(cur_trans->writer_wait,
1747 extwriter_counter_read(cur_trans) == 0);
1748
1749 /* some pending stuffs might be added after the previous flush. */
1750 ret = btrfs_flush_all_pending_stuffs(trans, root);
1751 if (ret)
1752 goto cleanup_transaction;
1753
1754 btrfs_wait_delalloc_flush(root->fs_info);
1755
1756 btrfs_scrub_pause(root);
1757 /*
1758 * Ok now we need to make sure to block out any other joins while we
1759 * commit the transaction. We could have started a join before setting
1760 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1761 */
1762 spin_lock(&root->fs_info->trans_lock);
1763 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1764 spin_unlock(&root->fs_info->trans_lock);
1765 wait_event(cur_trans->writer_wait,
1766 atomic_read(&cur_trans->num_writers) == 1);
1767
1768 /* ->aborted might be set after the previous check, so check it */
1769 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1770 ret = cur_trans->aborted;
1771 goto scrub_continue;
1772 }
1773 /*
1774 * the reloc mutex makes sure that we stop
1775 * the balancing code from coming in and moving
1776 * extents around in the middle of the commit
1777 */
1778 mutex_lock(&root->fs_info->reloc_mutex);
1779
1780 /*
1781 * We needn't worry about the delayed items because we will
1782 * deal with them in create_pending_snapshot(), which is the
1783 * core function of the snapshot creation.
1784 */
1785 ret = create_pending_snapshots(trans, root->fs_info);
1786 if (ret) {
1787 mutex_unlock(&root->fs_info->reloc_mutex);
1788 goto scrub_continue;
1789 }
1790
1791 /*
1792 * We insert the dir indexes of the snapshots and update the inode
1793 * of the snapshots' parents after the snapshot creation, so there
1794 * are some delayed items which are not dealt with. Now deal with
1795 * them.
1796 *
1797 * We needn't worry that this operation will corrupt the snapshots,
1798 * because all the tree which are snapshoted will be forced to COW
1799 * the nodes and leaves.
1800 */
1801 ret = btrfs_run_delayed_items(trans, root);
1802 if (ret) {
1803 mutex_unlock(&root->fs_info->reloc_mutex);
1804 goto scrub_continue;
1805 }
1806
1807 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1808 if (ret) {
1809 mutex_unlock(&root->fs_info->reloc_mutex);
1810 goto scrub_continue;
1811 }
1812
1813 /*
1814 * make sure none of the code above managed to slip in a
1815 * delayed item
1816 */
1817 btrfs_assert_delayed_root_empty(root);
1818
1819 WARN_ON(cur_trans != trans->transaction);
1820
1821 /* btrfs_commit_tree_roots is responsible for getting the
1822 * various roots consistent with each other. Every pointer
1823 * in the tree of tree roots has to point to the most up to date
1824 * root for every subvolume and other tree. So, we have to keep
1825 * the tree logging code from jumping in and changing any
1826 * of the trees.
1827 *
1828 * At this point in the commit, there can't be any tree-log
1829 * writers, but a little lower down we drop the trans mutex
1830 * and let new people in. By holding the tree_log_mutex
1831 * from now until after the super is written, we avoid races
1832 * with the tree-log code.
1833 */
1834 mutex_lock(&root->fs_info->tree_log_mutex);
1835
1836 ret = commit_fs_roots(trans, root);
1837 if (ret) {
1838 mutex_unlock(&root->fs_info->tree_log_mutex);
1839 mutex_unlock(&root->fs_info->reloc_mutex);
1840 goto scrub_continue;
1841 }
1842
1843 /*
1844 * Since the transaction is done, we should set the inode map cache flag
1845 * before any other comming transaction.
1846 */
1847 if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1848 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1849 else
1850 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1851
1852 /* commit_fs_roots gets rid of all the tree log roots, it is now
1853 * safe to free the root of tree log roots
1854 */
1855 btrfs_free_log_root_tree(trans, root->fs_info);
1856
1857 ret = commit_cowonly_roots(trans, root);
1858 if (ret) {
1859 mutex_unlock(&root->fs_info->tree_log_mutex);
1860 mutex_unlock(&root->fs_info->reloc_mutex);
1861 goto scrub_continue;
1862 }
1863
1864 /*
1865 * The tasks which save the space cache and inode cache may also
1866 * update ->aborted, check it.
1867 */
1868 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1869 ret = cur_trans->aborted;
1870 mutex_unlock(&root->fs_info->tree_log_mutex);
1871 mutex_unlock(&root->fs_info->reloc_mutex);
1872 goto scrub_continue;
1873 }
1874
1875 btrfs_prepare_extent_commit(trans, root);
1876
1877 cur_trans = root->fs_info->running_transaction;
1878
1879 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1880 root->fs_info->tree_root->node);
1881 list_add_tail(&root->fs_info->tree_root->dirty_list,
1882 &cur_trans->switch_commits);
1883
1884 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1885 root->fs_info->chunk_root->node);
1886 list_add_tail(&root->fs_info->chunk_root->dirty_list,
1887 &cur_trans->switch_commits);
1888
1889 switch_commit_roots(cur_trans, root->fs_info);
1890
1891 assert_qgroups_uptodate(trans);
1892 update_super_roots(root);
1893
1894 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1895 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1896 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1897 sizeof(*root->fs_info->super_copy));
1898
1899 spin_lock(&root->fs_info->trans_lock);
1900 cur_trans->state = TRANS_STATE_UNBLOCKED;
1901 root->fs_info->running_transaction = NULL;
1902 spin_unlock(&root->fs_info->trans_lock);
1903 mutex_unlock(&root->fs_info->reloc_mutex);
1904
1905 wake_up(&root->fs_info->transaction_wait);
1906
1907 ret = btrfs_write_and_wait_transaction(trans, root);
1908 if (ret) {
1909 btrfs_error(root->fs_info, ret,
1910 "Error while writing out transaction");
1911 mutex_unlock(&root->fs_info->tree_log_mutex);
1912 goto scrub_continue;
1913 }
1914
1915 ret = write_ctree_super(trans, root, 0);
1916 if (ret) {
1917 mutex_unlock(&root->fs_info->tree_log_mutex);
1918 goto scrub_continue;
1919 }
1920
1921 /*
1922 * the super is written, we can safely allow the tree-loggers
1923 * to go about their business
1924 */
1925 mutex_unlock(&root->fs_info->tree_log_mutex);
1926
1927 btrfs_finish_extent_commit(trans, root);
1928
1929 root->fs_info->last_trans_committed = cur_trans->transid;
1930 /*
1931 * We needn't acquire the lock here because there is no other task
1932 * which can change it.
1933 */
1934 cur_trans->state = TRANS_STATE_COMPLETED;
1935 wake_up(&cur_trans->commit_wait);
1936
1937 spin_lock(&root->fs_info->trans_lock);
1938 list_del_init(&cur_trans->list);
1939 spin_unlock(&root->fs_info->trans_lock);
1940
1941 btrfs_put_transaction(cur_trans);
1942 btrfs_put_transaction(cur_trans);
1943
1944 if (trans->type & __TRANS_FREEZABLE)
1945 sb_end_intwrite(root->fs_info->sb);
1946
1947 trace_btrfs_transaction_commit(root);
1948
1949 btrfs_scrub_continue(root);
1950
1951 if (current->journal_info == trans)
1952 current->journal_info = NULL;
1953
1954 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1955
1956 if (current != root->fs_info->transaction_kthread)
1957 btrfs_run_delayed_iputs(root);
1958
1959 return ret;
1960
1961 scrub_continue:
1962 btrfs_scrub_continue(root);
1963 cleanup_transaction:
1964 btrfs_trans_release_metadata(trans, root);
1965 trans->block_rsv = NULL;
1966 if (trans->qgroup_reserved) {
1967 btrfs_qgroup_free(root, trans->qgroup_reserved);
1968 trans->qgroup_reserved = 0;
1969 }
1970 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1971 if (current->journal_info == trans)
1972 current->journal_info = NULL;
1973 cleanup_transaction(trans, root, ret);
1974
1975 return ret;
1976 }
1977
1978 /*
1979 * return < 0 if error
1980 * 0 if there are no more dead_roots at the time of call
1981 * 1 there are more to be processed, call me again
1982 *
1983 * The return value indicates there are certainly more snapshots to delete, but
1984 * if there comes a new one during processing, it may return 0. We don't mind,
1985 * because btrfs_commit_super will poke cleaner thread and it will process it a
1986 * few seconds later.
1987 */
1988 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1989 {
1990 int ret;
1991 struct btrfs_fs_info *fs_info = root->fs_info;
1992
1993 spin_lock(&fs_info->trans_lock);
1994 if (list_empty(&fs_info->dead_roots)) {
1995 spin_unlock(&fs_info->trans_lock);
1996 return 0;
1997 }
1998 root = list_first_entry(&fs_info->dead_roots,
1999 struct btrfs_root, root_list);
2000 list_del_init(&root->root_list);
2001 spin_unlock(&fs_info->trans_lock);
2002
2003 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2004
2005 btrfs_kill_all_delayed_nodes(root);
2006
2007 if (btrfs_header_backref_rev(root->node) <
2008 BTRFS_MIXED_BACKREF_REV)
2009 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2010 else
2011 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2012 /*
2013 * If we encounter a transaction abort during snapshot cleaning, we
2014 * don't want to crash here
2015 */
2016 return (ret < 0) ? 0 : 1;
2017 }